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ON EIGENVALUES, CASE OELETION ANO EXTREMES IN REGRESSION 

Santiago Velilla 

'Jac.uUad de f;canómi..cao., 'Dpto.. de f;ed.adíM1.ca, 'UnWeruiúiad ~<lItlo.o. III de 

.It1.adIU.d, 28903-§'eta&e, !fpa.in.. 

This paper presents an approximation for assessing the effect of 

deleting an observation in the eigenvalues of the correlation matrix of 

a multiple linear regression model. Applications in connection with the 

detection of collinearity-influential observations are explored. 

1. Introduction 

Consider the linear model 

Y=X(3+c, (1.1) 

where Y is an n vector of observable responses, X is a known full rank 

nxm matrix, (3 is an m vector of unknown parameters, and c is an n vector 

of unobservable errors with E[c]=O and V[c]=cr2I. We assume that the 
n 

model contains an intercept term and, therefore, X=(1 ,X), where 1 is 
n 1 n 

an n vector of ones and X is an nxp matrix. We have m=p+1. Sometimes, 

[ 
1 

it is convenient to write the model (1.1) as 

Y=1 ex +Zex+c, (1.2) 
n o 

A.It1.!f 1980 ~ ~. Primary 62J05. 

1<.~ and ~: Case deletion; Collinearity; Eigenvalues; Extreme 

cases; Gateaux differentiability; Multiple Linear Regression; 

Perturbation theory. 
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L where Z is the nxp matrix of centered and scaled predictors and (a ,a')'
o 

is an m vector of unknown parameters. 

According to (1.2), z'z is the correlation matrix of the model 

(1.1). We write its spectral decomposition as 

Z'Z=CDC', (1.3) 

where C, with columns o, is a pxp orthogonal matrix of eigenvectors,
J 

and� D is a pxp matrix of eigenvalues OO.:S ... :si\. Closely related to 
1 p 

0.3) is the nxp matrix of principal components associated to (1.1), 

namely, 

K=(k )=ZC (1.4)
lJ '� 

with columns k =Zo .� 
J� J 

A linear least squares fit of (1.1) may be affected by col1inearity 

among the columns of X. Collinearity refers 1.0 the near dependence of 

the regressor variates. Consequences of collinearity with regard to 

numerical and statistical instability of coefficient estimates are wel1 

documented (see Gunst (1983) for a detailed reviewl. A useful indicator 

of the existence of a near linear dependence among the columns of X is 

the presence of smal1 eigenvalues in D. Given that 

i\ =o'Z'Zo =k'k� (1.5)
J J J Jj' 

i\ ~O implies Zo ~O. We define the jth condition index of the matrix Z, 
J� J 

r¡ =(i\ Ii\ )1/2. In particular, /(.=r¡ =(i\ Ii\ )112 is the condition number of 
J P J 1 p 1 

Z. The set {r¡J' l:sj:sp} of condition indexes is a diagnostic tool for 

detecting� collinearity proposed by Belsley et al. (1980). 

The nxn matrix V=(v )=X(X'X¡-IX' is termed the hat matrix and its 
lj 

diagonal entries v measure how far the associated cases are from the 
11 

center of the data seto It is shown that V=l l' In+Z(Z'Z¡-IZ ' and then, 
n n 

using 0.3) and (1.4), 
,.~ ­

J 
l " 
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f k2� 
1 p lJ�L v = ñ + ¿-- (1. 6)

11 
J=l A 

J 

Cases with v >2m/n are extremes or far from the bulk of the data. 
11 

It is well-known that a small group of cases might be distorting, 

either creating or masking, the perception of an approximate linear 

relationship among the columns of model (1.1). These points are dubbed 

collinearity-influential cases. For example, Mason and Gunst (1985) 

showed how a group of k outlying cases can induce k-1 near linear 

relationships among the regressor variates. Collinearity-influential 

cases were initially noted in Belsley et a.l. (1980) and Cook and 

r ' Weisberg (1982). \ 
L 

Several authors have proposed different techniques for detecting 

collinearity-influential points, among others, Chaterjee and Hadi 

(1988), Walker (1989) and, recently, Wang and Nyquist (1991). For a 

recent review on diagnostic techniques for collinearity-influential 

points, see Belsley (1991, chapo 8). 

pPut X =(x , ... ,x )', where x elR. In what follows, the subscript
1 1 n 1 

(l) will mean that the corresponding quantity has been computed deleting 

the ith case (l,x') of the analysis. Since collinearity measures are 
1 

mainly constructed on the eigenvalues of the kentered ans scaled 

[ cross products rnatrix, a method for diagnosing the presence of 

collinearity-influential points in a data set could be analyzing the 

relationship among the sets {A} and {A }. Unfortunately, with the 
J J(l) 

exception of sorne special cases, there are no explicit expressions 

relating A to A and, therefore, sorne degree of approximation seems 
J J(l} 

in order. The aim of this papel' is to present a new technique of 

approximation for the differences A -A The accuracy of the 
J JUl 

approximation is reflected in arate of convergence which depends on the 

3 
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sample size. Section 2 contains sorne preliminary background to the main 

results which are exposed in section 3. Section 4 is devoted to 

applications and examples. We will focus primarily on the effect of 

single deletion. Results concerning multiple cases and other possible 

extensions of the theory can be found in section S. 

2. Eigenvalues as functionals 

Let!f be the space of aH real mxm symmetric matrices. For a given 
m 

element A=(a ) In !f , we will take the norm 11 A11 = 11 A11 =max 1 a l. We write
lJ m ro l. J IJ 

the spectral decomposition of A, 

A=C(A)D(A)C(A)' , (2.1) 

where C(A). with columns CJ}A), is a mxm orthogonal matrix of 

eigenvectors. and D(A) is a mxm matrix of eigenvalues i (A):S ... :si (A).
1 m 

Let F the distribution function in IRP of the d..eói..q.n ~ associated 
n 

with the n rows .... X of the matrix X. We have the integral 
n 1 

representation 

x'x/n=JYY'F (dy)=T[F l. (2.2) 
. n n 

my=(1,x')'elR • where T[.] is an adequate functional defined in a space of 

measures. We can write i (X'X)=ni (J.YY·F (dy))=ni (T[F ]) ando 
J J n J n 

consequently. 

i (X'X)-i (X' X )=
J J (1) (l) 

i (T[F ])+(n-l){i (T[F ])-i (T[F m. (2.3)
J n J n J n-1(O 

where F is the distribution function of the design measure on the 
n-1(O� 

n-l rows of X • namely.� 
1(0 

1F =F + - (F -eS ). (2.4)
n-1(O n n-l n XI 

We can take advantage of (2.3) and (2.4) to develop an 

approximation for the difference i (X'X)-i (X' X») based on certain
J J (1) (1 
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differentiabiliy properties of the functional i}T[. J). We make the 

following assumptions: 

~ 1. The points x, ... , x are the first n elements of an 
1 n 

infinite sequence {x} of points contained in a compact set CS;/RP.
i 

~ 2. Let .M be the linear space of finite signed measures 

concentrated on C. The functional T[.) of (2.2) is defined in .M in the 

form T[¡.L)=JYY'¡.L(dY). M is endowed with the norm 11.ll of the total 
v 

variation (see Rudin 0974, chapo 6) for definitionL 

Observe: 

a) Under assumption 1, both F and F are in M and 
n n-1U) 

11 Fn I1 v= 11 Fn-Hl) 11 v=1¡� 

b) The functional T: (M,II.II )~(.Y) ,11.11 ) is Uneart� v m 00 

(T[a.¡.L+(3I\)=a.T[¡.L]+(3T[1\1, ¡.L,l\eM, a.,(3elR); and ~.I.ll.ded (1IT[¡.L]lloo:SMII¡.Lll for 
v 

sorne fixed constant M>O independent of ¡.L); 

c) For ¡.LeM, i (T[¡.LJ) means,� in the ordering established aboye, the jth
j 

eigenvalue of T[¡.L]=J yy' ¡.L(dy)=( t [¡.LJ)e9'. If ij(T[¡.LJ) is simple, heM 
C ik m 

and t~O, we get, from standard results of perturbation theory for real 

symmetric matrices (see Kato (982) for details), 

i (T[¡.L+th])=i (T(¡.L]+tT[h])=i (T[¡.L])+tQ.' (T[¡.LJ)T[h]Q. (T[¡.L])+o( Iti).j j j j j 

This entails, 

l.� i (T[¡.L+th]) -i (T[¡.L]) 
lim j j = Di (T[II])(h) (2.5)j r- , 

t--70 t 

where Di (T[¡.L])(h)=Q.'(T[¡.LJ)T(h]Q. (T[¡.L]). Since Di (T[¡.L])(h) is linear inj j j j 

h, (2.5) says that i (T[¡.L]) is ~liteaua: (weakly) differentiable at every
j 

¡.LeM such that the jth eigenvalue of T[¡.L] is simple.� 

We now proof the following theorem.� 
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Theorem 1. Let Il,AeM such that 1IIlll ' IIAllv:Sl. If TL) has all its v 

eigenvalues simple at every point of the segment (1-t)ll+tA, O:st:S1, then, 

max 1e (T[A))-e (T[Il))-De (T[Il) )(A-Il) 1:SQ(A,Il) 11 A-1l11 v' (2.6) 
1:s J:Sm J j J 

where Q(A,Il)~O, if IIA-llllv~O.
 

Proof. For each j=l, ... ,m, the functional e(T[.)) is weakly�
J 

differentiable in all the segment [1l,A!. We can then apply the mean 

L,� value theorem (see Lang (1969, chapo 5)) to obtain� 

max 1e (T[A))-e (T[Il))-De (T[Il) )(A-Il) 1:SQ(A,Il) 11 A-1l11 v' 
1:s j:Sm j j j 

where Q(A,Il)= max sup sup I<De (T[(l-t)ll+tA))-De (T[Il))}(h) l. 
1:s j:Sm o:st:s111 h 11 v:s1 j j 

To proof that Q(A,Il)~O, as IIA-llllv~O" we reason as follows. As 

remarked in Kato (1982, p. 136), the eigenvalues e(A) and eigenvectors
j 

<¡ (A) are uniformly continuous functions of matrix argument in any
j 

bounded region of!l (i. e. in any region of!l where 11 A 11 co is bounded l. 
m m 

Since IIT[A)-T[Il]llco:SMIIA-llll ' the eigenvalues e/T[v)) and eigenvectorsv 

<¡j(T[v)) are uniformly continuous functions of v in the region Ilvllv:Sl. 

On the other hand, we have, for Ilhllv:S1, the elementary inequality 

m
la'T[h)bl:smMllaIIEllbIIE, where II.II E denotes the euclidean norm in IR . It is 

easy to see that putting all these things together, we get the claim of 

the theorem. • 

As an example of possible applications of theorem 1, we establish 

the following corollary. 

Corollary 1. Suppose that, for every n and l:si:sn, the matrix 

T[(1-t)F +tF ) has all its eigenvalues simple for O:st:sl. Then, 
n n-HU 

max max le (x'x)-e (X' X )_k2 (X'X) l:sa , (2.7)
j j (1) (I) 1j n

1:s j:Sm 1:S l:Sn

[ where k (X'X)=(l,x')<¡ (X'X) and a ~O as n~. 
lj 1 j n 
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Proof. Put i\.=F and ¡..t=F. By (2.4) and (2.5) aboye, Dt (T[F ])(i\.-¡..t)
n-l(1) n J n 

equals, 

[(t (X'X)/n)-k2 (X'X))In-l.
J lj� 

Using (2.3), we get t (X'X)-t (X' X )_k2 (X'X)=�j j (1) (1) lj 

-(n-l){t (T[i\.]-t (T[¡..t))-Dt (T[F ])(i\.-¡..t)).
J J J n 

We have 11i\.-¡..tllv=lln~1 (Fn-o )ll =2/n. From theorem 1 aboye, max max 
x v

1 1~ J::5m 1::5 l::5n 

It (X'X)-t (X' X )_k2 (X'X) I::5(2/n)(n-llb , where the sequenceJ J (1) (l) lJ n 

b = max Q(F ,F) tends to zero as n goes to oo. The corollary
n n-HU n1::5 l::5n� 

follows with a =(2/n)(n-llb .•� 
n n 

Remark 1. For practical purposes, (2.7) yields the approximation 

t (X'X)-t (X' X )=k2 (X'X)+O(ll. (2.8)
J J (1) (l) lJ 

(2.8) has been proposed previously by Critchley (1985), and, recently,L
r

by Wang and Nyquist (19911. They use empirical influence curve 

considerations. Chaterjee and Hadi (1988) also propose this 

r' approximation. Note that corollary 1 allows él direct formal statement 

L 
for estimating the approximation error directly from the sample size n. 

3. Approximations for the eigenvalues of Z'Z 

The main task of this papel' is to present the corresponding version 

of (2.8) for the eigenvalues {i\.} of the correlation matrix Z'Z. 
J 

L, Let ¡..teAt such that the functional C:At~9' , 
p 

C[¡..t]=J[x-m][x-m]' ¡..t(dx), 
C 

where m=Jx¡..t(dx), yields a positive definite pxp matrix. Define the 
C 

functionals S[¡..t]=I ·C[¡..t], where '.' is the Hadamard product of matrices 
p 
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l' (see Rao (1973), p. 30 for definition), and CS[/l]=S-1I2[/l]C[/l]S-1I2[/lJ. 

It is easy to see that 

Z'Z=CS[F J. (3.1)
n 

and ;\ =t (CS[F ]), q =9- (CS[F� D. 
J J n J J n 

Let heM. Define the pxp matrices 

P(/l,h)=J XX'h(dX)-[J X/l(dX)][J xh(dx)]'-[ rXh(dx)][J x/l(dx)]' 
C C C 'C C 

and 

-112 -112 -112 -112(R /l,h)=S� [/l]P(/l,h)S [/l]-(1/2)(S [/l]C[/l]Q+QC[/l]S [/l]), 

-312
where Q=I� -P(/l,h)-S [/lJ. We proof the following lemma. 

p 

Lemma 1. If C[/l] is p.d. and t (CS[/l]) is simple, then, t (CS[/lD is 
J J 

weakly differentiable at /l and 

(. 
\ . 

Proof. It is easy to see that C[/l+th]=C[/l]+tP(/l,h)+o( Iti). On the other 

hand, a standard first order Taylor expansion yields 

-112 -112 I I S [/l+th]=S [/l]+tQ+o( t ). Therefore, 

CS[/l+th]=CS[/l]+tR(/l,h)+o( Iti). (3.2) 

The rest follows from (3.2) and the perturbation series for 

l (CS[/l+thD.• 
J 

We now derive the approximation for ;\ -;\ . 
J Jll) 

Theorem 2. Suppose that, for every n and l:si:sn, the matrix 

CS[(l-t)F +tF ] is p.d. and has all its eigenvalues simple at every
n n-1(1) 

point of the segment O:st:s1.� We have, uniformly in l:sj:sp and l:si:sn, 

n 2 p 2 2
;\ -;\ = - [k -;\ L q Z ]� + o(l/n), (3.3)

í� J J(l} 1 1J J kJ 1k n- k=l 
( ., 

8 

t' 

l..... 



where 0=(0, ... , o )', and z'=(z, ... ,Z )' is the ith row of the 
J lJ pJ 1 11 lp 

matrix Z. 

Proof. Let II=F, A=F and h=F 
,... n n-lO) n-1m 

We need to determine the expression 

P(F ,h)=[X'X/n-(x -x)((x -x)' I/n-1, where 
n 1 1 

eentered predietors. Therefore, 

-F ::(lIn-1)(F -O)
n n X ' 

1 

of De (CS[F ])(h).
J n 

X is the nxp 

S-I/2[F ]P(F ,h)S-I/2[F ]=[Z'Z-nz z' I/n-1 
n n n 1 ¡ 

-3/2On the other hand, if Q=I -P(F ,h)-S (F), we get 
p n n 

-1/2
S [F ]C[F ]Q=[Z'Z-nZ'Zdiag(z z')l/n-1, 

n n ¡ ¡ 

\ , -' 
and 

QC[F ]S-ll2[F ]=[Z'Z-ndiag(z z' )Z'Zl/n-1, 
n n ¡ 1 

by (2 4) 
. • 

We have 

matrix of 

(3.4) 

(3.5) 

where diag(z z') is the pxp diagonal matrix of kth diagonal element 
1 1 

equal to z 
2 

. Aeeording to lemma 1, (3.3), (3.4) and (3.5) lead to 
lk 

2 P 2 2
De (CS[F ]) (h)=[-nk +nA L o Z I/n-l, (3.6) 

J n 1 J J = 1 kJ 1 k 
k 

We can now parallel the arguments in the proof of theorem 1 to 

obtain an analog of (2.6) whieh yieldsl: 
max max I A -A -De (CS[F ])(h) l:se 11.....!.-1 (F -o :1 11 ' 

j( ¡ ) j j n n n- n X V
l:Sj:Sm 1:S¡:Sn ¡ 

where e ~O as n~. Sinee we have 11.....!.-1 (F -o )11 =2/n, the theorem 
n n- n X V 

¡ 

follows.• 

4. Applications 

We now relate approximation (3.3) to the deteetion of 

eollinearity-influential points. 

I 
r­
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4.1. Interpretation 

From (3.3), we see that deletion of the ith case can produce 

different effects in A. However, several particular cases are worth to 
j 

observe: 

a) If case i is extreme in the jth direction, Le. k
2 

lA is large
Ij j 

(recall decomposition 0.6) for v) we have typically k
2 

lA >max 
11 Ij j k 

2 P 2 2 
Z > \' '1 z and, therefore, deletion of case i will tend to produce

Ik L.. kj Ik� 
k=l� 

A -A >0. If A is an eigenvalue of large or moderate size, we can 
j j(l) j 

deduce that case might be shading the perception of a collinearity. 

However, if A is small, deletion of case i will tend to strengthen the 
j 

collinearity situation; 

b) If case i is approximately orthogonal to '1, Le. k =z''18::0, we 
j U I j 

will expect that deletion of case i will produce A -A <o. Therefore,
j j(l) 

if A is small, case i might be inducing a collinearity among the 
j 

columns of X. 

4.2. An example 

We will use for illustration a data set presented by Gunst and 

Mason (1980, appendix A). The response variable is the GNP (Gross 

National Product) of 49 countries explained by six socioeconomic 

variables (see Gunst and Mason (980) for details and meaning of the 

variables). These data set have been analyzed in Mason and Gunst (1985) 

and Belsley (1991, chapo 8). 

For diagnostic purposes, approximation (3.3) can be supported with 

the use of a principal-component plot (k ,k ). The use of 
j I 

principal-component plots for both detecting extreme cases and 

10 
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collinearity is originally proposed by Hocking (1984), See also Velilla 

(1989).� 

For these data. we have A =0.0267 which is an indicator of a slight
1 

r- degree of collinearity. Figure 1 shows a principal-component plotl 
(k

1
,k

5
). The two starred points are Hong Kong and Singapore which outlie 

in the k direction. Since, k' k =A these two points are suspicious of 
5 5 5 5 

inflating artificially the eigenvalue A 
5 

and this might be provoking, 
6L according to the restriction EA =6. the small value of A aboye.

1J=1 J 

FIgure 1 

Table 1 shows the coordinates of r 
1 

and the centered and scaled 

11 
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coordinates of the cases Hong Kong and Singapore. It can be seen that 

both Hong Kong and Singapore are, approximately, orthogonal to "(. The 
1 

first summand in the right hand side of (3.3) is dominated by a negative 

quantity and, therefore, if I=(Hong Kong, Singapore) it can be 

anticipated that A -A <O. In fact, A =0.1800 and hence cases Hong
1 UIl l(I) 

Kong and Singapore are creating artificial1y a collinearity among the 

six socioeconomic variables. 

Table 1 

5. Final coments 

A natural companion of the approximation (3.3) is the extension to 

multiple cases deletion and the associated masking problems. For (3.3), 

for example, the aproximation for deletion of the group of cases I={il' 

... " i } adopts the form 
k 

p 

A -A - nk [ E k2 -(A Ik) E"(2 ( E z2 )] + o(l/n). (5.1) 
J Jm n-k 1e 1 1J J 1=1 1J 1e 1 11 

[ 

Other possible application of the techniques in section 2 refers to 

the set of condition indexes {1)/. It can be shown that, under 

conditions similar to those appearing in the statement of theorem 2, we 

have, uniformly in and l~i~n, 

n 2 2 P 222 
1) -1) =-- 1) [(k lA )-(k IA)+ E("( -"( )z ]+o(l/n). (5.2) 

j(1J J 2(n-1) j IJ J Ip P k=l kp kj Ik 

12 
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Chaterjee and Hadi (988) have proposed the measure H = Ile -le I/Ie
1 (I) 

as a diagnostic tool for collinearity-influential points. Approximation 

(5.2), in the particular case of j=l, might be used to obtain a natural 

approximation fí: for H. See also Chaterjee and Hadi (988) for an 
1 1 

approach to H based on a power method for approximating the maximal and 
1 

minimal eigenvalues of a matrix. 

The theory presented in this paper is an extension of the results 

obtained in Velilla (988). The functional-based technique presented 

here can be suitably modified to treat problems in which the design 

matrix differs from Z, whenever the modified cross products matrix can 

be expressed in terms of a functional depending on the empirical F . For 
n 

example, Belsley 0990 strongly recommends not centering the data and 

scaling the columns of X to unit length to form the matrix ~, sayo It is 

straightforward to express X'X as a functional depending on F and, as a 
n 

consequence, analyze, via the techniques exposed in section 2, the 

importance of the rows of X in the collinearity measures related to X. 
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Variable Z 3 4 5 6 

r' .0066 .0340 .7090 -.7034 .0275 .0252al 

Hong Kong .0361 .1301 .6763 .6449 -.1395 -.0976 

Slngapore -.0730 .0481 .6338 .7158 -.1869 .0108 

f 
Table 1. Loadings f or the eigenvector and values of the standardizedal 

coordinates of the design matrix for Hong Kong and Sinagapore. 
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