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ABSTRACT� 

We examined an econometric model of counts of worker absences due to illness. 

The underlying theoretical model is of a sluggishly adjusting hedonic labor market. 

We compared results from three parametric estimators, nonlinear least squares plus 

Poisson and negative binomial pseudo maximum likelihood, to generalized least 

squares using nonparametric estimates of the conditional variance. Our data support 

the hedonic model of worker absenteeism. Semiparametric generalized least squares 

coefficients are similar in sign, magnitude, and statistical significance to their 

econometric analogs where the mean and variance of the errors were specified ex ante. 

Overdispersion tests reject the Poisson specification. Robustness checks confirm that in 

our data parameter estimates are sensitive to regressor list but are not sensitive to 

econometric technique, including how we corrected for possible heteroskedasticity of 

unknown form. 

JEL Classification Code: C14, C2S, 11,12. 
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1. Introduction 

The number of days sick, the number of visits to a physician, the number of jobs 

held, and the number of purchases of a good or service are examples of microeconomic 

data that are counts of events in an interval of time. We investigated the causes of 

worker absenteeism via a discrete regression model where the dependent variable 

measures the number of times a worker is absent from a job in a year. The regression 

function is linearly exponential, a specification commonly applied to count data to 

ensure nonnegative conditional expectations (Hausman, Hall, and Griliches 1984; 

Cameron and Trivedi 1986; Cameron et al. 1988). In the context of examining the 

microeconometrics of worker absenteeism our research compares the empirical 

performance of semiparametric generalized least squares estimators with the empirical 

performance of popular parametric estimators of count data models. 

The theoretical model underlying our absence count regressions is sluggish 

adjustment to hedonic labor market equilibrium. We examined four models: nonlinear 

least squares, Poisson and negative binomial pseudo maximum likelihood, and 

generalized least squares with heteroskedasticity of unknown form. Regression 

coefficients and standard errors are generally similar across the four econometric 

models we estimated. In our data the underlying economic model (equilibrium versus 

sluggish adjustment) is much more important to the parameter estimates than the 

regression model, including the specification correcting for subtle heteroskedasticity. 

2. A Microec:onometric Model of Worker Absenteeism 

The ideal microeconometric model of worker absenteeism has several 

distinguishing properties (Avery and Hotz 1984; Barmby, Orme, and Treble 1991). 

First, absences depend on both personal (supply) and job (demand) characteristics. 

Second, work attendance is a dynamic decision with possibly sluggish adjustment in the 

short run to a changing economic environment. Third, because absences are counts 

conditional variances are typically a function of absences' conditional means (Patil 
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1970). Ordinary least squares regression produces inefficient estimators when absence� 

counts are the dependent variable, and ignoring the accompanying conditional� 

heteroskedasticity yields inconsistent standard errors and invalidates hypothesis tests.� 

Because it is not obvious how to parameterize the heteroskedasticity in an absence� 

count model it is desirable to minimize the number of ex ante assumptions. The union� 

of desirable econometric dimensions of a model of worker absenteeism suggests that� 

investigating semiparametric regressions of individual absence counts on the worker's� 

personal and job characteristics and past absenteeism could prove informative. To our� 

knowledge we present the first microeconometric absenteeism model jointly� 

recognizing supply and demand forces, sluggish adju$trnent, and the desirability to� 

allow heteroskedasticity of unknown form.� 

The economic structure underlying labor market outcomes involving job attributes,� 

including the regularity of work attendance, is the theory of hedonic labOr market� 

outcomes (Rosen 1986). A matching of workers and firms in the labor market� 

produces a locus of wage-absenteeism pairings that is positioned by the personal traits� . 
of workers, the economic and technological characteristics of employers, ,and the� 

encompassing institutional and legal environment. For some issues a researcher must� 

uncover the employers' cost functions and workers' utility functions supporting the� 

hedonic locus. Stringent a priori restrictions are needed to identify the complete� 

structure of hedonic equilibrium models (Brown and Rosen 1982, Epple 1987, Kahn� 

and Lang 1988). Alternatively, a researcher can numerically simulate hedonic� 

equilibrium over a set of cost and utility function parameters (Kniesner and Leeth� 

1988). Our interest is in robustly estimating the market locus of matches of pay and� 

nonwage characteristics of employment.� 

When absenteeism is an aspect of the employment relationship hedonic labor 

market equilibrium is described algebraically as 

Wi = f(~,Ci; Si,Di,Ej,Ei) (1) 

----_.._----------,----------------------_. 
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where i indexes individuals, W is the wage rate, a is the absence rate, C is the vector� 

of other nonwage characteristics of employment, fa <0, and fe is positive or negative� 

depending on whether the worker views the particular nonwage characteristic as an� 

(un)desirable aspect of employment. The information conditioning the hedonic locus in� 

(1) includes a vector of the worker's personal and economic characteristics (5), a� 

vector of the employing firm's technological and economic traits (D), the surrounding� 

legal and institutional environment (E), and a stochastic error term with unknown� 

distribution (E) to emphasize that the labor market outcomes described in equation (1)� 

incorporate unpredictable random components.� 

Because we study absenteeism and workers in our data have only a few pay grades 

(P) we estimated the inverse hedonic locus 

~ = f-1(Pi,Ci; Si,Di,q,Ei)· (2)� 

Moreover, family and production schedules can be difficult to change quickly. A� 

sluggish adjustment version of the inverse hedonic equilibrium locus (2)� 

~ = f-1(a_ji,Pi,Ci; Si,Di,q,Ei), (3)� 

where j = 1,.... ,T indexes time period, acknowledges that absenteeism may be pan of a� 

worker's shon-run labor supply decision with the adjustment in work attendance due to� 

new health or economic circumstances distributed over time. I Semiparametric count� 

data regressions of the lagged adjustment absenteeism equation (3) encompass the� 

desirable characteristics of a microeconometric model of worker absenteeism (Avery� 

and Hotz 1984).� 

3. Count Data Models - Econometric Background� 

Our econometric estimates of the theoretical absenteeism equation (3) have� 

IWe acknowledge that lagged absences a_ji may not be independent of the current errors (Si) but� 
developing an instrumental variables count data estimator to confront the possible econometric� 
consequences of a lagged dependent variable in a cross-section context is tangential to our research� 
Objectives. As an alternative we present regressions where lagged absences ue removed from the� 
regressor list.� 

------'----------------,.--------'---._-----' 

r� 
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(4) 

where Xi' is the vector of independent variables [a..jj,Pj,Cj,Sj,Di,Ej], and Po is a vector 

of unknown parameters. The linear exponential specification of the absence rate in (4) 

is common in count data models to ensure a positive conditional expectation estimate 

(Gourieroux, Montfort, and Trognon 1984a,b; Hausman, Hall, and Griliches 1984; 

Cameron and Trivedi 1986; Gurmuand Trivedi 1993). Unlike other specifications 

ensuring positive conditional means, such as a logistic curve, the linear exponential 

specification (4) emits convenient economic interpretations -- each estimated coefficient 

is the proportionate change in absenteeism associated with a unit change in an 

independent variable. 

3.1 Basic Count Data Specifications 

Given our ex ante choice of a linear exponential regression model of absence counts 

in (4) we note that for any vector of functions g(X) the moment restriction 

(5) 

holds. The moment restriction in (5) is the basis for many estimators. 

Because absenteeism is the sum of absences in an interval of given length an 

obvious first econometric specification is the Poisson where E(8j IXi) = exp(Xi'po) = 
Var(ai IXi)' The choice of g(Xi) = Xi in (5) produces the Poisson pseudo maximum 

likelihood estimator of Po, which solves 

(6) 

the sample analog of (5).2 

The asymptotic variance of the Poisson pseudo maximum likelihood estimator in (5) 

and (6) is 

2Pseudo maximum likelihood refers to the case where an ex ante specified probability distribution may 
not be the true distribution but maximum likelihood estimation is used as though the specified 
distribution applies. In general, model misspecification leads to an inconsistent estimator. In the 
special case where the number of absences realized is specified to have a distribution belonging to the 
linear exponential family the pseudo maximum likelihood estimator is consistent if the mean is 
correctly specified (Gourieroux, Montfon, and Trognon 1984a; Cameron and Trivedi 1986; and 
McCullagh and Nelder 1989). 



6 

E[(XiXi'exp(Xi'~O)]-lE(XiXi'Oi2)E[XiXi'exp(Xi'~O)]-1. (7) 

When the underlying model is Poisson and there is Oi2 = exp(Xi'~O) the estimator is 

fully efficient. Choosing g(Xi) = Xiexp(Xi'~O)W(Xi)' where W(Xi) are weights 

depending on the regressors, produces the generalized least squares estimator solving 

the equation 

ti (ai - exp(Xi'~»Xi exp(Xi'~) W(Xi) = 0, (8) 

which has asymptotic variance 

E[(XiXi' exp(2Xi'~O) W(Xi)]-l E[XiXi' exp(2Xi'~O) W(Xi)2 'Oi2]-1 

x E[XiXi' exp(2Xi'~O) W(Xi)]-l. (9) 

Among the class of GLS estimators the most efficient is that using W(Xi) = 0(2, 

which is termed infeasible GLS. Notice that among the infeasible GLS the Poisson 

pseudo maximum likelihood estimators are equally efficient «7) and (9) are identical) 

when the underlying model is Poisson. 

The equality between the mean and variance under the Poisson assumption is 

restrictive in economic applications and is why researchers have proposed more general 

count data models (Cameron and Trivedi 1986, Lawless 1987, Gurmu and Trivedi 

1993). A popular generalization involves assuming that absenteeism follows a 

compound Poisson 

Pr(ai =l5i IXi) =Iexp[-eXP(Xi'~O+Ei)](exp(Xi'~O+Ei)S/l5i)h(Ei)dEi' l5i =0,1,2.. , (10) 

where h(Ei), the marginal density of the error term Ei, is assumed to be Gamma so that 

although the conditional mean of absences remains E(ai IXi) = exp(Xi'~O) the 

conditional variance of absences is Var(1i IXi) = (exp(Xi'~O)(l +(l/tj)exp(Xi'~O». One 

can study a range of econometric models by allowing tj = exp(Xi'~o)4/a where a>0 is 

a parameter to be estimated, and' is an arbitrary constant (Cameron and Trivedi 1986). 

The negative binomial model with a quadratic variance function, common in empirical 

research, sets' E 0 so that Var(~ IXi) = exp(Xi'~O)(l + aexp(Xi'~O» (Hausman, Hall, 
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and Griliches 1984).3 To cover ~ range of specifications representative of the count 

data literature we studied linear exponential absenteeism parameter estimates from 

nonlinear least squares, Poisson pseudo maximum likelihood, negative binomial pseudo 

maximum likelihood, and an optimal feasible GLS that we now explain. 

3.2 Variance of Unknown Form 

There is no obvious a priori reason to begin with a particular specification for the 

variance of absenteeism. An alternative econometric approach we used is linear 

exponential absences in (4) plus a nonparametric function for the conditional variances 

(11) 

which permits heteroskedasticity of unknown form. The conditional mean from (4) 

and the conditional variance in (11) form the semiparametric count data model we 

applied to absenteeism data for London bus drivers. We also estimated the hedonic 

absenteeism locus with semiparametric nonlinear generalized least squares using as 

estimated conditional variances 

(12) 

where ~ is a preliminary root-n consistent parameter estimate, and Wij are 

nonparametric k nearest neighbors (k-nn) probabilistic weights (see Appendix A). 

Specifically, we used so-called uniform k-nn weights to estimate the variances in (12) 

(Robinson 1987a).4 

The semiparametric weighted least squares estimator we applied estimates ~o via 

the solution to 

3Another popular model, which we did not estimate, specifies a? - aexp(X{~). 
4In general, given observations {(YI,xl), .•.,(Yn'xJ} of the stoehastic pair (Y,X) a nonparametric 
estimate of E(Y IXex) is a weighted average of Y~, where the weights depend on how close the 
corresponding ~ is to x. Specifically, k-nn estimates are a weighted average of the Y~ such that the 
corresponding xj is one of the k X-s closest to x, according to the scaled Euclidean distance. As the 
number of observations increases the number of Xjs close to x also increase, which intuitively explains 
why the number of terms in the weighted average {the number of nearest neighbors) must increase with 
the sample size. So, weights in the estimated conditional variances in (12) such that wij-l ifi=j and 
wij-0 otherwise produce an inconsistent estimator. In Appendix A we formally explain the k-nn 
weights. For more discussion see also Hlrdle (1990) and Delgado and Robinson (1992). 

f� 
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Ii exp(Xi'~)Xi(ai - exp(Xi'~»O(2 = O. (13) 

Under regularity conditions the vector ~ that solves the first-order condition (13) has 

asymptotic variance 

Asy Var {nll2(~-~o)} E 10-1 = E(XiXi'exp(2Xi'~)a(2)-I. (14) 

The semiparametric efficiency bound in (14) cannot be bettered under the information 

set in the model, equation (4) (Chamberlain 1987). 

Regularity conditions needed for asymptotic normality of the solution to 

semiparametric generalized least squares are similar to the moment conditions needed 

for asymptotic normality of generalized least squares. Our nearest neighbor weights 

require that the smoothing parameter, k =number of nearest neighbors, increases with 

the sample size but at a slower rate (Robinson 1987a, Delgado 1992). We examined 

two different nearest neighbors specifications (k = n1l2 and k = n3/S) to illustrate how 

sensitive the procedure is to the choice of the number of nearest neighbors. We also 

estimated the covariance matrix implied by (14) using both the corresponding sample 

analog and Eicker-White heteroskedasticity robust procedures as recommended by 

Robinson (1987b) to protect against a possibly poor choice of the number of nearest 

neighbors in a finite sample. Specifically, we also estimated the coefficient 

(co)variances 1-1 by 

10-1 = [n-1I·X·X·'O·-2]-I[n-1I·X·X·'U·20·-2][n-1I·X·X·,o·-2]-1111 1 (15)1111 11111 

where Ui = ai - exp(Xi'~). For the linear exponential specification (4) we present 

nonlinear least squares plus Poisson and negative binomial pseudo maximum likelihood 

coefficients' robust standard errors (White 1982). 

Recapitulation. In examining count models of worker absences we first estimated 

nonlinear least squares then Poisson and negative binomial pseudo maximum 

likelihood. For maximum generality we then provide semiparametric GLS estimates 

using the initial ~s from nonlinear least squares.s 

SComputer programs for estimating semiparametric regressions are described in Delgado (1993). 
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4. Empirical Results 

Our data cover absences by persons working for London Buses as conductors, 

drivers, and single person operators during January 1, 1981, to December 31, 1985.6 

Information on absences includes the starting and returning dates, reason, and 

justification. Also in our data are personal characteristics, including sex, age, and 

home address plus job related characteristics, including garage name and starting date 

of work. There are over 200,000 absence histories for 17,720 workers. We restricted 

the sample to persons employed in all five years (12,549) minus cases for which we 

could not determine garage location, leaving 5501 workers.' 

4.1 Econometric Strategy 

Because the medical documentation required for a given type of absence changed 

during the sample years we focused on 1985 absenteeism. The frequency distribution 

of absences in our data and the physical and institutional differences among 

absenteeism spell groups, in particular medical documentation required, made it natural 

to group spells as 1-7 days, 8-14 days, and 14+ days. Because short-term absences 

are the absences most subject to individual discretion, and short-term absences have the 

most interpersonal variation the dependent variable in our regressions is the number of 

absence spells of one week or less.s 

We estimated a linear exponential regression of 8.j!E absence spells of seven days or 

less in 1985 on the vector Xi !E [a..li,a..2i,Pi,Ci; Sj,Dj,EJ, which is the regression model 

capturing the sluggish adjustment hedonic labor market outcomes described 

theoretically in equations (3) and (4). Given the regressor vector containing lagged 

6Norman and Spratling (1956) investigated absences caused by sickness among the personnel of the� 
London Transport Company. Cornwall and Raffle (1961) studied the absenteeism of women bus� 
conductors in London during 1953·57.� 
'Regression variables are defined in Appendix B.� 
SAs a point of reference other studies have typically measured absenteeism as a logistic of either the� 
proportion of time absent during a survey reference period, such as the two weeks prior to the survey,� 
or as whether the person was absent from work on the survey date. See, for example, Allen (1981a,b)� 
and Barmby, Onne, and Treble (1991).� 
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absenteeism, personal characteristics, and workplace characteristics, Xi, the conditional 

expectation of absenteeism is exp(Xi'~O), where ~O is the unknown vector of parameters 

to estimate. The worker's personal and workplace characteristics regressors include 

age, sex, marital status, health, length of service with the bus company, length of 

journey to work, and plant size as metered by number of people working in the bus 

garage (Jones 1971). 

We present results from four estimators: nonlinear least squares plus Poisson and 

negative binomial pseudo maximum likelihood, ~d a semiparametric generalized least 

squares estimator that was iterated until convergence from the nonlinear least squares 

coefficients estimates. To illustrate the sensitivity of the semiparametric estimates of 

the choice of the number of nearest neighbors (k), we report two different choices, 

k=[n1l2) and k=[n3IS). For all regression models we report robust and nonrobust 

standard errors (Eicker 1963; White 1980a, 1982). 

Economic Focus. Before discussing regression results we want to foreshadow our 

contribution to the economic literature on worker absenteeism. Because our data are 

for a single employer in a single city we did not estimate the effects of potentially 

important absenteeism policies, such as sick leave benefits and work schedule 

flexibility. We also examined how workplace health hazards affect absenteeism only to 

the extent that distance from the bus garage to the center of London reflects worker 

health risks due to pollution or traffic accidents while commuting to and from work. 

Our emphasis is on whether two core results from the microeconometric literature on 

absenteeism appeared in our count data regressions. Specifically, did we find a 

substantial negative impact of age on absences coupled with statistically insignificant 

effects of other demographic characteristics (AlIen 1981a,b)'1 

4.2 Coefficient &timates 

The results in Table 1 support a sluggish adjustment hedonic model of worker 

absenteeism. Pay level and absenteeism vary inversely, ceteris paribus. Because we 
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have two effective pay grades in our data for London Buses accepting the hedonic labor 

market interpretation requires rejecting the null hypothesis that the coefficient of 

Driver is zero against the alternative that the coefficient of Driver is negative. All 

specifications in Table 1 have significantly lower absence rates for the higher wage 

workers, drivers.9 The coefficients of the two lagged dependent variables, Abs84 and 

Abs83, are significantly positive across models, and their sum is in the range 0.13 to 

0.20 so that the estimated long-run effects of regressors on absenteeism are about 15 to 

25 percent larger than the short-run effects of regressors on absenteeism. Satisfied that 

we can interpret the regressions in Table 1 in the spirit of hedonic labor markets with 

sluggish adjustment to changing economic circumstances we now turn our attention to 

how the remaining coefficient estimates square with the existing microeconometric 

literature on worker absenteeism. [Insert Table 1 here.] 

A well-known result in the absenteeism literature is that more mature workers are 

absent less often. In all regressions in Table 1 the short-run elasticity of age is 

significantly negative, so that a firm whose workers are 10 percent older than average 

will have five to nine percent fewer short-term absence spells. 10 Also consistent with 

previous research is a haphazard pattern of demographic effects. Although the effects 

of gender and health status (as captured by long-term absence spells, LongAbs) are 

insignificant the coefficient of Family is generally significant and implies that married 

workers have about 7-10 percent higher absenteeism in the short run with the 

estimated effects of marriage larger in the regressions with variance of unknown form 

than in their counterparts with the first two error moments specified ex ante. Overall 

the results in Table 1 are consistent with the theoretical model guiding our empirical 

'lWe note that the dummy variable for driver retlects the absence rate effects of the entire vector of 
attributes of the driver occupation including higher education and possibly greater job satisfaction. We 
do not claim that the coefficient of Driver retlects only higher pay. but that in order not to reject the 
hedonic interpretation of our absenteeism count regression the coefficient of Driver need be 
significantly greater than zero. 
IOTo facilitate estimation age, number of employees, and years of service are in logarithms so that all 
variables are scaled similarly. Thus, the coefficient of age is an estimated elasticity. 
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research, and the coefficient estimates conform to the pattern apPearing in previous 

microeconomic research on worker absenteeism. 

4.3 Model Selection Results 

Although the estimator with variance of unknown form removes heteroskedasticity, 

the semiparametric regressions in the last two columns of Table 1 can be viewed as 

slightly less efficient than the Poisson pseudo maximum likelihood model in the first 

column of Table 1. To elaborate, the robust standard errors of the Poisson pseudo 

maximum likelihood estimator in column 1 tend to be about 10 percent smaller than the 

robust standard errors of the coefficients of the regression models in Table 1 that 

permit ex ante unspecified heteroskedasticity. However, the relatively small difference 

between the robust and unrobust standard errors in Table 1 indicates that the 

information matrix equivalence holds approximately. 11 Our results are in contrast to 

Cameron and Trivedi (1986) who found that specialized count data models such as 

Poisson or negative binomial pseudo maximum likelihood dominated nonlinear least 

squares judged by the economic significance of the estimated parameters. 12 Where 

coefficients' signs, magnitudes, and statistical significance are concerned it makes little 

difference in our data whether we used nonlinear least squares, either Poisson or 

negative binomial pseudo maximum likelihood, or semiparametric generalized least 

squares. 

A convenient check of the Poisson absenteeism model is a regression based test for 

equality of the conditional mean and conditional variance (Cameron and Trivedi 1990). 

We tested the equidispersion property of the Poisson absence count regression model in 

11 As the sample size increases robust and noorobust standard errors converge whenever k, the number 
of nearest neigbbors, increases at the appropriate rate. In finite samples robust and nonrobust standard 
errors will not be the same. It also bappens in the parametric case; robust and nonrobust standard 
errors of feasible generalized least squares coefficients are never identical in finite samples. 
12Cameron and Trivedi (1986) generally reported noorobust standard errors, which with overdispersion 
leads to underestimated standard errors for the Poissoo model, suggesting why they found in favor of 
specialized count data models such as the Poissoo. 
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the first column of Table 1 by testing the null hypothesis that ci =0 in the artificial 

regression with error term ui 
A A A

[(ai - exp(Xi'~» 
2 
lexp(Xi'~) - 1] = aexp(Xi'~) + Ui' (16) 

Rejecting the null hypothesis that a 
A

= 0 rejects the Poisson specification because the 

estimated conditional mean and variance are not equal. In the regression based test of 

equality of conditional mean and conditional variance in equation (16) ci = 0.19 with 

It I = 15.4 so that our data reject the Poisson specification against the more general 

(negative binomial) alternative where a? == exp(X{a)[1 + aexp(X{a)].13 

4.4 Robustness Checks 

We also examined the robustness of our results to an increase in the number of 

nearest neighbors and to two changes in the regressor list. Comparing results in the 

last two columns of Table 1 illustrates that as the number of nearest neighbors increases 

from nl/2 to n3/5 the coefficient estimates from the model with variance of unknown 

form move closer to the nonlinear least squares coefficient estimates, generally 

declining in absolute value. 14 The coefficient of (Male'Family) is insignificant when 

we added the interaction between gender and marital status to the regressor list in Table 

2, which suggests that the greater absenteeism among women, ceteris paribus, is not 

caused by child care duties. When we ignored sluggishly adjusting work attendance 

and estimated the regressions in Table 2 without the potentially endogenous lagged 

absence rates, Abs83 and Abs84, the partial effects of the other regressors on absences, 

13To elaborate, we rejected the null hypothesis of equidispersion by rejecting the null hypothesis a 00= 
"­

in the ancillary regression (16). The 95 percent confidence interval for a, which is [0.166, 0.214], 
emphasizes the low level of overdispersion. In our raw data the ratio of the variance of absences to the 
mean ofabsences is Var(abs)/Mean(abs) ... (2.33)2/2.17 - 2.5. When conditioning on the regressors 
X the mean scaled variance will faU below 2.0. The point is that there is not much overdispersion in 
our data. 
14In a linear model with only one regressor the mean-squared error of the conditional expectation k-nn 
estimate is minimized by a k that is proportional to n4/5 (Hlrdle 1990). However, an optimal k is a 
function of the number of regressors, and k ... n4/5 is also not necessarily optimal for our count data 
regression models with heteroskedasticity of unknown form. It is popular to choose k - n1/2. To the 
best of our knowledge there is no evidence concerning the optimal, or data dependent, k in the 
semiparametric models we estimated and present here. 
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particularly sex and age, are magnified as expected. The conclusion to be drawn from 

our robustness checks is that in our data the choice of theoretical model to estimate, 

specifically the regressor list, is much more important to the results than whether or 

not to use specialized count data regression models, such as Poisson or negative 

binomial pseudo maximum likelihood, or whether to permit a general form of 

heteroskedasticity. [Insert Table 2 here.] 

4.5 Goodness of Fit 

Poisson is nested inside the negative binomial specification (when a == 0 in the 

ancillary regression (16) both models are the same). A likelihood ratio test rejects the 

null hypothesis that eX == 0 (equidispersion) in both Tables 1 and 2. However, we have 

noted that IeX I is small, so the distinction between Poisson and negative binomial 

pseudo maximum likelihood should not be overemphasized. 

We report the sum of squared residuals and R2s for all weighted least squares 

procedures, NLLS and S(NLLS), in Tables 1 and 2. Nonlinear least squares based 

results can be interpreted as iterated GLS (see equation (6». As expected all R2 values 

are similar because the regression models are identical and only the weights differ 

across estimators. In Table 1 R2 is about 0.30 and in Table 2, where the lagged 

dependent variables are deleted, R2 is about 0.14 -- which are commonly appearing 

values in cross-section regression contexts. 

5. Conclusion 

How valuable are estimators of count data models with error variance of unknown 

form when applied to worker absenteeism? We examined the relative benefits of 

semiparametric estimation where heteroskedasticity of unknown form may be present 

in the context of a hedonic econometric model of employee absences incorporating 

sluggish adjustment to changing economic circumstances. Our empirical results 

support the hedonic theoretical model. Overdispersion tests rejected the Poisson 

specification. Other parametric estimators used, binomial pseudo maximum likelihood 
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and nonlinear least squares, are consistent so that coefficient point estimates are much 

more sensitive to the economic model estimated (regressor list, in particular) than to 

the estimation method applied. The semiparametric generalized least squares estimator 

has the advantage of being asymptotically efficient with known asymptotic covariance 

matrix. Inferences based on the semiparametric procedure we present are always valid 

asymptotically and more efficient than the estimators that parameterize the conditional 

variance incorrectly. 

Our application to worker absences showed how semiparametric GLS is a sensible 

procedure to follow in practice. Estimates are computationally easy to obtain, and the 

econometric practitioner is always sure that inferen~s are correct and efficient 

asymptotically without having to pay attention to the functional form of the conditional 

variances or any other feature of the data generating process. Our estimated 

semiparametric generalized least squares coefficients are similar in sign~ magnitude, 

and significance to parallel regression coefficients estimated with ex ante variance 

specifications. 

r� 
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Appendix A 

K Nearest Neighbor Weights 

Let Xir be the rth element of Xj, and define 

Sr = (n-l)-1 Ii(Xri - X)2, (AI)r

Xr = n-1 IiXri, 1 :s; r :s; q, and (A2) 

Pij = [Ir(Xri - Xrj)2/Sr]1/2, iJ = 1, ..• ,n; i ~ j. (AJ) 

For a sequence kD = k such that k < n and Ilk + kin -+ 0 as n -+ 00, 

let cm, 1 s i :s; n, be constants satisfying cm ~ •... ~ ckD > 0, cm = 0, k < i s n, 

Iicm = 1, and lim max kcm < 00. 
11-+00 lSiSk 

The k-nn weights are defined as 

WjD(Xi) = (CUD + ... + Cu + A-I, D)/A (A4) 

where l is the indicator function of an event with 

\) = 1 + #{l: 1 :s; l:S; n, t ~ j and Pit < Pij} and (AS) 

A = 1 + #{l: 1 S t S n, t ~ j, and Pit = Pij}. (A6) 

The uniform weights use cm = r 1 for 1 S i S k and cm = 0 for i > k. See also 

Stone (1977) and Delgado and Robinson (1992) for other weight functions. 



I ' 

17 

AppendixB 

Variable Dictionary 

Variable Description 

Absences Number of absence spells of seven days or less in 1985. 

Abs83 Number of absence spells in 1983. 

Abs84 Number of absence spells in 1984. 

Age Years of age. 

Doctor Proportion of times absent during 1981-84 that the worker showed a 
doctor's certificate; equals zero if the worker has not been absent during .. 
the four years. 

Driver Dummy variable; worker is driver. 

Employees Number of people working in the garage. 

Family Dummy variable; worker has a spouse or dependent. 

Garage Distance from the garage to the center of London (index). 

Home Dummy variable; distance from garage to home is in the 99th percentile. 

LongAbs Number of absence spells greater than seven days in 1985. 

Lost83 Days absent in 1983. 

Lost84 Days absent in 1984. 

Male Dummy variable; worker is a man. 

Service Years of service with the firm. 

ShortAbs Proportion of absences that were one-day duration during 1983-84; 
equals zero if the worker had no absences. 

r� 
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Table 1� 

Estimates of Sluggish Adjustment Models of Workfoz Absenteeisma� 

(n =5501) 

Regressor 
{Mean/SD} 

PMLE 
(Ppisson)b 

PMLE 
(NegBint NLLSd 

SEMlPARe 

<k=n112) 
SEMlPAR 
<k=n3/~ 

Intezeept 4.1779 4.1374 4.1781 3.8483 4.0758 
(.6202)·· (.7545)·· (.6579)·· (.7334)·· (.7231)·· 
[.7939]·· [1.2818]·· [.9449]·· [.8548]·· [.8534]·· 

Abs84 .1318 .1492 .1116 .1308 .1249 
{2.86612.710} (.0040)·· (.0056)·· (.0036)·· (.0045)·· (.0042)·· 

[.0061]·· [.0203]·· [.0068]·· [.0066]•• [.0067]·· 

Abs83 .0373 .0502 .0206 .0265 .0271 
{2.862/2.944} (.0036)·· (.0051)·· (.0032)·· (.0041)·· (.0040)·· 

[.0074]·· [.0291] [.0095]· [.0106]· [.0107]· 

log(Age) ~.7445 ~.8087 ~.5211 ~.8701 ~.8096 

{3.7491O.234 } (.0503)·· (.0606)•• (.0530)·· (.0596)·· (0.588)·· 
[.0658]·· [.1214]·· [.0789]·· [.0734]·· [.0733]·· 

Doctor -.3517 ~.3444 -.3239 ~.3776 ~.3687 

{0.s51/O.305} (.0474)·· (.0593)·· (.0504)·· (.0553)·· (.0548)·· 
[.0589]·· [.1034]·· [.0754]·· [.0651]·· [.0655]·· 

Driver ~.0669 ~.0653 ~.0737 -.0939 ~.0889 

{0.6451O.475} (.0236)·· (.0255)·· (.0209)·· (.0234)· (.0231)·· 
[.0262]· [.0484] [.0322]· [.0288]·· [.0289]·· 

log(Employees) .1094 .0794 .1920 .1621 .1572 
{5.531/O.363} (.0253)·· (.0323)· (.0264)·· (.0290)·· (.0288)·· 

[.0367]·· [.0999] [.0551]·· [.0455]·· [.0475]·· 

Family .0749 J1J72 .0156 .1033 .0736 
{0.774/O.418} (.0247)·· (.0308)·· (.0254) (.0295)·· (.0289)· 

[.0312]· [.0556] [.0371] [.0340]·· [.0327]· 

Garage ~.4887 -.4308 ~.6631 -.4440 ~.4873 

{4.474/O.074} (.1294)·· (.1595)·· (.1399)·· (.1518)·· (.1505)·· 
[.1638]·· [.2995] [.2074]·· [.1777]· [.1771]·· 

Home .0689 .0882 .0454 .0772 .0713 
{0.099/O.299} (.0292)· (.0373)· (.0286) (.0333)· (.0330)· 

[.0463] [.1331] [.0675] [.0592] [.0619] 

LongAbs ~.0228 ~.026S ~.0306 ~.0243 ~.02S5 

{0.616/O.914} (.0099)· (.0126)· (.0099)·· (.0117)· (.0117)· 
[.0148] [.0389] [.0173] [.0176] [.0179] 

Lost84 -.0009 ~.0012 ~.0007 -.0009 ~.0007 

{23.212140.015 } (.0003)·· (.0003)·· (.0003)· (.0003)·· (.0003)· 
[.0003]·· [.0009] [.0006] [.0006] [.0006] 



Table 1 (continued) 

i I 

Regressor 
{Mean/SDl 

PMLE 
(Poisson)b 

PMLE 
(NegBint NUSd 

SEMlPARe 

Ck=n11l) 
SEMlPAR 
(k=n3/>, 

LosI83 .(X)l5 .0016 .0010 .0014 .0012 
(21.222140.784 ) (.0002)** (.0002)** (.0002)** (.0003)** (.0003)** 

[.0003]** [.0004]** [.0005]* [.0005]** [.0005]* 

Male -.0485 -.0644 -.0229 -.0497 -.0612 
(O.9301O.255) (.0369) (.0479) (.0363) (.0409) (.0407) 

[.0482] [.0944] [.0609] [.0546] [.0515] 

log(Savice) .1523 .1783 .0553 .2819 .2189 
(2.215/1.226) (.0161)** (.0235)** (.0188)** (.0175)** (.0178)** 

[.0167]** [.0411]** [.0207]** [.0167]** [.0164]** 

ShonAbs .4021 .4176 .3127 .3937 .3758 
(O.412/0.28S) (.0524)** (.0659)** (.0583)** (.0612)** (.0609)** 

[.0629]** [.1156]** [.0790]** [.0704]** [.0709]** 

ESS = 16978.8 18393.9 17696.0 

LL= -9634.7 -9386.9 

R2 = 039 033 035 

&Absences =exp(X'~ + Ej,). The dependent variable in all regressions is Absences in 1985. which has mean .. 2.172 and 
standard deviation =2.332. Nonrobust standard errors are in parentheses ( ). and robust standard errors are in square brackets 
[ ]. ** Indicates significance at the 0.01 level. and * indicates significance 8l1be 0.05 level 

~isson pseudo maximum likelihood 

~egative binomial pseudo maximum likelihood 

"Noolinear least squares 

CSemiparametric generalized least squares using the nonlinear least squares residuals 

r� 
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Regressor 

Intercept 

log(Age) 

Doctor 

Driver 

log(Employees) 

Family 

Garage 

Home 

LongAbs 

Lost84 

Lost83 

Male 

Table 2� 

Absenteeism Regressions Omitting Lagged Absences&� 

PMLE 
(Ppisson)b 

7.0615 
(.6106)** 
[.9011]** 

-1.2638 
(.0496)** 
[.0704]** 

-.4314 
(.0467)** 
[.0654]** 

-.0689 
(.0204)** 
[.0301]* 

.1803 
(.0258)** 
[.0388]** 

-.0336 
(.0684) 
[.1026] 

-.7362 
(.1270)** 
[.1775]** 

.1525 
(.0291)** 
[.0432]** 

.1161 
(.0094)** 
[.0142]** 

•0021 
(.0002)** 
[.0003]** 

.0025 
(.0002)** 
[.0003]** 

-.2251 
(.0488)** 
[.0662]** 

PMLE 
(NegBin)C 

7.0901 
(.8944)** 

[1.9711]** 

-1.2943 
(.0948)** 
[.1699]** 

-.4982 
(.0686)** 
[.1452]** 

-.0805� 
(.0298)� 
[.0678]� 

.1548 
(.0372)** 
[.0808] 

-.0587 
(.1136) 
[.3174] 

-.7325 
(.1920)** 
[.4146] 

.1477 
(.0470)** 
[.1203] 

.1176 
(.0159)** 
[.0476]** 

'(x)33 
(.0003)** 
[.0014]* 

.0036 
(.0003)** 
[.0018]** 

-.2186 
(.0714)** 
[.1741] 

(n.5501) 

~ 

6.776 
(.8186)** 
[.9599]** 

-1.1637 
(.0686)** 
[.0762]** 

-.3299 
(.0648)** 
[.0697]** 

-.0506 
(.0272) 
[.0328] 

.2159 
(.0352)** 
[.0414]** 

.0199 
(.0827) 
[.I11S] 

-.7359 
(.1720)** 
[.1879]** 

.1649 
(.0355)** 
[.0475]** 

.1032 
(.0114)** 
[.0162]** 

.0013 . 
(.0002)** 
[.0004]** 

.0018 
(.0002)** 
[.0004]** 

-.2230 
(.057S)** 
[.0697]** 

SEMIPARe 

<k=n1/2) 

6.3134 
(.92OS)** 

[l,(X)77]** 

-1.4997 
(.074S)** 
[.0769]** 

-.4196 
(.0705)** 
[.0723]** 

-.0801 
(.0301)** 
[.0329]* 

.1833 
(.0379)** 
[.0427]** 

.0363� 
(.0973)� 
[.1268]� 

-.4722 
(.1868)* 
[.1962]* 

.2114 
(.0411)** 
[.0487]** 

.1281 
(.0129)** 
[.0161]** 

.0021 
(.0003)** 
[.0004]** 

.0022 
(.0002)** 
[.0004]** 

-.2693 
(.0677)** 
[.073S]** 
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Table 2 (continued) 

PMLE PMLE SEMIPARe 

Regressor lPoisson)b (NegBin)C NLLSd Ck=nlll) 

(Male. Family) .1555 .1926 .0883 .1404 
(.0734) (.1190) (.0905) (.1072) 
[.1110] [.3272] [.1200] [.1352] 

log(Sezvice) .2724 .3234 .1856 .4101 
(.0164)·· (.0282)·· (.0252)·· (.0228)·· 
[.0198]·· [.0573]·· [.02S0]•• [.0149]·· 

ShortAbs .5504 .6749 .4173 .5268 
(.0499)·· (.0767)·· (.0694)·· (.0749)·· 
[.0680]·· [.1640]·· [.0716]·· [.0750]·· 

ESS = 22910.8 23891.3 

u= -10.947 -10,140 

R2 = 0.16 0.13 

-Absences =exp(X'p + fi). The dependent variable in all regressions is Absences in 1985, which has mean =2.172 and 
standard'devialion = 2332. Nonrobust standard errors are in parentheses ( ), and robust standard errors are in square brackets 
[ ].•• Indicates significance at the 0.01 level, and • indicates significance at1be 0.05 level 

bpgisson pseudo maximum likelihood 

~egative binomial pseudo maximum likelihood 

~onlinear least squares 

CSemiparametric generalized least squares using the nonlinear least squares residuals 




