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Abstract

In this work, we introduce the notion of (1, 1)-Dω-coherent pair of
weakly quasi-definite linear functionals (U ,V) as the Dω-analogue to the
generalized coherent pair studied by A. Delgado and F. Marcellán in [8].
This means that their corresponding families of monic orthogonal poly-
nomials {Pn(x)}M0

n=0 and {Rn(x)}M1
n=0 satisfy

DωPn+1(x)

n + 1
+ an

DωPn(x)

n
= Rn(x) + bnRn−1(x),

an 6= 0, 1 ≤ n ≤ min{M0 − 1,M1}.

We prove that (1, 1)-Dω-coherence is a sufficient condition for the weakly
quasi-definite linear functionals to be Dω-semiclassical, one of them of
class at most 1 and the another of class at most 5, and they are related
by a expression of rational type. Additionally, a matrix interpretation of
(1, 1)-Dω-coherence in terms of the corresponding monic Jacobi matrices
is given. The particular case when U is Dω-classical linear functional is
studied.

Keywords: Linear functionals, discrete orthogonal polynomials, Dω-coherent
pairs.

2000 AMS classification: 42C05, 33C25.

1 Introduction

A pair of quasi-definite linear functionals (U ,V) is said to be a (1, 1)-coherent
pair if their corresponding sequences of monic orthogonal polynomials (SMOP),
{Pn(x)}n≥0 and {Rn(x)}n≥0 satisfy

P ′n+1(x)

n+ 1
+ an

P ′n(x)

n
= Rn(x) + bnRn−1(x), an 6= 0, n ≥ 1. (1.1)

When bn = 0 for all n ≥ 1, the pair of linear functionals is called either a (1, 0)-
coherent pair, or a coherent pair. Coherent pairs have been introduced in [13]) in
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the framework of weighted Sobolev inner products with respect to a vector of two
measures supported on the real line. The corresponding sequences of orthogonal
polynomials can be easily computed in terms of the sequence {Pn(x)}n≥0 and
thus the study of their analytic properties can be done in a friendly way. On the
other hand, they are very useful in the analysis of Sobolev-Fourier expansions
which are more competitive in terms of speed of convergence than the standard
Fourier expansions (see [12]).

In [8], A. Delgado and F. Marcellán stated that the (1, 1)-coherence (for
them, generalized coherence) of a pair of positive Borel measures (µ0, µ1) on the
real line is a necessary and sufficient condition for

Qn+1(x;λ) + cn(λ)Qn(x;λ) = Pn+1(x) +
n+ 1

n
anPn(x), n ≥ 1, (1.2)

where {cn(λ)}n≥1 are rational functions in λ > 0 and {Qn(x;λ)}n≥0 is the
SMOP associated with the Sobolev inner product

〈p(x), q(x)〉λ =

∫
R
p(x)q(x)dµ0 + λ

∫
R
p′(x)q′(x)dµ1, λ > 0, p, q ∈ P,

where P denotes the linear space of polynomials with complex coefficients. In
the sequel, Pn will denote the linear subspace of polynomials of degree at most
n.

They determined all (1, 1)-coherent pairs of quasi-definite linear functionals
(U ,V) proving that at least one of them must be semiclassical of class at most
1 and they are related by σ(x)U = ρ(x)V, with deg(σ(x)) ≤ 3,deg(ρ(x)) = 1.
This is a generalization of the results obtained by H. G. Meijer in [20] for (1, 0)-
coherence. There it was shown that at least one of the quasi-definite linear
functionals either U or V must be classical (Laguerre or Jacobi) and they are
related by a expression of rational type as above with deg(σ(x)) ≤ 2. But, A.
Iserles, et al., in [13] were the first ones who introduced the concept of coherent
pair (for us, (1, 0)-coherent pair) of positive Borel measures (µ0, µ1) on the real
line which arose as a sufficient condition for (1.2).

On the other hand, Marcellán and N. C. Pinzón-Cortés in [15] extended
the notion of (1, 1)-coherent pair of quasi-definite linear functionals (U ,V) to
(1, 1)-q-coherent pair as follows. The corresponding SMOP {Pn(x)}n≥0 and
{Rn(x)}n≥0 satisfy

(DqPn+1) (x)

[n+ 1]q
+ an

(DqPn) (x)

[n]q
= Rn(x) + bnRn−1(x) , an 6= 0, n ≥ 1. (1.3)

where 0 < q < 1, [n]q = qn−1
q−1 , n ≥ 1, and Dq is the q-difference operator

defined by (Dqp)(x) = p(qx)−p(x)
(q−1)x for x 6= 0, and by continuity (Dqp)(0) = p′(0),

p ∈ P. When bn = 0 for all n ≥ 1, (U ,V) is said to be (1, 0)-q-coherent pair.
This problem is motivated by the discretization of a Sobolev inner product in
the geometric q-lattice. They proved that (1, 1)-q-coherence of a pair of quasi-
definite linear functionals (U ,V) is a sufficient condition for at least one of them
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to be q-semiclassical of class at most 1 and they to be related by σ(x)U = ρ(x)V,
with deg(σ(x)) ≤ 3,deg(ρ(x)) = 1, and as a consequence, the companion linear
functional must be q-semiclassical of class at most 5. Besides, they analyzed
the case when U is q-classical. This is a generalization of the results obtained
by I. Area, et al., in [3, 5] for (1, 0)-q-coherent pairs. They showed that if
(U ,V) is a (1, 0)-q-coherent pair of quasi-definite linear functionals then at least
one of them must be q-classical and one is a rational modification of the other
as above with deg(σ(x)) ≤ 2. Also, they determined all q-coherent pairs of
positive-definite linear functionals when U or V is some specifical q-classical
linear functional. Notice that from the study of q-coherent pairs it is possible
to recover the properties of coherent pairs in the continuous case, for (1, 0)-
coherence and (1, 1)-coherence, taking limits when q ↑ 1.

Finally, a pair of weakly quasi-definite linear functionals (U ,V), of order
M0 ≥ 2 and M1 ≥ 1, respectively, is called a (1, 1)-Dω-coherent pair if their
corresponding families of MOP, {Pn(x)}M0

n=0 and {Rn(x)}M1
n=0 satisfy

DωPn+1(x)

n+ 1
+ an

DωPn(x)

n
= Rn(x) + bnRn−1(x), (1.4)

an 6= 0, 1 ≤ n ≤ min{M0 − 1,M1},

where Dω is the difference operator defined by (Dωp)(x) = p(x+ω)−p(x)
ω , p ∈ P.

When bn = 0 for 1 ≤ n ≤ min{M0 − 1,M1}, the pair is said to be a (1, 0)-Dω-
coherent pair.

I. Area, et al, in [3, 4, 6] studied the (1, 0)-Dω-coherent pairs in the frame-
work of the discretizations of Sobolev inner products when you consider uniform
lattices. In other words, the measures involved in the inner product are discrete
and supported on a uniform lattice of length ω in each step. They proved that
if (U ,V) is a (1, 0)-Dω-coherent pair of weakly quasi-definite linear functionals
then at least one of them must be Dω-classical as well as they are related by
σ(x)U = ρ(x)V, with deg(σ(x)) ≤ 2,deg(ρ(x)) = 1. Also, they determined all
(1, 0)-D1-coherent pairs of nonnegative-definite linear functionals and by using
a limit process when ω → 0, they recovered the classification given by Meijer in
[20].

The aim of this work is to generalize these results obtained by I. Area, et
al., for (1, 0)-Dω-coherent pairs of weakly quasi-definite linear functionals and
to get the Dω-analogue results obtained by A. Delgado and F. Marcellán in [8]
for (1, 1)-coherent pairs of quasi-definite linear functionals.

The structure of this paper is as follows. In Section 2 we give the def-
initions and present the basic results which will be used in the forthcoming
sections. In Section 3 we prove that (1, 1)-Dω-coherence is a necessary and suf-
ficient condition for (1.2) which establishes a relationship between Dω-Sobolev
orthogonal polynomials and (1, 1)-Dω-coherent pairs. In Section 4 we study
(1, 1)-Dω-coherent pairs of weakly quasi-definite linear functionals. We show
that if (U ,V) is a (1, 1)-Dω-coherent pair then at least one of them must be
Dω-semiclassical of class at most 1 and they are related by σ(x)U = ρ(x)V,
with deg(σ(x)) ≤ 3,deg(ρ(x)) = 1, and thus the companion linear functional
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is Dω-semiclassical of class at most 5. Also, we analyze the case of (1, 0)-Dω-
coherent pairs and we recover the results obtained by I. Area, et al. In Section
5 we study the case when (U ,V) is a (1, 1)-Dω-coherent pair of weakly quasi-
definite linear functionals and U is Dω-classical. Finally, in Section 6, we state
a matrix interpretation of (1, 1)-Dω-coherence of a pair of quasi-definite linear
functionals (U ,V), in terms of the corresponding monic Jacobi matrices. In-
deed, we obtain [Mp,Mr] = (Mp −Mr) (Mp −Mr − ω), where [Mp,Mr] is
the commutator of Mp and Mr, and Mp (resp. Mr) is a similar matrix to
the monic Jacobi matrix associated with U (resp. V). Furthermore, when U
is Dω-classical, Mp̃ = Mr, where Mp̃ is a similar matrix to the monic Jacobi

matrix associated with the SMOP {DωPn+1(x)
n+1 }n≥0.

2 Preliminaries

2.1 Linear Functionals and Orthogonal Polynomials

P∗ will denote the dual space of the linear space of polynomials with complex
coefficients P. For U ∈ P∗, {un = 〈U , xn〉}n≥0 is called the sequence of moments
of U , where 〈U , p(x)〉 ∈ C denotes the image of polynomial p(x) by U . Also, for
a nonzero polynomial q(x) we define the linear functionals

〈q(x)U , p(x)〉 = 〈U , q(x)p(x)〉 ,
〈
(q(x))−1U , p(x)

〉
=

〈
U , p(x)− Lq(x; p)

q(x)

〉
,

where p ∈ P and Lq(x; p) denotes the interpolation polynomial of p(x) at the
zeros of q(x) taking into account their multiplicity. Notice that, for a ∈ C,
(x − a)(x − a)−1U = U but (x − a)−1(x − a)U = U − 〈U , 1〉δa, where δa is the
Dirac Delta linear functional at a, defined by 〈δa, p(x)〉 = p(a), ∀p ∈ P.

From now, we assume that ω is a nonzero complex number. Then, the
difference operator Dω is defined by

(Dωp) (x) =
p(x+ ω)− p(x)

ω
, p ∈ P.

When ω = 1, D1 is the well-known forward difference operator ∆, and when
ω = −1, D−1 is the backward difference operator ∇. Also, for U ∈ P∗, we can
define the linear functional DωU by

〈DωU , p(x)〉 = −〈U , Dωp(x)〉 , p ∈ P.

Notice that in [1] and [18] the authors have introduced another notation
for the left hand side of the above expression. Indeed, using the transposition
operator, you must write D−ωU . Nevertheless, we prefer to use the new notation
to be consistent with [6] and the results therein.

It is easy to check the following properties. Let p, r ∈ P(
Dω

[
p(x+ a)

])
(x) =

(
Dω

[
p(x)

])
(x+ a), a ∈ C, (2.1)
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(Dω [p r]) (x) = r(x) (Dωp) (x) + p(x+ ω) (Dωr) (x), (2.2)

(D−ωp) (x+ ω) = (Dωp) (x), DωD−ω = D−ωDω, Dω = D−ω + ωDωD−ω,

Dω [p(x)U ] = p(x− ω)DωU + (Dωp) (x− ω)U . (2.3)

Notice that the difference operator Dω becomes the usual derivative operator
D = d

dx when ω → 0. Indeed, when ω → 0, (Dωp)(x) → p′(x) in P and
DωU → DU in P∗, where DU is defined by 〈DU , p(x)〉 = −〈U , p′(x)〉 ,∀p ∈ P.

U ∈ P∗ is said to be a weakly quasi-definite linear functional of order M ,
M ∈ N ∪ {∞}, if the leading principal submatrices of the Hankel matrix as-
sociated with the moments of the functional Hn = (ui+j)

n
i,j=0 are nonsingular

for 0 ≤ n ≤ M and, if M < ∞, HM+1 is a singular matrix. As a conse-
quence, there exists a countable family {Pn(x)}Mn=0 called the family of monic
orthogonal polynomials (MOP) with respect to U , such that deg(Pn(x)) = n,
〈U , Pn(x)Pm(x)〉 = kPn δn,m, kPn 6= 0, 0 ≤ n,m ≤ M . Besides, this family of
MOP satisfies the following three-term recurrence relation (TTRR)

Pn(x) =
(
x− αPn

)
Pn−1(x)− βPn Pn−2(x), βPn 6= 0, 1 ≤ n ≤M,

P0(x) = 1, P−1(x) = 0.
(2.4)

Conversely, if a family of monic polynomials {Pn(x)}Mn=0 satisfies (2.4), then
{Pn(x)}M−1

n=0 is orthogonal with respect to some weakly quasi-definite linear
functional.

Notice that if M =∞, the concept of weakly quasi-definite linear functional
coincides with the notion of quasi-definite or regular linear functional ([7]). In
this case, the TTRR (2.4) can be written in matrix form as

xp(x) = Jpp(x), (2.5)

p(x) =

 P0(x)
P1(x)

...

 , Jp =


αP1 1 0 0 · · ·

βP2 αP2 1 0
. . .

0 βP3 αP3 1
. . .

...
. . .

. . .
. . .

. . .

 ,
where the semi-infinite tridiagonal matrix Jp is said to be the monic Jacobi
matrix associated with the quasi-definite linear functional U .

If U is a weakly quasi-definite linear functional of order M with M < ∞,
then there exists a unique family of monic polynomials {Pn(x)}M+1

n=0 such that
〈U , xmPn(x)〉 = 0 for 0 ≤ m ≤ n− 1 and 1 ≤ n ≤M + 1, 〈U , xnPn(x)〉 6= 0 for
0 ≤ n ≤ M , and 〈U , xM+1PM+1(x)〉 = 0. Therefore, {Pn(x)}Mn=0 is the family
of MOP associated with U .

A linear functional U is said to be positive definite ([7]) if 〈U , p(x)〉 > 0 for
every nonzero polynomial p(x) such that p(x) ≥ 0, ∀x ∈ R, or, equivalently, if
its moments are all real and det(Hn) > 0, n ∈ N, or, equivalently, there exists
a nondecreasing and bounded function %(x) with an infinite set of points of
increase such that 〈U , p(x)〉 =

∫
R p(x)d%(x), p ∈ P.
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Given a family of monic polynomials {Pn(x)}Mn=0 with deg(Pn(x)) = n, 0 ≤
n ≤M , and M ∈ N∪{∞}, we can associate with it a family of linear functionals
{℘n}Mn=0 called the dual family of {Pn(x)}Mn=0 such that 〈℘n, Pm(x)〉 = δn,m for
0 ≤ n,m ≤ M . When M = ∞, {℘n}n≥0 ⊂ P∗ is said to be the dual basis of
{Pn(x)}n≥0.

Furthermore, if {Pn(x)}Mn=0 is the family of MOP associated with a weakly
quasi-definite linear functional U of order M , then

℘n =
Pn(x)

〈U , P 2
n(x)〉

U , 0 ≤ n ≤M, (2.6)

and, as a consequence,

Dω℘
[1]
n = −(n+ 1)℘n+1 , 0 ≤ n ≤M − 1, (2.7)

where {℘[1]
n }M−1

n=0 is the dual family of the monic polynomials {DωPn+1(x)
n+1 }M−1

n=0 .

2.2 Dω-Semiclassical and Dω-Classical Linear Functionals

U ∈ P∗ is said to be a Dω-semiclassical linear functional if it is weakly quasi-
definite and there exist polynomials σ(x) and τ(x) such that U satisfies the
distributional equation (Dω-Pearson equation)

Dω(σ(x)U) = τ(x)U , 1 (2.8)

with σ(x) a monic polynomial and deg(τ(x)) ≥ 1. In these conditions, the
class of U is defined by the non-negative integer s := min max{deg(σ(x)) −
2, deg(τ(x)) − 1}, where the minimum is taken among all pairs of polynomials
(σ(x), τ(x)) such that (2.8) holds2. In this case, we also say that the family of
MOP associated with U is a Dω-semiclassical family of MOP of class s.

The following result provides a criterion for determining the class of a Dω-
semiclassical linear functional.

Theorem 1 ([3, 18]). If U is a Dω-semiclassical linear functional satisfying
(2.8) then, the class of U is s if and only if∏
{c∈C:σ(c)=0}

[∣∣(θcσ)(c+ ω)− τ(c+ ω)
∣∣+
∣∣〈U , θc+ω (θcσ(x)− τ(x))〉

∣∣] > 0,

holds, where θcp(x) = p(x)−p(c)
x−c , for p ∈ P, c ∈ C. If there exists c ∈ C such

that σ(c) = 0 and (θcσ)(c+ ω)− τ(c+ ω) = 〈U , θc+ω(θcσ(x)− τ(x)〉 = 0, (2.8)
becomes Dω(θcσ(x)U) = − [θc+ω (θcσ(x)− τ(x))]U .

1This definition implies that σ(x) can not be zero and τ(x) can not be a constant, otherwise,
u0 = 0.

2This class is defined as a minimum because if (σ(x), τ(x)) satisfies (2.8), then so does
(p(x+ ω)σ(x), (Dωp)(x)σ(x) + p(x)τ(x)), for all p ∈ P \ {0}.
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Notice that this relation appears in [18] in a different way taking into account
our definition of the linear functional DωU . Indeed, they are the same replacing
ω by −ω.

Proposition 2. Let U ,V be two weakly quasi-definite linear functionals such
that p(x)U = r(x)V, for some nonzero polynomials p(x), r(x), i.e., U and V are
related by an expression of rational type. Then, U is Dω-semiclassical if and
only if V is Dω-semiclassical. Moreover, if the class of U is s, then the class of
V is at most s+ deg(p(x)) + deg(r(x)).

Proof. It is easy to check that if Dω [σu(x)U ] = τu(x)U holds, with deg(τu(x)) ≥
1, then V satisfies Dω[p(x + ω)r(x)σu(x)V] = [p(x+ω)−p(x−ω)

ω σu(x) + p(x −
ω)τu(x)]r(x)V. The proof of the class is also easy.

A Dω-semiclassical linear functional U of class s = 0 is said to be Dω-
classical, i.e., it is weakly quasi-definite and satisfies

Dω [σ(x)U ] = τ(x)U , with deg(σ(x)) ≤ 2, deg(τ(x)) = 1. (2.9)

Its corresponding family of MOP is said to be a Dω-classical family of MOP. A
characterization of these polynomials is the following.

Theorem 3 ([1]). Let U be a weakly quasi-definite lineal functional of order
M and let {Pn(x)}Mn=0 be its corresponding MOP. The following statements are
equivalent

i) {Pn(x)}Mn=0 is a Dω-classical family of MOP and U satisfies (2.9).

ii) {DωPn+1(x)
n+1 }M−1

n=0 is a family of MOP with respect to U [1] ∈ P∗.

Moreover, U [1] = σ(x)U and {DωPn+1(x)
n+1 }M−1

n=0 is also a Dω-classical family of

MOP of the same type as {Pn(x)}Mn=0 because U [1] satisfies

Dω

[
σ(x+ w)U [1]

]
= [τ(x) + (Dωσ)(x)]U [1].

When ω = 1, Kravchuk, Hahn, Charlier, and Meixner are all the D1-classical
families of MOP ([10]). The linear functionals associated with Kravchuk and
Hahn family of MOP are weakly quasi-definite because they have a finite set
as support and their families of MOP satisfy a finite orthogonality relation.
However, Charlier and Meixner linear functionals are quasi-definite ([7]). In
Table 1 and Table 2, we give the polynomials σ(x) and τ(x) which appear in
(2.9), the weight function w(x) such that the D1-classical functional can be

represented as 〈U , p(x)〉 =
∑b−1
xk=a p(xk)w(xk), xk+1 = xk+1, for all p ∈ P, with

a, b ∈ N ∪ {∞}, the coefficients αPn and βPn of the TTRR (2.4), and the monic

polynomial D1Pn+1(x)
n+1 .

For characterizations of the Dω-semiclassical and Dω-classical linear func-
tionals see [1, 3, 9, 10, 11, 14, 16, 17, 18, 19, 21, 22].
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Table 1: D1-Classical Families of MOP (Weakly Quasi-Definite L.F.).

Kravchuk Hahn

Pn(x) K
(p)
n (x;N) H

(α,β)
n (x;N)

σ(x) N − x (N − x− 1)(x+ β + 1)

τ(x) Np−x
p (N − 1)(β + 1)− x(α+ β + 2)

x {0, 1, · · · , N} {0, 1, · · · , N − 1}
w(x)

(
N
x

)
px(1− p)N−x Γ(N)Γ(α+β+2)Γ(α+N−x)Γ(β+x+1)

Γ(α+1)Γ(β+1)Γ(α+β+N+1)Γ(N−x)Γ(x+1)

Restriction p ∈ (0, 1), N ∈ Z+ α, β > −1, N ∈ Z+

αPn+1 n+ p(N − 2n) α−β+2N−2
4 + (β2−α2)(α+β+2N)

4(α+β+2n)(α+β+2n+2)

βPn+1 pn(1− p)(N − n+ 1) n(N−n)(α+n)(β+n)(α+β+n)(α+β+N+n)
(α+β+2n−1)(α+β+2n)2(α+β+2n+1)

D1Pn+1(x)
n+1 K

(p)
n (x;N − 1) H

(α+1,β+1)
n (x;N − 1)

Table 2: D1-Classical Sequences of MOP (Quasi-Definite L.F.).

Charlier Meixner

Pn(x) C
(µ)
n (x) M

(γ,µ)
n (x)

σ(x) µ µ(γ + x)
τ(x) µ− x µγ − x(1− µ)
x N N

w(x) e−µµx

Γ(x+1)
µx(1−µ)γΓ(x+γ)

Γ(x+1)Γ(γ)

Restriction µ > 0 γ > 0, µ ∈ (0, 1)

αPn+1 n+ µ γµ+n(1+µ)
1−µ

βPn+1 nµ µn(γ+n−1)
(1−µ)2

D1Pn+1(x)
n+1 C

(µ)
n (x) M

(γ+1,µ)
n (x)

3 Dω-Sobolev Orthogonal Polynomials and Dω-
Coherent Pairs

In the sequel, we will denote M := min{M0 − 1,M1}.
A pair of weakly quasi-definite linear functionals (U ,V) is said to be a

(1, 1)-Dω-coherent pair if their corresponding families of MOP, {Pn(x)}M0
n=0 and

{Rn(x)}M1
n=0, with M0 ≥ 2 and M1 ≥ 1, satisfy

DωPn+1(x)

n+ 1
+ an

DωPn(x)

n
= Rn(x) + bnRn−1(x),

an 6= 0, 1 ≤ n ≤M.

(3.1)

If bn = 0 for 1 ≤ n ≤M , the pair of linear functionals is said to be a (1, 0)-Dω-
coherent pair.
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In this context, we can consider the following Sobolev inner product, where
the weakly quasi-definite linear functionals that determine this product consti-
tute a (1, 1) or (1, 0) -Dω-coherent pair,

〈p(x), r(x)〉λ,ω = 〈U , p(x)r(x)〉+ λ 〈V, (Dωp)(x)(Dωr)(x)〉 , λ > 0, (3.2)

where p(x) and r(x) are polynomials with real coefficients. Thus, there is a
close relationship between (1, 1)-Dω-coherent pairs and Dω-Sobolev orthogonal
polynomials.

Proposition 4. If (U ,V) is a (1, 1)-Dω-coherent pair given by (3.1), then

Qn+1(x;λ, ω) + cn(λ, ω)Qn(x;λ, ω) = Pn+1(x) + an
n+ 1

n
Pn(x) ,

an 6= 0, 1 ≤ n ≤M,
(3.3)

holds, where {cn(λ, ω)}Mn=1 are rational functions in λ > 0 given by

cn(λ, ω) =
an

n+1
n

〈
U , P 2

n(x)
〉

+ bnn(n+ 1)λ
〈
V, R2

n−1(x)
〉

〈Qn(x;λ, ω), Qn(x;λ, ω)〉λ,ω
, (3.4)

and {Qn(x;λ, ω)} is the family of MOP associated with the Dω-Sobolev inner
product (3.2).

Conversely, if there are constants an 6= 0 and cn(λ, ω), 1 ≤ n ≤ M , such
that (3.3) holds, then there exist constants bn with

bn =

〈
V, DωPn+1(x)

n+1 Rn−1(x)
〉

〈
V, R2

n−1(x)
〉 + an, 1 ≤ n ≤M, (3.5)

such that (3.1) holds, i.e., (U ,V) is a (1, 1)-Dω-coherent pair.

Proof. For 1 ≤ n ≤M , we have the following Fourier series expansion

Pn+1(x) + an
n+ 1

n
Pn(x) = Qn+1(x;λ, ω) +

n∑
k=0

ck,n+1(λ, ω)Qk(x;λ, ω),

where ck,n+1(λ, ω) =
〈Pn+1(x)+an

n+1
n Pn(x),Qk(x;λ,ω)〉λ,ω

〈Qk(x;λ,ω),Qk(x;λ,ω)〉λ,ω . Then using (3.1), (3.2),

and the orthogonality of {Pn(x)}M0
n=0 and {Rn(x)}M1

n=0 with respect U and V, re-
spectively, we get ck,n+1(λ, ω) = 0, k = 0, . . . , n−1, and cn(λ, ω) := cn,n+1(λ, ω)
is given by (3.4), for 1 ≤ n ≤M . Therefore (3.3) holds.

Conversely, let r(x) be a polynomial with deg(r(x)) ≤ n − 1. If we apply
〈 · , r(x)〉λ,ω to both sides of (3.3), then from (3.2) and (3.3), we obtain λ(n +

1)
〈
V,
(DωPn+1(x)

n+1 + an
DωPn(x)

n

)
Dωr(x)

〉
= 0, for 1 ≤ n ≤ M . Since for k ∈ N

every polynomial of degree k is the Dω-derivative of some polynomial of degree
k + 1, from the previous equation it follows that for every polynomial p(x)
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with real coefficients of degree at most n − 2, 2 ≤ n ≤ M ,
〈
V,
(DωPn+1(x)

n+1 +

an
DωPn(x)

n

)
p(x)

〉
= 0 holds. On other hand,

DωPn+1(x)

n+ 1
+ an

DωPn(x)

n
= Rn(x) +

n−1∑
k=0

bk,nRk(x), 1 ≤ n ≤M,

where bk,n =

〈
V,
(
DωPn+1(x)

n+1 +an
DωPn(x)

n

)
Rk(x)

〉
〈V,R2

k(x)〉 . Thus, for 1 ≤ n ≤ M , bn :=

bn−1,n is given by (3.5), and bk,n = 0 for k = 0, . . . , n− 2.

The family {cn(λ, ω)}Mn=1 can be characterized in the following way.

Corollary 5. If (U ,V) is a (1, 1)-Dω-coherent pair given by (3.1), then the
family {cn(λ, ω)}Mn=1 in (3.3) satisfies

cn(λ, ω) =
An(λ, ω)

Bn(λ, ω)− cn−1(λ, ω)En(λ, ω)
, 2 ≤ n ≤M,

c1(λ, ω) =
A1(λ, ω)

〈U , P 2
1 (x)〉+ λ 〈V, R2

0(x)〉
,

(3.6)

where

An(λ, ω) = an
n+ 1

n

〈
U , P 2

n(x)
〉

+ λ bnn(n+ 1)
〈
V, R2

n−1(x)
〉
,

Bn(λ, ω) =
〈
U , P 2

n(x)
〉

+

(
an−1

n

n− 1

)2 〈
U , P 2

n−1(x)
〉

+ λn2
[〈
V, R2

n−1(x)
〉

+ b2n−1

〈
V, R2

n−2(x)
〉]
,

En(λ, ω) = an−1
n

n− 1

〈
U , P 2

n−1(x)
〉

+ λ(n− 1)nbn−1

〈
V, R2

n−2(x)
〉
.

Proof. Using (3.1), (3.2), and (3.3), we get 〈Qn(x;λ, ω), Qn(x;λ, ω)〉λ,ω = Bn(λ, ω)−
cn−1(λ, ω)En(λ, ω), for 2 ≤ n ≤M+1. Besides, since Q1(x;λ, ω) = P1(x), then
from (3.4) it follows (3.6).

Under the conditions of Corollary 5 we get

Corollary 6. The family {cn(λ, ω)}Mn=1 satisfies

cn(λ, ω) =
gn(λ, ω)

hn(λ, ω)
, 1 ≤ n ≤M,

where gn(λ, ω) and hn(λ, ω) are polynomials on λ of degree at most n.

Proof. This is a straightforward consequence of (3.6) and induction on n.

Notice that if (U ,V) is a (1, 1)-Dω-coherent pair, then from (3.6) we get the
family {cn(λ, ω)}Mn=1. Thus, from (3.3) and Q1(x;λ, ω) = P1(x), we can obtain
recursively the Dω-Sobolev polynomials {Qn(x;λ, ω)}M+1

n=0 .
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4 (1, 1)-Dω-Coherent Pairs of Linear Functionals

In this section, we assume that U and V are two weakly quasi-definite linear
functionals with corresponding family of MOP {Pn(x)}M0

n=0 and {Rn(x)}M1
n=0,

M0 ≥ 2 and M1 ≥ 1.

Lemma 7. Let (U ,V) be a (1, 1)-Dω-coherent pair as in (3.1). Then

a. a1 6= b1 if and only if DωPn+1(x)
n+1 6= Rn(x), 1 ≤ n ≤M .

b. For 1 ≤ n ≤M ,

DωPn+1(x)

n+ 1
= Rn(x) + (bn − an)Rn−1(x)

+
n∑
k=2

(−1)k−1anan−1 · · · an−(k−2)

(
bn−(k−1) − an−(k−1)

)
Rn−k(x). (4.1)

Proof. From (3.1) is easy to prove (4.1) as well as, a1 = b1 if and only if
DωPN+1(x)

N+1 = RN (x) for some 1 ≤ N ≤M .

In the remainder of this section we assume that a1 6= b1.

Lemma 8. Let (U ,V) be a (1, 1)-q-coherent pair given by (3.1). Then there
exists a monic polynomial γn(x) of degree 1 ≤ n ≤M − 1 such that〈

γn(x)V, DωPm+1(x)

m+ 1

〉
= 0, 2 ≤ n+ 1 ≤ m ≤M − 1, (4.2)

and

〈
V, γn(x)

DωPn+2(x)

n+ 2

〉
= 0, for n = M − 1.

Proof. Let γn(x) = Rn(x) +
∑n−1
j=0 Aj,nRj(x) with 0 ≤ n ≤ M . Then, for

0 ≤ n ≤M − 1,〈
V, γn(x)

DωPn+2(x)

n+ 2

〉
(4.1)
= (bn+1 − an+1)〈V, R2

n(x)〉+
n+1∑
k=2

(−1)k−1

an+1 · · · an+1−(k−2)

(
bn+1−(k−1) − an+1−(k−1)

)
An+1−k,n〈V, R2

n+1−k(x)〉.
(4.3)

Hence, for 1 ≤ n ≤ M − 1, we can choose real numbers A0,n, . . . , An−1,n,
not all zero, such that (4.3) is zero, because a1 6= b1. On the other hand, for
0 ≤ n ≤M and 0 ≤ m ≤M−1, if we apply 〈γn(x)V, · 〉 to (3.1), then we obtain

〈γn(x)V, DωPm+2(x)
m+2 〉 = −am+1〈γn(x)V, DωPm+1(x)

m+1 〉 for n < m. Thus, the proof
is complete.

Notice that in the previous lemma we can choose A1,n = · · · = An−1,n = 0.
Hence, for 1 ≤ n ≤M − 1,

γn(x) = Rn(x) +A0,n = Rn(x) +
(−1)n+1(bn+1 − an+1)〈V, R2

n(x)〉
an+1an · · · a3a2(b1 − a1)〈V, 1〉

. (4.4)
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Lemma 9. Let (U ,V) be a (1, 1)-Dω-coherent pair given by (3.1) and let γn(x)
be the monic polynomial introduced in Lemma 8, deg(γn(x)) = n. Then there
exists a polynomial ϕn+1(x) with deg(ϕn+1(x)) ≤ n+ 1 such that

Dω[γn(x)V] = −ϕn+1(x)U , 1 ≤ n ≤M − 1, (4.5)

holds. Moreover, for 1 ≤ n ≤M − 1,

ϕn+1(x) =
n∑
k=0

(k + 1)
〈
γn(x)V, DωPk+1(x)

k+1

〉
〈U , P 2

k+1(x)〉
Pk+1(x). (4.6)

Proof. Let {℘k}M0

k=0 and {℘[1]
k }

M0−1
k=0 be the dual families of {Pk(x)}M0

k=0 and

{DωPk+1(x)
k+1 }M0−1

k=0 , respectively, and let 1 ≤ n ≤ M − 1. Since {℘[1]
k }

M−1
k=0 is

a basis of the algebraic dual space of the space of polynomials of degree at

most M − 1, then γn(x)V =
∑M−1
k=0 λk,n℘

[1]
k where λk,n = 〈γn(x)V, DωPk+1(x)

k+1 〉.
Hence, from Lemma 8 it follows that λk,n = 0 for 2 ≤ n+ 1 ≤ k ≤M − 1. Thus

γn(x)V =
∑n
k=0 λk,n℘

[1]
k , for 1 ≤ n ≤M − 1, and, as a consequence, using (2.7)

and (2.6), (4.5) holds.

Corollary 10. If (U ,V) is a (1, 1)-Dω-coherent pair given by (3.1) with M0 ≥ 4
and M1 ≥ 3, then there exist polynomials α(x) and φ(x), and a monic polyno-
mial β(x), with deg (α(x)) ≤ 4, deg (φ(x)) ≤ 3, and deg (β(x)) = 2, such that

α(x)U = β(x)V, (4.7)

α(x)DωV = φ(x)V, (4.8)

φ(x)U = β(x)DωV, (4.9)

where

α(x) = γ2(x− ω)ϕ2(x)− γ1(x− ω)ϕ3(x), (4.10)

β(x) = γ1(x− ω) (Dωγ2) (x− ω)− γ2(x− ω), (4.11)

φ(x) = ϕ3(x)− (Dωγ2) (x− ω)ϕ2(x), (4.12)

Besides, for 1 ≤ n ≤M − 1,

φ(x)γn(x− ω) + α(x) (Dωγn) (x− ω) = −ϕn+1(x)β(x), (4.13)

where γn(x) and ϕn+1(x) are the polynomials given in Lemma 9.

Proof. From (4.5) for n = 1 and n = 2 and from (2.3) we get

γ1(x− ω)DωV + V = −ϕ2(x)U , (4.14)

γ2(x− ω)DωV + (Dωγ2) (x− ω)V = −ϕ3(x)U . (4.15)

Then, the elimination of DωV, U , and V yields (4.7)-(4.9), respectively. Fur-
thermore, from Lemma 9 it is immediate to check the degrees of these polyno-
mials. On the other hand, from (4.7), (4.5), (2.3) and (4.8), −ϕn+1(x)β(x)V =
[γn(x− ω)φ(x) + α(x)(Dωγn)(x− ω)]V follows, for 1 ≤ n ≤M − 1.
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Notice that if (U ,V) is a (1, 1)-Dω-coherent pair with M0 ≥ 4 and M1 ≥ 3,
then from (4.6), (4.4) and (4.1), the leading coefficients of ϕ2(x) and ϕ3(x) are,
respectively,

2b2
〈
V, R2

1(x)
〉

a2〈U , P 2
2 (x)〉

and
3b3〈V, R2

2(x)〉
a3〈U , P 2

3 (x)〉
. (4.16)

Hence, the leading coefficients of β(x), α(x), and φ(x) are, respectively, 1,

2b2
〈
V, R2

1(x)
〉

a2〈U , P 2
2 (x)〉

− 3b3〈V, R2
2(x)〉

a3〈U , P 2
3 (x)〉

,
3b3〈V, R2

2(x)〉
a3〈U , P 2

3 (x)〉
−

4b2
〈
V, R2

1(x)
〉

a2〈U , P 2
2 (x)〉

. (4.17)

To prove that the (1, 1)-Dω-coherence is a sufficient condition for U and V
to be Dω-semiclassical linear functionals, we consider the zeros of the monic
polynomial β(x) given by (4.11). Indeed, if ξ1 and ξ2 are the zeros of β(x), then

β(x) = (x−ξ1)(x−ξ2), (Dωβ) (x) = 2

[
x− ξ1 + ξ2 − ω

2

]
(4.11)

=
(2.2)

2γ1(x). (4.18)

Therefore, the possible cases to analyze are the following:

i. ξ and ξ − ω are the zeros of β(x), equivalently, ξ is a zero of β(x) such
that ξ − ω is the zero of (Dωβ) (x), (Theorem 11).

ii. ξ1 and ξ2 are the zeros of β(x) such that ξ1 6= ξ2, ξ2 6= ξ1 − ω and
ξ1 6= ξ2 − ω, equivalently, ξ1 and ξ2 are the zeros of β(x) such that ξ1 6=
ξ2, (Dωβ) (ξ1 − ω) 6= 0 and (Dωβ) (ξ2 − ω) 6= 0, (Theorem 15).

iii. ξ is a double zero of β(x), (Theorem 16).

Theorem 11. If (U ,V) is a (1, 1)-Dω-coherent pair given by (3.1) with M0 ≥ 4
and M1 ≥ 3, and if ξ and ξ−ω are the zeros of β(x), then there exist polynomials
α̃3(x), ϕ2(x), and γ1(x) of degrees ≤ 3,≤ 2, and 1, respectively, such that

Dω [α̃3(x)U ] = −ϕ2(x)U , (4.19)

α̃3(x)U = γ1(x)V. (4.20)

Hence, U and V are Dω-semiclassical linear functionals of class at most 1 and
5, respectively.

Proof. From (4.18), β(x) = (x−ξ)(x−ξ+ω) = (x−ξ)γ1(x). Then from (4.11),
γ2(ξ−ω) = 0 and thus γ2(x) = γ1(x)ν1(x), where ν1(x) is a monic polynomial of
degree 1. Also, from (4.10) we obtain α(ξ) = 0 and, thus, α(x) = (x− ξ)α̃3(x),
where α̃3(x) = ν1(x− ω)ϕ2(x)− ϕ3(x). Hence, (Dωγ2)(x) = γ1(x+ ω) + ν1(x)
and, therefore, (4.14) and (4.15) become

γ2(x− ω)DωV + ν1(x− ω)V = −ν1(x− ω)ϕ2(x)U ,
γ2(x− ω)DωV + [γ1(x) + ν1(x− ω)]V = −ϕ3(x)U .

As a consequence, (4.20) follows by elimination of γ2(x−ω)DωV. Besides, taking
Dω in (4.20) and using (4.5), (4.19) holds. Furthermore, from Proposition 2, we
obtain the desired result.
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For the second case we need some previous results which will be stated as
lemmas.

Lemma 12. Let (U ,V) be a (1, 1)-Dω-coherent pair given by (3.1) with M0 ≥ 4
and M1 ≥ 3, and let α(x), β(x), and φ(x) be the polynomials introduced in
Corollary 10. If ξ is a zero of β(x) such that β(ξ − ω) 6= 0 and α(ξ) = 0, then
γ1(ξ − ω) 6= 0 and φ(ξ) = 0.

Proof. From (4.18) we get γ1(ξ−ω) 6= 0. Thus, from (4.13) for n = 1, φ(ξ) = 0
holds.

Lemma 13. Let (U ,V) be a (1, 1)-Dω-coherent pair given by (3.1) with M0 ≥ 4
and M1 ≥ 3, and let α(x), β(x), φ(x), and γn(x) be the polynomials introduced
in Corollary 10. If ξ is a zero of β(x) such that α(ξ) 6= 0, then there exists a
constant C 6= 0, independent on n, such that

γn(ξ − ω) + C (Dωγn) (ξ − ω) = 0, 1 ≤ n ≤M − 1.

Proof. φ(ξ) 6= 0 follows from (4.13) for n = 1. Hence, if C = α(ξ)/φ(ξ) and
using (4.13), the proof is complete.

Lemma 14. Let (U ,V) be a (1, 1)-Dω-coherent pair given by (3.1) with M0 ≥ 4
and M1 ≥ 3, and let γn(x) be given by (4.4). If there exist constants ξ1, ξ2, C1, C2

independent on n, such that ξ2 6= ξ1 − ω, ξ1 6= ξ2 − ω, and

γn(ξk − ω) + Ck (Dωγn) (ξk − ω) = 0, k = 1, 2, (4.21)

for 1 ≤ n ≤M − 1, then ξ1 = ξ2 and C1 = C2.

Proof. As a consequence of (4.4) and (4.21), for 1 ≤ n ≤M − 1, we get

Rn(ξ1 − ω) + C1 (DωRn) (ξ1 − ω) = Rn(ξ2 − ω) + C2 (DωRn) (ξ2 − ω).

Besides, since this equation also holds for n = 0 and {Rn(x)}M−1
n=0 is a basis of

PM−1, then for every p ∈ PM−1,

p(ξ1 − ω) + C1 (Dωp) (ξ1 − ω) = p(ξ2 − ω) + C2 (Dωp) (ξ2 − ω) (4.22)

holds. In particular, (4.22) is true for p(x) = (x − ξ2)n(x − ξ2 + ω)n with 1 ≤
n ≤M −1. Therefore, (ξ1−ξ2)n

[
(ξ1−ξ2−ω)n+C1

(ξ1−ξ2+ω)n−(ξ1−ξ2−ω)n

ω

]
= 0

follows for 1 ≤ n ≤ M − 1. If ξ1 6= ξ2, then when n = 1 we can conclude
that C1 = (ξ2 − ξ1 + ω)/2. If we replace this value when n = 2, we obtain
(ξ2 − ξ1 + ω)(ξ2 − ξ1 − ω) = 0, which yields a contradiction. So ξ1 = ξ2 and
thus, C1 = C2 follows from (4.22) for p(x) = x.

Theorem 15. Let (U ,V) be a (1, 1)-Dω-coherent pair given by (3.1) with M0 ≥
4 and M1 ≥ 3, and let β(x) be the monic polynomial given by (4.11). If ξ1 and
ξ2 are the zeros of β(x) such that ξ1 6= ξ2, ξ2 6= ξ1 − ω, ξ1 6= ξ2 − ω, then there
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exist polynomials α̃(x) and φ̃(x), with deg(α̃(x)) ≤ 3 and deg(φ̃(x)) ≤ 2, such
that

α̃(x)U = β̃(x)V, (4.23)

α̃(x)DωV = φ̃(x)V, (4.24)

φ̃(x)U = β̃(x)DωV, (4.25)

where β̃(x) = x− ξ for some ξ ∈ {ξ1, ξ2}. Moreover,

Dω [α̃(x)V] =
(
φ̃(x− ω) + (Dωα̃) (x− ω)

)
V. (4.26)

Thus, V and U are Dω-semiclassical linear functionals of class at most 1 and
5, respectively.

Proof. Let α(x), β(x), and φ(x) be the polynomials introduced in Corollary 10
and let β(x) = (x− ξ1)β̃(x) with β̃(x) = x− ξ2. Since ξ1 6= ξ2, ξ2 6= ξ1−ω, ξ1 6=
ξ2 − ω, then from Lemmas 13 and 14 we get either α(ξ1) = 0 or α(ξ2) = 0. If
α(ξ1) = 0, i.e., α(x) = (x− ξ1)α̃(x), then from Lemma 12, γ1(ξ1 − ω) 6= 0 and
φ(ξ1) = 0, i.e., φ(x) = (x− ξ1)φ̃(x). Thus, (4.7)-(4.9) and (4.13) become

α̃(x)U = β̃(x)V + η1δξ1 , (4.27)

α̃(x)DωV = φ̃(x)V + η2δξ1 , (4.28)

φ̃(x)U = β̃(x)DωV + η3δξ1 , (4.29)

φ̃(x)γn(x− ω) + α̃(x) (Dωγn) (x− ω) = −ϕn+1(x)β̃(x), (4.30)

for 1 ≤ n ≤M − 1. Hence,(
φ̃(x)γn(x− ω) + α̃(x) (Dωγn) (x− ω)

)
U (4.30)

=
(4.5)

β̃(x)Dω[γn(x)V]

(4.29)
=

(4.27)
γn(x− ω)

(
φ̃(x)U − η3δξ1

)
+ (Dωγn) (x− ω)

(
α̃(x)U − η1δξ1

)
,

for 1 ≤ n ≤M − 1, and, as a consequence,

η3γn(ξ1 − ω) = −η1 (Dωγn) (ξ1 − ω), 1 ≤ n ≤M − 1. (4.31)

Since (Dωγ1) (ξ1−ω) = 1 and γ1(ξ1−ω) 6= 0, then, η1 = 0 if and only if η3 = 0.
If η3 = 0, (4.23) and (4.25) follow. If η3 6= 0 and α̃(ξ2) 6= 0, then α(ξ2) 6= 0
and hence, from Lemma 13, there exists C 6= 0, which is independent on n,
such that γn(ξ2 − ω) + C (Dωγn) (ξ2 − ω) = 0, for 1 ≤ n ≤ M − 1. But, since
ξ1 6= ξ2, ξ2 6= ξ1 − ω, ξ1 6= ξ2 − ω, from Lemma 14 we obtain that neither the
previous equation nor (4.31) hold, which is a contradiction. On the other hand,
if η3 6= 0 and α̃(ξ2) = 0, then α(ξ2) = 0 and we can do the same analysis as for
ξ1 and we get

η̃3γn(ξ2 − ω) = −η̃1 (Dωγn) (ξ2 − ω), 1 ≤ n ≤M − 1. (4.32)
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Therefore, η̃1 = 0 if and only if η̃3 = 0. If η̃3 = 0, (4.23) and (4.25) follow. If
η̃3 6= 0, then from Lemma 14 either (4.31) or (4.32) can not be hold, which is a
contradiction. So η̃3 = 0.

Assume that η3 = 0 (otherwise η̃3 = 0 and the following holds for ξ2). From
(4.23), (4.5), (4.28) and (4.30), we obtain −ϕ2(x)β̃(x)V = γ1(x − ω)η2δξ1 −
ϕ2(x)β̃(x)V. Since γ1(ξ1 − ω) 6= 0, then η2 = 0 and (4.24) follows. As a
consequence, (4.26) holds. Finally, from Proposition 2 we get our result.

Theorem 16. Let (U ,V) be a (1, 1)-Dω-coherent pair given by (3.1) with M0 ≥
5 and M1 ≥ 4, and let β(x) be the monic polynomial given by (4.11). If ξ
is a double zero of β(x) and γN (ξ − ω) + ω

2 (DωγN ) (ξ − ω) 6= 0 for some
3 ≤ N ≤M −1, with γN (x) the monic polynomial introduced in Lemma 8, then
there exist polynomials α̃(x) and φ̃(x), with deg(α̃(x)) ≤ 3, and deg(φ̃(x)) ≤ 2,
such that

α̃(x)U = β̃(x)V, (4.33)

α̃(x)DωV = φ̃(x)V, (4.34)

φ̃(x)U = β̃(x)DωV, (4.35)

where β̃(x) = x− ξ. Moreover,

Dω [α̃(x)V] =
(
φ̃(x− ω) + (Dωα̃) (x− ω)

)
V. (4.36)

Thus, V and U are Dω-semiclassical linear functionals of class at most 1 and
5, respectively.

Proof. Let α(x) and φ(x) be the polynomials introduced in Corollary 10. Since
γ1(ξ − ω) = −ω2 6= 0 follows from (4.18), then γ1(ξ − ω) +C (Dωγ1) (ξ − ω) 6= 0
for C 6= ω

2 . But for C = ω
2 , γN (ξ − ω) + ω

2 (DωγN ) (ξ − ω) 6= 0 for some 3 ≤
N ≤M − 1, by hypothesis. Thus, from Lemma 13 it follows that α(ξ) = 0, and
then from Lemma 12, φ(ξ) = 0. Hence, β(x) = (x− ξ)β̃(x), α(x) = (x− ξ)α̃(x),
and φ(x) = (x− ξ)φ̃(x). Therefore (4.7) - (4.9) and (4.13) become

α̃(x)U = β̃(x)V + η̃1δξ, (4.37)

α̃(x)DωV = φ̃(x)V + η̃2δξ, (4.38)

φ̃(x)U = β̃(x)DωV + η̃3δξ, (4.39)

φ̃(x)γn(x− ω) + α̃(x) (Dωγn) (x− ω) = −ϕn+1(x)β̃(x), (4.40)

for 1 ≤ n ≤M − 1. Then,(
φ̃(x)γn(x− ω) + α̃(x) (Dωγn) (x− ω)

)
U (4.40)

=
(4.5)

β̃(x)Dω[γn(x)V]

(4.39)
=

(4.37)
γn(x− ω)

(
φ̃(x)U − η̃3δξ

)
+ (Dωγn) (x− ω)

(
α̃(x)U − η̃1δξ

)
,

16



for 1 ≤ n ≤M − 1, and thus

η̃3γn(ξ − ω) + η̃1 (Dωγn) (ξ − ω) = 0, 1 ≤ n ≤M − 1. (4.41)

Since γ1(ξ − ω) 6= 0 and (Dωγ1) (ξ − ω) = 1, then, η̃1 = 0 if and only if
η̃3 = 0. If η̃3 6= 0, from (4.41) for n = 1, we get η̃1/η̃3 = −γ1(ξ − ω) and,
as a consequence, γn(ξ − ω) + ω

2 (Dωγn) (ξ − ω) = 0 for all 1 ≤ n ≤ M − 1,
which yields a contradiction. So η̃3 = 0 and hence, (4.33) and (4.35) follow.
Furthermore, from (4.33), (4.5), (4.38), and (4.40) we obtain −ϕ2(x)β̃(x)V =
γ1(x − ω)η̃2δξ − ϕ2(x)β̃(x)V. Thus, η̃2 = 0 and then (4.34) follows. As a
consequence, (4.36) holds. Finally, from Proposition 2 we deduce our desired
result.

5 The Case When U is Dω-Classical

Let (U ,V) be a (1, 1)-Dω-coherent pair of weakly quasi-definite linear functionals
of order M0 ≥ 2 and M1 ≥ 1, respectively. In this section, we will analyze the
case when U is a Dω-classical linear functional given by (2.9), i.e.,

Dω [σ(x)U ] = τ(x)U , deg(σ(x)) ≤ 2, deg(τ(x)) = 1.

The following theorem is proved for the continuous case in [2, p. 314], but
its proof is similar to the Dω-case.

Theorem 17. Let {Tn(x)}M̂0
n=0 and {Rn(x)}M1

n=0 be two families of MOP with

respect to the weakly quasi-definite linear functionals Û and V of order M̂0 ≥
2 and M1 ≥ 2, respectively, and 〈Û , 1〉 = 1 = 〈V, 1〉. Then, the following
statements are equivalent

i) There exist complex numbers {an}min{M̂0,M1}
n=1 , {bn}min{M̂0,M1}

n=1 , with a1 6=
b1, anbn 6= 0, 1 ≤ n ≤ min{M̂0,M1}, such that

Tn(x)+anTn−1(x) = Rn(x)+bnRn−1(x), 1 ≤ n ≤ min{M̂0,M1}. (5.1)

ii) Tn(x) 6= Rn(x), for 1 ≤ n ≤ min{M̂0,M1}, and there exist constants
CT , CR, and η such that(

x− CT
)
Û = η

(
x− CR

)
V. (5.2)

Remark 18. If {Pn(x)}M0
n=0 and {Rn(x)}M1

n=0 are families of MOP with re-
spect to the weakly quasi-definite linear functionals U and V of order M0 ≥ 3

and M1 ≥ 2, respectively, U is Dω-classical given by (2.9) (this is, {P [1]
n (x) =

DωPn+1(x)
n+1 }M0−1

n=0 is a family of MOP with respect to U [1] = σ(x)U), and corre-
sponding TTRR given as in (2.4), then from the proof of Theorem 17 we obtain
the following results:
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• From proof of (i) =⇒ (ii), the condition bn 6= 0, 1 ≤ n ≤ M , can be
replaced by b2 6= 0. Besides,

CP
[1]

= αP
[1]

1 − βP
[1]

2 (a2 − b2)

b2(a1 − b1)
, CR = αR1 −

βR2 (a2 − b2)

a2(a1 − b1)
,

η =
βP

[1]

2 a2

βR2 b2

〈U , σ(x)〉
〈V, 1〉

.

• From proof of (ii) =⇒ (i) we get P
[1]
1 (x)−R1(x) = b1 − a1 6= 0, a1b1 6= 0

and for 2 ≤ n ≤M ,

an = − 〈V, P
[1]
n (x)〉

〈V, P [1]
n−1(x)〉

6= 0, bn = − 〈σ(x)U , Rn(x)〉
〈σ(x)U , Rn−1(x)〉

6= 0.

Finally, the next result it is a straightforward consequence of Theorem 17,
Theorem 3, and Proposition 2.

Corollary 19. Let U be a Dω-classical linear functional given by (2.9), let V be
a weakly quasi-definite linear functional, and let {Pn(x)}M0

n=0 and {Rn(x)}M1
n=0 be

their corresponding families of MOP, with M0 ≥ 3 and M1 ≥ 2. The following
statements are equivalent

i) (U ,V) is a (1, 1)-Dω-coherent pair given by (3.1), with a1 6= b1 and anbn 6=
0, for 1 ≤ n ≤M .

ii) DωPn+1(x)
n+1 6= Rn(x), for 1 ≤ n ≤ M , and there exist constants CP

[1]

, CR,
and η (see Remark 18) such that(

x− CP
[1]
)
σ(x)U = η

(
x− CR

)
V.

In this case, V is a Dω-semiclassical linear functional of class at most 2.

Remark 20. From the previous Corollary and Remark 18 it follows that if
(U ,V) is a (1, 1)-Dω-coherent pair given by (3.1) with a1 6= b1 and b2 6= 0, and
U is a Dω-classical linear functional given by (2.9), then

V =
1

η

(
x− CR

)−1
(
x− CP

[1,Dω ]
)
σ(x)U + 〈V, 1〉 δCR .

In particular, this equation holds when U is any of the D1-classical linear func-
tionals given in the Table 1 and Table 2.

6 AMatrix Interpretation of (1, 1)-Dω-Coherence

In this section, we assume that U and V are two quasi-definite linear function-
als, i.e., M = N = ∞. We will denote by {Pn(x)}n≥0 and {Rn(x)}n≥0 their
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corresponding SMOP, and we will assume that they are a (1, 1)-Dω-coherent
pair given by (3.1), i.e.,

DωPn+1(x)

n+ 1
+ an

DωPn(x)

n
= Rn(x) + bnRn−1(x), an 6= 0, n ≥ 1.

We can write this algebraic relation in a matrix form as

ADωp(x) = Br(x), (6.1)

where

p(x) =

 P0(x)
P1(x)

...

 , r(x) =

 R0(x)
R1(x)

...

 ,

A =


1 1/1 0 0 · · ·

0 a1/1 1/2 0
. . .

0 0 a2/2 1/3
. . .

...
. . .

. . .
. . .

. . .

 , B =


1 0 0 0 · · ·

b1 1 0 0
. . .

0 b2 1 0
. . .

...
. . .

. . .
. . .

. . .

 .

Notice that A (an upper bidiagonal matrix) and B (a lower bidiagonal matrix)
are nonsingular because an 6= 0 for n ≥ 1. Besides, from (2.5) we have that

xp(x) = Jpp(x), xr(x) = Jrr(x),

where Jp and Jr are the monic Jacobi matrices associated with U and V, re-
spectively. Then

A−1BJrr(x) + p(x)
(2.5)
= xA−1Br(x) + p(x)

(6.1)
= xDωp(x) + p(x)

(2.2)
= Dω [(x− ω)p(x)]

(2.5)
= (Jp − ωI)Dωp(x)

(6.1)
= (Jp − ωI)A−1Br(x),

where I is the infinite identity matrix. As a consequence,

p(x) =
[
(Jp − ωI)A−1B −A−1BJr

]
r(x). (6.2)

Hence,

Jp
[
(Jp − ωI)A−1B −A−1BJr

]
r(x)

(6.2)
= Jpp(x)

(2.5)
= xp(x)

(6.2)
= x

[
(Jp − ωI)A−1B −A−1BJr

]
r(x)

(2.5)
=
[
(Jp − ωI)A−1B −A−1BJr

]
Jrr(x).

In other words,

Jp (Jp − ωI)A−1B − JpA−1BJr = (Jp − ωI)A−1BJr −A−1BJ 2
r .
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Multiplying on the left by A and on the right by B−1 we get

AJp (Jp − ωI)A−1−AJpA−1BJrB−1 = A (Jp − ωI)A−1BJrB−1−BJ 2
r B−1.

(6.3)
Let

Mp = AJpA−1 and Mr = BJrB−1, (6.4)

i.e.,Mp (resp. Mr) and Jp (resp. Jr) are similar matrices. Then, (6.3) becomes

0 =M2
p − ωMp − 2MpMr + ωMr +M2

r

= (Mp −Mr)
2

+MrMp −MpMr − ω (Mp −Mr)

= (Mp −Mr) (Mp −Mr − ω)− [Mp,Mr],

where [S, T ] is the commutator of the matrices S and T , defined by [S, T ] =
ST − T S. Therefore, we have proved the following result.

Proposition 21. If (U ,V) is a (1, 1)-Dω-coherent pair given by (6.1), then

[Mp,Mr] = (Mp −Mr) (Mp −Mr − ω),

where [Mp,Mr] is the commutator of Mp and Mr, and Mp and Mr are the
matrices given by (6.4).

Furthermore, when U is a Dω-classical linear functional we have the following
result.

Proposition 22. If (U ,V) is a (1, 1)-Dω-coherent pair given by (6.1) and U is
a Dω-classical linear functional, then

ÃJp̃Ã−1 =Mp̃ =Mr = BJrB−1.

Therefore, Jp̃ and Jr, the monic Jacobi matrices associated with the SMOP

{DωPn+1(x)
n+1 }n≥0 and {Rn(x)}n≥0 respectively, are similar matrices.

Proof. Since {Pn(x)}n≥0 is a Dω-classical SMOP, so is {DωPn+1(x)
n+1 }n≥0 (see

Theorem 3). Thus (6.1) becomes

Ãp̃(x) = Br(x), (6.5)

where

p̃(x) =


DωP1(x)

1
DωP2(x)

2
...

 , Ã =


1 0 0 0 · · ·

a1 1 0 0
. . .

0 a2 1 0
. . .

...
. . .

. . .
. . .

. . .

 .

Notice that Ã is a nonsingular lower bidiagonal matrix as B. Hence,

ÃJp̃Ã−1Br(x)
(6.5)
= ÃJp̃p̃(x)

(2.5)
= xÃp̃(x)

(6.5)
= xBr(x)

(2.5)
= BJrr(x),
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where Jp̃ and Jr are the monic Jacobi matrices associated with the SMOP

{DωPn+1(x)
n+1 }n≥0 and {Rn(x)}n≥0, respectively. Therefore, ÃJp̃Ã−1 = BJrB−1.

Finally, ifMp̃ = ÃJp̃Ã−1 andMr is as in (6.4), then the proof is complete.

For example, when ω = 1, the Proposition 22 holds for the Charlier and

Meixner D1-classical SMOP, {C(µ)
n (x)}n≥0 and {M (γ,µ)

n (x)}n≥0. In these cases,

D1C
(µ)
n+1(x)

n+ 1
= C(µ)

n (x),
D1M

(γ,µ)
n+1 (x)

n+ 1
= M (γ+1,µ)

n (x), n ≥ 0,

and the entries of the monic Jacobi matrix Jp̃ associated with the SMOP

{D1Pn+1(x)
n+1 }n≥0 are given in Table 2.
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petitividad of Spain, grant MTM2012-36732-C03-01.

References

[1] F. Abdelkarim and P. Maroni. The Dω-Classical Orthogonal Polyno-
mials. Results Math. 32, 1-28, (1997).

[2] M. Alfaro, F. Marcellán, A. Peña, and M. L. Rezola. On Linearly
Related Orthogonal Polynomials and their Functionals. J. Math. Anal.
Appl. 287, 307-319, (2003).

[3] I. Area. Polinomios Ortogonales de Variable Discreta: Pares Coher-
entes. Problemas de Conexión. Doctoral Dissertation, Universidad de
Vigo, España, (1999). (In Spanish).

[4] I. Area, E. Godoy, and F. Marcellán. Classification of all ∆-Coherent
pairs. Integral Transforms Spec. Funct. 9, 1-18, (2000).

[5] I. Area, E. Godoy, and F. Marcellán. q-Coherent Pairs and q-
Orthogonal Polynomials. Appl. Math. Comput. 128, 191-216, (2002).

[6] I. Area, E. Godoy, and F. Marcellán. ∆-Coherent Pairs and Orthogonal
Polynomials of a Discrete Variable. Integral Transforms Spec. Funct.
14, 31-57, (2003).

[7] T. S. Chihara. An Introduction to Orthogonal Polynomials. Gordon
and Breach, New York, (1978).

21



[8] A. M. Delgado and F. Marcellán. Companion Linear Functionals and
Sobolev Inner Products: A Case Study. Meth. Appl. Anal. 11, 237-266,
(2004).

[9] M. Foupouagnigni, M. N. Hounkonnou, and A. Ronveaux. Laguerre-
Freud Equations for the Recurrence Coefficients of Dω-Semi-Classical
Orthogonal Polynomials of Class One. Proceedings of the VIIIth Sym-
posium on Orthogonal Polynomials and Their Applications, Seville
(1997). J. Comput. Appl. Math. 99, 143-154, (1998).
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