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Roughening and super-roughening in the ordered and random two-dimensional
sine-Gordon models
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We present a comparative numerical study of the ordered and the random two-dimensional sine-Gordon
models on a lattice. We analytically compute the main features of the expected high-temperature phase of both
models, described by the Edwards-Wilkinson equation. We then use those results to locate the transition
temperatures of both models in our Langevin dynamics simulations. We show that our results reconcile
previous contradictory numerical works concerning the super-roughening transition in the random sine-Gordon
model. We also find evidence supporting the existence of two different low-temperature phases for the disor-
dered model. We discuss our results in view of the different analytical predictions available and comment on
the nature of these two putative phases.

PACS number~s!: 05.10.Gg, 68.35.Ct, 74.60.Ge, 64.70.Pf
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I. INTRODUCTION

The location and characteristics of phase transitions
disordered media constitute a long-standing and contro
sial question, particularly in more than one spatial dimens
@1#. The question becomes even more difficult if the disor
is not very weak; then, new, nontrivial behavior is common
found, involving features such as aging, ergodicity breaki
extremely slow dynamics, complicated energy landsca
etc.; major examples of this are spin glasses and struc
glasses@1,2#. In this context, the properties of crystal su
faces growing on disordered substrates, frequently descr
by a two-dimensional random-phase sine-Gordon mo
~RSGM!, have attracted a lot of attention in the past dec
@3–22#. Interestingly, the same model describes many ot
relevant physical problems, such as randomly pinned
lines confined in a plane@5,21,23–25#, vortex lines in plana
Josephson junctions@26#, charge-density waves@27#, and
commensurate-incommensurate transitions@28#.

In spite of those efforts, the phase diagram and main
tures of the RSGM are not clear yet. To summarize wha
known, we refer for comparison to theorderedsine-Gordon
model ~OSGM!, which is rather well understood~see, e.g.,
@1,29–33#and references therein!. The Hamiltonian for the
OSGM and the RSGM is

H5(
r

S 1

2 (
nn

@h~r !2h~r 8!#2

1V0$12cos@h~r !2h~0!~r !#% D , ~1!
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where nn stands for the nearest neighbors of siter. The
OSGM corresponds toh(0)(r) [0, whereas the RSGM is de
fined by choosing thequencheddisorder variablesh(0)(r)
randomly from a uniform distribution in@0, 2p#. We will
discuss our work in terms of growth on flat~OSGM! or dis-
ordered~RSGM! substrates~see@24–28# for other physical
interpretations!: Accordingly,h(r) is a continuous variable
representing the height of the growing surface at siter of the
lattice, and the cosine term is a potential energy making
teger~i.e., multiples of the crystalline lattice constant! values
of the height energetically favorable. We will consider tw
dimensional~2D! square lattices, i.e.,r5 (r 1 ,r 2), with N
5L3L sites. As first shown by Chui and Weeks@34# ~see
also @35#! by means of a renormalization-group~RG! ap-
proach@36#, the OSGM possesses a Kosterlitz-Thouless@37#
type topological transition between a low-temperature,
phase and a high-temperature, rough phase, the latter b
described by the Edwards-Wilkinson~EW! equation @38#,
i.e., the diffusion equation with additive white noise~see
below!. Above the so-called roughening temperature (TR),
thermal fluctuations effectively suppress the effect of the
sine potential, and the surface becomes free, described
by the kinetic part of the Hamiltonian~1!. As will be shown
below, the most important measurable consequence of th
that the width of the interface,

w25
1

N (
r

@h~r !2h̄#2, h̄5
1

N (
r

h~r !, ~2!

scales~in 2D! asw2; ln L in the asymptotic regime.
In contrast with the clear picture for the OSGM, there a

very few generally accepted results for the RSGM. One
them is that there must be a roughening temperature ab
which the potential effectively vanishes~much as in the case
3219 ©2000 The American Physical Society



,
as
er

er

y

E

or
gh
ie
o

-

ln
no
e
tu
-
ra

b
er
w

as
e

ee

n

s

d

a

h-
e-
y

e,
ing
si-

ork
an
e-

n III
y-
ing
e

di-

m-

as
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of the OSGM! leading to EW behavior. Apart from this
theoretical predictions about the low-temperature ph
largely disagree~a good summary is given in the third pap
in Ref. @7#!: While RG calculations predict asuper-rough
low-temperature phase, withw2; ln2 L, replica-symmetry
breaking variational approaches lead tow2; ln L indepen-
dently of temperature. Numerical simulations were not v
conclusive either: Batrouni and Hwa@5# did not find evi-
dence for an equilibrium phase transition in Langevin d
namics, although Monte Carlo simulations by Rieger@6#
showed a transition from a super-rough phase to an
phase for stronger potentials@largerV0 in Eq. ~1!# than those
used by Batrouni and Hwa. Subsequent numerical w
@11,12,16,18# presented more evidence of super-rou
(ln2 L) behavior, albeit with large quantitative discrepanc
with the predictions of RG theories. Finally, a number
works using special optimization algorithms@13,15,19#or
direct numerical simulations@17# strongly supported super
rough behavior at zero temperature. Very recently@21#,
simulations of a related model provided more evidence of2

behavior at finite temperatures, although this model did
allow study of the transition. In summary, most research
believe that there is indeed a super-rough low-tempera
phase in the RSGM, but its nature~glassy or not!, the tran
sition temperature, and its dependence on the model pa
eters remain unclear.

In this paper, we attempt to shed light on these issues
simultaneously studying the OSGM and the RSGM in diff
ent regions of their phase diagram. As we will show belo
it turns out that the potential strength,V0 , crucially deter-
mines the model features. In addition, it is also natural to
about theintensity of the disorder. How does the model ph
nomenology change if the disorder takes values in@0, e# with
e,2p? The importance of these points can be clearly s
in the Langevin equation,

dh~r, t !

dt
52

dH

dh~r, t !
1h~r, t !, ~3!

where h(r, t) is a Gaussian white noise of zero mean a
correlations obeying the fluctuation-dissipation theorem,

^h~r 8,t8!h~r, t !&52Td~2!~r2 r 8!d~ t2t8!, ~4!

whereT stands for the temperature of the system,^¯& indi-
cates thermal averages~overh!, and Boltzmann’s constant i
set to kB51. For our Hamiltonian, Eq.~1!, the Langevin
equation is

]h~r, t !

]t
5¹2h~r, t !2V0 sin@h~r, t !2h~0!~r !#1h~r, t !,

~5!

and changing variables according toh̃(r, t)5h(r, t)
2h(0)(r) ~i.e., the height referred to the substrate!, we fin

]h̃~r, t !

]t
5eF~r !1¹2h̃~r, t !2V0 sin„h̃~r, t !…1h~r, t !,

~6!

where F(r )5¹2h(0)(r)/ e. In this form, the disorder is a
random~correlated in space!chemical potential acting on
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surface growing on a flat substrate. If we think of the roug
ening transition for the OSGM in terms of the interplay b
tween the temperatureT and the energy scale introduced b
the potential,V0 , wheneÞ0, we have another energy scal
e, which can modify the universal features of the roughen
transition or even give rise to novel thermodynamical tran
tions.

Having the above issues in mind, we discuss our w
according to the following scheme. Section II presents
analytical study of the EW equation and other statistical m
chanics results about the energy and roughness. Sectio
deals with the main part of our work, namely Langevin d
namics simulations of the OSGM and the RSGM, beginn
with V051 and e52p and subsequently analyzing th
model behavior for differentV0 ande. Finally, in Sec. IV we
present and discuss our conclusions and indicate future
rections.

II. ANALYTICAL RESULTS

A. Linear theory: The Edwards-Wilkinson equation

According to the RG approach@29#, the high-temperature
phase of the OSGM obeys the EW equation@38#,

]h~r, t !

]t
5¹2h~r, t !1h~r, t !. ~7!

Equation~7! can be solved by means of the Fourier deco
position ~see@32# for details!,

ĥq5
1

L (
r

eiq•rh~r, t !, ~8!

whereq5(2p/L)k, ki50, . . . ,L21 is the reciprocal vec-
tor. The structure factor can then be shown to be

S~q!5^ĥqĥ2q&5T
12e22vqt

vq
, ~9!

vq being the 2D EW discrete dispersion relation

vq54 sin2S q1

2 D14 sin2S q2

2 D . ~10!

From S(q) we can obtain the relevant magnitudes, such
the total roughness,

w2~ t !5K 1

Ld (
r

@h~r, t !2h̄#2L 5
1

Ld (
qÞ0

S~q!, ~11!

the correlation function,

C~r !5K 1

L2 (
s

@h~s1r !2h~s!#2L
5

2

L2 (
q

S~q!@12cos~q•r !#, ~12!

the total slope,

s2~ t !5
1

L2 (
qÞ0

S~q!vq ~13!
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and the slope difference correlation function,

G~r !5K 1

L2 (
s

@“h~s1r !2“h~s!#2L
5

4

L2 (
q

S~q!(
i 51

2

@12cos~qir i !#@12cos~qi !#.

~14!

From Eq.~9! we can find an estimate for the time need
to reach saturation,tx , and the dynamic exponent,z: We
compute the time that the structure factor needs to be wi
1% of its saturated form for the slowest Fourier mode, t
with the lowestuqu, uqu52p/L obtaining

t3.331022L2, ~15!

implying z52. For the saturated roughness, we obtain

w2~ t→`,L !5
T

4L2 (
k1 ,k251

L21 Fsin2S q1

2 D1sin2S q2

2 D G21

,

~16!

which cannot be computed exactly but, for largeL, can be
approximated changing the sum by an integral and the
functions by their arguments, arriving at

w2~ t→`,L !.
1

~2p!2 E
2p/L

p E
2p/L

p

dqxdqy

T

~qx
21qy

2!

.
T

2p E
2p/L

p dq

q
5

T

2p
ln L, ~17!

yielding a roughness exponenta50. As for the total slope, it
tends to a value independent ofL,

s2.T, ~18!

whereas for the correlation functions, we find for larger

C~r !.
T

p
ln r , ~19!

G~r !.2s21
T

4p
ln

r 8

@~r 211!224r 1
2#@~r 211!224r 2

2#
.2T.

~20!

B. Other results for the energy and the roughness

At equilibrium, the partition function for the OSGM is

Z5E F)
r

dh~r !Ge2b$~1/2!(r„“h~r !…21V0@12cosh~r !#%,

~21!

whereb5T21. Expanding for high temperatures@41# means
rewriting Eq.~21! as a series in powers ofbV0 :
in
t

e

Z5 (
n50

`
~bV0!n

n! E F)
r

dh~r !Ge2b(r~1/2!„“h~r !…2

3S (
r

cosh~r ! D n

5Z0(
n50

`
~bV0!n

n! K S (
r

cosh~r ! D nL
H0

, ~22!

where Z0 is the partition function ofH0 , the free Hamil-
tonian@i.e., Eq.~1! without the potential term#. By means of
this expansion we obtain

^cosh~r 8!&H5
Z0

Z (
n50

`
~bV0!n

n!

3K S (
r

cosh~r ! D n

cosh~r 8!L
H0

, ~23!

where subdominant terms such asbn exp(2A/b) have been
neglected, and only terms of the orderbn have been kept.
The expression above can be put in the form

^cosh~r 8!&H5S (
n51

`
22n21~n! !2

n~bV0!2n21D 3S (
n50

`
~bV0!2n

22n~n! !2D 21

5
bV0

2
2

~bV0!3

16
1

~bV0!5

96
1O„~bV0!7

…,

~24!

yielding for the approximate energy per site

E5
1

L2 ^H&5
1

2b
1V0S 12

bV0

2
1

~bV0!3

16
1O„~bV0!5

…D .

~25!

For the roughness, we have to compute

^@h~r !2h̄#2&H5
Z0

Z

3 (
n50

`
~bV0!n

n! K h2~r !(
r8

@cosh~r 8!#nL
H0

,

~26!

assuming that at equilibriumh̄50. Neglecting again sub
dominant terms, we find

^h2~r !&H5
Z0

Z
^h2~r !&H0

, ~27!

and hence

wH
2 5wH0

2 S 12
bV0

4
1

3~bV0!2

64
2

19~bV0!3

2304
1O„~bV0!4

…D .

~28!

Finally, at low temperatures the height exhibits only sm
deviations fromh50, and therefore we can approximate t
Hamiltonian as
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H5(
i

1
2 „“h~r !…21V0@12cos„h~r !…#

.(
i

1
2 „“h~r !…21V0

h~r !2

2
, ~29!

i.e., 2N quadratic terms, each one of which, according to
equipartition theorem@42#, contributes withT/2 to the en-
ergy value. Taking into account the global factor1

2, we con-
clude that at low temperatures the energy of the OSGM
approximatelyE5T/2.

III. LANGEVIN DYNAMICS RESULTS

A. Numerical simulation details

We have integrated the Langevin equation~5! corre-
sponding to the Hamiltonian~1!, on L3L square lattices
with periodic boundary conditions, using a stochas
second-order Runge-Kutta method@43#; in some cases, w
have repeated the simulations with a Heun method@44#, with
excellent agreement between both procedures. We are th
fore sure that our results are not an artifact of our numer
method, a conclusion further reinforced by the agreem
with the theoretical expectations of the preceding section
we discuss below. The simulations reported in this pa
were carried out with a time stepDt50.01 on lattices of
sizesL564, 128, and 256. It is important to stress that
did not perform averages over the quenched noise in
RSGM; however, we checked that the outcome of our sim
lations did not depend strongly on the realization of t
quenched noise or the initial conditions@flat, h(r) 50; as the
substrate,h(r) 5h(0)(r), or random# by repeating severa
times a number of our simulations. In all cases, simulati
consisted of an equilibration time and a measuring per
Equation~15! predicts that the time needed for equilibratio
is t3.500 forL5128 andt3.2000 forL5256, and hence
we used equilibration times of 5000 and 10 000 units, resp
tively; afterwards, we let the system evolve for an eq
period, over which we performed thermal averages. Equ
bration was ensured in all cases by verifying that the fl
tuations of the energy were Gaussian and by checking
equality of the specific heat computed from those fluct
tions and from derivatives of the mean energy@1#, as well as
by monitoring the evolution in time of the quantities of in
terest toward a stationary state. As an additional test,
compared the imposed simulation temperature, arising f
the noise term, to that measured during the evolution acc
ing to the equipartition theorem@42#; both quantities were
always found to agree within 0.1%. Finally, we did a fe
much longer runs, whose outcome agreed with that of
shorter runs.

B. Standard RSGM: V0Ä1 and eÄ2p

We begin by discussing our results for the ‘‘canonica
version of both the OSGM and the RSGM, i.e., Hamiltoni
~1! with V051, as studied~for the ordered case!in @39,40#.
In those works, the roughening temperature was determ
by a direct comparison to RG predictions, looking for t
temperature at which the height difference correlation fu
tion reached a universal~in the RG framework!value, with
e

is

c

re-
al
nt
as
r

e
-

s
d.

c-
l
i-
-
e
-

e
m
d-

e

ed

-

the result that for the OSGMTR'25 in our dimensionless
units. Remarkably, this is the RG value forTR , which makes
it very tempting to claim that this method indeed yieldsTR
correctly. Monte Carlo simulations of the discrete Gauss
model @Hamiltonian ~1! with V050 and h(r) restricted to
integer values#by Shugardet al. @45# with the same criterion
for locating the transition yielded similar results. Howeve
as RG calculations are perturbative inV0 and carried out on
the continuum Langevin equation@29–31,33–35#, it is not
obvious that they apply to a discrete model withV051, i.e.,
of the same order as the kinetic term. In view of this, w
decided to include the OSGM in this study, both to analy
in detail whether the comparison to the universal RG pred
tion for the factor is a good tool to findTR and to compare its
high-temperature phase with that of the RSGM, whi
should also be of EW type.

The first quantity we discuss, shown in Fig. 1, is the me
energy of both models. As we see, the results are larg
independent of the system size, and hence it is unlikely
they are affected by finite-size effects. The plot shows t
the mean energy of the OSGM reaches the high-tempera
approximation atT051661; on the other hand, the mea
energy for the RSGM is never too far from it, although f
temperatures lower thanT15461 the numerical values lie
slightly below the high-temperature result. At temperatu
higher thanT0 the energies of both models coincide with
the accuracy of our simulations. These results suggest thaT0
could be the roughening temperature,TR , for the OSGM and
T1 the super-roughening temperature,TSR, for the RSGM,
because the EW behavior of the mean energy of both mo
indicates the effective suppression of the sine term by te
perature. The inset in Fig. 1 presents the specific heat,Cv , of
both models, exhibiting a well defined peak inCv for the
OSGM with its maximum at temperatureT59, much lower
than T0 . In contrast, we do not observe any peak for t
RSGM; there might be a peak atT53, but the evidence is
not conclusive. Concerning the peak for the OSGM,
stress again the absence of any finite-size effect, consis

FIG. 1. Mean energy for the OSGM and the RSGM vs tempe
ture. Symbols as indicated in the plot. The straight lines corresp
to the low-temperature prediction~lower line! and the high-
temperature prediction~upper line!. Inset: Specific heat vs temper
ture; symbols as in the main plot. Error bars are smaller than
symbol size.
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with a KT-type transition. Furthermore, we believe that th
peak is a~Schottky!anomaly@36# similar to that observed in
2D XY and easy-plane Heisenberg spin models@46# above
the KT transition. Recall that when mapping the OSGM
the XY model, the temperature of the former maps to
inverse temperature of the latter@34#, hence the observatio
of the anomaly below the possible transition temperatureT0 .
This reinforces our interpretation ofT0 as the roughening
temperature of the OSGM.

The total roughness of both models, shown in Fig. 2,
haves similarly for temperatures higher thanT0 , depending
linearly on temperature. In both cases, we see that the s
of the roughness depends on the system size, as predicte
Eq. ~16!. Whereas the approximation in Eq.~17! yields
slopes 0.66 and 0.77 forL564 and 128, respectively, if we
numerically compute the exact result, Eq.~11!, the slopes
turn out to be 0.71 and 0.82, in excellent agreement with
results of our simulations, 0.71 and 0.83. BelowT0 , the
roughness for the OSGM is independent of the size and
pends nonlinearly on temperature, whereas aboveT0 we find
a linear dependence on temperature and clear finite-size
fects. For the RSGM, the linear behavior extends all the w
down toT1 , and belowT1 the behavior becomes nonlinea
The slope of the linear region is approximately the same
the first part, fromT1 to T0 , and in the second, aboveT0 ,
i.e., the whole linear region is well described by the E
model. This means that aboveT0 the linear model describe
accurately the behavior of the OSGM, and hence from n
on we identify T0 with the roughening temperatureTR ,
whereas for the RSGM, the same is true ofT1 and TSR.
Figure 2 presents also results for the roughness suscep
ity, xw , defined asxw

2 5@^(w2)2&2^w2&2#/T2. For the
OSGM,xw exhibits a very clear peak atTR , and aboveTR it
is the same as for the RSGM; however, this magnitude
very noisy and these results must be taken with caution
fact, one could identify a peak for the RSGM atTSR, but

FIG. 2. Total roughness for the OSGM and the RSGM vs te
perature. Symbols as indicated in the plot. The straight lines co
spond fits~resulting slopes are also given in the plot! to the high-
temperature prediction for the two sizes considered. In
Roughness susceptibility vs temperature; symbols as in the m
plot. Examples for error bars in different regions are shown.
e
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different realizations lead to different results, in contrast w
the peak for the OSGM, which is the same for all realiz
tions. BelowTR , the values ofxw for the OSGM are inde-
pendent of the system size, whereas aboveTR they increase
with size without any definite scaling.

Figure 3 depicts the height-difference correlation functi
for the two studied models, and shows that aboveTR5T0
andTSR5T1 they behave as predicted by the linear theo
The slope of the numerical height-difference correlati
function is 0.32, indistinguishable from the predicted 0.3
by Eq. ~19!. In addition, the correlation functions for th
OSGM and the RSGM coincide, as shown in the plot for t
RSGM. We see that the behavior of the correlation functio
is in full agreement with our claims regardingTR andTSR,
and this is further confirmed by the plot of the slope cor
lation function in Fig. 4. It is important to note that, belo
TSR, the behavior of the height-difference correlation fun

-
e-

t:
in

FIG. 3. Height difference correlation functions~scaled byT! vs
ln r, r being distance, for the OSGM~upper panel!and disordered
~lower panel!sine-Gordon model. Temperatures are indicated at
right side of the plots. The curve marked with temperature 16 in
plot for the RSGM is the correlation function for the OSGM at th
temperature, showing clearly that both overlap.
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FIG. 4. Slope correlation functions~scaled byT! vs lnr, r being the distance, for the OSGM~left panel!and disordered~right panel!
sine-Gordon model. Temperatures are indicated at the right side of the plots. The curve marked with temperature 16 in the plot for t
is the correlation function for the OSGM at that temperature, showing clearly that both overlap.
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tion for the RSGM is approximately a squared logarithm,
predicted by RG calculations. We postpone discussion of
point to the next section.

Finally we studied another magnitude, namely,

m15^cos@h~r !2h~0!~r !#&. ~30!

For the OSGM this is the average computed in the preced
section, whereas for the RSGM it is the average of the co
of the height referred to the substrate. Figure 5 shows
results: The high-temperature approximation, Eq.~24!,
agrees very accurately with the simulations for temperatu
aboveTR ~OSGM! and TSR ~RSGM!. The results for both
models are again indistinguishable for temperatures ab
TR . Interestingly,m1 is largely independent not only of th
system size, but also on the realization of the quenched
order for the RSGM.

FIG. 5. Comparison of the averages of the cosine term,m1 , of
the OSGM and the RSGM at different temperatures. Symbols
lines as indicated in the plot; lines correspond to theoretical
proximations up to orderb andb3, whereas symbols are numeric
results. Results are independent of the system size and of the
ization of the disorder; error bars for thermal averages are sm
than the symbol size. The inset is an enlargement of the lowm1

region of the plot.
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C. Other potential strengths

We now turn to the question of the influence of the p
tential strength on the RSGM behavior. We have conside
two representative values,V050.2 and 5, i.e., five times
smaller and larger, respectively, than the ‘‘canonical’’ val
V051. The smallest value is close to that considered in@5#,
V050.15, and we expect that our results will be compara
to theirs. As before, we begin by discussing the total rou
ness and the specific heat~see Fig. 6!. First of all, for all
values ofV0 there is a temperature above which the roug
ness value is independent ofV0 and of the presence or ab
sence of disorder. This means that our identification of t
regime with the effective suppression of any potential eff
is indeed correct: DifferentV0 leads only to different transi-
tion temperatures. Thus, for the OSGM we findTR

V050 2

51361 andTR
V055

51961, in agreement with the intuitive
expectation that larger potentials need higher temperature
be suppressed. Aside from this, the general shape of
roughness curve is basically the same for the three value
V0 . The situation~for the OSGM!is the same as far as th
specific heat is concerned: Larger~smaller!V0 leads to larger
~smaller!anomalies, which are displaced to higher~lower! T
following the correspondingTR . Therefore, we conclude
that changingV0 does not introduce anything qualitative
new in the OSGM.

The picture for the RSGM is substantially differen
Modifying V0 does give rise to qualitatively new phenom
ena. Let us first look at the smallV0 case. Figure 6 shows
that the roughness follows a straight line all the way down
T50 ~although we cannot exclude that there are nonlin
effects for T&1 with our present resolution!. This woul
suggest that there is no transition in this case, very much
the results of Batrouni and Hwa@5#. The upper panel of Fig
7, where the height-difference correlation function is d
picted, confirms this interpretation, showing no depende
on temperature in the analyzed range; Fig. 8, form1 , agrees
with this as well, insofar as the dependence ofm1 on tem-
perature is well described by the high-temperature exp
sion. In view of this, we can conclude that if there is a tra
sition, it occurs at a temperature smaller thanT.1.

Finally, let us consider the largeV0 case,V055. The plot
of the roughness in Fig. 6 exhibits a striking peak forT
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55, after which the roughness decreases until reaching
high-temperature regime~marked by the correspondin
OSGM with the same value forV0! at T5861. To assess
the relevance of this peak in the roughness, we repeated
simulations forL564 and performed additional ones forL
5128. The results, collected in Fig. 9, show that the pea
a realization-dependent feature. However, in this plot we a
see that for temperatures belowT55 the roughness is
roughly independent of the system size, something which
did not observe whenV051 ~the lines forV051 are in-
cluded in Fig. 9 again for comparison!. Hence, even if the
peak atT55 does not actually exist, that temperature do
seem to separate two different regions. In addition, forV0
55 the specific heat has a~more smeared!maximum at
about the same temperature as that of the roughness
though our data are much noisier and we cannot estab
clearly the maximum temperature; the dependence, howe
is manifestly nonmonotonic. Figure 8 supports our conc
sion thatTSR

V055
5861, whereas nothing special is seen

m1 goes throughT55, the roughness maximum. The mo

FIG. 6. Comparison of the roughness~upper panel!and specific
heat~lower panel!for the OSGM and the RSGM for different va
ues ofV0 . The inset in the upper panel shows a larger range
temperatures for the roughness dependence. Symbols as indi
in the plot. All the results have been obtained forL564. Note
especially the peak in the specific heat for the RSGM withV055.
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intriguing result is the one in Fig. 7 for the height-differen
correlation function: ForT<5, the scaled correlations de
crease with temperature but, simultaneously, the correla
length increases, up toT55, when it increases beyond th
system size. Above that temperature, it follows the sa
evolution as theV051 case, finally reachingTSR

5 5861.
Whereas in this intermediate temperature regime the hei
difference correlation functions are well described
squared logarithms, Fig. 7 immediately shows that
lowest-temperature correlations can by no means be con
ered squared logarithms. This suggest the presence of a
phase transition atT* 5561. We will discuss the possible
nature of the low-temperature phase and the existence of
transition in the next section.

D. Other disorder strengths

We now generalize the RSGM and leth(0)(r) be ran-
domly chosen from a uniform distribution in@0, e#, with 0
,e,2p; e52p is the case studied in the preceding sectio

f
ted

FIG. 7. Comparison of the height difference correlation fun
tions for the RSGM withV050.2 ~upper panel!, andV055 ~lower
panel!. Temperatures as indicated in the plots.
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As representative examples we have considerede50.8 and
0.2, closer to the RSGM and the OSGM, respectively. Fr
the roughness dependence on temperature, shown in Fig
we see that for both values ofe the dependence of the rough
ness on temperature is qualitatively similar to the OSGM,
results for the lowere value being practically the same as f
thee50 case. However, the casee50.8 is somewhat differ-
ent: The low-temperature region appears to consist of
straight lines, changing slope at a temperature aroundT8
55, rather than a nonlinear dependence. By reasoning
above, we identifyTSR

e50 2.TR51661 and TSR
e50 851261,

values which are confirmed by the energy behavior~not
shown!, the height difference~Fig. 11!, and slope~not
shown!correlation functions, and by the dependence ofm1
on temperature~not shown!.

An interesting question arises from Fig. 11: There is
evidence about the squared logarithmic behavior found

FIG. 8. Comparison of the averages of the cosine term,m1 , of
the OSGM and the RSGM for different values ofV0 . Symbols as
indicated in the plot, and lines correspond to the theoretical
proximations for high temperature.

FIG. 9. Comparison of the roughness OSGM and the RSGM
V051,5 and sizesL564,128. Symbols as indicated in the plot.
10,

e

o

as

o
r

the RSGM and, furthermore, the plots exhibit a finite cor
lation length belowTSR for both values ofe. Another intrigu-
ing fact is the nonmonotonic dependence of the correla
function on temperature fore50.8: From the curve forT
51, the scaled correlation function decreases up toT55;
upon further increasing the temperature, the evolution of
curves is very similar to that of the OSGM. This might b
connected with the change in slope in the roughness cu
mentioned in the preceding paragraph~see Fig. 10!, but we
have not been able to draw a clearer connection. All this
clear evidence that the behavior of the RSGM is significan
dependent on the disorder strength.

IV. DISCUSSION AND CONCLUSIONS

Let us begin the discussion of the above results by a
lyzing our findings about the OSGM. Our simulation
strongly support thatTR51661 for the OSGM on a lattice
with V051. This is in contrast to the claims in@39,40# that
TR525 where a different way of definining the transitio
which assumes the validity of the RG approach, was u
~see Sec. III B and@39,40,45#!. Further, the result is also
contrast with the RG prediction itself@29–31,33,34#, which
in our units isTR58p. However, we believe that the com
parison with the linear theory for the EW high-temperatu
phase has a much more physical character while keeping
basic RG ideas, and establishes beyond a doubt that fo
studied lattices the roughening temperature isTR51661 for
V051. Another hint in favor of our claim is the finding o
the ~Schottky! anomaly in the specific heat, which shou
appear below the transition temperature in view of what
curs for theXYand related models@46#. Finally, the fact that
we obtain the same results for both the OSGM and
RSGM aboveTR is clear evidence that the potential is irre
evant ~in the RG sense!in that regime and that we hav
indeed located the transition. Clearly, we cannot exclude
possibility that working on even larger lattices we would fin
the transition where the RG predicts it, but the absence
any finite-size effects even forL5256 makes this possibility
quite unlikely. Another possible reason for the discrepanc
the fact that our simulations are intrinsically discrete in spa
while RG theories for the OSGM are always applied to t
continuum equation; again, very much larger lattices wo
remove this objection and clarify the effects of discretene
Aside from that, we have also found that increasing~decreas-
ing! V0 increases~decreases!the roughening temperature: I
the cases we studied, we foundTR

V050 2
51361 andTR

V055

51961, which is intuitively reasonable as larger potent
barriers require larger temperatures for the surface to o
come them. On the other hand, RG calculations are per
bative inV0 , so one would expect better agreement with t
RG prediction for V050.2, but in fact the agreement i
worse in that case.

Let us now turn to the RSGM. In the ‘‘canonical’’ cas
V051, we found a super-roughening transition atTSR54
615TR/4, to be compared to RG predictions that it shou
occur atTR/2. Below TSR, we have obtained a ln2 depen-
dence of the height-difference correlation function, in agr
ment with RG results. However, we have clearly shown t
the super-roughening transition temperature depends onV0 ,
confirming the earlier report by Batrouni and Hwa@5# on the

-
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absence of the transition in Langevin dynamics simulati
for V050.15, and later reports by Rieger@6# and Ruiz-
Lorenzo@18#, who also observed this dependence in Mo
Carlo simulations. In the opposite case,V055, we find that
TSR

V055
5861, considerably higher than theV051 tempera-

ture. This disagrees with the RG predictions of a univer
TSR independent ofV0 . We believe that the agreement b
tween our results and the previous ones@5,6,18#indeed sup-
ports a dependence ofTSR on V0 , whose explanation re
mains an open question as far as RG is concerned.

A second, novel finding arises when considering our
merical results forV055, which strongly suggest the poss
bility of two different low-temperature phases. In our com
ments in the preceding paragraph, we tookTSR

V055
5861

interpreting that the super-roughening transition implies
change from a ln2 behavior of the height-difference correla
tion function to a ln form~and the rest of the EW features!.
However, the lack of size dependence of the roughness
the specific heat on temperature belowT* 5561, with peaks
absent for smaller values ofV0 , raise the possible existenc
of another phase transition. If one looks at the correlat
functions in Fig. 7, it turns out that for temperatures bel
T* 54 the correlation length is finite, in agreement with t
roughness independence on the system size. Wherea
range of correlations aboveT* , which we believe is infinite,
could be a subject of debate as we only have studied size
to L5256, our claim of finite correlation lengths belowT* is
difficult to dispute. Further evidence in this regard is sho
in Fig. 12, where curves forV055 atT51 are compared for
two different system sizes. At this point, it is interesting
recall that in a previous paper@17# it was found that atT
50, the RSGM with V051 exhibits a finite correlation
length of about 20 lattice units~the reader may find Figs. 2
and 3 of @17# illustrative!. Having this in mind, it is not
unreasonable to conjecture that there is aT* for the V051
case, which could be belowT51 or close to 1~the upper
curve in Fig. 3 might already show a finite correlatio
length!. We stress that this phase has not been previo

FIG. 10. Comparison of the roughness for the OSGM,
RSGM, and the two intermediate versions of the RSGM with d
order strengthe50.2 and 0.8~see text for the corresponding defi
nition!. The size isL564 in all four cases, and symbols are
indicated in the plot.
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reported in works atT50: Thus, Zenget al. @13# studied a
discrete model but, being different from the Gaussian, th
low-temperature results cannot be compared to ours, and
results of Riegeret al. @15,19#do not allow us to conclude
anything in this respect. Intuitively, one can expect a fin
correlation length phase at low temperatures and largeV0 ; in
the limit V0→`, the surface follows the disorder@i.e.,
h(r) 5h(0)(r) 12n(r) p everywhere#, but the gradient term
smoothes out the lack of correlations ofh(0)(r), the compe-
tition of these two effects yielding a finite correlation lengt
In a loose sense, this could be interpreted as Anderson lo
ization taking over the coupling between neighboring si
with increasingV0 . This picture is confirmed by simulation
for V0525 ~Fig. 12!: For such a large value ofV0 the cor-
relation length is only one lattice unit, i.e., correlations rea
only nearest neighbors. Clearly, the data presented here
not conclusive, but the conjecture that there are two tra
tions whose critical temperatures depend onV0 is not unrea-
sonable and deserves further consideration.

e
-

FIG. 11. Height difference correlation functions~scaled byT! vs
ln r, r being distance, for thee50.2 ~upper panel!and e50.8
~lower panel!RSGM. Temperatures are indicated at the right s
of the plots.
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We have also found that the transition temperature
the correlation functions depend on the disorder stren
This is not unexpected, insofar as the change in the diso
distribution interacts with the periodicity of the sine pote
tial, and therefore it is clear that whene52p, i.e., in the
standard RSGM, it is a special case. In this respect, our
sults appear to indicate that the RSGM~with e52p! is a
very specific model, and that its behavior at low tempe
tures might not be representative of what one would find
an actual experiment, where the disorder cannot be so
cisely controlled. Another conclusion we may draw from o
work is that there might be two classes of behavior at l
temperatures for small and largee: Small e models would
behave very similarly to the OSGM, whereas large values
e would give rise to a more complex phenomenology wi
e.g., nonmonotonic behavior of the correlation functions.

As a final conclusion, we remark that the most relev
result of the present work is the determination of the tran
tion temperature from the high-temperature phase to the l
temperature phase~or phases!of both the OSGM and the

FIG. 12. Height difference correlation functions~scaled byT! vs
ln r, r being distance, for different values ofV0 andL, as indicated
in the plot. In all cases,T51.
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RSGM. This poses a number of questions to be addres
either with greater numerical capabilities or with new an
lytical tools. We believe that the complex phase diagram
the RSGM is being partially unveiled, as our research s
ports previous findings such as the nonuniversality of
transition temperature. Significantly, once we know where
look for the low-temperature phase of the RSGM, we c
investigate the nature of that phase~or phases!. It is often
stated that the RSGM is ‘‘glassy’’ in this regime; howeve
this assertion has never been really proven nor fully deta
and, furthermore, if the RG picture is qualitatively correct,
has to be recalled that it is a replica-symmetric theory, wh
implies that the super-rough phase would not be glassy in
replica sense@18#. We have obtained preliminary evidenc
that there are long-lived metastable states in the lo
temperature phase of the RSGM@47#, but in view of our
present results and their nonuniversality we will examine t
question more carefully in future work. Investigation of th
dynamics of the RSGM will also be important; we recall th
Batrouni and Hwa @5# did find evidence for a super
roughening transition in the dynamics of the model, a
hence it would be worth checking their results for larg
values ofV0 . We hope that those analyses, along with m
surements of nonlinear susceptibilities and of relaxation
namics, will shed light on this difficult problem. Work alon
these lines is in progress.

Note added in proof. Recently, it has been drawn to
attention that, contrary to what we stated in the conclusio
there is at least one RG calculation@10# that predicts thatTSR
increases if the strength of the potential increases in ag
ment with the numerical results reported here. We thank
Scheidl for pointing this out to us.
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