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We present a comparative numerical study of the ordered and the random two-dimensional sine-Gordon
models on a lattice. We analytically compute the main features of the expected high-temperature phase of both
models, described by the Edwards-Wilkinson equation. We then use those results to locate the transition
temperatures of both models in our Langevin dynamics simulations. We show that our results reconcile
previous contradictory numerical works concerning the super-roughening transition in the random sine-Gordon
model. We also find evidence supporting the existence of two different low-temperature phases for the disor-
dered model. We discuss our results in view of the different analytical predictions available and comment on
the nature of these two putative phases.
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[. INTRODUCTION where nn stands for the nearest neighbors of sitdhe
OSGM corresponds th(®(r) =0, whereas the RSGM is de-
The location and characteristics of phase transitions ifined by choosing thejuencheddisorder variablesh(©)(r)
disordered media constitute a long-standing and controverandomly from a uniform distribution ifi0, 27]. We will
sial question, particularly in more than one spatial dimensiorjiscuss our work in terms of growth on fl@@SGM) or dis-
[1]. The question becomes even more difficult if the disordeprdered(RSGM) substrategsee[24—24 for other physical
is not very weak; then, new, nontrivial behavior is commonlyinterpretations): Accordinglyh(r) is a continuous variable
found, involving feature_s such as aging, ergodicity break'”grepresenting the height of the growing surface atrsiséthe
extremely slow dynamics, complicated energy landscapesaitice and the cosine term is a potential energy making in-
etc.; major examples of this are spin glasses and structurglyeri e 'multiples of the crystalline lattice constamalues

?Iasses[é,z_]. In thé? godnéeé(é’ thg tprotzert]lcees O]; Ctrlyséael S'“![)'eo the height energetically favorable. We will consider two-
aces growing on cisordered substrates, frequently descri mensional(2D) square lattices, i.er=(rq,r,), with N

by a two-dimensional random-phase sine-Gordon mode:LxL sites. As first shown by Chui and Weel@4] (see

(RSGM), have attracted a lot of attention in the past decadg, [35]) by means of a renormalization-grodRG) ap-

[3-22. Interestingly, the same model describes many Othe)E)l’O&Ch[36], the OSGM possesses a Kosterlitz-Thoul633
lrﬁ:;/igtnﬁrgg'?:gprlgalggsl’ ;;EQS?SVI)?&?(OI?]ZSF;:]nngcri]zilru ype topological transition between a low-temperature, flat
Josephson junctior?@%] ’chérge-dehsity wave7] pand phasg and a high—temperature, rough phase, the latter being
commensurate—incomménsurate transitigg) ' _descnbed_by _the Edwa_rds-w|lk|nso(r|£_\/v ) eql_Jat|on_[38],

In spite of those efforts, the phase diagra'm and main fea:&" the diffusion equation with addl'qve white noigsee
tures of the RSGM are no,t clear yet. To summarize what iabElOW)' Above Fhe so—call'ed roughening temperaturg)
known, we refer for comparison to tﬁnderedsine-Gordon %hermal quc_tuatlons effectively suppress the effect of the co-
model '(OSGM) which is rather well understoadee, e.g sine pot_entl_al, and the surfac«_a be_comes free_, described only
[1,29-33]and r’eferences therginThe Hamiltonian fé)r .thé by the kinetic part of the Hamiltoniafd). As will be shown -
OéGM and the RSGM is below, the most important measurable consequence of this is

that the width of the interface,

1
H=2 |52 [h(=h(r")}?

Z| -

1 — _
WZ=NZ [h(r)—h]?, h= Z h(r), )
+Vo{1—cogh(r)—h©@m)]}], (1)  scales(in 2D) asw?~InL in the asymptotic regime.
In contrast with the clear picture for the OSGM, there are
very few generally accepted results for the RSGM. One of
*Electronic address: anxo@math.uc3m.es; URL: them is that there must be a roughening temperature above
http://valbuena.fis.ucm.es&nxo which the potential effectively vanishésuch as in the case
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of the OSGM)leading to EW behavior. Apart from this, surface growing on a flat substrate. If we think of the rough-

theoretical predictions about the low-temperature phasening transition for the OSGM in terms of the interplay be-

largely disagre€a good summary is given in the third paper tween the temperaturg and the energy scale introduced by

in Ref. [7]): While RG calculations predict auper-rough the potentialV,y, whene#0, we have another energy scale,

low-temperature phase, witiv>~In?L, replica-symmetry € which can modify the universal features of the roughening

breaking variational approaches leadw8~InL indepen- transition or even give rise to novel thermodynamical transi-

dently of temperature. Numerical simulations were not ventions.

conclusive either: Batrouni and Hw#®] did not find evi- Having the above issues in mind, we discuss our work

dence for an equilibrium phase transition in Langevin dy-according to the following scheme. Section Il presents an

namics, although Monte Carlo simulations by Rie6f  analytical study of the EW equation and other statistical me-

showed a transition from a super-rough phase to an EVW¢hanics results about the energy and roughness. Section Il

phase for stronger potentidlargerV in Eg. (1)] than those deals with the main part of our work, namely Langevin dy-

used by Batrouni and Hwa. Subsequent numerical workiamics simulations of the OSGM and the RSGM, beginning

[11,12,16,18] presented more evidence of super-roughwith Vo=1 and e=2# and subsequently analyzing the

(In?L) behavior, albeit with large quantitative discrepanciesmodel behavior for differen¥, ande. Finally, in Sec. IV we

with the predictions of RG theories. Finally, a number of present and discuss our conclusions and indicate future di-

works using special optimization algorithnj$3,15,19]or  rections.

direct numerical simulationgl7] strongly supported super-

rough behavior at zero temperature. Very receri], II. ANALYTICAL RESULTS

simulations of a related model provided more evidence of In

behavior at finite temperatures, although this model did not

allow study of the transition. In summary, most researchers According to the RG approad29], the high-temperature

believe that there is indeed a super-rough low-temperaturghase of the OSGM obeys the EW equatj88g],

phase in the RSGM, but its natufglassy or not), the tran-

sition temperature, and its dependence on the model param- ah(r,t)

eters remain unclear. at
In this paper, we attempt to shed light on these issues by

simultaneously studying the OSGM and the RSGM in differ-Equation(7) can be solved by means of the Fourier decom-

ent regions of their phase diagram. As we will show below,position (see[32] for details),

it turns out that the potential strengtiy, crucially deter-

mines the model features. In addition, it is also natural to ask A :12 e Th(r, 1) @)

about theintensity of the disorder. How does the model phe- L Y

nomenology change if the disorder takes valug®ijre] with

A. Linear theory: The Edwards-Wilkinson equation

=V2h(r,t)+ (r, ). (7)

e<2m? The importance of these points can be clearly seeWhereq=(2n/L)k, k=0, ... L—1 is the reciprocal vec-
in the Langevin equation, tor. The structure factor can then be shown to be
—2w t
dh(r, t) SH 1-e
- S(a)=(hgh_)=T——, 9)
at anry Y ® (Pah—q oq

where 7(r,t) is a Gaussian white noise of zero mean and®q P€ing the 2D EW discrete dispersion relation
correlations obeying the fluctuation-dissipation theorem,

+
(n(r ) 0)=2T82 (- ) a(t-t), (@) —asit| 5| vasit ) (10
whereT stands for the temperature of the systém.) indi- From S(gq) we can obtain the relevant magnitudes, such as
cates thermal averagésver ), and Boltzmann’s constant is the total roughness,
set tokg=1. For our Hamiltonian, Eq(1), the Langevin 1 1
equation fs w2<t>=<L 2 [h(r,t)~ > fa2 S@), (a1

q#0

ah(r, 1)
at

=V2h(r,t) = Vosirlh(r,t) =h®(r)]+ n(r,1), the correlation function,

(5)
and changing variables according td(r,t)=h(r,t)
—h©(r) (i.e., the height referred to the substrate), we find

2
ah(r,t) :pz S(q)[1—cogq-1)], (12)
= eF(r)+ VZR(r, 1) — Vg sin(h(r, 1))+ 7(r, 1), a

1
C<r>=<p25 [h(s+r)—h(s>]2>

at
6) the total slope,
where F(r)=V2?h©(r)/e. In this form, the disorder is a <2t _1 13
random(correlated in spaceyhemical potential acting on a ® L? E (@) eq 13
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and the slope difference correlation function,

G(r)= éZ [Vh(s+r)—Vh(s)]?
4 2
=22 S@)2, [1-cogar)][1-codq)].

(14)
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Z:néo (ﬂr\]/!(’)n f [1:[ dh(r) |e~ A2 (Vh()?
X Z cosh(r))
2 'BVO) <(E cosh(r)) > : (22)
= 7 y

0

From Eq.(9) we can find an estimate for the time neededwhere Z, is the partition function oH,, the free Hamil-

to reach saturationt,, and the dynamic exponerz; We

tonian[i.e., Eq.(1) without the potential terfa By means of

compute the time that the structure factor needs to be withihis expansion we obtain
1% of its saturated form for the slowest Fourier mode, that

with the lowest|q|, |g|=2#/L obtaining

t,=3x10 ?L? (15)

implying z= 2. For the saturated roughness, we obtain

g

which cannot be computed exactly but, for laigecan be

L-1
T
412, >

kykp=1

-1

wi(t—oo,L)= Sir?

(16)

)+Sln2

approximated changing the sum by an integral and the sine

functions by their arguments, arriving at

wa(t L) ! F F da,d T
— 00 =~ — —
’ 22 ) omit Jomn © qy(Q§+Q§)

T (= dg T
_E ———InL

2nL O 27 @n

yielding a roughness exponedat=0. As for the total slope, it
tends to a value independent lof
§?=T, (18)

whereas for the correlation functions, we find for large

.
C(r)=—lInr, (19)
ar
T ré N
G(=28"+ g oInr 7 a2 24 2T
(20)

B. Other results for the energy and the roughness

At equilibrium, the partition function for the OSGM is

zzf [l'r[ dh(r)

e~ UL (Vh(r)?+ Vo[ 1-cosh(r)]}

(21)

(BVo)”

Zo2

.
where subdominant terms such g%exp(—A/3) have been

neglected, and only terms of the ordé? have been kept.
The expression above can be put in the form

(BVe)2"|
22n(n! )2

(cosh(r"))

, (23)
Ho

> cosh(r))ncosh(r’)>

o)

, B 22n—1(n!)2 *
<COSh(r )>H_<nzl n(BVO)an) X(nZ:O

\Y; Vy)3 Vy)°
:,820 (Blg) +(ng) OBV,

(24)
yielding for the approximate energy per site

1 BVo (BVo)®
28 Vo(l 2 " 16

1
E= 55 (H)= +0((Bvo").
(25)
For the roughness, we have to compute

— z
([h()-hHu=7

XE (/3 o)

n=0

<h2(r 2 [cosh(r’)]" > ,

Ho
(26)

assuming that at equilibriuriT=O. Neglecting again sub-
dominant terms, we find

z
(MDY= (W) (27)
and hence
BVo 3(BVo)* 19BVo)®
W =W 1= e aaag HOUBVD)Y) .
(28)

Finally, at low temperatures the height exhibits only small
deviations fromh=0, and therefore we can approximate the
Hamiltonian as

whereg=T" 1. Expanding for high temperaturp41] means
rewriting Eq.(21) as a series in powers @V,:
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H=2, 1(Vh(r))?+Vo[1—cos(hr))]

2
=2 %(Vh<r>>2+voh(2” : (29)

10

i.e., 2N quadratic terms, each one of which, according to the
equipartition theorenj42], contributes withT/2 to the en-
ergy value. Taking into account the global facipmwe con-
clude that at low temperatures the energy of the OSGM is 51
approximatelye=T/2.

+L=64

oL=128

O L=256

x L=64 (random)
AL=128 (random)
0O L=256 (random)

Ill. LANGEVIN DYNAMICS RESULTS

A. Numerical simulation details 0 5 10 15 20 25 30

We have integrated the Langevin equatit®) corre-
sponding to the Hamiltoniaril), on LXL square lattices
with periodic boundary conditions, using a stochastic
second-order Runge-Kutta methptB]; in some cases, we temperature predictiofupper line). Inset: Specific heat vs tempera-

have repeated the simulations with a Heun me{ad, with ture; symbols as in the main plot. Error bars are smaller than the

excellent agreement between both procedures. We are therg,—mbol size.

fore sure that our results are not an artifact of our numerical

method, a conclusion further reinforced by the agreement . .<it that for the OSGM~25 in our dimensionless
with the theoretical expectations of the preceding section aSnits Remarkably, this is the RG value fbg, which makes

we discuss below. The simulations reported in this papej, very tempting to claim that this method indeed yielfis

were chréfdlggt W'tg ;Sgrr}te_st_em=t().0tl ton tlatt'ceiﬁ (t)f correctly. Monte Carlo simulations of the discrete Gaussian
Sizest. =54, » an - 'L1s important to stress that We., [Hamiltonian (1) with Vy=0 andh(r) restricted to

g'g Gnl\?lt Eexo\r/mr a\;vleraﬁeskozj/(?[[] t’[]teh quer;ch:;d n]f)'ser 'ri‘mthﬁlteger valueshy Shugarcet al.[45] with the same criterion
» NOWEVer, we checked that the outcome of our Simu, locating the transition yielded similar results. However,

lat'gr?cshgc'jdnggte %?eﬁgqn'?'t;?gggd'ggﬁgte hr(erf);lll_zgt'loar; ?Jetheas RG calculations are perturbativeMg and carried out on
qu ' inil = ’ R the continuum Langevin equatid29-31,33-35], it is not

substrate h(r) =h®)(r), or random]by repeating several obvious that they apply to a discrete model with=1, i.e.,

times a number of our simulations. In all cases, simulation%f the same order as the kinetic term. In view of this. we
consisted of an equilibration time and a measuring periodyeigeq to include the OSGM in this study, both to anélyze
Equation(15) predicts that the time needed for equilibration in detail whether the comparison to the universal RG predic-

is t,, =500 forL=128 andt, =2000 forL =256, and hence .. : : ;
we used equilibration times of 5000 and 10 000 units, respecﬂ%nhf?ér;h;efri%%Isp?l g:: dvf,?tﬁl ttc;lgtnﬁgfar:ﬁ eto;ggﬁﬂarev\fmh
tively; afterwards, we let the system evolve for an equalShould also be of EW type '

penpd, over which we performed therma_ll averages. Equili- The first quantity we discuss, shown in Fig. 1, is the mean
bration was ensured in all cases by verifying that the fluc-

tuati f th G d d by checki thenergy of both models. As we see, the results are largely
uations ol Ine energy were t>aussian and by checking ﬁdependent of the system size, and hence it is unlikely that
equality of the specific heat computed from those fluctua

i df derivat P I they are affected by finite-size effects. The plot shows that
lons and from derivalives of In€ mean enefgy, as WellaS  the'mean energy of the OSGM reaches the high-temperature
by monitoring the evolution in time of the quantities of in-

: - approximation aff,=16=*1; on the other hand, the mean
terest toward a stationary state. As an addmona.l test, Wgnergy for the RSGM is never too far from it, although for
compared the imposed simulation temperature, arising fro !

the noise term. to that measured during the evolution ] emperatures lower thah,=4=*1 the numerical values lie
the noise term, to that measure u g the evolution acco lightly below the high-temperature result. At temperatures
ing to the equipartition theoref®2]; both quantities were

always found to agree within 0.1%. Finally, we did a few higher thanT, the en.ergies. of both models coincide within
e i the accuracy of our simulations. These results suggesTthat
much longer runs, whose outcome agreed with that of the .
shorter runs. could be the roughenmg temperatufg,, for the OSGM and
T, the super-roughening temperatuiieyz, for the RSGM,
because the EW behavior of the mean energy of both models
B. Standard RSGM: V=1 and e=2z indicates the effective suppression of the sine term by tem-
We begin by discussing our results for the “canonical” perature. The inset in Fig. 1 presents the specific I@&atof
version of both the OSGM and the RSGM, i.e., Hamiltonianboth models, exhibiting a well defined peak @, for the
(1) with V=1, as studiedfor the ordered casein [39,40]. OSGM with its maximum at temperatuile=9, much lower
In those works, the roughening temperature was determineithan Ty. In contrast, we do not observe any peak for the
by a direct comparison to RG predictions, looking for the RSGM; there might be a peak &t=3, but the evidence is
temperature at which the height difference correlation funchot conclusive. Concerning the peak for the OSGM, we
tion reached a universdin the RG framework)yalue, with  stress again the absence of any finite-size effect, consistent

FIG. 1. Mean energy for the OSGM and the RSGM vs tempera-
ture. Symbols as indicated in the plot. The straight lines correspond
to the low-temperature predictioflower line) and the high-
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16
25 | +L=64 gBB] ud 21
OL=128 . <) Aé’A @) xy :g
©L=256 o8 1A x 16} 5 7
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oo | AL=128 (random) 8o » 1 ,
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FIG. 2. Total roughness for the OSGM and the RSGM vs tem-
perature. Symbols as indicated in the plot. The straight lines corre-  ° " T
spond fits(resulting slopes are also given in the pltd the high-
temperature prediction for the two sizes considered. Inset:
Roughness susceptibility vs temperature; symbols as in the mair
plot. Examples for error bars in different regions are shown.

with a KT-type transition. Furthermore, we believe that this
peak is aSchottky)anomaly[36] similar to that observed in
2D XY and easy-plane Heisenberg spin moddi§] above
the KT transition. Recall that when mapping the OSGM to
the XY model, the temperature of the former maps to the
inverse temperature of the lattgd4], hence the observation
of the anomaly below the possible transition temperaligre
This reinforces our interpretation df, as the roughening
temperature of the OSGM.

The total roughness of both models, shown in Fig. 2, be- . .
haves similarly for temperatures higher thgg, depending 0 1 2 3 4
linearly on temperature. In both cases, we see that the slope nr
of the roughness depends on the system size, as predicted byFIG. 3. Height difference correlation functiotscaled byT) vs
Eqg. (16). Whereas the approximation in E¢L7) yields Inr, r being distance, for the OSGKupper paneland disordered
slopes 0.66 and 0.77 fdr=64 and 128, respectively, if we (lower panelsine-Gordon model. Temperatures are indicated at the
numerically compute the exact result, E41), the slopes right side of the plots. The curve marked with temperature 16 in the
turn out to be 0.71 and 0.82, in excellent agreement with thelot for the RSGM s the correlation function for the OSGM at that
results of our simulations, 0.71 and 0.83. Beldy, the temperature, showing clearly that both overlap.
roughness for the OSGM is independent of the size and de-
pends nonlinearly on temperature, whereas aligwere find  different realizations lead to different results, in contrast with
a linear dependence on temperature and clear finite-size ehe peak for the OSGM, which is the same for all realiza-
fects. For the RSGM, the linear behavior extends all the wayions. BelowTg, the values ofy,, for the OSGM are inde-
down toT,, and belowT, the behavior becomes nonlinear. pendent of the system size, whereas abbyehey increase
The slope of the linear region is approximately the same inwith size without any definite scaling.
the first part, fromT, to Ty, and in the second, abovig,, Figure 3 depicts the height-difference correlation function
i.e., the whole linear region is well described by the EWfor the two studied models, and shows that abd@ye=T,
model. This means that abo¥g the linear model describes and Tgr=T, they behave as predicted by the linear theory:
accurately the behavior of the OSGM, and hence from nowrhe slope of the numerical height-difference correlation
on we identify T, with the roughening temperatur€z,  function is 0.32, indistinguishable from the predicted 0.318
whereas for the RSGM, the same is trueTaf and Tgg. by Eqg. (19). In addition, the correlation functions for the
Figure 2 presents also results for the roughness susceptib®SGM and the RSGM coincide, as shown in the plot for the
ity, xw, defined asy2=[((w?)?)—(w?)?]/T?. For the RSGM. We see that the behavior of the correlation functions
OSGM, x,, exhibits a very clear peak &, and above i it is in full agreement with our claims regardifigy and Tgg,
is the same as for the RSGM; however, this magnitude iand this is further confirmed by the plot of the slope corre-
very noisy and these results must be taken with caution. liation function in Fig. 4. It is important to note that, below
fact, one could identify a peak for the RSGM Bgg, but  Tgg, the behavior of the height-difference correlation func-
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FIG. 4. Slope correlation functionscaled byT) vs Inr, r being the distance, for the OSGW¥ft panel)and disorderedright panel)
sine-Gordon model. Temperatures are indicated at the right side of the plots. The curve marked with temperature 16 in the plot for the RSGM
is the correlation function for the OSGM at that temperature, showing clearly that both overlap.

tion for the RSGM is approximately a squared logarithm, as C. Other potential strengths
predicted by RG calculations. We postpone discussion of this
point to the next section.

Finally we studied another magnitude, namely,

We now turn to the question of the influence of the po-
tential strength on the RSGM behavior. We have considered
two representative valued/,=0.2 and 5, i.e., five times
m,=(cogh(r)—h©@(r)]). (30) smaller and larger, respect_ively, than the “canqnical” value
V,=1. The smallest value is close to that considerefbih

For the OSGM this is the average computed in the precedinéozo.'la and we expect thf?“ our r.eSUItS .W'” be comparable

X . . 1o theirs. As before, we begin by discussing the total rough-
section, whereas for the RSGM it is the average of the COSINE . and the specific he@siee Fig. 6). First of all, for all
of the height referred to the substrate. Figure 5 shows ou? | A/ th P 9. b hich ’h h
results: The high-temperature approximation, H@g4), values ofVy there Is a temperature above which the rough-

agrees very accurately with the simulations for temperature8€SS value is independent W and of the presence or ab-
sence of disorder. This means that our identification of this

Vrggime with the effective suppression of any potential effect

is indeed correct: Different leads only to different transi-

Tr. Interestingly,m, is largely independent not only of the =02

system size, but also on the realization of the quenched didlon temperatures. Thus, for the OSGM we fifief

order for the RSGM. =13+1 andT;°:5=19t1, in agreement with the intuitive

expectation that larger potentials need higher temperatures to
1 , . ' ; ; , be suppressed. Aside from this, the general shape of the

O ordered roughness curve is basically the same for the three values of
g Arandom V,. The situation(for the OSGM)is the same as far as the
o8 - gfg_m 1 specific heat is concerned: Largemaller)V, leads to larger

(smaller)anomalies, which are displaced to higltlewer) T
following the correspondindlr. Therefore, we conclude
that changingV, does not introduce anything qualitatively
new in the OSGM.

The picture for the RSGM is substantially different:
Modifying V, does give rise to qualitatively new phenom-
ena. Let us first look at the small, case. Figure 6 shows
that the roughness follows a straight line all the way down to
T=0 (although we cannot exclude that there are nonlinear
effects forT=<1 with our present resolution). This would
suggest that there is no transition in this case, very much like
the results of Batrouni and HwW&]. The upper panel of Fig.

7, where the height-difference correlation function is de-
FIG. 5. Comparison of the averages of the cosine teng, of picted, confirms this interpretation, showing no dependence

the OSGM and the RSGM at different temperatures. Symbols ang" temperature in the analyzed range; Fig. 8,ng; agrees

lines as indicated in the plot; lines correspond to theoretical apWVith this as well, insofar as the dependencemf on tem-

proximations up to ordeg and 8%, whereas symbols are numerical Perature is well described by the high-temperature expan-
results. Results are independent of the system size and of the refloN. In view of this, we can conclude that if there is a tran-
ization of the disorder; error bars for thermal averages are smallegition, it occurs at a temperature smaller thian 1.

than the symbol size. The inset is an enlargement of therigw Finally, let us consider the largé, case V,=>5. The plot
region of the plot. of the roughness in Fig. 6 exhibits a striking peak for
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FIG. 6. Comparison of the roughne@gpper paneland specific
heat(lower panel)for the OSGM and the RSGM for different val- % 1 2 3 4
ues ofVy. The inset in the upper panel shows a larger range of Inr

temperatures for the roughness dependence. Symbols as indicated
in the plot. All the results have been obtained for64. Note
especially the peak in the specific heat for the RSGM Wigh-5.

FIG. 7. Comparison of the height difference correlation func-
tions for the RSGM withv,= 0.2 (upper panel), an¥,=5 (lower
panel). Temperatures as indicated in the plots.

=5, after which the roughness decreases until reaching the = . N . .
high-temperature regimgmarked by the corresponding intriguing result is the one in Fig. 7 for the height-difference
OSGM with the same value fov,) at T=8+1. To assess correlation function: FofT<5, the scaled correlations de-

the relevance of this peak in the roughness, we repeated ofifé25€ _with temperature but, simu]tgneously, the correlation
simulations forl =64 and performed additional ones for 1€Ngth increases, up ®=5, when it increases beyond the
=128. The results, collected in Fig. 9, show that the peak iSYStem size. Above that temperature, it follog/vs the same
a realization-dependent feature. However, in this plot we als§volution as theVo=1 case, finally reachingsg=8+1.
see that for temperatures beloW=>5 the roughness is Whereas in this intermediate temperature regime the height-
roughly independent of the system size, something which wéifference correlation functions are well described by
did not observe whe,=1 (the lines forVy=1 are in- squared logarithms, Fig. 7 immediately shows that th_e
cluded in Fig. 9 again for comparisprHence, even if the lowest-temperature correlations can by no means be consid-
peak atT=5 does not actually exist, that temperature doe£red squared logarithms. This suggest the presence of a new
o . A .
seem to separate two different regions. In addition,\igr ~Phase transition ar* =5= 1. We will discuss the possible
=5 the specific heat has @ore smearedmaximum at nature of the low-temperature phase and the existence of this
about the same temperature as that of the roughness, &jansition in the next section.
though our data are much noisier and we cannot establish
clearly the maximum temperature; the dependence, however,

is manifestly nonmonotonic. Figure 8 supports our conclu- \ye now generalize the RSGM and IB{)(r) be ran-
Vo=5

sion thatTg2 “=8=1, whereas nothing special is seen asdomly chosen from a uniform distribution {i®, €], with 0
m, goes throughl =5, the roughness maximum. The most <e<2; e=2m is the case studied in the preceding section.

D. Other disorder strengths



3226 ANGEL SANCHEZ, A. R. BISHOP, AND ESTEBAN MORO PRE 62

] "o ‘ " ' ' ‘ the RSGM and, furthermore, the plots exhibit a finite corre-
< ° lation length belowT g for both values ok. Another intrigu-
3 ing fact is the nonmonotonic dependence of the correlation
03 1 = Zk: ord 1 function on temperature foe=0.8: From the curve foil
. Spp =1, the scaled correlation function decreases Uff o5;
N a '05'2382/2% upon further increasing the temperature, the evolution of the
QV,=0.2 ran curves is very similar to that of the OSGM. This might be
Z02r, o x V=5 ord 1 connected with the change in slope in the roughness curve
E . D Yezdran mentioned in the preceding paragrajsee Fig. 10), but we
have not been able to draw a clearer connection. All this is
clear evidence that the behavior of the RSGM is significantly
orr dependent on the disorder strength.
IV. DISCUSSION AND CONCLUSIONS
0. - = s = = = Let us begin the discussion of the above results by ana-

T lyzing our findings about the OSGM. Our simulations
strongly support thalg=16+1 for the OSGM on a lattice

o FggéM Cor;p:rissgg'fwtr;e adv_fefrages oflthe cosir;e te;mml,of with Vo=1. This is in contrast to the claims [189,40]that
the and the or different values 8. Symbols as Tr=25 where a different way of definining the transition,

indicated in the plot, and lines correspond to the theoretical aPyhich assumes the validity of the RG approach. was used
proximations for high temperature. 4 PP !

(see Sec. Il B andi39,40,45]). Further, the result is also in
contrast with the RG prediction itsgl29-31,33,34], which
As representative examples we have considere®.8 and in our units isTg==8. However, we believe that the com-
0.2, closer to the RSGM and the OSGM, respectively. Fronparison with the linear theory for the EW high-temperature
the roughness dependence on temperature, shown in Fig. 16hase has a much more physical character while keeping the
we see that for both values ethe dependence of the rough- pasic RG ideas, and establishes beyond a doubt that for the
ness on temperature is qualitatively similar to the OSGM, thetdied lattices the roughening temperaturgqs- 161 for
results for the lowek value being practically the same as for Vo= 1. Another hint in favor of our claim is the finding of
the e=0 case. However, the case=0.8 is somewhat differ-  the (Schottky) anomaly in the specific heat, which should
ent: The low-temperature region appears to consist of tW@ppear below the transition temperature in view of what oc-
straight lines, changing slope at a temperature arolihd cyrs for theXY and related modelgt6]. Finally, the fact that
=5, rather than a nonlinear dependence. By reasoning age obtain the same results for both the OSGM and the
above, we identifyTeR?*~Tr=16+1 and Tz ®=12+1, RSGM aboveTy is clear evidence that the potential is irrel-
values which are confirmed by the energy behavioot evant(in the RG sensejn that regime and that we have
shown), the height difference¢Fig. 11), and slope(not indeed located the transition. Clearly, we cannot exclude the
shown)correlation functions, and by the dependencemef  possibility that working on even larger lattices we would find
on temperaturénot shown). the transition where the RG predicts it, but the absence of
An interesting question arises from Fig. 11: There is noany finite-size effects even far=256 makes this possibility
evidence about the squared logarithmic behavior found foguite unlikely. Another possible reason for the discrepancy is
the fact that our simulations are intrinsically discrete in space
while RG theories for the OSGM are always applied to the
continuum equation; again, very much larger lattices would

20 T T T

oV s remove this objection and clarify the effects of discreteness.
—— V=1, L=128 Aside from that, we have also found that increadithgcreas-
15 | (‘)xo:g' :::;ia ing) Vo increasegdecreaseghe roughening temperature: In
V V=5, L=128 the cases we studied, we fouﬁ'ti"zoz: 13+1 and T\é":s

=19=+1, which is intuitively reasonable as larger potential
barriers require larger temperatures for the surface to over-
come them. On the other hand, RG calculations are pertur-
bative inVy, so one would expect better agreement with the
RG prediction forVy=0.2, but in fact the agreement is
worse in that case.

Let us now turn to the RSGM. In the “canonical” case,
s 8 Vo=1, we found a super-roughening transition Taiz=4
+1=Tg/4, to be compared to RG predictions that it should
. . occur atTg/2. Below Tgr, we have obtained a ndepen-

0 5 10 15 20 dence of the height-difference correlation function, in agree-
ment with RG results. However, we have clearly shown that
FIG. 9. Comparison of the roughness OSGM and the RSGM foithe super-roughening transition temperature dependg,on

V,=1,5 and size$ =64,128. Symbols as indicated in the plot.  confirming the earlier report by Batrouni and H{& on the

o
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FIG. 10. Comparison of the roughness for the OSGM, the In

RSGM, and the two intermediate versions of the RSGM with dis-
order strengthe=0.2 and 0.8(see text for the corresponding defi-
nition). The size isL=64 in all four cases, and symbols are as
indicated in the plot.

absence of the transition in Langevin dynamics simulations T
for Vy=0.15, and later reports by Riegé6] and Ruiz-
Lorenzo[18], who also observed this dependence in Monte 12|
Carlo simulations. In the opposite casg=>5, we find that
T\ég:5=8t 1, considerably higher than thé,=1 tempera-
ture. This disagrees with the RG predictions of a universal
Tgr independent o¥/,. We believe that the agreement be-
tween our results and the previous ohg$,18]indeed sup-
ports a dependence dfsg on V,, whose explanation re-
mains an open question as far as RG is concerned.

A second, novel finding arises when considering our nu-
merical results folVy=>5, which strongly suggest the possi- 0.4 s : s s
bility of two different low-temperature phases. In our com- ! 2Inr 8 4

ments in the preceding paragraph, we t05&75:8i1 FIG. 11. Height difference correlation functiotsaled byT) vs
interpreting that the super-roughening transition implies anr, r being distance, for the=0.2 (upper panel)and e=0.8
change from a Ihbehavior of the height-difference correla- (lower panel)RSGM. Temperatures are indicated at the right side
tion function to a In form(and the rest of the EW featujes of the plots.

However, the lack of size dependence of the roughness and

the specific heat on temperature perﬁW:Stlz with peaks reported in works al=0: Thus, Zenget al. [13] studied a
absent for smaller values &f;, raise the possible existence = : ) . .
of another phase transition. If one looks at the correlatiorfliScrete model but, being different from the Gaussian, their
functions in Fig. 7, it turns out that for temperatures below!OW-temperature results cannot be compared to ours, and the
T* =4 the correlation length is finite, in agreement with theresults of Riegeet al. [15,19]do not allow us to conclude
roughness independence on the system size. Whereas tAgYything in this respect. Intuitively, one can expect a finite
range of correlations above*, which we believe is infinite, ~correlation length phase at low temperatures and lggen

could be a subject of debate as we only have studied sizes iipe limit Vo—o, the surface follows the disorddi.e.,

to L =256, our claim of finite correlation lengths beldW is  h(r) =h©(r) +2n(r) = everywhere], but the gradient term
difficult to dispute. Further evidence in this regard is shownsmoothes out the lack of correlationstgf)(r), the compe-

in Fig. 12, where curves fovy=>5 atT=1 are compared for tition of these two effects yielding a finite correlation length.
two different system sizes. At this point, it is interesting to In a loose sense, this could be interpreted as Anderson local-
recall that in a previous pap¢L7] it was found that afl ization taking over the coupling between neighboring sites
=0, the RSGM withVy=1 exhibits a finite correlation with increasingv,. This picture is confirmed by simulations
length of about 20 lattice unitéhe reader may find Figs. 2 for Vy=25 (Fig. 12): For such a large value df, the cor-

and 3 of [17]illustrative). Having this in mind, it is not relation length is only one lattice unit, i.e., correlations reach
unreasonable to conjecture that there i§*afor the Vy=1 only nearest neighbors. Clearly, the data presented here are
case, which could be beloW=1 or close to 1(the upper not conclusive, but the conjecture that there are two transi-
curve in Fig. 3 might already show a finite correlation tions whose critical temperatures dependvgns not unrea-
length). We stress that this phase has not been previousbonable and deserves further consideration.

wps s ©




3228 ANGEL SANCHEZ, A. R. BISHOP, AND ESTEBAN MORO PRE 62

' ' ' ' RSGM. This poses a number of questions to be addressed
either with greater numerical capabilities or with new ana-
. lytical tools. We believe that the complex phase diagram of
the RSGM is being partially unveiled, as our research sup-
ports previous findings such as the nonuniversality of the
transition temperature. Significantly, once we know where to
look for the low-temperature phase of the RSGM, we can
investigate the nature of that pha&e phases). It is often
stated that the RSGM is “glassy” in this regime; however,
this assertion has never been really proven nor fully detailed
and, furthermore, if the RG picture is qualitatively correct, it
has to be recalled that it is a replica-symmetric theory, which
implies that the super-rough phase would not be glassy in the
replica sens¢18]. We have obtained preliminary evidence
that there are long-lived metastable states in the low-
. temperature phase of the RSGM7], but in view of our
0 1 2 3 4 present results and their nonuniversality we will examine this
Inv question more carefully in future work. Investigation of the

FIG. 12. Height difference correlation functiotezaled byr)vs ~ dynamics of the RSGM will also be important; we recall that
In, r being distance, for different values Wf andL, as indicated ~ Batrouni and Hwa[5] did find evidence for a super-
in the plot. In all casesT=1. roughening transition in the dynamics of the model, and
hence it would be worth checking their results for larger

We have also found that the transition temperature anaalues ofVo. We h'ope that thosg _qnalyses, along W'th mea-
the correlation functions depend on the disorder strengﬂﬁ”remems of nonlinear susceptibilities and of relaxation dy-

This is not unexpected, insofar as the change in the disord&2Mics, will shed light on this difficult problem. Work along

distribution interacts with the periodicity of the sine poten-t ese lines is IN progress. .
tial, and therefore it is clear that when=2, i.e., in the Note added in proof. Recently, it has been drawn to our

standard RSGM, it is a special case. In this respect, our rdttention that, contrary to what we stated in the conclusions,

sults appear to indicate that the RSQMith e=2) is a f[here is at least one RG calculatigiO]that predicts thal g5

very specific model, and that its behavior at low tempera-mcreaS(.es if the strength of the potential increases in agree-
ent with the numerical results reported here. We thank S.

tures might not be representative of what one would find ifnent o .
an actual experiment, where the disorder cannot be so pré—CheIdI for pointing this out to us.
cisely controlled. Another conclusion we may draw from our
work is that there might be two classes of behavior at low
temperatures for small and large Small e models would We thank Rodolfo Cuerno, Juan JedRuiz Lorenzo, and
behave very similarly to the OSGM, whereas large values oRal Toral for discussions. Work at Legamevas supported
e would give rise to a more complex phenomenology with,by Project No. PB96-0119. Work at Los Alamos was done
e.g., nonmonotonic behavior of the correlation functions. under the auspices of the U.S. Department of Energy. A.S.
As a final conclusion, we remark that the most relevantand E.M. acknowledge the support by NATO CRG 971090,
result of the present work is the determination of the transiby DGESIC(Spain)through an “Accim Integrada Hispano-
tion temperature from the high-temperature phase to the lowBritanica,” and by Los Alamos National Laboratory for a
temperature phas@r phases)pf both the OSGM and the stay at Los Alamos, where part of this work was carried out.

— V,=5,L=128
——- V=5, L=64
— V=25, L=64
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