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1. INTRODUCTION 

Consider the observed series (Zl,'" , ZT) of a stationary and invertible ARMA(p, q) 

model, i.e., 

(1.1 ) 

where Ut are independent identically distributed (i.i.d.) random variables with distribution 

P, 1-'0 is the mean of Zt, ~o(B) and 60 (B) are polynomials given by 

~o(B) = 1 - <PlOB · .. - 4>,oB' 

and 

80(B) = 1 - 810B·· . - 8,oB' 

and B is the backward shift operator defined by BZ1 = Z1-1' 

Usually, the parameters of a time series model are estimated by the maximum likelihood 

method assuming {Ut} to be Gaussian. After a model of the form (1.1) has been fitted to 

a series (Z 1, ... , ZT), it is useful to study the adequacy of fit by examining the residuals. 

One of the most well-known statistics for testing the adequacy of a time series model is the 

Box-Pierce statistic (Box and Pierce (1970)) 
m 

TLPi.J:, 
J:=l 

where PU is the usual lag k residual autocorrelation. This statistic is asymptotically chi­

squared distributed with degrees 0 f freedom m - p - q for large T. 

A modified test based on 
m 

Ql = T(T + 2) L(T - k)-lptJ:J 
J:=l 

was recommended by Ljung and Box (1978). It was shown that it provides a substantially 

improved chi-square approximation. 

In general the usual maximum likelihood or least-squares (LS) procedures are not dis­

turbed by innovation outliers. The LS estimator, however, is sensitive to additive outiers. 

Li (1988) proposed to generalize the Ql statistic for a class of robust estimators based 

on residual autocovariances (RA-estimators; Bustos and Yohai (1986)). 

In Section 2 a further modification of the Ql statistic is introduced and in Section 4 its 

asymptotic properties are derived. The basic idea is to replace the sample autocorrelation 

of the residuals by autocovariances based on ranks. Moreover, the robustness properties of 

the proposed statisics for the AR(l) and MA(l) models investigated in a Monte Carlo study 

are shown in Section 5. 
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2. STATISTICS BASED ON RANKS 

Denote q, = (4)1, ... ,1>,),' = (91. ... ,99) and 1 = (.,'), and by q,o, 80 and lo the 

corresponding true parameters. Also let 6h(fI), thC') and g1aCfI,') (0 ~ h < 00) be the 

series expansion coefficients of the operators q,-l(B), ,-l(B) and B-l(B)~B) respectively. 

For simplicity and without loss of generality it is assumed that 1-'0 = o. 
Let 

1-1 

(2.1) (T,(l) = Lg.(~,')Zt-., P + 1 ~ t ~ T 
.=0 

and 

Bustos and Yohai (1986) have shown that the LS equations for the autoregressive and moving 

average parameters are asymptotically equivalent to the following system of equations 

T-j-p-l 

L Sh(<!J) ;l,h+j(UT(l» = 0 , 1 ~ j ~ p , 

(2.2) h=O 
T-j-p-l 

L th(') ;U+j(UT(l» = 0, 1 ~ i ~ q, 
h=O 

where 
T 

'"Yl,.(UT(l» = L UI (l)U' _i(l) , 0 ~ i ~ T - p - 1 . 
l=p+1+i 

Bustos and Yohai (1986) have introduced the class of estimators based on the residual 

autocovariances (RA-estimators) which are defined by replacing in (2.2) the residual auto­

covariances ;I,;'S by robust residual autocovariances of the form 

T 
"Y2,;(UT (l» = L '1 (UI(l), U,_,(l») , 

. S S I=p+l+, 
oS i ~ T - P -1, 

where '1( u, v) is a bounded function and 8 is an estimate of the innovation scale. Two 

canonical ways of taking '1 are: (i) the Hampe/-Kra,ker type: '1(u, v) = t/J(u v) and (ii) the 

Mallow, type: '1(u, v) = t/J(u)'I/;(v), where 'I/; is an odd and bounded function. 

Denote by 0, the residuals obtained when .\ is replaced by the corresponding RA­

estimator. Also define 
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and 

1:::; k:::; m. 

Li (1988) proposed the following robustified portmanteau statistic 

Let us consIder two score generating functions J, : [0, 1] - R , i = 1, 2, satisfying Ji (1- u) = 
-J,(1./.). Also let R1(l) be the rank of U1(l) among UI'+l(l), ... , UT(l). Define the lag i 
rank autocovariance of the residuals 13,1 by 

(2.3) ( R (l)) = ~. J ( Ri ( l) ) J ( Ri-I (l) ) 
"Y3,1. T L...J 1 T _ + 1 2 T _ + 1 ' 

1=,+1+1 P P 
O~i~T-p-l 

where RT(l) = (Rp+l(l), ... , RT(l)). 

Ferretti. Kelmansky and Yohai (1991) have introduced estimators based on ranks which 

are defined similarly to the RA-estimators but replacing in (2.2) the "Y2,i 's by the 13,,'S given 

by (2.3). 

The following score generating functions J1 and J2 will be studied in this paper. 

(i) J1 = J2 = ~-l, where ~ is the standard normal distribution function. The RAR­

estimators based on these functions give estimators which are optimal when F is normal. 

(ii) J1(u) = J2 (1.£) = 2u-1. 

To define the RAR-estimators more formally we need the following notation: 

where 

(2.4) 

(2.5) 

T-j-,-1 
WT,i(~(l),~,8)=(T-i-p)-1 L 13,h+i(RT(l))"h('), l~j~p, 

1.=0 

T-J-p-l 
WT,p+i (~(l),~, 8) = (T - j - p)-1 L 13,h+;(RT(l))th(8), 1:::; j ~ q . 

1.=0 

Then the RAR-estimators of lo, iT = (~, iT), are defined as a sequence satisfying 
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In Ferretti, Kelmansky and Yohai (1991) it was shown that under suitable general assump­

tions of J the RAR-estimators are asymptotically normal: 

where C- l is the covariance matrix of the LS-estimators and the scalar TJ depends on the 

J functions and the innovation's distribution F. 
In this paper we propose a robust portmanteau goodness-of-fit test based on the satistic 

m 

Q3 (RT(lT)) = ~-1T(T + 2) 2:(T - k)-1p~,k(RT(lT )), 
k=l 

where the constant ~ and the autocorrelation functions P3,k are given by 

(2.6 ) 

and 

respectively. 

E(J?(F(U1 )) )E( J?(F(UI))) 
~ = E~(JI(F(Ud)J2(F(Ud)) 

It is shown, under general assumptions, that for m sufficiently large the assymptotic 

distribution of Q3 may be approximated by a chi-square with degrees of freedom m - p - q. 

3. BASIC ASSUMPTIONS AND NOTATIONS 

Assumption A. 

(i) The U; s have finite moments up to the fourth order, with mean E(Ut ) = 0 and variance 

E(Ul) = (7~. 
(ii) F is symmetric and continuous. 

(iii) F(x) has a uniformly continuous density I(x) which is a non increasing function of Ixl 
and strictly decreasing for small x. 

(iv) I has finite Fisher's information 1(/), i.e., I is absolutely continuous on finite intervals 

and 0 < /(f) = 1: (f'(X)/ I(X))2 f(x)dx < 00. 

(v) Let F-l(U) = inf{x: F(x) ~ ut, 0 < u < 1 and cp(x) = -t(x)/I(x), x E R. Assume 

that lP{x) is a.e. derivable and that its derivative cpl(X) is a.e. Lipschitzian and square 

integrable: Icpl(x) - cp'(y)1 < Klx - yl and 11 cp'~(F-l(U))du < 00. 

Assumption B. The two score generating functions J
" 

i = 1,2, satisfy 
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(i) 11 IJj (u)Wdtl < 00. 

(ii) 11 Jt(u)h(u)du 1: O. 

(iii) Tl~moo E( (Jj(F(Up+d) - J j (T:::P+~ 1))) = 0 where R p+1 , is the rank of Up+1> 
among Up+1,.·· ,UT· 

(iv) Jj(l- 1..1) = -J,(u). 

(v) J, (F( v» are continuously differentiable and 11, (F( v» I :5 K Iv Im where m may be 0 or 

l. 

(vi) Let Jt'( v) = dJj (F( v))/ dv, then IJ,·'( v)1 :5 Klvl m where m may be 0 or 1. 

(vii) Id2J,(F(v))/dv21 ~ K 

(viii) E(J;'(Ut}) 1: 0 and E(J2(F(Ud)U}) 1: o. 
(ix) I Jj ( 1..1) - Jj ( v) I :5 K I u - v I . 
REMARK 3.1. Assumption B(iii) is verified for example if Jj 's satisfy 

Idi J,(u)/duil :5 K(u(l - u))-i- 1/4+ 6\, j = 0,1,0 < u < 1 

for some 61 > 0 , 1 = 1,2. This result can be obtained by similar arguments as those given 

in Theorem 3.6.6 of Puri and Sen (1971). 

REMARK 3.2. Assumptions B(v) and B(vi) are satisfied, for example, if Jj(u) = ~-1(t1) 
and F is normal, Jj ( u) = 2u - 1 and F is normal or logist ic or J, ( u) = 1 n( 1..1 / (1 - IJ)) and F 
is logistic, i = 1, 2. 

4. ASYMPTOTIC DISTRIBUTION 

THEOREM 4.1. Assume that (Zl,.· .. ZT) is a stationary AR(p) process and that assump-
.... 

tions A and B hold. If, in addition, ~ is a sequence of estimators satisfying 

Tl/2WT(RT(~), ~) !., 0, as T -+ 00 

and such that Tl/2(~ - ';0) is bounded in probability, then there exists ~statistic Q4 and 
"'m 

a sequence of estimators th that satisfy 
.... m 

(i) Q4(UT(+z,») is asymptotically distributed as chi-squared with degrees of freedom m-p, 

(ii) for exery e > 0 and 6 > 0 there exists mo > 0 and To > 0 such that for m ~ mo and 

T~To 

The proof of this theorem is given in the Appendix. 
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REMARK 4.1 The statistic Q. is defined as Q3 but using a truncated version of the RA­

estimators. A precise definition of Q. is given in (6.1.5) of the Appendix. 

REMARK 4.2. We have only been able to prove Theorem 4.1 in the AR(p) case. However 

we conjecture that the result is also valid for the ARMA(p, q) model. The only part of the 

proof which is not valid for an arbitrary stationary ARMA(p,q) model is Proposition 6.2.3 

and (6.2.46). 

REMARK 4.3. Assumption B(ix) used in Theorem 4.1 is very restrictive. It is satisfied by the 

Wilcoxon scores generating function, J j (u) = 2u-1, but not by the Normal scores generating 

function. J,(u) = ~-l(U). The only part of the proof where this assumption is used IS also 

Proposition 6.2.3 and (6.2.46). However, according to our Monte Carlo results we conjecture 

that Theorem 4.1 holds under weaker conditions which include J1(u) = J2(u) = ~-l(u). 

5. THE MONTE CARLO STUDY 

5.1. De8cription of the Study. The behaviour of the Ql, Q2 and Q3 statistics has been 

studied for the AR(l) and MA(l) models without outliers (purely Gaussian) and with ad&· 

tive outliers. The AR(l) and MA(l) additive outlier models used in this Monte Carlo study 

assume that the observations (Zl' ... , ZT) satisfy 

(5.1 ) Zf = Wf + Yt 1 ~ t ~ T. 

For the AR(l) model Wf in (5.1) are given by 

W t = q, W t -1 + Ut 1 ~ t ~ T, 

and for the MA( 1) model 

Wt = -BUf - 1 + Ut 1 ~ t ~ T, 

where the Ut are i.i.d. random variables with distribution N(O,l). The variables V"~ 

1 ~ t ~ Tare i.i.d. with distribution 

where 60 is the distribution which assigns probability 1 to the origen. Then a fraction 1 - ! 

of the time Zt coincides with the Gaussian model W f and the rest of the time Zf is equal to 

Wt plus some Gaussian noise V"~ The purely Gaussian case corresponds to ! = O. 

For each model three values of! (0; 0.05; 0.10) and three values of r (3; 10; 20) have been 

investigated. The Q3 statistic considered is based on RAR-estimators with J1 = J2 . This 
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common function is called J. Two J-functions: (i)J(u) = ~-1(U), (ii) J(u) = 2u - 1, have 

been considered. These Q3 statistics have been compared to Q'J with Mallows type TJ( u, v) 

and Huber tP functions 

WH,c(U) = sign(u)min(lul,c), 

for 2 values of the tuning constants c: 1.65, 1.34. These values of c were chosen so that, under 

the purely Gaussian ARMA model, the corresponding RA-estimators have approximately 

the same efficiency as the selected RAR-estimators. The scale parameter was estimated by 

the median of (lUp+1 L ... , IUT D/0.6745. 

The proportion of Ql> Q2 and Q3 values exceeding three nominal levels (0.01: 0.05: 0.1) 

of the X~-1 distribution has been studied. Also the empirical mean and variance of each 

statistic have been obtained. The AR( 1) cases with 4> = 0.5 and 0.8 and the MA( 1) cases 

with 0 = -0.5 and -0.8 were investigated. 

~-Ioreover, the empirical power of Q}, Q2 and Q3 was studied when the actual model 

was AR(2) or AI.4(2) but was identified as .-1R(l) or M.4(1) respectively. Two second-order 

autoregressions were considered. The first one (4)1 = 0.5 and 4>'J = 0.28) was chosen so that 

the empirical power of Q1 was near 0.5. For the second one (4)1 = 0.5 and 4>2 = 0.38) the 

empirical power was near O.S. Also two second-order moving averages were studied. The 

first one (01 = 0.5 and B2 = 0.32) was chosen so that the empirical power of Q1 was near 

0.5. For the second one (01 = 0.5 and O'J = 0.5) the empirical power was near 0.8. Two 

nominal levels of significance (0.05; 0.1) were examined. 

There were performed 500 replications, with sample size 100 and m = 8. Several rou­

tines given in Press, Flannery, Teukolsky and Vetterling (1986) were used: RAN1 (random 

number generator), GASDEV (Standard Normal generator), RANK (rearrengement of an 

array) and ZBRAK (bracketing of a root). The computer programmes where written in 

FORTRAN and perfonned in an mM 3032 at the Centro de Estudios Superiores para el 

Procesamiento de la Informaci6n (CESPI), Universidad de La Plata. 

5.2. Dilct/.uion of the re,ult,. For the AR model and d> = 0.5 Table 1 shows that the 

significance levels of Ql, Ql and Q3 were not very much disturbed by additive outliers. 

However, for T = 10 and T = 20, the empirical variances were significa.tively different from 

its asymptotic value 14. For Q1 this difference was larger. The results for the other additive 

outlier models are not reported here because they are qualita.tively similar to those given. 

If 4> = 0.8 Tables 2 and 3 show for the AR model that under the purely Gaussian 

model the distributions of Ql, Q2 and Q3 were reasonably approximated by the asymptotic 

theory. However, if there were outliers the X? is a poor approximation for the Ql statistic's 

distribution. On the other hand for T = 3 and e = O.O.S the significance levels of Q2 and Q3 
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were similar to the nominal levels in all cases. Further for T = 3, e = 0.10; T = 10, t = 0.05 

and T = 20. e = 0.05 the significance levels of Q2 (c = 1.34) and Q3 (J(u) = 2u - 1) were 

closer to the nominal levels than the significance levels of the other statistics considered. 

For the MA model and e = -0.5 the conclusions related to the significance levels are 

similar to those of the AR model and cl> = 0.5. Some of these results are shown in Table 

4. Further for the MA model and e = -0.8 Table 5 shows the unstable behaviour of the 

statistics considered. 

In Tables 6 and 7 it can be seen that for the AR model under the purely Gaussian 

model the powers of Q2 (c = 1.65, c = 1.34) and Q3 (J(u) = ~-l(U), J(u) = 2u - 1) were 

similar to that of Ql' For additive outliers model with T = 10 and T = 20 the power of Ql 

is significantly lower than Q2 (c = 1.65, c = 1.34) and Q3 (J(u) = ~-l(U), J(u) = 2u - 1). 

Further the powers of Q'l and Q3 were insensitive to departures from normality of the ut s. 
Finally Table 8 shows that for the MA model the power is more sensitive to additive 

outliers than for the AR model in all cases. However the powers of Q2 (c = 1.6,1'), C = 1.34) 

and Q3 (J(u) = ~-l(U), J(u) = 2u - 1) are significatively higher than those of Ql mainly 

for T = 10. 

REMARK 5.1. The stability of the significance levels of Ql for cl> = 0.5 and e = -0.5 is in 

accordance with Anderson and Walker (1964) who have shown that the asymptotic normality 

of the residual autocorrelations does not require normality of the Uf 3. 

REMARK 5.2. The nonstandard contamination appearing in Li (1988) leads to different 

conclusions than ours. 
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TABLE 1 

Empirical means, variances and significance levels 

of Q1> Q2 and Q3 for AR(1) model and <p = 0.5 

e = 0.05 

e = 0 T = 10 T = 20 

Nominal level Nominal level Nominal level 

Te8t 8tati8tic8 Mean Var 0.05 0.10 Mean Var 0.05 0.10 Mean Var 0.05 0.10 

Ql 6.15 12.61 0.03 0.01 5.62 22.13 0.06 0.09 4.65 30.01 0.06 0.09 

Q2 (c=l.65) 6.62 12.10 0.03 0.01 1.02 14.12 0.05 0.10 1.12 15.58 0.06 0.11 
Q3 (J(u)=t-1(u)) 6.80 12.20 0.03 0.09 1.24 16.05 0.06 0.11 1.34 17.58 0.07 0.11 

Q2 (c=1.34) 6.63 12.05 0.03 0.07 6.99 14.28 0.05 0.10 7.04 14.71 0.06 0.10 
Ch (J(u)=2u - 1) 6.80 12.11 0.03 0.08 7.15 14.66 0.03 0.10 7.19 15.14 0.05 0.11 



TABLE 2 

Empirical means, variances and significance levels 

of Q1I Q2 and Q3 for AR(l) model and fjJ = 0.8 

T=3 

e = 0 e = 0.05 £ = 0.10 

Nominal level Nominal level N ominai level 

...... 
0 Test statistics Mean Var 0.05 0.10 Mean Var 0.05 0.10 Mean Var 0.05 0.10 

Ql 6.86 13.65 0.04 0.08 8.30 21.37 0.09 0.17 9.33 28.25 0.16 0.25 

Q2 (c=1.65) 6.73 13.25 0.04 0.07 7.24 15.27 0.06 0.10 7.78 18.02 0.07 0.14 

Q3 (J(u)=t-1(u» 6.89 13.35 0.04 0.08 7.50 17.17 0.07 0.13 8.11 19.20 0.08 0.16 

Q2 (c=1.34) 6.77 13.62 0.04 0.07 7.11 14.50 0.05 0.09 7.51 17.28 0.06 0.13 

Q3 (J(u)=2u - 1) 6.93 14.15 0.04 0.09 7.22 14.95 0.06 0.10 7.49 15.49 0.06 0.12 



TABLE 3 

Empirical means, variances and significance levels 

of Ql, Q2 and Qa for AR(l) model and rp = 0.8 

T = 10 T = 20 

E = 0.05 E = 0.10 E = 0.05 e = 0.10 

Nornmallevel Nornmal level Nominal level Nominal level 

Test statistics Mean VaT 0.05 0.10 Mean VaT 0.05 
I-' 

0.10 Mean VaT 0.05 0.10 Mean VaT 0.05 0.10 
I-' 

Ql 8.66 40.48 0.16 0.21 8.08 29.83 0.14 0.20 6.49 41.67 0.10 0.15 6.05 21.75 0.08 0.10 

Q2 (c=1.65) 7.76 18.14 0.09 0.14 9.19 24.21 0.13 0.23 7.95 19.23 0.09 0.15 9.76 25.85 0.17 0.27 
Q3 (J(U)=,.-l(U» 8.26 21.71 0.10 0.16 9.63 26.04 0.16 0.26 8.48 23.54 0.11 0.17 10.11 28.26 0.19 0.29 

Q2 (c=1.34) 7.47 16.54 0.06 0.13 8.54 20.28 0.09 0.19 7.60 17.17 0.07 0.13 8.94 22.81 0.13 0.21 

Qa (J(u)=2u - 1) 1.56 17.32 0.07 0.13 8.42 18.45 0.09 0.17 7.66 11.89 0.08 0.13 8.77 22.05 0.11 0.20 



TABLE 4 

Empirical means, variances and significance levels 

of Ql, Q2 and Q3 for MA(l) model and (J = -0.5 

e = 0.05 

e=O T=3 T = 10 

Nominal level Nominal level Nominal level 

...... 
w 

Test statistics Mea.n Var 0.05 0.10 Mea.n Var 0.05 0.10 Mean Va£ 0.05 0.10 

Ql 7.02 14.86 0.06 0.12 6.68 12."1 0.03 0.10 5.63 21.40 0.07 0.09 

Q2 (c=1.65) 6.94 13.35 0.05 0.10 6.71 12.80 0.04 0.08 6.,,3 13.,,7 0.06 0.09 
Q3 (J(U)=.-l(u» 7.15 14.46 0.04 0.11 6.83 12.85 0.04 0.09 6.90 13.91 0.05 0.09 

Q2 (c=1.34) 6.84 14.28 0.04 0.10 6.78 13.51 0.04 0.09 6.94 14.85 0.06 0.11 
Q3 (J(u)=2u -1) 7.14 16.08 0.07 0.12 7.09 14.20 0.05 0.10 7.18 15.07 0.05 0.12 



TABLE I) 

Empirical means, vanances and signiftcance levels 

of Ql, Q2 and Q3 for MA( 1) model and 0 = -0.8 

e = 0.05 

e=O T=3 T = 10 

Nominal level Nominal level Nominal level 

~ 
w 

Test statistics Mean Var 0.05 0.10 Mean Var 0.05 0.10 Mean Var 0.05 0.10 

Ql 7.64 17.52 0.08 0.12 6.60 12.81 0.04 O.~ 5.40 18.49 0.05 0.07 

Q2 (c=1.65) 7.71 17.76 0.09 0.15 6.89 14.29 0.06 0.09 7.13 15.21 0.07 0.11 
Q3 (J(u)=t- 1( u)) 8.06 19.37 0.10 0.16 7.05 14.31 0.05 0.11 7.02 15.04 0.06 0.10 

Q2 (c=1.34) 7.71 17.50 0.09 0.13 6.91 14.14 0.06 0.10 710 16.57 0.06 0.09 
Q3 (J(u)=2u-l) 8.12 19.56 0.10 0.18 7.13 14.02 0.05 0.11 7.23 17.65 0.06 0.10 



TABLE 6 

Empirical power of Q11 Q2 and Q3 for <PI = 0.5 and ~ = 0.28 

Nominal level=0.05 Nominallevel=0.10 

T=3 T = 10 T = 20 T=3 T = 10 T = 20 

Test statistics £=0 £ = 0.05 £ = 0.10 £ = 0.05 £ = 0.10 £ = 0.05 £ = 0.10 £=0 £ = 0.05 £ = 0.10 £ = 0.05 £ = 0.10 £ = 0.05 £ = 0.10 
..-
~ 

Ql 0.43 0.044 0.43 0.22 0.13 0.13 0.06 0.57 0.57 0.53 0.28 0.20 0.16 0.11 

Q'J (c=1.65) 0.42 O.H 0.42 0.45 0.44 0.45 0.45 0.52 0.56 0.54 0.56 0.57 0.57 0.57 
Qa (J(U)=.p-l(U» 0.38 0.39 0.40 0.41 0.39 0.43 0.41 0.49 0.54 0.50 0.55 0.50 0.56 0.50 

Q2 (c=1.34) 0.39 0.41 0.41 0.41 0.40 0.41 0.38 0.51 0.53 0.52 0.54 0.53 0.54 0.55 
Qa (J(u)=2u - 1) 0.35 0.37 0.38 0.37 0.36 0.36 0.34 0.46 0.50 0.48 0.49 0.48 0.50 0.46 



TABLE 7 

Empirical power of Ql, Q2 and Q3 for tPl = 0.5 and ~2 = 0.38 

Nominallevel=0.05 NominalleveI=O.lO 

T=3 T = 10 'T = 20 T=3 T = 10 T = 20 

Test statistics £=0 £ = 0.05 £ = 0.10 £ = 0.05 E = 0.10 £ = 0.05 E = 0.10 £=0 E = 0.05 E = 0.10 E:::: 0.05 E = 0.10 E = 0.05 e:::: 0.10 
.-. 
C/1 

Ql 0.74 0.73 0.70 0.49 0.32 0.23 0.12 0.84 0.82 0.80 0.57 0.42 0.30 0.19 

Q"l (c=1.65) 0.72 0.71 0.69 0.69 0.68 0.68 0.68 0.81 0.83 0.79 0.80 0.78 0.79 0.78 

Q3 (J(U)=~-l (u» 0.69 0.68 0.66 0.66 0.63 0.67 0.61 0.79 0.79 0.76 0.77 0.73 0.77 0.73 

Q'J (c=1.34) 0.71 0.71 0.68 0.68 0.64 0.67 0.67 0.79 0.82 0.17 0.79 0.77 0.78 0.76 

Q3 (J(u)=2u - 1) 0.67 0.65 0.63 0.64 0.59 0.64 0.58 0.76 0.78 0.73 0.76 0.72 0.75 0.70 



TABLE 8 

Empirical power of Q1, Q. and QJ 

91 = 0.5 92 = 0.32 91 = 0.5 92 = 0.5 

Nominal level=0.05 Nominal level=0.10 Nominal level=0.05 Nominal level=O.1O 

£ = 0.05 £ = 0.05 £ = 0.05 £ = 0.05 

~ Test statistics £=0 T=3 T = ]0 £=0 T=3 T = 10 £=0 T=3 T = 10 £=0 T=3 T = 10 en 

Q1 0.4] 0.21 0.10 0.58 0.33 0.14 0.13 0.41 0.15 0.86 0.59 0.20 

Q2 (c=1.65) 0.36 0.24 0.11 0.54 0.38 0.21 0.11 0.53 0.40 0.83 0.69 0.55 
Q3 (J(U)=~-l(U» 0.41 0.21 0.18 0.56 0.40 0.28 0.14 0.54 0.39 0.81 0.68 0.56 

Q. (c=1.34) 0.34 0.23 0.11 0.48 0.39 0.28 0.66 0.02 0.40 0.19 0.69 0.51 

Q3 (J(u)=2u - 1) 0.38 0.21 0.18 0.52 0.38 0.29 0.67 0.54 0.31 0.80 0.1] 0.51 



6. ApPENDIX 

6.1. Notation and Definition,. Given ~ = (~1"'" ;3h) E R.\, ~(B) denotes the polynomial 

operator ~(B) = 1- P1B - ... - ,Bh Bit, where 1 is the identity operator and B the backward 

shift operator. 

Define 

R- h = {P E RIt : P(B) has all the roots with absolute value> 1} . 

Since Z, is stationary fo E R-P and since it is invertible 60 E R-q. 
Given 4> E R-P, 6 E R·q let gi (f, 6) be defined as in the beginning of Section 2, i.e., by 

00 

6-1(B)~B) = L 9,(f,6)B' . 
,=0 

It is easy to prove that the functions 9i are continuously differentiable for 4> E R·p and 

6 E R·q. Moreover, given Cl C R·p and C2 C R-q, compact sets, there exist, A· > 0, 

o < b < 1 such that 

(6.1.1) 

(6.1.2) 

(6.1.3) 

Gi yen A = (4), 9), define the resid uals of order k by 

k 
U?)(l) = L Ui(., ')Zt_, , 

i=O 

Note that 

Let us now define 

T 

l~l'5p 

1 ~ l ~ q. 

1'5 k ~ 00. 

"f4,i(UT (l» = L J1(F(U,(A»)J2 (F(U'_i(l», 0 '5 i ~ T - p - 1 
f=,+l+i 

and 
T-j-p-1 

WT,j(UT(l),.,') = (T - j - p)-l L i'4,h+i(UT(l»slt(.), 1 '5 j ~ p, 
h=O 

T-j-p-1 
WT.p+j(UT(l),;, S) = (T - j - p)-l L i'4,Ia+i(UT(l»tla(S), 1 ~ j ~ q . 

'\=0 
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Also put 

Observe that 

-. -..-.. 
are the equatlOns of the RA-estimators ~ = (t/J.r,8T ) with 17(U, v) = J}(F(u.))h(F(u)). 

Let 

(6.1.4) 
~. -. -. 

P4J:(UT(~) =-Y4,k (U T(AT ))h4,0(U T (IT))' 1 ~ k ~ m. 

~. 

Then define the portmanteau statistic based on the RA-estimators AT by 

m 

(6.1.5) Q4(UT (l;.) = ~-lT(T + 2) ~)T - k)-l ptk(U T (i;)). 
k=l 

Let us also define 

m-J 

W;:j(UT(A),,p,8) = (m - j + 1 )-1 L 14,Ia+i(UT(A)8,.(,p), 1 ~ j ~ p , 
1=0 
m-j 

W;:;+J(UT(A), ,p,8) = (m - j + 1)-1 L 14,h+i(UT(A))t,.(8), 1 ~ j ~ q 
h=O 

and 

-m -m.-.rn 
Then ~ = (<PT , 9T ) is defined as a sequence satisfying 

-. -m 
and the corresponding portmanteau statistic is obtained replacing AT by AT in (6.14) and 

(6.1.5). 

Let, for 1 ~ k ~ T - 1, 

and 

CA: = «T + 2)/(T - k )l/'J , 

P3,A:(Rr(l) = CA:13,A:(RT(A»h3,0(Rr(l), 

18 



Now denote for s ~ 1 

a.nd 

Fina.lly, let us denote RT = (R,+l, ... , RT) a.nd UT = (Up+1, ... l UT) where RJ , P + 1 ~ 

j ~ T, is the ra.nk of Uj, p + 1 ~ j ~ T, a.mong Up+1 ,"" UT. 
6.2. Asymptotic Distribution of Q3 . In this section we derive the asymptotic distribution 

of Q3 through the asymptotic distribution of Q4' 

PROPOSITION 6.2.1. Assume that assumptions B(i), B(ii) B(iii) and B(iv) hold. Then 

asT~oo. 

PROOF: To prove the proposition it suffices to show that for 1 ~ j ~ m 

(6.2.1 ) asT~oo. 

We will first prove tha.t 

(6.2.2) 

We have 

T 
T-l/2("Y3,i(~) - "Y4,i(UT)) = T- 1/ 2 L [Jl( R1 )J2( Rf-i ) 

f:p+I+i T - p + 1 T - p + 1 

- J1 (F(Uf ) )J2(F(Uf - i )) - J T + 7;. (UT )] + T- 1/ 2 (T - p - j)[JT - 7;.( UT)] , 

where 

a.nd 
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T T 

J";(U T ) = [(T-p)(T-p-l)t l L L Jl(F(Ut\)J2(F(Utl»' 
1\=p+1 t\;!12 '2=p+1 

From the weak law of large numbers and the central limit theorem we obtain 

T- 1/ 2 (T - p - j)[JT - J;.(UT )] !... 0, 

as T - 00. 

Hence, it sufices to show that 

where 
T 

" [J ( Rc J ( Rc - J L..J IT_p+l)1 T _ p + 1 ) 

Let V, = F(U,),p + 1 =:; s =:; T and let Vo = (~1)"'" ~T-p») where VC;), 1 =:; i =:; T - p. 
is the ith order statistic. 

Define 

Hence we have 

T 
~T,j(UT) = T- 1/2[ L a(R

" 
Rt - i , V(R.), V(R'_l») - (T - p - j)(JT - J;(UT )). 

C=p+1+; 

Then, 

E[A~,J(UT)] = T-1E[E[(S~(UT' V(-) - (T - p - j)(JT - 1;.(U T )))11 V(.) ]] 

where 

and 

T 

S~(UT' V(-» = L a(Rt,R'-i, V(R;), V(R'_l» 
l=p+1+; 
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Then 

E[~f.j(UT)] = T- 1 E[Var(S~(UT' V(.») I V(.))] 

where Var(S~(UT' V(.») I V(-)) denotes the conditional variance of SHUT, VU), 

From Lemma 6.2.1 of Ferretti, Kelmansky and Yohai (1991) it follows that 

Hence 

~loreover, from assumptions B(i) and B(iii) and the Cauchy-Schwartz inequality we obtain 

that 

lim E{(Jt(F(Up+1))J1(F(Up+1))-Jl(TR,+1 )J2(T Rp+2 W} =0. 
T-~ -p+1 -p+1 

Hence (6.2.2) holds. 

Therefore from the weak law of large numbers and Theorem 7.7.5 of Anderson (1971) one 

now concludes (6.2.1). I 

PROPOSITION 6.2.2. Assume that assumptions A(i), B(i), B(ii) , B(iii)and B(iv) hold. Let 
A E W+ q and put l = lo + T- 1/ 2 A then 

PROOF: The proof of this proposition is an immediate consequence of the Proposition 6.2.1, 

the Proposition 6.2.2 of Ferretti Kelmansky and Yohai (1991), and the definition of conti­

guity. I 

Let us denote the usual Euclidean nonn by 11 . Ik 
PROPOSITION 6.2.3. Assume that (Z}, ... ,ZT) is a stationary AR(p) process and that 
assumptions A and B hold. Let A E RP and Ao > 0 and put ~ = ~o + T- 1/ 1 A. Then 

(6.2.3) 

PROOF: 

Due to Proposition 6.2.2 in order to prove (6.2.3) it suffices to show that for all Ao > 0, 

(6.2.4) sup IITl/~(~(~o + T- 1/ 1(A + t) - pr;(~o + T- 1/1 A))1I1 1. 0 
IIAlh ~Ao,lItlh ~'o 
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and 

(6.2.5 ) sup IITl/2(~(<P0 + T-1/1(A + I)) - p;:(~ + T- 1/ 2 A))H2 !.. 0 
IIAlh :$.40.11'112 :$"0 

as T - 00 and eo - O. 

We will first show (6.2.4). 

Let 

SI,i(T,A.t) = T- 1
/

2 

and 

For 1 :$ j :$ m we have 

IT1/ 2(,o3.j (,.00 + T-1/ 2(A + t) )-,03,1 (4)0 + T- 1/ 2 A))I 

(6.2.t"3) :$ Il/1TI(Sl,j(T, A, ,) + S2,j(T. A. e)). 

Given X E Rh and v E R define Fh(X, u) as the empirical distribution determined by X. 

Therefore 

F X l::=1 J(XI :$ v) 
h( ,u)= h 

where J(B) denotes the indicator of the event B. Let 4 E RP then we have 

(6.2.7) 

From assumption B(ix), (6.2.7) and the Cauchy-Schwartz's inequality we obtain 

T-p. 1/2 
Sl.j(T, A, e) S T- 1

/
2 (T - p + 1 )-1 (T - p)K [L [J1 ( T _ J + 1 W I(T - p)] 

1=1 P 
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Let FT_,(U) = FT-,(UT, u). 

From Theorem 2 of Section 1 in Koul (1990), we have 

From (6.2.8), 6.2.9) and the fact that UT (t!>o) = UT, it readily follows that 

(6.2.10) 

(T - p)1/2IFT_,(UT(c/>0 + T- 1
/

2(A + I)), Ui(t!>o + T- 1/ 1(A + t))) 

- FT-,(Ut(cI>o + T- 1
/

1 (A + e)))1 

+ (T - p//2IFT_p(UT(cI>o + r- 1
/

2 A), Ui(cI>o + T- 1
/
1 A)) 

- FT-,(Ut(cI>o + T- 1/2 A))I = 0,(1) 

where 0, (1) is a sequence of stochastic processes converging to zero uniformly in probability 

over the set {IIAII2 ~ .<to, 11'112 ~ eo}. 

From equation (5) in Theorem 1 of Section 3.2 in Koul (1990) we immediately obtain 

sup (T - p)1/2IFT_,(Ut(t!>o + T-1/ 2(A + I))) - FT-,(Ud 
,+l<t<T 

IIA IISA;'II'/lS'o 

and 

where Z1 = (Z1-1. ... , Zi_,). 

Then, 

sup (T - p)1/1IFT_,(U1(cI>o + T- 1
/

2 (A + t))) - FT_, (U1 (t!>o + r- 1
/

2 A)) 
p+l<t<T 

IIAIISA;,/I'IIS'o 
(6.2.11) + (T - p)-1/2,'Zd(Udl = 0,(1) 
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From (6.2.10) and (6.2.11) it easily follows that 

sup (T - p)I/2IFT_p(UT(~O + T- 1
/

2(A + .»), U1(~ + T- 1/ 2(A + .»)) 
p+l<~<T 

IIAII~A;,lIill~'o 

(6.2.12) 

- FT_p(U1(~ + T- 1/ 2 A)) + (T - p)-1/2,'Zd(U1)1 = op(1) + op(1) 

From (6.2.12) and using some algebra one obtains 

(6.2.13) 
p 

sup 51,j(T, A,I) -+ 0, as T -+ 00, !o -+ 0. 
IIAII~Ao ,1I611~'o 

Similar arguments can be used to show that 

(6.2.14) sup 52,j (T, A, 6) !. 0, as T -+ 00, !o -+ ° . 
IIAII~Ao.1I6115'o 

Then, from the fact that 

as T -+ 00, 

(6.2.6), (6.2.13) and (6.2.14) we obtain 

sup IT1/2(p3,j(~ + T- 1/ 2 (A + I)) - P3,i(.o + T- 1/ 2 A»)I !. 0, 
IIAII~Ao.llt I~'o 

as T -+ 00, !o -+ o. Therefore (6.2.4) follows. 

Further, from the Mean Value Theorem, assumptions 8(v) and 8(vi), and the fact that 

T 1 

T- 1 L J1(F(U')J2(F(Ut})!..1 J1(U)J2(U) du, 
t=p+1 0 

asT-+oo 

we obtain (6.2.5). This completes the proof of the proposition. I 

PROPOSITION 6.2.4. Assume that assumptions A(i), B(ii) and B(v) hold. Then 

(6.2.15) 

where Im is the m x m identity matrix and ~ is defined by (2.6). 

PROOF: We will first prove that 

(6.2.16) T-+ 00, 
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where 

Let 
T 

Ol,j(UT) = T-1/'J L J1(F(Ut))h(F(Ut - j )), 1 ~ i ~ m, 
t=p+l+m 

1 ~ j ~ m - 1, 

J = rn, 

From Theorem 7.7.6 of Anderson (1971) it follows that , 1(UT ) is asymptotically normally 

distributed with mean 0 and covariance matrix wlm . Moreover, we have 

as T - 00. 

On the other hand, from Theorem 7.7.5 of Anderson (1971), we have, for 1 ~ j ~ rn, 

as T - 00. 

Therefore 
as T _ 00. 

Hence (6.2.16) holds. 

Further, from the weak law of large numbers we obtain 

(6.2.17) as T - 00. 

Then from (6.2.16) and (6.2.17) one now concludes (6.2.1.5). I 

Let 

(6.2.18) 

where J;'(v) is defined in B(viii) and xm is a rn x (p + q) matrix given by 

(6.2.19) 

if j :5 i :5 rn and 1 :5 j :5 p 

if j - p:5 i:5 rn and p + 1 :5 i :5 p + q 

otherwise. 
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PROPOSITION 6.2.5. Assume that assumptions A(i), B(v), B(vi) and B(vii) hold. If, m 
~m 

addition, IT is a sequence of estimators satisfying 

and such that Tl/2(i; - lo) is bounded in probability, then 

(6.2.20) 

PROOF: We have 

(6.2.21) 

T 1/ 2ir: (UT(i;)) =T l /
2 (ir: (UT(i;)) - ir:(U~OO)(i;)) 

+ Tl/2i~(U~00)(i;)). 

We will first prove that 

( 6.2.22) 

Given Cc R·p x R·q, compact set, by (6.1.1), there exist, A> 0, 0 < b < 1 such that 

(6.2.23) 

and 

(6.2.24) 

where 00 
ut = A LU + 1)b1IUf _jl· 

i=O 

Using the fact that Tl/2(l;. -lo) is bounded in probability, the Mean Value Theorem, B(v), 

B(vi), (6.2.23) and (6.2.24) we have 

Therefore, 

IJl (F(Uf(l; ))J2 (F(Uf-i(l;) )-Jt(F(Uf(oo)(l;) ))J2(F(Ui~)(i;) ))1 

< Kr.r(b'r.r + 'b'-iU· .) - 0 1 f- J • 

T 
T- l

/
2Cj!;4,j(UT (i;)) - '4,j(U~oo)(i;))1 S; T-l/2CjKU~ L (b'U: + bf-iU:_j ). 

f=p+1+j 
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Since E(Ul) < 00, we have E:p+l+J(btUt + bt-iUt_j) < 00 a.s .. Then (6.2.22) follows. 

Now we will prove that 

(6.2.25 ) 

By the Mean Value Theorem we have 

where Dl~(U~OO\~)) is the differential matrix of i~ with respect to A and iT satisfies 
- ~m lilT - Aol/2 ~ PT - Ao1l2' 
We have, for 1 ~ i ~ rn, 

(6.2.27) + c,T- 1 

where J..,(v), i = 1,2, are defined in assumption B(vi). 

We will show that 

1 ~ j ~ p, 

(6.2.28) 

p + 1 ~ j ~ p + q, 

as T - 00. 

It is easy to show that 

l~j~p 

and 

p + 1 ~ j ~ p + q. 
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:From the Mean Value Theorem, (6.2.23), (6.2.24), A(i), B(v), B(vi) and B(vii) we have, 

for 1 ~ j ~ p + q, 

T ru(oo)(x) 
c,T- 1 L Jt(u}oo)(iT ) )J:;J( F(U,(:)(XT ))) [<7 ~,\ ] '\=11' 

'=p+1+, J 

= M,,},T(U T) + op(1) 

where 

If j ~ i, by the ergodic theorem and the fact that J2 (1 - 1.4) = -J2 (u) we have 

1~j~p 

and 

p+l~j~p+q 

as T --+ 00. Hence (6.2.28) holds. 

By steps similar to those in the proof of (6.2.28) and the fact that J1(1- 1.4) = -J1(u) we 

obtain 

T 8U(OO\l) 
cy-1 '" J (F(u5°o)(i ))).r..'(u(OO)(i ))[ '-i ] . , L...t . 1 , T. 2 '-I T 8'\ . '\='\1' l=p+1+, J 

~ 0, ,1 ~ j ~ p+ q, 

as T - 00. 

Therefore, from (6.2.27) we have 

(6.2.29) as T - 00. 

Hence (6.2.25) follows from (6.2.26), (6.2.29) and the fact that T1/2(i; -lo) is bounded 

in probability. 

Moreover from Lemma 3.2 of Bustos, F'raiman and Yohai (1984) we have U}oo)('\o) = U, 
a.s. and hence (6.2.20) follows from (6.2.21), (6.2.22) and (6.2.25). I 
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REMARK 6.1. Proposition 6.2.5 is based on generalized RA estimators. Li (1988) in Lemma 

2 shows a similar result for RA estimators, but the details of the proof and the assumptions 

under which the lemma holds are omitted. 

PROPOSITION 6.2.6. Assume that assumptions A(i),B(ii), B(v), B(vi) and B(vii) hold. If, 
~m 

in addition, IT is a sequence of estimators satisfying 

(6.2.30) 

and such that Tl/2(i; - lo) is bounded in probability, then 

(6.2.31) T 1/ 2 pr: (U T (i; ») ~ N(O, G), asT-oo 

where G = ~(Im - xm[(xm)'xmJ- 1(xm)'), ~ is defined by (2.6) and xm is defined by 

(6.2.7). 

PROOF: By the Mean Value Theorem, we have 

Tl/2W;:m(U~oo)(i;),~, 6;) = 
(6.2.32) 

T1/ 2w·,m(u(oo)(l ).1.. 9) + Dw·,m(u(oo)(l ).l iJ )T1/ 2(im 
- l ) T TO. ,9"0, o. TT. T ,...-r, T. TO, 

- - -m 
where IT satisfies II'\T - '\0112 ~ lilT - loll2. 

As in Lemma 3.5 of Bustos, Fraiman and Yohai (1984), and since T 1/ 2(iT -,\0) is bounded 

in probability we can prove that 

(6.2.33) asT-oo. 

~m 

Therefore from (6.2.32), (6.2.33) and the fact that ~ is a sequence of estimators satisfying 

(6.2.30) we have 

It is easy to show that 

Hence 

29 



Moreover from Lemma 3.2 of Bustos, Fraiman and Yohai (1984) we have U1(oo)(lo) = U1 

a.s. and therefore 

(6.2.34) 

Then from Proposition 6.2.5 and (6.2.34) we obtain 

(6.2.35) 

Therefore from (6.2.17) we have 

Hence, using Proposition 6.2.4 it follows (6.2.31). I 

In Proposition 6.2.7 we will use the Frobenius matrix norm given by 

IIBIIF = [t t Ibijl2] 1/2 
i=1 j=1 

where B = (b.j) is a r x 8 matrix. 

PROPOSITION 6.2.7. Assume that assumptions A(i),B(ii), B(v), B(vi) and B(vii) hold. If, 
~m 

in addition, IT is a sequence of estimators satisfying 

asT-oo 

and such that T 1/ 2(i; - 10 ) is bounded in probability, then 
~m 

0) Q4(UT(lT)) is asymptotically distributed as chi-squared with degrees offreedom m-p-q. 
~. 

(ii) If lr is a sequence of estimators satisfying 

and such that Tl/2(i; - 10) is bounded in probability. Then for every £ > 0 and 6 > 0 

there exist mo > 0 and To > 0 such that for m ~ mo and T ~ To 

PROOF: Since ({-IT)1/2p4 (UT(i;)) has an asymptotic covariance matrix that is idempo­

tent of rank m - p - q we obtain (i) from Proposition 6.2.6. 
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Now we will prove (ii). From the Cauchy-Schwartz inequality we have 

-m""". -m.-. 
IQ4(U T(lT ))-Q4(UT(lT))1 ~ {-lTllp~( UT(lr ) - p~(UT(lT »II~ 

(6.2.36) + 2{-lTllp~(U T(l;) - p~(UT(l; »lIlllp~ (U T(l; »112· 

We will show that for every f > 0 and 6 > 0 there exist ml > 0 and Tl > 0 such that for 

m ~ ml and T ~ Tl 

(6.2.37) 

From (6.2.17) and (6.2.35) we obtain 

(6.2.38) 

Tl/2p~(UT(1;)) =[Im - Xm«Xm/xm)-l(Xm)'J 

x T I / 'J pr: (U T ) + 0, ( 1 ). 

Let C be the (p + q) x (p + q) symmetric matrix given by 

00 

C',i = L 61(;0)S1+i-,(80) , i ~ j ~ P 
1=0 

00 

C"p+i = - L t1(9o)81+i-i(~)' i ~ p, j ~ q, i ~ j 
1=0 

00 

C"p+i = - L '1(~)tl+i-,(80), i ~ p, j ~ q, j ~ i 
1=0 

00 

Cp+i,,+i = L tl:(8o)tl+i-i(;O) ' i ~ j ~ q 
1=0 

By steps similar to those in the proof of (6.2.35) and from (6.2.11) we have 

Tl/2,~(UT(~» =Tl/2,~(UT) 

(6.2.39) - xmc-l(xT-p-l)'Tl/2,;-P-l(UT) + 0,(1). 

where X T - p - 1 is obtained replacing m by T - p - 1 in (6.2.19). Then, from (6.2.38) and 

(6.2.39) it follows 

-m -. 
Tllp~(UT(lT» - p~(UT(lT »)lI~ 

~ TIIX m C-1(XT-,-1 )',;-P-l(UT) - Xm[(Xm)' Xmrl(Xm )'p~(U T )II~ + 0,(1). 
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Therefore 

--m -. 
Tllp~(UT('\T» - p~(UT(~ ))II~ 

~ TIIX m II} lie-Ill} II(XT - p- 1 )';;-P-I(UT) - (X m (pr:: (UT )II~ 

(6.3.40) + Tllxmll}lIe- 1 
- [(Xm)'Xmrlll}II(Xm )'pr::(UT )II~ + op(l). 

From the Chebyschev inequality and the fact that 2:;:0 18j(~)I < 00 and 2:;:0 It,(8o}l < 
00 it follows that for every € > 0 and 6 > 0 there exist m2 > 0 and T2 > 0 such that for 

m2 :5 m ~ T - p - 2 and T ~ T2 

(6.2.41 ) 

Moreover, 

lIe-1 - [(xm)'Xmrlll} 

( 6.2.42) ~ 1I[(xm),xmrlll}lI(xm),xm - clI~lIe-lll~· 

Then from the fact that 2:;:0 18j(.0)1 < 00, E~o ISj{«Po)1 2 < 00, E~o Itj(80)1 < <Xl and 

E;:o Itj(80 )12 < 00 we obtain, for every T 

(6.2.43) lim lI(xm)'xm - ell} = o. 
m-oo 

Hence from (6.2.41), (6.2.42) and (6.2.43) it follows (6.2.37). Then (ii) is an immediate 

consequence of (6.2.36), (6.2.37) and (i) .• 

PROOF OF THEOREM 4.1: From Proposition 6.2.3 (i) of Ferretti, Kelmansky and Yohai 

(1991) we obtain 

(6.2.44) 

Then, from Proposition 6.2.7 (ii), it immediately follows that for every € > 0 and 6 > 0 

there exist mo > 0 and To > 0 such that for m ~ mo and T ~ To 

(6.2.45) 

Also, from the Cauchy-Schwartz inequality we have 

IQ3(RT (l-r ))-Q4(UT (lT ))1 :5 e-lTllp~(RT(lT)) - p;:(UT(lT ))II~ 
(6.2.46) + 2e-lTllp~ (RT(iT)) - pr:: (U T(IT) )11211;;: (UT (iT ))Ik 
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From Proposition 6.2.3 it follows that 

(6.2.47) 

Then from (6.2.44) and (6.2.47 ) we have for every E > 0 and 6 > 0 there exist ml > 0 

and Tl > 0 such that for m ~ ml and T ~n 

(6.2.48) 

Hence from (6.2.46), (6.2.47) and (6.2.48) we obtain that for every E > 0 and 6 > 0 there 

exist m2 > 0 and T2 > 0 such that for m 2: m2 and T 2: T2 

~ ~ 

(6.2.49) P(lQ3(RT(~T» - Q.(UT(~T ))/ ~ E) $ 6. 

Therefore, from Proposition 6.2.7 (i), (6.2.45) and (6.2.44!}Theorem 4.1 follows. I 
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