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Abstract. In this paper we analyze the set of solutions of a linear

difference equation of high-order. More precisely, we obtain a basis of such
a linear subspace. We deduce integral representations for elements of this
basis. 1 2

§1. Introduction.

Linear difference equations appear in the framework of the theory of or-
thogonal polynomials in a natural way [C]. Namely, consider a linear func-
tional u defined in the linear space P of polynomials with complex coefficients.

Let denote un =< u, xn > the moment of order n associated with the
linear functional u.

The linear functional u is said to be quasi-definite if the Hankel matrices
Hn = [uj+k]

n
j,k=0, n = 0, 1, 2, ... are nonsingular for every n = 0, 1, 2, .... In

such a situation there exists a sequence of monic polynomials {Pn}∞n=0 such
that
(i) deg Pn = n,
(ii) < u, PnPm >= knδn,m, with kn 6= 0.

{Pn}∞n=0 is said to be the sequence of monic polynomials orthogonal with
respect to u. For a sake of simplicity we will write SMOP.
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It is very well known that the SMOP {Pn}∞0 satisfies a three-term recur-
rence relation

xPn(x) = Pn+1(x) + βnPn(x) + γnPn−1(x), n ≥ 1,

where γn 6= 0, n = 1, 2, ....
In other words, {Pn}∞n=0 is a solution of the linear difference equation

xyn = yn+1 + βnyn + γnyn−1, n ≥ 1, (1.1)

with initial conditions y0 = 1 and y1 = x−β0, or, equivalently, y−1 = 0, y0 = 1
if (1.1) is valid for n ≥ 0. Taking into account the set of solutions of (1.1) is a
two dimensional linear space, a second linearly independent solution of (1.1)
is the sequence {Rn}∞n=−1 associated with initial conditions y−1 = 1, y0 = 0
(γ0 = −1). Notice that in such a case, Rn is a polynomial of degree n − 1,
where n ≥ 1. Denote P (1)

n (x) = Rn+1(x), n = 0, 1, .... We will say {P (1)
n }∞0 is

the sequence of associated polynomials of the first kind. (Also, polynomials
{Pn(x)}∞0 , {P (1)

n (x)}∞0 are often called the polynomials of the first kind and
the polynomials of the second kind respectively [A]). Thus, {P (1)

n }∞0 satisfies
a three-term recurrence relation

xP (1)
n (x) = P

(1)
n+1(x) + βn+1P

(1)
n (x) + γn+1P

(1)
n−1(x), n ≥ 1,

with initial conditions P
(1)
0 (x) = 1 and P

(1)
1 (x) = x−β1. Taking into account

γn+1 6= 0 and according to the Favard’s theorem (see [C]) there exists a quasi-
definite linear functional u(1) such that {P (1)

n }∞0 is the corresponding SMOP.
It is very easy to check that

P (1)
n (x) =

1

u0

< u,
Pn+1(x)− Pn+1(u)

x− u
> .

On the other hand, every solution of (1.1) can be given as

yn = A(x)Pn(x) + B(x)P
(1)
n−1(x),

where A and B are functions which can be explicitly given in terms of the
initial conditions for (1.1).

Assuming u is a quasi-definite linear functional, an indefinite inner prod-
uct can be defined as

(p, q) =< u, pq >, p, q ∈ P. (1.2)
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Thus (xp, q) = (p, xq), i.e. the multiplication by x is a symmetric operator
in P with respect to (, ). Indeed the three-term recurrence relation is a
straightforward consequence of this fact. Favard’s theorem can be read in
this context as follows: There exists an indefinite inner product (1.2) such
that the multiplication by x is a symmetric operator with respect to (1.2)
and this inner product has an integral representation.

A natural extension of this problem is the following: To characterize inner
products in P such that the multiplication by a polynomial h is a symmetric
operator with respect to the inner product ([DA], [MSz]).

For instance, if h(x) = xN , N ≥ 2, then an inner product satisfying the
above condition is (1.2) as well as another example is

(p, q) =< u, pq > +
N−1∑

k=1

Mkp
(k)(0)q(k)(0). (1.3)

In [D1] the set of all inner products such that h(x) = xN is a symmetric
operator is characterized as well as some extra conditions about the operator
in order the inner product be of the form (1.3) are given. In [Z1], [Z2], [Z3]
the case N = 2 is considered and in [Z4], [Z5] the case of arbitrary N is
studied.

If we denote {Pn}∞0 the sequence of monic polynomials orthogonal with
respect to an indefinite inner product (, ), i.e.
(i) deg Pn = n,
(ii) (Pn, Pm) = kn, δn,m, kn 6= 0,

then the symmetry of xN with respect to (, ) reads

xNPn(x) =
N∑

k=−N

αn,kPn+k(x), (1.4)

where

αn,k =
(xNPn(x), Pn+k(x))

(Pn+k(x), Pn+k(x))
=

(Pn(x), xNPn+k(x))

(Pn+k(x), Pn+k(x))
=

= αn+k,n
(Pn(x), Pn(x))

(Pn+k(x), Pn+k(x))
,

for k = ±1,±2, ...,±N, and

αn,N = 1, αn,−N =
(Pn(x), Pn(x))

(Pn−N(x), Pn−N(x))
6= 0.
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If we assume the inner product is positive definite, then a sequence of or-
thonormal polynomials can be introduced

pn(x) = (Pn(x), Pn(x))−
1
2 Pn(x).

Thus (1.4) becomes

xNpn(x) = βn,0pn(x) +
N∑

k=1

(βn−k,kpn−k(x) + βn,kpn+k(x)),

with

βn,k = αn,k

[
(Pn+k(x), Pn+k(x))

(Pn(x), Pn(x))

] 1
2

, k = ±1,±2, ...,±N.

The aim of our contribution is twofold. First, to describe a basis of the linear
subspace of solutions for the higher order linear difference equation

xNyn = βn,0yn +
N∑

k=1

(βn−k,kyn−k + βn,kyn+k).

Thus an extension of the associated polynomials of the first kind appears in
a natural way. For N = 2, see [Z1] and [Z2].

Second, we use the extensions of the Favard’s theorem ([D2], [Z4], [Z5])
to describe the corresponding inner products associated with the elements of
the basis obtained above and to deduce integral representations for associated
polynomials.

§2. Basic solutions.

Let us consider the following (2N)-order linear difference equation:

N∑

i=1

(αk−i,iyk−i + αk,iyk+i) + αk,0yk = λNyk, k = N, N + 1, N + 2, ...; (2.1)

αm,n ∈ C, m ∈ Z+, n = 0, 1, 2, ..., N : αm,N 6= 0, αm,0 ∈ R; N ∈ N;

λ ∈ C is a parameter and y =




y0

y1

y2

.

.




is a vector solution;
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We assume the initial conditions

(y0, y1, ..., y2N−1)
T = (y0

0, y
0
1, ..., y

0
2N−1)

T , y0
i ∈ C, i = 0, 1, ..., 2N − 1. (2.1′)

Let {pn(λ)}∞n=0 be a system of polynomials (pn is of the n-th degree) such
that:




α0,0 α0,1 α0,2 ... α0,N 0 0 ...
α0,1 α1,0 α1,1 ... α1,N−1 α1,N 0 ...
...

...
...

. . .
...

...
... ...

α0,N α1,N−1 α2,N−2 ... . . . ...
0 α1,N α2,N−1 ... . . . ...
...

...
...

...
...

...
...

. . .







p0(λ)
p1(λ)

...
pN(λ)

pN+1(λ)
....




=

= λN




p0(λ)
p1(λ)

...
pN(λ)

pN+1(λ)
...




. (2.2)

So, {pn(λ)}∞0 is a solution of (2.1) which additionally satisfies the relations
of (2.1) for k = 0, 1, 2, ..., N−1; p−k = 0, k = 1, 2, ..., N . We put by definition

p(u1; u2) =
p(u1)− p(u2)

u1 − u2

,

p(u1; u2; u3; ...; uk) =
p(u1; u3; u4; ...; uk)− p(u2; u3; u4; ...; uk)

u1 − u2

, (2.3)

k = 3, 4, 5, ...; p ∈ P, ui ∈ C : ui 6= uj, i 6= j.

The divided differences which appear in the representation of the Newton
interpolation polynomial, are defined recursively as (see [G], [BG]):

p(u0; u1; ...; uk; uk+1) =
p(u1; u2; ...; uk; uk+1)− p(u0; u1; ...; uk)

uk+1 − u0

,

ui ∈ C : ui 6= uj, i 6= j; k = 0, 1, ....
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This definition is equivalent to (2.3) because it is known that the divided
differences are symmetric functions of their arguments.

The divided differences have the following properties (the proofs in [BZ]
are for the case of real ui but for the case of complex ui the proofs are the
same):

p(u1; u2; u3; ...; uk) = p(u2; u1; u3; ...; uk) = p(u3; u1; u2; ...; uk) = ...;

(p1+p2)(u1; u2; u3; ...; uk) = p1(u1; u2; u3; ...; uk)+p2(u1; u2; u3; ...; uk), p1, p2 ∈ P;

(αp)(u1; u2; u3; ...; uk) = αp(u1; u2; u3; ...; uk), α ∈ C. (2.4)

If p(u) = un then

p(u0; u1; u2; ...; uk+1) =
∑

β0+β1+...+βk+1=n−k−1

uβ0
0 uβ1

1 ...u
βk+1

k+1 , k < n. (2.5)

If p is a polynomial of n-th degree then

p(u0; u1; u2; ...; un) = const and p(u0; u1; u2; ...; un+j) = 0, j = 1, 2, .... (2.6)

For the divided differences the following formula holds:

p(u0; u1; u2; ...; uk) =
k∑

j=0

p(uj)∏
i6=j(uj − ui)

. (2.7)

Let us consider the following matrix:

W =




p0(λ) p0(λε) p0(λε2) ... p0(λεN−1)
p1(λ) p1(λε) p1(λε2) ... p1(λεN−1)
p2(λ) p2(λε) p2(λε2) ... p2(λεN−1)

...
...

...
. . .

...
pN−1(λ) pN−1(λε) pN−1(λε2) ... pN−1(λεN−1)




,

where ε is a primitive N-th root of unity. Note that if λ = 0 then the matrix
W is singular. Let us consider the case λ 6= 0. Subtract the first column
from the others and after the subtraction divide the remainding columns by
λεk − λ (k is the index of the column). We shall obtain a matrix

W1 =




p0(λ) p0(λε)−p0(λ)
λε−λ

p0(λε2)−p0(λ)
λε2−λ

... p0(λεN−1)−p0(λ)
λεN−1−λ

p1(λ) p1(λε)−p1(λ)
λε−λ

p1(λε2)−p1(λ)
λε2−λ

... p1(λεN−1)−p1(λ)
λεN−1−λ

...
...

...
. . .

...

pN−1(λ) pN−1(λε)−pN−1(λ)
λε−λ

pN−1(λε2)−pN−1(λ)
λε2−λ

... pN−1(λεN−1)−pN−1(λ)
λεN−1−λ




=
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=




p0(λ) 0 0 ... 0
p1(λ) p1(λε; λ) p1(λε2; λ) ... p1(λεN−1; λ)

...
...

...
. . .

...
pN−1(λ) pN−1(λε; λ) pN−1(λε2; λ) ... pN−1(λεN−1; λ)




.

Now, subtracting from the 3,4,...,N-1 column the second one and dividing by
λεk − λε (k is the index of the column) we have

W2 =




p0(λ) 0 0 ... 0

p1(λ) p1(λε; λ) p1(λε2;λ)−p1(λε;λ)
λε2−λε

... p1(λεN−1;λ)−p1(λε;λ)
λεN−1−λε

p2(λ) p2(λε; λ) p2(λε2;λ)−p2(λε;λ)
λε2−λε

... p2(λεN−1;λ)−p2(λε;λ)
λεN−1−λε

...
...

...
. . .

...

pN−1(λ) pN−1(λε; λ) pN−1(λε2;λ)−pN−1(λε;λ)
λε2−λε

... pN−1(λεN−1;λ)−pN−1(λε;λ)
λεN−1−λε




=

=




p0(λ) 0 0 ... 0
p1(λ) p1(λε; λ) 0 ... 0
p2(λ) p2(λε; λ) p2(λε2; λε; λ) ... p2(λεN−1; λε; λ)

...
...

...
. . .

...
pN−1(λ) pN−1(λε; λ) pN−1(λε2; λε; λ) ... pN−1(λεN−1; λε; λ)




.

In the (N-1)-th step we get

WN−1 =




p0(λ) 0 0 ... 0
p1(λ) p1(λε; λ) 0 ... 0
p2(λ) p2(λε; λ) p2(λε2; λε; λ) ... 0

...
...

...
. . .

...
pN−1(λ) pN−1(λε; λ) pN−1(λε2; λε; λ) ... pN−1(λεN−1; λεN−2; ...; λε; λ)




.

From (2.4) and (2.5) it follows that pk(λεk; λεk−1; ...; λ) = µk, where µk is
the leading coefficient of pk. So,

det WN−1 =
N−1∏

k=0

µk 6= 0, (2.8)

for λ 6= 0.
Notice that for λ = 0 we can also consider the matrix WN−1. Really, the

entries of WN−1 are polynomials of λ as follows from (2.4),(2.5), and we can
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take their limit values at λ = 0. In the case λ = 0 the relation det WN−1 6= 0
also holds true.

This observation give us an idea how to construct the basic solutions
for all λ ∈ C from the vectors of polynomials (p0(λεk), p1(λεk), ...)T , k =
0, 1, ..., N − 1.

Let us define the following vectors:

~p(λ) =




p0(λ)
p1(λ)

.

.

.




, ~p(λε; λ) =




p0(λε; λ)
p1(λε; λ)

.

.

.




, ~p(λεk; λεk−1; ...; λε; λ) =

=




p0(λεk; ...; λε; λ)
p1(λεk; ...; λε; λ)

.

.

.




, k = 2, 3, ..., N − 1; with λ ∈ C\{0}. (2.9)

Notice that these vectors are linear combinations of ~p(λ), ~p(λε), ..., ~p(λεN−1)
as follows from (2.7). They are solutions of (2.2) because ~p(λ), ~p(λε), ..., ~p(λεN−1)
are solutions. First N rows of a matrix (~p(λ), ~p(λε; λ), ..., ~p(λεN−1, λεN−2; ...; λ))
coincide with WN−1. So, ~p(λ), ~p(λε; λ), ..., ~p(λεN−1, λεN−2; ...; λ) are N linear
independent solutions of (2.2).

When λ = 0 we write

~p(0; 0) =




limλ→0 p0(λε; λ)
limλ→0 p1(λε; λ)

.

.

.




, ~p(0; 0; ...; 0; 0) =

=




limλ→0 p0(λεk; ...; λε; λ)
limλ→0 p1(λεk; ...; λε; λ)

.

.

.




, k = 2, 3, ..., N − 1. (2.10)

The limits in (2.10) exist because of (2.5) and the vectors in (2.10) are solu-
tions of (2.2). It is not hard to see that they are linearly independent.
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Now we shall construct another version of the first N solutions of (2.1).
Consider the following vectors:

RN
m,N(~p)(λ) =




Rm,N(p0)(λ)
Rm,N(p1)(λ)

...
Rm,N(pN−1)(λ)




, Rm,N(~p)(λ) =




Rm,N(p0)(λ)
Rm,N(p1)(λ)

...
Rm,N(pN−1)(λ)

...




,

m = 0, 1, ..., N − 1,

where Rm,N(p)(λ) =
∑

j aNj+mλNj if p(λ) =
∑

i aiλ
i [D1, p. 90]. The follow-

ing is true [D1, p. 90]:

Rm,N(p)(λ) =
1

Nλm

N−1∑

k=0

ε−mkp(λεk), λ 6= 0. (2.11)

If m ≤ deg(p(λ)) < N then Rm,N(p)(λ) = am and if deg(p(λ)) < m then
Rm,N(p)(λ) = 0. From this we conclude that the matrix V = (RN

0,N(~p)(λ),
RN

1,N(~p)(λ), ..., RN
N−1,N(~p)(λ)) is lower-triangular and non-singular. As follows

from (2.11) the vectors RN
m,N(~p)(λ),m = 0, 1, ..., N−1 are linear combinations

of solutions of (2.2) for λ 6= 0. So, they are also solutions and they are
linearly independent because det V 6= 0. If λ = 0 then we can consider the
limit vectors when λ → 0. These vectors will be linearly independent.

Now we turn to the construction of another set of N solutions of (2.1).
Define a bilinear functional σ(u, v) in P:

σ(u, v) =
∑

i

aibi with u =
∑

i

aipi(λ), v =
∑

i

bipi(λ). (2.12)

This functional satisfies:

σ(pi, pj) = δij, i, j = 0, 1, 2, ...;

σ(λNu1(λ), u2(λ)) = σ(u1(λ), λNu2(λ)), u1, u2 ∈ P. (2.13)

In other words λN : P→ P is a symmetric operator with respect to σ.
Consider the following polynomials:

Fm,l,j,k = σu(u
l Rm,N(pk)(u)−Rm,N(pk)(λ)

uN − λN
, pj(u)), k = 0, 1, 2, ...;
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m, l, j = 0, 1, ..., N − 1.

Substituting Fm,l,j,k(λ) in the left-hand side of (2.1) instead of yk, k = 0, 1, 2, ...,
and using the fact that Rm,N(pk)(u), Rm,N(pk)(λ) satisfy (2.1) with the pa-
rameters u and λ respectively, we get:

N∑

i=1

(αk−i,iFm,l,j,k−i(λ) + αk,iFm,l,j,k+i(λ)) + αk,0Fm,l,j,k(λ) =

= σu(u
l u

NRm,N(pk)(u)− λNRm,N(pk)(λ)

uN − λN
, pj(u)) =

= σu(u
l u

NRm,N(pk)(u)− λNRm,N(pk)(u) + λNRm,N(pk)(u)− λNRm,N(pk)(λ)

uN − λN
,

pj(u)) = σu

(
ul

(
Rm,N(pk)(u) + λN Rm,N(pk)(u)−Rm,N(pk)(λ)

uN − λN

)
, pj(u)

)
=

= σu(u
lRm,N(pk)(u), pj(u))+λNFm,l,j,k(λ), k = 0, 1, ...; m, l, j = 0, 1, ..., N−1.

Notice that
N−1∑

m=0

umRm,N(pk)(u) = pk(u). (2.14)

Denote

Fj,k =
N−1∑

m=0

Fm,m,j,k(λ), k = 0, 1, ...; j = 0, 1, ..., N − 1.

Then

N−1∑

m=0

[
N∑

i=1

(αk−i,iFm,m,j,k−i(λ) + αk,iFm,m,j,k+i(λ)) + αk,0Fm,m,j,k(λ)

]
=

= σ(pk(u), pj(u)) + λNFj,k(λ).

N∑

i=1

(αk−i,iFj,k−i(λ) + αk,iFj,k+i(λ)) + αk,0Fj,k(λ) =

= σ(pk(u), pj(u)) + λNFm,l,j,k(λ). (2.15)
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Let us take arbitrary j = 0, 1, 2, ..., N−1. Then for k = j+1, j+2, ..., N, N +
1, N +2, ..., the equation of the type (2.1) with Fj,k is fulfilled. So the vectors

~Fj(λ) =




Fj,0(λ)
Fj,1(λ)

...
Fj,N−1(λ)

...




, j = 0, 1, ..., N − 1, are solutions of (2.1).

From (2.15) it is clear that for k = 0 ~F0(λ) does not satisfy (2.1). So, it
does not lie in the

span[~p(λ), ~p(λε; λ), ..., ~p(λεN−1, ..., λε; λ)]

(or in the span[R0,N(~p)(λ), R1,N(~p)(λ), ..., RN−1,N(~p)(λ)]).

For k = 1 we can see that ~F1(λ) does not satisfy (2.1). Then it does not
lie in the

span[~p(λ), ~p(λε; λ), ..., ~p(λεN−1, ..., λε; λ); ~F0(λ)]

(or in the span[R0,N(~p)(λ), R1,N(~p)(λ), ..., RN−1,N(~p)(λ); ~F0(λ)]).

We can continue this consideration and obtain that ~Fk(λ) does not lie in
the

span[~p(λ), ~p(λε; λ), ..., ~p(λεN−1, ..., λε; λ); ~F0(λ), ~F1(λ), ..., ~Fk−1(λ)]

(or in the span[R0,N(~p)(λ), R1,N(~p)(λ), ..., RN−1,N(~p)(λ); ~F0(λ), ~F1(λ), ..., ~Fk−1(λ)]),
k = 2, 3, ...N − 1.

So the vectors

~p(λ), ~p(λε; λ), ..., ~p(λεN−1, ..., λε; λ); ~F0(λ), ~F1(λ), ..., ~FN−1(λ),

or the vectors

R0,N(~p)(λ), R1,N(~p)(λ), ..., RN−1,N(~p)(λ); ~F0(λ), ~F1(λ), ..., ~FN−1(λ),

are 2N linearly independent solutions of (2.1).

§3. Integral representations for basic solutions.

Now we are going to present different integral representations of the basic
solutions constructed in section 2. For this aim we shall use extensions of
Favard’s theorem.
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Let us consider again (2N)-order linear difference equation (2.1)(2.1’) and
the set of polynomials {pn(λ)}∞n=0 satisfying (2.2). For the functional σ(u, v)
defined as in (12), using Duran’s result [D2, Theorem 3.1, p. 93] we have the
representation (for real coefficients in (2.1)):

σ(u, v) =
N∑

m,m′=1

∫

R
RN,m−1(u)(x)RN,m′−1(v)(x)dµm,m′ =

=
∫

R
(RN,0(u)(x), RN,1(u)(x), ..., RN,N−1(u)(x))dµ(x)




RN,0(v)(x)
RN,1(v)(x)

...
RN,N−1(v)(x)


,

(3.1)
where µ(x) = (µm,m′(x))N

m,m′=1 is a positive-definite (N ∗N) matrix of mea-

sures, RN,m(u)(x) =
∑

n
u(nN+m)(0)
(nN+m)!

xN (Notice that RN,m(u)(x) 6= Rm,N(u)(x)

so the order of the indexes is important).
Such a representation was first obtained by Duran for non-positive matrix

of measures µ.
Then, using results in [Z4], [Z5] we can write the following representations:

σ(u, v) =
∫

PN

(u(λ), u(λε), u(λε2), ..., u(λεN−1)Jλdσ(λ)J∗λ




v(λ)
v(λε)

.

.
v(λεN−1)




,

(3.2)
where ε is a N-th primitive root of unity, Jλ = (ai,j)

N
i,j=1, ai,j = 1

εijλj , PN =
{λ ∈ C : λN ∈ R}; σ(λ) is a non-decreasing matrix-valued function on
PN (i.e. on each of 2N rays in PN): σ(0) = 0. Notice that when λ = 0
one must take the limit values as λ → 0 of (u(λ), u(λε), ..., u(λεN−1)Jλ and
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J∗λ




v(λ)
v(λε)

.

.
v(λεN−1)




under the integral;

σ(u, v) =
∫

PN

(u(λ), u(λε), u(λε2), ..., u(λεN−1))dW (λ)




v(λ)
v(λε)

.

.
v(λεN−1)




+

+(u(0), u′(0), u′′(0), ..., u(N−1)(0))M




v(0)
v′(0)

.

.
v(N−1)(0)




, (3.3)

where W (λ) is a non-decreasing matrix-valued function on PN\{0}. With
the integral at λ = 0 we understand the improper integral. Here M ≥ 0 is a
(N ×N) complex numerical matrix.
By the integrals over PN we understand a sum of integrals over each ray in
PN .

The method of proof for (3.2)(3.3) (step by step the construction of a
spectral measure) differs from the method of proof for (3.1) (using operator
theory tools). It was used for construction of examples of measures ([Z1],
[Z6]). From (3.2), (3.3) it is obvious that σ(λNu, v) = σ(u, λNv). From (3.3)
it was shown in [Z5] how different families of polynomials are included in the
class of polynomials from (3.3): orthonormal polynomials on R, orthonormal
polynomials on rays with a scalar measure studied by Milovanović [Mil] and
in [MS], Sobolev type orthonormal polynomials with discrete measure at zero.

For polynomials satisfying (2.2) a connection with matrix orthogonal
polynomials on R was studied in [DA], [Z5]. But the matrix orthonormality
relation written in terms of polynomials {pn(λ)}∞n=0 does not give a functional
σ(u, v) such that σ(pi, pj) = δi,j. So we shall not consider it here. But we
would like to present here a remark which seems to be important concerning
the Favard theorem for matrix polynomials:
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Remark. Duran, Van Assche [DA, p. 263], [D3, p. 66] assert that the
Favard theorem for matrix polynomials was established by Aptekarev and
Nikishin in 1982 in [AN] (Also Lopez-Rodriguez refers to this paper in [L,
p. 248]). But Aptekarev and Nikishin wrote [AN, p. 328] that the Jacobi
matrix L with matrix entries {VJ , Ej}∞j=0 : V ∗

j = Vj, det Ej 6= 0 always define
in l2(CN) a self-adjoint operator. This is not true even for numerical Jacobi
matrices. Moreover, the Favard’s theorem for operator-valued polynomials
was established by Berezanskiy [B, Chapter 7, §2, Theorem 2.4, p. 571] in
1965, and in particular it holds true for matrix-valued polynomials. So it is
correct to refer to [B] in this question.

Let us write representations for ~Fj(λ) =




Fj,0(λ)
Fj,1(λ)

...
Fj,N−1(λ)

...




, j = 0, 1, ..., N−

1, which are the N solutions of (2.1). Using the definitions of Fj,k and Fm,l,j,k

we have:

Fj,k(z) =
N−1∑

m=0

Fm,m,j,k(z) =
N−1∑

m=0

σu(u
m Rm,N(pk)(u)−Rm,N(pk)(z)

uN − zN
, pj(u)) =

= σu(
pk(u)−∑N−1

m=0 umRm,N(pk)(z)

uN − zN
, pj(u)),

with j = 0, 1, ..., N − 1; k = 0, 1, ....

Then using (3.1)(3.2)(3.3) we have:

Fj,k(z) =
∫

R
(RN,0;y(

pk(y)−∑N−1
m=0 ymRm,N(pk)(z)

yN − zN
)(x),

RN,1;y(
pk(y)−∑N−1

m=0 ymRm,N(pk)(z)

yN − zN
)(x), ...,

RN,N−1;y(
pk(y)−∑N−1

m=0 ymRm,N(pk)(z)

yN − zN
)(x))dµ(x)




RN,0(pj)(x)
RN,1(pj)(x)

...
RN,N−1(pj)(x)


,

(3.4)
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where RN,m;y(R)(x) means RN,m(R)(x) which acts on R as on a function of
y;

∫

PN

(
pk(λ)−∑N−1

m=0 λmRm,N(pk)(z)

λN − zN
,
pk(λε)−∑N−1

m=0(λε)mRm,N(pk)(z)

(λε)N − zN
, ...,

pk(λεN−1)−∑N−1
m=0(λεN−1)mRm,N(pk)(z)

(λεN−1)N − zN
)Jλdσ(λ)J∗λ




pj(λ)
pj(λε)

.

.
pj(λεN−1)




, (3.5)

∫

PN

(
pk(λ)−∑N−1

m=0 λmRm,N(pk)(z)

λN − zN
,
pk(λε)−∑N−1

m=0(λε)mRm,N(pk)(z)

(λε)N − zN
, ...,

pk(λεN−1)−∑N−1
m=0(λεN−1)mRm,N(pk)(z)

(λεN−1)N − zN
)dW (λ)




pj(λ)
pj(λε)

.

.
pj(λεN−1)




+

+(
pk(λ)−∑N−1

m=0 λmRm,N(pk)(z)

λN − zN
|λ=0, (

pk(λ)−∑N−1
m=0 λmRm,N(pk)(z)

λN − zN
)′λ|λ=0, ...,

(
pk(λ)−∑N−1

m=0 λmRm,N(pk)(z)

λN − zN
)
(N−1)
λ |λ=0)M




pj(0)
p′j(0)

.

.

p
(N−1)
j (0)




. (3.6)

If z /∈ PN then x− zN 6= 0, x ∈ R, as well as λN − zN 6= 0, λ ∈ PN .
Notice that

RN,m(u)(x) = Rm,N(u)( N
√

x) =
1

N( N
√

x)m

N−1∑

k=0

ε−mku( N
√

xεk);

RN,m;y(
pk(y)−∑N−1

i=0 yiRi,N(pk)(z)

yN − zN
)(x) =

=
1

N( N
√

x)m

N−1∑

l=0

ε−ml pk( N
√

xεl)−∑N−1
i=0 ( N

√
xεl)iRi,N(pk)(z)

( N
√

xεl)N − zN
=

15



=
1

x− zN

1

N( N
√

x)m

N−1∑

l=0

ε−ml(pk(
N
√

xεl)−
N−1∑

i=0

( N
√

xεl)iRi,N(pk)(z)) =

=
1

x− zN
Rm,N ;y(pk(y)−

N−1∑

i=0

yiRi,N(pk)(z))( N
√

x) =

=
1

x− zN
RN,m;y(pk(y)−

N−1∑

i=0

yiRi,N(pk)(z))(x). (3.7)

Then

Fj,k(z) =
∫

R

1

x− zN
(RN,0;y(pk(y)−

N−1∑

m=0

ymRm,N(pk)(z))(x), RN,1;y(pk(y)−

−
N−1∑

m=0

ymRm,N(pk)(z))(x), ..., RN,N−1;y(pk(y)−
N−1∑

m=0

ymRm,N(pk)(z))(x))∗

∗dµ(x)




RN,0(pj)(x)
RN,1(pj)(x)

...
RN,N−1(pj)(x)


, (3.8)

Fj,k(z) =
∫

PN

1

λN − zN
((pk(λ)−

N−1∑

m=0

λmRm,N(pk)(z), pk(λε)−

−
N−1∑

m=0

(λε)mRm,N(pk)(z), ..., pk(λεN−1)−
N−1∑

m=0

(λεN−1)mRm,N(pk)(z))Jλ∗

∗dσ(λ)J∗λ




pj(λ)
pj(λε)

.

.
pj(λεN−1)




, (3.9)

Fj,k(z) =
∫

PN

1

λN − zN
(pk(λ)−

N−1∑

m=0

λmRm,N(pk)(z), pk(λε)−

−
N−1∑

m=0

(λε)mRm,N(pk)(z), ..., pk(λεN−1)−
N−1∑

m=0

(λεN−1)mRm,N(pk)(z))∗
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∗dW (λ)




pj(λ)
pj(λε)

.

.
pj(λεN−1)




+ (
pk(λ)−∑N−1

m=0 λmRm,N(pk)(z)

λN − zN
|λ=0,

(
pk(λ)−∑N−1

m=0 λmRm,N(pk)(z)

λN − zN
)′λ|λ=0, ...,

(
pk(λ)−∑N−1

m=0 λmRm,N(pk)(z)

λN − zN
)
(N−1)
λ |λ=0)M




pj(0)
p′j(0)

.

.

p
(N−1)
j (0)




, (3.10)

z /∈ PN , j = 0, 1, ..., N − 1; k = 0, 1, ....

So, formulas (3.8)(3.9)(3.10) give us integral representations for polynomials
Fj,k(z) which are N basic solutions of (2.1).
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