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Abstract

In this paper we propose a new joint Portmanteau test for checking the spec-

ification of parametric conditional mean and variance functions of linear and

nonlinear time series models. The use of a joint test is motivated for complete

control of the asymptotic size since marginal tests for the conditional variance

may lead to misleading conclusions when the conditional mean is misspecified.

The new test is based on an asymptotically distribution-free transformation on

the sample autocorrelations of both normalized residuals and squared normalized

residuals, extending Delgado and Velasco (2011). This makes unnecessary to full
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detail the asymptotic properties of the estimates used to obtain residuals, which

could be inefficient two-step ones, avoiding also choices of maximum lag parame-

ters increasing with sample length to control asymptotic size. The robust versions

of the new test also properly account for higher order moment dependence at a

reduced cost. The finite-sample performance of the new test is compared with

those of well known tests through simulations.

JEL Classification: C12, C22

Keywords: Model Diagnostic Checking; Portmanteau Statistic; Estimation Effect;

GARCH Model Specification Testing; Residual serial correlation.
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1 Introduction

During the time series model building process, it is critical to check whether the residuals

of a time series model are approximately uncorrelated, since a good model should be

able to describe the dependence structure of the data adequately, and one important

measurement of dependence is via the autocorrelation function of residuals. But the

autocorrelation only attends to linear dependence, so when modeling other dynamic

aspects, such as the conditional variance, or using general nonlinear specifications,

further serial dependence measures of the residuals have to be considered.

It has been a long history of studying the distribution of residual autocorrelations

in linear time series models. With the popularization of the Box-Jenkins modeling

approach in 1970s, Box and Pierce (1970) and Ljung and Box (1978) propose portman-

teau tests to check the adequacy of ARMA models. Box and Pierce (1970) and Durbin

(1970) show that, although the sample autocorrelations of ARMA residuals under the

true parameters are asymptotic independently normal distributed, this does not hold

when genuine innovations are substituted by estimated residuals. More specifically,

consider the ARMA (p, q) model

eθt = ϕθ (L)Yt, t ∈ Z,

where ϕθ (z) = Aθ (z)B
−1
θ (z), Aθ (z) = 1−

∑p
j=1 ajz

j , Bθ (z) = 1−
∑q

j=1 bjz
j, in which

Aθ (z) and Bθ (z) have no roots in common and all roots are outside the unit circle for

θ ∈ Θ.

Consider the residuals {eθt}t∈Z, and define the residual sample autocorrelation func-

tion

ρθ (j) =
γθ (j)

γθ (0)
, j ∈ 1, 2, . . . ,

where γθ (j) = Cov (eθt, eθt−j), j ∈ Z, is the corresponding autocorrelation function.

3



The null hypothesis of correct specification for such linear model is

H0 : ρθ0 (j) = 0 for all j ∈ 1, 2, . . . and some θ0 ∈ Θ.

Given observations {Yt}Tt=1, ρθ is estimated by the sample autocorrelation function

ρ̂Tθ (j) =
γ̂Tθ (j)

γ̂Tθ (0)
, j ∈ 1, . . . , T − 1,

where

γ̂Tθ (j) =
1

T

T
∑

t=j+1

(eθt − ēθ) (eθt−j − ēθ)

is the sample autocovariance function and ēθ = T−1
∑T

t=1 eθt is the residual sample

mean. When some further conditions are imposed on the model errors, such as {eθ0t}t∈Z
being an independently and identically distributed (i.i.d.), martingale difference, or

mixing sequence with some restrictions on higher order moments, it is well known that
{√

T ρ̂Tθ (j)
}s

j=1
are asymptotically distributed as independent standard normals, so

the Box-Pierce-Ljung portmanteau test

BPL (s) = T (T + 2)
s
∑

j=1

(T − j)−1 ρ̂2Tθ0
(j)

follows an asymptotic χ2 distribution with s degrees of freedom under H0.

When θ0 is unknown and we replace it by a pseudo-maximum likelihood estimator

θ̂T , then the null distribution of

B̂PL (s) = T (T + 2)
s
∑

j=1

(T − j)−1 ρ̂2
T θ̂T

(j)

is approximated by a χ2 distribution with s− (p+ q) degrees of freedom. Note that the

degrees of freedom of the Box-Pierce-Ljung test depend on the number of the estimated

parameters due to the impact of the parameter estimation uncertainty. However, when

it comes to nonlinear time series models, the previous asymptotic properties of portman-
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teau tests for ARMA models breaks down. Usually, the analysis of Lagrange multiplier

and Portmanteau tests requires to derive the asymptotic theory for quadratic forms of

the residual sample autocorrelations, which depends on the model and the estimator

considered, see e.g. Francq, Roy, and Zaköıan (2005) for weak ARMA models.

Quite recently Delgado and Velasco (2011) develop an asymptotically distribution-

free transform of the sample autocorrelations of residuals in general parametric linear

time series models. This paper shows that the proposed Box-Pierce type test statistic

based on the transformed autocorrelation is not affected by the estimation effect.

For financial time series, where dynamic conditional heteroskedasticity is the norm,

the ARMA model with constant variance is inadequate to describe the data. A non-

constant conditional variance of eθt can be modeled by

eθt = h (It−1, θ) εθt, εθt ∼ i.i.d.
(

0, σ2
)

,

where It−1 denotes the information set at t. There are many possible specifications

of the function h (It−1, θ). Engle (1982) proposes the autoregressive conditional het-

eroskedasticity (ARCH) model, h2 (It−1, θ) = ̟0 + α1e
2
θt−1 + · · ·+ αme

2
θt−m. Bollerslev

(1986) proposes the GARCH models, which involve infinite lags of e2θt, as ARMA mod-

els involve all lags of eθt. Since then, GARCH models have become more and more

popular and successful in economics and finance. In this case the autocorrelations of

squared normalized residuals derived from these models should be useful in checking

the adequacy of h (It−1, θ). In this regard, a Portmanteau statistic on the first s auto-

correlations of squared normalized residuals is proposed by Higgins and Bera (1992) for

checking of the adequacy of the ARCH model specifications. However, the proposed

approximation of the asymptotic distribution for the test statistic by a χ2 distribution

with s degrees of freedom turned out to be not appropriate. Li and Mak (1994) propose

a portmanteau test based on the correct asymptotic distribution of the autocorrelations

of squared normalized residuals, while Lundbergh and Teräsvirta (2002) establish the

asymptotic equivalence between Li and Mak’s statistic and the LM statistic.
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Nowadays, dynamic econometric models that jointly parameterize conditional means

and conditional variances are becoming increasingly popular in the analysis of economic

and financial time series. This class of models appears in several dynamic contexts,

such as asset pricing, portfolio choices, and market risk management. While there ex-

ist portmanteau tests for conditional mean models or for conditional variance models,

the literature on joint model checking for the conditional mean and variance func-

tions is rather scarce. The joint portmanteau test is motivated for complete control of

the asymptotic size since marginal portmanteau tests for the conditional variance may

lead to misleading conclusions when the conditional mean is misspecified. Wong and

Ling (2005) consider simultaneously the Box-Pierce-Ljung and Li-Mak test statistics

to jointly test the model adequacy of the conditional mean and variance models when

pseudo-maximum likelihood estimates are used. Escanciano (2008) proposes a class

of joint and marginal spectral diagnostic tests for parametric conditional mean and

variance functions of linear and nonlinear time series models. Escanciano (2008) ap-

proach enjoys a consistency property by considering an increasing number of lags, but

the asymptotic null distributions of these tests depend on the data generating process

because of the parameter estimation uncertainty so that a bootstrap procedure has to

be applied.

In this paper, instead, we propose an asymptotic simultaneous distribution-free

transform of the sample autocorrelations of standardized residuals and their squares,

extending Delgado and Velasco (2011) approach to the conditional mean and variance

models diagnosis. We then consider portmanteau type tests based on these transforma-

tion. This makes unnecessary to full detail the asymptotic properties of the estimates

used to obtain residuals, which could be inefficient two-step ones, avoiding also choices

of maximum lag parameters increasing with sample length to control asymptotic size of

tests. The robust versions of the new test can properly account for higher order moment

dependence at a reduced computational cost. The outline of the rest of the paper is

as following. In Section 2, we establish the transform. Section 3 studies its asymptotic

properties, and propose the Box-Pierce test statistic. Section 4 is a Monte Carlo study
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of the joint portmanteau test. Proofs are contained in a technical Appendix.

2 Transformed Residual autocorrelations

We consider the following mean-scale model for observations Yt,

Yt = f (It−1, θ) + h (It−1, θ) εθt, t ∈ Z, (1)

where f (It−1, θ) and h2 (It−1, θ) are the parametric specifications for the first two condi-

tional moments of Yt, f (It−1) = E (Yt|It−1) and h2 (It−1) = V ar (Yt|It−1), respectively;

It is the information set generated by {Yt, Yt−1, . . .}; θ is a finite-dimensional unknown

parameter vector such that θ ∈ Θ ⊂ Rk. If we assume εθ0t in such a way that for some

θ0 ∈ Θ

E(εθ0t|It−1) = 0, E(ε2θ0t|It−1) = 1 (2)

hold, then we have f (It−1, θ0) = E (Yt|It−1), h
2 (It−1, θ0) = V ar (Yt|It−1). This assump-

tion is weaker than assuming {εθ0t}t∈Z is i.i.d. with mean 0 and variance 1, which is

usually assumed in much of the related literature. This provides additional generality,

since there is a growing econometrics and finance literature documenting time-varying

conditional skewness and kurtosis in economic and financial time series, see, e.g. Gallant

et al. (1991), Hansen (1994), Harvey and Siddique (1999) and Jondeau and Rockinger

(2003). This specification covers most commonly used linear and nonlinear dynamic

time series models. Examples include the autoregressive conditional heteroskedasticity

(ARCH), autoregressive moving average (ARMA), bilinear, nonlinear moving average,

Markov regime-switching, smooth transition, exponential, and threshold autoregressive

models.

Consider {εθt}t∈Z and {ε2θt}t∈Z, and define the residual sample autocorrelation func-

tions

ρθ (j) =
γθ(j)
γθ(0)

, j ∈ 1, 2, . . . ,

δθ (j) =
ηθ(j)
ηθ(0)

, j ∈ 1, 2, . . . ,

7



where γθ (j) = Cov (εθt, εθt−j) and ηθ (j) = Cov
(

ε2θt, ε
2
θt−j

)

, j ∈ 1, 2, . . ., are, respec-

tively, the corresponding autocovariance functions of the standardized residuals and

the square of the residuals.

Then, if the model (1) is correctly specified the null hypothesis

H
(m)
0 :

ρθ0 (1) = ρθ0 (2) = · · · = ρθ0 (m) = 0

δθ0 (1) = δθ0 (2) = · · · = δθ0 (m) = 0

is satisfied for any m = 1, 2, . . ., expressing the limited serial dependence of the errors

in the first two (unconditional) moments.

Given observations {Yt}Tt=1, ρθ (j) and δθ (j) are estimated by the sample autocor-

relation functions

ρ̂Tθ (j) =
γ̂Tθ (j)

γ̂Tθ (0)
, j ∈ 1, 2, . . . ,

δ̂Tθ (j) =
η̂Tθ (j)

η̂Tθ (0)
, j ∈ 1, 2, . . . ,

where

γ̂Tθ (j) =
1

T

T
∑

t=j+1

(εθt − ε̄θ) (εθt−j − ε̄θ) , j ∈ Z

η̂Tθ (j) =
1

T

T
∑

t=j+1

(

ε2θt − ε̄2θ
) (

ε2θt−j − ε̄2θ
)

, j ∈ Z

are the corresponding sample autocovariance functions and ε̄θ = T−1
∑T

t=1 εθt, ε̄
2
θ =

T−1
∑T

t=1 ε
2
θt.

Define ρ̂
(m)
Tθ0

= (ρ̂Tθ0 (1) , . . . , ρ̂Tθ0 (m))′ , δ̂
(m)
Tθ0

=
(

δ̂Tθ0 (1) , . . . , δ̂Tθ0 (m)
)

′

for a fixed

m. If {εθ0t} were a sequence of i.i.d. innovations, then

√
T







ρ̂
(m)
Tθ0

δ̂
(m)
Tθ0






→d N

(

0, I(2m)
)

,
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where I(2m) is the identity matrix of dimension 2m.

In general, i.e., in absence of further limitations of the dependence structure of model

errors apart from H
(m)
0 , we can only expect that under weak dependence conditions

√
T







ρ̂
(m)
Tθ0

δ̂
(m)
Tθ0






→d N

(

0,Ω
(2m)
θ0

)

,

for an unrestricted positive definite covariance matrix Ω
(2m)
θ0

, while under errors with

constant first two conditional models as in equation (2),

Ω
(2m)
θ0

=







I(m) Π
(m)
θ0

Π
(m)′
θ0

Σ
(m)
θ0






,

with

Π
(m)
θ0

=

[

υ
(i,j)
θ0

ηθ0 (0)

]m

i,j=1

and Σ
(m)
θ =

[

σ
(i,j)
θ

ηθ (0)
2

]m

i,j=1

,

and υ
(i,j)
θ0

= E
[

ε3θ0tεθ0t−i

(

ε2θ0t−j − 1
)]

and σ
(i,j)
θ0

= E
[

(

ε2θ0t − 1
)2 (

ε2θ0t−i − 1
) (

ε2θ0t−j − 1
)

]

.

If further E
(

ε3θ0t|It−1

)

= 0, then υ
(i,j)
θ0

= 0, i, j > 0, and we have

Ω
(2m)
θ0

=







I(m) 0

0 Σ
(m)
θ0






.

Therefore, when dealing with ρ̂
(m)
Tθ0

and δ̂
(m)
Tθ0

, we would need to account for proper

standardization, but in practice, we do not know the true values of the parameters, so

they have to be estimated in the first place. Assume that there exists an estimator θ̂T

such that

θ̂T = θ0 +Op

(

T−1/2
)

, (3)

and we compute the sample serial correlation of residuals and their squares up to lag
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m as

ρ̂
(m)

T θ̂T
=

(

ρ̂T θ̂T
(1) , · · · , ρ̂T θ̂T

(m)
)

′

δ̂
(m)

T θ̂T
=

(

δ̂T θ̂T
(1) , · · · , δ̂T θ̂T

(m)
)

′

.

In the following proposition, we show that the residual autocorrelations suffer from esti-

mation effects. Its proof and the proof of all our results are contained in the Appendix,

together with the technical assumptions used.

Proposition 1. Under H
(m)
0 , (3) and Assumptions A1 to A4 in the Appendix,

√
T ρ̂

(m)

T θ̂T
=

√
T ρ̂

(m)
Tθ0

+ ▽ρ
(m)
θ0

√
T
(

θ̂T − θ0

)

+ op (1)

√
T δ̂

(m)

T θ̂T
=

√
T δ̂

(m)
Tθ0

+ ▽δ
(m)
θ0

√
T
(

θ̂T − θ0

)

+ op (1) ,

where ▽ρ
(m)
θ0

= p lim ∂
∂θ′

ρ̂
(m)
Tθ0

and ▽δ
(m)
θ0

= p lim ∂
∂θ′

δ̂
(m)
Tθ0

.

The assumptions of the proposition further restrict the dependence of the residual

and observation processes so that the linear expansion holds under mixing conditions.

In Section 3.3 we provide expressions for ▽ρ
(m)
θ0

and ▽δ
(m)
θ0

for simple models, and see

that in general those will be nonzero. Then, the asymptotic distribution of ρ̂
(m)

T θ̂T
and δ̂

(m)

T θ̂T

depends both on that of
√
T
(

ρ̂
(m)′
Tθ0

, δ̂
(m)′
Tθ0

)

′

and
√
T
(

θ̂T − θ0

)

. For instance, to derive

the covariance matrix of
√
T
(

ρ̂
(m)′

T θ̂T
, δ̂

(m)′

T θ̂T

)

′

correctly, the asymptotic joint distribution

of
√
T
(

θ̂T − θ0

)

and
√
T
(

ρ̂
(m)′
Tθ0

, δ̂
(m)′
Tθ0

)

′

has to be considered, which depends on the

model characteristics, the method of estimating θ̂T and the unknown parameter value

θ0.

In this article, we propose an asymptotically distribution-free transform of the sam-

ple autocorrelations of residuals that accounts for both problems, standardization and

estimation effects, simultaneously. Consider first a positive definite matrix of estimates

Ω̂
(2m)
θ such that

Ω̂
(2m)

T θ̂T
= Ω

(2m)
θ0

+ op (1) (4)
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under H
(m)
0 . This problem has been pursued in related contexts by e.g. Lobato,

Nankervis and Savin (2002) and Francq, Roy and Zaköıan (2005) using two different

approaches. Both methods can be seen as extensions of usual heteroskedasticity and

autocorrelation consistent (HAC) robust estimation of asymptotic covariance matrices

of regression coefficients. The first reference proposes using nonparametric spectral es-

timates as originally developed by Jowett (1955), Hannan (1957) and Brillinger (1979)

and later popularized by Newey and West (1987) in the econometrics literature, while

the second one uses a VAR approximation to build the spectral estimates as suggested

by, e.g., Den Haan and Levin (1997) following early ideas in Press and Tukey (1956),

Blackman and Tukey (1958) and Grenander and Rosenblatt (1957).

We first normalize ρ̂
(m)

T θ̂T
and δ̂

(m)

T θ̂T
into

√
T







ρ̃
(m)

T θ̂T

δ̃
(m)

T θ̂T






=

√
T Ω̂

(2m)−1/2

T θ̂T







ρ̂
(m)

T θ̂T

δ̂
(m)

T θ̂T






.

Based on Proposition 1, it is easy to normalize the linear expansions of residuals auto-

correlations under (4) and obtain that

√
T







ρ̃
(m)

T θ̂T

δ̃
(m)

T θ̂T






=







▽ρ̃
(m)
θ0

▽δ̃
(m)
θ0







√
T
(

θ̂T − θ0

)

+
√
T







ρ̃
(m)
Tθ0

δ̃
(m)
Tθ0






+ op (1) , (5)

where






▽ρ̃
(m)
θ0

▽δ̃
(m)
θ0






= Ω

(2m)−1/2
θ0







▽ρ
(m)
θ0

▽δ
(m)
θ0






.

Now expression (5) can be recasted as an approximated linear regression model, where

the errors
√
T
(

ρ̃
(m)′
Tθ0

, δ̃
(m)′
Tθ0

)

′

have identity covariance matrix and the estimation effect
√
T
(

θ̂T − θ0

)

is the vector of unknown coefficients. Our transformation approach tries

to project out this nuisance effect through a simple recursive least squares algorithm

which transmits such orthogonality of true errors into the projection residuals, see

Brown, Durbin and Evans (1975).

11



For that, first group ρ̃
(m)

T θ̂T
and δ̃

(m)

T θ̂T
into λ̃T θ̂T

(1) =
(

ρ̃
(m)

T θ̂T
(1) , δ̃

(m)

T θ̂T
(1)
)

′

, . . . , λ̃T θ̂T
(m) =

(

ρ̃
(m)

T θ̂T
(m) , δ̃

(m)

T θ̂T
(m)

)

′

, and define

Λ̃T θ̂T
(i) =







▽ρ̃
(m)

T θ̂T
(i)

▽δ̃
(m)

T θ̂T
(i)






, with







▽ρ̃
(m)

T θ̂T

▽δ̃
(m)

T θ̂T






= Ω̂

(2m)−1/2

T θ̂T







▽ρ
(m)

T θ̂T

▽δ
(m)

T θ̂T






,

and

Λ̃θ0 (i) =







▽ρ̃
(m)
θ0

(i)

▽δ̃
(m)
θ0

(i)






,

for i = 1, . . . ,m, where for instance ▽ρ̃
(m)

T θ̂T
is the actual derivative of the sample auto-

correlation ρ̃
(m)

T θ̂T
, with limit ▽ρ̃

(m)
θ0

. These (empirical) derivatives terms can be computed

using simplified explicit formulae which only accounts for the derivative of the auto-

covariances in the numerator (since the estimation effect in the sample variance of

residuals plays no role asymptotically) but can also be approximated with numerical

methods perturbing the residuals autocorrelations around the parameter estimate θ̂T .

For i = 1, . . . ,m− k, the transformation of the pairs of residual autocorrelations is

λ̄T θ̂T
(i) = Ξ̃T θ̂T

(i)



λ̃T θ̂T
(i)− Λ̃T θ̂T

(i)

(

m
∑

j=i+1

Λ̃T θ̂T
(j)′ Λ̃T θ̂T

(j)

)

−1 m
∑

j=i+1

Λ̃T θ̂T
(j)′ λ̃T θ̂T

(j)



 ,

where we make a recursive projection of λ̃T θ̂T
(i) on Λ̃T θ̂T

(j), employing only forward

observations j = i+ 1, . . . ,m, and

Ξ̃T θ̂T
(i) =



I(2) + Λ̃T θ̂T
(i)

(

m
∑

j=i+1

Λ̃T θ̂T
(j)′ Λ̃T θ̂T

(j)

)

−1

Λ̃T θ̂T
(i)′





−1/2

accounts for the projection residuals standardization as can be shown by simple algebra.

Only up to m− k projected coefficients can be computed due to the restriction on the

minimum number of correlations to perform the projection.
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3 Main Results

In this section we show that our transformed (squared) residual autocorrelations are

asymptotically distribution-free and propose new specification tests based on them.

We prove in the following theorem that, under H
(m)
0 , the vector of projected residual

autocorrelations,

λ̄
(m−k)

T θ̂T
=
(

λ̄T θ̂T
(1)′ , . . . , λ̄T θ̂T

(m− k)′
)

′

,

and λ̄
(m−k)
Tθ0

, the vector of projected true error autocorrelations, are asymptotically equiv-

alent, and therefore
√
T λ̄

(m−k)
Tθ0

is asymptotically distributed as a vector of independent

standard normals, which renders asymptotic inference feasible for any fixed m.

Theorem 1. Under H
(m)
0 , m > k, Assumptions A1 to A4 in the Appendix and with θ̂T

and Ω̂
(2m)

T θ̂T
satisfying (3) and (4), respectively,

λ̄
(m−k)

T θ̂T
= λ̄

(m−k)
Tθ0

+ op
(

T−1/2
)

and
√
T λ̄

(m−k)
Tθ0

→d N
(

0, I(2(m−k))
)

.

The regularity conditions of the theorem guarantee that a central limit theorem holds

for the error autocorrelations without further restrictions on the asymptotic covariance

matrix and also impose an identification condition so that the recursive projection has

enough degrees of freedom.

3.1 Local Alternatives

We consider the following local alternative sequence

H1T : ρθ0 (j) =
rθ0ρ (j)√

T
, δθ0 (j) =

rθ0δ (j)√
T

, for all j = 1, 2, ...,

where rθ0ρ and rθ0δ are square summable so that ρθ0 and δθ0 are positive semidefinite

sequences for all T . In order to describe the asymptotic distribution of λ̄
(m−k)

T θ̂T
under

13



H1T , define first the vector τ̄
(m−k)
θ =

(

τ̄θ (1)
′ , . . . , τ̄θ (m− k)′

)

′

as the projected and

standardized drift of the residual autocovariances, where

τ̄θ (i)
′ = Ξ̃θ (i)



τ̃θ (i)− Λ̃θ (i)

(

m
∑

j=i+1

Λ̃θ (j)
′ Λ̃θ (j)

)

−1 m
∑

j=i+1

Λ̃θ (j)
′ τ̃θ (j)





for i = 1, 2, . . . ,m− k, and

τ̃mθ = Ω
(2m)−1/2
θ τmθ ,

where τmθ =
(

τθ (1)
′ , . . . , τθ (m)′

)

′

with τθ (i) = (rθρ (i) , rθδ (i))
′ .

Theorem 2. Under H1T , m > k, Assumptions A1 to A4 in the Appendix and with θ̂T

and Ω̂
(2m)

θ̂T
satisfying (3) and (4), respectively,

λ̄
(m−k)

T θ̂T
= λ̄

(m−k)
Tθ0

+ op
(

T−1/2
)

and
√
T λ̄

(m−k)
Tθ0

→d N
(

τ̄
(m−k)
θ0

, I2(m−k)
)

.

Theorem 3 shows that the projected autocorrelations have nonzero mean if the drifts

of ρθ0 and δθ0 are not fully explained by the autocorrelations scores.

3.2 Box-Pierce Type Tests

Based on Theorems 1 and 2, we can establish the asymptotic properties of a portman-

teau type test statistic for both autocorrelation of residuals and squared residuals,

B̄
(2m)

T θ̂T
(s) = T

s
∑

j=1

λ̄T θ̂T
(j)′ λ̄T θ̂T

(j) ,

where s, 1 ≤ s ≤ m− k, is a user chosen lag parameter, fixed in the asymptotics.

Theorem 3. Under the regularity conditions of Theorem 1 and H
(m)
0 , B̄

(2m)

T θ̂T
(s) →d χ

2
2s,

14



while under H1T ,

B̄
(2m)

T θ̂T
(s) →d χ

2
2s

(

s
∑

j=1

τ̄
(m−k)
θ0

(j)′ τ̄
(m−k)
θ0

(j)

)

.

Here s can be chosen as small as 1 without problems to control asymptotic size

in contrast with tests that need to smooth out the estimation effect in the residuals

by means of choosing s growing with T, which typically leads to a reduction of power.

Theorem 3 confirms this by showing that our joint portmanteau test statistic has power

against nonparametric local alternatives converging to the null at the rate T−1/2 as long

as the projected drift is non-zero.

In the same way, individual or marginal tests for correlation in the residuals, such

as

B̄
(2m)

T θ̂T ,res
(s) = T

s
∑

j=1

λ̄
(1)

T θ̂T
(j)2 ,

or in their squares,

B̄
(2m)

T θ̂T ,rsq
(s) = T

s
∑

j=1

λ̄
(2)

T θ̂T
(j)2 ,

can be developed and compared against χ2
s critical values to gain information on the

potential source of the failure of specification when the joint test B̄
(2m)

T θ̂T
(s) rejects. Here,

alternative projections and standardizations could be envisaged for each particular set

of autocorrelation coefficients to isolate information from each particular moment, but,

in principle, simultaneously accounting for estimation effect for both mean and variance

parameterizations is simpler and could provide some advantage is terms of defining the

transformations with a reduced loss of degrees of freedom, cf. Assumption A4 in the

Appendix.
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3.3 ARMA-GARCH Model

We consider in this subsection the ARMA(P,Q)-GARCH(p, q) model

Yt =
P
∑

j=1

a0jYt−j + et −
Q
∑

j=1

b0jet−j,

et = htεt, h2
t = ̟0 +

q
∑

j=1

α0je
2
t−j +

p
∑

j=1

β0jh
2
t−j,

with E(εt|It−1) = 0, E(ε2t |It−1) = 1, and show how to compute our new test statistics.

The parameter vector is denoted by ϑ = (a1, . . . , aP , b1, . . . , bQ)
′ for the conditional

mean part of the model, ν = (̟,α1, . . . , αq, β1, . . . , βp)
′ for the conditional variance

part of the model, θ = (ϑ′, ν ′)′. The true parameter vector is θ0 = (ϑ′

0, ν
′

0)
′. The usual

identification conditions are assumed. In the following, for any generic function g = gθ

indexed by parameters θ ∈ Θ0,

ġθ =
∂gθ
∂θ′

.

We can write the model residuals as

εt (ϑ, ν) =
et (ϑ)

hθt

=
ϕϑ (L)Yt

hθt

=
Yt − {1− ϕϑ (L)}Yt

hθt

,

where ϕϑ (z) = Aϑ (z)B
−1
ϑ (z), Aϑ (z) = 1 −∑P

j=1 ajz
j , Bϑ (z) = 1 −∑Q

j=1 bjz
j and

h2
θt = ̟ +

∑q
j=1 αje

2
t−j (ϑ) +

∑p
j=1 βjh

2
θt−j. Then

ε̇ϑt (ϑ, ν) =
ϕ̇ϑ (L)Yt

hθt

− ḣϑt

hθt

ϕϑ (L)Yt

hθt

=

{

ϕ̇ϑ (L)

ϕϑ (L)
− ḣϑt

hθt

}

et (ϑ)

hθt

ε̇νt (ϑ, ν) = − ḣνt

hθt

ϕθ (L)Yt

hθt

= − ḣνt

hθt

et (ϑ)

hθt

.
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If a semistrong GARCH model is assumed, it is easy to obtain that under H0

ρ̂
(m)

T θ̂T
(j) = ρ̂

(m)
Tθ0

(j)−
(

ϑ̂T − ϑ0

)

′

E

[

ϕ̇ϑ0
(L)

ϕϑ0
(L)

εθ0tεθ0t−j

]

+ op
(

T−1/2
)

,

δ̂
(m)

T θ̂T
(j) = δ̂

(m)
Tθ0

(j)− 2
(

θ̂T − θ0

)

′

E

[

ḣθ0t

hθ0t

ε2θ0t
(

ε2θ0t−j − 1
)

]

+ op
(

T−1/2
)

.

Example: ARMA(1, 1)-GARCH(1, 1) model θ0 = (ϑ′

0, ν
′

0)
′, where ϑ0 = (a01, b01)

′,

ν0 = (̟0, α01, β01)
′

ḣϑt

hθt

=
1

2
h−2
θt

(

2α
∞
∑

j=0

βj
1eϑt−1−j ėϑt−1−j

)

= α1

∞
∑

j=0

βj
1

eϑt−1−j

hθt

ėϑt−1−j

hθt

= α1
eϑt−1

hθt

ėϑt−1

hθt

if ARCH(1).

and

ḣνt

hθt

=
1

2













h−2
θt / (1− β1)

∑

∞

j=0 β
j
1

e2
ϑt−1−j

h2

θt

−h−2
θt / (1− β1)

2 + α
∑

∞

j=1 jβ
j−1
1

e2
ϑt−1−j

h2

θt













=
1

2







h−2
θt

e2
ϑt−1

h2

θt






if ARCH(1).

4 Monte Carlo Simulations

We carry out some Monte Carlo simulations to compare the finite-sample performance

of the new joint test statistics with those of the Wong-Ling test and different versions
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of the marginal Portmanteau tests. The null model is the AR(1)-ARCH(1) model,

Yt = 0.5Yt−1 + et,

et = htεt, h2
t = 0.1 + 0.4e2t−1.

Parameters are estimated by Quasi Maximum Likelihood. Nominal size of all tests

is 5%. The sample sizes are T = 200 and T = 500. We consider εt ∼i.i.d. N(0, 1)

or i.i.d. standardized student t distribution with 10 degrees of freedom, and we also

consider the semistrong version of the AR(1)-ARCH(1) model,1 which only satisfies (2).

Replications are 10, 000 in each experiment. Given the fact that the εt considered here

follow a symmetric distribution, we use different estimates of Ω
(2m)
θ0

that exploit that is

block diagonal and has first block equal to identity for this specification,

Ω̂
(2m)

T θ̂T
=







I(m) 0

0 Σ̂
(m)

T θ̂T






.

We use four different estimators of Σ
(m)
θ0

. The first one sets Σ̂
(m)

T θ̂T
= I(m), which exploits

the asymptotic i.i.d. property of the sample autocorrelations of the centered square

errors ε2θ0t − 1 for the strong version of the ARCH model. The second one sets

Σ̂
(m)

T θ̂T
=





σ̂
(i,j)

T θ̂T

η̂T θ̂T
(0)2





m

i,j=1

with σ̂
(i,j)
θ = T−1

∑T
t=1+max(i,j)

[

(ε2θt − 1)
2 (

ε2θt−i − 1
) (

ε2θt−j − 1
)

]

, which only exploits

that the centered squared errors ε2θ0t − 1 are a martingale difference sequence for both

ARCH versions. The last two estimators of Σ
(m)
θ0

consider the HAC robust estimation

of the asymptotic covariance matrix of δ̂
(m)

T θ̂T
by the spectral approach and by the VAR

approximation, so do not exploit the ARCH structure. For the spectral approach, we

1To obtain the semistrong ARCH model, first generate the ARCH (1) model ht = 0.1/(1+
√
0.4)+√

0.4e2
t−1 with sample size 2T , then choose the even-number observations. It could be shown that

these observations follow a semistrong ARCH (1) model ht = 0.1 + 0.4e2
t
, see Franq and Zakoian

(2010) Chapter 4.1.1 for more details.
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use Bartlett’s kernel as in Newey and West (1987). We set the lag by b = floor(1.2T 1/3)

in both estimators and choose m = ms = s + 3 for both sample sizes, where 3 is the

minimum number of the degrees of freedom needed to conduct the residuals autocorre-

lation projections given the dimension of θ = (a1, ̟0, α1)
′. As in Delgado and Velasco

(2011), we find that using a larger m than needed when Ω
(2m)
θ0

is estimated can affect

the finite sample properties of tests.

We compare our new recursive Box-Pierce type statistic with Wong-Ling statistic.

In Wong and Ling (2005), the properties of the quasi-maximun likelihood estimator

are used to handle the estimation effect of the joint Portmanteau test. To be specific,

Wong and Ling (2005) test statistic has the form

Q̂2m = n







ρ̂
(m)

T θ̂T

δ̂
(m)

T θ̂T







′

Ψ̂−1







ρ̂
(m)

T θ̂T

δ̂
(m)

T θ̂T






,

where Ψ̂ is the estimate of the asymptotic variance of
√
T
(

ρ̂
(m)′

T θ̂T
, δ̂

(m)′

T θ̂T

)

′

derived from

that of
√
T
(

ρ̂
(m)′
Tθ0

, δ̂
(m)′
Tθ0

)

′

and
√
T
(

θ̂T − θ0

)

, so that asymptotically Q̂2m follows a χ2
2m

distribution. When E [ε3t ] = 0, E [ε4t ] = 3, and εt ∼ i.i.d. (0, σ2), their test statistic

returns to the mixed statistic of Box–Pierce and Li–Mak test statistics.

Figures 1 and 2 report the simulated size. We can observe that when the innovations

follow an i.i.d. N(0,1) distribution, Wong-Ling statistic has good size properties. Our

new recursive Box-Pierce statistics with Ω̂
(2m)

T θ̂T
= I(2m) underreject for T = 200, but

have good size levels for T = 500. On the other hand, the new recursive Box-Pierce

statistics with Ω̂
(2m)

T θ̂T
= diag

(

I(m), Σ̂
(m)

T θ̂T

)

overreject for T = 200, but have good size

levels very close to nominal size for T = 500. When the innovations follow an i.i.d.

standardized Student’s t distribution with 10 degrees of freedom, Wong-Ling statistics

heavily overreject for both T = 200 and T = 500. Similar results are obtained for

Wong-Ling statistics when the innovations follow a semistrong ARCH model with con-

ditional normal distribution. However the new recursive Box-Pierce statistics have good

size properties in both cases. When it comes to the case that the innovations follow
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the semistrong ARCH model with standardized Student’s t distribution, Wong-Ling

statistics overreject for T = 200, but become closer to the nominal size for T = 500.

When T = 200, the VAR approximation and the spectral approach have size distortions

for large s, but when T = 500, test statistics based on both the VAR approximation

and the spectral approach have nice size properties overall. In the case of i.i.d. errors,

the unnecessary robust estimation of asymptotic covariance matrices makes the simu-

lated size worse with the VAR approximation providing better finite sample size than

the spectral approach. When it comes to semistrong ARCH cases, both the spectral

approach and the VAR approximation work fine.

To study the power properties of the new tests, we keep fitting the same AR(1)-

ARCH(1) model but consider the following alternative models to generate data,

M1 : Yt = 0.5Yt−1 + 0.2Yt−2 + et, et = htεt, h2
t = 0.1 + 0.4e2t−1,

M2 : Yt = 0.5Yt−1 + et, et = htεt, h2
t = 0.1 + 0.4e2t−1 + 0.2e2t−2,

M3 : Yt = 0.5Yt−1 + 0.2Yt−2 + et, et = htεt, h2
t = 0.1 + 0.4e2t−1 + 0.2e2t−2,

M4 : Yt = 0.5Yt−1 + 0.2Yt−2 + et, et = htεt, h2
t = 0.1 + 0.4e2t−1 + 0.5h2

t−1,

where εt ∼i.i.d. N (0, 1). The first alternative is misspecified in conditional mean

part; the second in the conditional variance part, and the third and fourth alterna-

tives are misspecified in both the conditional mean and conditional variance functions.

We plot the percentage of rejections under these four alternative hypotheses in Fig-

ures 3-6 respectively. It is confirmed that the joint portmanteau tests can detect the

misspecifications in conditional mean and/or conditional variance. The power of the

new transformed Box-Pierce statistics is comparable to Wong-Ling test, especially when

Ω̂
(2m)

T θ̂T
= I(2m). However robust estimation with Ω̂

(2m)

T θ̂T
= diag

(

I(m), Σ̂
(m)

T θ̂T

)

introduces

some costs in terms of power.

In Tables 1-8 we present the simulation results for the power of marginal Portman-

teau tests against the four previous alternatives and both sample sizes, and report also

the result for the recursive Portmanteau joint test with Σ̂
(m)

T θ̂T
= I(m). The aim is to
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Wong-LingTest RecB-PΩ=I(2m) RecB-Punrest(Ω)
++ RecB-Pspectral(Ω) ×× RecB-PVARApproximation(Ω)

Figure1:SizesimulationT=200. PercentageofrejectionsofPortmanteautestsin
termsofthelags.Nominallevelis5%. Wong-Lingtestscomparewithaχ22scritical

value,RecB-ParetestsB̄
(2m)

Tθ̂T
(s)basedonrecursiveprojectedautocorrelationscom-

paredtoχ22s,m=s+3. RecB-Pspectral(Ω)appliesNewey-West(1987)approach,
RecB-PVARApproximation(Ω)appliesVARapproximationofDenHaanandLevin
(1997). ModelsareAR(1)-ARCH(1)withi.i.d.normaldistribution,i.i.d.Student’s
tdistributionwith10degreesoffreedom,semistrongARCHwithnormaldistribution
andsemistrongARCHwithStudent’stdistributionwith10degreesoffreedom.
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Figure2:SizeSimulationT=500. PercentageofrejectionsofPortmanteautestsin
termsofthelags.TeststatisticsasdescribedinFigure1.
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s 1 2 3 4 5 6 7 8 9

B̄
(2m)

T θ̂T
(s) 49.1 41.4 32.9 28.7 25.8 23.9 22.8 20.1 18.5

B̄
(2m)

T θ̂T ,res
(s) 61.2 52.5 46.6 43.0 38.5 37.1 34.1 33.1 31.8

BPL (s) 57.8 54.4 48.0 42.8 40.0 38.0 35.1 33.6 32.7

B̄
(2m)

T θ̂T ,rsq
(s) 4.2 3.4 3.9 3.7 3.3 3.5 3.9 3.5 3.1

Li-Mak (s) 5.9 5.4 5.7 5.9 5.2 5.5 5.9 6.1 6.1

Table 1: Power simulation Model M1, T = 200. Percentage of rejections of marginal
Portmanteau tests for lag s against alternative M1, AR(2)-ARCH(1) model, T = 200.

The null is AR(1)-ARCH(1) model. Nominal level is 5%. B̄
(2m)

T θ̂T
(s) is the recursive

Portmanteau joint test with Σ̂
(m)

T θ̂T
= I(m). B̄

(2m)

T θ̂T ,res
(s) is the recursive Portmanteau test

of conditional mean, B̄
(2m)

T θ̂T ,rsq
(s) is the recursive Portmanteau test of conditional vari-

ance, with Σ̂
(m)

T θ̂T
= I(m). BPL (s) represents LM type Portmanteau test of conditional

mean, Li-Mak (s) represents LM type Portmanteau test of conditional variance.

investigate whether joint testing can provide good performance compared to specific

tests directed to the true alternative in one of the first two conditional moments. We

consider the recursive Portmanteau test of conditional mean, B̄
(2m)

T θ̂T ,res
(s) and the re-

cursive Portmanteau test of conditional variance, B̄
(2m)

T θ̂T ,rsq
(s) , with Σ̂

(m)

T θ̂T
= I(m). For

comparison we also present the results for the LM type Portmanteau test of conditional

mean, denoted as BPL, and for the LM type Portmanteau test of conditional variance,

denoted as Li-Mak.

We can observe in Tables 1-4 that the joint test is competitive against alternatives

that misspecify only one the two conditional moments compared to the appropriate

marginal tests. Marginal tests for the conditional mean are not very robust against

misspecification in the variance as they use restricted estimates of the asymptotic vari-

ance, cf. Tables 3 and 4. However, when testing against simultaneous misspecification

of the conditional mean and variance in Tables 5-8, joint tests exploiting both residuals

and squared residuals autocorrelations, appear noticeably more powerful that any of

the marginal tests.
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Wong-LingTest RecB-PΩ=I(2m) RecB-Punrest(Ω)
++ RecB-PNewey-West(Ω) ×× RecB-PVARApproximation(Ω)

Figure3:PowerSimulationModelM1.PercentageofrejectionsofjointPortmanteau
testsintermsofthelags. ThenullisAR(1)-ARCH(1)model. Thealternativeis
AR(2)-ARCH(1),M1. T=200andT=500. Nominallevelis5%. Wong-Ling

testscomparewithaχ22scriticalvalue,RecB-ParetestsB̄
(2m)

Tθ̂T
(s)basedonrecursive

projectedautocorrelationscomparedtoχ22s,m=s+3.

s 1 2 3 4 5 6 7 8 9 10 11 12

B̄
(2m)

Tθ̂T
(s) 93.788.983.578.474.168.465.862.860.157.956.155.6

B̄
(2m)

Tθ̂T,res
(s)96.694.791.189.886.383.881.278.577.176.674.573.3

BPL(s) 94.193.090.189.786.484.181.979.077.576.575.673.3

B̄
(2m)

Tθ̂T,rsq
(s) 5.1 5.2 5.5 5.3 5.0 5.6 5.0 4.7 4.3 5.5 5.0 4.7

Li-Mak(s) 4.9 6.9 7.1 7.4 7.0 7.2 7.4 7.8 8.0 7.7 6.6 6.4

Table2:PowersimulationModelM1,T=500.Percentageofrejectionsofmarginal
PortmanteautestsagainstalternativeM1,AR(2)-ARCH(1)model.Teststatisticsas
describedinTable1.
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Figure4:PowerSimulationModelM2.PercentageofrejectionsofjointPortmanteau
testsintermsofthelags. ThenullisAR(1)-ARCH(1)model. Thealternativeis
AR(1)-ARCH(2),M2.T=200andT=500.TestsstatisticsasdescribedinFigure3.

s 1 2 3 4 5 6 7 8 9

B̄
(2m)

Tθ̂T
(s) 19.528.325.325.324.622.622.019.818.9

B̄
(2m)

Tθ̂T,res
(s) 7.0 7.0 7.3 7.4 7.7 7.9 7.7 6.9 7.2

BPL(s) 8.9 10.811.310.311.010.010.110.311.2

B̄
(2m)

Tθ̂T,rsq
(s)21.532.130.429.628.524.924.522.922.4

Li-Mak(s)18.139.938.836.634.132.430.829.528.5

Table3:PowersimulationModelM2,T=200.Percentageofrejectionsofmarginal
PortmanteautestsagainstalternativeM2,AR(1)-ARCH(2)model.Teststatisticsas
describedinTable1.
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Figure5:PowersimulationModelM3.PercentageofrejectionsofjointPortmanteau
testsintermsofthelags. ThenullisAR(1)-ARCH(1)model. Thealternativeis
AR(2)-ARCH(2),M3.T=200andT=500.TestsstatisticsasdescribedinFigure3.
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AR(2)-GARCH(1,1),M4. T=200andT=500. Testsstatisticsasdescribedin
Figure3.
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s 1 2 3 4 5 6 7 8 9 10 11 12

B̄
(2m)

T θ̂T
(s) 53.3 61.0 62.3 61.5 60.0 58.2 56.6 53.7 51.3 50.1 48.3 46.7

B̄
(2m)

T θ̂T ,res
(s) 8.4 7.5 8.9 8.5 8.9 8.1 7.4 9.1 8.5 8.7 7.7 7.0

BPL (s) 12.1 14.2 15.1 14.9 14.7 14.1 14.2 13.5 13.3 12.6 12.5 12.0

B̄
(2m)

T θ̂T ,rsq
(s) 59.6 69.9 70.4 69.8 67.9 65.4 64.9 63.0 62.4 60.6 58.2 57.7

Li-Mak (s) 37.3 80.4 80.5 77.6 76.0 73.9 71.8 70.1 68.9 67.6 65.3 63.6

Table 4: Power simulation Model M2, T = 500. Percentage of rejections of marginal
Portmanteau tests against alternative M2, AR(1)-ARCH(2) model. Test statistics as
described in Table 1.

s 1 2 3 4 5 6 7 8 9

B̄
(2m)

T θ̂T
(s) 57.1 57.2 53.7 50.4 47.4 44.8 42.5 39.9 38.2

B̄
(2m)

T θ̂T ,res
(s) 57.7 51.3 46.3 42.1 39.2 37.2 35.8 35.8 33.6

BPL (s) 53.2 52.6 48.0 45.0 42.1 40.1 38.5 37.3 35.8

B̄
(2m)

T θ̂T ,rsq
(s) 20.8 29.2 29.0 27.9 26.6 25.4 24.8 23.7 22.6

Li-Mak (s) 16.4 37.7 37.4 35.5 33.7 31.8 30.3 29.2 28.5

Table 5: Power simulation Model M3, T = 200. Percentage of rejections of marginal
Portmanteau tests against alternative M3, AR(2)-ARCH(2) model. Test statistics as
described in Table 1.

s 1 2 3 4 5 6 7 8 9 10 11 12

B̄
(2m)

T θ̂T
(s) 97.4 96.7 95.8 94.9 93.7 91.7 90.2 88.5 88.2 86.2 84.4 83.9

B̄
(2m)

T θ̂T ,res
(s) 95.0 93.3 89.8 88.0 86.1 83.9 80.9 78.8 77.4 74.9 73.6 71.6

BPL (s) 89.9 92.8 89.7 88.7 87.4 86.0 83.7 80.7 80.1 78.0 76.3 75.0

B̄
(2m)

T θ̂T ,rsq
(s) 55.6 62.3 63.3 64.2 62.9 60.7 59.9 57.6 57.0 56.3 54.0 53.5

Li-Mak (s) 32.9 75.0 75.5 72.9 70.7 69.3 66.5 64.6 62.6 61.5 59.9 59.0

Table 6: Power simulation Model M3, T = 500. Percentage of rejections of marginal
Portmanteau tests against alternative M3, AR(2)-ARCH(2) model. Test statistics as
described in Table 1.

s 1 2 3 4 5 6 7 8 9

B̄
(2m)

T θ̂T
(s) 60.3 61.2 62.6 62.6 62.7 61.5 60.9 59.5 58.3

B̄
(2m)

T θ̂T ,res
(s) 54.8 50.2 46.5 44.1 42.2 40.3 39.2 37.9 36.3

BPL (s) 50.9 54.0 51.3 49.0 47.7 45.9 44.4 43.2 41.9

B̄
(2m)

T θ̂T ,rsq
(s) 30.0 35.6 41.0 43.5 44.8 45.4 45.8 44.9 44.6

Li-Mak (s) 21.7 37.3 48.2 52.0 52.8 51.6 48.9 48.1 46.3

Table 7: Power simulation Model M4, T = 200. Percentage of rejections of marginal
Portmanteau tests against alternative M4, AR(2)-GARCH(1,1) model. Test statistics
as described in Table 1.
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s 1 2 3 4 5 6 7 8 9 10 11 12

B̄
(2m)

T θ̂T
(s) 95.6 96.2 96.6 96.8 97.2 97.2 97.2 97.3 97.1 96.9 96.7 96.5

B̄
(2m)

T θ̂T ,res
(s) 92.4 89.8 87.5 85.3 83.7 82.3 80.8 79.5 77.8 76.5 75.4 74.1

BPL (s) 81.6 89.2 88.8 88.0 86.9 86.0 84.9 83.3 81.8 80.7 79.3 78.4

B̄
(2m)

T θ̂T ,rsq
(s) 60.9 70.5 77.6 81.7 84.1 85.8 86.9 87.6 87.6 87.6 87.6 87.4

Li-Mak (s) 44.6 72.0 83.6 82.2 79.1 75.6 73.1 71.0 69.5 68.6 68.0 67.6

Table 8: Power simulation Model M4, T = 500. Percentage of rejections of marginal
Portmanteau tests against alternative M4, AR(2)-GARCH(1,1) model. Test statistics
as described in Table 1.

Appendix

In this appendix we present the sufficient assumptions for the proofs of our results.

First we introduce some notations. For any generic function gθ indexed by parameters

θ ∈ Θ0,

g̈θ =
∂2gθ
∂θ∂θ′

Assumption A1. (Yt, εθ0t)
′ is strictly stationary, E [εθ0t] = 0, E

[

ε2θ0t
]

= 1, E
(

ε8+4κ
θ0t

)

<

∞ for some κ > 0. (Yt, εθ0t)
′ is strong mixing with coefficient αj satisfying

∑

∞

j=1 α
κ/(2+κ)
j <

∞, where

αj = sup
A,B

|Pr (AB)− Pr (A) Pr (B) |,

where A and B vary over events in the σ fields generated by
{

(Yt, εθ0t)
′ , t ≤ 0

}

, and
{

(Yt+j, εθ0t+j)
′ , t ≥ j

}

.

Assumption A2. The functions ft (·) = f (It−1, ·) and ht (·) = h (It−1, ·) are twice con-

tinuously differentiable with respect to θ ∈ Θ0 a.s., with E
∥

∥

∥
εθ0t

ḣt(θ0)
ht(θ0)

∥

∥

∥

8+4κ

+E
∥

∥

∥

ḟt(θ0)
ht(θ0)

∥

∥

∥

8+4κ

<

∞ and εθ0t
ḣt(θ0)
ht(θ0)

and ḟt(θ0)
ht(θ0)

are mixing for the same κ > 0 as in Assumption A1.

Assumption A3. Let Θ0 be a small convex neighborhood of θ0, then

E sup
θ∈Θ0

∥

∥

∥

∥

∥

εθt
ḣt (θ)

′ ḣt (θ)

h2
t (θ)

∥

∥

∥

∥

∥

+ E sup
θ∈Θ0

∥

∥

∥

∥

∥

εθt
ḧt (θ)

ht (θ)

∥

∥

∥

∥

∥

+ E sup
θ∈Θ0

∥

∥

∥

∥

∥

ḟt (θ)
′ ḣt (θ)

h2
t (θ)

∥

∥

∥

∥

∥

+ E sup
θ∈Θ0

∥

∥

∥

∥

∥

f̈t (θ)

ht (θ)

∥

∥

∥

∥

∥

+ E sup
θ∈Θ0

∥

∥

∥

∥

∥

ft (θ)

ht (θ)

ḣt (θ)
′ ḣt (θ)

h2
t (θ)

∥

∥

∥

∥

∥

+ E sup
θ∈Θ0

∥

∥

∥

∥

∥

ft (θ)

ht (θ)

ḧt (θ)

ht (θ)

∥

∥

∥

∥

∥

< ∞.
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Assumption A4. For m > k,

m
∑

j=m−k+1

Λ̃θ0 (j)
′ Λ̃θ0 (j)

is positive definite.

Assumption A1 is about the DGP, where we further assume a mixing condition to

justify a central limit theorem for the autocovariances of errors and their squares, apart

from the martingale properties holding under H0. Assumptions A2-A3 are standard

conditions on the smoothness of f and h, see Escanciano (2008) for similar assump-

tions, though we also assume a natural mixing condition on the derivatives of the model

residuals in view of A1 to bound the asymptotic variance of the derivatives of sample

autocovariances of errors and their squares. Moments conditions on ft and ht hold under

general moment conditions on the errors from A1 and usual identification conditions for

ARMA-GARCH models due to the normalization by h (It−1, θ). Assumption A4 is an

identification condition similar to Delgado and Velasco (2011) to guarantee the feasibil-

ity of the projection in the limit if enough extra sample autocorrelations are considered.

Proof of Proposition 1: Under H
(m)
0 , we need to show that

√
T ρ̂

(m)

T θ̂T
=

√
T ρ̂

(m)
Tθ0

+ ▽ρ
(m)
θ0

√
T
(

θ̂T − θ0

)

+ op (1)

√
T δ̂

(m)

T θ̂T
=

√
T δ̂

(m)
Tθ0

+ ▽δ
(m)
θ0

√
T
(

θ̂T − θ0

)

+ op (1) ,

where ▽ρ
(m)
θ0

= p lim ∂
∂θ′

ρ̂
(m)
Tθ0

and ▽δ
(m)
θ0

= p lim ∂
∂θ′

δ̂
(m)
Tθ0

.

Note that for j = 1, ...,m,

∂

∂θ′
ρ̂Tθ(j) =

∂γ̂Tθ (j) /∂θ
′

γ̂Tθ (0)
− γ̂Tθ (j)

γ̂Tθ (0)

∂γ̂Tθ (0) /∂θ
′

γ̂Tθ (0)
.

ε̄θ0 = T−1
∑T

t=1 εθ0t = op(1) under Assumption A1, γ̂Tθ0 (j) = γθ0 (j) + op (1), in partic-

ular γθ0 (0) = 1, γθ0 (j) = 0, for j ∈ Z, and ∂γ̂Tθ0 (j) /∂θ
′ = Op (1) , under Assumptions
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A1-A3. So we conclude that

√
T ρ̂T θ̂T

(j) =
√
T ρ̂Tθ0 (j) + ρ̇Tθ0 (j)

√
T
(

θ̂T − θ0

)

+
√
TDT

where the j-th element of DT is
(

θ̂T − θ0

)

′

ρ̈
(m)

T θ̌j
(j)
(

θ̂T − θ0

)

,
∥

∥θ̌j − θ0
∥

∥ ≤
∥

∥

∥θ̂T − θ0

∥

∥

∥,

ρ̇Tθ0(j) =
1

T

T
∑

t=j+1

εθ0tε̇θ0t−j + ε̇θ0tεθ0t−j,

in which ε̇θt = − ḟt(θ)
ht(θ)

−
{

f(It−1)−ft(θ)
ht(θ)

+ εθt

}

ḣt(θ)
ht(θ)

. Denote

AT,1 (j) =
1
T

∑T
t=j+1 εθ0tε̇θ0t−j, AT,2 (j) =

1
T

∑T
t=j+1 ε̇θ0tεθ0t−j. We will show that ▽ρθ0 (j) =

limT→∞E [AT,1 (j)] + limT→∞E [AT,2 (j)], where E [AT,1 (j)] = 0 under H0. Then, with

ζ (t, t− j) = εθ0tε̇θ0t−j,

E ‖AT,1 (j)− E [AT,1 (j)]‖2

=
1

T 2

T
∑

t=j+1

T
∑

r=j+1

E
[

ζ (t, t− j)′ ζ (r, r − j)
]

≤ C

T 2

[

E ‖ζ (t, t− j)‖2+κ E ‖ζ (r, r − j)‖2+κ]1/(2+κ) ×
T
∑

t=j+1

T
∑

r=j+1

α
κ/(2+κ)
t−n−j−r

= O
(

T−1
)

= o (1) ,

using Assumptions A1 and A2, and Cauchy and Minkowski inequalities.

Similarly plimT→∞AT,2 (j) = E [ε̇θ0tεθ0t−j] = −E
[

εθ0t−j
ḟt(θ0)
ht(θ0)

]

under H0, while we

obtain

ρ̈
(m)

T θ̌j
(j) =

1

T

T
∑

t=j+1

ε̇′
θ̌jt
ε̇θ̌t−j + εθ̌jtε̈θ̌t−j + ε̈θ̌jtεθ̌t−j + ε̇′

θ̌jt−j
ε̇θ̌t,

with

ε̈θt = εθt

(

2
ḣt (θ)

′ ḣt (θ)

h2
t (θ)

− ḧt (θ)

ht (θ)

)

− f̈t (θ)

ht (θ)
+ 2

ḟt (θ)
′ ḣt (θ)

h2
t (θ)

+
(f (It−1)− ft (θ))

ht (θ)

(

2
ḣt (θ)

′ ḣt (θ)

h2
t (θ)

− ḧt (θ)

ht (θ)

)

.
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Then using Assumption A3, we find that E supθ

∥

∥

∥
ρ̈
(m)

T θ̌
(j)
∥

∥

∥
< ∞, so that ρ̈

(m)

T θ̌
(j) =

Op (1) .

Similarly for j = 1, ...,m,

∂

∂θ′
δ̂
(m)
Tθ (j) =

∂η̂Tθ (j) /∂θ
′

η̂Tθ (0)
− η̂Tθ (j)

η̂Tθ (0)

∂η̂Tθ (0) /∂θ
′

η̂Tθ (0)
,

with ε̄2θ0 = T−1
∑T

t=1 ε
2
θ0t

= 1+op (1) under Assumption A1; η̂Tθ0 (j) = ηθ0 (j)+op (1) (in

particular ηθ0 (0) = E[
(

ε2θ0t − 1
)2
], ηθ0 (j) = 0, for j ∈ Z), and ∂η̂Tθ (j) /∂θ

′ = Op (1) ,

under Assumptions A1-A3. So we conclude that

δ̂
(m)

T θ̂T
= δ̂

(m)
Tθ0

+ δ̇
(m)
Tθ0

(

θ̂T − θ0

)

+RT ,

where the j-th element of RT is
(

θ̂T − θ0

)

′

δ̈
(m)

T θ̌j

(

θ̂T − θ0

)

,
∥

∥θ̌j − θ0
∥

∥ ≤
∥

∥

∥θ̂T − θ0

∥

∥

∥, with

δ̇
(m)
Tθ0

(j) =
2

Tηθ0 (0)

T
∑

t=j+1

[(

ε2θ0t − 1
)

ε̇θ0t−jεθ0t−j + ε̇θ0tεθ0t
(

ε2θ0t−j − 1
)]

+ op (1) ,

=
2

ηθ0 (0)
[BT,1 (j) + BT,2 (j)] + op (1) ,

say, j = 1, 2, · · · ,m. It is easy to prove using Assumptions A1-A2 and the same meth-

ods that p limT→∞BT,1 (j) = E
[

ε̇θ0t−jεθ0t−jE
[(

ε2θ0t − 1
)

|It−1

]]

= 0 under H0 while

p limT→∞BT,2 (j) = −E
[

ε2θ0t
(

ε2θ0t−j − 1
)

ḣt(θ0)
ht(θ0)

]

= −E
[

(

ε2θ0t−j − 1
)

ḣt(θ0)
ht(θ0)

]

under H0.

Finally RT = Op (T
−1) using the same reasoning as for DT . �

Proof of Theorem 1: The proof is similar to the reasoning in Brown, Durbin and

Evans (1975) and Delgado and Velasco (2011) under Assumption A4, and it is omitted,

while the central limit theorem for ρ̂
(m)
Tθ0

and δ̂
(m)
Tθ0

follows from Assumption A1. �

Proof of Theorem 2: The arguments are similar to those used in Proposition 1 for

the linear expansion of sample autocovariances under H0, just adapting the centering

for the sample autocovariances underH1T and exploiting the mixing properties of εθ0t. �
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