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Abstract

In recent years, we have experienced several social media blackouts, which have
shown how much our daily experiences depend on high-quality communication services.
Blackouts have occurred because of technical problems, natural disasters, hacker attacks
or even due to deliberate censorship actions undertaken by governments. In all cases,
the spontaneous reaction of people consisted in finding alternative channels and media so
as to reach out to their contacts and partake their experiences. Thus, it has clearly
emerged that infrastructured networks—and cellular networks in particular—are well
engineered and have been extremely successful so far, although other paradigms should
be explored to connect people. The most promising of today’s alternative paradigms
is Device-to-Device (D2D) because it allows for building networks almost freely, and
because 5G standards are (for the first time) seriously addressing the possibility of using
D2D communications.

In this dissertation I look at opportunistic D2D networking, possibly operating in an
infrastructure-less environment, and I investigate several schemes through modeling and
simulation, deriving metrics that characterize their performance. In particular, I consider
variations of the Floating Content (FC) paradigm, that was previously proposed in the
technical literature.

Using FC, it is possible to probabilistically store information over a given restricted
local area of interest, by opportunistically spreading it to mobile users while in the area.
In more detail, a piece of information which is injected in the area by delivering it to one
or more of the mobile users, is opportunistically exchanged among mobile users whenever
they come in proximity of one another, progressively reaching most (ideally all) users in
the area and thus making the information dwell in the area of interest, like in a sort of
distributed storage.

While previous works on FC almost exclusively concentrated on the communication
component, in this dissertation I look at the storage and computing components of FC,
as well as its capability of transferring information from one area of interest to another.

I first present background work, including a brief review of my Master Thesis activity,
devoted to the design, implementation and validation of a smartphone opportunistic

information sharing application. The goal of the app was to collect experimental data
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that permitted a detailed analysis of the occurring events, and a careful assessment of
the performance of opportunistic information sharing services. Through experiments, 1
showed that many key assumptions commonly adopted in analytical and simulation works
do not hold with current technologies. I also showed that the high density of devices and
the enforcement of long transmission ranges for links at the edge might counter-intuitively
impair performance.

The insight obtained during my Master Thesis work was extremely useful to devise
smart operating procedures for the opportunistic D2D communications considered in this
dissertation. In the core of this dissertation, initially I propose and study a set of schemes
to explore and combine different information dissemination paradigms along with real
users mobility and predictions focused on the smart diffusion of content over disjoint
areas of interest. To analyze the viability of such schemes, I have implemented a Python
simulator to evaluate the average availability and lifetime of a piece of information, as
well as storage usage and network utilization metrics. Comparing the performance of
these predictive schemes with state-of-the-art approaches, results demonstrate the need
for smart usage of communication opportunities and storage. The proposed algorithms
allow for an important reduction in network activity by decreasing the number of data
exchanges by up to 92%, requiring the use of up to 50% less of on-device storage,
while guaranteeing the dissemination of information with performance similar to legacy
epidemic dissemination protocols.

In a second step, I have worked on the analysis of the storage capacity of probabilistic
distributed storage systems, developing a simple yet powerful information theoretical
analysis based on a mean field model of opportunistic information exchange. I have
also extended the previous simulator to compare the numerical results generated by the
analytical model to the predictions of realistic simulations under different setups, showing
in this way the accuracy of the analytical approach, and characterizing the properties of
the system storage capacity.

I conclude from analysis and simulated results that when the density of contents seeded
in a floating system is larger than the maximum amount which can be sustained by the
system in steady state, the mean content availability decreases, and the stored information
saturates due to the effects of resource contention. With the presence of static nodes, in
a system with infinite host memory and at the mean field limit, there is no upper bound
to the amount of injected contents which a floating system can sustain. However, as with
no static nodes, by increasing the injected information, the amount of stored information
eventually reaches a saturation value which corresponds to the injected information at
which the mean amount of time spent exchanging content during a contact is equal to
the mean duration of a contact.

As a final step of my dissertation, I have also explored by simulation the computing

and learning capabilities of an infrastructure-less opportunistic communication, storage
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and computing system, considering an environment that hosts a distributed Machine
Learning (ML) paradigm that uses observations collected in the area over which the FC
system operates to infer properties of the area. Results show that the ML system can
operate in two regimes, depending on the load of the FC scheme. At low FC load, the ML
system in each node operates on observations collected by all users and opportunistically
shared among nodes. At high FC load, especially when the data to be opportunistically
exchanged becomes too large to be transmitted during the average contact time between
nodes, the ML system can only exploit the observations endogenous to each user, which
are much less numerous. As a result, I conclude that such setups are adequate to support
general instances of distributed ML algorithms with continuous learning, only under the
condition of low to medium loads of the FC system. While the load of the FC system
induces a sort of phase transition on the ML system performance, the effect of computing
load is more progressive. When the computing capacity is not sufficient to train all
observations, some will be skipped, and performance progressively declines.

In summary, with respect to traditional studies of the FC opportunistic information
diffusion paradigm, which only look at the communication component over one area of

interest, I have considered three types of extensions by looking at the performance of FC:
= over several disjoint areas of interest;
= in terms of information storage capacity;
= in terms of computing capacity that supports distributed learning.

The three topics are treated respectively in Chapters 3 to 5.
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Introduction

Our society is experiencing a massive growth in the number of active devices connected
over the Internet generating vast amounts of data. For many applications, there is need
to offload the communication from cellular networks to direct Device-to-Device (D2D)
communications [5] through Opportunistic Networks (OppNets) [6]. This is useful, e.g.,
when users are experiencing poor network connection or they are unable to connect, or
when the available network infrastructure cannot be trusted. For the above mentioned
cases, and for the ones in which it results to be more cost-effective than infrastructure-
based access, the use of D2D is favorable [7].

For instance, consider that the number of users concerned about their privacy keeps
steadily growing, so that many services will rather not trust intermediary parties to
distribute—and be in possess of—certain information. They would rather trust “friend”
devices (e.g., devices owned by people belonging to the same community or a social
network) than network infrastructures and service operators. Examples of this case range
from context-aware social networking to covert communications during protests.

Networking of mobile users through opportunistic D2D communications has recently
received considerable attention from the research community [1], [5], [7], although
technology to support such infrastructure-less scenario initially was barely available. In
recent years, with the standardization of the 5G New Radio (NR) Sidelink [8], in addition
to the LTE Sidelink [9], to Wi-Fi Direct [10], and to Bluetooth 5.2 [11], a number of options
now exist for wireless D2D and opportunistic mobile networks have become a viable
possibility. This is likely to encourage the development of service creation approaches
that are not bound to the availability of a cellular infrastructure. Their application
domains, traditionally including scenarios in which infrastructure is not available, such
as disaster areas or battlefields [12], have now spread to pandemic-driven warnings and
spontaneous protests. Indeed, several countries have recently invested in the development
of proximity-based applications based on D2D communications to help contact tracing,

thus stimulating technology development in this area. In addition, smartphone apps like



2 Introduction

FireChat ! and Bridgefy 2, exploit D2D communications to enable information exchanges
either when Internet access is unavailable, or when localized distribution is desired, or
where infrastructure-based communications are not trusted. For instance, FireChat was

the communication medium of choice in several civil protests.

1.1. FC in Disjoint Geographical Areas

During the last decade, a multitude of content dissemination techniques have been
developed [13]-[16]. Survey papers such as [17]-[20] provide deep insights into the different
perspectives adopted. Nevertheless, heterogeneous and limited resources and capabilities
at nodes still impose many limitations for real-world scenarios. Most importantly, the
dynamically evolving network topology still determines one of the main challenges.

The presence of memory-constrained devices and network congestion are some of
the causes of these limitations. The scheme proposed in this work aims to introduce
a significant reduction in the amount of data kept in mobile devices’ memory, along
with a drastic alleviation of network traffic. We achieve this goal by cutting data
exchanges down to only meaningful ones. Furthermore, we aim at exploiting contact
opportunities leveraging nodes movement pattern based on typical daily routines, which
leads to accurate predictions of the network users’ future behavior. We present a set of
configurations that make use of the previously gathered information to manage network
and device resources efficiently and, therefore, to deliver messages in a more effective
manner with respect to legacy content dissemination schemes.

The social component is also a great asset to boost forwarding strategies [21]-[23].
Similar to Pannu et al. [24], both in the algorithmic design as well as in our evaluation,
we support certain interest areas (we call these hotspots or Replication Zones (RZs))
towards which pedestrians and vehicles are more likely to head.

Focusing on disjoint geographical areas (hotspots) leads us to use realistic mobility
patterns and to be accurate in the management of data dissemination. In our example
in Chapter 3, population samples relate to two often visited hotspots, but our approach
can be used with any number of hotspots. Furthermore, we claim that the presence of a
social component in the forwarding scheme justifies the use of D2D.

Our service quality metrics are average delivery delay and content “availability”. The
former is the average time needed for a mobile node to receive a piece of dissemination
content after moving into a hotspot. The content availability is the probability that a
piece of content be stored on mobile nodes in the hotspot and so be available for D2D
dissemination to newly arrived users. As an overall objective, we want to achieve delivery

delay and availability levels as if we were using epidemic diffusion schemes, except we

"https://apps.apple.com/us/app/firechat/id 719829352
2https://bridgefy.me/
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want to reduce the overhead in terms of number of connections and use of storage on
mobile devices.

Note that, differently from epidemic routing schemes, any user in the hotspot is the
destination of any content to be disseminated. In this sense, heterogeneous and limited
resources and capabilities of the involved nodes impose additional limitations for real-
world applications. Note also that existing opportunistic schemes cannot capture the
social-aware nature of the applications considered in this work. They can be used if need
be, but, as shown in Chapter 3, they end up wasting precious resources to disseminate
information beyond the needs of the applications, with no tangible performance gain.
For this purpose, we have designed an application-dependent scheme that will serve
information to users with same interests in an independent fashion and which take into
account the specificity and predictability of mobility patterns by learning from past events.
For example, nodes involved in a university environment will subscribe to the same
specific channel and, consequently, share only related event advertisements. This detached
approach, compared to state-of-the-art works where everyone’s devices are involved in the
content distribution process, is crucial to avoid misusing resources from nodes that are
not willing to cooperate to the routing process as well as spamming users with different
interests.

In order to assess the performance of our Predictive Content Dissemination Scheme
(PRECISE), we have implemented a simulation model, analyzed the collected data
describing occurring events, and assessed and compared the performance of PRECISE
to existing dissemination strategies. Our results provide essential insights on how to
manage available resources in an efficient manner according to the studied scenarios and
mobility requirements.

The main contributions of this chapter can be summarized as follows:

s We design powerful yet lightweight scheme, named PRECISE, whose
algorithms improve data forwarding and storage efficiency in opportunistic

communication scenarios.

= We implement the proposed forwarding and storing scheme in a custom-made
simulator, which uses state-of-the-art approaches for mobility modeling based on

maps and real user mobility.

= We assess the performance of PRECISE in terms of content availability, storage

load, network resource utilization, and content lifetime, delivery delay and losses.

= We also compare our results with three other benchmarks, such as, content
dissemination restricted to RZs, Epidemic, and Proximity-Interest-Social (PIS)

routing protocol. We show that our algorithm clearly outperforms other solutions
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by reducing between 65-92% the needed number of connections while producing

comparable content availability values.

1.2. FC Storage Capacity

Key questions about the usefulness of infrastructure-less communications are about
how fast and reliable they are, and how much information they can store. While several
studies have shown that localized infrastructure-less content dissemination schemes such
as Floating Content (FC) [13], [25], [26], Locus [27] or Hovering information [28], [29] can
be effective in dissemination contexts, little has been done so far to quantify their storage
capacity, which is the focus of this work.

In Chapter 4, we keep relying on FC, which aims at disseminating information over a
defined geographic area (called RZ), based solely on direct D2D connectivity [30]. By so
doing, FC stores information spatially in a probabilistic fashion, despite the mobility of
User Equipments (UEs) and the unreliability of information exchanges, and with no need
for centralized servers. Thus, FC can deliver the stored content proactively to users which
are expected to traverse a specific region (Zone of Interest (ZOI)), before they reach it.
Hence, the main performance metric in such systems is the success ratio, i.e., the average
fraction of nodes that enter the ZOI with content.

Clearly, guaranteeing (probabilistically) content persistence and a given target
performance in such a volatile setting, without the support of a centralized static
infrastructure, comes at a cost. The main additional cost as compared to traditional
centralized infrastructure-based solutions (e.g., with respect to commonly studied
distributed information storage schemes in which mobile UEs cache popular content
items [31]-[34]), is in a drastic increase both in content redundancy across the user
population, and in the volume of communications required to reach the target population
of users.

A strong point of FC is that, by enabling direct D2D content transfer and sharing
without routing through a Access Points (APs) or Base Stations (BSs), it offers a
parsimonious approach to distributed edge storage because it can achieve higher energy
efficiency while decreasing the utilization of BS resources.

A major open issue for the practical viability of FC as a distributed edge storage
system is the characterization of its scalability, i.e., of the amount of information that FC
is able to store for a given set of system parameters. This is the problem we address in
Chapter 4.

We propose a simple analytical model of the storage capacity of probabilistic
distributed edge storage systems such as FC, based on a mean field model of the
opportunistic information exchange, which allows for a first order characterization of

the scaling laws of the storage capacity of these systems. Specifically, the contributions
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are as follows:

= We develop an analytical model of FC performance, based on a mean field model of the
dynamics of the population of users storing the information items, and of the population of

users which are in the process of exchanging (sending or receiving) such items;

= We derive analytical expressions of the FC storage capacity, as a function of node

mobility and of the geometry of the replication zone;

= We formulate an optimization problem for the derivation of the maximum amount of
information which can be stored with FC, showing that it can be solved efficiently. To the
best of our knowledge, this is the first work to characterize analytically the storage capacity

of probabilistic distributed storage schemes such as FC;

= We evaluate numerically our results, validating our assumptions against simulation,
under different mobility models, showing the accuracy of our mean field approach, and
characterizing the properties of FC storage capacity as a function of the main system

parameters.

= Leveraging the insights provided by our model on the FC behavior as an opportunistic
information storage system, we derive an extremely simple and intuitive closed form

approximate expression for FC storage capacity.

1.3. FC Computational Capacity

Finally, services that require the acquisition of information about a specific context
(termed observations) and the subsequent elaboration in each UE of a model on which
it is possible to elaborate a strategy that allows the optimization of an utility function
while performing a given task, are natural candidates for opportunistic D2D information
exchanges, and computation and storage on board individual UEs.

In the last chapter of this thesis, we study the effectiveness of D2D-based services
for decision making. The main goal is to determine what is the maximum amount of
information that a group of users can learn without the support of an infrastructure, only
exploiting the computation capacity of their UEs combined with D2D communications.

The problem tackled is within the domains of crowdsensing and Machine Learning
(ML), but, to the best of our knowledge, no previous work has tried to characterize the
intrinsic limits to ML in a fully distributed and opportunistic environment like ours.

Several works have previously looked at components of the system we consider. For
example, a number of works on FC have characterized the opportunistic D2D aspect, as
mentioned in the sections above. Other works on Gossip Learning (GL) have tackled the
ML aspects. These previous works will be briefly reported in Chapter 2.

The main contributions of this chapter are the following:
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= We introduce a novel distributed computing and communication scheme rooted
in FC and GL, named Floating Gossip (FG).

= We characterize the performance of the FG approach taking into consideration
the following metrics: model availability, observation availability and learning

capacity of the system.

= We provide definitions and performance evaluation for FG to identify the
general limits and trade-offs of infrastructure-less communication and computing

systems used to implement ML in a cooperative way.

= We extend the features of the simulator used during this thesis to analyze,
through detailed simulation experiments, the computing aspects typical of ML

operations in this novel distributed FG environment.

1.4. Thesis Structure

The thesis is organized as follows. In Chapter 2, I introduce the thesis background and
discuss some of the previous literature in the field. In Chapter 3, I present PRECISE, a
system to explore and combine the D2D paradigm along with real mobility and predictions
focused on the dissemination of content among disjoint geographical areas. In Chapter 4,
I elaborate a model to characterize the storage capacity of FC systems, and compare
the results to the predictions of realistic simulations under different setups. Chapter 5
focuses on the computational capacity of the previously presented system, introducing a
novel proposal called FG, which consists in a distributed computing and communication
scheme rooted in FC and GL. Chapter 6 concludes the thesis. In the Appendix I include
the proofs of lemmas from Chapter 4 and finally, as closing, I report the development and

technical documentation of the simulator implemented to support this dissertation.



Background and Related Work

Information sharing is becoming a relevant issue for Mobile Broadband (MBB)
operators, due to the increasing popularity of social networks, to the increasing volumes
of shared information, and to the steady increase in the number and capabilities of
mobile devices connected to the Internet. Offloading information sharing services from
the cellular infrastructure to Device-to-Device (D2D) opportunistic communications can

offer a welcome reduction of the traffic on MBB networks.

2.1. Background on Floating Content in Infrastructure-less

Opportunistic Communications

The work reported as background of this dissertation concerns an experimental study
of the performance of information sharing services that do not require infrastructure
support from MBB operators, while aiming to pervasively spread messages among
groups of devices that subscribe to one or more classes of information (e.g., commercial
advertisements, local news, traffic warnings, etc.). Since infrastructure-less pervasive
mechanisms strongly depend and rely on the mobility of devices, this work shows if and
how state-of-the-art technologies like Wi-Fi Direct, which is available in Commercial-Off-
The-Shelf (COTS) devices, can be used for—and impose limits to—information sharing
services accessed by real users.

Formerly to this thesis, experiments with a smartphone information sharing
application that can be used on COTS devices, with no need to root the device’s
software were discussed in [1]. In order to avoid unrealistic assumptions on the behavior
of D2D communications, the work included and built upon the implementation of an
Android application that supports infrastructure-less distributed content sharing among
wireless devices using Wi-Fi Direct. The collected experimental data permitted a detailed
analysis of the occurring events, and a careful assessment of the performance of pervasive
information sharing services. The experiments revealed that many assumptions commonly

used in the literature do not hold in real settings with state-of-the-art technologies.

7
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This work’s contribution supported the idea that the pervasive use of devices along
with the human mobility will lead to a wide range of opportunities to create opportunistic
networks, and thus benefit information dissemination and acquisition. However, we
showed that using WLAN-like coverage for D2D, although devices reach much shorter
distances than advertised, can have a detrimental impact on information dissemination
speeds, depending on the user density. In general, technological limitations are still huge.

Specifically, the contribution of the work was fourfold:

= Assess the feasibility of infrastructure-less pervasive data sharing networks to

provide connection establishment between Wi-Fi Direct devices.

= Discuss the limitations imposed by Wi-Fi Direct and by COTS devices and

operating systems.

» [llustrate the difference between real technology constraints and ideal

assumptions often used in modeling works.

= Understand the key mechanisms that affect the performance of the class of

services under evaluation.

We concluded that delay tolerant services can be supported, albeit we also showed
that the high density of devices and the enforcement of long transmission ranges for D2D

links might counter-intuitively impair performance.

2.1.1. Wi-Fi Direct in COTS Devices

Wi-Fi Direct is a technology defined by the Wi-Fi Alliance to allow direct D2D
communications. Wi-Fi Direct supports typical Wi-Fi speeds (up to 250 Mbit/s) and
has the same nominal range (up to 200m). Featuring better time and throughput
characteristics than other D2D protocols, such as Bluetooth, Wi-Fi Direct has become the
reference standard to support D2D communications, allowing group formation of one-to-
one and one-to-many devices [35]. Indeed, it is available in the majority of today’s COTS
communications devices.

In the next subsections we describe the operation of Wi-Fi Direct and its limitations

when using a legacy Android OS.

2.1.1.1. Wi-Fi Direct Operation

First of all, when Wi-Fi Direct devices are willing to form a group, they alternately
listen and send probe requests with additional Peer-to-Peer (P2P) information elements
on the “social channels” 1, 6 and 11 in the 2.4 GHz Industrial, Scientific and Medical (ISM)
band. At this point, available P2P devices receiving a probe request reply with probe

response frames including P2P information elements describing the group characteristics.
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An optional feature during this process is the so called service discovery. Once a peer
device has been discovered, it can be asked to describe the services it provides. Thus,
the device asking for a service may choose to connect to the discovered peer based on
whether it provides the required service. This is carried out by a higher layer protocol,
e.g. Universal Plug and Play (UPnP) or Bonjour [36].

After the device discovery phase, P2P devices can start forming groups. There are

three different ways in which devices can form a group, described in what follows.

2.1.1.2. Standard

This is the main procedure to form a group. In a P2P group any P2P device can take
the role of P2P Group Owner (GO), which acts as an access point, or P2P Client which
associates to the GO. So, this procedure implements a negotiation that determines which
of the peers becomes the GO. The procedure also sets the operating channel, the Wi-
Fi Protected Setup (WPS) configuration method, and whether the group is a persistent

group (see below).

2.1.1.3. Persistent

If a standard negotiation sets a group as persistent, the session information will be
stored by the participating devices and reused in future connection. Therefore, if a
device wants to establish a group with an already known peer, they will simply skip

the negotiation phase.

2.1.1.4. Autonomous

In the autonomous group formation type, a device decides to create a P2P group by
its own in which it will take the role of GO.

After any type of group is formed, the GO will start announcing the group by means
of beaconing with the negotiated (or autonomously chosen) Service Set Identifier (SSID).
In this way, other P2P devices can discover the group and request to join.

Finally, GO and group members exchange credentials using the WPS protocol to
support a secure connection. Usually, WPS requires user interaction to enter a PIN code
or push a button on the device to allow the connection to be instantiated.

During this procedure the GO assumes the role of authenticator.

Additionally, the GO conducts a Dynamic Host Configuration Protocol (DHCP)
exchange to assign IPv4 addresses. Finally, the connection between the devices is
established and secured, and the data exchange can take place. The entire process is
depicted in the upper part of Fig. 2.1.

It is worth noting that re-instantiating a persistent group is profitable, because devices

can automatically and quickly re-connect when required, avoiding the manual interaction
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Figure 2.1: Service workflow.

of the user for authentication.

2.1.2. Wi-Fi Direct in Android

The Android OS complying with the Wi-Fi Alliance’s Wi-Fi Direct certification
program has developed a Wi-Fi Direct Application Programming Interface (API) for
mobile apps, also know as Wi-Fi P2P [37], and which is available in Android 4.0 and
more recent OS versions.

The API implemented by Android developers is a tool that enables programmers
to manage the Wi-Fi Direct functionalities provided by the smartphones manufacturers.
Therefore, mobile apps that share data among users, such as multi-player games or content
sharing apps, can be built on top of communication services using the Wi-Fi P2P API or
directly use the API.
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The Wi-Fi P2P API provides developers with methods to discover, connect to, and
disconnect from peers. It also includes interfaces called event listeners that use callbacks to
report on events (e.g., connection requests received, connection drops, etc.) and outcome
of operations (e.g., the result of a connection attempt or a data transfer).

The current Android Wi-Fi P2P API presents a number of limitations when applied
to different scenarios, mainly because the Wi-Fi Direct protocol was designed to fulfill
specific requirements and meet strong security constraints. For instance, at least since
the roll-out of Android 5.0, it is not possible—not even by rooting a device—to avoid user
authentication with user interaction, hence it is not possible to establish new connections
automatically. Similarly, unless the device is rooted, it is neither possible to have devices
acting as a GO and client at the same time in different groups, nor participating to

multiple groups at all [38].

2.1.3. An App for Pervasive Information Sharing

We aimed at creating a pervasive information sharing framework in which devices
carry and exchange messages without the help of a network infrastructure. The relevance
of messages is limited in space and time, i.e., information has to be spread within a limited
region and before a deadline. These are parameters to be selected according to the nature
of the information carried by the devices. Here we limit our study to the service template,
rather than exploring the performance of specific services that could be built on top of
such template. The typical operational scenario is depicted in Fig. 2.2, in which devices
running the information sharing app generate messages to be delivered to any other device
running the same app within a delimited region called “anchor zone”.

In a sense, our work uses similar techniques as proposed in [38] and [39], although,
differently from those works, we do not rely on already set topologies and architectures,
and do not limit the scope of our work to static deployments. We built instead a pure
dynamic opportunistic network [40], [41].

To achieve our goal, we used Wi-Fi Direct on COTS Android devices, without using
root user’s privileges to run any software. This choice incurs in the limitations described
in the previous section. However, this choice also makes our work realistic for the
deployment of real services, with the real limitations and security constraints of existing
and commercial operating systems. Thus, we had to deal with these limitations and
find legal workarounds to implement an infrastructure-less pervasive information sharing
system that requires no user interaction and can be installed by all Android users with

no need of rooting their devices.
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Figure 2.2: Infrastructure-less pervasive information sharing.

2.1.3.1. Design of App and Information Sharing System

We have used the geofence mechanism to delimit the anchor zone [42]. Geofencing
is based on GPS and defines the perimeter of a geographical region, and it is available
on Android. In addition, we set up a Time To Live (TTL) for every message generated,
which is carried by the message itself.

Given the limitations of Wi-Fi Direct in Android, and the fact that mobility makes
groups unstable, we decided to enforce one-to-one links only, with a GO and a client in
each group. Groups are formed using the standard procedure the first time a pair of
devices try to establish a connection. Afterwards, they use the persistent procedure.

Our app operates in an epidemic manner [41] trying to connect to as many other
devices as possible and infect them by forwarding all the messages it stores locally (either
self-generated or previously received). Information sharing is done in loops, following the
states shown in the state machine of Fig. 2.3. We describe next the main characteristic
of every state and how the transitions take place.

When a device enters the marked geofence it starts scanning the social channels looking
for potential peer devices. This is the Scanning state in the state machine of Fig. 2.3.
While the scanning is running, any other device can send an invitation request to the first
device, so the latter moves to the Connected state directly. A second option is to keep
scanning during the time period set and connect to one of the peers discovered when the
scanning time expires. At this point, the device will send an invitation request to the
chosen peer device, which will imply going through the Connecting state and then to
Connected state when the peer accepts the invitation. There is also the possibility that

no peers are discovered by the device so the scanning phase will begin again. When in
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Figure 2.3: State Machine of our app.

Connected state, paired devices exchange data with each other, and, right after, both of
them enter the Disconnecting state. Next state, Disconnected, will take place in the
exact moment that the app is notified with a disconnection callback triggered from the
previous Disconnecting state.

Due to the nature of human mobility, frequent link disruptions can happen during the
connection attempt. In the first place, two devices can have established a connection and,
before the data transfer has finished, the connection can be dropped. On the other hand
we can find other types of failures before establishing a connection, that is, during the
connecting phase. If the local system is busy, it will fail in the connection attempt. If the
peer device is busy for a long period of time, it will never accept the invitation request,
so that the device attempting to connect will fail after a timeout. In both cases there will
be a transition to the Failed state.

Both Disconnected and Failed states will eventually lead back to the Scanning state
to repeat the process steadily. In this way, there will be no possibility of getting stuck
in any state. Thanks to this aggressive operation mode the app will get to a situation
where it has to share content with a peer as fast as possible or, in case of failure, try with
another recipient, resulting in the creation of an opportunistic and dynamic pervasive

information sharing system.
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2.1.4. Bluetooth and Sidelink

As previously mentioned, since very demanding applications started pervading cellular
networks, D2D communication paradigm emerged as a novel technique for offloading
traffic from the core network, increase spectral efficiency and reduce the energy and the
cost per bit [43].

Networks have always been hierarchical in nature. Devices have connected to
and communicated with one or more base stations ever since the birth of cellular
communications. For that reason, operators did not initially perceive D2D communication
as a viable alternative to cellular networks. However, the rise of context-aware and
location discovery services twisted this archaic perspective [44]. In the past decade
new types of cellular services that go beyond traditional mobile broadband have had
a strong impact on the scoping and development of the 5G NR standard. These new
cellular services were motivated by the business and economic needs of making the 3GPP
ecosystem capable of supporting industrial requirements ranging from direct automotive
communication between vehicles to industrial automation with Ultra-Reliable Low-
Latency Communication (URLLC) for mission-and business-critical applications. But
these same technologies can also be used for consumers to enhance their communication
experience.

In fact, not only the discussed protocol Wi-Fi Direct can be used to enable D2D
communication, but other short-range wireless technologies like Bluetooth and Long
Term Evolution (LTE) Sidelink were also devised. They differ mostly in the data rates,
distance between direct devices, device discovery mechanisms and scanning modes. As a
comparison, Bluetooth 5 supports a maximum data rate of 50 Mbit/s and a range close
to 240 m, WiFi Direct allows up to 250 Mbit/s rate and 200 m range while LTE Sidelink
provides rates up to 13.5 Mbit/s and a range of 500 m [45]. With this new communication
paradigm, cellular devices are able to communicate without relaying their data via the
network, allowing cars, robots and even consumer gadgets to create their own ad hoc
networks without using the radio access network as an intermediary.

More in detail, Bluetooth, managed by the Bluetooth Special Interest Group (SIG),
is a short-range wireless technology standard used for exchanging data between fixed and
mobile devices over short distances using Ultra High Frequency (UHF) radio waves in the
ISM bands, from 2.402 GHz to 2.48 GHz, and building Personal Area Networks (PANS).
It is mainly used as an alternative to wire connections, to exchange files between nearby
portable devices and connect smart phones and music players with wireless headphones.
On the bright side, most smart phones nowadays provide a Bluetooth interface. However,
it is primarily designed for low-power consumption and in the most widely used mode,
transmission power is limited to 2.5 mW, giving it a very short range of up to 10 m which
makes it unsuitable for services that require high data rates, such as Floating Content (FC)

services.
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The latter, Sidelink (defined by the 3rd Generation Partnership Project (3GPP) [46]),
is an LTE feature first introduced in 3GPP Release 12 and later enriched in Releases 13
and 14. Tt aims at enabling D2D communications within legacy cellular-based LTE radio
access networks. D2D is applicable to public safety and commercial communication use-
cases, and recently (Rel.14) to V2X (V2X) scenarios. In legacy uplink/downlink, two User
Equipments (UEs) communicate through the Uu interface and data are always traversing
the LTE eNB. Differently, Sidelink enables the direct communication between proximal
UEs using the newly defined PC5 interface, and data does not need to go through the
eNB, so the device gains more control of how to use network resources. It allows devices to
discover and communicate with one another at extremely high data rates and low latency,
making them ideal for peer-to-peer gaming and streaming services as well as enhanced
Virtual Reality (VR) and other wearable device communications. Services provided in
this way are often called Proximity Services (ProSes) and the UEs supporting this feature
ProSe-enabled UEs.

2.1.5. Lessons learnt

The results we obtained compare somehow negatively with those in [47], which
reported that with an app using Bluetooth on 12 smartphones, in a research institute,
almost 90% of the devices are reached within a few minutes, although messages often
do not reach all devices within a full working day. Our results are better than—yet
practically close to—those obtained in [48], with an app using Bluetooth in a university
campus with ~50 to ~70 mobile devices, where it took more than 4 hours to distribute a
message to 70% of the devices. While message transfer times are comparable with the two
technologies, in our experiments the wider coverage of Wi-Fi did not help, because of the
huge fraction of failed connection attempts due to the large number of devices discovered
within a scanning phase. A key parameter for the performance of the information sharing
app seems to be the average number of devices within transmission range, which should
be ideally close to 1, as indicated by previous studies about the intrinsic performance of
opportunistic communications [14], [49].

The analysis of WhatsApp carried out in [50] shows that multimedia flows have a
typical size of a few hundreds of kilobytes, and that the throughput experienced by users
is of the order of 1 Mb/s in both uplink and downlink, thus resulting in transfer times of
the order of a few seconds.

Therefore, the times we have observed for D2D communications once a contact occurs
are comparable with the ones of infrastructure-based communications. However, we
remark that infrastructure-less services have several advantages: they incur no monetary
costs, occupy zero commercial network resources, do not suffer for the presence of network
and server bottlenecks, and are available under undesirable circumstances like natural

disasters, hacker attacks and censorship attempts. On the other hand, the use of a
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networked messaging app would relieve the terminal from the discovery of peers and the
establishment of connections, which, as we have seen, is prone to multiple collisions due
to the fact that a device can only join one group under current Android limitations. This
effect exacerbates when the terminal density grows.

Indeed, as previously remarked, in our work we have found that Wi-Fi Direct on
Android suffers some serious limitations. From the viewpoint of an infrastructure-less
service designer, the most critical limitation consists in the fact that a device cannot be
part of multiple groups. This makes connection management a hard task when users move
and groups have to be continuously teared down and re-established as soon as the GO
leaves. This is one of the main reasons why we have used one-to-one groups in our work,

thus limiting the management complexity and connection re-establishment overheads.

2.2. Related Work

2.2.1. Information dissemination heuristics

For more than a decade now, forwarding strategies for D2D communications in
opportunistic networks have represented one of the most challenging questions to cope
with in terms of content dissemination performance, due to high node mobility, dynamic
evolution of networks and devices heterogeneity.

In the third chapter of this dissertation, we mainly focus on providing enhanced
heuristics and combinations of those for data sharing among devices contributing to
resource usage efficiency and dissemination effectiveness. Devices involved in such
scenarios are mostly carried by users who are considered to influence, to some extent,
the behavior of their smartphones, tablets, etc. According to this perspective, previous
works on content dissemination in opportunistic networks can be categorized into four

main groups, as discussed in what follows.

2.2.1.1. Context-oblivious heuristics

Early logical and elementary techniques for content distribution can be classified
into context-oblivious heuristics. For example, works like Grossglauser and Tse [14] and
Spyropoulos et al. [15] proposed different schemes that constrain the number of content
copies in the system to improve bandwidth, storage capacity, and energy consumption.
Beyond the previous concept and given the fact that dropping messages too early may
reduce the speed of information diffusion, Herndndez-Orallo et al. [51] introduce a dynamic
expiration time setting to limit the effects of early content loss. With these techniques
the authors try to overcome the shortcomings of basic flooding-based schemes but still
pose limitations when mobility patterns are restricted. Chancay-Garcia et al. [52] study

the impact of contact duration for message broadcasting. They leverage the division
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of large messages into smaller parts to improve dissemination and demonstrate that a
fixed size partition is the best approach. Our scheme does not include context-oblivious
mechanisms since we believe introducing context and social-aware heuristics better adapt
to the mobility dynamics of most urban scenarios, as explained in what follows and

demonstrated in Chapter 3.

2.2.1.2. Context-aware heuristics

Obviously, there was still a need for more sophisticated methods to solve dissemination
challenges in frequently disconnected networks, not only aiming at reducing flooding and
overhead but also effectively distributing data content, i.e., providing valuable content to
potential nodes at acceptable time delay. For that purpose, an advanced sort of context-
aware heuristics to achieve smarter decision making processes has been explored. For
instance, Dhurandher et al. [53] present a history-based routing protocol that exploits
nodes mobility information to predict the best next hop for content exchange. Lindgren
et al. [54] and Barrett et al. [55] combine history of previous encounters with probabilistic
techniques. In both papers, nodes decide to which peer they will forward the content
assessing various parameters to compute the probability that the chosen node will deliver
the content to its destination. Furthermore, Burns et al. [56] incorporate information not
only about past encounters but also about previous visited regions.

More recently, research studies have coupled several of the cited features to develop
more accurate techniques for specific D2D communications scenarios. For example, Liu
et al. [57] introduce a distributed online algorithm that focuses on the optimal node pause
strategy in order to select the best transmission peer. Yamamoto et al. [58] propose
a method that adaptively adjusts the transmission timing and effective radius of the
area in which information is shared. This decision is based on terminal density and
terminal encounter rate in order to estimate further communication opportunities. In
Rizzo et al. [3], the authors present an information theoretical model of the storage
capacity of probabilistic distributed storage systems where nodes are only allowed to
exchange content based on their current position and storage capacity.

Some other works refer to this D2D paradigm with the Floaty Content term. For
example, Pérez Palma et al. [1] and Rizzo et al. [59] go further and develop Android
applications that support infrastructureless distributed content sharing among wireless
devices using state-of-the-art technologies, such as Bluetooth and Wi-Fi Direct. The
authors also discuss results gathered from real experiments and conclude that high device
densities determine the performance.

What is missing in all these studies is the social factor, which we instead leverage
to increase the efficiency of dissemination schemes. In Chapter 3, we assume that nodes
move according to similar patterns every weekday following social behaviors like going to

their work place, returning home or to some other frequently visited places. This allows
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the application to predict with high accuracy whether passing information to a user is
going to be useful or not, which reduces unnecessary information exchanges typical of

epidemic schemes.

2.2.1.3. Social-aware heuristics

Several studies emerged using social-aware heuristics. Researchers started developing
dissemination strategies initially based on the idea that human mobility presents certain
behavioral patterns that can benefit forwarding decision making.

A good example has been introduced by Boldrini et al. [60]. They present
ContentPlace, a system that defines social-oriented policies and analyzes the behavior
of users in pursuance of optimizing content availability by locating data content in
appropriate spots. Boldrini et al. [21] also exploit a combination of social information
to pick the most suitable next hop based on the similarity of each peer node context
to the destination context. Ying et al. [61] introduce a Markov chain model of users’
social ties. They formulate the problems of unfair traffic distribution and unfair delivery
success ratio based on the evaluation of users’ social relationship. Rahim et al. [62] present
a social Acquaintance based Routing Protocol (SARP) for Vehicular Social Networks
(VSNs). SARP considers the global and local community acquaintance of nodes to make
a forwarding decision. Moreover, Ullah et al. [63] developed a reputation mechanism that
calculates a trust-score for each node based on its social-utility behavior and contribution
to the network. Built on that idea, the authors propose a Trust based Dissemination
Scheme (TDS) for Emergency Warning Messages (EWMs) to detect malicious alarms.
Hui et al. [22] analyze the contact patterns between nodes and infer the social communities
which these nodes belong to. This system aims to exchange data to nodes belonging to
the destination community based on previous context information and assuming sociable
nodes will have more chances to forward the content to its destination. Vegni et al.
[64] assess a previously introduced probabilistic-based broadcasting scheme for vehicular
communications leveraging the computation of nodes’ social degree. They demonstrate its
effectiveness in packet transmission reduction while guaranteeing network dissemination
in realistic scenarios with real traffic traces. They also compare it with state-of-the-art
schemes showing a significant improvement in terms of delivery ratio.

A very relevant work in this field is also introduced by Xia et al. [65], where authors
propose Proximity-Interest-Social (PIS) a routing protocol based on three different social
factors, and disclosing next slots social information, in order to decide the best next
hop for content sharing. They present their results applying the proposed approach
to SIGCOMMO09 [66] and INFOCOMO6 [67] data sets. The results show that PIS
outperforms other well-known protocols such as Epidemic [16], PROPHET [54] and
SimBet [68]. Same authors developed a similar approach in [69] that integrates vehicles’

social factors into their geographical information. They introduce a new concept called
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geo-social distance and combine it, among other processes, with the message copy control
protocol used in PIS.

Our work in Chapter 3 is partially shared with this category. However, unlike previous
mentioned works, we use only information from past traces in order to predict future
positions of the nodes and make decisions according to it. Furthermore, we also take into
account for how long nodes remain in their positions based on typical social standards
like 7-8 hours work day, 7-9 hours sleep, etc. Filling the gap of previous approaches, we
consider a set of nodes to be the final destination of the data content instead of targeting
for an individual. We assume that the pieces of information shared using our paradigm will
be relevant for the whole portion of the population subscribed to a given communication
channel. We are able to significantly reduce network load by leveraging nodes mobility
predictions and light computation for decision making, contrary to existing social-based
data dissemination approaches, which still fail to achieve efficient data broadcasting due
to high volumes of overhead and redundant connections.

Part of our work is also devoted to real scenarios, for instance Rome city center. We
have worked with real taxi cabs traces obtained from [70] and applied Predictive Content
Dissemination Scheme (PRECISE) to carry out content dissemination. Additionally, we
have implemented the previous mentioned PIS approach to compare with our solution

over a more realistic scenario, closer to what can be found in urban areas.

2.2.1.4. Cognitive heuristics

Cognitive heuristics conform to a whole new set of forwarding algorithms to which
researchers are paying great attention now. The central concept behind cognitive science
applied to forwarding protocols is to build algorithms based on human information
processing schemes.

In this direction, Mordacchini et al. [71] introduce Social Circle Heuristic (SCH). Their
proposal is to evaluate not only the importance of the content according to the individual
but also take into account the judgement of its community. In a similar way, Khelifi
et al. [72] focus on vehicular networks from the Information-centric networking (ICN)
perspective and discuss the role of Named Data Networking (NDN) providing a detailed
and systematic review of NDN-driven Vehicular Ad hoc Network (VANET).

Our perspective focuses on how valuable a piece of content is for the population at a
given time. For example, if a node is traveling to a hotspot where the content is relevant,

after a too long travel period, it will be considered as outdated.

2.2.2. Storage capacity

In a subsequent line of research, the analysis of the previously mentioned FC paradigm

is a contribution to a more general research effort aimed at optimizing the utilization of
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resources (bandwidth and user storage) in gossip-based information diffusion paradigms.
Since the epidemic spreading of information, as mentioned above, may easily saturate
network resources (e.g., as a result of broadcast storms), a large array of techniques and
approaches has been proposed (see, e.g., [18], [73] and references therein) in order to
obtain an efficient use of resources in content diffusion processes.

These techniques mainly depend on the specific goal of the content diffusion process.
In closed systems, in which nodes cannot leave a given area, the aim of gossip-based
schemes is to achieve completeness, i.e., to deliver content to all users in the given area,
in the most resource-efficient way [74].

The present thesis however, like the majority of realistic applications, focuses on
scenarios in which nodes may join and leave [75] the area. These applications adopt
different approaches to identify the set of users to which a given content should be
delivered. An example is given by schemes for popularity-based P2P opportunistic content
replication, e.g., for cooperative in-network content caching [76]-[80], where content must
be delivered to a subset of nodes: those that requested such content.

In applications in which the delivery delay plays a key role, (e.g., delivery of data
related to unexpected events, or to potential safety hazards), the target population
coincides with (a large fraction of) all nodes present in the given area at the time in
which the hazardous or unexpected event takes place [18], [73].

In all such systems, control over content availability and persistence is achieved by
involving in the scheme also nodes which are not among the set of requesters. Thus, a
key performance trade-off is between the amount of involved nodes (and thus resource
utilization) on the one side, and content availability and likelihood of content persistence
on the other. Several techniques for limiting content replication and/or the amount of
involved nodes have been proposed, based on, e.g., a maximum lifetime or hop count of
the content, among others [81].

In this respect, the specificity of FC schemes lies in associating content with a given
spatial context, and in controlling the amount of nodes involved in the scheme by means
of location-based criteria, such as the definition of the Replication Zone (RZ) borders.

Given the infrastructure-less and probabilistic nature of such distributed storage
paradigms, a crucial issue is determining the conditions under which content persists
for a significant amount of time in the given area. [31] proposes a model for the interval
of the time during which the content floats. [13] introduces the criticality condition, i.e., a
sufficient condition for the content to float indefinitely with very high probability, under
various mobility models. [82] demonstrates the feasibility of FC (in terms of ability to
sustain content persistence within the RZ for a given period of time) even in setups
with sparse node distributions. [83] proposes a model for content persistence for outdoor
pedestrian mobility over large open spaces, such as city squares. [84], [85] characterize

the mean time to information loss in several scenarios, based on synthetic mobility
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and on measurement-based vehicular mobility traces. [86], [87] propose a modeling
approach based on mean field theory and a stochastic Susceptible-Infected-Recovered
(SIR) epidemic model to evaluate content lifetime, and to determine sufficient conditions
for content persistence. Other works (e.g., [47], [88]) focus on how to engineer the
replication and storage strategies in realistic settings in order to efficiently guarantee
a given success probability within a given time range. Despite focusing on resource
efficiency, none of these works investigates those issues arising when several different
contents are exchanged among a same set of nodes, and thus the impact of their approach
on the amount of content which can be supported in a same area by the FC scheme.

A few works propose techniques for coping with resource contention among different
contents floating in a same set of nodes. [89] proposes a content-centric dissemination
scheme. Its solution is based on a policy which sets the order of content exchanges on a
contact between two nodes, and the probability for a node to drop a content in a way which
tries to maximize the total delivery rate over a set of contents of different popularity. The
paper [82] proposes a scheme in which, in scenarios with several different floating contents
and overlapping RZs, users prioritize the contents to exchange based on measures such
as RZ size, or total amount of users with content in each RZ. In [90], authors assume
that there are multiple different content items present in the network and that replicating
all of them using FC may lead to overloading the wireless network and/or the storage
capacity of nodes. In order to avoid these issues, they propose a strategy which controls
the number of copies of a particular content item within a RZ.

None of these works however characterizes the limit performance of FC in terms of
maximum number of contents which can be supported with a given minimum performance,
as a function of system parameters, like this thesis does.

An important application of gossip-based information diffusion protocols is distributed
caching [91]-[93]. In VANETS, self-organized storage or cloudlets adopt Vehicle-to-Vehicle
(V2V) communications in order to retain information in a given area for a range of
time, particularly in those conditions in which infrastructure is not available [24], [94],
[95]. However, these works focus on such issues as the relationship between cache hit
ratio and the amount of content redundancy, on communication overhead, on reliability,
leaving open the key issue of the relationship between the performance of such caching
systems and the limit capacity of the distributed storage system on which they rely. [84],
[96] characterize the mean time during which information persists in a FC-based storage
system. These works are based on simulations in various settings (such as highways [85],
or city centers), and on an informal definition of FC-based storage. Most importantly,
they still neglect the characterization of the capacity of such a distributed storage system.
Similar to the present thesis, [97], [98] consider scenarios where a few nodes are static,
and act as “repositories” in order to improve content retrieval and persistence.

Storage capacity quantifies the amount of information that can be actually stored,
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as a function of the number and size of contents to be made available, and hence it is a
fundamental descriptor of the usefulness of such systems. To the best of my knowledge,
the only work in the literature which tackles a problem similar to the one tackled in this
thesis is [99]. Its authors consider a FC-based file storage scheme for vehicular nodes over
a two-lane highway, in which the file is split into blocks, and erasure coding is used to
enable recovery of the whole file.

For such a specific setup, and for the time period in which all blocks keep floating in
the RZ, the authors propose a simple upper bound for storage capacity, which corresponds
to the right member of the inequality in Equation (4.17) in Chapter 4.

However, they completely omit the issue of characterizing the tightness of the bound
as a function of system parameters. In addition, their approach is based on an ad-hoc
approach which critically relies on the very specific geometrical configuration of the road
and its induced patterns of contact and mobility, in a way which does not generalize to

other settings, such as, e.g., the urban vehicular scenarios considered in this work.

2.2.3. Computational capacity

The last chapter of this work is inspired by Gossip Learning (GL) [100], a collaborative
Machine Learning (ML) approach that is motivated mainly by the need to guarantee
privacy and scalability. GL is a modification of the Federated Learning (FL) [101] concept.
Differently from FL, GL assumes that the raw data collected by (and hence available on)
each device are not shared with other devices. Rather, they remain on the device itself.
Learning is achieved both by collecting new data and by sharing and fusing models.
Devices exchange models opportunistically, and progressively aggregate them. We will
describe in more detail the GL scheme in Chapter 5.

Chapter 5 is also related to the domain of Mobile Sensing (MS). Most MS applications
can be classified into either personal or community sensing. Personal sensing applications
focus on the individual. On the contrary, community sensing, also termed opportunistic
crowdsensing, takes advantage of a population of individuals to measure large-scale
phenomena that cannot be measured by a single individual. In most cases, the population
of individuals participating in crowdsensing applications share a common goal [102].

With the increasing availability of mobile devices capable of sensing and computing
(e.g., smartphones, tablets, wearable devices, etc.), Mobile Crowdsensing (MC) has
emerged as a compelling paradigm to collect large-scale data with the collective effort
of a large number of mobile users, who leverage the built-in sensors in their handheld
devices to accomplish sensing tasks. Examples of mobile crowdsensing applications
are Gigwalk [103], Waze [104], and Million Agents [105], to name a few. A typical
mobile crowdsensing system consists of three parts: participants (a.k.a. users), service
requestors, and an application platform. Users are motivated by monetary or non-

monetary incentives provided by service requestors to contribute sensor data from certain
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Point of Interests (Pols). The application platform processes customized tasks requested
from the requestors, and coordinates users to jointly complete sensing tasks. Most of
the existing research in mobile crowdsensing assumes that users leverage cellular network
resources to upload sensor data, including measurement readings, audios, photographs, or
video clips, to the application platform as soon as the data are generated. However, the
above assumption becomes unrealistic when either infrastructure-based wireless network
support is unavailable (e.g., in post-disaster recovery or in vast rural areas), or the
infrastructure-based wireless network is overloaded or too expensive for the application
goal. Han et al. [106] for example describe a scenario where, in the Yellowstone National
Park, the ranger office launches a crowdsensing task, requiring users to locate and rescue
a wounded elk by providing multimedia content (e.g., photos or video clips) of suspected
animals. However, according to Yellowstone’s Wireless Plan, the cellular coverage areas
are intentionally limited to preserve the park wilderness character. As a result, until
recently, in most areas of the park, the cellular network is completely unavailable.
Another example is provided by situations of natural disaster, such as flood, hurricane,
and earthquake, when the cellular infrastructure is completely or partially damaged. In
these cases, it is obviously advantageous to migrate cellular data traffic onto alternative
communication channels, D2D in particular.

The realization of mobile crowdsensing tasks over opportunistic D2D networks requires
users to collaborate. Specifically, in addition to generating sensing data from involved
Pols, users must collaboratively relay data to the application platform. During the
data transfer it is useful to collaboratively aggregate the collected raw sensor data so
as to generate a summary of the results. The benefits of such a strategy are in the
reduction of the volume of data and in a simpler processing at the platform [107]). For
instance, collaborative fusion [108] based on opportunistic information exchange has been
proposed in Intelligent Transport Systems, where sharing of tracks or perception data
allows implementing a “virtual sensor", enabling the elaboration of a representation of
the environment which is much more complete than that which can be implemented by
only locally sensed data. In those applications, the sheer size of the data justifies the use
of D2D communications in order not to overload the cellular network. Furthermore, in
these applications, the sharing of the representation obtained by fused data (instead of
the raw sensed data itself) is potentially more efficient, as only information relevant for

the specific service/application is shared.






Floating Content in Disjoint
Geographical Areas

Device-to-Device (D2D) communications have expanded the way of managing
available network resources to efficiently distribute data between users. D2D exploits
communication alternatives, in Opportunistic Networks, based on short range wireless
radio technologies such as Bluetooth and WiFi-Direct. Besides, nowadays in most urban
areas, realistic human mobility is characterized by often repeated patterns that can
be used to accurately predict the next visited regions—we call these disjoint regions
hotspots (or Replication Zones (RZs)). In this chapter, we present Predictive Content
Dissemination Scheme (PRECISE), to explore and combine the D2D paradigm along with
real mobility and predictions focused on the dissemination of content among hotspots. To
analyze the viability of such scheme, we show simulation results and evaluate the average
content availability, lifetime and delivery delay, storage usage and network utilization
metrics. We compare the performance of PRECISE with state-of-the-art approaches, such
as Epidemic, restricted Epidemic, and Proximity-Interest-Social (PIS) routing protocols.
Our results underline the need for smart usage of communication opportunities and
storage. We demonstrate that PRECISE allows for a neat reduction in network activity
by decreasing the number of data exchanges by up to 92%, requiring the use of up to 50%
less of on-device storage, while guaranteeing the dissemination of contents as with legacy

epidemic dissemination protocols.

3.1. Social-aware Opportunistic Dissemination

3.1.1. Infrastructureless dissemination system

We study the dissemination of information between mobile users, opportunistically
leveraging D2D and without the support of a network infrastructure and controllers
running outside the mobile devices. We refer to the information to be disseminated
as pieces of content (or contents, for short), and we assume that each piece of content

is exchanged via a single message, which contains a complete set of instructions and
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data that can be processed by a user application. Hence, each piece of content can be
disseminated independently of the others. Pieces of content are exchanged upon contacts
between mobile devices, i.e., devices can establish a connection and attempt to exchange
pieces of content when they are in transmission range 7, from one another. Mobile
nodes continuously send beacons and scan the wireless spectrum looking for beacons
sent by other pears, like, e.g., in a Bluetooth system. For simplicity, we assume that
the transmission range is fixed and constant for all devices, because we assume that D2D
connections are established only upon the detection of a strong link. We also assume that,
once a connection is established, mobile nodes exchange pieces of content simultaneously
in the two directions, at a constant speed, which is realistic if again we consider that
only strong links are used. As a consequence, the impact of channel errors and transport
protocol dynamics is neglected, also because we assume short range transmissions of
small pieces of content (and one might think of using smart transport protocols like
QUIC [109] to make this assumption realistic even in the presence of large pieces of
content). However, a content transfer can fail when mobile devices exchanging data get
out of their transmission range before the transfer is complete. In other words, differently
from many epidemic-like dissemination schemes, we assume that content transfer is not

instantaneous.

3.1.2. Mobility assumptions

We further assume that specific disk-shaped areas of the region are marked as hotspots,
also referred to as RZs in the rest of the article. RZs are visited regularly by mobile users.
More in general, in a planar region, we identify a large set of points where users can
dwell, which we refer to as dwelling points. Some dwelling points, but not all of them,
are within the RZs. Those points are selected based on the nature of the place (e.g., they
correspond to an apartment, a university building, an office, etc.). Dwelling points within
an RZ are chosen by mobile users uniformly at random, because we consider that an RZ is
a homogeneous area including equally important dwelling points. However, each RZ has a
given probability of being visited as a whole, and different RZs have different probabilities
of being visited. Dwelling points outside the RZs are chosen uniformly at random, with
a total probability equal to 1 minus the cumulative probability to select dwelling points
within RZs. The users move from one dwelling point to another by following a path on
the planar region, which is not necessarily a straight line due to topological constraints
(e.g., in a taxi scenario, devices can only follow the roads reported on the city map).
The specific mobility pattern reflects the social behavior of mobile users by specifying the
probability to visit a random dwelling point within an RZ or to move towards a random
destination outside the RZ. To realistically model user patterns, we consider that users
alternate movements and pauses, and we consider two cases: (i) pedestrian mobility

with synthetic traces alternating moves over shortest path trajectories at a constant



3.1 Social-aware Opportunistic Dissemination 27

speed (chosen uniformly at random for each move) and pauses with uniformly distributed
duration; and (ii) trace-based vehicular mobility, in which the speed and trajectories
reflects realistic traffic conditions, and the duration of pauses represent realistic inactivity
periods of taxi drivers.

Since users express stochastic preferences when they decide to move to the next
dwelling point, and preferences depend on the profile of the user, we assume that it
is possible for a mobile device to predict with high accuracy where it will be dwelling
next, given that it is at a certain location. Likewise, when two devices are in transmission
range, they can predict whether they will reach or not a new RZ within a certain time.
The specific prediction mechanism is out of the scope of this work, but we remark that
devices can build statistics or use machine learning (e.g., Q-learning) to estimate if and
when they will reach a hotspot.

With the above, it is clear that content exchange can be limited to cases in which
mobile users are within an RZ or predicted to move to RZs soon. The dissemination
of pieces of content outside RZs, in general, is far less critical than in the case of legacy
opportunistic routing schemes. As such, we claim that, although traditional opportunistic
routing schemes would serve the purposes of the described application scenario, more
specific schemes are needed to make content dissemination efficient when the pieces of
content are relevant for the RZs only. Indeed, existing schemes cannot be efficient in
terms of use of resources, i.e., the way they use connection opportunities and buffer space
on mobile devices, which are often limited resources. To this purpose, in the next section
we propose a new content forwarding and storage scheme that leverages the social behavior

of mobile users, and specifically their ability to predict their location in the near future.

3.1.3. Reference scenario and notation

The reference scenario considered in this work is a planar region with topological
constraints for the mobility of users, e.g., a 2D city map with paths, buildings and
obstacles. The radius of an RZ disk is denoted by rrz, and we assume that there are
K RZs, each denoted as RZ,, k = 1,2,--- , K. An RZ represents the area in which
the disseminated information is relevant. This means that we suppose the existence of an
application running on the devices of mobile users, which will consume the received pieces
of content independently, and only when the mobile device is inside an RZ. There are
N (t) mobile devices in RZj, at time ¢, and the goal of the dissemination scheme in this
context does not consist in reaching a specific destination device nor a fully indiscriminate
epidemic broadcast of the pieces of content. Therefore, what is important is not the time
to delivery to a specific destination a piece of content since its generation instant, but the
number of devices that pass through the RZ and get the piece of content, and the time
that elapses since when a user enters an RZ to when it gets the piece of content (which

can be 0 in case the content was obtained before entering the RZ). We call availability
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of an RZ, for a given piece of content and at a given time instant, the ratio between the
number of mobile devices within the RZ possessing the content and the total number of
devices in the RZ. In Section 3.3 we formally define how to measure the availability per
content and RZ and as a function of the time since when the content was generated, and
the corresponding averages.

The notation used in the rest of the chapter is presented in Table 3.1 with a short
description of each quantity later used in algorithms and mathematical expressions. Full
details are given in the following two sections, which describe Precise and the relevant

key performance indicators, respectively.

3.2. Precise: Data Communication and Storage Paradigm

Due to frequent link disruptions in opportunistic networks, the fundamental
forwarding approach is to adopt pervasive forwarding solutions.

Epidemic spreading techniques, for instance, provide the most elementary and effective
manner of content dissemination where nodes simply exchange content at any given
opportunity [16], [21]. In general, at any encounter nodes will try connect and send
content to their peers, sometimes restricted to a zone of interest. However, epidemics-
based dissemination schemes introduce a high overhead, which not only causes network
congestion but also high energy consumption at each node. Often, the number of content
replicas and connections exceeds by far what would be essential for an efficient distribution
of the data content in a realistic environment. For that reason, our work introduces
a simple yet smart scheme to avoid some of the unnecessary connections and content
replication, focusing at the same time on finding more beneficial exchange opportunities
with no significant increase in computational cost.

A basic example of an epidemic strategy, which we will use as baseline, consists of
allowing nodes to exchange content with their peers when in communication range and
only within an RZ. Nodes within an RZ can always keep the content they are carrying.
Once they leave the RZ, they will automatically drop all contents in order to free-up
resources. In the following, we introduce a set of more advanced predictive scheme,
Precise, which helps (a) to also carry content to other RZs, (b) to specifically pass content

to nodes “going” towards an RZ, and (c) to drop content after some expiration time.

3.2.1. Forwarding scheme of Precise

The way nodes forward their content in PRECISE varies depending on which zone
they are located in. In our forwarding algorithm (cf. Algorithm 1), nodes within an RZ
can always exchange content and nodes in the outer area are only allowed to exchange
contents if any of them is likely to reach an RZ before a time expiration threshold T¢,

which represents the maximum time during which nodes keep running their data exchange
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Table 3.1: Notation

Symbol Meaning
a  Discount coefficient of the Autoregressive (AR) filter (adapted to the
distance between AR updates so as to obtain an exponential decay of
past values with 7).
Ay;  Availability of content ¢ in RZy, i.e., the fraction of nodes that possess
content 7 with respect to the total number of nodes inside the k-th RZ.
A(t) Mean availability computed over all existing contents and RZs, at time
t.
. Time-average availability for content 7 generated 7 seconds after its
Ai(7) injection in the network over all RZs
. Statistical mean of the time-average availability for the group of
Ac(T)  contents G, computed for content lifetime equal to 7.
C! Binary variable indicating whether a certain content ¢ is available at
node j.
Cy;  Number of nodes possessing content ¢ within the k-th RZ.
Ci Time elapsed since a node has left an RZ without re-entering in
another RZ.
D(t) Set of contents injected in the network until time ¢.
Fi(t,) AR filtered value of My (t,).
G Target group of contents.
g; generation time of content 7.
K Number of RZs.
L;(t) Buffer load of a node j.
L(m,m72) Time-average of the buffer load of all nodes, for interval [, 72].
M4(ty,) Number of contents that node A (or B) attempts to retrive upon a
(Mp(t,)) connection is established at t,.
My (t,) Number of contents to exchange upon a connection is established at
time epoch ¢,, in the k-th RZ (k = 0 outside of RZs).
Ni Set of nodes within RZ,.
P, Probability to decide to exchange content upon a meeting, with
Precise.
rrz RZ radius.
R(t) Mean fraction of injected contents held by a node at time t.
RZ; The k-th replication zone.
t,7 Continuous values of time.
tn, Current time epoch (discrete value). n is the time slot index
T Exponential decay time of the AR filter.
T, Maximum time that a node can spend outside an RZ before emptying
its buffer when using Precise; similarly, nodes outside RZs accept to
receive contents if they predict to reach an RZ within 7.
T, Transmission range of mobile devices.
x(t,) Variable containing the time epoch of the last connection, as observed

at time t,,.
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application while they are outside RZs. Since we identify similar node mobility patterns
during weekdays, in order to predict whether the nodes are likely to visit an RZ at a
given time, we analyze the information obtained from past traces at coinciding times of
the day with a certain probability of failure. We do not use future information but we
assume that the devices can predict their future position based on statistics collected in
the past. Moreover, in case of nodes that are moving, they know were they are going
(because they have selected a precise destination) and can reasonably predict when they
will arrive. This process is represented in Algorithm 1 with the call to the function
is VisitingRZ(node/peer). More precisely, what the function isVisitingRZ(node/peer) does
is, given that a node’s speed is constant, get its value and check whether the node, moving
at its current speed, will enter an RZ before T expires. In case one of the node’s next
hop lands inside one of the RZs, the output of the function isVisitingRZ(node/peer) will
be a True value flag. When nodes are not expected to visit the RZs we assume the data
are not relevant for them.

With Precise, when two nodes establish a connection, they will only transfer those
pieces of content that are missing at the peer node. The order in which the contents
are transferred is random: prior to the exchange, both nodes content lists are shuffled to
prevent certain pieces from being repeatedly exchanged in the first place. This way, we
guarantee that all contents have the same probability of being selected.

In case the data of one node do not completely fill their assigned capacity, the
remaining quota will be relocated to the peer node. The established connection stays
active until both peers have transmitted the total amount of contents. Therefore,
connections are only interrupted in two cases: when nodes move away from each other
beyond the transmission range or when both nodes fill up their storage capacity during
the connection.

Besides, if nodes belonging to an established connection have nothing to exchange or
their storage capacity is already full, the connection will be dropped right after a small
fixed interval. Such interval represents the time needed to check each node status, which
cannot be informed to the peer in advance with any current technology. In general, when

a connection is interrupted, incomplete file transfers are dropped.

3.2.2. Decision making process in Precise

Decision making is a local process, running at each mobile node, and is based on the
computation of the number of contents that nodes have to exchange when they meet, i.e.,
the number of missing contents at a generic node pair (A, B), indicated as Mj,! where
k=0,1,---, K, depending on which area the nodes are located in the k-th RZ (k = 0

'In the notation, we omit the dependency on the node when not necessary, but remark that each node
has its own version of M} and of the derived quantities.
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means that the nodes are outside any RZ):
My (tn) = Ma(tn) + Mp(tn), (3.1)

where t,, represents the current time epoch, and M4(t,) (respectively, Mpg(t,)) is the
number of contents that node B (respectively, A) possesses and are missing in node A
(respectively, B).

Considering that not all the previous pieces of information might be interesting at a
given time, a low pass filter that covers a predefined previous amount of events is needed,
specially to filter out some noise from instantaneous measurements, as done in any real
system. We then use Fj(t,) as the mean observed number of contents to exchange, which
is obtained by applying an AR filter to M (t,) when a connection occurs, i.e.:

_tn—x(tp_1)
a=e T

x(tn) = tn, (3.2)
Fi(tn) = aFg(xp—1)+(1 — o) Mi(ty),

where ¢, is the current time epoch, z(t,) stores the time epoch of the last connection
started until ¢,,, and « is an adaptive value that accounts for the time elapsed in between
two consecutive connections, so that the AR filter operates with an exponential decay
time 7. This corresponds to a negative exponential decrease of the importance of old
samples. We used the time constant 1" of the order of hours because we follow realistic
human patterns, which have to be measured in hours. If no connection occurs at t,, the
values of Fy(t,) and z(t,) are set as their respective values at t,,_1.

We need to wisely choose the value of T according to the amount of previous encounters
that nodes are going to consider in order to derive the average number of contents that
were exchanged in the past. Then, whatever happened before the decay time does not
practically affect the value of the current average.

By computing Fj(t,) and comparing it with previously computed values, we tune
an exchange probability P of actually starting a content exchange, i.e., the meeting
devices might decide to skip a content exchange, to save resources. To this purpose, we
use Algorithm 2. The proposed algorithm uses a negative control feedback: the more
contents to exchange, the less nodes need to connect and exchange (because contents are
already present in the scenario). The opposite is true when a node sees less contents
than in the past: this is taken as a sign that less contents are around, so that the
nodes must help the system more, by connecting and exchanging more frequently (with
higher probability). The constant step chosen to adapt the exchange probability at
every connection is set to 0.01, and we bound Py to the interval [0,0.1] according to

the sensitivity analysis presented in Section 3.4.3. Those values score a good tradeoff
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between avoiding large oscillations and adapting fast while reducing the number of data
exchanges without paying in terms of dissemination performance.

It is important to note that nodes operate with different probability values depending
on which RZ they are. This is enforced because nodes present different mobility patterns
and therefore heterogeneous information exchange behaviors that will be more accurately

analyzed separately.

3.2.3. Local storage management

To make smarter storage management decisions, we define a scheme to either preserve
or drop the content from nodes’ local buffers. In PRECISE, nodes within an RZ can
always keep the content. If a node is in the outer area and visiting an RZ after a long
period of time, we assume the content stored on its local buffer will be outdated and,
thus, irrelevant for the RZ. Therefore, nodes should eventually discard such content to
also reduce the resource consumption. We perform this by allowing nodes leaving an RZ
to keep their stored content for a certain time, i.e., until the time elapsed since leaving
the RZ reaches a maximum allowed value, which to be consistent with the forwarding
scheme described in Section 3.2.1, is set to T,.

Our storage scheme (described in Algorithm 3), along with the forwarding scheme,
seeks to favor content availability by allowing nodes traveling between RZs to carry and
exchange data in advance to other nodes heading down the RZs. Besides, nodes returning

to the same RZ after a period of time shorter than T, will also keep their data alive.

3.3. Key Performance Indicators

There are many parameters in PRECISE that can be fine-tuned to optimize the
system. In the following, we briefly discuss the key performance indicators of the system.
We use C’g (t) to denote a binary variable indicating whether a certain content i is
available at node j at time ¢t. Therefore, the number of nodes possessing content ¢ within
RZ, is expressed as
Cri(t) = > Cl(); (3.3)
JENK(?)
note that Cy;(t) is the number of replicas of content i available within RZ.
We therefore measure the availability per RZ and per content, Ag;(t), as the fraction
between the number of nodes that possess content ¢ and the total number of nodes inside
the RZ, i.e., nodes with contents outside the RZ are not considered. With the above, the

availability at time ¢ for content ¢ in RZ k is expressed as

_ Gi(®)
|NL(2)]

Aki(1) (3.4)
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where | - | denotes the number of elements in a set. To evaluate the overall scheme, we
will use the mean content availability at time ¢, which is the statistical average of the A;

values computed over all RZs and contents, i.e.:

A(t) K|D Z Z Api(t) (3.5)

k 1ieD(t

where D(t) denotes the set of contents injected in the network until time t.
Another relevant metric is the time-average availability for content ¢ generated at time
gi, computed 7 seconds after its injection in the network over all RZs. This quantity can

be expressed as

— 1 roit7 C]ﬂ t
Ai(m) = — g .
(=7 /g < [N (D)] (3.6)

and the overall statistical mean of the time-average availability (the total content

availability, for short) for a target group of contents (denoted by G) is the statistical

average of per-content availability values A;(7), Vi € G:

Ag(7) > A (3.7)
IG | =2

It is important to note that, at content generation time (7 = 0), the total content
availability Ag is low given that each piece of content belongs to a unique node before
the spreading process starts. Thus, the availability curve over time undergoes a transient
period prior to stabilizing according to the system capacity.

It is also critical to understand the load L;(t) of each node’s local buffer, so to compare
the efficiency of the different configurations applied to the system. The load of a node j
is defined as

> AW, (3:8)
ieD(t)
and the following quantity expresses the mean fraction of injected contents held by a node

at time t:
1

- L; ()
R(t) = K, yNk(t)|j€UgNk(t) D) (3.9)

Taking into account the nodes’ load, we can observe the saturation value of the system
as a whole, using the total average load L over the time interval |11, 73], which is defined

as

L(r,m) = — /TZ >3 d (3.10)

27T k3 e (1) ieD(t)

Finally, other important performance indicators are: (i) the number of connections

used by the nodes, which depends on mobility, frequency of meeting events and availability
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of nodes to connect when they are in transmission range, (ii) the fraction of contents that
disappear from the network after being injected, (iii) the time during which a content
survives in the network, and (iv) the delivery time needed by a node to receive a content
after entering an RZ. The number of connections measures the communication load due
to the dissemination process, while the loss count and the content lifetime express the
ability of the dissemination process to keep information available over time without the
help of any infrastructure. The delivery time tells how efficient the dissemination is with

respect to RZ visits.

3.4. Performance Evaluation

We have built an opportunistic content dissemination simulator using Python, to
reproduce the D2D-enabled application scenarios described in Section 3.1, with the
algorithms of Section 3.2. New features are developed in our custom simulator that are
not present in state-of-the-art simulators. For instance, the ability to exchange contents
combining different circumstances, such as, certain periods of time and selected places
in the scenario, basing the previous decisions on predictive information. This way, we
can flexibly explore diverse scenarios according to our specified input parameters. It
also facilitates the configuration of more complex scenarios, the post-processing of several
metrics and opens doors to further modular extensions [3]. We have used the Floating

Content (FC) simulator version for this chapter, as detailed in Chapter 6.

3.4.1. Geographical and mobility scenarios

To evaluate PRECISE, we consider two realistic geographical environments, which are
suitable to simulate pedestrian and vehicular (taxi) mobility, respectively. The structure

of our application scenarios is composed of the following mutually associated components:

= The scenario consists of a squared 2D region, extracted from either a map of
Paderborn, Germany (for pedestrian mobility cases) or from the one of Rome, Italy

(for taxi mobility patterns).

» Within this region, we define two (circular) RZs that represent hotspots where
disseminated data is especially valuable for nodes traversing them. RZs are placed
at opposite locations of the maps and all data contents are aimed to travel between

these two zones.

» The scenario also contains mobile users (nodes), that move according to two
different methods: for pedestrians, we use synthetic traces based on the city map
of Paderborn, while for taxis, we use real traces obtained from [70]. In case nodes

follow synthetic traces, they are uniformly distributed in space with a certain user
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Figure 3.1: Scenario of Paderborn including two RZs and 50 users moving within the

scenario

density. In all cases, nodes have an accurate estimate of their position and can

forecast the time at which they will reach RZs.

Figs. 3.1 and 3.2 show the map sections used in this chapter, from the city of Paderborn
and Rome respectively. In the case of Rome, the figure only shows a detail of the full map.
The traces used cover a larger area which cannot be modeled as a uniform square region.
However, the taxis spend 67% of their time in a square area of dimensions 4 kmz6 km
within which we selected the RZs. Figures depict, approximately, the size and location
of both defined RZs together with the type of nodes of each scenario, being pedestrians
in the first case and vehicles in the second. We also indicate in the figures the node
transmission range of each setting (see Table 3.2 for numerical values). We initialize
the system based on a set of parameters explained in Section 3.4.2, which can be tuned
according to the desired scenario. Note that the structure of a scenario can take more
complex configurations, composed of one or multiple RZs and also supports multiple types

of content per RZ.
We have used the ONE Simulator [110] to generate pedestrian traces based on the
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Figure 3.2: Detail of the full scenario of Rome including two RZs and up to 199 mobile
devices moving on taxi cabs within the scenario.

map of the center of Paderborn and a set of manually selected dwelling points which
corresponds to gathering places in the city. Moreover, we consider three pedestrian
mobility models, which show the different dynamicity levels typical of a Businessman,
a Clerk, or a Student. Business’s mobility assumes rather long pause time and
inhomogeneous RZ visiting probabilities. This leads to a less routine movement of
the nodes, which resembles business people’s mobility. Clerk’s mobility increases pause
periods and RZ visiting probabilities. This mobility represents the case of commuters.
Student’s mobility represents an intermediate case, with nodes moving between positions
at shorter periods and visiting a RZ with a probability higher than in the Businessman’s
mobility case. This reflects a university environment.

In the case of taxi cab’s mobility in Rome, we count on 5 sets of 2 days traces
each, obtained from cabs mobility measurements [70]. These traces were collected during
consecutive complete days where cabs reported their position with 15s granularity. By
previously studying the sets of traces, we could observe the most visited regions of the

city along different days, such as the airport and the main streets of the city center. Thus,
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Table 3.2: Input parameters

Parameter Paderborn Rome
Region size  2.25km? 24 km?
Radius of replication (rrz) 200m 1000 m
Transmission range (7,,) 30m 500 m
Channel rate 10 Mbit/s 10 Mbit /s
Memory limit infinite infinite
Number of users in the region 50 199
User speed 0.5-1.4m/s From traces
Slot length 1s 1s
Content size 5 Mbit 5 Mbit
Injected contents 2 2
Periodic injection time 1000s 1000
Elapsed time (7,) 400, 600 and 800s 400, 600 and 800s
2-5h (Businessman)
Pause time ~ 3-8h (Clerk) 4.6 min on average

15-30 min (Student)

0.2 and 0.1 (Businessman)
RZ visiting prob 0.7 and 0.2 (Clerk)

: 0.036 (RZ1)
0.4 and 0.3 (Student)

0.441 (RZ)

defining them as our RZs. The key characteristic of the traces from Rome, compared to
Paderborn scenario, is the dynamicity of the nodes. In this case nodes are vehicles, not
pedestrians, which move at a higher speed. This will entail larger number of visited places
and nodes encounters but will impose shorter contact intervals.

In all cases, we assign nodes to two groups, each with different RZ visiting probabilities,
so that each group has a preferred RZ to visit. This way, nodes will likely visit both RZs,
but will stay for longer periods within one of them. By so doing, we test the ability
of PRECISE to efficiently move contents between two disjoint hotspots located within a

larger area.

3.4.2. Parameter setting

In the simulations, time is subdivided into slots of 1 second. In each slot, nodes can
connect and exchange data: connection establishment is always completed within a slot,
while data exchange can involve one or more slots. Simulations were run for a duration of
172800 time slots, i.e., 48 h, which we identified to be sufficient to observe the system out
of any transient. Besides, we have carried out 20 simulation runs per specific configuration
in Paderborn and 15 for Rome scenarios, which was enough to gather sufficient statistics.

As for the simulation settings, the main parameters used are listed in Table 3.2. We
differentiate among Paderborn and Rome scenarios due to the different characteristics

and dimensions of each case.
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3.4.2.1. Set up

In the simulations, the radius of the RZs has been set to 200 m for Paderborn and
1000m in Rome. A randomly chosen node within an RZ injects a new piece of content
every 1000 slots, and the initial number of injected contents in the first slot is two, i.e.,
one content per RZ. The max amount of stored contents per node is given by the storage
capacity described by the memory limit parameter, which here we consider unbounded,
for simplicity. We assume that when two nodes are in contact, the channel rate is constant
over time and equal to 10 Mbit /s.

For pedestrian mobility, 50 nodes are uniformly distributed across allowed dwelling
points, and when they move they follow the shortest path allowed by roads and squares in
the map. The two selected RZs have quite different characteristics: the RZ on the left of
the map only includes dwelling points spaced more than 30 m, which is the transmission
range, while the RZ on the right includes a cluster of attractor points within transmission
range. This will enforce differences in the metrics observed in the two RZs, because
dwelling points within transmission range behave like a single dwelling point with the
sum of the respective mobile users.

For Rome, 199 nodes follow the trajectories provided by the taxi cabs deployed across
the city from which not all nodes might be present in the scenario at initial time, neither
during the whole simulation. Note that, as a consequence, nodes will remain within the

area for limited periods of time.

3.4.2.2. Precise

Experiments with PRECISE are structured to study three fundamental features.
The first feature is node mobility, defining speed and pause times. For Paderborn
scenario, we consider Businessman’s, Clerk’s, and Student’s mobility scenarios, according
to mobility dynamicity. In all scenarios, nodes are split in two equally sized groups:
each group has a preferred RZ, which is visited more often (see Table 3.2). Business’s
mobility assumes rather long pause time of 2-5h, and RZs are visited with relatively
low probabilities (0.2 and 0.1). Clerk’s mobility increases pause periods to 3-8 h and RZ
visiting probabilities are quite high (0.7 and 0.2), leading to low probability to select a
dwelling point outside the RZs. Student’s mobility sees nodes moving often, visiting for
only 15-30 min the two RZs with mildly high probabilities of 0.4 and 0.3, respectively.

For Rome scenario, the pause time reported in Table 3.2 corresponds to the average
pause time computed over the first 2 days of traces. A pause is described as every interval
of time longer than 30s where taxi cabs report the same position. We have also directly
obtained from traces the RZ visiting probabilities for Rome by computing the average
time spent by taxis at every RZ and outside.

The second feature concerns the content exchange scheme, which is mainly affected
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by T, i.e., the interval during which nodes can keep data stored and also exchange
content when they are outside the RZs. We studied a wide range of configurations for
this parameter, between 0-800s.

The third feature concerns the data exchange area, i.e., the restrictions on where
data exchange can take place. We label with ‘in’ the scenarios in which exchanges are

allowed only inside RZs and with ‘out’ those in which exchanges are allowed everywhere.

3.4.2.3. Benchmarks

Besides, we consider two extreme benchmark cases. In the first, labeled as ‘Restricted
Only In RZ’, nodes cannot carry any piece of content outside the RZ. This is the typical
approach used in other works dealing with content dissemination in RZs. In a second
benchmark, we use a scheme that allows to keep and exchange contents limitless outside
RZs, labeled as ‘Epidemic 7., = oo’ in plots. This represents a typical uncontrolled
epidemic diffusion scenario.

In addition, we have implemented PIS, a content dissemination protocol that bases
its content dissemination decisions on three different social dimensions called similarities.
First, PIS takes into account the physical proximity between nodes. Each node builds a
so called Ego Matrix to keep track of, not only its own previously met contacts, but also
the contacts of the peer devices that it encounters. Each node’s Ego matrix is updated
at every time slot with the information of the neighboring nodes. Then, the physical
proximity similarity is computed using the information stored in the matrix for the next
n time slots, and we use n = 1. Second, PIS considers users interests to decide whether
they will possibly meet the destination node and therefore, be selected as a next hop
candidate. We have randomly generated lists of interests for PIS with the dwelling points
selected in the application scenarios, which is the same as we do for PRECISE. Third, PIS
spots friendship between nodes according to the number of unicast messages that they
have exchanged in the past. Social relationships for PIS are also randomly generated
since we assume that the only piece of information that a system will be able to retrieve
is the mobility of nodes, thus avoiding extra overhead.

We run PIS routing protocol in our scenarios with the previous settings and, bearing in
mind that we consider all nodes as potential destinations, we also inject a high number of
content copies. When computing the exchange decision parameter simPIS, as explained
in [65], a constant value of 7 needs to be selected in order to assist or constrain the
dissemination of contents. This value has an impact on the system when the number
of content copies is low. Given that, when v is high it allows for a rapid content
dissemination, thus PIS takes the risk of sharing all pieces of content earlier than the

destination node is reached according to the following equation:

simPIS +~ > 0. (3.11)



40 Floating Content in Disjoint Geographical Areas

0.970 - A v
*
0.968 -
<ED [ |
. 0.966
;: * PK<0.9
= Pk <0.8
Z 0.964 Y Pk<0.7
A PL<05
m Pr<0.1
09621 o ® Pk <0.05

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

Number of connections |- 106]

Figure 3.3: Average content availability and standard deviation versus number of
connections for different values of the content exchange probability.

To prove that, we have run experiments for the two extreme cases of v: 0.2 and 0.8.
We compare our results with these three benchmark cases, whose results are reported

within each figure.

3.4.3. Sensitivity analysis

We have carried out a parameter study of the probabilities involved in the decision
making process explained in Section 3.2.2. Our goal is to reach a fair trade-off between
the content availability and the overhead generated due to the number of connections
established. This trade-off can be regulated by adapting the probability with which a
content can be exchanged given the requirements of our predictive scheme.

We performed a set of one-day simulations for the group of student mobility nodes on
Paderborn scenario, with T, = 800s and allowing nodes to exchange contents also outside
RZs. We test different probability values as shown in Fig. 3.3 and observe that using a
very restrictive condition, i.e., forcing P, < 0.05, gives a desirable reduction in the number
of connections in exchange of some decrease in the content availability value. However,
we aim at comparing PRECISE with other approaches such as Epidemic or PIS routing
protocol, which are proven to be very competitive in terms of content availability [65].
We notice a sharp flop of performance in the availability from P < 0.1 to P, < 0.05. For

that reason, we observe that configurations closer to P, < 0.1 are more beneficial because
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Figure 3.4: eCDF of content availability over one day experiment in Paderborn.

they increase content availability while still getting benefit from the overhead compared
to the mentioned approaches. In the following results, we fixed the constraint to P, < 0.1

In Fig. 3.3, we can see the significant impact of the parameter chosen for the
probability. This is one of the reasons why, instead of using a fixed value for the probability
condition, we have decided to use Algorithm 2, in which Py is adjusted in steps, based on a
quantity Fj which is the output of an AR filter. We based the probability on the average
number of contents that two nodes have to exchange at every encounter as presented
in Eq. (3.2).

Content availability results for adaptive values of a are depicted in Figs. 3.4 and 3.5 for
synthetic traces and real traces from the literature [70], respectively. Note that, in both
cases we run again a single one-day simulation which is a good representative example
for the parameter study. From the figures, we can observe that the variations in content
availability are almost negligible. In the case of synthetic traces in Paderborn scenario,
the best results are grasped when « has a fixed value of 0.7. In the case of real traces
in Rome, the content availability increase is sensed when adaptive « is computed from a
large value of T' = 5000, which means larger memory, corresponding to about 7 h?.

Surprisingly, Figs. 3.4 and 3.5 do not show a significant improvement when no memory

is taken into account, i.e., « = 0 which means that all connections are allowed at any

2With an auto-regressive filter like the one used in this work, the importance of a sample fades
exponentially with decay time T, therefore it becomes practically negligible after 57
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Figure 3.5: eCDF of content availability over one day experiment in Rome.

time. Therefore, increasing the network load, as shown in Section 3.4.6, is not essential
to get content availability values close to 1.

This way, we have verified that the value of T', or even fixing alpha, does not bring in
notable differences, so we picked a round value of T' = 1000, which is enough to keep in

the memory of the filter whatever happens while a node is outside the RZs for about 7.

3.4.4. Content availability

One of the main performance parameters of the system is the mean content availability
Ag inside RZs. In each of the tested configurations, we have obtained Ag by averaging
per-content availabilities across all contents (i.e., we use G = D(t)). Fig. 3.6 shows this
metric for each configuration. The figure shows also the standard deviation observed in
the simulations. The computed confidence intervals are small and hence we do not report
them in the figure. Their value indicates that, with probability 95%, the actual average
is within +0.19% of the estimated average reported in the plot. As it can be seen, if data
exchange outside the RZs is permitted, the content availability increases in comparison
to the traditional paradigm, where content exchange is only allowed for nodes inside RZs.
When it is possible to carry a piece of content outside the RZ, performance improves
drastically: in fact, results for the case ‘Restricted Only In RZ,” in which nodes clear their
storage as they leave the RZ, are the worst. Moreover, configuring our proposed scheme so

to keep contents stored on nodes for a limited amount of time performs comparably well
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Figure 3.6: Time-average content availability (cf. Eq. (3.6)-Eq. (3.7)) for all forwarding
and storage configurations, computed over the entire duration of the experiments and for
all contents (G = D(12h) in Eq. (3.7)). Plotted is the mean together with the standard
deviation.

with respect to the uncontrolled dissemination case (‘Epidemic T, = oo’ in the figures).
These results provide valuable information on how to manage resources of the network.
Results show a similar trend over all mobility cases. However, if we compare results
obtained from different mobility patterns in Paderborn, Clerk’s and Student’s mobility
cases look similar while Businessman’s mobility depicts lower availability numbers. In
the Student’s case, nodes move with the lowest pause time at hotspots and, therefore,
the higher number of nodes encounters explains the rapid pervasion of contents. We
can clearly appreciate this fact in Fig. 3.7, where we plot the mean content availability

across all contents, A(t), as it evolves over time®. Student’s mobility subplots illustrate

3Note that, in Fig. 3.7, time is relative to content generation epoch. This is to be able to homogeneously
compute the statistical mean for a set of contents generated at different instants.
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Figure 3.7: Evolution over time of the mean content availability (cf. Eq. (3.6)-Eq. (3.7))
observed under different forwarding and storage configurations.

a quick content spreading among nodes and very small variation across different contents
behavior, that is why standard deviation in Fig. 3.6 is smaller than under Businessman’s
and Clerk’s mobility cases. Here, when contents are first generated, it takes around one
hour only to hit the highest availability values compared to Clerk’s mobility patterns
that reach its highest point later on but keeps it in steady state. Businessman’s mobility
subplots depict a rising curve that, in most of the cases, does not reach either availability
values as high as nodes under the Clerk’s or Student’s mobility over the entire run.
Finally, the simulations executed over the traces obtained from taxi cabs in Rome
depict lower values of content availability due to higher nodes speed and the frequent
disappearance of nodes from the considered area. On average, nodes are present in the
scenario for 11 h, and once they leave the scenario the content stored in their local buffer
is erased. In view of these results, we can perceive the influence of the nodes mobility

pattern over the content availability. Fig. 3.8 shows the evolution over time of the
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Figure 3.8: Evolution over time of the number of users present at each RZ for each
scenario.

number of users present at each RZ for each scenario. Comparing the results with the
number of nodes in the scenario over time, and specifically for each RZ in Fig. 3.8d, we
can appreciate that the rising trend in content availability corresponds to higher visits to
the RZs, however we are clearly able to overcome the decreasing trend by applying our
proposed scheme. Nodes leaving the RZs in a short period of time but remaining in the
scenario are still a critical asset to spread the collected contents until time elapsed value
is up.

From the results, it is clear that availability increases dramatically when nodes are
allowed to keep the contents while outside RZs. Likewise, it is clear that there is an extra
benefit due to allowing nodes to connect and exchange data outside RZs, at least under
the mobility models explored. More importantly, we demonstrate that there is no need to
allow nodes to store and exchange contents for long periods of time. A fair performance
can be reached by constraining the time elapsed parameter T, according to the scenario
settings while maintaining comparable values of content availability to those reached by

epidemic dissemination techniques.
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3.4.5. Storage usage

Another significant system metric is the amount of storage used. As shown in Fig. 3.9
(we plot again the mean together with the standard deviation and we do not report
confidence intervals in the figure since value indicates that, with probability 95%, the
actual average is within £2.71% of the estimated average reported in the plot.), our
predictive scheme performs better than the benchmark that restricts storage and data
exchanges to RZs, and is comparable to the uncontrolled dissemination scheme in terms
of available replicas. Note that, with the high values of content availability achieved by our
predictive scheme, the number of replicas should be comparable to the number of nodes
inside each RZ (see Fig. 3.8). With the parameters chosen for the three mobility scenarios
that we have simulated in Paderborn, 30%, 70% and 90% of nodes will lay within RZs,
for Businessman’s, Student’s and Clerk’s mobility cases, respectively. Therefore, with
the availability values reported for our scheme in Fig. 3.6, we should expect to observe
about 13 to 15 replicas for the Businessman’s case, 19 replicas for Student’s case, and
23 for the Clerk’s case. For Rome, we expect to have between 9 and 11 replicas inside
the RZs according to the average number of nodes visiting the selected RZs. However,
Fig. 3.9 shows lower values because it accounts for the delay incurred for spreading newly
injected contents. More in detail, Fig. 3.10 shows how the number of contents stored in
each node tends to increase as time passes. Abrupt changes visible in the figure are due
to the periodic injection of fresh contents.

In the figure, we can observe how fast the storage capacity of nodes fills up, according
to each mobility pattern. It draws our attention that the Businessman’s case presents a
slower increase in memory usage compared to Clerks and Students nodes. This is due
to the fact that, in Businessman’s case, nodes do not visit RZs as often as in Clerk’s
case, therefore, they miss opportunities to retrieve the data; in the Businessman’s case,
nodes neither have as many new peers encounters as in the Students mobility case, due
to higher pause times. However, if we analyze again Fig. 3.6, we see that Businessman’s
mobility settings provide fair availability compared to Clerk’s and Student’s mobility
cases, while occupying 50% of their storage and experiencing less content exchanges,
as explained later in Section 3.4.6. Fig. 3.11 further shows the normalized number of
per-node stored content, R(t), i.e., the fraction computed with respect to the number
of injected contents. The computed confidence intervals are small and hence we do not
report them in the figure. Their value indicates that, with probability 95%, the actual
average is within £0.22% of the estimated average for the whole runs. Content injection
epochs are clearly visible in this figure. The figure shows that the system tends to quickly
spread fresh injected contents, though this process is strongly correlated with the speed
and dynamicity of nodes. Indeed, it is clear that in Student’s mobility scenario contents
are distributed more rapidly. Despite the fact that the results for Businessman’s and

Clerk’s mobility traces present a slower increase, Clerk’s mobility figures illustrate a more



3.4 Performance Evaluation 47
Precise Precise Precise Epidemic PIS Restricted
T.=400s T.=600s T.=2800s Te=© Routing Prot Only In RZ
25
o]
204 g
2
15+ g &
o~ T 555 ——10sT 1218 122 1218 s g
104 o1 o2 Tl o o o — g g
% | g 3
54 =
<
O_
251 T227 T22.71 T2274 T2276 T2279  T22.78 T22.98 T2298 T2298
1 1 1 L 1 1 L L 1
204 @!
Tiser| 2 @
15+ .2
1 ; E-
10+ 3 g
2 S B
S 4] Ex
= <
7
o 01
© 254
Q
@ 20+ %
Z 17.14 17.16 17.32 17.39 17.45 1774) | —1841) | 1841 1841 B
15 5 2
£12.23 & E‘
104 g8 g
s 2
5 E
<
O_
25
204 =
o
:
10.7 T10.9 T10.97 T11.19 T11.18  T11.19 =]
104 19.97 I I10.2 4 I10,31 i 1 T T 18'99 g_
5 =
O_ T T T T T T T T T T
in out in out in out out pis02 pis08 in
Policy

Figure 3.9: Average number of replicas of a content, computed across both RZs and
time-averaged over the entire simulation. Plotted is the mean together with the standard
deviation (taken with respect to the time-averaged number of replicas of each content).

agile dissemination of contents among nodes due to higher probability of visiting RZs.

Again in Fig. 3.10 and Fig. 3.11, we can notice the evident impact of real mobility
traces in the average number of contents stored at the nodes. In Rome, even though the
RZs are highly visited areas, the speed of the cabs and the low pause time in both zones
introduce a considerable decrease in the storage usage of the nodes, due to faster content
acquisition and imminent loss, as we could earlier notice when analyzing Businessman’s
mobility case.

Still, when connections are allowed outside the RZs, we can observe a slightly higher
usage of the system storage, although less than in the case in which dissemination
operations are unbounded (‘T, = 00’). However, while gaining some content availability
from adding connections outside RZs, the overall storage capacity is not significantly

affected.
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Figure 3.10: Average number of contents stored at a node (this quantity corresponds to
R(t) - D(t)). The final amount of injected contents in one simulation run is 345.

3.4.6. Number of connections

Since any forwarding policy will introduce constraints in terms of data sharing
attempts, the number of connections will inevitably affect the network performance and,
therefore, also the content availability. Fig. 3.12 reports the average number of connections
observed during simulations. Connections are divided into three groups depending on
where they take place: inside RZ1, inside RZ5, or outside RZs. Under the Businessman’s
mobility, the number of connections is lower than in the other cases for Paderborn city,
which is due the lower probabilities of visiting the RZs. The same happens in Rome’s
subplots, despite the fact that the RZs defined in this scenario are the most frequently
visited areas, they are still not as visited as in Paderborn scenario plus nodes do not
remain there for long periods.

In all considered cases, even if negligible in the plots, the number of connections
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Figure 3.11: R(t), mean fraction of contents possessed by a node (cf. Eq. (3.9)).

Table 3.3: Comparison of the total number of connections for Epidemic and PIS schemes
with and without the restriction of exchanging contents only inside RZs

Configuration Number of connections with | Number of connections without
restriction restriction
Epidemic Business 1.1684 x 10° 1.6154 x 10°
PIS08 Business 1.1693 x 10° 1.6167 x 10°
PIS02 Business 1.1568 x 10° 1.6031 x 10°
Epidemic Clerk 3.1815 x 10° 3.272 x 10°
PIS08 Clerk 3.1819 x 10° 3.2722 x 108
PIS02 Clerk 3.0559 x 108 3.1399 x 106
Epidemic Students 2.2924 x 10° 2.5739 x 10°
PIS08 Students 2.2932 x 108 2.5746 x 108
PIS02 Students 2.2331 x 10° 2.5028 x 10°
Epidemic Rome 0.9048 x 10° 3.2551 x 10°
PIS08 Rome 0.9058 x 10° 3.2560 x 10°
PIS02 Rome 0.8877 x 10° 3.2289 x 108
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Figure 3.12: Total number of connections per simulation run in millions (average over 5
runs). Shown is a stacked plot of connections in each RZs and outside.

outside RZs increases with T,, and it is more pronounced in Businessman’s and Rome’s
mobility scenarios, as we can clearly see when T, is unbounded, in which case all nodes
will always attempt to establish a connection when they meet, independently from their
mobility characteristics. Therefore, since in the Businessman’s and Rome’s scenario nodes
tend to travel to the defined RZs with lower probability, having more opportunities for
complete new encounters, they also end up using the most amount of connections outside
RZs, even when T, — oo. Note that the number of connections outside RZs is quite
limited for finite values of T,, which means that our scheme does not require much use of
network capacity when nodes are outside RZs. Therefore, our predictive scheme performs
comparably to unbounded epidemic diffusion schemes for what concerns dissemination of
contents, although they require much less network resources. In some cases, the number
of connections in the two RZs is not symmetric. Indeed, the RZ in which we observe

less connections is the one in which dwelling points are spaced apart, out of transmission
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range. When the average number of nodes in each RZ is low, they end up being, with
high probability, far apart to establish connections, which results in less connections than
in the other RZ. Instead, under mobility scenarios where the number of nodes in the RZs
is higher, various nodes will be going towards the same dwelling point and thus they will
be able to connect.

Besides, to assess the importance of bounding content exchanges within or nearby RZs,
we have tested the behavior of Epidemic and PIS in case they are forbidden to operate
outside RZs. Table 3.3 compares the number of connections with Epidemic and PIS (with
v = 0.2 and v = 0.8) with and without such restriction. In the table, we can appreciate
that, with the restriction, the number of connections experienced decreases substantially
only in case of highly dynamic mobility—e.g., in the taxi cab scenario—, although in all
cases it remains much higher than what observed for PRECISE (cf. Fig. 3.12).

3.4.7. Data lifetime, losses and delivery delay

We now compare our predictive scheme to the benchmarks in terms of their ability to
keep contents alive without the support of an infrastructure. Fig. 3.13 shows the average
lifetime of contents that were generated between ¢t ~ 14 —15h, with a residual simulation
duration of ~ 33h. The computed confidence intervals are small and hence we do not
report them in the figure. Their value indicates that, with probability 95%, the actual
average is within £0.25% of the estimated average reported in the plot.

We observe that most of the contents are kept alive a bit longer than 1.5h, for all
settings. However, the baseline ‘Restricted Only In RZ’ scheme shows a smaller average
lifetime, up to only =~ 45min in Rome scenario, and more variability across contents
and simulations. This shows that, even with only 50 nodes in the case of Paderborn,
our predictive forwarding scheme, along with realistic mobility patterns, is as resilient as
pure unconstrained dissemination schemes, although it requires less use of communication
resources.

Losses are very infrequent, as shown in Fig. 3.14. Indeed, the number of contents
disappearing is less than 1 on average, under any of the tested configurations. The
computed confidence intervals are small and hence we do not report them in the figure.
Their value indicates that, with probability 95%, the actual average is within +0.03% of
the estimated average reported in the plot.

It is interesting that most of the lost contents disappear at the very beginning of
their lifetime, when only one node possesses each specific piece of content injected.
Nevertheless, contents that manage to survive to that transient period remain alive
until the end of the simulation, thanks to a fast dissemination. Especially, in the
cases of Clerk’s mobility with more nodes gathering for longer around the same areas
and Student’s mobility with shorter pause times and, consequently, higher number of

encounters. Additionally, with Businessman’s and Rome’s mobility, we notice a significant
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reduction of content loss when we allow exchanges outside RZs.

In most cases, and especially in Rome scenario, our predictive scheme suffers much
less losses than the ‘Restricted Only In RZ’ benchmark, although not as good as for
the uncontrolled case with T, — co. We can conclude that the introduction of the T,
parameter in our predictive scheme plays an interesting role: by varying its value, it is
possible to trade-off reliability (losses) for costs (network resources) with only a limited
impact on the availability of contents in RZs.

Finally, we have also measured the content delivery delay in Paderborn and Rome
scenarios. Note that, the classic delivery delay metric cannot be applied for our scheme
since the behavior of content exchanges is different for each case. I.e., in our predictive
scheme, nodes drop the content when they are out of the RZs for too long (> T,) and that
does not happen in epidemics-like configurations. In epidemic (or PIS), nodes never drop
the content so only the first time they get the content is taken into account. However, in
our scheme, nodes can get the content soon for the first time and drop it after a while
if they are out of RZs. Then, they can retrieve the content again if the conditions allow
for it. Besides, the contents are needed only inside the RZs, so what matters is that they
are received by the time a node enter an RZ or shortly after. Given these circumstances,
we measure the delivery time as the time elapsed since a node enters an RZ. With this
metric, in Fig. 3.15 we see that cases where content exchanges are allowed outside the RZs,
the content delivery delay decreases since nodes that enter the RZs already possessing
the content report a delay of 0s. Despite the fact that epidemic and PIS configurations
show the lowest content delivery delay values, PRECISE presents comparable results with
the smallest difference in the order of milliseconds for the most dynamic case (Rome).
It also draws our attention the higher values obtained for Clerk’s mobility. As stated
in Section 3.4.2.1, the RZs defined for Paderborn scenario contain some attractor points
towards the nodes move with higher probability and, in this case, remain for longer. This
will imply that, even though nodes eventually get the content because they remain during
long periods inside the RZs, they will need more time to find someone to exchange content
with. In one of the RZs, the distance between some attractor points is larger than the
transmission range. This means that if nodes fall into separate points, they will not be

able to retrieve the content until they move again after a long pause.
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Algorithm 1 Predictive forwarding scheme

Input: {mg, mq,...}: shuffled list of node’s neighbors

1:

e e e e e e e =

20:
21:

T,: maximum amount of time for data exchanging outside RZs
Cte: node’s expiration time counter
if node in RZ then
for peer in {mgy, my,...} do
if peer not busy and peer in RZ then
dataExchange(node, peer) {Local node exchanges data with peer}
break
end if
end for
else
if node not busy and node Ci. < T, then
for peer in {mg,mq,...} do
if peer not busy and peer Ci. < T, then
node__prediction < isVisitingRZ (node)
peer__prediction <+ isVisitingRZ (peer)
if node_ prediction or peer_ prediction then
dataExchange(node, peer) {Local node exchanges data with peer}
break
end if
end if
end for
end if
end if

Algorithm 2 Computation of Exchange probability per RZ

Input: t,: current time slot

Fy(t,): current mean number of contents to exchange
F(tn—1): previous mean number of contents to exchange
Py: probability to exchange content
if Fk(tn—l) < Fk(tn) and P, > 0 then
Py, < P, — 0.01 {Decrease probability}
end if
if Fk(tn—l) > Fk(tn) and P, < 0.1 then
Py, < Py, + 0.01 {Increase probability}
end if
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Algorithm 3 Local storage scheme
Input: rrz: radius of RZ
T.: max amount of time for data exchange outside RZs
Che: node’s expiration time counter
pos < getPosition() {Set node’s position}
if pos not within rzz then
if Cyo == T, then
dropData() {Drop all data}
else
Cte < Cie + 1 {Keep data and increase Cy.}
end if
end if
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Figure 3.15: Average delivery delay of contents. Plotted is the mean together with the
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Floating Content
Storage Capacity

Floating Content (FC) is a paradigm for localized infrastructure-less content
dissemination, that aims at sharing information among nodes within a restricted
geographical area by relying only on opportunistic content exchanges. FC provides
the basis for the probabilistic spatial storage of shared information in a completely
decentralized fashion, usually without support from dedicated infrastructure. One of the
key open issues in FC is the characterization of its performance limits as functions of the
system parameters, accounting for its reliance on volatile wireless exchanges and on limited
user resources. This chapter takes a first step towards tackling this issue, by elaborating
a model for the storage capacity of FC, i.e., for the maximum amount of information
that can be stored through the FC paradigm. The storage capacity of FC, and of similar
probabilistic content dissemination systems, is evaluated with a powerful information
theoretical approach, based on a mean field model of opportunistic information exchange.
In addition, an extremely simple explicit approximate expression for storage capacity is
derived. The numerical results generated by our analytical models are compared to the
predictions of realistic simulations under different setups, proving the accuracy of our

analytical approaches, and characterizing the properties of the FC storage capacity.

4.1. System Description

In this section the basic FC operations are briefly discussed, and the key performance
indicators of a FC system are defined. In addition, I state the main modeling assumptions

used in the analysis of the FC system storage capacity, and introduce notation.

4.1.1. Floating Content basic operation

I consider a plane over which two populations of nodes are present. The two
populations comprise moving (or dynamic — the two terms are used as synonyms in this
work) and static nodes, respectively. Each node is equipped with a wireless transceiver

and a data storage. Every node knows its position in space.

99
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Two nodes are in contact when they are able to directly exchange information via
wireless communications.

At a time to that defines the start of the FC system operation, a node (the seeder)
generates a piece of content (e.g., a text message, or a picture)l.

Within a region of the plane called Replication Zone (RZ) that contains the location
of the seeder at ty, whenever a node with content comes in contact with a node without
it, content is exchanged. When a node moves out of the RZ, content is discarded.

When two nodes come in contact, a setup time 7y is required before content transfer,
because nodes need to detect the presence of neighbors, verify the availability of content,
and set up the transfer. A content transfer is successfully completed when the contact time
and the channel capacity between the two nodes are such that content can be transferred
in full, and the receiving node has free storage space for the content.

Every node can exchange content (i.e., send or receive) with one node at a time.
Moreover, nodes do not interrupt a content exchange with one node in order to start
another exchange with a different node, unless the former exchange is completed, or the
two nodes are not in contact any more. However, other modes of communications, e.g.,
broadcast, can be easily accounted for in the proposed approach.

From this description, it emerges clearly that in FC, when proper conditions (in terms
of user density and mobility, and of size of the RZ) are met, content floats (i.e., it persists
probabilistically) in the RZ, even after the seeder has left it. In practice, content never
floats forever, unless, e.g., one or more static nodes are present in the considered area, or
it is possible to actively influence node mobility (such as with Unmanned Aerial Vehicles
(UAVs)) to avoid content disappearance from the RZ.

At each contact, each content which is owned by only one of the two nodes, and for
which there is enough memory to store it at the other node, has the same probability to
be chosen for the transfer, regardless of which of the two nodes it resides on. Content
exchanges between two nodes are unidirectional.

Limited modifications in the system operations can be easily accounted for in this
approach, which can easily be expanded to include, e.g., bidirectional content exchanges,
the effects of content broadcasting, or any specific priority scheme for contents to be
exchanged, for example based on content relevance or popularity.

The system corresponding to one content item floating in its RZ according to the
scheme described above is called a Floating Element (FE). In this work, I focus on
systems composed by several floating elements.

With respect to the relative position of the RZ of each FE, two types of systems
are considered. In distributed floating systems, the centers of the RZs of each FE are

distributed on the plane so that RZs can partially overlap. This is typical of setups where

Tt is also possible to consider the case of multiple seeders that simultaneously receive a piece of
content, e.g., through the cellular infrastructure.
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Table 4.1: Main notation used in the study

Notation Parameter Unit
M Data storage capacity of each node bits
D Total node density m2
P Fraction of moving nodes m=2
N Ratio of static over moving nodes
y Intensity (mean number of floating elements per unit area) m-2
Co Mean capacity of the link between two nodes in contact bits/s
L Content size bits
R Replication Zone (RZ) radius m
1€ {s,d} Node label (s for static, d for moving)
gi Mean contact rate per unit area
involving static (resp. moving) nodes sTim™2
o Linear flow sTim™!
T0 Transfer setup time S
7s(Td) Contact time static-moving (resp. moving-moving) nodes s
fi(ms) PDF of

each application or end user defines its own Zone of Interest (ZOI) location. In localized
floating systems instead, all FEs share a same RZ and ZOI. This second scenario allows
ruling out the impact of randomness in RZ overlapping on the storage capacity of the
system, and hence it allows investigating the maximum amount of information which can

be stored in a given location (the RZ) via the FC paradigm.

4.1.2. Floating Content performance indicators

The goal of the FC paradigm is to ensure, through opportunistic replications, that the
content item is delivered to a given target population of users. Hence, one of the main
performance metrics for FC is content availability at time t > tg, i.e., the mean fraction
of nodes with content, at time ¢ in the RZ. High values of availability in the RZ typically
correlate with low likelihood of quick content disappearance, and with high probability
of transferring content to nodes entering the RZ.

The specific definition of the probability of successful delivery (i.e., the success
probability Psyc.) varies according to the performance objectives induced by the
application, and by the way in which the population of target users is identified.

For instance, when the application requests for content dissemination are related to
a specific limited geographical region (ZOI) within the RZ, then the success probability
can be measured as the fraction of moving nodes which possess the content item by the
time they enter the ZOI. As an example, in an application whose performance target is
to deliver an advertisement (e.g., info on a sale, or a movie trailer) or a safety warning
(e.g., info on the presence of potentially infected people, or on the safety measures which
have to be respected inside a building) to a given minimum percentage of the people who
enter the building (a shopping center, a movie theater, a hospital), the borders of the ZOI

should include all entrances to the building.
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Other applications induce different definitions for the performance of the delivery
task. In a cinema, there are content items in which users are likely to be interested after
watching the movie (such as taxi services, public transport schedules, or gadgets related
to a movie). In this case, the content item must be delivered to users by the time they
leave the ZOI, and the success probability is the probability that they get out of the ZOI
with the given content.

In general therefore, the expression of Psu. is not only a function of content
availability, of the geometry of the ZOI, and of user mobility patterns, but also of the
specific application supported by the FC scheme.

4.1.3. Basic assumptions and notation

I assume that moving nodes move according to a stationary mobility model such that,
at any time instant, nodes are uniformly distributed in space?, with mean density ¥ D.
I assume that static nodes are distributed over the plane according to a Poisson Point
Process (PPP) with intensity (1 —)D.

With 7;, ¢ € {s,d}, I denote the node contact time, i.e., the duration of the time
interval during which a static and a dynamic node (resp. two dynamic nodes) are in
contact, and with f;(7;) i € {s,d}, I indicate the contact time PDF. With Cj I denote
the mean channel capacity between two nodes that are in contact.

Let g;, i € {s,d}, denote the mean rate of contacts per unit area between static and
dynamic nodes, and among dynamic nodes, respectively.

I call linear flow the rate at which moving nodes traverse a segment of unit length in
a same direction (e.g., from left to right of the segment), denoted by a. In order to derive
an expression for «, let x denote a position in space and € an angle, and let a(z,8) be
the angular node flow, i.e., the rate of nodes moving in direction (6,60 + df) across a small
line segment of length ds centered at x and orthogonal to 0, divided by ds - df. The linear
flow « is given by

o= /7r oz, 0)d6. (4.1)
0

In order to simplify notation, in what follows the mobility model is assumed to be
isotropic, and hence, a does not depend on the position in space of the unit segment, nor
on the specific direction of the node flow. However, note that this approach can be easily
extended to more general, non-isotropic mobility models.

With S; 4, © € {s,d} I denote the probability that a content transmission completes
successfully during a contact with a static node, or between two moving nodes.

In what follows, without loss of generality, I assume that the RZ and the ZOI of a FE

are circular and concentric, and that the radius of the ZOI is always strictly less than the

2The impact of nonuniform user distributions will be discussed later in the chapter, through
simulations.
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radius of the RZ, R. For simplicity I assume that all RZs have a same RZ radius and all
Z0Is have a same ZOI radius.

Moreover, all contents have the same size L bits, and M is the size in bits of the
memory that can be used for FC in each node. Note however that the proposed approach
can be extended to contents of different size and to scenarios where nodes have different
memory size, mainly at the cost of increasing the notation complexity.

In distributed floating systems, the centers of the RZ of each FE are taken to be
distributed according to a PPP with intensity . In localized floating systems, the

intensity v is the ratio of the total number of FEs, over the RZ area.

4.2. A Mean Field Model of Floating Content

In this section a mean field model of FC is introduced, present in the main theorem of
this work, and the validity of this mean field model over finite and infinite time horizons

is discussed.

4.2.1. Content diffusion over finite time intervals

In FC, the set of nodes exchanging content within a RZ can be modeled as a system
of interacting objects, in which interactions bring to changes in the state of the objects
via content replication. When the number of these objects becomes large, the analytical
performance study of such system becomes difficult, due to the exponential growth of the
state space size.

Indeed, in order to model the temporal evolution of content diffusion and availability
in the implemented system, we focus on the temporal evolution of a set of parameters,
related to different node populations. If K is the total number of distinct contents in
the system, for a RZ radius R at any time instant ¢ we can associate to the system the
state vectors (N} (t, R), ..., N¥(t, R),..NE(t,R)), and (N}(t, R), ..., N§(t, R), ...NX(t, R))
such that N¥(t,R), (N¥(t,R)) is the number of static (resp. dynamic) nodes in the
k — th RZ with content at time t. Such a system can be assumed to evolve according
to Markovian dynamics, and it can therefore be modelled as a Continuous Time Markov
Chain (CTMC)3.

In order to derive meaningful insight into the performance of such systems, in
what follows I adopt a technique based on the mean field interaction model or fluid
limit [111], hence on an approximate model of the interactions between nodes. The first
approximation step of such approach is based on assuming that the following homogeneous

conditions hold:

3The Markovian characteristics of the system dynamics descend from the Poisson distribution of nodes,
the random choice of the exchanged content, and the independence assumptions that will be introduced
later in the chapter.
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Definition 1 (Homogeneous conditions). A floating system satisfies the homogeneous

conditions if:

= at t = 0 the mean number of nodes per unit surface possessing a given content is the

same for all contents;

» at any time instant, nodes possessing a given content are uniformly distributed within
the RZ for that content;

= the probability of a node to have a given content is independent from the probability of

any other node to have the same content.

The homogeneous conditions assumption (equivalent to, e.g., the “well stirred”
assumption in chemistry [112], and to the assumption of stochastic equivalence of nodes
within a same class in [113]) allows deriving simpler expressions for the evolution
of the main performance parameters of the system, at the cost of neglecting spatial
inhomogeneities. Note however that the presented approach can be extended to account
for spatial variations as well as for possible nonuniform seeding strategies (e.g., through
the notion of node class, as in [113]), though at the cost of an increase in complexity of
the analytic expressions.

In order to model the temporal evolution of content diffusion and availability in the
system, I focus on the temporal evolution of four classes of node populations. The first
and second class are composed by those static (resp. moving) nodes possessing a given
content at a given time instant. The other two classes are composed by those static (resp.
moving) nodes which are busy, i.e., exchanging content, at a given time. Note that the
busy state is not associated with a given content, but with the fact that the node is
involved in an exchange of content at a given time instant, and that each node can be
part of both classes of populations at the same time.

Let N(R) be the mean number of nodes in a RZ. As nodes have been assumed to be
uniformly distributed at any point in time, and all RZs to be of equal size, N(R) does
not depend on time, and it is the same for every RZ.

In order to apply the mean field approximation, instead of the number of (static or
dynamic) nodes with content for each RZ at time ¢, I consider the ratio between these
quantities and N(R), which is therefore the parameter used for normalizing the state

occupancy in every RZ. Specifically, the following parameters are considered:

» For every radius R and content k, the fraction of static (resp. dynamic) nodes which
possess k (henceforth denoted as the availability of content k) at time ¢, denoted with a” (¢, R)
(resp. ak(t, R)).

» The fraction of static (resp. dynamic) nodes which are busy, i.e. exchanging content,
at a given time ¢ for a RZ radius R, denoted with bs(¢, R) (resp. ba(t, R)).
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For ease of notation, in what follows I drop the indication of the dependency of
variables on time t and RZ radius R, unless required by the context.

Parameters bs and b; are key in order to model the decrease of the rate at
which contents get replicated successfully when the mean time required to transfer the
exchangeable contents is comparable or larger than the mean contact time. Indeed, in
those conditions (which correspond to the conditions in which the system is approaching
the maximum amount of information it can sustain) a significant amount of content
exchanges do not take place or are delayed because nodes are still engaged in a content
transfer at the time in which they come in contact with other nodes. Moreover, note that
the busy state is not associated with a specific content, but with the fact that the node
is involved in any exchange of content at a given time instant.

As a consequence of the homogeneous conditions and of the random scheduling of
content transfers, for both static and dynamic nodes at any time instant the stochastic
process of the fraction of nodes possessing a given content within the RZ for that content
(i.e., of the availability of the given content) has the same distribution for all contents, in
both distributed and localized floating systems.

In what follows, for a given choice of RZ radius R, I indicate with a;, i € {s,d},
the mean availability at time ¢, averaged over all contents, for static and dynamic nodes
respectively. The following result derives the PDF of the number of contents possessed

by a node.

Lemma 1. With the given assumptions, in a floating system (distributed or localized)
the number of contents possessed by a static (resp. moving) node at time t, denoted as
m;, is distributed as a binomial Bin(n,p), with parameters n = [’erQJ and p = a;, and
truncated in {%J

For the proof, please refer to the Appendix in Chapter 6. The fact that the distribution
is binomial should not be a surprise, given the independence assumption included in the
homogeneous conditions, and the Markovian assumptions necessary for the development
of a mean field model. The truncation is necessary to account for the limit in the memory
in end user devices, hence for the maximum number of contents that can be simultaneously
stored at a node.

With m; I denote the mean of the number of contents possessed by nodes.

On the occurrence of a contact event, a relevant parameter is the amount of
exchangeable contents, i.e., of contents which are possessed only by one of the two nodes,
and for which there is enough free memory at the receiving node. This parameter is key
in determining the likelihood of a content to be exchanged on a contact event.

Let 4,5 € {s,d}, and let x;; denote the random variable modeling the number of
exchangeable contents from a node ¢ (static or moving) to a node j (static or moving) at
time ¢ and for a RZ radius R.
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Lemma 2. In a floating system (distributed or localized), the PDF of x;; is given by the
expectation with respect to m; and mj, of a binomial PDF Bin(n,p), with parameters

n = |m;] and p=1— a;, and truncated in {% — ij.

For the proof, please refer to Chapter 6 in the Appendix.
Let E[z;j|M = oc] be the mean number of exchangeable contents, for the case in which
host memory is infinite. A key parameter for modeling content diffusion within a RZ is
the probability of successful transfer of a single content during a contact of duration 7.

The following result gives an analytical expression for it, for the considered system.

Lemma 3. The probability of successful transfer of a single content from a node i (static

or moving) to a node j (static or moving) for a contact is well approxrimated by

_ _ Blaig] oo . T
Sij = WMLO@} o (17 \‘( CLOO)J E[Iij1+Iji]>fi(T)dT (4.2)

The lemma tells that the success of a transfer when there is infinite host memory is
just the probability that the duration of a contact initiated in the RZ be larger than what
needed to exchange the data (this is expressed by the term in the integral). Whereas, in
case the memory is bounded to M < oo, it is enough to re-scale the success probability
according to the average number of exchangeable contents. In order to correctly model
the dynamics of information exchange over time, another key parameter is the mean time
spent exchanging contents during a contact, which varies according to whether only one

or both of the nodes in contact are moving.

Lemma 4. The mean time spent exchanging contents during a contact between a static
node and a dynamic node (denoted with Ts), and between two dynamic nodes (denoted

with Ty), are well approximated by

7= [ i (r, B AL ) oy (4.3)
0 Co

For the proof of Lemmas 3 and 4, please refer to the Appendix in Lemma 6. The lemma
expresses the fact that the average amount of time spent exchanging data is obtained by
averaging the contact time, whose distribution conditional to a meeting in the RZ is f;,
under the constraint that data transfer duration is upper-bounded by the volume of data
to exchange, as expressed in Eq. (4.3).

We observe that, in the spirit of the mean field approach, the derivation of these
expressions is also based on a deterministic approximation, which neglects the stochastic
nature of channel throughput and of the amount of contents to transfer. In Section 4.4
the impact of this as well as of other approximations on the accuracy of the model is

verified.
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The following result models the asymptotic dynamics of our system over finite time
intervals, for large RZ areas and hence for a large amount of nodes involved in the process

of diffusion of each content.

Theorem 1. In a floating system (distributed or localized), for any initial condition
(as(0, R),aq(0, R),bs(0, R),by(0, R)) with bs(0,R) = bg(0,R) = 0, for large R, the
quantities (as,aq,bs,bq) converge almost surely over any finite horizon to the solution
(s, aq, bs,bq) (the mean field limit) of the following Ordinary Differential Equations
(ODEs):

das _bs_ . _ o

T = 1—as S

— Tsad( as)S4

dag _ bs _ = by—Nbs - & 200 _

— = (1—aa) Niasssd + S aaSdd | — DR
) . (4.4)

dbs s - - bs

Ds oI5 (1 (1 —by) — =

dl;d 9d 7 \2 dl;s by—Nb. da -

Dd _ 9d g1 )24 nDE b 2 G

dt %D (1=ba)"+ R 7. ¢yDR“

with by > Nbs, and with initial condition (as(0),aq(0),bs(0),b4(0)) =
(as(0, R),aq(0, R),bs(0, R),b4(0,R)). With S;, T;, i € {s,d} I indicate the expressions

in Lemma 8, respectively, with as and aq instead of as and ag.

For the proof, please refer to the Appendix in Theorem 6. Note that V¢, the constraint
by > Nbs must be satisfied. I.e., the number of busy nodes which move cannot be inferior
to the number of busy nodes which are static, as for every busy static node there is (at
least) a busy moving node with which the static node is exchanging contents.

This result states that the probability of observing a difference between any point of
the trajectory of the given system and the solution of the ODEs goes to zero as R (and
hence the mean total number of nodes in each RZ) grows. That is, in the limit, the error
made by considering a deterministic system characterized by a;, and b;, i € {s,d}, instead
of the actual system goes to zero. Moreover, at any time t, for any R, variables a;, and
b; are the expected values of a;, and b;, respectively. Note that I consider bi(0,R) =0 as
I assume that at ¢ = 0 no node has initiated any content transfer yet.

Finally, note that the focus is on settings for which no strongly connected component
exists in the network graph of static nodes. This makes sense in those setups in which
static nodes are deployed in a deterministic manner, e.g., to implement content seeding,
to guarantee a rapid content diffusion and thus a minimum level of content availability.
Nonetheless the present approach, and the ODEs in Theorem 1 in particular, can be

easily extended to account for direct exchange of content among static nodes. We observe
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however that the only effect of these direct exchanges is a more rapid diffusion of content
among static nodes, without affecting the system performance once the diffusion transient

is exhausted.

4.2.2. Quasi-stationary regime

In this work, I are mainly interested in the performance of the system after enough
time has passed from the initial seeding of the content, i.e., at times in which the dynamics
of initial content diffusion are exhausted.

However, in a finite system there is always a non-zero chance of having a content
item disappear from its RZ due to random fluctuations in the population of nodes which
possess that content. The possibility of such an event is present in any finite floating
system, which therefore for ¢ — oo inevitably tends towards the empty state. In the
studied system in particular, this event may happen when there are no static nodes, or
when a given content is not possessed by any static node at t = 0. As the CTMC of the
system has an absorbing state (the empty state), its only equilibrium state is the empty
system.

Therefore, in what follows I focus on the performance of the system in its quasi-
stationary regime, i.e., at a time from content seeding which is large enough for the initial
dynamics of seeding to be exhausted, and at the same time small enough for content
not to have been absorbed yet. Indeed, this is the performance regime which is most
relevant, as in any practical setting the amount of time during which a content should be
stored and made available is not infinite (e.g., due to day/night patterns in vehicles and
pedestrians mobility) but it is often long enough for the initial transient to have only a
marginal impact on the overall performance.

The computation of an estimate of the time to content extinction based on the original
CTMC is unfeasible due to the explosion in the number of the states which should be
considered.

In this section, under some mild assumptions, a condition for the content to float for
an indefinitely long amount of time is derived (i.e., for the quasi-stationary regime to
exist), as well as expressions for the main performance parameters at times from content
seeding in which the initial transient effects no longer influence the system behavior. In
the numerical section I will assess the accuracy of the model, and will investigate the
conditions under which the decay of the system towards the empty state has a significant
impact on system performance.

Given the existence of the absorbing state for the original system (which has been
denoted as §), in order to apply the mean field approach and compute the performance
parameters for the time before absorption, I consider a slightly different system (denoted
with §’). This new system is obtained from the original one by assuming that for each

content, when the system is empty, content is re-seeded. Specifically, I assume that, when
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a content is absorbed in S, in &', at rate € (constant and independent on any parameter
of the system) a management function selects one node (or a few nodes) at random in
the RZ, and injects the content in that node(s). Note that, in the time period between
content seeding and content absorption, S and 8’ are indistinguishable. This is confirmed

by the following result, relative to the mean field limit over finite time intervals:
Theorem 2. For any € > 0 the mean field limit of systems S and S’ are the same.

Proof:This result is due to the fact that the rate e, being constant with RZ radius
R, vanishes with increasing RZ radius at a rate R~2, and is hence negligible in the mean
field approximation, in which all neglected terms are O(R™?). |

Theorem 2 implies that the content seeding process has a vanishing impact on system
performance in the mean field regime, as modeled in the previous section. As a result,
the mean field approximation results of Theorem 1 hold also for &’. This result allows
exploiting Theorem 1 in order to derive a mean field approximation for the stationary
state, which is only defined for &’. Then, thanks to the fact that the two systems are
indistinguishable at times between content generation and absorption, in a regime in which
content absorption is relatively infrequent (i.e., in a regime where the quasi-stationary
state is defined) the mean field approximation for the stationary state of &’ is also an
approximation of the quasi-stationary regime of S. In Section 4.4 the accuracy of this
approach is assessed.

The following result establishes a relation between the stationary state of 8’ and the

steady-state solutions of the problem in Eq. (4.4).

Theorem 3. For any ¢ > 0, for large R the steady-state solutions of Eq. (4.4) are an

approximation of the state distribution of S’ for t — co.

Proof: The CTMC associated to &’ has no absorbing states, and its state diagram
presents no cycles. Hence it belongs to the class of reversible stochastic processes [114].

Therefore, from Theorem 1.2 in [115] it follows that the stationary behavior of the
CTMC associated to 8’ is completely determined by the solutions of the ODEs in Eq. (4.4).
|

The values of the variables a;, and b;, i € {s,d} at the steady state are therefore the

solutions of the following system of equations derived from the ODEs of Theorem 1:
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;_Zadu —@4)S4s =0 (4.5)
(1—ag) Nbssasssd - ba dNbs @qSaa| — ngad = (4.6)
(1_97;)1)(1—53)(1 bd)—sjs_o (4.7)
%2(1 —bg)* — by ;?dNES _ w%R_d =0 (4.8)

with the constraints

Bd — NES >0 (4.9)
0<a; <1, 0<b; <1, i€s,d (4.10)
(4.11)

By solving it directly, it can be verified that among the solutions of the system of
equations, those which satisfy constraints (4.9) and (4.10) are only two. Specifically, if
the system starts from the empty state (i.e., one in which as and a4 are both zero), the
system persists in the empty state. Consider instead the case in which the system starts
from a non-empty state (i.e., a state in which at least one among as(0) and aq(0) are

non-zero). Let

|
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then the system converges to the unique feasible solution given by

g = (4.12)

—x + \/m
2z
only if the criticality condition x > 0 is satisfied, with by, b, given by Egs. (4.7) and (4.8).
Otherwise, the system converges to ag = 0.
Thus, as can be seen from the study of the gradient of the system of equations, if the
criticality condition is satisfied, any trajectory starting from a non-empty state converges
to the unique non-empty feasible steady-state solution.

The significance of the mean availability of content over moving nodes in steady state
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derives from the fact that, in the mean field limit, it coincides with the mean availability of

those nodes that enter the ZOI, and is therefore key in determining the success probability.

4.3. The Storage Capacity of Floating Content

As already noted, the FC paradigm can be seen as a way to implement, through
opportunistic replications, a distributed information storage service, enabling probabilistic
content persistence and retrieval in a limited area, typically with no direct support from
infrastructure (except possibly for the initial seeding of content). In this section, I
characterize the storage capacity of a FC storage system, i.e., the maximum expected
amount of information which can be stored probabilistically. First, a powerful model of
FC storage based on information theory is derived, which allows the computation of the
storage capacity of a FC system. Then, driven by the results of the information theoretic
model, I obtain an extremely simple explicit expression for the FC storage capacity in

saturation conditions.

4.3.1. An information theoretic storage model of FC

In order to derive a model for the FC storage capacity in a way which is analogous
to classical information storage systems, I start by considering a single FE belonging to
a floating system (be it localized or distributed). For this system, let us define the read
and write operations as follows.

The write operation consists in the initial seeding of the content within its RZ,
with the goal of enabling content to persist probabilistically even after the transient of
content diffusion has passed. From Section 4.2.2 we know that a seeding strategy which
attributes each content to at least one node within the RZ enables the system to converge
to a nonempty steady state, though in finite systems more conservative seeding strategies
are often necessary in order to decrease the likelihood of content disappearance from the
system during the initial transient of content diffusion.

In order to define the read operation, we recall that the main goal of FC is to
deliver the content to a given population of users, in a probabilistic fashion, by proactively
populating the local memory of the target hosts in a distributed, collaborative manner,
based on opportunistic content replications between the target hosts and all the other
users in the RZ. In this context, every content delivery is a read operation, as it makes
available to the node the stored content. For instance, the ZOI might correspond to the
location of a movie theater, and the content item to a movie trailer which we assume will
start being requested when users enter the theater. Therefore, to each node entering the
ZOI corresponds a content request, and hence a read operation, which is considered as
failed if the node does not possess the given content. In what follows, we consider the
case in which the ZOI radius is much smaller than that of the RZ, and the RZ radius



72 Floating Content Storage Capacity

large enough for content availability to be well approximated as uniform across the whole
RZ. In this case Py is well approximated by the mean content availability within the
RZ.

In information theory, a storage system is modeled as a communication channel [116],
[117]. In this view, information is transmitted over the channel through a write operation,
and it is received through a read operation. According to the operational definition given
by Shannon [117], the channel capacity is the largest amount of bits per channel use
at which information can be sent on the considered channel with arbitrarily low error
probability. For the specific case in which FC is used as a storage technology, a channel
use is the operation of setting a content to float in the floating area, i.e., a write operation
for a content of size L < M (remember that M is the node memory size). Let us denote
as stored information of a FE the mean amount of information which can be recovered
(i.e., read). Then, similarly to communication channels, if we consider the maximum of
this quantity over all channel uses (and therefore content sizes), we have the following

definition of storage capacity of a floating element:

Definition 2 (Storage capacity). The storage capacity of a floating element with radius

R is the maximum of the stored information, over all content sizes L < M.

In what follows, we consider the floating element and its floating system to be in a
stationary state. With ag4(R,~, L) we denote the mean field limit of the availability of
moving nodes for the stored content, for a RZ radius R. With Pg,..(R,~, L) we denote the
success probability at the mean field limit, which we assume is a monotonically increasing

function of ag.

Theorem 4. In a floating system in quasi-stationary regime, the mean storage capacity

of a floating element is

Cre(R,vy) = max LPsyce(R,v, L) (4.13)

Proof: At the mean field limit, every node in the RZ has the same probability
aq(R,~, L) to possess the content, independently from its position.

In the communication channel model of storage systems, a FE can be modeled as a
packet erasure channel [118], with packet size equal to the size of the content, L, and
packet erasure probability 1 — Psycc.

In such a model, every channel use is a write operation, consisting in setting a content
of size L bits to float in the floating region, and erasures in the channel derive from the fact
that the read operation is not deterministic. The amount of bits which can be recovered,
on average, on a single channel use is hence L Py..(R,vL).

The maximum of this quantity over all channel uses, and hence over all content sizes

L < M, is the storage capacity of the system. |
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In a floating system composed by more than one floating element, the overall amount
of information stored is also a function of how the RZs overlap, hence of both FE intensity
~ and RZ radius R.

The following result gives the capacity per unit area of a floating system for a given

FE intensity, and a given RZ area.

Corollary 1 (Area capacity of a floating system). In a floating system (localized or

distributed) in the stationary regime, the mean storage capacity per unit area is given by

Crs(v, R) = ymax LPsucc(R, v, L) (4.14)

Proof: The system can be modeled as a set of v parallel, independent packet erasure
channels per unit area, one per distinct content. The independence between the channels
holds at the mean field limit and it derives from the “propagation of chaos” result, by
which at the mean field limit for each user the probability to have a content is independent
from the probability of having another content. For each content, the expression of the
capacity of the associated packet erasure channel is given by Theorem 4. |

We observe that the mean amount of information possessed by a node is given
by max(M,yrr?Lag(R,v,L)). Hence, when the success probability is defined as the
probability to transit in a given location of the RZ with a copy of the content, the mean
amount of content possessed by a node is equal to the product of the area capacity and of
the area within the transmission range of the node, and upper bounded by node storage
space M. It is therefore equal to the minimum between the amount of information which
can be read within its transmission range, and the available storage at the node.

In a floating system, the RZ radius modulates the average amount of users, hence
of system resources, dedicated to a given FE, while the FE intensity tells how many
floating contents on average are sustained by the system per unit area. In what follows
we are interested in how to modulate these parameters in order to maximize the amount
of information per unit area stored in a floating system. We have therefore the following

optimization problem:
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Problem 1 (Maximum area capacity of a floating system).

mazximize yLPgyc.(R,7, L)
R,y,L

subject to :
Equations (4.2), (4.3)
Equations (4.5), (4.6), (4.7), (4.8)
Constraints (4.9), (4.10)

4.
4.

R>0 (4.15)
1<L<M (4.16)
DM

Constraints (4.5) to (4.10) allow deriving the expression of the steady-state variables
a;, and b;. Constraint (4.17) derives from the fact that an upper bound to the intensity -,
and hence to the average number of different contents floating in a given area is given by
the average number of nodes present in that area, multiplied by the number of contents
which each node can store. As a consequence, an upper bound to the amount of stored
information per unit area is DM, and it corresponds to the case in which, for each content,
a single copy exists in the system, so that the system has no redundancy.

As for the content size L, we have the following result:
Proposition 1. If (v*, R*, L*) is a solution of Problem 1, then L* =1

This result derives from the fact that, holding constant all else, the lower the content
size, the lower the amount of contact time wasted in content transfers which do not
complete due to the end of contact time. Moreover, the lower the content size, the higher
the amount of information which each node can store in its finite memory, as the memory
size is not always an exact multiple of content size. As a consequence, Problem 1 becomes
a maximization problem over R and v only, with content size equal to its minimum value
L=1.1

Finally, it can be easily shown that, for any choice of the other system parameters,
there exists always a RZ radius beyond which availability decreases monotonically with
increasing R. Summing up, despite Problem 1 is non-convex and nonlinear, it is function of

two variables over finite intervals, hence can be solved efficiently by brute force approaches.

4Note that in real systems, in which per-content communication overhead is non negligible, the optimal
content size is not the minimal one (L = 1). For those systems however, the capacity computed in the
ideal case represents an upper bound to what achievable when overheads are accounted for.
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4.3.2. A simplified model for capacity under saturation

As we will see in numerical results, floating systems can be in one of two regimes with
respect to the amount of injected information. In what can be called the linear regime,
stored information increases linearly with injected content, and availability is very close
to one. In the saturation regime instead, the available bandwidth (or equivalently, the
contact time available for content exchanges) becomes the system bottleneck, since it is
fully used to transfer content. That is, on a contact between two nodes, the likelihood
that the two nodes terminate the exchange before the end of the contact is very low, and
possibly the contact duration is not sufficient to transfer all contents. In a system with
infinite host memory, bandwidth (paired with contact duration) thus becomes the storage
capacity limiting factor. Our mean field model of FC capacity shows that the transition
between the two regimes is quite sharp, so that FC performance can be well approximated
by considering each of them separately.

In order to derive a first-order approximated expression of the capacity in saturation
conditions, we assume contact duration between static and moving nodes (resp. between
moving nodes) to be constant and equal to the mean amount of time taken by a node
to cross a distance equal to 2r (where r is the node transmission radius), given by 2r/v;
where v; is the mean node speed for the contact between static and moving nodes, and
the mean relative node speed for contacts between moving nodes. We further assume
that (since the system is in saturation) increasing the amount of injected contents does
not change the performance of the system.

Given these assumptions, capacity in saturation conditions can be approximated as
the maximum amount of information that can be transferred upon nodes contact, given

by

Ci = Co2r <(1 —) 1/1) (4.18)
Vs oF

The results obtained with this approximation will be discussed in the next section,
together with those obtained with the information theoretic model.

Numerical results will show that the simplified model provides quite close an
approximation of the floating system capacity in saturation conditions predicted by the
detailed model, and estimated by simulations.

It is important to stress that the derivation of this extremely simple and useful result
was possible only thanks to the insight into the floating system behavior provided by the

accurate mean field model developed in this work.
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4.4. Numerical Assessment

In this section, we evaluate numerically the accuracy of our models by means of
simulations, and we characterize the storage capacity of a floating system as a function
of the main system parameters and of node mobility. We have used the FC simulator
version for this work, with some extensions related to the storage capacity metrics, as
detailed in Chapter 6.

We assume nodes move according to the Random Direction Mobility Model (RDMM),
with reflection at the boundary of the simulation area. When two nodes are in contact,
we assume the channel data rate is constant over time and equal to 10 Mbit. Unless
otherwise specified, nodes have a transmission radius of 30 m, and they have unlimited
memory. For localized floating systems, the simulation area is a square of side 500 m, the
RZ has a default radius of 100 m and it is located at the center of the area.

At the beginning of each simulation run, nodes are distributed uniformly at random.
In order to minimize the probability of content loss during the content diffusion transient,
all nodes within the RZ for a given content possess it at start time. When node memory
is finite, the set of contents possessed by each node at start time is a random subset
(different for each node, and of total size equal to the node memory) of all those contents
in whose RZ the node is located. Simulated time has been divided into equally sized slots,
and their duration has been chosen so as to minimize the effects of quantization in time
on accuracy of simulations, and in particular on the errors in detecting when two nodes
are in range or when a node is within a given RZ. Content size has been set in such a
way to have the start and end of time slots coincide with the start and end of content
transfers. Specifically, it has been set to 5Mbit in setups with node speed of 0.2m/s,
and to 100kbit for those with a node speed of 10m/s. Simulations have been run for a
duration of 10000 time slots, which proved to be sufficient to observe the system out of

any transient, and data affected by transient effects have been discarded.

4.4.1. Baseline

In a first set of simulations, we considered scenarios with only dynamic nodes, and
we measured the amount of information stored per unit area in both distributed and
localized floating systems, as a function of the injected information per unit area, i.e., of
the product of the content size times the mean number of contents per unit area which
persist in the system for the whole duration of the simulation (which coincides with the
intensity 7, when the resulting density of floating contents can be sustained by the systems
according to conditions (4.5) to (4.10)).

As Figs. 4.1 and 4.2 suggest, two regimes can be observed.

For low amounts of injected information and with infinite host memory, resource

contention among different floating contents is weak, as the mean contact time is larger
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Figure 4.1: Information stored per unit area in a distributed (Distributed Floating System
(DFS)) and localized (Localized Floating System (LFS)) floating system versus injected
information per unit area. vy = 0.2 m/s, vo = 10 m/s, Dy = 800 users/km?, Dy =
4000 users/km?. Simulation are with a 95% confidence interval of at most 0.35%.

than the mean amount of time required to exchange contents. Therefore, each FE
performs almost as if in isolation. Indeed, mean availability remains constant with
increasing injected information, while stored information grows proportionally to it.

For larger values of injected information, the effects of contention (mainly, on contact
time) kick in, the mean content availability decreases, and the stored information
saturates. As expected, decreasing the node speed (and therefore increasing the mean
contact time) and increasing the node density (and therefore the rate of contacts between
nodes, and the opportunities for content replication) have the effect of increasing the
saturation value of the stored information, which coincides with the capacity of the system.

As Figs. 4.1 and 4.2 show, the estimates of mean availability and of the amount
of stored information derived with our mean field based approach are accurate across
different values of node density, of injected information, and of mean node speed. When
the amount of injected information gets close to the maximum amount which can be
sustained by the system, our mean field model yields slightly optimistic results, due to

the difference between finite systems and their mean field limit. Indeed, as the plots show,
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Figure 4.2: Mean availability in a distributed (DFS) and localized (LFS) floating
system versus injected information per unit area. wv; = 0.2 m/s, va = 10 m/s,
Dy = 800 users/km?, Dy = 4000 users/km?. Simulation are with a 95% confidence
interval of at most 0.35%.

increasing the mean number of nodes in the RZ improves accuracy.

Specifically, a reason for such discrepancy is that while contact events are uniformly
distributed within the RZ, in finite systems, nodes with content are slightly more
numerous around the center of the RZ [13]. As a consequence, there are overall less
opportunities for content replications within a RZ (e.g., at the border of the RZ). This is
also the reason for the slightly more pessimistic simulation results of distributed floating
systems with respect to localized ones. Indeed, in systems with distributed RZs, and
particularly for low densities of FEs, much of the overlapping involves mainly the border
regions of each RZ. As shown in the figures, such difference tends to decrease as the FE
intensity grows.

Another reason for the observed discrepancy is the effect of random fluctuations in
a finite population of nodes. Indeed, when the system gets close to those conditions in
which the steady state solutions of the ODEs in Theorem 1 do not satisfy the constraints
in Equation (4.9) and Equation (4.10) (that is, the conditions in which contents cannot
persist in their RZs), the effects of even small random perturbations in a finite population
of nodes with content gets amplified, because of resource contention and the consequent
loss of efficiency of the content replication process. This brings to an average decrease in

content availability, and to the difficulty in achieving those values of maximum injected
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information forecasted by the model.

In Fig. 4.1 we also report the predictions of storage capacity in saturation conditions
obtained with the simplified approximate expression (4.18). We can see that predictions
are extremely accurate, obviously only in the range of validity of the approximation, i.e.,
under saturation. However, before saturation, stored information coincides with injected
information, so that it is possible to approximate the curves obtained from the information
theoretic model with two lines, one where stored and injected information coincide, and
one with constant stored information, at the level of the saturation capacity.

One of the key parameters affecting the mean area capacity of a floating system is
RZ radius, which is related to the total amount of node memory and content exchanges
dedicated to storing probabilistically a single content.

Fig. 4.3 shows the maximum area capacity of a floating system (Problem 1) as a
function of RZ radius.

As the figure shows, the solution of Problem 1 is achieved for values of RZ radius only
slightly larger than the minimum values below which contents do not persist in the RZ.

For lower values of RZ radius, content availability, hence maximum storage capacity,
decrease rapidly, as smaller RZs imply less opportunities for contents to replicate. For
values of RZ radius larger than the optimum instead, the benefits of a larger RZ (in
terms of a larger amount of time spent in the RZ by nodes, bringing more opportunities
for content replication, hence higher availability) are offset by the fact that a much larger

amount of nodes is involved in content replication, so that the marginal utility of adding
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more users to each RZ is negative.

By further increasing the RZ radius, the maximum stored information reaches a regime
where host memory limits start to affect system performance, further decreasing the
marginal utility of adding more users to each RZ.

As we have seen, for a given content size, node density and RZ radius, when the
density of contents seeded in a floating system is larger than the maximum amount which
can be sustained by the system in steady state (i.e., if the system operates in conditions
in which there is no feasible solution to Problem 1), according to our model the system
converges to the empty state. In practical terms, as Fig. 4.4 shows, this implies that a

process of content disappearance from the system is initiated, and it continues until the
contents which remain in the system can be sustained in the mean field regime. Similarly,
when host memory is finite, if the system is seeded with a higher number of contents
than those which can be stored in host memory, the total number of floating contents
decreases rapidly during the initial transient of content diffusion, until it coincides with

the maximum number of contents which can be stored in host memory.
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Figure 4.5: Information stored per unit area in a distributed (DFS) and localized (LFS)
floating system versus injected information, with 15% of static nodes, for the Random
Direction as well as the Random Waypoint (RWP) mobility model. Simulations are with
a 95% confidence interval of at most 0.35%. Node density is 800 users/km?.

4.4.2. Impact of static nodes

In the FC scheme, a key role is played by node mobility. On the one side, mobility
induces volatility of content, since nodes that exit a RZ are allowed to discard the content
associated to that RZ (and we assume they do so in the present chapter). One consequence
of such volatility is an increase of the amount of resources (in terms of user memory, and
of rate of content replications) required to effectively store a given amount of information.
On the other side, mobility and the induced pattern of contacts allow content to replicate
and thus persist in the RZ, and to be delivered to the target users. The question thus
arises of what is the impact of that portion of the nodes which are not mobile on the
performance of a FC probabilistic storage system.

To address this issue, we performed a set of experiments in which a varying fraction
of nodes is static. Fig. 4.5 shows the amount of stored information in a floating system,
when a portion of the nodes is static. Also in this new set of experiments, our analytical
approach proves very accurate across a variety of settings and for different choices of

system parameters.
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By comparison with Fig. 4.1, it emerges clearly that the presence of static nodes allows
at least a fraction of contents to persist deterministically in the RZ. As a consequence, in
a system with infinite host memory and at the mean field limit, there is no upper bound
to the amount of injected contents which can be kept floating. However, similarly to the
case with no static nodes, by increasing the injected information (e.g., by increasing the
amount of contents injected while keeping constant content size), the amount of stored
information reaches a saturation value.

The point of saturation corresponds to a value of injected information at which the
mean amount of time spent exchanging content during a contact is equal to the mean
duration of a contact. Indeed, as the plots show, to a higher node speed corresponds a
lower value of stored information at saturation (i.e., of capacity). As these results suggest,
when host memory is limited, the capacity of the floating system is the minimum between
the saturation value without memory limits, and the host memory.

Also in this case that includes static nodes, we report the predictions of storage
capacity in saturation conditions obtained with the simplified approximate expression
(4.18), which are again extremely accurate.

The impact of node speed and therefore of the mean contact time is also clearly visible
from Fig. 4.6, which shows how capacity varies as a function of the percentage of static
nodes in the system. As the plots show, when the fraction of static nodes is small, their
effect on system capacity is negligible. When the fraction of static nodes is significant,
however, the mean duration of a contact increases, and therefore, as observed already, so
does the value of saturation of the amount of stored information.

Another key factor affecting the capacity of a floating system is node density, which
determines the amount of resources involved in the process of information storage. As
Figs. 4.7 and 4.8, by increasing node density, capacity increases (as expected) until it
reaches a saturation value which is function of the fraction of static nodes in the system.
The initial increase is due to the fact that by increasing node density, the rate of contact
between nodes increases (quadratically, for the considered mobility model). However, for
scenarios with a majority of moving nodes, an upper bound to the amount of exchanges
which can take place at the same time is given by the fact that, if a node is busy exchanging
contents with another one, it is not available for other exchanges until it is done. At high
node densities, this decreases the likelihood for a node that just came in contact with
another node to successfully engage in a content exchange.

In these settings, the reason for which the scenario with mainly static nodes performs
better does not reside only on the fact that mean contact duration is larger. When
dynamic nodes are only a small percentage of the total nodes in the scenario, as the rate
of contacts between static nodes is zero, the overall contact rate is drastically reduced,
and the saturation effects described above kick in for much larger values of node density.

Finally, note that our model does not account for the bandwidth saturation which might
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Figure 4.6: Information stored per unit area in a distributed (DFS) and localized (LFS)
floating system versus injected information per unit area, with 15% of static nodes.
Simulation are with a 95% confidence interval of at most 0.35%.

take place at high densities. Indeed, for large enough node densities (or equivalently, large
enough transmission rates) nodes form clusters, thus boosting the likelihood of content
persistence and successful replication, further improving capacity beyond the bounds
given by our model. However, as already stated, as in those conditions store-carry-and-
forward is not any more the main mode of communication, more efficient paradigms of
communications and content diffusion than FC are available.

One of the main drawbacks of FC as a probabilistic information storage system is
its reliance on the user’s willingness to make resources available for the FC scheme. A
possible alternative implementation of such a system may consist in delegating to a set of
static nodes (totems) the task of content dissemination to moving nodes. This approach
would avoid dealing with incentives for cooperation, at the cost of deploying dedicated
infrastructure for spatial information storage and diffusion. For instance, Road-Side Units
(RSUs) could play the role of totems in a vehicular communication scenario.

In Fig. 4.9 we plot the density of totems required to achieve the same capacity as in
the case in which content is exchanged among moving nodes without any infrastructure.

Reported curves start at the density of moving nodes below which the content does not
float. As the figure shows, a very large amount of totems would be required to achieve the

same capacity achievable with opportunistic content replications among dynamic users. In
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memory limit, R = 100m.

practice, the number of totems should be comparable with the number of dynamic users.
E.g., one totem should be deployed every two or three users, in the cases considered in
Fig. 4.9. The cost of such infrastructure would clearly be unsustainable for any operator

in any dense scenario like the previously mentioned vehicular communication scenario.

4.4.3. Impact of non-uniform mobility models

The results we discussed so far were derived using the RDMM, which enjoys the
property of generating a uniform distribution of users, as requested by our modeling
assumptions. However, real mobility patterns are more complex, and they do not share
the above property, thus violating one of the assumptions used for modeling.

In order to validate the robustness of the predictions generated by our model, we
now discuss results obtained with two other mobility models. The first one is the well-
known RWP mobility model, that is known to generate clustering of users in the center
of the simulated area. The second one is a more realistic mobility model, generated using
the Simulation of Urban Mobility (SUMO) tool [119], considering measurement-based
mobility traces of the the city of Luxembourg [120]. We feed SUMO with traffic data to
produce realistic traces of vehicle movements over the road grid of the city. Specifically,

we have considered a square area of side 4 km near the centre of Luxembourg City (see
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Figure 4.8: Capacity per node of a distributed (DFS) and localized (LFS) floating system
versus node density, for different percentages of static nodes. v = 10m/s, tx radius 30m,
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Fig. 4.10), and the vehicular traces relative to the time interval going from midnight to
3 AM, so as to observe a low node density condition. We have considered a RZ radius
of 800 m, a transmission radius of 240 m (such as the one achievable by Dedicated Short-
Range Communications (DSRC) [121]), and a data rate of 10 Mbit/s. An average of 22.02
cars were present in the RZ during the given time interval, exiting the RZ at a mean rate
of 0.105 cars per second, with a mean contact time of 37.5s and generating an average of
0.959 contacts per second within the RZ.

Results in the case of the RWP mobility model are reported in Fig. 4.5, assuming the
presence of 15% of static nodes. Our modeling approach can be seen to be quite accurate
in spite of the nonuniform user distribution generated by mobility.

Results in the case of the SUMO mobility model over the streets of a portion of
Luxembourg city are reported in Fig. 4.1, for moving nodes only. Also in this case,
results can be seen to be quite accurate in comparison to model predictions generated
with the corresponding parameters.

We can conclude from these experiments that our model is quite robust to variations
of the node mobility pattern, and in particular, that it performs well on realistic mobility

patterns which generate non-uniform user distributions.
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Figure 4.9: Density of static nodes required, in a floating system without content exchange
among moving nodes, to achieve the same capacity as in the case in which content is
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limit, R = 100 m.
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This chapter focuses on the computational capacity of an infrastructure-less mobile
system whose communication behavior follows the description provided in the previous
chapters. Specifically, this chapter provides definitions and performance evaluation figures
for Floating Gossip (FG). FG is a novel proposal of this thesis, and consists in a
distributed computing and communication scheme rooted not only in Floating Content
(FC) but also in Gossip Learning (GL) [100]. Moreover, in FG, the computation power
is purely provided by mobile users.

The investigation complements the work presented so far in the thesis by analyzing
computing aspects that are typical of Machine Learning (ML) operations (namely,
learning and producing models with observed data) in a distributed environment in which
information (i.e., observations captured from the environment and models trained with
past observations) is moved through FC. The work leverages a generic ML distributed
process and does not enter into the details of more specific applications. Indeed, the work
aims to identify the general limits and trade-offs of infrastructure-less communication and
computing systems used to implement ML in a cooperative way.

The goal of this chapter consists in characterizing the performance of the FG approach
when one or more models circulate in a Replication Zone (RZ). Each model identifies
an observable process, and there can be multiple instances of a same model, depending
on the set of observations used to train the model. The training set is not necessarily
the same at each node in possession of the model. Moreover, as common in distributed
ML approaches, we assume that nodes can exchange model instances and merge them.
The FG characterization presented in what follows takes into consideration the three key

aspects, i.e.:
= Model availability, i.e., the mean fraction of nodes in the RZ with a model.

= Observation availability, i.e., the mean fraction of nodes in the RZ that possess

a model instance that has been trained with a given observation.

» Learning capacity, i.e., the maximum amount of observations which can be
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incorporated in models floating in the RZ. Note that the learning capacity depends
on computing and storage capacity at nodes as well as efficiency of FC, and
in particular on the average number of nodes whose models incorporate a given

observation.

The proposed FG scheme is characterized through detailed simulation experiments
carried out with a customized Python simulator which branches out of the FC simulator

used in the rest of the thesis.

5.1. The Floating Gossip Scheme

Consider a dynamic environment where many events happen (e.g., a crowded theme
park or a post-disaster area). Over this environment, a number of actors (humans or
machines, that we term nodes) operate for a variable amount of time. During their
stay in the environment, these nodes need to collect information that helps them make
decisions (e.g., which attraction to visit or where to provide additional workforce) and/or
perform some task.

The individually collected information consists in local viewpoints (termed
observations) of what is happening in the environment at a given time. By using
observations, each node builds its own partial, incomplete representation of one or more
dimensions of the environment (each termed model), and may therefore take potentially
sub-optimal decisions. Indeed, possessing a global (or at least, a less partial) model can
be very valuable to improve decisions’ quality.

For such an environment, a centralized scheme for observation collection and fusion in
a model might raise privacy concerns, or not be viable when communication between nodes
and the central infrastructure is not available (this typically happens in a post-disaster
scenario). For these reasons, we consider an environment in which nodes exchange their
models using Device-to-Device (D2D) when they come in proximity of one another. Then,
by fusing their own model instance with the one received from another node, they generate
a better model of the state of the environment. The fused model is a better representation
of the environment because it incorporates a larger number of observations, some older,
some more recent. In general, the utility of such a model is related to the number of
incorporated observations, as well as to the time at which they have been collected.

Furthermore, we consider that models are relevant only in specific geographical areas,
and that observations become obsolete and hence not relevant after a fixed amount of
time. Therefore stale observations are discarded and nodes that move outside the region
of interest drop the instances of the models they own.

Our approach is thus similar to the one adopted in GL, but it is based on models and
observations whose availability persists thanks to an opportunistic FC scheme. We term

the resulting learning scheme FG. While we use this more general term, our approach can
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be seen as a ML process, where each observation is incorporated into the model (through a
training algorithm), and models are exchanged and fused (through a merging algorithm),

as in GL. In the rest of this chapter we will refer to this case.

5.1.1. Formal definitions

We consider a population of nodes that cooperate in performing one or more tasks for
the construction of a multidimensional representation of the environment in which they
operate. Each dimension of the representation is associated with a model.

For the sake of simplicity we describe the system operations in the case of one model,
concerned with one dimension of the environment (e.g., the road interruptions in the
disaster area), but later we will also look at the case of several models evolving in parallel.

Nodes move within an area, a portion of which defines the model RZ. When entering
the RZ, nodes have a model structure, not yet populated with fresh data (for example, a
rescue team entering a disaster area has a map that does not yet contain recent information
on the critical issues in the area). While in the RZ, nodes collect data (i.e., observations)
that are used to integrate the model structure with a training operation. By so doing,
each node generates and updates its own model instance.

Each node is equipped with a wireless transceiver, and a positioning system that gives
its position in space. We say two nodes are in contact when they are able to directly
exchange information via wireless communications.

When two nodes come in contact of one another within the RZ, they exchange their
model instances (unless those already incorporate identical sets of observations) by means
of opportunistic communications, following the FC paradigm. The two models are then
locally merged by each node, to produce a better informed version of the model instances
at both nodes.

In order to more precisely describe the process of model building and updating, we
introduce some definitions. Note that they are inspired by GL terminology, but they can

be generalized to other tasks based on collaborative processing.

Definition 3 (Model). A model is a description of the environment according to one
dimension, which can be used to support decisions related to such dimension. For example,
a model of the road system in a disaster area allows finding paths to reach a rescue location

avoiding road interruptions.

Each node maintains a local model instance, generally different from that of other

nodes.

Definition 4 (Model instance). A model instance is a version of a model residing on
a node, which has been trained with the node’s own observations (which form the model

local training set), and has possibly been merged with other nodes’ model instances to
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incorporate their observations (the union of the local training sets of all merged models

forms the model total training set).

Definition 5 (Training). The model training operation is a transformation which takes
as input a model instance, and a new set of observations (possibly just one), and it gives
as output a new model instance, with a training set given by the union of the training set

of the old model instance and the new set of observations.

Definition 6 (Observation age). The age of an observation is the time since its

generation.

Definition 7 (Merging). The merging operation is a transformation which takes as input
two or more instances of a model, and gives as output a mew model instance, whose

training set is the union of the training sets of all of the input instances.

The process by which the new model is derived is not specified in our work. Typically,
in the case of Artificial Neural Networks (ANNs), the coefficients of the model obtained
through merging are derived with a weighted average of the coefficients of the merged
model instances, though more complex approaches are possible. Such a definition of the
merging operation seems to suggest that it produces a model instance with the same
performance (e.g., in terms of accuracy) as a model instance obtained by training over
the union of the two training sets. However, this is well known to be an approximation.

Every time a node produces a new observation, it uses the new observation to train
its local instance of the model. As a result, in general, a fraction of the observations
within a model instance training set are endogenous, i.e., incorporated in the instance
through training by the node on which they reside, while the others are exogenous, that
is, incorporated through merging.

Finally, users exiting the RZ discard their local model instance, as well as all collected

observations.

5.1.2. The FG System

In addition to the FC communication paradigm that has been studied in the previous
chapters, in this chapter the system is enriched with a new feature, the computing
component. With this new approach, the nodes will be able not only to exchange contents,
named models in this context, but to also perform computing tasks (e.g., train models
and merge model instances). The principal idea in order to assess the system computing
capabilities, consists in measuring the learning capacity, i.e., how many observations are
incorporated in a learned model instance. In this way, we will demonstrate whether this
kind of communications-computing systems are feasible and how much information can

be learnt for different setups.
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Table 5.1: Main notation used in the chapter.

Notation Parameter
A () A(m) Mean model availability at time ¢ and its time average
AL)(9), Al0) Mean observation availability 6 time units after observation generation and its

time average
Mean contact rate per node (s %)

g

L Model size (bits)

M Number of models floating in the RZ

M; Number of nodes possessing an instance of model ¢

M, ZJ Binary variable indicating whether an instance of a certain model i is available
at node j

N Mean number of nodes in the RZ

N(t) Number of nodes in the RZ at time ¢

N;(¢) Number of nodes with an instance of model i at time ¢

O; Number of models floating in the RZ with observation ¢

Binary variable indicating whether a certain observation ¢ has been trained or
added at model j

T Learning capacity (i.e., time average of the mean number of observations
embedded in all model instances owned by a node)

te Duration of contacts between nodes

tr Mean time between contacts observed by a node

T; Mean number of observations of each model’s training set

Tr Model transfer time

Thrr Merging time

Tr Training time

Trz Mean time spent by a node in the RZ

w Number of models which can be stored at a node

A Observation generation rate (per model)

T Generation time of observation 4

T Observation maximum age

Q Number of observations

There are M models in total, and each node can hold a single instance of up to
W models, assuming that a realistic implementation of FG will impose such practical
limitation. When the number of models M is larger than W, we assume each node chooses
a subset of models of interest, which is equivalent to subscribe to up to W observation
channels. For the remaining M — W models, the node will not accept any instance, nor
it will record any observation associated to them.

As it is done in legacy GL systems, FG relies on the diffusion of local model
instances built by individual nodes, rather than by exchanging observations directly.
However, differently from GL, in FG learning occurs in a fully distributed way and using
opportunistic data exchange without the help of a network infrastructure, which means
that we rely on a FC scheme. In turn, this means that, to transfer models, we resort
to D2D protocols like Bluetooth and Wi-Fi Direct. We partially neglect the overhead of
such protocols and retain two main aspects: ¢) connection establishment takes time tp,
which we consider as a constant, and i) data transfer is not instantaneous but depends
on the quantity of data to exchange bidirectionally, though we consider the transfer rate

as fixed. We also realistically consider that data exchanges occur pairwise, and it is not
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possible to create and manage groups with more than two connected nodes, which would
be highly unstable due to mobility. We say that two nodes establishing a connection or
exchanging models are busy, and so they cannot accept any request to connect with other
nodes until they finish and immediately disconnect.

These parameters are important to determine the success of a model transfer upon a
contact between two nodes. Other impart factors are the frequency of contacts observed
by each node, g, and the duration of contacts, which is denoted by ¢. and represents the
time during which two mobile nodes are closer than a transmission range interval. The
mean time necessary for the transfer of a model instance between two nodes is instead
denoted as 17, which is a function of the capacity of the channel between two nodes in
contact, as well as of the size of the model instances, which we take as fixed to L bits.
The order in which model instances are transferred upon a contact is important but since
scheduling optimization is out of the scope of our investigation, we consider a system in
which they are picked uniformly at random among the available ones.

Once exchanged, instances belonging to the same model are then fused through local
computation, again without the help of an infrastructure. Received model instances are
not used and propagated until they have been fused with the local instance. This requires
storage and computing resources at the nodes not only for incorporating observations into
local model instances (training), but also to fuse different instances of the same model,
upon they are received from neighbors (merging). Storage and compute resources are
used as in a system with a FIFO queue where pending tasks are stored while waiting for
their execution. Training and merging times are constant and are indicated as T and
T, respectively.

Moreover, since observations are sequentially generated and model instances are
asynchronously acquired, observations and model instances are queued individually
and then trained or merged one by one. However, an observation can be recorded
simultaneously by at most W nodes. Model instances resulting from training and merging
are uniquely identified by the set of observations used to build the merged instances.
Therefore, two instances of the same model with a same (aggregate) training set are
indistinguishable, independently on whether the observations were locally collected or
embedded thanks to merging with other model instances. However, observations relevant
for the performance of the application to which each model is associated are all those
generated within a maximum age, which we denote as 7;. Observations older than 7
do not need to be incorporated into a model, and they are not counted as part of the
training set. This makes sense in those scenarios in which the process which underlies
the generation of the data of the observations is not stationary over time, in which case
training a ML model with old data might make it unfit for producing accurate inferences.

The notation used throughout the chapter is summarized in Table 5.1
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5.2. Key performance indicators

To illustrate the system behaviour, this study is based on the three main metrics
described in what follows.

Model availability: model availability is described as the average number of nodes
inside the RZ that possess a given model, divided by the total number of nodes in the
RZ. We compute the average across all models in the scenario.

We use Mf (t) to denote a binary variable indicating whether an instance of a certain
model ¢ is available at node j at time ¢. Therefore, the number of nodes possessing an
instance of model ¢ within an RZ at time ¢, within a set N(t) of nodes in the RZ, is
expressed as

Mi(ty= 3" M. (5.1)
JEN(?)
Note that M;(t) is the number of instances of model i available within the RZ and that
we are considering a single RZ.

We therefore measure the availability of model 7 in the defined RZ at time ¢, denoted
by Agm) (t), as the fraction between the number of nodes that possess model ¢ and the
total number of nodes inside the RZ. With the above, the availability at time ¢ for model

1 is expressed as
m(p) = Hit)
‘ [N ()|

(5.2)

where | - | denotes the number of elements in a set. To evaluate the overall scheme, we

)

will use the mean model availability at time ¢, which is the average of the AZ(»m values

computed over all the models of the RZ, i.e.:

M
A6 = 3 A, (5.3)
where M denotes the number of models.

Model availability is one of the key metrics of the system because it reveals whether
a given scenario behaves as expected, i.e., considering a given model availability we can
understand if models are floating around and how easily new nodes reaching the RZ will
be able to retrieve an instance of them.

Observation availability: given a certain observation, its availability is obtained as
the number of nodes in the RZ for which one of its models has been trained with that
observation, divided by the total number of nodes within the RZ.

Specifically, we define O{ (t) as the binary variable indicating whether a certain
observation 7, generated at most 7; time units before the current time ¢, has been trained
or added at node j by time t. Therefore, the number of models that have the observation

i in its training set within the RZ is expressed as
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it—t)= > O (5.4)
JEN(1)
In the same way as with models, we measure the availability per observation, AEO) (1),
as the fraction between the number of models (possessed by the nodes) that comprise
observation ¢ in their training set and the total number of models inside the RZ. With

the above, the availability at time ¢ for observation ¢ is expressed as

o Ol
SO =N

(5.5)

where V;(¢) is the number of nodes in the RZ that own the model to which the observation
i belongs, at time t. We use then the mean observation availability 6 time units after the

o)

generation of the observation, which is the average of the AZ(- values computed over all

the observations, i.e.:

Q
Z TZ +6), 0<cl0,7); (5.6)

‘Q \

where € is the number of observations and 7; is the time at which observation ¢ was
generated.

Observation availability gives us a clear understanding about the effectiveness of
the merging and training processes of the system. Based on the amount of different
observations comprised in each model training set, i.e., the availability of different
observations around the RZ, new nodes entering the RZ will be able to retrieve more
complete model instances with higher probability.

Now we address the following question: What is the maximum amount of information
which can be learned, i.e., incorporated in a model, using FG, i.e., a decentralized, FC-
based GL framework? Here, we are interested in the overall amount of information stored
in model instances in a node in our FG system and whose age is not larger than 7;, in
the steady state for the process of model diffusion. This quantity is important because
it measures the learning capacity of a node in the FG context. Note that this approach
considers what a single node can learn thanks to FG because what matters in the system is
that individual nodes learn one or more models and use them to make their own individual
decisions.

Therefore, the most relevant metric to understand the learning capacity is the
mean number of observations T)(t) of each model’s training set, i.e., the amount
of observations present at every model possessed by a node. The number of observations

of a node j is defined as

M .
t)y=> 0. (5.7)
=1
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Taking into account the average number of observations in a node, we can observe the

learning capacity value of the system as a whole, i.e.:

— 1 1
T = / T;(t)dt, 5.8
b W 2 T (5:)

where the result is averaged over a sufficiently large interval [r1, 7], after the system
reaches the steady state (i.e., after a transient period to be accounted for when injecting
a new model).

There are a number of parameters that can affect the learning capacity of the system,
and which we will study in Section 5.3. Since FG has both connectivity and computing
components, parameters affecting either of the two components will be relevant. For
what concerns connectivity, the parameters that affect the capacity of FC also affect FG.
Thus, the density of nodes, the radius of transmission and the other parameters studied
in the previous chapters will also impact on the performance of FG. Besides, the number
of models indirectly affects the size of data exchanges, so it also contributes to generate
load on the communication front. This is one of the most relevant parameter because
the more models we inject in the system, the larger the number of instances that will be
replicated when exchanges between nodes occur. Moreover, the size of the models is also
key to determine the load of the communication component of FG. Both the number
of models and the model size also contribute to generating the computing load of FG.
Specifically, the higher the number of models and their size, the higher the computing load
and the probability that computing tasks get delayed because merging and training task
share a common buffer and a common server at the host node. In addition, observation
generation rate, as well as merging and training times are crucial parameters that will
directly affect the computing power of our system. By modifying these values we will be
able to discern the most suitable processing resources that such system needs to employ
to achieve the desirable learning capacity. Note also that communication and computing
component feed each other in the FG system. Indeed, when communication is limited
(e.g., in case of low densities of nodes or low transmission rates), the computing load
due to merging model instances goes low, and so goes for the learning capacity of the
system, which becomes communication-limited. Similarly, when the computing power is
too low for the tasks to run (e.g., causing large delays in making new model instances
available), the communication channel becomes underutilized and the learning capacity
becomes computation-limited. Therefore, in a real system, any of its two components,

i.e., communication or computing, can become a bottleneck for FG.
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5.3. Performance Evaluation

In this section, we evaluate numerically the performance of the FG system by means
of simulations. To this aim, I have used the FG version of the FC simulator used in the
rest of the thesis, which allows to evaluate the fundamental factors that affect the learning

capacity of FG. The description of the simulator used for FG is contained in Chapter 6.

5.3.1. System simulation and setup

The simulator implements FC for the exchange of model instances, which is done like
for contents in a normal FC systems. For this work, we have applied a restrictive data
transfer policy in which nodes can only store and exchange models while they are inside
the RZ. When nodes leave the RZ, all models and pending models, that are queued to
be trained or merged, will be erased from node databases.

In the simulations, we consider a rectangular region which embeds a single RZ. When
a new observation is generated, only one node in the RZ, chosen uniformly at random
every time, receives it. We define this node as the “seeder” and such node will also
obtain a model instance related to such observation in case it does not posses it before
observation generation time. Within the RZ, nodes that come into contact, and are not
already enrolled in another connection, will be able to connect and exchange the missing
model instances in the peer node. After model exchange or observation generation, each
node holds a FIFO queue of tasks (pending model instances) to be sequentially computed
according to predefined merging and training times. Tasks are never dropped unless the
node leaves the RZ, but can suffer large delays before being completed.

At the beginning of each simulation run, nodes are distributed uniformly at random,
then they move according to the Random Direction Mobility Model (RDMM) model,
with wrap-around at the boundary of the simulation area. When two nodes are within
transmission range, the channel data rate is constant over time. Simulated time has been
divided into equally sized slots, whose duration has been chosen so as to minimize errors
in detecting when two nodes are in range or when a node is within a given RZ, according
to the input parameters used in the simulations settings.

The simulator introduces the following approximations on the behavior of FG: for
simplicity, the results reported in what follows have been computed by considering that
the length of model instances do not depend on the number of observations used to train
the model. Models have a predefined size and trained observations are only considered
when exchanging models, i.e., a node will exchange a given model instance to a peer node
only if the model instance has observations in its training set that are missing in the peer
node model instance. Training time and merging time are also considered as constant
values, which means that the complexity of training and merging operations is barely or

not affected by the description of an observation and the structure of the model. This



5.3 Performance Evaluation 99

occurs, for instance, for distributed ML algorithms that need to exchange and update a
fixed number of parameters. Most of the times a training process will be preceded by a
merging process since the most common case is that a node already possesses an instance
of the same model which will have to be merged with the new received instance. It is
important to note that, there is only one case in which this merging process is definitely
not needed, when a seeder generates an observation and it does not possess the model
instance belonging to that observation. In this specific case, the seeder will directly train
a default model instance with the generated observation.

Unless otherwise specified, the simulation area is a square of side 200m, the RZ has
a default radius of 100m and it is located at the center of the area. Observations are
generated at a rate A = 0.1obs/s per model, and inter-arrival time of observations is
exponential. Each observation has a lifetime of 300 s. Therefore, 30 fresher observations
are generated, on average, per model, during the lifetime of an observation. The channel
rate is equal to 10 Mbit/s when nodes are within 5 m, and it is 0 Mbit/s otherwise. There
are 200 nodes in total, which makes N ~ 157 nodes in the RZ in total, on average. The
speed of nodes is 0.5 m/s. On average, the sojourn of a node in the RZ lasts /2 times the
radius of the RZ divided by the speed, which means about Try ~ 282 s in the adopted
settings.

For model size we have chosen different values depending on three configurations,
using 1 to 10 models, which span very different communication and computing loads.
We also report results of experiments with small and large training and merging time,
so as to be able to focus on communication limits (when the processing time is short)
or on computing limits (when processing time is long). All the input parameters of the
simulator are shown in Table 5.2.

We count on 20 simulation runs per configuration and each run has been executed for
a duration of 10000 time slots, which proved to be sufficient to observe the system out of

any transient, and data affected by transient effects have been discarded.

5.3.2. Numerical results

Fig. 5.1 shows the time average of the model availability A(™)(t), computed over the
last 30% of the simulations, for increasing values of model size, with short training and
merging times. In this case, for the three different configurations (with 1, 3 and 10 injected
models) the model availability starts at high values, between 0.75 and 0.8, depending on
the number of models. This happens because, for small model sizes, transfer times are
much shorter than contact times, on average. With a model size of 10000 bits, and a
data rate of 10 Mb/s, the transfer time is between 1 ms and 2 ms, depending on whether
transmission is unidirectional or bidirectional. This has to be compared with an average

contact time t. of about 6 s, and an average inter-contact time (g~!) of about 40 s, as
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Table 5.2: Input parameters

Parameter Value

Number of models (M) 1, 3, 10

Model size (L) 0.01Mb - 100 Mb
Observation generation rate (g) 0.10bs/s
Total number of users 200

User Speed 0.5m/s

Slot length 0.5s

Number of RZs 1
Transmission range 5m

Radius of replication 100 m
Simulated area 200m x 200 m
Channel rate 10Mb/s
Memory limit infinite
Merging time (Ths) 2.5s, 258
Training time (Tr) 5s, 50s
Simulation length 10000 slots
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Figure 5.1: Model availability with low training and merging times.

observed experimentally in the simulations.! Under these circumstances, observations are
mostly acquired via model exchanges and merging rather than via direct training. Indeed,

note that, with the observation generation rate of 0.1 obs/s per model, an average sojourn

Tndeed, a standard analysis of the RDMM mobility model would tell that there should be, on average
1.96 contacts per second in the RZ, each contact involving 2 nodes. Thus, it will take N/(1.96 - 2) ~ 40 s
for all N ~ 157 nodes in the RZ to be involved in a contact.
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time of 282 s in the RZ, and 157 nodes in the RZ, on average, each node will receive
0.18 obs/model while in the RZ. Being the generation of observations a Poisson process,
we also know that the probability that a node receives no observation is about 0.84 and
the probability to receive exactly 1 observation is about 0.15.

With an extreme simplification, we can estimate the average model availability in
the case of one model by looking at the probability of acquiring the model within the
first 3 contacts (i.e., the probability to acquire the model only after more than 3 contacts
becomes negligible). Assuming that the contacts occur at deterministic spacing, i.e., every

g~! = 40 s in our case, and accounting for time averaging, the model availability obeys

the following equation:

3
Al = 3 ATm) (1 - A(m))k_l Trz — k/g — (Té‘ﬁ + (T + TT)/Q), (5.9)
=1 RZ

where the merging time Ty is 2.5 s and the training time 77 is 5 s. Discounting half of
Tar + Tt from the available time is done to account for the fact that a merging task can
be queued if the node is busy with computation when a model exchange occurs. After
factorizing out the term W, the above expression reduces to a second order equation
with only one solution in the range (0,1). In particular, for the case of the experiments
reported in Fig. 5.1, the solution of Eq. (5.9) is A(™) ~ (0.79. This result matches well

enough the experimental value reported in the figure for one model. With more models,

the model transfer and merging times grow linearly, which implies a delay in merging
models, hence a reduction of time over which the models are available. This effect is
indeed observed in the figure.

At the other extreme, with very large models, contact times are not sufficiently long for
model transfer. Models can only be acquired with the training of endogenous observations.
As mentioned above, each node will receive 0.18 observations per RZ traversal, and each
observation, in practice, will be trained into a different model since the probability to
receive more than one observation per node is negligible. Considering that the observation
will be received, on average, for half of the sojourn through the RZ, and training time is
negligible with respect to the sojourn time, we should expect an average model availability
of about 0.09. This value is very close to what we see in Fig. 5.1. Moreover, with such a
short training time, the result applies independently of the number of models.

Finally, the transition between the two regimes can be expected to happen before
model sizes are such that transfer times are comparable to contact times. In the case of
Fig. 5.1, during a contact time is possible to transfer between 30 and 60 Mb, and indeed
we can see in the figure that transitions happen between 6 and 60 Mb, in the case of
one model. With more models, the transition moves to the left because of the increased

volume of data to be transferred, which roughly scales with the number of models.
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Figure 5.2: Learning capacity with low training and merging times.

The learning capacity that corresponds to the average model availability discussed so
far is depicted in Fig. 5.2. In the figure, the time-average of the number of observations
per node is taken over the entire simulation. The trend shown in the figure is similar
to the one of average model availability, and in particular the transition between high
and low capacity regions occur like for availability metrics. It is therefore full clear that
relying on communication though an FC system is doable under low/medium loads, and
that FC introduces a sharp phase transition on ML and FG performance. The impact of
computing load, which in the figures discussed so far is visible in the differences between
curves computed with a different number of models, is much less disruptive. Indeed,
notwithstanding the fact that here the values reported are cumulative values over the
number of models M, it is interesting to observe that the performance metrics do not
scale with M but slightly change their behavior.

The values of T on the right part of Fig. 5.2 correspond to the equivalent values of
model availability (see Fig. 5.1) multiplied by the number of models. This is due to
the fact that models are only acquired by endogenous observation and training, and, as
commented before, each model contains only one observation with high probability.

Instead, for low model sizes (left part of the figure), we know the average fraction
of nodes with model, and we need to estimate the average number of observations per

model at a generic node, so as to estimate the values reported in the figure. Neglecting the
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Figure 5.3: Observation availability over time with short training and merging times and
L =0.01 Mb.

queuing delay of processing tasks, which is possible only for small values of T and Ts and
for a limited number of floating models, the number of nodes at which each observation
is available can be approximated as an exponentially growing function of the observation
lifetime. More specifically, from the moment an observation is integrated in a model
for the first time, which happens, on average when the node training the observation is
halfway through the RZ, the number of nodes with that observation tends to double every

1~ 40 s. However, we must account for the fact that the observation

inter-contact time g~
diffusion time starts with a delay equal to the merging plus training times T3;+717; besides,
nodes exit the RZ with a rate of T; gzl ~ 1/282 s~ !, and hence drop all their observations.
Therefore, in g~! s, the fraction of nodes that leave the RZ is 1/(g7Trz) ~ 0.14. This
fraction applies to all nodes, and in particular to nodes with the considered observation.

Thus, we can approximate the number of nodes with the observation, 6 seconds after its

. . 9 (0—(Tr+Tr)) .
generation as 0 if 8 < Ty + T, and (2 . (1 — Q%RZ>> MY Gtherwise:
1 9 (0—(Tp+Tr))
n(9)2(2-(1— )) u(t—(Tvu+Tr)), 60<m,
91Tryz,

where u(-) is the unit step function and the expression is valid 6 time units after

observation generation and up to 7;. The described behavior is reflected in Fig. 5.3, which
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reports observation availability curves as they evolve in the lifespan of an observation

when the model size is small. The curves roughly correspond to n(8)/(IN A(™), which
is an approximation for the observation availability, given the average model availability.
The figure shows that, as expected, the number of models does not make an important
difference in the curves, at least up to M = 10. Indeed, consider that the average
processing time required at each node can be, in the worst case the one required to merge
M g Tgryz times per RZ traversal, plus M A Try/N observation training occurrences. With
the values used in the described experiments, this sums up to about 18.5 M seconds, which
is sufficiently lower than the total time in the RZ, so that we can, as a first approximation,
neglect the queueing delay of processing tasks.

However, for what concerns the average number of observations present in each node,
we have to consider that each observation 7 is received first by a non-seeder node when it
is 0; time units old, and then it is kept until the node leaves the RZ. Some observations
will expire during the node’s journey through the RZ, but they will be replaced by other
observations received directly or by means of model instance exchanges. Thus, putting
together what seen in the RZ for an observation and its replacement after expiration,
the average node sees two parts of the average observation diffusion curve for each of the
A 7; observations per model that can be present at the same time (i.e., only observations
which have not expired, hence they are at most 7; time units old). In total, for each
observation diffusion curve, the node sees an interval of time TRz < 7;. This means that,
in the computation of the average number of observations contained in a model, the time-
average over the lifetime of a generic observation is limited to Tryz rather than 7;. The
missing interval is a randomly located time window of average size 7, — TRy, expressing
the random gap window in between one observation and its replacement, and over which
the observation diffusion curve contributes as zero.? Under such approximations, taking
per-node and per-model averages, and further averaging over the position of a gap window

of size equal to its mean, we can write the following approximated expression:

o Am 1 (Tez 1 (o m
TQA(m)M—-—/ (/n9d0+ n@d@)d:):. 5.10
N Trz Jo Trz \Jo () a+7—Trz (©) (5.10)

Note that the above expression sums, for each of the A(™) M models owned by a node,
the time-average of the number of observations per model received during its sojourn in
the RZ crossing time. A numerical evaluation of Eq. (5.10) with M = {1,3,10} and
the corresponding model availability values of Fig. 5.1 yields the following values: 2.3,
6.7, and 21.7, which are decent estimates of the leftmost values of the curves depicted in
Fig. 5.2.

2There could be multiple gaps, expressing the fact that an observation is replaced and then the
replacement expires as well and is replaced in turn. However, the probability that this event occurs is
negligible because the lifetime of an observation is typically longer than the average sojourn time of a
node in the RZ.
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Figure 5.4: Observation availability over time with short training and merging times and
L =100 Mb.

As mentioned before, the diffusion of observation becomes impossible for large values
of L. In that case, the curve of observation availability vs observation lifetime can be
approximated with a step function, which is similar to the experimental results shown
in Fig. 5.4. This behavior depends on the fact that each observation is available, after
training, only at the seeder, and the number of nodes with model in the RZ shows only
small fluctuations. For the case of Fig. 5.4, the average model availability is about 0.1 (see
Fig. 5.1), which means about 15.7 nodes have the model, and the observation availability,
once the observation has been trained, is 1/15.7 = 0.064, which is close to what shown in
Fig. 5.4.

To further evaluate the impact of the computing load, the following figures report the
case in which training and merging times become large and non-negligible with respect
to the time spent by a node in the RZ. To do so, the figures report results obtained in
the same operational conditions as in the figures commented before, but for ten times
longer training an merging times. In particular, with Ty; + T = 75 s, the rate of 0.18
observations to train per second brings a load of about 5% per model, which means that
just training, e.g., with 10 models, would keep the node busy for half of its journey in the
RZ. Merging tasks, at a rate of 1 merging per model every ¢g~! = 40 s and Tj; = 25 s

would keep a node busy all the time with as few as 4 models as soon as their availability
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Figure 5.5: Model availability with high training and merging times.
reaches 0.4.

Comparing Fig. 5.5 to Fig. 5.1, we can observe how the model availability decreases
when nodes spend more time with computing tasks, even if the model sizes are small,
so they are not able to exchange their model instances until they have been merged and
trained.

The approximation of Eq. (5.9) can be of use also in this case for small L. It actually
reveals that we should expect Alm) = 0.46, which is very much in line with the result in
the figure. However, here the impact of computation and communication bottlenecks, as
the number of models increases, is much heavier than in the case of Fig. 5.1.

Model availability values with large L can be also estimated as before: the probability
to receive an observation is 0.15, each observation trains a different model with high
probability, and then the node carries the observation during its average residual sojourn
time in the RZ, which in this case is Trz/2 — (Ta + Tr). This implies that the model
availability reduces to 0.15 - (282/2 — 25)/282) ~ 0.062. This result is in line with what
obtained via simulation with any number of models. Zooming into Fig. 5.5 at L = 108
b would reveal that the simulation results yield availability 0.062 for M = 1, 0.061 for
M = 3 and 0.055 for M = 10, which also indicates that the computing load plays a role,
with a slightly detrimental impact on performance, although the effect is minor.

With long processing times and small L, Fig. 5.6 shows that the observation
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Figure 5.6: Observation availability over time with high training and merging times and
L =0.01 Mb.

availability evolves more slowly than with short processing time. The figure also clearly
shows how the number of models becomes very important. Both phenomena are due to
the relevance of computing tasks in this scenario. Here the case with only one model
has a load that can be handled by the system, hence its observation availability curve
is very similar to the case with low processing times, except for the initial delay due to
longer training and merging times. Instead, the curves with 3 and 10 models clearly show
that computation has become a bottleneck, and the growth rate of the curves becomes
progressively smaller as M grows. Note that the higher the number of models, the smaller
the model availability (see Fig. 5.5 for small L) and the smaller the number of nodes with
model that appears at the denominator of the expression used to compute the observation
availability curves. This explains why the curves for 3 and 10 models appear to start fast
in Fig. 5.6, although their growing rate is clearly smaller than at M = 1.

With large L, the behavior shown in Fig. 5.7 is qualitatively similar to the one of
Fig. 5.4, except for the fact that the average number of nodes with model is now smaller,
which turns into higher values of instantaneous observation availability. The number of
observations alive is however the same in all cases (it is about A7, = 30 per model), and
the differences between the curves with 1, 3 and 10 models in Fig. 5.7 are due to the fact

that the average model availability is slightly different in the three cases, as observed in
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Figure 5.7: Observation availability over time with high training and merging times and
L =100 Mb.

the comment to Fig. 5.5, hence so is the number of nodes in the RZ with model, whose
inverse value is the observation availability for this case in which only one node carries
each observation. In particular, with the model availability at L = 10® b, we should see,
on average 9.73 nodes with model for M = 1, hence the observation availability should go
to 1/9.73 = 0.103, while with M = 3 and M = 10 we should see observation availability
values of about 0.104 and 0.116. Those values are close to what shown in Fig. 5.7.
Finally, Fig. 5.8 shows the learning capacity for high computing times 77 and Tjy.
Here, we observe that even if the trend of the curves is similar, the amount of observations
at every node, on average, is much lower than in Fig. 5.2 for all sizes of L but specially
for small model sizes. In this case, it is clear that the merging and training times have
a significant impact in the computing power of the system and for that reason nodes are
not able to retrieve as many observations as in the analyzed case at lower computing
load. For low L, here the capacity does not scale with the number of models, while it
roughly does at high values of L. The reason is that with large model sizes the number
of observations per model tend to be similar, independently on the number of models, as
observed in Fig. 5.4 and Fig. 5.7. Note also that the rightmost values of the curves for
T roughly correspond to the rightmost values of the curves for A(m) multiplied by the

number of models, as for the case of low processing times. Instead, with small model sizes,
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Figure 5.8: Learning capacity with high training and merging times.

the computing load—with more than one model and the model availability of Fig. 5.5—

becomes high and clogs up the system. For instance, with 10 models, a node will receive

about 1.3 new instances every 40 s, which takes at least 80% of its time. This limits the

learning capacity of nodes, although not as much as the computing bottleneck does when

L grows. Moreover, the impact of computing load is much more gradual then the impact

of the FC bottleneck, which is still well visible in the figures with high processing time

for training and merging.






Conclusions

This dissertation has considered three extensions of the Floating Content (FC)
opportunistic information diffusion paradigm that was previously proposed and
investigated in the technical literature. Using FC, it is possible to probabilistically store
information over a given restricted local area of interest, by opportunistically spreading
it to mobile users while in the area. A piece of information which is injected in the area
by delivering it to one or more of the mobile users, is opportunistically exchanged among
mobile users whenever they come in proximity of one another, progressively reaching
most (ideally all) users in the area and thus making the information dwell in the area of
interest. While traditional studies of the FC paradigm only looked at the communication

component over one area of interest, I have considered:

= FC as a paradigm to move information from one area to another, and diffuse

it over several disjoint areas of interest;

= FC as a paradigm for probabilistic information storage over an area of interest,

exploring the associated storage capacity;

= FC as a paradigm that enables distributed computing, having in mind its
application to collaborative learning algorithms such as Gossip Learning (GL), and

exploring the associated learning capacity.

In the first part of this dissertation I have presented background work, including a
brief review of my Master Thesis activity, devoted to the design, implementation and
validation of a smartphone opportunistic information sharing application. The insight
obtained during my Master Thesis work was extremely useful to devise smart operating
procedures for schemes based on FC.

In the core of this dissertation, initially I proposed and studied a set of schemes to
explore and combine different information dissemination paradigms along with real users
mobility and predictions focused on the smart diffusion of content over disjoint areas of

interest. I presented Predictive Content Dissemination Scheme (PRECISE), a series of

111
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data forwarding, storing and decision making schemes to benefit the infrastructureless
content dissemination process in opportunistic networks, particularly focusing on Device-
to-Device (D2D) data exchange between hotspots. PRECISE leverages node mobility
patterns to make effective forwarding decisions and efficiently use network resources while
maintaining fair content availability values. PRECISE specifies how a node adapts its
probability to decide to exchange content when it meets another node, so as to speed up
content diffusion when encounters are rare, or save resources when contacts are frequent.
It also uses the knowledge of pedestrians and vehicles’ position and mobility pattern to
carry out meaningful connections between nodes and improves the main performance
indicators of our system. Since node density and device limitations impair dissemination
and system scalability, PRECISE encourages only the exchange of valuable data between
potential peers according to their predicted movement, encounters and content expiration
time. In such a way, PRECISE dramatically reduces the number of connections by 65-
92%, consequently avoiding network congestion and drastically limiting the amount of
local memory usage, as shown by means of a detailed simulation tool that I developed for
the analysis of FC schemes.

In a second step, I have characterized the storage capacity of probabilistic distributed
storage systems, developing a simple yet powerful information theoretical analysis based
on a mean field model of opportunistic information exchange. I have also extended the
previously developed simulation package to compare the numerical results generated by
the analytical model to the predictions of realistic simulations under different setups,
showing in this way the accuracy of the analytical approach, and characterizing the
properties of the system storage capacity. The analytical and simulation results show
that when the density of contents seeded in a floating system is larger than the maximum
amount which can be sustained by the system in steady state, the mean content
availability decreases, and the stored information saturates due to the effects of resource
contention. With the presence of static nodes, in a system with infinite host memory
and at the mean field limit, there is no upper bound to the amount of injected contents
which a floating system can sustain. However, as with no static nodes, by increasing the
injected information, the amount of stored information eventually reaches a saturation
value which corresponds to the injected information at which the mean amount of time
spent exchanging content during a contact is equal to the mean duration of a contact.

As a final step of my dissertation, I have also explored by simulation the computing and
learning capabilities of an infrastructure-less opportunistic communication, storage and
computing system. I have considered an environment that hosts a distributed Machine
Learning (ML) paradigm that uses observations collected in the area over which the
FC system operates to provide communication to users that are interested in inferring
properties of the area. This scheme resembles a GL scheme, but for relying on FC, so

we call it Floating Gossip (FG). Results show that the FG system can operate in two



113

regimes, depending on the load of the FC scheme. At low FC load, the ML system in each
node operates on observations collected by all users and opportunistically shared among
nodes. At high FC load, especially when the data to be opportunistically exchanged
becomes too large to be transmitted during the average contact time between nodes,
the ML system can only exploit the observations endogenous to each user, which are
much less numerous. As a result, I conclude that such setups are adequate to support
general instances of distributed ML algorithms with continuous learning, only under the
condition of low to medium loads of the FC system. While the communication load of the
FC system induces a sort of phase transition on the ML system performance, the effect
of computing load is more progressive. When the computing capacity is not sufficient to
train all observations, some will be skipped, and performance progressively declines. This
implies that the learning capacity of the proposed paradigm is tightly bound to the FC
component of the system and it is able to support continuous learning under the condition
of low to medium loads of the FC system.

Many extensions of the work presented in this dissertation are possible, from the
development of models that can capture the temporal dynamics of the system, to
experimental validations of the behaviors observed from simulation and analysis. The
latter seem especially relevant in light of the increasing interest in cooperative distributed

learning algorithms.






Appendix

Proof of Lemma 1

Proof: In distributed floating systems, the number of contents which a node can
possess and replicate at a given point in time is equal to the minimum between the
number of Replication Zones (RZs) in which the node is at that time, whose mean is
yrR?, and the number of contents which can be stored in its memory. In localized
floating systems, the number of RZs in which a node is located is ywR2. Since the
probability of possessing a given content is well approximated by as(t, R) (resp. aq(t, R)),
and since by the homogeneous assumption the probability for a node to possess a content
is independent from other nodes, and the same for all nodes, the number of contents

possessed by a node follows a binomial distribution, truncated at {%J |

Proof of Lemma 2

Proof: Let us denote with m;, i € {s,d} and mj, j € {s,d} denote the amount of
contents possessed by each of the two nodes in contact at time t for RZ radius R, and
let z;; be the amount of exchangeable contents at node i (i.e. the amount of contents
possessed by node ¢ but not to node j, and for which there is enough storage space
at node j). The probability that node i has z;; exchangeable contents is equal to the
probability that x;; out of the m; contents are not possessed by the other node, and that
the remaining contents are possessed by the other node. Moreover, z;; is upper bounded
by the available storage space at node j, equal to % —mj.

Note that m; and m; are random variables, whose distribution is given by Lemma 1.
Therefore, the distribution of x;; conditioned to m;,m; is distribute as a binomial
Bin(n,p), with parameters n = |m;] and p =1 — a;(¢, R), and truncated in L% — ij.

The PDF of z;; is therefore the expectation with respect to m; and m; of
P(zij|m;, m;). [
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Proof of Lemma 3

Proof: Let us consider first the case of a contact between a static and a moving
node. The amount of contacts exchanged between two nodes depend on the amount of
exchangeable contents (i.e. of contents possessed by only one of the two nodes) that
each of the two nodes has, as well as of the ratio between the contact time available for
the exchange, and by the amount of free storage available at each node for storing the
received contents. The probability that a content will be considered for being exchanged
is the probability that the node is among those for which there is enough storage space
at the other node, which is well approximated by the ratio between the mean amount of
exchangeable contents for which the other node has storage space, and the mean amount
of exchangeable contents when the other node has infinite storage space, i.e. by the ratio

For a contact of duration 7, the amount of time available for transferring contents is
given by 7 — 7. The mean time taken for transferring a content is given by CLO Therefore,
on average the maximum amount of contents which can be exchanged during a contact of

duration 7 is L@j The mean amount of contents which have to be exchanged during

Co

a contact taking place at time ¢ is given by E[x;; +x;;]. When this quantity is larger than

zero, if Elx;; + 5] > L@J, then there is enough time for transferring all contents
Co
which can be exchanged. Otherwise, on average, the likelihood for a single content to be
(t—70)

exchanged is equal to the ratio between E[z;; +x;;] > |~— > | and E[x;; +x;j]. Averaging
C

0
over contact duration, we get Eq. (4.2). The derivation of T; follows along the same line.

Derivation of Theorem 1

In order to apply the mean field approximation, a key step is the derivation of the
expression of the mean dynamics (also called drift), which describes the average local
variation of the Continuous Time Markov Chain (CTMC) with respect to time [111],
[122].

Lemma 5. When the system satisfies the homogeneous conditions, the drift of the CTMC

is given by (notice that, for ease of notation, we drop the indication of the dependency on
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time and RZ radius R from all the variables):

d;s _ ;ssad(l — as)Sus

= (=) [NrauSu+ BaSu) - 5 (6.1)
= p 0 |
% _ %2(1 —ba)” + N% - - l;?Rbd

with 0 < a;, b < 1, R =152, and by > Nb,.

Proof:(Lemma 5) Let Ny denote the mean number of static nodes in a RZ of radius
R possessing a given content at time t, averaged across all j. We have therefore N, =
asN(R)(1 — 1) = as(1 — ¢)7R?D, and similarly, for dynamic nodes, Ny = aqN(R)i) =
aqmR?D. Let us compute the rate at which N, varies over time. As nodes are static,
this quantity can only increase over time. The increase is due solely to static nodes which
exit from the busy state due to completion of content transfers. The mean rate at which
nodes exit the busy state is given by the ratio between the mean number of static busy
nodes at time ¢ in the RZ, given by N(R)(1 — 9)bs, and the mean time taken by an
exchange between a static and a dynamic node, Ts;. Moreover, let us consider one of
these terminating exchanges. The probability that the j-th content was transferred to
the static node during such exchange is equal to the probability that the dynamic node
had the content and that the static node did not have it, given by aq(1 — as), multiplied
by the probability that the j-th content was transferred during the contact time, given
by Sgs-

Summing up, we have

AN = NRIO=0b (1 — ) Sae (6.2)

Normalizing this expression by N(R)(1 — v) we get the first differential equation
in Eq. (6.1).

The rate of change of Ny is given by the sum of three components. The first is given
by those nodes which complete a content transfer in a contact with a static node. It is

derived in a similar way as in the previous point, and it is given by:

Was(l — ag)Ssq

This exploits exploiting the fact that the mean number of busy static nodes coincides

with the mean number of dynamic nodes busy in contact with static nodes. The second
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component is the increase in Ny due to contacts among dynamic nodes. The number of
busy dynamic nodes involved in such contacts is given by the difference between the total

number of busy dynamic nodes, and the total number of busy static nodes, N(R)ybg —

N(R)(L —¢)bs.
When a couple of such nodes ends up being busy, only one of the two has acquired
N(R)¢ba—N(R)(1—9)bs _ The
2T
probability that the given content has been exchanged during a contact is given by the

the given content. Hence the rate of these events is given by

probability that only one of the two dynamic nodes in contact has the content, 2a4(1—ag)
multiplied by the probability that the content is successfully exchanged between the two

nodes, given by Sy;. Hence, the second contribution takes the form

N(R) ¥ha = (;d_ ¥)bs 2a4(1 — aq)Saa

The third contribution is given by those dynamic nodes which move out of the RZ for the
given content. The rate of this type of events is 4amRbs. Note that this is computed by
doubling the rate at which busy dynamic nodes exit the RZ. Indeed, if a busy node exits
the RZ, two busy nodes are not busy anymore, even if the other node remains in the RZ.
Putting all together, we have

Ny N(R)(1— )b

7 — T as(l — ad)SSd—i—

by — N(R)(1 — )b
Ta

+ N(R) *2a4(1 — ag)Sqq + 4am Rb, (6.3)
Normalizing by the mean total number of dynamic nodes in a RZ, we obtain the second
differential equation in Eq. (6.1).

Let us now consider the rate at which the mean number of busy static nodes in a
RZ at time t changes over time. Their increase is due to contacts between a static and
dynamic node (an event which happens with a rate of gsmR? contacts per second), both
of which must be non-busy (with a probability (1 — bs)(1 — bg)). Their decrease is due to
static nodes which complete the process of contents exchange with another node. Such

%ﬁ—d))bs' Putting all together, and normalizing

an event takes place with a mean rate
by mR?2D(1 — ), we get the third differential equation in Eq. (6.1).

Finally, we consider the rate at which the mean number of busy dynamic nodes in a
RZ at time t changes over time. The first contribution is given by those dynamic nodes
which come in contact with static nodes. The contribution due to this population of nodes
is equal to the rate at which the mean number of busy static nodes in a RZ at time ¢
changes over time, because for each of these contacts involves a static and a dynamic node.

The second contribution is given by content exchanges among dynamic nodes. With a
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similar reasoning as above, its expression is given by gqmR?2(1 — bg)?. The decrease in
the number of busy nodes is due to two effects. The first is the end of content exchanges

between two nodes in contact, due to either completion of all the pending transfers, or

Yba—(1—1h)bs
DdTid.

Finally, the number of busy dynamic nodes in the RZ decreases when these nodes exit

to the fact that the two nodes are not in contact anymore, given by mR?

the RZ. The rate of this type of events is 4damRby, i.e twice the rate at which busy nodes
exit the RZ. This is due to the fact that a busy node exiting the RZ stop exchanging
contents (and therefore being busy), hence also the other node involved in the exchange
is not busy anymore, even if it remains in the RZ. Normalizing by the mean number of
dynamic nodes in a RZ, mR?D1, we get the fourth differential equation in Eq. (6.1). W

We can prove now the main result.

Proof:(Theorem 1) First, we show that, for any initial conditions I(0,R) =
(a;(0, R),b;(0, R)), there exists an array Iy such that limpg_, I(0, R) = Iy (convergence of
initial conditions condition [111]). Let us choose Iy = I(0, R). Then for each content j, if
NF(0,R) (N]I(0, R)) is the number of nodes with the k-th content in the RZ of content k
(respectively, the total number of nodes in the RZ of content k) at time ¢ = 0 in the RZ,
choosing NF(0, R) = {ai((), R)N[ (0, R)J, and setting to zero the number of busy nodes
at t = 0 allows satisfying the convergence condition.

Given the assumption of stationarity of the mobility patterns, and of uniform node
distribution, the mean total number of nodes in a RZ for a content k is equal for
each content (given that all RZ have the same shape and size) and we denote it with
N(R). In order to apply the mean field approximation approach, we start by assuming
NI (t,R) = N(R), for any content k an any time ¢ > 0. As a consequence of the
homogeneous condition, N(R) grows proportionally to R. With these properties, the
considered system can be modeled as a Population Continuous Time Markov Chain
(PCTMC) [111]. Specifically, to each value of R we can associate a PCTMC model with
a total number of nodes N(R). As for the size of the model (i.e., as for the parameter
used for normalizing the state occupancy), we choose the parameter N(R) itself. Let us
consider now a sequence of increasing values of R, to which we can associate a sequence of
PCTMC models, each with the features described so far. By the nature of the system, one
can easily verify that for any state transition, the state change vector (i.e., the difference
between the state occupancy before and after the state transition) is independent of R
and hence of the size of the model.

From Lemma 5 it is easy to see that the drift of the generic PCTMC is continuous.
Let I(t, R) = (a;(t, R),b;(t, R)) and I(t) = (a(t),b(t)) = limg_oc I(t, R).

As our sequence of PCTMC models satisfies these properties, by
Theorem 1 in [111] we have that for any finite time horizon T < o0,
P{limRﬁoo (SUPogth IIX(t, R) — I(t)H) = 0} = 1. That is, the sequence of population

models associated to R converges almost surely to the dynamics of the Ordinary
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Differential Equations (ODEs) in Theorem 1. Finally, in the case in which the number
of nodes in each RZ is not constant, one can follow the same approach and derive an
additional differential equation for the mean number of nodes in each RZ. Indeed, as
we assumed the mobility is stationary, such differential equation would be a balance
equation, giving a mean number of nodes in each RZ which does not vary over time,
and which is not affected by the evolution over time of the other two variables of the
system. Given such decoupling, the mean field approach can be applied separately to the
mean number of nodes in each RZ, and to the two variables we have considered so far,
obtaining again the ODEs in Eq. (6.1). |



Floating Content and Floating
Gossip Simulator
Documentation

To carry out the work for Chapters 3 to 5, I have entirely built a floating content
simulator to reproduce Device-to-Device (D2D) communication scenarios. All modules of
the simulator have been fully implemented in Python programming language complying
with the object oriented paradigm, in order to have multiple instances of the simulated
classes. In such way, we can set diverse scenarios according to the specified input
parameters. It is important to point out that there are currently two main versions
of the simulator. The first version, whose class diagram is illustrated in Fig. 6.1, has
been used in Chapter 3 and later adapted to the new metrics involved in the research
performed in Chapter 4, we name it Floating Content (FC) version. The second simulator
version, named Floating Gossip (FG) version, is the one used in Chapter 5 to reproduce
FG scenarios. This one was meant as a branch of the first version that finally ended up

as a parallel variant. The class diagram for this version is depicted in Fig. 6.2

Simulator structure

The structure of a simulated scenario is composed of a set of mutually associated
classes. These classes slightly differ from one version to the other, thus, in the following
we explain in detail what is the purpose of each one and in which version can be found,

in case they are not common to both paradigms:

= Class Scenario consists of a squared Anchor Zone representing the total

simulated area.

= Within the previous area, we define a number of circular zones that can
take different sizes, namely Zone of Interests (ZOIs) or Replication Zones (RZs).
These circular zones are described by the class Zoi and represent hot spots where

disseminated data are especially valuable for nodes traversing them.

= A scenario will also contain a collection of nodes illustrating the users density,

uniformly distributed in space, with the aim of spreading pieces of content to other
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nodes within a transmission range. Nodes can move according to different methods,
that we will be detailed later: Random Direction (RD) mobility model, Random
Waypoint (RWP) mobility model, Wrap-around mobility model, following synthetic

traces based on maps or real traces. Nodes are instances of the class User.

s The pieces of contents to be disseminated can be instances of two different
classes, Message and Model, depending on which version of the simulator we are
considering. As explained during this thesis, in Chapter 3 and Chapter 4 users
disseminate pieces of content that would represent messages, while in Chapter 5 we
introduce a new paradigm where users exchange models that will be later trained
with previously observed events, named observations, contained in users’ databases.
In the following, we may refer to either messages or models as content in order to

simplify the descriptions.

= Finally, for the FG simulator branch, as presented in Chapter 5, we introduce
the concept of Observations. These are pieces of information about local viewpoints
observed by the nodes, that will be stored in nodes’ databases and used to train

their local models. They are implemented with the class Observation.

Note that the class diagrams shown in Figs. 6.1 and 6.2 comprise only the most relevant

attributes and methods of each class in order to ease the understanding of the simulator

structure. The complete documented code can be found in GitHub'?.

Simulator operation

Definition of classes and attributes

Class User: This class represents the nodes of the scenario. The attributes that

compose the User class are represented by the following data structures:

= id: Integer that identifies the node.

= scenario: instance from the Scenario class. Represents the Scenario in which

the nodes has been created.

= messages_list: in the FC version, List containing the messages retrieved by
the node.

= models list: in the FG version, List containing the models retrieved and/or

trained by the node.

"https://github.com /noeliamp/FC-Simulator
https://github.com /noeliamp/VERSION-FL-GL



123

Scenario

List of Zois

List of Users

User

Id

Scenario

Size List of Messages
walkby  1..n
set_up_environment() performMobility()
injectMessages() userContact()
exchangeData()
1
deleteMessages()
compose
1..n
Zoi Message
Id Id
belong to
Scenario Zoi
List of Messages Size

Figure 6.1: Class diagram of the Floating Content version of the simulator.

= total _memory: Integer that describes the memory limit in bits of the node’s

database.

= busy: Boolean value that represents whether the node is involved in connection.

The method performed by the User class are described below:

» performMobility(): Method called at every time slot to perform the node

mobility according to the chosen mobility model.

» userContact(): Method called at every time slot to look for node peers and

connect to one of them.

» exchangeData(): Method called at every time slot once a neighbour peer is
chosen (after userContact()), to carry out the exchange of content between both

peer nodes.

» computeTask(): in the FG version, method that performs the training of a
model instance. This method is called at every time slot, to start training a new

model or to continue with a previous training.
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Scenario User
List of Zois Id
List of Users Scenario
Size List of Models
1 walk by 1..n
set_up_environment() performMobility()
getObservationsFromScenario() userContact()
exchangeData()
computeTask()
compose deleteModels()
1..n
Zoi Model
Id Id
1 belong to 1..n
Scenario Zoi
List of Models List of Observations

1

train
1..n
Observation
Id
Model
Timestamp

Figure 6.2: Class diagram of the Floating Gossip version of the simulator.

» deleteMessages(): Method called every time a node leaves the RZ. This method

erases the node’s database.

» deleteModels(): In FG version, method called every time a node leaves the RZ.

This method erases the node’s database. Note that, in this case the node’s database

may contain models and observations. Both classes’ instances will be dropped from

the nodes.
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Class Scenario: This class describes the total simulated area. The attributes that

compose the Scenario class are represented by the following data structures:

= list_of zois: List structure containing the existing instances of the class Zoi.

= list_of users: List containing the instances of the class User that correspond

to the nodes of the scenario.

= max_ area: Integer value that defines the side size in meters of the total squared

simulated area.

= max_ generation_time: in FG version, integer value in slots. It defines the
maximum age of an observation, after which, the observation must be deleted from

the whole Scenario, specifically from the observations list if zois, nodes and models.

The method performed by the Scenario class are described below:
» set__up_ environment(): initial configuration of the Scenario, called only once.

» getObservationsFromScenario(): in FG version, method that allows nodes to
generate new observations inside the RZs. This method is called according to the

observation generation rate defined in the input parameters.

Class Zoi: This class describes an RZ. The attributes that compose the Zoi class

are represented by the following data structures:
= id: Integer that identifies the Zoi instance.
= scenario: instance of the Scenario class to which the Zoi instance belongs.

= models_list: List containing the instances of the Model class that belong to a

given Zoi.

The Zoi class does not perform any method.
Class Message: In the FC version, this class describes a message or piece of content.
The attributes that compose the Message class are represented by the following data

structures:
= id: Integer that identifies the Message instance.
= 7z0i: instance of the Zoi class to which the Model instance belongs.
= size: Integer value in bits corresponding to the message size.

The Message class does not perform any method.
Class Model: In the FG version, this class describes a model. The attributes that

compose the Model class are represented by the following data structures:
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= id: Integer that identifies the Model instance.
= zoi: instance of the Zoi class to which the Model instance belongs.

= observations_ list: List containing the instances of the Observation class that

belong to a given model.

= size: Integer value in bits corresponding to the model size.

The Model class does not perform any method.
Class Observation: In the FG version, this class describes the observation of an
event. The attributes that compose the Observation class are represented by the following

data structures:

= id: Integer value that identifies the Observation instance.
= model: instance of the Model class to which the Observation instance belongs.

= generation_time: Integer value that defines the time value at which the

observation instance was generated.

The Observation class does not perform any method.

Description of the operation

To start running simulations, we initialize the simulator based on a set of parameters
from a Json input file. The simulator operation time is slotted and the slot length can
be tuned according to the input parameters. The status of the simulation is updated at
every slot end, unlike event-based simulators. We first build the simulated area and the
zones of interest. Then, in case we are running RD or RWP mobility models, nodes are
uniformly distributed throughout the total square area. Note that, by setting different
input parameters, the structure of a scenario can take not only the basic form previously
explained but more complex configurations, composed of one or multiple RZs, as well as
multiple pieces of content per RZ.

Once all the elements are placed, we create a predefined number of contents to be

injected in the scenario. Here, three different options of the simulator can be selected:

= In the first option, only nodes within the zone of interest are allowed to start
the simulation run with some stored contents. The amount of stored contents
per node will depend on their memory capacity, also set by the configuration file.
To determine which contents should be given to each node at the initial time we
compute, based on the memory limit, the amount of fitting contents. The list of
all contents generated in the scenario is shuffled every time we assign contents to

a different node at time ¢ = 0, and only the first n contents of that shuffled list
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that fit in the storage limits are copied in the corresponding node. In this way, we

guarantee that all contents have the same probability of being selected.

= On the other hand, we have the option to periodically inject new pieces of
content. A number of randomly chosen nodes located at the RZs will generate
one content each. Both the number of nodes and the generation frequency will be

specified in the input file.

= For the FG version of the simulator, where nodes work with models instead
of messages, a default model will be assigned to each node the moment a new
observation is generated. The generation of observations happens at a fixed rate
with a call to the function getObservationsFromScenario(), also predefined in the

input file.

= In the FG case, we can also define the seeding number of a given observation,
i.e. the number of nodes that will obtain an observation in the moment of its
generation. This parameter can be fixed or randomly generated among the total

number of nodes present in a given RZ and varies for each new observation.

We decided to implement the process above in such a way that we could study the
system performance, the storage and computational capacity of the scenario regarding
the FC paradigm of this work.

From this point, the set up is ready to start simulating any given configuration. In
the following sections we describe specifically how different chunks of the simulator code

perform.

Nodes Mobility

We have implemented four different methods to perform nodes mobility in our system.
In the simulator, one of these mobility methods will be called at the user class depending
on the scenario configuration, in Figs. 6.1 and 6.2 the method is called performMobility()
for the sake of simplicity, in the following descriptions we include the full name of each
method according to its functionality. Next we describe the main characteristics of these

methods.

Random Direction and Random Waypoint Mobility Models

All nodes in the scenario move freely throughout the whole simulated area according
to RD or RWP mobility models and with a predetermined speed. While RWP has been
implemented according to its exact definition, we have modified a set of specific features
for the RD mobility model in pursuance of simplicity: nodes randomly choose a direction

towards which they will keep moving with a constant speed until they hit a border of the
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outer square area, at that point we have implemented two different mechanisms. On the
one hand, nodes can bounce mirroring the angle in which they collided with the edge. On
the other, nodes can follow the wrap-around method. With this feature, when nodes leave
the scenario they will simply appear at the exact opposite side from which they left as if
the scenario were cylindrical in any direction. This motion persists up to the simulation
end. In the simulator code, these methods can be found named as random Waypoint()

and randomDirection().

Synthetic traces

To get closer to realistic scenarios we included an improved method based on city
maps. In our work, we have specifically chosen the cities of Paderborn in Germany,
although its application is possible to any other location. For this purpose, we have used
the ONE Simulator [110] to generate some of the traces based on daily human mobility
within the city through the shortest path algorithm. We first selected the map section
in which the nodes will dwell during the simulations. Then, we set two main hot spots
towards which the nodes will travel with higher probability. This idea arose from the
need of keeping data alive between different parts of a city, due to the fact that users with
similar interests can be found at different spots. For instance, traveling from the main
campus of the University of Paderborn to second buildings belonging to the institution
is a common practice among students and professors. To perform this type of mobility,
in the simulator we have defined a function called readTraces() that will obtain at every
slot the corresponding position coordinates for each node. For doing so, first we have
defined a method, parsePaderbornTraces(), that runs at the beginning of the simulation
and parses the traces file to convert them to a data structure, a python dictionary in our
case, to avoid reading from a file at every new node movement. In case the traces files
are in the right format, this same method can be used to parse any other city map. The

proper file formats are defined in the following section.

Real traces

It is also possible to reach a higher realistic level in the behaviour of the simulator
by introducing real mobility trajectories obtained from external sources. To be usable,
these traces have to provide a node ID, the geographical coordinates of the node at a
given time and the timestamp of the event. Additionally, due to the arising of works
on realistic nodes mobility involving SUMO simulator, we have also included a module
to be able to read such traces generated in SUMO format. The last addition to the
simulator are modules to parse real scenarios, for instance Rome city center. We have
worked with real nodes traces obtained from [70]. As explained in the previous section,

to execute this feature, the simulator includes a method called readTraces(), in this case,
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the method reads the traces previously parsed by the function parseRomeTraces(). Many

other data sets obtained from the literature can be accessed from external sources such
as CRAWDAD 3.

Connection establishment

Upon updating the position of nodes as the simulator moves to the next time slot,
each node makes a call to the method userContact(), which will scan the peer neighbours
around the node at a maximum distance specified in the input parameters file as the
transmission radius radius tx. Once the node finds a suitable neighbour to exchange
content with, i.e., a node that is in range and not involved in any another connection (not
busy), the establishment of a connection between both nodes will start. Each node traces

its connections status with the following variables:
= connection__duration: integer value for the duration of a connection in slots.

= prev_peer: instance of the class User which represents the peer neighbour
connected to a given node in the previous time slot. This is used to keep track of

the nodes that are connected while the exchange of content has not finished.

= ongoing_conn: Boolean value. Similar to the previous, this flag tells whether
a node is already involved in a connection that started in a previous slot and which

has not finished yet because there is still content being transferred.

Data transfer policies

The way nodes handle the content varies depending on three different policies. The
following three policies are implemented into the method userContact() that will run the

corresponding one depending on the input parameters:

= A restrictive policy where nodes can only store and exchange content while
they are inside the replication zones. Once nodes cross the borders of the RZs they
will drop all their database and will not exchange anything related to it. This is the
approach used in most of the works related to FC paradigm and has been included
as a base line method. The main idea is to locally disseminate the content only

where it is valuable.

= A second policy, starting from the previous point, also permits nodes to store
content during periods of time, specified in the input file, while they are traveling
outside the RZs.

3www.crawdad.org
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= A third policy, less restrictive, includes the previous policies and also allows
nodes to exchange content during a predefined period of time while they are outside
the RZs only if one of the nodes is heading to a RZ before time elapses. This and
the previous approaches favor the dissemination of content between more than one
RZ, as well as an increase in the content availability due to possibility of new nodes

entering the RZs already possessing the content.

= We have also implemented the PIS algorithm [65], where nodes make the
decision of whether to exchange content and the selection of the peer node based
on a set of similarity parameters, such as common interests and encountered
nodes. From the method userContact(), in case Proximity-Interest-Social (PIS)
is established as the dissemination protocol in the input parameters, there is a
call to an external method called PIS(), here the simulator computes the main
features of the PIS algorithm as explained in Section 3.4.2.3. At every time slot,
the simulator main class will also run the methods called socialFactorsUpdating()
and similaritiesCalculation() for the social factors and similarity values updating

required by PIS protocol.

» Finally, as a base line, the simulator also contains the basic Epidemic

dissemination algorithm.

Once two nodes establish a connection according to the userContact() code, they will
only transfer the pieces of content that are missing at the peer node, with a call to the
method dataExchange(). The order in which the contents are transferred is random:
prior to the exchange, both nodes’ lists -with only the peer missing contents- are shuffled
to prevent certain pieces to be repeatedly exchanged in the first place. To accomplish
this task, both nodes will share the channel rate defined by the scenario to perform
a bidirectional communication. Each node will exploit half of the channel capacity to
transmit its contents to the peer node in parallel. In case the data of one node do not
completely fill their assigned capacity, the remaining quota will be relocated to the peer
node. The established connection stay active for a number of slots until both peers have
transmitted the total amount of contents. Therefore, connections are only interrupted
in two cases: when nodes walk away from each other beyond the transmission range or
when both nodes fill up their memory capacity during the connection.

When a connection interruption happens, incomplete file transfers are dropped with
the method deleteMessages() or deleteModels(). Besides, if nodes belonging to an
established connection have nothing to exchange or their memory is already full, the
connection will be dropped right after one time slot. This slot represents the time needed
to check each node status, which cannot be informed to the peer in advance with any

current technology. When a connection ends the nodes go back again to an idle status,
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storing the information of the connection duration for future processing as detailed in the

previous section.

Decision making for content exchange

Besides the policies previously explained, the simulator counts with an additional
decision making strategy that can be turned on and tuned to control the greediness
of the content dissemination process. This strategy can be found inside the method
userContact() of the User class.

In each node’s list called prev_contents, we store the mean number of contents that
nodes own and are willing to exchange upon establishing a connection, which is obtained
by applying an Autoregressive (AR) filter to the total number of contents missing in
each node, exchange_length, when a connection occurs. The variables involved in this
computation are ¢ that represents the current time slot, self.t previous indicating the
time slot of the last connection establishment, scenario.alpha is an adaptive value that
accounts for the time elapsed in between two consecutive connections, so that the AR
filter operates with an exponential decay time defined as ¢ in the code.

By computing this metric at every slot and comparing it with the value obtained
in the previous slot, previous contents we are able to tune the probability to exchange
content, as detailed in Algorithm 2.

At each opportunity to establish a connection, the connection is established with

probability p updated at each time slot as described in Chapter 3.

Model merging and training

In the FG version of the simulator, we have extend the users functionality to perform
model training when they retrieve an observation from the scenario. The training is
executed by the method computeTask() and requires two main input parameters: the
merging length, this is the time duration required to merge model instances with the
same ID previously to the training, and training length which is the time duration required
to perform the training itself. Thus, merging and training operations are implemented
as a countdown that lasts a fixed number of slots defined as an input parameter, both
parameters are provided in slot units.

Nodes may have different instances of the same model before they start training, for
that reason they need to first merge all instances of a model with the same ID to later
train only one instance that involves the observations of all previous instances plus the
new new trained one (the last one after the training session). When nodes only have one
instance of a given model, they will directly enter in the training phase without merging.

Each observation received by a node causes a given model training session, i.e., only one
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observation will be incorporated into the model contributions at each training process.
Tasks (or models) to be merged and/or trained are queued (using FIFO queues without
space limits) in a specific data structure at each node called pending_model_list. 1t is
important to point out that the pending models will only pass to the official models list
(model_list) once they have been merged and/or trained. From both lists models are

shuffied before selected to merge, train or exchange.

Metrics

Once the scenario is set, nodes carry out the operation explained in the sections
above: at each slot the position of nodes is updated as well as their content exchange
status, considering the allocated bandwidth. If the connection between nodes has not
finished before the end of a slot, it will continue in the next one.

At every time slot, we compute a series of metrics to evaluate the performance of our
system. These metrics do not belong to any specific class, but they are measured at the
main.py script that act as a controller for the correct functioning of the whole simulator.

First of all, we measure the availability per content, i.e., the fraction between the
number of nodes with a certain content and the total number of nodes in the RZ with
the variable a_ per content and a_per _model. One of the options, in FC version, is to
start providing all nodes in the RZ with a collection of contents up to their memory limit.
As an alternative, contents are generated by single nodes and then start spreading. The
availability values are also computed for models and observations in the FG version of

the simulator.

Post-processing

Regarding the data analysis and post processing, we parse all dump files obtained from
the simulator using Python programming language into Jupyter notebook framework.

We can also compute the volume of contents that has survived at the end of a
simulation by dumping the final model_list of each node.

In general, any system behaviour can be measured by dumping the necessary data
structures with the corresponding information. It is up to the metrics involved in the
research work to decide how much information to provide after the simulation run. This
can be easily done by adding methods to our class Dump, in which we have already

implemented several metrics dump explained during this thesis in Chapters 3 to 5
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Open source code

All code generated for the development of both simulator versions has been released
in a GitHub repository in the following addresses: https://github.com/noeliamp/FC-
Simulator and https://github.com/noeliamp/VERSION-FL-GL.
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