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The response of the tool–chip interface is characterized in the orthogonal cutting process by numerical

and analytical means and compared to experimental results. We study the link between local parameters

(chip temperature, sliding friction coefficient, tool geometry) and overall friction characteristics depicting

the global response of the tool–chip interface. Sticking and sliding contact regimes are described.

The overall friction characteristics of the tool are represented by two quantities: (i) the mean friction

coefficient qualifies the global response of the tool rake face (tool edge excluded) and (ii) the apparent
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friction coefficient reflects the overall response of the entire tool face, the effect of the edge radius being

included. When sticking contact is dominant the mean friction coefficient is shown to be essentially the

ratio of the average shear flow stress along the sticking zone by the average normal stress along the

contact zone. The dependence of overall friction characteristics is analyzed with respect to tool geometry

and cutting conditions. The differences between mean friction and apparent friction are quantified. It is

demonstrated that the evolutions of the apparent and of the mean friction coefficients are essentially

controlled by thermal effects. Constitutive relationships are proposed which depict the overall friction

characteristics as functions of the maximum chip temperature along the rake face. This approach offers a

simple way for describing the effect of cutting conditions on the tool–chip interface response. Finally, the

contact length and contact forces are analyzed. Throughout the paper, the consistency between

numerical, analytical and experimental results is systematically checked.
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The use of Finite Element methods for the analysis of orthogonal
cutting has been initiated three decades ago [1,2]. Presently, most
of simulations are relying either on Lagrangian formulations with
automatic remeshing to avoid using a separation criterion [3,4], or
on the Arbitrary Lagrangian Eulerian (ALE) technique [5,6]. Con-
versely, since the pioneered work of Merchant [7] dealing with
and global variables (overall friction chara
ength). Clarifying this perfectly plastic materials, a thermo-mechanical framework has

connection is especially important for the validation of the physical
concepts introduced into the modeling and for improving analy-
tical models of machining.

The aim of this work is to investigate the relationship between
local and global cutting parameters by developing a fruitful inter-
play between theoretical tools offered by numerical methods on
the one hand and analytical formulations on the other hand. The
relationship between local variables and global friction character-
istics is analyzed in a first step. Then, the tool–chip contact length
and the contact forces exerted on the tool are characterized.
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been developed for the analytical modeling of cutting [8–11]. A
foremost aspect of the present work is to establish a dialog between
numerical modeling of machining that provides an efficient tool for
analyzing local and global variables and analytical formulation that
offers a clear synthetic perception of the phenomena studied.

The work material is taken to be a medium carbon steel
42CrMo4. The thermo-viscoplastic response of the material is
modeled with a Johnson–Cook law. Material parameters are fixed,
but interface properties are varied since the analysis of frictional
effects is of particular concern.

In machining, the contact problem is generally modeled with
phenomenological laws that include sticking and sliding contact
regimes [12–18]. Important features of dry contact can be captured
by using the Coulomb friction law. Sometimes, a modified Coulomb
friction law has been adopted, which accounts for the saturation at
a given value of the shear stress on the tool face. In the present
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Nomenclature

Cutting conditions

V cutting speed
t1 uncut chip thickness
a rake angle
g clearance angle
R cutting edge radius

Chip characteristics

t2 chip thickness
f shear angle
fA and fn alternative representations of the shear angle (see

Fig. 1b)
tPZ mean shear flow stress along the central line of the

primary shear zone

Tool–chip interface

m sliding friction coefficient
m mean friction coefficient (¼ FtðrakeÞ=FnðrakeÞ)
l¼ arctanðmÞ mean friction angle
map apparent friction coefficient (¼ ðFT=FCÞ when a¼ 0)
lap ¼ arctanðmapÞ apparent friction angle
VS sliding velocity
t shear stress
s normal stress
x exponent controlling the decay of the normal stress
tY local value of the shear flow stress
tSZ average shear flow stress along the sticking zone
lc contact length on the flat part of the rake face

lp sticking length
Z part of frictional heat transferred to the chip
k thermal conductance of the tool–chip interface
T1 temperature of the work-material at the entry of the

flat part of the rake face
T int mean temperature along the tool rake face
Tmax maximum temperature of the chip along the rake face

Material characteristics of the work material

Tr reference temperature in the Johnson–Cook law
Tm melting temperature
_e0 reference strain rate
r mass density
Cp heat capacity per unit mass
k heat conductivity
b Taylor–Quinney coefficient

Forces

FC cutting force
FT thrust force
Fn(rake) and Ft(rake) normal and tangential forces exerted by

the chip on the flat part of the rake face

Field variables

dp
ij plastic strain rate tensor
sij Cauchy stress tensor
T absolute temperature
seq Mises equivalent stress
_eeq equivalent strain rate
paper, the original formulation of the Coulomb law is used. The
shear stress at the rake face is naturally limited by the shear flow
stress of the work material when sticking contact occurs. The
effects of the sliding friction coefficient and of cutting conditions
(cutting speed, uncut chip thickness, tool edge radius) on local and
global variables are analyzed and we examine how these variables
are related together. Of particular interest are the analytical
relationships derived for global friction characteristics and for
the tool–chip contact length in terms of cutting conditions and local
field variables. These relationships provide conceptual models that
allow us to clarify the physical mechanisms governing the cutting
problem. They also offer a way to extract useful information from
numerical experiments for the purpose of improving analytical
models of machining.

The paper is organized as follows. The theoretical framework of
the cutting model is presented in Section 2. In Section 3 numerical
results obtained by the ALE Finite Element method are correlated to
experimental data. A parametric analysis is also performed by
varying the values of the sliding friction coefficient, the cutting
speed, the uncut chip thickness, the tool edge radius, the coefficient
of conversion of the plastic work into heat and the thermal
resistance of the tool–chip interface. Two global characteristics
of the tool–chip friction are introduced in Section 4. A mean friction
coefficient m is defined which characterizes the overall frictional
response of the tool rake face (tool edge and clearance contact
excluded). Conversely, the apparent friction coefficient map

accounts for the totality of the tool–chip contact and is obtained
from the cutting and thrust forces. The dependence of the mean
friction coefficientmwith respect to the sliding friction coefficientm
and cutting conditions is analyzed in Section 5. Effects of thermo-
2

mechanical coupling and of thermal softening are quantified. The
transition towards a contact regime dominated by sticking is
examined and the evolution of m is described by analytical means
and correlated to numerical results. The dependence of the
apparent friction coefficient map with respect to m and cutting
conditions is investigated in Section 6. In particular, the role of the
tool edge radius is analyzed and the evolutions of map and m are
compared when cutting conditions are varied. Effects of the cutting
speed and of the uncut chip thickness are correlated to experi-
mental data. In Section 7 it is shown that the dependence of m with
respect to the cutting speed and the uncut chip thickness can be
essentially expressed in terms of a temperature characterizing the
heating of the chip along the tool rake face. A similar result is
obtained for the apparent friction coefficient map. Analytical forms
are proposed for the evolution of m and map. The contact length and
contact forces are investigated, respectively, in Sections 8 and 9.
Conclusions are drawn in Section 10.
2. Physical assumption and numerical framework

The physical assumptions and the numerical framework
adopted for the modeling of orthogonal cutting are presented in
this section.

2.1. Thermo-mechanical response of the work material

The work material is a medium carbon steel 42CrMo4 (AFNOR:
42CD4) with chemical composition given in Sutter and Molinari
[19]. The thermo-mechanical response is represented by the



Johnson–Cook law:
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Here seq and _eeq are, respectively, the Mises equivalent stress
and strain rate, T is the absolute temperature, Tr is a reference
temperature (room temperature), Tm is the melting temperature, _e0

is a reference strain rate. The plastic flow is assumed to be governed
by the J2-flow theory.

The parameters associated to the 42CrMo4 steel were identified
experimentally (quasi-static tests were conducted on a universal
hydraulic machine and dynamic tests on split Hopkinson bars) by
Molinari et al. [20] and are reported in Table 1. Other mechanical
and thermal properties of the work material and of the tool are
given in Table 2. The tool is supposed to behave elastically.

The evolution of the temperature in the work material is
governed by the energy equation:

rCp
_T�kDT ¼ bdp

ijsij ð2Þ

_T is the material derivative of the temperature, DT is the
Laplacian of T. r, Cp and k are, respectively, the mass density, the
heat capacity per unit mass (at constant pressure) and the heat
conductivity of the work material. The right hand side of Eq. (2)
represents the proportion b of the plastic work converted into heat.
dp

ij andsij are, respectively, the components of the plastic strain rate
tensor and of the Cauchy stress tensor. The Taylor–Quinney
coefficient b is taken as constant. The value b¼0.9 will be adopted
as reference value but variations of b will be also considered. The
thermal properties Cp and k are considered to be independent of the
temperature.

Frictional heating occurs at the tool–chip interface along the
sliding zone. The rate of frictional energy per unit surface is equal to
tVS, where t is the shear stress and VS is the sliding velocity. The
frictional energy is assumed to be totally converted into heat. The
part of frictional heat transferred to the chip is denoted by Z
(0rZr1). In the present paper, it is assumed that frictional heat is
shared equally between the two bodies in contact (Z¼0.5). The
thermal conductance of the tool–chip interface has the value
k¼ 2000Wm�2 K�1. The rate of heat energy transferred to the
chip is governed by the values of k and Z and by the thermal
properties of the two bodies in contact.

The free surface of the workpiece and of the chip and the
external boundary of the tool are assumed to be adiabatically
insulated. The dimension of the tool is taken large enough, so that
the heating at the tool–chip interface is not affected by the thermal
conditions at the external boundary of the tool.
Table 2
Mechanical and thermal parameters of the work-material (42CrMo4 steel) and of

the carbide tool.

E (GPa) n r (kg m�3) Cp ðm2s�2K�1
Þ k NK�1s�1

� �
b

Work material 202 0.3 7800 500 54 0.9

Tool 1000 0.3 12700 234 33.5 .

Table 1
Material parameters of the Johnson–Cook model for the 42CrMo4 steel, according to

[20].

A (MPa) B (MPa) C n _e0 ðs
�1Þ m Tr (K) Tm (K)

612 436 0.008 0.15 5.77E�4 1.46 293 1793
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2.2. Friction law

The Coulomb friction law is used. Under sliding conditions the
shear stress t is related to the normal stress s by

t¼ ms ð3Þ

where m is the sliding friction coefficient. m is considered to be
constant along the interface and to be independent from cutting
conditions. Sticking contact is activated when toms. In machining,
this situation occurs at the vicinity of the tool tip where high values
of the normal stress s are reached. In all simulations, it has been
verified that under sticking condition the shear stress on the tool–
chip interface is identical, as a consequence of the J2-flow theory, to
the local value of the shear flow stress tY of the work material. Thus,
the contact law at the tool–chip interface can be summarized as

t¼ infðtY ,msÞ ð4Þ

where tY is function of temperature, strain and strain rate.
The contact model (4) was introduced by Zorev [15] and was

implemented in Finite Element simulations of orthogonal cutting,
see for example Masurich and Ortiz [4]. Arrazola and Özel [18] have
recently explored the effect of a limit shear stress tlimit different
from tY in the contact law. It is worth emphasizing that in the
present modeling there was no necessity to introduce any limiting
stress in the contact law. The limitation by the flow stress tY along
the sticking zone appears just as an outcome of the calculations.

2.3. Numerical model

Finite Element simulations are performed by using the code
ABAQUS/Explicit [21] and the ALE formulation. Specifications
related to the ALE formulation at the boundaries of the workpiece
and of the chip are shown in Fig. 1a. Geometrical parameters are
defined in Fig. 1b. Cutting conditions are reported in Table 3.

Only stationary flow and continuous chip formation are simu-
lated in the present framework. Plane-strain deformations are
assumed. An example of mesh configuration is displayed in Fig. 1a.
CPE4RT quadrilateral elements with reduced integration were
used. The contact problem was simulated by using the penalty
(and surface/surface) algorithm provided by the FE code. It was
checked that consistent results were obtained with this approach
(i.e. the contact law (4) was never violated). The mesh size was
about 4 mm.
3. Numerical results with constant values of the sliding friction
coefficient

All results presented in this paper are related to quasi-steady-
state regimes obtained when the interface temperature and the
values of cutting forces are nearly time independent.

3.1. Cutting and thrust forces: correlation with experimental data

Before commencing a detailed analysis of the orthogonal cutting
process, it is worth evaluating the model’s capabilities by compar-
ing numerical simulations of the cutting and thrust forces (per unit
cutting width), respectively, FC and FT, with experimental measure-
ments, see Fig. 2a and b. The rake angle is a¼0. Orthogonal cutting
tests were performed under dry conditions on a CNC lathe by
Devillez et al. [22] for the 42CrMo4 steel whose mechanical
characteristics are given in Section 2.1. An uncoated carbide insert
without chip-breaker groove was used. It must be noted that the
identical material (same delivery) was used on the one hand for
machining experiments [22] and on the other hand for character-
izing the constitutive response by mechanical testing [20]. This
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Fig. 1. (a) Boundary conditions of the ALE orthogonal cutting model. An example of mesh configuration is shown in the upper left part. (b) Geometrical characteristics of the

problem for the rake angle a¼0.

Table 3
Values of the cutting parameters used in simulations;a rake angle, g clearance angle,

t1 uncut chip thickness, R cutting edge radius, V cutting velocity, k thermal

conductance of the tool–chip interface, Z heat partition coefficient.

a g t1 R V k Z

0 71 0:05mm
rt1 r0:5mm

0.015 and 0.030 mm 1ms�1 rV
r50ms�1

2000Wm�2 K�1 0.5
steel is taken as the reference work material in all simulations of the
present paper.

The apparent friction coefficient map ¼ FT=FC (general definition
given by Eq. (5)) is shown in terms of the cutting speed in Fig. 2c. The
results shown in Fig. 2 indicate a good correlation between modeling
and experimental data for the value m¼0.8 of the sliding friction
4

coefficient. In the simulations, two values of the cutting edge radius
were used, R¼15 and 30 mm. The results for the cutting force are
weakly affected by R. The effect of R on the thrust force is larger.
3.2. Parametric analysis

A parametric analysis is conducted by considering various
values of m from 0 to 1 and cutting speeds in the range
1ms�1rV r50ms�1. Other parameters are varied as indicated
in Table 3. The values of the rake and clearance angles are fixed
(a¼0, g¼71).

Results of numerical simulations are reported in Table 4 for the
uncut chip thickness t1 ¼ 0:1mm, the cutting edge radius R¼0.015
mm and the thermal conductance of the tool–chip interface
k¼ 2000Wm�2 K�1. Results include the chip thickness t2, the
contact length lc (see Fig. 1b), the sticking ratio lp/lc (lp is the
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Fig. 2. Comparison between modeling results and experimental data obtained from orthogonal cutting of medium carbon 42CrMo4 steel with uncoated carbide insert [22].

The same steel is taken as the reference work-material in all simulations of the present paper. The rake angle isa¼0. Two values of the cutting edge radius are considered in the

simulations: R¼15 mm (squares) and R¼30 mm (squares with crosses). The sliding friction coefficient is m¼0.8. The following results are shown: (a) cutting force in terms of

cutting speed, (b) thrust force in terms of cutting speed, and (c) apparent friction coefficient map (thrust force divided by the cutting force).
sticking length on the rake face, see Fig. 1b), the average value tPZ of
the shear flow stress along the central line of the primary shear
zone (see Appendix A), the average shear stress tSZ along the rake-
face sticking zone 0rxr lp, the cutting and thrust forces per unit
cutting width FC and FT and the apparent friction coefficient map. In
Table 4 are also reported the components Fn(rake) and Ft(rake) of
the force exerted by the chip on the part IJ (0rxr lc) of the tool, see
Fig. 1b. The lower indices (n) and (t) refer, respectively, to the
normal and tangential components to the tool. The mean friction
coefficient associated to the contact zone IJ is defined by Eq. (7). The
mean shear flow stress along the sticking zone, tSZ ¼ ð1=lpÞR lp

0 tðxÞdx, is calculated by taking the nodal values of t on a path
following the tool–chip interface.

The temperature T1 is the nodal temperature of the work-
material at I (x¼0). Tmax is the maximum nodal temperature of the
work-material along the tool–chip interface.

The shear angle f¼ arctanðt1=t2Þ and other angles fA and
fn(defined in Fig. 1b) are also reported. The point I1 in Fig. 1b used
to characterize fA and fn is defined in Appendix C. The chip
thickness t2 is evaluated at the point K taken on the chip free surface
where the tangent is parallel to the tool rake-face, see Fig. 1b; t2 is
the distance KK0 with the tool rake face, where K0 is the orthogonal
projection of K on the rake face.

The effect of the tool edge radius is evaluated in Table 5 for
R¼0.03 mm while the value R¼0.015 mm was considered in
Table 4. Other parameters are: t1 ¼ 0:1mm, k¼ 2000Wm�2 K�1

and m¼0.8. The effect of the uncut chip thickness t1 is analyzed in
Table 6 for R¼0.015 mm, k¼ 2000Wm�2 K�1 and m¼0.6. Finally,
the effect of the Taylor–Quinney coefficient b has been quantified
5

for t1¼0.1 mm, R¼0.015 mm, m¼0.6 and k¼ 2000Wm�2 K�1. The
corresponding results are reported later.
4. Global friction characteristics

The contact between tool and chip can be globally characterized
in terms of an apparent friction coefficient map. Considering the
total force R exerted by the workpiece onto the tool, map is defined
as the ratio of the components of R tangential and normal to the tool
rake face. With respect to the cutting and thrust forces, respec-
tively, FC and FT, map can be expressed as

map ¼
FC tanaþFT

FC�FT tana
ð5Þ

In this paper a¼0, therefore map is simply the ratio of the thrust
and cutting forces.

The apparent friction coefficient is an important aspect in the
analytical modeling of cutting. Together with the shear flow stress
along the primary shear zone (PSZ) and the shear angle (inclination
of the PSZ) it allows one to determine the cutting and thrust forces
by analytical means. Therefore it is worth exploring the effects of
material properties, of interface characteristic and of cutting
conditions on map and to seek whether this coefficient could be
characterized in terms of a constitutive law. In general map is
different from m as soon as sticking between chip and tool is
activated. Indeed, effects of sliding friction and sticking contact are
merged into map. The apparent friction coefficient is also influenced
by the contact forces exerted on the rounded part of the tool edge.



Table 4
Numerical results for the uncut chip thickness t1¼0.1 mm, the tool edge radius R¼15 mm and various values of the cutting velocity V and of the sliding friction coefficient. m.

t1¼0.1 mm, k¼ 2000Wm�2 K�1, R¼0.015 mm, a¼01, g¼71, b¼0.9

# m V

(m/s)

FC

(kN/m)

FT

(kN/m)

map Fn (rake)

(kN/m)

Ft (rake)

(kN/m)

m tPZ

(MPa)

tSZ

(MPa)

t2

(mm)

lc
(mm)

lp/lc f
(deg.)

fA

(deg.)

fn

(deg.)

Tmax

(K)

T1

(K)

Xmax/lc

01 0.0 1 186 27.0 0.145 166 0 0 647 X 0.231 0.163 0 23.4 23.4 21.0 656 656 0

02 0.0 2 179 29.0 0.162 157 0 0 647 X 0.217 0.155 0 24.7 24.5 22.0 692 692 0

03 0.0 4 175 28.0 0.160 148 0 0 647 X 0.205 0.147 0 26.0 25.3 23.4 748 748 0

04 0.0 6 171 29.0 0.170 145 0 0 652 X 0.199 0.142 0 26.7 26.1 24.2 787 787 0

05 0.0 8 172 28.0 0.163 144 0 0 652 X 0.195 0.141 0 27.1 26.2 24.5 789 789 0

06 0.0 10 172 28.0 0.163 143 0 0 652 X 0.191 0.142 0 27.6 26.9 24.2 796 796 0

07 0.0 12 172 28.5 0.166 143 0 0 654 X 0.189 0.137 0 27.9 27.0 24.4 808 808 0

08 0.0 15 171 30.5 0.178 142 0 0 655 X 0.183 0.136 0 28.7 27.9 25.3 820 820 0

09 0.0 30 170 38.0 0.224 141 0 0 661 X 0.162 0.128 0 31.7 30.5 28.5 850 850 0

10 0.0 50 169 39.0 0.231 142 0 0 664 X 0.170 0.129 0 30.5 29.8 27.2 899 899 0

11 0.1 1 202 44.0 0.218 179 17.9 0.100 642 X 0.238 0.194 0 22.8 22.4 20.3 690 673 0.538

12 0.1 2 192 45.8 0.238 169 16.9 0.100 641 X 0.220 0.180 0 24.5 23.9 21.6 740 713 0.648

13 0.1 4 188 43.8 0.233 158 15.8 0.100 641 X 0.206 0.173 0 25.9 25.3 22.4 793 769 0.673

14 0.1 6 186 45.7 0.245 157 15.7 0.100 644 X 0.204 0.169 0 26.2 25.4 23.6 832 809 0.726

15 0.1 8 187 45.3 0.242 156 15.7 0.100 647 X 0.200 0.168 0 26.6 25.5 22.9 856 813 0.723

16 0.1 10 188 47.6 0.254 158 15.8 0.100 647 X 0.205 0.168 0 26.0 25.2 22.5 887 839 0.724

17 0.1 12 188 47.8 0.255 157 15.7 0.100 648 X 0.203 0.168 0 26.2 25.4 22.4 905 854 0.724

18 0.1 15 188 47.7 0.254 157 15.7 0.100 650 X 0.201 0.168 0 26.4 25.5 22.9 933 874 0.724

19 0.1 30 191 47.9 0.251 157 15.7 0.100 655 X 0.194 0.168 0 27.2 26.4 23.8 1025 936 0.755

20 0.1 50 191 47.8 0.251 157 15.7 0.100 658 X 0.190 0.163 0 27.7 28.2 25.8 1094 980 0.744

21 0.2 1 227 64.0 0.282 199 39.9 0.200 615 X 0.265 0.200 0 20.7 19.9 18.1 738 707 0.659

22 0.2 2 212 64.0 0.303 186 37.1 0.200 624 X 0.234 0.188 0 23.1 22.0 20.0 802 743 0.730

23 0.2 4 204 65.5 0.322 177 35.3 0.200 632 X 0.217 0.174 0 24.7 24.0 22.1 874 790 0.731

24 0.2 6 203 66.0 0.326 167 33.3 0.200 638 X 0.201 0.163 0 26.5 25.5 23.4 928 819 0.777

25 0.2 8 202 65.5 0.324 173 34.7 0.200 647 X 0.204 0.164 0 26.1 25.4 23.2 980 854 0.775

26 0.2 10 203 65.5 0.323 176 35.2 0.200 647 X 0.216 0.175 0 24.8 23.9 21.9 1027 893 0.821

27 0.2 12 203 66.0 0.325 175 35.1 0.200 647 X 0.212 0.170 0 25.3 24.2 22.1 1061 912 0.753

28 0.2 15 203 66.4 0.328 175 34.9 0.200 647 X 0.208 0.170 0 25.7 24.7 22.7 1106 941 0.752

29 0.2 30 205 66.5 0.325 167 33.5 0.200 658 X 0.194 0.159 0 27.3 26.5 24.4 1248 1010 0.799

30 0.2 50 205 66.6 0.326 168 33.6 0.200 661 X 0.199 0.165 0 26.7 26.0 23.6 1381 1075 0.776

31 0.4 1 308 132 0.429 292 117 0.400 626 X 0.400 0.341 0 14.0 14.5 12.7 855 804 0.719

32 0.4 2 271 119 0.439 240 95.9 0.400 629 X 0.323 0.278 0 17.2 17.1 15.4 940 828 0.785

33 0.4 4 246 112 0.454 213 85.4 0.400 635 X 0.265 0.238 0 20.7 18.8 17.1 1081 883 0.861

34 0.4 6 246 111 0.451 214 85.6 0.400 638 X 0.262 0.235 0 20.9 20.1 18.5 1180 923 0.833

35 0.4 8 241 110 0.456 208 83.3 0.400 644 X 0.248 0.226 0 22.0 21.0 19.4 1271 963 0.823

36 0.4 10 232 104 0.447 199 76.4 0.384 652 398 0.233 0.217 0.608 23.2 22.2 19.8 1415 1008 0.679

37 0.4 12 227 99.0 0.436 195 71.4 0.366 652 393 0.227 0.213 0.625 23.8 22.9 20.6 1457 1033 0.693

38 0.4 15 221 92.5 0.420 188 64.6 0.343 655 386 0.213 0.204 0.629 25.1 23.9 21.7 1502 1050 0.624

39 0.4 30 212 78.5 0.370 172 47.2 0.274 657 360 0.191 0.184 0.653 27.6 26.6 24.6 1622 1120 0.686

40 0.4 50 207 70.5 0.341 175 42.0 0.240 661 341 0.191 0.180 0.673 27.6 26.6 24.5 1701 1183 0.706

41 0.6 1 363 222 0.611 339 204 0.600 624 506 0.443 0.450 0.000 12.7 12.3 11.1 950 920 0.882

42 0.6 2 339 205 0.605 311 185 0.594 624 523 0.346 0.414 0.060 16.1 13.3 12.4 1105 932 0.766

43 0.6 4 270 154 0.572 241 134 0.556 635 507 0.295 0.306 0.510 18.7 17.5 16.0 1239 943 0.641

44 0.6 6 261 134 0.514 225 110 0.488 641 478 0.269 0.273 0.613 20.4 18.9 17.2 1333 973 0.648

45 0.6 8 247 120 0.484 214 95.4 0.446 647 440 0.252 0.249 0.630 21.6 20.1 17.8 1390 1000 0.651

46 0.6 10 239 109 0.455 205 83.9 0.410 652 419 0.240 0.235 0.647 22.6 21.0 18.7 1437 1021 0.668

47 0.6 12 231 100 0.433 197 74.5 0.378 652 397 0.230 0.223 0.668 23.5 21.8 19.6 1478 1042 0.704

48 0.6 15 224 93.0 0.415 191 67.9 0.356 655 391 0.215 0.212 0.670 24.9 22.8 20.7 1514 1060 0.693

49 0.6 30 214 77.0 0.360 173 48.7 0.282 657 350 0.190 0.187 0.669 27.8 26.1 24.1 1628 1127 0.668

50 0.6 50 209 68.5 0.328 175 36.6 0.209 661 328 0.191 0.182 0.693 27.6 26.1 23.9 1704 1191 0.703

51 0.8 1 437 327 0.747 408 309 0.757 618 562 0.544 0.662 0.227 10.4 9.70 8.46 1057 937 0.645

52 0.8 2 350 238 0.681 319 217 0.678 621 528 0.413 0.465 0.474 13.6 12.4 11.2 1167 952 0.669

53 0.8 4 295 176 0.598 265 158 0.598 624 476 0.320 0.356 0.626 17.4 16.1 14.4 1274 942 0.640

54 0.8 6 264 136 0.514 231 116 0.501 630 449 0.276 0.291 0.649 19.9 18.4 16.6 1350 984 0.649

55 0.8 8 252 122 0.483 219 100 0.458 640 423 0.257 0.267 0.653 21.3 19.6 17.8 1402 1010 0.652

56 0.8 10 243 112 0.461 211 88.9 0.422 642 391 0.245 0.247 0.663 22.2 20.4 18.4 1447 1033 0.664

57 0.8 12 236 102 0.432 204 81.0 0.397 647 376 0.234 0.233 0.671 23.1 21.0 19.2 1483 1052 0.682

58 0.8 15 230 93.0 0.405 192 69.9 0.364 650 362 0.216 0.219 0.674 24.8 22.8 20.7 1517 1062 0.694

59 0.8 30 215 76.0 0.353 173 49.1 0.283 658 334 0.200 0.175 0.678 26.6 25.7 23.6 1623 1130 0.610

60 0.8 50 212 70.4 0.333 174 42.6 0.245 658 315 0.194 0.168 0.637 27.3 25.4 23.5 1695 1130 0.658

61 1.0 1 478 389 0.812 443 367 0.829 606 517 0.609 0.721 0.463 9.32 9.46 8.25 1089 977 0.623

62 1.0 2 365 269 0.736 335 249 0.744 612 502 0.437 0.563 0.497 12.9 12.2 11.0 1202 970 0.636

63 1.0 4 305 210 0.689 272 169 0.623 629 480 0.333 0.385 0.629 16.7 16.0 14.3 1288 947 0.642

64 1.0 6 268 141 0.526 231 116 0.501 635 454 0.283 0.306 0.624 19.5 18.4 16.9 1356 988 0.647

65 1.0 8 254 123 0.484 221 104 0.470 641 447 0.260 0.277 0.663 21.0 19.7 17.7 1410 1010 0.646

66 1.0 10 245 111 0.453 213 91.2 0.428 647 402 0.247 0.251 0.673 22.0 20.5 18.5 1455 1036 0.669

67 1.0 12 238 102 0.429 206 82.8 0.402 652 390 0.236 0.236 0.695 23.0 21.3 19.5 1489 1054 0.695

68 1.0 15 228 91.0 0.399 191 69.9 0.366 652 378 0.219 0.220 0.702 24.5 23.0 21.1 1530 1068 0.700

69 1.0 30 217 72.5 0.334 180 52.5 0.292 655 341 0.190 0.200 0.710 27.8 25.1 22.7 1628 1128 0.630

70 1.0 50 212 70.2 0.331 173 44.7 0.259 658 326 0.191 0.191 0.686 27.6 26.3 24.6 1694 1128 0.654
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Table 5
The tool edge radius is R¼0.03 mm, while we have R¼0.015 mm in other tables.

t1¼0.1 mm, m¼0.8, k¼ 2000Wm�2 K�1, b¼0.9.

# R

(mm)

V (m/s) FC (kN/m) FT (kN/m) map Fn(rake)

(kN/m)

Ft (rake)

(kN/m)

m tPZ

(MPa)

tSZ

(MPa)

t2

(mm)

lc
(mm)

lp/lc f
(deg.)

fA

(deg.)

fn

(deg.)

Tmax

(K)

T1

(K)

Xmax/

lc

R01 0.03 4 288 182 0.632 227 133 0.586 623 491 0.295 0.312 0.503 18.7 17.0 13.4 1249 967 0.587

R02 0.03 6 268 157 0.586 214 111 0.519 629 451 0.267 0.276 0.518 20.5 18.5 14.4 1328 1012 0.567

R03 0.03 10 249 133 0.533 189 83.0 0.439 645 400 0.239 0.237 0.565 22.7 19.9 15.9 1437 1080 0.613

R04 0.03 15 239 119 0.498 180 70.0 0.387 647 364 0.226 0.215 0.605 23.9 20.7 16.6 1519 1142 0.658

R05 0.03 30 227 104 0.456 168 53.8 0.321 651 304 0.207 0.194 0.608 25.8 22.4 18.1 1626 1244 0.671

Table 6
Variation of the uncut chip thickness t1.

m¼0.6, R¼0.015 mm, k¼ 2000Wm�2 K�1, b¼0.9

# t1

(mm)

V (m/s) FC (kN/m) FT (kN/m) map Fn(rake)

(kN/m)

Ft (rake)

(kN/m)

m tPZ

(MPa)

tSZ

(MPa)

t2

(mm)

lc
(mm)

lp/lc f
(deg.)

fA

(deg.)

fn

(deg.)

Tmax

(K)

T1

(K)

Xmax/

lc

T01 0.05 4 173 110 0.636 143 86.7 0.604 643 X 0.182 0.185 0 15.4 13.7 10.6 1043 865 0.730

T02 0.05 8 158 96.2 0.609 124 69.7 0.562 656 551 0.153 0.160 0.413 18.1 16.1 12.5 1176 891 0.625

T03 0.05 20 151 78.3 0.518 119 53.2 0.447 687 440 0.141 0.143 0.566 19.5 16.9 13.2 1379 993 0.622

T04 0.05 40 145 67.7 0.467 114 42.3 0.371 704 387 0.130 0.132 0.576 21.0 17.7 14.3 1505 1066 0.667

T05 0.15 4 367 182 0.496 333 158 0.474 631 463 0.380 0.381 0.654 21.5 20.2 18.8 1330 958 0.677

T06 0.15 8 327 138 0.422 294 111 0.380 641 393 0.324 0.318 0.695 24.8 23.2 21.9 1475 1022 0.711

T07 0.15 20 306 105 0.343 273 78.1 0.286 651 305 0.298 0.287 0.704 26.7 24.7 23.2 1621 1118 0.739

T08 0.15 40 294 87.9 0.299 256 58.9 0.230 656 242 0.277 0.269 0.699 28.4 26.9 25.4 1705 1185 0.213

T09 0.25 4 554 234 0.422 516 209 0.405 630 425 0.589 0.560 0.725 23.0 21.6 20.7 1440 1010 0.743

T10 0.25 8 500 172 0.344 475 150 0.316 647 349 0.490 0.470 0.745 27.0 25.9 25.0 1559 1045 0.770

T11 0.25 20 471 126.0 0.268 436 101 0.232 652 250 0.465 0.437 0.767 28.3 27.3 26.5 1680 1140 0.787

T12 0.25 40 455 102.0 0.224 432 80.7 0.187 658 204 0.427 0.406 0.756 30.3 29.8 28.6 1748 1204 0.781

T13 0.50 4 981 324 0.330 942 298 0.316 641 338 1.015 0.949 0.813 26.2 24.7 24.3 1563 1035 0.819

T14 0.50 8 920 240 0.261 883 212 0.240 647 271 0.908 0.849 0.820 28.8 27.7 27.2 1648 1072 0.826

T15 0.50 20 879 168 0.191 843 141 0.167 654 189 0.889 0.802 0.832 29.4 28.1 27.7 1731 1134 0.838

T16 0.50 40 854 130 0.152 813 102 0.125 655 145 0.830 0.750 0.837 31.1 30.2 29.8 1782 1216 0.850
Thus, in general map is function of m, the material properties of the
work-material (essentially through the mean value tSZof the shear
flow stress along the sticking zone), the tool edge radius R and the
cutting conditions (cutting speed, rake angle, feed).

map ¼ mapðm,tSZ ,R,cutting conditionsÞ ð6Þ

Note that the cutting conditions are also indirectly appearing
through tSZ .

It is also useful to introduce the mean friction coefficientm along
the tool rake face. This parameter does not include explicitly the
contribution of the contact forces exerted on the rounded tool edge.
Rather m characterizes the contact along the flat part of the tool
rake-face (region IJ in Fig. 1b) and is defined as

m¼ FtðrakeÞ

FnðrakeÞ
ð7Þ

Ft (rake) and Fn(rake) are, respectively, the tangential and the
normal components of the force (per unit cutting width) exerted by
the chip onto IJ:

FnðrakeÞ ¼

Z lc

0
sdx FtðrakeÞ ¼

Z lp

0
tY dxþm

Z lc

lp

sdx ð8Þ

where tY is the shear flow stress. The values of Fn(rake) and Ft(rake)
are reported in Tables 4–6. In the following, m is denoted as the
mean friction coefficient.

The distinction between the friction characteristic m of the flat
rake face and the global frictionmap was discussed by Albrecht [23].
7

Combining (7) and (8) yields:

m¼ m� D

FnðrakeÞ
with D¼

Z lp

0
ðms�tY Þdx ð9Þ

Since tY rms along the sticking zone, D is positive and

mrm ð10aÞ

The equality

m¼ m ð10bÞ

is only satisfied when there is no sticking, i.e. lp¼0.
In general map4m, except when the tool is perfectly sharp. All

friction coefficients defined above are identical, map ¼ m¼ m, if the
following conditions are met: (i) there is no sticking, (ii) the tool is
perfectly sharp, and (iii) there is no clearance contact.

A constitutive law similar to that for map, Eq. (6), is expected to
hold for m, however with a weaker dependence with respect to the
tool edge radius.
5. Factors governing the evolution of the mean friction
coefficient

5.1. Role of sticking contact and of thermal softening

The dependence of the mean friction coefficient m upon the
sliding friction coefficient m and the cutting speed V is illustrated in
Fig. 3. Cutting conditions are those of Table 4. Form¼0 and 0.2 there
is no sticking along the rake face andm¼ m. FormZ0.4,m appears to
be a decreasing function of V. The weakening of m with velocity
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Fig. 5. (a) Variation with respect to the cutting speed V of the mean shear flow stress

tSZ of the work-material along the sticking zone for large values of the sliding friction

coefficient m. For m¼0.4, contact is governed by sliding when V r8ms�1. Crosses

represent the value of the shear stress at the point I of the rake face, see Fig. 1b. This

stress is given by the Coulomb friction law under sliding condition. For m¼0.4,

sticking contact is activated if V 48ms�1. The solid line with crossed squares

represents the evolution of tSZ . For m¼0.8 and 1, sticking happens at all values of V

considered here. Curves with black circles and white diamonds represent the

evolution of tSZ . It is worth noting that tSZ appears to be weakly dependent upon m
when contact is dominated by sticking. (b) Velocity dependence of the maximal

temperature Tmax of the work material at the tool–chip interface. Note that the

velocity softening of m observed in (a) happens to be correlated to the increasing of

temperature in the range of cutting speeds 0oV o15ms�1. The saturation of tSZ at

large cutting speeds corresponds to the saturation of Tmax.
(velocity softening) appears only when sticking contact is activated
along the rake face. This is clearly demonstrated by comparing
Fig. 3 with Fig. 4 that shows the evolution of the sticking ratio lp/lc in
terms of the cutting speed for various values of m. A transition
towards a contact regime dominated by sticking is observed with
the sticking length lp being about 60% of the contact length. The
8

occurrence of sticking is a consequence of the drop of the flow
stress of the work material due to heating along the tool–chip
interface. The increasing of the interface temperature results from
two sources: (i) frictional heating along the sliding zone and (ii)
conversion of the plastic work into heat along the sticking zone
(within the so called secondary shear zone). The correlation
between the softening of tSZ and the interface heating can be seen
by comparing Fig. 5a with 5b where the evolution of the maximal



temperature Tmax of the work material at the tool–chip interface is
displayed. These results are in agreement with the well known
feature mentioned in the literature that the stress level at the rake
face is controlled by friction heating at large enough cutting speed,
see for instance [12].

The correlation between velocity softening of m and thermal
softening of the flow stress can be further illustrated by observing
in the Fig. 3 that the decay of m arises in the same velocity range
0rV r10ms�1 than the drop of the mean flow stress along the
sticking zone tSZ depicted in Fig. 5a.

It is worth noticing that formZ0.4 the evolution ofm reaches the
same asymptotic regime at large cutting speeds, independently
from the value ofm. This asymptotic regime is related to the
transition to a sticking dominated contact. Then, m appears to be
mostly controlled by the mean shear flow-stress tSZ along the
sticking contact. Consequently,m becomes weakly dependent upon
m. According to Fig. 4, the transition to a sticking dominated contact
is achieved for V Z8ms�1 when mZ0.4. These conditions are
exactly those for which all values ofm are merging in the Fig. 3. Note
that form¼0.4, there is no sticking for V r8ms�1, thereforem¼ m in
this velocity range. The same situation occurs for m¼0.6 but only
for V r2ms�1.

For a given value mZ0.4 of the sliding friction coefficient, the
existence of an asymptotic regime (with a low value of m that is
independent of the cutting speed) is related to the emergence of a
boundary layer regime along the sticking zone at the tool–chip
interface. This is in keeping with the remark made by Childs [12]
that ‘‘at speeds greater than tens of m/min, for steels, local thermal
softening of chip material due to friction heating results in a degree
of self-lubrication’’.

Boundary layer regime has been analyzed in the general context
of thermo-viscoplastic materials by Gioia and Ortiz [24] and will be
the object of a subsequent work in the case of machining.
5.2. Effect of the conversion of plastic work into heat

As discussed before, the weakening of m with velocity is due to
the conversion of the plastic work into heat and the resulting
thermal softening of the work-material (decay of tSZ).

The rate of conversion of plastic work into heat is controlled by
the Taylor–Quinney coefficient b, see Eq. (2). The effect of the
thermo-mechanical coupling parameter b is analyzed by perform-
ing a parametric analysis for t1 ¼ 0:1mm, R¼0.015 mm,
k¼ 2000Wm�2 K�1 and m¼0.6. Fig. 6 shows the variation of m
in terms of the cutting speed V for various values of b. As expected,
for a given value of the cutting speed,m is a decreasing function of b
as a consequence of the larger amount of plastic work converted
into heat. For a given b, it appears that m is tending to m when V

decreases to zero. In fact, at low cutting speed, the interface
temperature is cooled down by heat transfer effects. Thus, thermal
softening of the shear flow stress is reduced and sticking contact is
less likely to occur. Consequently, for m¼0.6, sliding is the
dominant mode of contact and m� m. Similarly, for a given value
of V sliding contact is favoured when b is decreased. This is why
m� m in Fig. 6 for V r10ms�1and b¼0.5. At the limiting case b¼0
(not shown in Fig. 6) there would be no conversion of plastic work
into heat and the thermal softening of the mean flow stress tSZ

along the sticking contact could only be the result of the heat
generated by friction. However, frictional heat originates from the
sliding contact zone and is convected away by the chip flow. Hence,
frictional heating is not expected to affect the temperature in the
secondary shear zone. That is why m could not weaken with the
cutting speed for b¼0.

In Fig. 3 it is observed that, for mZ0.4, the mean friction
coefficientm becomes independent of the value ofm at large cutting
9

speeds. On the contrary, a strong dependence of m upon the
coefficient b is apparent in Fig. 6 at large enough values of V.

It is known thatb can be rate dependent in certain conditions, as
shown by the experiments of Rittel et al. [25] and Ravichandran
et al. [26]. Therefore, an additional velocity dependence of m could
be expected through rate effects embodied in b. These effects are
not accounted for here, since it was assumed that b is independent
of cutting conditions. In fact, the experiments reported in [25,26]
indicate that the maximum value of b (close to unity) is observed at
strain rates larger than 104 s�1. This range of strain rates is
encountered in the primary and secondary shear zones during
simulations. Thus, having considered in the modeling the fixed
value b¼0.9 appears to be a reasonable assumption. This assump-
tion might be revised at cutting speeds lower than V¼1 ms�1.
5.3. Evolution law for the mean friction coefficient

In-depth analysis of the factors contributing to the decay of m
with V can be conducted by analytical means for large enough
values of m when sticking contact is significant. The tangential and
normal forces (resp. Ft(rake) and Fn(rake)) exerted by the chip on the
tool rake face can be evaluated by considering that the distribution
of the normal stress along the tool rake face is of the form:

sðxÞ ¼ s0 1�
x

lc

� �x

ð11Þ

x¼0 corresponds to the limit I of the tool rake face, see Fig. 1b. The
stress exponent x controls the stress decay when x increases. The
stress vanishes at the end of the contact (x¼ lc). In the following, a
value of x will be associated to a given stress profile.

The tangential force Ft(rake) (per unit cutting width) can be
evaluated with use of Eq. (8b) and Eq. (11):

FtðrakeÞ ¼ lptSZþ
ms0lc
xþ1

1�
lp
lc

� �xþ1

ð12Þ

The shear stress at the limit of the sliding zone (x¼ lp) is obtained
with the Coulomb friction law and Eq. (11): t� ¼ ms0ð1�ðlp=lcÞÞ

x.
The stress profiles obtained numerically show a smooth variation
of the shear stress at x¼ lp (while the normal stress can vary more
abruptly). Thus, the shear stress at x¼ lp is close to the mean value
tSZ (over the sticking zone) and it can be stated that t� ¼otSZ ,
where o is a scaling factor close to unity (0ooo1). From this
condition it follows that:

lp
lc
¼ 1�

otSZ

ms0

� �1=x

ð13Þ

When otSZ Zms0, there is no sticking and consequently
lp=lc ¼ 0. Altogether, it can be written that:

lp
lc
¼max 0,1�

otSZ

ms0

� �1=x
 !

Using (13) together with (12) gives:

FtðrakeÞ ¼
lctSZ

xþ1
oþ lp

lc
ðxþ1�oÞ

� �
ð14Þ

Finally, the mean friction can be evaluated as

m¼ FtðrakeÞ

FnðrakeÞ
¼

lctSZ

FnðrakeÞ

1

ðxþ1Þ
oþ lp

lc
ðxþ1�oÞ

� �
for lp40 ð15Þ

The normal force is

FnðrakeÞ ¼

Z lc

0
sdx¼

s0lc
xþ1

ð16Þ



After substitution into (15) it follows that:

m¼ tSZ

s0
oþ

lp
lc
ðxþ1�oÞ

� �
ð17Þ
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are compared with analytical predictions of Eq. (15) for two values of the parametero; the
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Another useful expression for m is obtained by combining
Eq. (16) and Eq. (13) with Eq. (15):

m¼ lctSZ

FnðrakeÞ

1

ðxþ1Þ
oþðxþ1�oÞ 1�

olctSZ

mðxþ1Þ FYj j

� �1=x
 ! !

ð18Þ

From (15) m appears essentially as the ratio of two terms: (i) the
mean shear stress tSZ over the sticking zone (weighted by the factor
ð1=ðxþ1ÞÞðoþðlp=lcÞðxþ1�oÞÞ ) and (ii) the average normal stress
over the contact length FnðrakeÞ=lc .

Fig. 7a shows for m¼0.8 the evolution of m with respect to V as
predicted by Eq. (15) where the values of tSZ , FnðrakeÞ=lc and lp/lc are
taken from Table 4. The stress exponent is taken to be x¼0.23, a
value which has been identified from stress profiles as shown in
Appendix B. Two values of o close to unity are considered, o¼1
and 0.8. The consistency of the results derived with Eq. (15) is
checked against values of m obtained directly from the Finite
Element simulations reported in Table 4. The value o¼0.9 is
adopted in the following, keeping in mind that the results are
similar for any value of o close to unity (which is the case when
sticking is dominant).

In Fig. 7b Finite Element results are compared to the estimates of
m obtained with Eqs. (15) and (18) for x¼0.23and o¼0.9. Both
relationships predict correct trends for the variation ofm in terms of
V, albeit with a slight overestimation in the case of Eq. (18).

Interest of using Eqs. (15) and (18) to assess the evolution of m
with velocity stems from the possibility of evaluating the con-
tributions of the different physical factors involved in the velocity
weakening of m. In Fig. 7c is represented for x¼0.23 ando¼0.9 the
evolution of m with V according to Eq. (15), together with the
evolution of parameters A¼ tSZ , B¼ ðlc=FnðrakeÞÞ, and C ¼oþðlp=lcÞ

ðxþ1�oÞ, which are factors in expression (15) of m. The values of
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Table 7

Effect of b on the mean friction coefficient m. Analysis of the factors contributing to

the variation of m. Cutting conditions are those of Table 4 with m¼0.6 and

V ¼ 8ms�1.

b A¼ tSZ

(MPa)
1=B¼ FnðrakeÞ=lc
(MPa)

AB m

0.9 440 859 0.512 0.446

0.6 513 828 0.620 0.559
these parameters in terms of V are obtained from data reported in
Table 4. It should be noted that the quantities displayed in Fig. 7c
are normalized with respect to their value at the smallest speed
considered (V¼1 ms�1). Thus, in Fig. 7c are represented the
variations of the normalized quantities Anorm ¼ A=AðV ¼ 1m=sÞ,
mnorm, Bnorm and Cnorm. Since mnorm ¼ AnormBnormCnorm, each factor
represents truly the relative contribution of a given parameter A, B,
or C to the variation of the mean friction coefficient. For instance, for
V¼15 ms�1, we have mnorm ¼ 0:522, Anorm ¼ 0:644, Bnorm ¼ 0:704,
Cnorm ¼ 1:151. Thus, the drop of m by factor 0.522, when V increases
from 1 to 15 ms�1, is due to: (i) the thermal softening of the flow
stress in the sticking zone ( factor 0.644), (ii) the decay of B (factor
0.704) or equivalently the magnification of the mean normal stress
on the rake face ðFnðrakeÞ=lcÞ (factor 1/0.704), and (iii) the growth of
C (factor 1.151). Note that the increase of C is a consequence of the
rising of the sticking ratio with V. The normal force Fn(rake) and the
contact length lc are both decreasing functions of V, however lc
decays in a larger proportion, see Table 4; consequently, the mean
normal stress ðFnðrakeÞ=lcÞ is an increasing function of V. The main
information is that flow stress softening (decreasing of tSZ) and
stress concentration (effect of ðFnðrakeÞ=lcÞ) contribute jointly and
in similar proportion to the weakening of m. The effect of the
sticking ratio (embedded in C) has a lower impact and provides an
opposite trend (increasing of m with V).

Finally, the effect of the stress exponent is analyzed in Fig. 7d
where three values of x are considered (x¼0.23, flat stress profile;
x¼0.4; and x¼1, linear profile). It appears that, for cutting speeds
larger than 5 ms�1, the value of m is weakly affected by the stress
exponent. The softening of m is well reproduced for all values of x
considered here.

m can be represented in terms of the analytical laws (15) (17)
and (18) when sticking is significant, i.e. for large enough values of
the sliding friction coefficientm. This was demonstrated in Fig. 7 for
the case of m¼0.8. This is also illustrated for m¼1 in Fig. 8 where
numerical estimates of m are compared to values obtained from Eq.
(15) (with o¼0.9 and x¼0.23). It is emphasized that Eq. (15) with
o close to unity, should only be employed when contact is
dominated by sticking.

The effect of the Taylor–Quinney coefficient b on the mean
friction coefficient m is illustrated in Fig. 6. Relationship (15) allows
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Fig. 8. Evolution of m with V for m¼1.The predictions of Eq. (15) with x¼0.23 and

o¼0.9 (same values as in Fig. 7b) are compared to Finite Element results.
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us to have a better insight on how the heat conversion factor b
contributes to the softening of m. For instance consider the test #45
of Table 4 with m¼0.6, V ¼ 8ms�1and b¼0.9. The main factors
contributing to the evolution of m with V were shown to be A¼ tSZ ,
B¼ ð1=ðFnðrakeÞ=lcÞÞ. The variation of m will be analyzed when
decreasing the value of the Taylor–Quinney coefficient from
b1 ¼ 0:9 to b2 ¼ 0:6. The corresponding values of A and B and of
m are reported in Table 7. It appears that ðABÞ2=ðABÞ1 ¼ 0:620=
0:512¼ 1:21 is close to m2=m1 ¼ 0:559=0:446¼ 1:25. This result
confirms that the factor C defined above has a negligible effect on
the variation ofm. In addition, it is apparent from the data of Table 7
that the variation ofmwithb is mainly due to the factor A¼ tSZ . This
situation is different from those of Fig. 7c where the evolution of m
with V was analyzed for the fixed value b¼0.9. In that case both
factors A¼ tSZ and B¼ ð1=ðFnðrakeÞ=lcÞÞ contributed in similar
proportions to the variation of m.
6. Apparent friction coefficient

The dependence ofmap with respect tom and the cutting speed is
illustrated in Fig. 9a. The cutting conditions are those of Table 4. The
curvature of the cutting edge provides an additional resistance to
the global chip flow; thus, it follows that map4m.

It appears that Fig. 9a and Fig. 3 show similar trends for the
variation of map and of m with V (for a given value of m). Indeed, the
evolution of map with cutting speed is governed by the same
physical mechanisms as described in Section 5.1 for m.

The effects of the thermo-mechanical coupling factor b are
illustrated in Fig. 9b form¼0.6 and appear also to be similar to those
observed in Fig. 6 for m.

Interesting features can be observed in Fig. 10 when comparing
map to m for large and low friction, respectively, m¼0.8 and 0.2.
Cutting conditions are those of Table 4. First, let us consider large
values of the sliding friction coefficient (mZ0.4). At low cutting
speed (V¼1 ms�1), it is observed that map � m, see Fig. 10a and
Table 4. When increasing the cutting speed a gap appears between
map and mwhich is growing with V. These features can be explained
as follows. Stress concentration occurs at the tool tip along an arc of
circle which is scaled by the tool edge radius R. This stress
concentration affects the level of the force exerted by the work-
piece on the tool and thereby contributes to the level of the
apparent friction coefficient map. The ratio R/lc is a key factor for the
understanding of the dependence of map upon m and V. It appears
from Table 4 that the contact length lc (defined as lc ¼ IJ in Fig. 1b) is
an increasing function of m and a decreasing function of the cutting
speed. Therefore R/lc is a decreasing function of m. The resultant of
the contact forces exerted by the workpiece on the tool is obtained
by summation (integration) along the tool–workpiece interface. In
this integration the vicinity of the tool edge (scaled by R) can be
distinguished from the tool rake face (length lc). Clearly, the relative
contribution of the tool edge increases with R/lc. Thus, from
geometrical reason, the relative contribution of the tool edge
radius to map is going to be less important at large values of m
since R/lc is a decreasing function ofm. Consequently, formZ0.4,map

is given with good approximation by the ratio of the tangential and



0

0.2

0.4

0.6

0.8

1

0

μ =0
μ =0.2
μ =0.4
μ =0.6
μ =0.8
μ =1

Cutting speed (ms-1)

A
pp

ar
en

t f
ric

tio
n 

co
ef

fic
ie

nt

10 20 30 40 50

0

0.2

0.4

0.6

0.8

1

0

μ = 0.6

β=0.5
β=0.6
β=0.7
β=0.8
β=0.9
β=1.0

A
pp

ar
en

t f
ric

tio
n 

co
ef

fic
ie

nt

Cutting speed (ms-1)

t1 = 0.1 mm

10 20 30 40 50

Fig. 9. (a) Effect of the cutting speed V on the apparent friction coefficient map (ratio

of the thrust and cutting forces, for a¼0). Cutting conditions are those of Table 4.

Various values of the sliding friction coefficient m are considered. It can be observed

that the values of map are merging for mZ0.4 and large cutting speeds (contact

dominated by sticking). (b) Effect of the Taylor–Quinney coefficient b form¼0.6 and

the cutting conditions of Table 4.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0

Fr
ic

tio
n 

co
ef

fic
ie

nt

V (ms-1)

� = 0.8

�ap

10 20 30 40 50

�

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0

Fr
ic

tio
n 

co
ef

fic
ie

nt

V (ms-1)
10 20 30 40 50

� = 0.2

�ap

�

Fig. 10. Evolutions of map and m with respect to V for (a) large friction m¼0.8 and

(b) low friction m¼0.2. In general map 4m due to the effect of the tool edge radius R.

The effect of R is more important at low values of the sliding friction coefficientm and

for large cutting speeds.
normal contact forces acting on the tool rake face (tool tip
excluded) and it follows that map � m, at least for low cutting
speeds. Why map and m happen to have distinct values at large
cutting speeds as shown by Fig. 10a? As a matter of fact, for large
values of m, the contact length lc decays rapidly with the cutting
speed V, see Table 4. Thus R/lc is larger at high velocities and the
relative contribution of the tool edge radius is more significant. This
implies that the gap between map and m is growing with V.

It is worth noting that for low values of the sliding friction
coefficient m, the overall friction characteristics map and m are
always significantly different, whatever is the value of the cutting
speed, see Fig. 10b.

The effect of the tool edge radius R on map and m is depicted in
Fig. 11a for m¼0.8 and t1 ¼ 0:1mm (other cutting conditions are
those of Table 4). Two values of R are considered: 15 and 30 mm. As
12
expected, map and m are increasing with R. It appears that m is less
affected by the tool edge radius than map. This feature could be
anticipated, as m solely accounts for the contact forces exerted of
the flat rake face, which are weakly affected by R far enough from
the tool tip. The gapmap�m increases with R as illustrated in Fig. 11a.
For R¼0, the values of map and m should be close, the difference
being solely due to the contact forces exerted at the clearance
contact. This difference is getting smaller for large clearance angles.

The dependence of map�m upon R/lc is further illustrated in
Fig. 11b for m¼0.8 and R¼15 mm. It appears that the variations of
map�m and R/lc (versus cutting speed) are following the same
trends. The variation of map�m is reported in Fig. 11c in terms of R/lc
for t1 ¼ 0:1mm, R¼15 mm and for various values of m. For a givenm,
the cutting speed is varied according to the data reported in Table 4
and the corresponding results are represented by the same symbol
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Fig. 11. (a) Effect of the tool edge radius R on the overall friction coefficients map and m for m¼0.8 and t1 ¼ 0:1mm. The increasing of the friction coefficients with R and the

smaller dependence ofmupon R can be noted. The gapmap�m is increasing with R. (b) Correlation between the evolutions ofmap�m and of R/lc for fixed values of the cutting edge

radius R and of the feed t1.The decay of the contact length lc at increasing speed V appears to control the evolution of map�m. Data and cutting conditions are those of Table 4.

(c) Dependence of map�m with respect to R/lc for a fixed feed and various values of the sliding friction coefficient m and of the cutting speed. To each value of m is associated a

given symbol which is appearing ten times since ten values of the cutting speed are considered. Data and cutting conditions are those of Table 4. As symbols appear to be

gathered along a master curve, it can be concluded that for a given t1,map�m is a function of R/lc. (d) Dependence ofmap�mwith respect to R/t1 and cutting speed V. Of note is the

augmentation of map�m with increasing V for a fixed value of R/t1. This effect is a consequence of the decreasing of the contact length with larger V. (e) Dependence of map�m
with respect to lc/t1 for two sets of cutting conditions with same value of R/t1. These results support the fact that map�m can be viewed as a function of R/t1and lc/t1.
(e.g. empty squares for m¼0.1). The general trend revealed by
Fig. 11c is that the gapmap�m is an increasing function of R/lc. As R is
fixed at 15 mm, the augmentation of map�m for a given value of m is
solely due to the decreasing of the contact length with higher
cutting speeds.

The gap map�m is not only function of m and of the cutting speed
(through the value of the contact length lc), but is also depending on
the uncut chip thickness t1. This dependence is analyzed in Fig. 11d
where the values of map�m are displayed in terms of R/t1 (t1¼0.05,
0.10, 0.25, 0.50 mm) for m¼0.6 and R¼15 mm. For a fixed value of
t1, the cutting speed is varied in the range indicated in Fig. 11d, and
the corresponding values of map�m are represented by the same
13
symbol (e.g. a square for t1¼0.10 mm). As expected, it appears that
map�m is increasing with R/t1. As discussed before, one should have
map � m for R¼0. It is also observed that the effect of the cutting
speed is more effective for large values of R/t1.

Overall, map�m can be viewed as being dependent of the
geometrical cutting conditions R and t1 through the non-dimen-
sional factors R/lc and R/t1 or equivalently in terms of lc/t1 and R/t1.
This dependence is illustrated in Fig. 11e where map�m is reported
in terms of lc/t1 for m¼0.6 and 0.8 and various cutting speeds.
Different values of R and t1 are considered but with same ratio
R/t1¼0.3. It is verified that for R/t1 fixed,map�m can be considered as
a function of lc/t1.
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significantly with t1. The weakening of global friction characteristics observed for

larger feeds in Fig.12 is a consequence of the increasing of temperature with t1 and of

the resulting thermal softening of the work-material.
The theoretical prediction of the apparent friction coefficientmap

was compared against experimental measurements in Fig. 2c for
the medium carbon steel 42Cr Mo4. The effect of the cutting edge
radius is also analyzed in Fig. 2c.

Fig. 12 represents the evolution of map with the cutting speed V

obtained by Sutter and Molinari [19] in orthogonal cutting experi-
ments for the same reference material (42Cr Mo4 steel). Tests in the
range of cutting speeds going from 0.5 to 20 ms�1 were made on an
NC lathe. This lathe was equipped with a dynamometer KISTLER
9265B which permitted to measure the two components of the
cutting force. A circular piece with a large diameter �125 mm was
machined in order to obtain cutting conditions close to orthogonal
machining. The range of high cutting speeds (from 10 to 90 ms�1)
was explored by using the ballistic set-up initially developed by
Sutter et al. [27] and modified in order to permit the measurement
of the thrust component of the cutting force together with the
longitudinal component. The same carbide tools (type SCMT 12 04
08-UR 235) were used on the lathe and the ballistic set-up.

Experimental results are compared in Fig. 12 to numerical
estimations of map and of m for m¼0.6 and R¼0.015 mm. The feeds
in the numerical calculations are t1¼0.25 and 0.5 mm. In the
experiments, the values of the feed were t1¼0.2 and 0.5 mm. The
theoretical results are well correlated to the softening of map and m
with V observed in the experiments. The additional softening due to
the increasing of the feed is also well reproduced by the simula-
tions. It should be mentioned that the overall friction coefficient
measured by Sutter and Molinari [19] is not exactly map since edge
forces (obtained by linear extrapolation of the cutting and thrust
forces to zero feed) were subtracted by these authors from the
cutting and thrust forces. The overall friction coefficient character-
ized by Sutter and Molinari [19] does not correspond exactly to m
since the net results of this operation are not strictly identical to the
forces Fn(rake) and Ft(rake) applied to the flat rake face of the tool.
Its value is rather in between map and m, and closer to m than to map.
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Fig. 12. Comparison of theoretical and experimental results for overall friction

coefficients. The theoretical evolution of the apparent friction coefficient map versus

cutting speed V is displayed for two values of the uncut chip-thickness t1¼0.25 mm

(bold dashed curve) and t1¼0.50 mm (bold solid curve). Numerical results relative

to the mean friction coefficient m are represented by thin lines. The value of the

sliding friction coefficient is taken to be m¼0.6 and the tool edge radius is

R¼0.015 mm. The decay of map when increasing t1 (V being fixed) results from

the higher heating at the tool–chip interface, see Fig. 13. Experimental data obtained

by Sutter and Molinari [19] with 42CrMo4 steel for t1¼0.20 and 0.50 mm are also

reported. The experimental trends are well reproduced by the modeling.
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However, from the numerical results reported in Fig. 12, the
difference between map and m is not important for the high value
of the sliding friction coefficient m¼0.6 considered here.

It is worth reminding that the comparison with experiments
was performed in Fig. 2 with m¼0.8. Nevertheless, the values of map

corresponding to m¼0.6 and 0.8 are shown in Fig. 9 to be nearly
identical when the cutting speed is large enough (V 410ms�1). The
same observations can be made for m, see Fig. 3.

Alterations of overall friction characteristics generated by
increasing the cutting speed and the feed are a consequence of
the augmentation of the interface temperature with V and t1. The
correlation with the temperature is illustrated in Fig. 13, which
shows the evolution of the maximum chip temperature Tmax (at the
tool rake face) in terms of the cutting speed for various values of the
feed t1. It appears that Tmax is an increasing function of V and t1.
7. Temperature dependence of global friction characteristics

As discussed in Sections 5 and 6, the evolutions of the global
friction characteristics m and map are mostly controlled by thermal
softening of the work-material along the tool rake face. The local
sliding friction coefficientm is assumed constant and therefore does
not play any role in the variation ofm andmap. Thus, it seems natural
to consider that the dependence of m and map upon cutting
conditions, is ruled at first approximation by the magnitude of
the chip temperature which governs material softening at the tool
interface. This temperature level will be characterized here by Tmax,
the maximum chip temperature introduced previously.

Fig. 14a, describes the variation ofmap in terms of Tmax for various
cutting speeds and feeds. The cutting conditions are those of Table 4
except for the feed which is varied. The sliding friction coefficient is
m¼0.6. Remarkably, the results are displayed along a single master
curve. A similar observation in made for m in Fig. 14b. These
observations support the idea that, for a given work material and a
given tool, the overall friction characteristics can be described by
phenomenological laws of the form mðTmaxÞ and mapðTmaxÞ. The
important result obtained here, is that the dependence of m and map
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Fig. 15. (a) Mean friction coefficient m in terms of the maximum chip temperature

Tmax for two values of the sliding friction coefficient m¼0.4 and 0.8. Cutting

conditions are defined by t1¼0.10 mm, R¼0.015 mm and the cutting speeds

V ¼ 1,2,4,6,8,10,12,15,30,50ms�1. To each cutting speed is associated a value of

Tmax (crosses for m¼0.4, circles for m¼0.8). For m¼0.4 two distinct contact regimes

can be distinguished. At low cutting speeds (small values of Tmax), the contact is

governed by sliding friction and we have m¼m. At higher speeds, a transition is

observed towards a contact regime dominated by sticking with a drop of m
controlled by thermal softening of the work-material. For m¼0.8, the sliding regime

is not apparent for the range of cutting speeds explored here. It is worth noting the

merging of the values ofm in the sticking dominated regime. (b) Comparison ofm and

map. The same observations made in (a) for m holds for map.
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Fig. 14. Overall friction characteristics versus Tmax (maximum chip temperature at

the rake face) for various feeds t1 and cutting speeds: (a) apparent friction map and

(b) mean frictionm. The value of the sliding friction coefficient ism¼0.6. Each symbol

is associated to a given feed (e.g. squares correspond to t1¼0.10 mm). For t1¼0.10

mm the cutting speeds are V ¼ 1,2,4,6,8,10,12,15,30,50ms�1 (see Table 4). For

other feeds we have V ¼ 4,8,20,40ms�1. The results for map happen to be gathered

together along a single line which can be viewed as the master curve governing the

overall constitutive response of the tool–chip interface. Consequently, the interface

response can be represented in terms of the single variable Tmax accounting for the

effects of the cutting variables V and t1. Similarly, the rake face response is

represented by m and appears to be well described by a phenomenological law

depending solely upon Tmax.
with respect to cutting conditions is carried by the single parameter
Tmax characterizing the heating of the chip along the tool rake face.

The laws mðTmaxÞ and mapðTmaxÞ are implicitly function of the
thermo-mechanical properties of the work material and of the tool
characteristics. For instance, mðTmaxÞ and mapðTmaxÞ are functions of
the sliding friction coefficientm. As a matter of fact, m is expected to
be smaller for a CBN tool than for uncoated carbide tool and this
feature should be reflected in the laws governing the evolution of
overall friction coefficients. The effect of m on mðTmaxÞ is illustrated
15
in Fig. 15a. For m¼0.4, two distinct regimes are observed. For
temperatures smaller than 1370 K the mean friction coefficientm is
independent of Tmax. The plateau in the curve associated to m¼0.4,
corresponds to a pure sliding regime (no sticking) for which
necessarily m¼ m¼ 0:4. For sticking to occur, the temperature
has to become large enough in order to induce a sufficient drop
of the flow stress of the work material. The decreasing branch of the
curve mðTmaxÞ observed for m¼0.4 in Fig. 15a is related to the
occurrence of sticking contact and describes the softening of m due
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Fig. 16. (a) Mean friction coefficient m in terms of the maximum chip temperature

Tmax: analytical results given by the phenomenological law (19) are represented

against numerical results. (b) Apparent friction coefficient map: analytical results

given by the phenomenological law (20) are represented against numerical results.
to thermal effects. For the larger friction m¼0.8, the descending
branch due thermal softening is solely observed. This does not mean
that the plateau regime (associated to pure sliding) does not exist. To
make the plateau regime (m¼ m) apparent, cutting speeds lower than
1 ms�1 should be explored. It should be noted that the descending
branches associated to m¼0.4 and 0.8 merge at large temperatures
(i.e. high cutting speeds). This point was discussed before. The effect
of m appears to be wiped out when contact is dominated by sticking.
This happens when the heating of the chip at the tool interface is large
enough, i.e. at high cutting speeds. Then, m and map are nearly
independent ofm, as apparent in Figs. 3 and 9 formZ0.4. The specific
effect of the tool disappears in favor to the sole contribution of the
thermo-mechanical properties of the work-material. In other words,
working with a CBN tool or a carbide tool has no specific effects on the
values of the overall frictions coefficients if the interface temperature
is sufficiently high. It must be reminded that these results have been
obtained under the assumption that the sliding friction coefficient m
is not affected by the cutting conditions.

Results for the apparent friction coefficient map (dashed lines)
are compared to those of m (solid lines) in Fig. 15b. Similarities
between the variations of map and m appear clearly. As discussed
previously, the gap map�m results from the effect of the tool edge
radius. For a fixed value of m, the gap map�m increases with the
cutting speed (i.e. with Tmax), in agreement with Fig. 11a, and is a
decreasing function of m, as in Fig. 11c.

From the above results, it is appealing to describe the depen-
dence ofmap andmwith respect to the cutting conditions in terms of
phenomenological constitutive laws. It is proposed to characterize
the functional relationship between the mean friction coefficient
and Tmax as

m¼ S1ðT
�
1�TmaxÞ 1�exp �

m
S1ðT�1�TmaxÞ

� �n1
� �� 	1=n1

for TmaxrT�1

m¼ 0 for TmaxZT�1 ð19Þ

For small values of Tmax, it follows from Eq. (19) that m� m.
When Tmax increases towards T�1 it occurs that m� S1ðT

�
1�TmaxÞ and

that m decreases linearly with Tmax. T�1 is a reference temperature

and the factor S140 controls the rate of decay of m at large
temperatures. The third parameter introduced in law (19) is the
exponent n1 which governs the sharpness of the transition between
sliding contact and the sticking dominated regime. The evolution of
m with respect to Tmax is displayed in Fig. 16a. Three values of the
sliding friction coefficient are considered: m¼0.4, 0.6 and 0.8. The
numerical results are represented by symbols (for instance a square
for m¼0.8). Cutting conditions are those of Table 4. The results
associated to law (19) are given by solid lines. The values of the

parameters are: S1 ¼ 0:0009 ðK�1Þ, n1 ¼ 10, T�1 ¼ 1930ðKÞ. In law

(19) the contribution of the tool is represented by the sliding
friction coefficient m, while T1, S1 are related to the thermal
softening of the work material.

Thus, the consequence of replacing a tool with low friction
m¼0.4 by a tool with higher friction m¼0.8 can be analyzed in
Fig. 16a. At high temperature (high cutting speeds, large feed),
there is no effect of the tool since the contact is dominated by
sticking and by thermal softening of the work material. However at
lower temperatures, the effect of the tool is quite visible as the
contact is governed by sliding (m¼ m).

Similar results are shown formap in Fig. 16b. The phenomenological
law governing the temperature dependence ofmap is taken in the form:

map ¼ S2ðT
�
2�TmaxÞ 1�exp �

m0
ap

S2ðT�2�TmaxÞ

 !n1
" #( )1=n1

for TmaxrT�2

map ¼ 0 for TmaxZT�2 ð20Þ
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The parameters corresponding to Fig. 16b are: S2 ¼ 0:0005 ðK�1Þ,
n1 ¼ 10, T�2 ¼ 2400 ðKÞ. It can be noted that the same value of n1is
used for laws (19) and (20). For small values of Tmax relationship
(20) gives map ¼ m0

ap. The values of the parameter m0
ap are 0.45 for

m¼0.4, 0.62 for m¼0.6 and 0.85 for m¼0.8. They are close to m. The
effect of the tool edge radius is embedded into m0

ap, this is why
m0

ap4m.
Analytical forms (19)–(20) proposed for mðTmaxÞ and mapðTmaxÞ

can be naturally improved if one has additional results at high
temperatures. For instance it might occur that the decay of mðTmaxÞ

and of mapðTmaxÞ at large temperature is not exactly linear. In that
case the term T2�Tmax in (19) and (20) could be replaced by a non-
linear function of T2�Tmax, for instance a power-law of the form
ðT2�TmaxÞ

q.
The characterization of the overall friction properties of the tool

by a temperature dependent friction law was introduced by Moufki
et al. [28] in their thermo-mechanical modeling of the orthogonal
cutting process. They used the mean temperature T int along the tool
rake face to characterize the heating of the chip. In fact, taking T int in
place of Tmax as the characteristic variable governing the evolution
of the overall friction does not matter much as both variables are



related. The results shown in this section provide a justification and
an explanation for using temperature dependent friction laws in
the modeling of machining. It should be noted, that the Oxley’
model [8] provides a good description of the machining process
when contact is mostly controlled by sticking but cannot describe
the transition from sliding to sticking contact observed for instance
for m¼0.4 in Figs. 15 and 16.
8. Contact length

The contact length is an important parameter which affects the
temperature distribution at the tool rake face, the chip curling, the
stress level applied on the tool and finally the wear and the
mechanical resistance of the tool [29–30].

The contact length is defined as the extension of the tool–chip
contact on the rake face of the tool: lc¼ IJ, see Fig. 1b. The evolution
of the contact length lc in terms of the cutting speed is illustrated in
Fig. 17a for different values of the sliding friction coefficient m.
Cutting conditions and data are those of Table 4. The uncut chip
thickness is t1¼0.1 mm (see Fig. 1b), the cutting edge radius is
R¼0.015 mm and the thermal conductance of the tool–chip inter-
face is k¼ 2000Wm�2 K�1. The contact length lc appears in Fig. 17a
to be a decreasing function of the cutting speed and an increasing
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dominated by sticking, lc becomes weakly dependent uponm. This situation occurs for val

Fig. 4 that the transition from sliding contact to sticking happens at about V ¼ 8ms�1. Thus

for lc were observed for m in Fig. 3 and for map in Fig. 9a. (b) Comparison of the normali

(R¼15 mm) to the analytical results given by Eq. (24) (triangles) and by Eq. (21) (crosses).

the normalized contact length obtained by the Finite Element calculations reported in T

exponent is x¼0.25. (d) Evolution of the normalized contact length with cutting speed fo

results obtained with Eq. (23) are in very good agreement.
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function of m. These trends are in agreement with experimental
observations; see for example Gad et al. [31].

Experimental data obtained by Sutter and Ranc [32] for steels at
high cutting speeds are well correlated with the numerical results
displayed in Fig. 17a. For 42CrMo4 steel, the contact length was
found to be lexp

c ¼ 0:62mm at the cutting speed V ¼ 16ms�1, the
uncut chip-thickness t1 ¼ 0:3mm and the rake angle a¼01. As the
42CrMo4 steel is also the reference material in our numerical
simulations it is of particular interest to compare experimental and
theoretical results. From the data of Table 6, the value of the contact
length is estimated as ltheor

c ¼ 0:45mm for V ¼ 16ms�1 and
t1 ¼ 0:25mm. The ratio lexp

c =t1 ¼ 2:07 obtained experimentally is
in good agreement with ltheor

c =t1 ¼ 1:80.
Fig. 17a reveals the same trends as those of Fig. 9a formap, i.e. the

contact length becomes weakly dependent upon the values of m for
mZ0.4and is nearly independent of V at large cutting speeds. It is
referred to Section 5.1 for the discussion of the physical mechan-
isms underlying these features.

Different analytical models or empirical approaches have been
proposed to evaluate lc. It is worth to compare these models to the
results of the numerical calculations. Using the slip line theory, Lee
and Shaffer [33] obtained the following result:

lc=t1 ¼

ffiffiffi
2
p

sinðfÞcosðp=4þf�aÞ
ð21Þ
0

2

4

6

8

10

0

Eq.(24)
Eq.(21) Lee and Shaffer 
bisector line

l c 
/ t

1 (
an

al
yt

ic
al

)

lc / t1 (numerical)

R = 15 μm

2 4 6 8 10

1

2

3

4

5

6

7

0

R=15 μm (Numerical) 
R=15 μm (Analytical, ξ =0.25) 
R=30 μm (Numerical) 
R=30 μm (Analytical, ξ =0) 
R=30 μm (Analytical, ξ =0.25) 

N
or

m
al

iz
ed

 c
on

ta
ct

 le
ng

th
 l c

 / 
t 1

V (ms-1) 

μ =0.8

10 20 30 40 50

ting speed for various values of the sliding friction coefficient m. When contact is

ues ofm larger than 0.4 and large enough cutting speeds. For m¼0.4, it is known from

, for V 48ms�1 the value of lc is close to that obtained form40.4. Same evolutions as

zed contact length obtained by the Finite Element calculations reported in Table 4

The value xA ¼ 0:5 of the stress exponent was adopted in Eq. (24). (c) Comparison of

able 4 (R¼15 mm) to the analytical results given by Eq. (23) (triangles). The stress

r m¼0.8 and two values of the cutting edge radius. Numerical results and analytical



where the shear angle is given by tanðfÞ ¼ ðt1=t2Þ. The chip
thickness t2 is defined in Fig. 1b. Empirical formulations for lc were
given by Abuladze [34], Poletika [35], and Marinov [36].

Of note is the simple relationship proposed by Toropov and Ko
[37] and Kato et al. [38]:

lc=t1 ¼ 2 ð22Þ

The contact length can be also evaluated by considering the
equilibrium with respect to the tool tip of the moment of the
contact forces exerted on a given chip-domain. It is useful here to
define the angles fA and fn shown in Fig. 1b. The transition
between the horizontal free surface of the workpiece and the chip is
insured by a small curved line. Near this transition zone, the free
surface of the chip can generally be represented by a straight
segment. The extension of this segment intercepts at I1 the
horizontal line associated to the workpiece surface, see Fig. 1b. A
more detailed characterization of I1is found in Fig. 24 of Appendix
C. The segment I1A which is tangent to the tool tip at A is considered.
The inclination angles of I1A and of I1I with respect to horizontal are,
respectively, denoted as fA and fn. Intersections of I1A and of I1I

with the free surface are denoted, respectively, as BA and Bn. The
points BA and Bn are different in general, but the resolution of Fig. 1b
does not allow us to represent them as distinct points.

Let us consider the chip domain D1 delimitated by the contour
JII1B�CC’J including the segment IB�with inclination angle fn, see
Fig. 1b. Another option would be to select the domain D2 defined by
the contour JIAI1BACC’J.

Consider first the domain D1. The normal and tangential forces
exerted on IJ are Fn(rake) and Ft(rake). The mean friction coefficient
associated to the contact zone IJ is m¼ FtðrakeÞ=FnðrakeÞ. Consider-
ing that the moment at I of the external forces exerted on the
domain D1 vanishes, it follows in a way similar to [28] that

lc=t1 ¼
xþ2

2

sinðf�þl�aÞ
sinðf�ÞcosðlÞ

ð23Þ

l is the friction angle defined by m¼ tanðlÞ. To derive this result, it
has been assumed that (i) the normal stress distribution along IJ is
given by Eq. (11), where x is the stress exponent and (ii) the normal
stress distribution along the segment IB�is uniform.

If the domain D2 is selected, the resultant force exerted on the
boundary AJ of the tool is equal to the cutting force
F ¼�FCe

Y
þFT e

X
, in first approximation, if the point A is considered

to be far enough on the right of the tool edge, see Fig. 1b, so that
most of the tool edge is encompassed in the domain D2. The
following result is derived in Appendix D:

lcþR

t1
¼

xAþ2

2

sinðfAþlap�aÞ
sinðfAÞcosðlapÞ

ð24Þ

fA is the inclination angle of the plane AI1 and lap ¼ arctanðmapÞis
the apparent friction angle.

In Fig. 17b, the predictions of lc/t1 given by Eq. (24) are displayed
versus the values of lc/t1obtained numerically, considering all the
tests reported in Table 4. Values of fA, map used in Eq. (24) are given
in Table 4. The same stress exponent xA ¼ 0:5was taken for all tests.
Results given by law (21) of Lee and Shaffer [33] are also shown. It
appears that the estimates obtained from relationship (24) are in
good correlation with numerical results (triangular symbols are
close to the bisector line). Relationship (21) predicts correct trends
but there is a significant gap with respect to numerical results.
Results of models [34–36] are not shown here as they provide
results close to those obtained with law (21). It must be noted that
all the models [33–36] consider that lc/t1is sole function of the shear
angle f and of the rake angle a. However, relationships (23) and
(24) account explicitly for the effect of the overall friction char-
acteristic m (or map) and of the parameter x (or xA) related to the
normal stress distribution. Takingf in place offA in Eq. (24) would
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provide results similar to those of Fig. 17b with however a slight
decrease of the quality of results.

Finally the analytical results corresponding to the model (23)
are represented in Fig. 17c for all the tests reported in Table 4
(R¼0.015 mm). The stress exponent is x¼0.25, a value smaller
than xA¼0.5used for model (24). This is in keeping with the fact
that a stress-peak was observed in our simulations at the rounded
edge of the tool. The value x¼0.25 used in Eq. (23) refers to the
stress distribution along the flat rake face, line IJ in Fig. 1b, which
excludes the stress-peak existing at the tool tip. A small value of the
stress exponent x corresponds to a flat stress profile. It should be
mentioned that the parameter x enters into the results through the
term x+2. Thus, the value of lc would be decreased by only about
12% by setting x¼0 in place of x¼0.25. Therefore, for relatively flat
stress profiles the results are not much affected by the precise value
of x.

In the range of high cutting speeds and for mZ0.4, it is observed
in Fig. 17a that lc=t1 � 1:9. This value is quite close to those of
the model proposed by Toropov and Ko [37] and Kato et al. [38],
Eq. (22).

On the practical point of view, relationship (24) is easier to use
than Eq. (23) since the value of map is directly accessible from
experiments.

The effect of the tool edge radius is quantified in Fig. 17d where
the evolution of lc/t1 is reported in terms of the cutting speed for
two values of R (15 and 30 mm). The effect of R appears to be
relatively weak when comparing numerical results. Analytical
results obtained by using relationship (23) are also shown. As in
Fig. 17c, the value of the stress exponent (characterizing the stress
distribution along the rake face IJ) is taken to be x¼0.25. However,
for R¼30 mm the stress distribution is expected to be flatter than
for R¼15 mm. The stress exponent for the larger radius should be
lower than x¼0.25. To quantify the effect of a lower stress
exponent, results associated to x¼0 and R¼30 mm are reported
in Fig. 17d. As remarked before, for low values of the stress
exponent, the precise value of x does not change much the results.

The weak effect of R on lc could be expected from the examina-
tion of relationship (23) and the fact that m is slightly sensitive to R,
see Fig. 11a. On the contrary,map (and xA) is more dependent upon R,
Fig. 11a. Therefore, the right hand side of Eq. (24) is affected by R.
However, R is also present in the left hand side of Eq. (24) in a way
that insures the consistency of the results with those of Eq. (23).
9. Contact forces

Contact forces exerted onto the tool are important global
characteristics that embody the resistance of the work material
to plastic flow and the tribological properties of the tool–chip
interface. The link between the cutting and thrust forces and
contact conditions is analyzed by numerical and analytical means.
A similar investigation is also carried out for the contact forces
exerted on the flat part of the tool face (round edge excluded).

9.1. Cutting and thrust forces

The evolution of the cutting force FC and of the thrust (feed) force
FT is represented in Fig. 18a and b in terms of the cutting speed V for
various values of the sliding friction coefficient 0rmr1. Cutting
conditions are those of Table 4, i.e. the rake angle, the feed and the
tool edge radius are, respectively, a¼0, t1 ¼ 0:1mm and R¼15 mm.
The general trends concerning the variation of FC with respect to the
cutting speed and m are similar to those of lc shown in Fig. 17a.

As expected, for a given value of V the cutting and thrust forces
are increasing with the friction coefficient m. For a fixed value of m,
the cutting and thrust forces are decreasing functions of V. The drop



0

100

200

300

400

500
μ=0.0
μ=0.1
μ=0.2
μ=0.4
μ=0.6
μ=0.8
μ=1.0

C
ut

tin
g 

fo
rc

e 
(k

N
/m

)

R= 15 μm

0

100

200

300

400

500

0

μ=0.0
μ=0.1
μ=0.2
μ=0.4
μ=0.6
μ=0.8
μ=1.0

Th
ru

st
 fo

rc
e 

(k
N

/m
)

Cutting speed (ms-1)

0

100

200

300

400

500

0

μ = 0.8 (Numerical)
μ = 0.8 (Analytical, φA)
μ = 0.8 (Analytical,φ) 
μ = 0.2 (Numerical)
μ = 0.2 (Analytical, φA)
μ = 0.2 (Analytical, φ)

C
ut

tin
g 

fo
rc

e 
  F

c (
kN

/m
)

V (ms-1) 

μ = 0.8

μ = 0.2

0

50

100

150

200

250

300

350
μ = 0.8 (Numerical)
μ = 0.8 (Analytical,φA) 
μ = 0.8 (Analytical, φ)
μ = 0.2 (Numerical)
μ = 0.2 (Analytical, φA)
μ = 0.2 (Analytical, φ)

Th
ru

st
 fo

rc
e 

 F
T 

(k
N

/m
)

V (ms-1) 

μ = 0.8

μ = 0.2

t1= 0.1 mm

10 20 30 40 50 0 10 20 30 40 50

5 10 15 20 25 300
Cutting speed (ms-1)

5 10 15 20 25 30

Fig. 18. Numerical results for (a) the cutting force FC and (b) the thrust force FT, versus cutting speed for various values of the sliding friction coefficientm. Cutting conditions are

those of Table 4. (c) Numerical values of FC given in Table 4 compared against analytical results provided by Eq. (25) with two evaluations of the shear angle: fA and

f¼ arctanðt1=t2Þ. Cases of low and high friction are considered, resp.m¼0.2 and 0.8. (d) Numerical values of FT given in Table 4 compared against analytical results provided by

Eq. (26).
of the forces is negligible for low friction coefficient and is about
55% form¼1. For the medium carbon 42CrMo4 steel the theoretical
predictions of FC and FT with m¼0.8 were shown in Fig. 2 to be in
good correlation with experimental measurements.

The level of the cutting and thrust forces is the result of the
interplay between the material response within the primary shear
zone (where the chip is formed) and the behavior of the tool–chip
interface. The evolution of the cutting and thrust forces in terms of
V are similar to those of map for large values of the sliding friction
coefficient. However it is not exactly so for mr0.4, since map is
slightly increasing for small values of the cutting speed, while the
cutting force decreases.

In the analytical modeling of cutting, it is useful to refer to the
relationship between the cutting forces and the overall friction
coefficient map. As in the Merchant’s analysis [7], we consider the
equilibrium of the forces exerted on the chip domain above the
segment ABA (domain D2 introduced in Section 8), see Fig. 1b. The
cutting and feed forces are obtained as

FC ¼
t1tPZ

sinfA

cosðlap�aÞ
cosðlap�aþfAÞ

ð25Þ

FT ¼
t1tPZ

sinfA

sinðlap�aÞ
cosðlap�aþfAÞ

ð26Þ

The mean shear flow stress along ABA is taken as the mean shear
flow stress tPZ within the primary shear zone. The apparent friction
angle lap accounts for the global response of the tool–chip inter-
face. Relationships (25)–(26) are only first approximations of the
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cutting force components since solely the portion AJ of the tool–
chip contact is comprised in the domain D2 (clearance contact
excluded).

In Fig. 18c and d the cutting and feed forces obtained with Finite
Element calculations are compared to the values resulting from the
analytical relationships (25) and (26). In Eqs. (25) and (26) values of
tPZ , lap(map) and fA are obtained from Table 4. A good correlation is
found, showing the consistency of the calculations. Moreover, the
effects of friction, shear flow stress and shear anglefA on forces can
be evaluated separately, which is hardly feasible by Finite Element
calculations.

Eqs. (25)–(26) show how FC and FT are affected by the apparent
friction map. This coefficient enters in a direct way in Eqs. (25)–(26),
but also in an indirect manner throughfA. Indeed, the shear angle is
strongly dependent upon the overall friction coefficient map. The
indirect contribution of map through fA is quantified in Fig. 19a by
holding fA constant (upper curve with crosses and lower curve
with squares) and comparing with the total variation of FC given by
Eq. (25) where fA is left free to vary (bold line with small circles).
The cutting conditions are those of Table 4 and the sliding friction
coefficient is m¼0.8. The reference curve (bold line with small
circles) represents the variation of FC with V as predicted by Eq. (25)
where parameters vary according to the data of tests
#51–60 reported in Table 4. The upper curve (with crosses)
corresponds to the constant value of the shear angle fAðV ¼

1ms�1Þ ¼ 9:71associated to the cutting speed V ¼ 1ms�1. The
variation of FC appears to be weak when fA is maintained at the
constant value 9.71. The lower curve (with squares) corresponds to
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with the reference curve.
the fixed value of the shear angle fAðV ¼ 50ms�1Þ ¼ 25:41 asso-
ciated to the cutting speed V ¼ 50ms�1. Here again, a small
variation of FC is observed which is mainly due to the direct effect
of map in Eq. (25) (indirect effect of map through fA is excluded). As
map weakens with V, the cutting force is decreasing as well, but
insufficiently with respect to the large drop of the force observed
for the reference curve.

The direct effect of map on FC is quantified in Fig. 19b. The upper
curve (crosses) represents the variation of FC whenmap is maintained
in Eq. (25) at the constant value map ¼ 0:747 corresponding to
V ¼ 1ms�1. fA varies according to the values reported in Table 4.
Similarly, the lower curve is associated tomap ¼ 0:333 corresponding
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to V ¼ 50ms�1. From these results it is clear that the variation of FC

with V is mostly controlled by fA.
From the examination of the results reported in Table 4, it

appears that tPZ is weakly sensitive to cutting conditions. Therefore,
the cutting force FC and the thrust force are just slightly affected by
the variation of tPZ due to cutting conditions.

9.2. Forces exerted on the tool rake face

The normal and tangential components of the force exerted by
the chip on the tool rake face IJ (see Fig. 1b) can be calculated by
considering the equilibrium of external forces applied on the
boundaries of the chip domain D1 introduced in Section 8 (domain
above the line IB�). The following result is obtained:

FnðrakeÞ ¼
ðt1�RÞtPZ

sinf�
cosðlÞ

cosðlþf�Þ
ð27Þ

FtðrakeÞ ¼
ðt1�RÞtPZ

sinf�
sinðlÞ

cosðlþf�Þ
ð28Þ

It is worth noticing that the uncut chip thickness t1 which
appeared in Eqs. (25)–(26) is replaced in relationships (27)–(28) by
t1�R. This is related to the fact that the bottom of D2 is A (vertical
distance to the workpiece free-surface nearly equal to t1) while the
bottom of domain D1 is J (vertical distance to the workpiece free
surface is equal to t1�R).

The evolutions of Fn(rake) and of Ft(rake) in terms of the cutting
speed are displayed in Fig. 20 for m¼0.2 and 0.8 and the cutting
conditions associated to Table 4. The results obtained from Eqs.
(27)–(28), with values of tPZ ,f� and l given by Table 4, are found to
be in excellent agreement with Finite Element calculations of
Fn(rake) and of Ft(rake). Using the shear angle f¼ arctanðt1=t2Þ in
place of f� in Eqs. (27)–(28) would lead to similar results but with
lower quality (represented by crosses in Fig. 20).

It should be mentioned that tPZ in Eqs. (25) and (26) corresponds
to the mean shear stress exerted on the segment ABA while tPZ in
Eqs. (27) and (28) is related to IBn. However, the same value of tPZ

(given in Table 4) has been used in all calculations. This point is
justified in Appendix E.

9.3. Effect of the Taylor–Quinney coefficient

The effect on FC of the Taylor–Quinney coefficient b (conversion
of plastic work into heat) is quantified in Fig. 21. The evolution of
the cutting force FC with respect to the cutting speed is reported in
Fig. 21a for various values of b. The variations of FC follow the same
trends as those reported form andmap, respectively in Figs. 6 and 9b.
In particular, the cutting force FC is a decreasing function of b for a
fixed value of the cutting speed. However, contrarily tomap orm, the
forces FC and FT remain significantly affected by b at low cutting
speeds. Results are shown in Table 8 for the low cutting speed
V ¼ 2ms�1 and m¼0.6. It is worth observing that both tSZ(char-
acterizing the material resistance to flow) and the apparent friction
coefficientmap appear to be weakly affected by b. Thus, according to
Eqs. (25)–(26) the dependence of Fc and FT upon b should solely
result from the variation of the shear anglefA (101 for b¼0.6; 13.31
for b¼0.9).
10. Conclusions

For the modeling of machining processes, it is essential to
characterize local fields and global variables and to analyze their
interactions. Two robust and independent approaches have been
used in that purpose. The first is purely numerical and based on an
Arbitrary Lagrangian Eulerian Finite Element model. The second is
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results provided by resp. Eqs. (27) and (28).
grounded on analytical means. A parallel was systematically drawn
between these approaches in such a way that numerical data
became more meaningful as they could be put in relation to
conceptual models of the phenomena studied.

The overall friction properties characterizing the tool–chip
contact in orthogonal cutting, have been studied. The global
response of the tool rake face was described by a mean friction
coefficient m while the response of the tool–chip interface in its
totality (including the tool edge and the clearance contact) was
represented by the apparent friction coefficient map.

A simple formulation of contact based on the Coulomb friction
law and a constant sliding friction coefficient was used in this work.
Nevertheless, numerical results have shown that the sliding and
sticking contact regimes could be well described within this frame-
work. Along the sticking zone, the shear stress was found to be equal
21
to the shear flow stress of the work material. Interesting correlations
were observed with respect to experimental features. The softening
of overall friction coefficients with the cutting speed was found to
reproduce accurately the experimental trends for the steel (work-
material) and the carbide tools considered here. The effect of the feed
on the overall friction response was also well accounted for.

The overall friction characteristics appeared to be the result of
the combined effects of sliding and sticking contact. Sticking occurs
in the vicinity of the tool tip and is controlled by the magnitude of
the shear flow stress of the work material which is itself governed
by the chip temperature at the tool rake face. When the cutting
speed was increased, a transition was found from a sliding regime
towards a sticking dominated contact.

For high values of the sliding friction coefficient m, sticking
dominates the overall response of the tool–chip interface for the
whole range of cutting speeds considered here (1ms�1rV r
50ms�1). Then, the decay of map and m is solely due to thermal
softening of the work material in the sticking zone and the effect of
m is wiped out as soon as contact is dominated by sticking.



Table 8

Effect of the Taylor-Quinney coefficient b on cutting parameters and forces for the cutting conditions: m¼0.6, R¼0.015 mm, t1 ¼ 0:1mm, V ¼ 2ms�1.

b map fAðdeg:Þ tPZ ðMPaÞ FC ðkN=mÞ

(Numerical)

FC ðkN=mÞ

Eq. (25)

FT ðkN=mÞ

(Numerical)

FT ðkN=mÞ

Eq. (26)

0.6 0.606 10 621 434 407 263 246

0.9 0.605 13.3 624 339 325 205 197

Fig. 22. Distribution of the Mises equivalent stress in the center of the primary

shear zone.
For small values of m, the quantities map and m are weakly
dependent upon V since sticking is negligible and thereby thermal
softening of the bulk material has no effect on overall friction
characteristics.

When contact is dominated by sticking, it appeared possible to
formulate a law describing the dependence of the mean friction
coefficientm with respect to the main factors controlling its evolution
(shear flow stress of the work material, average normal stress, sticking
length ratio). Essentially, m appeared as the ratio of the shear flow
stress by the averaged normal stress. The difference between m and
the apparent friction coefficient map results from the effect of the tool
edge-radius R. The effects of R and of the uncut chip thickness on
map�m have been quantified. Finally, it was shown that the evolutions
ofmap and ofm in terms of cutting conditions (cutting speed and uncut
chip thickness, the rake angle was taken as zero) could be represented
with phenomenological constitutive laws depending solely on a
characteristic temperature of the chip at the tool rake face.

Having a better perception of the relationship between global
friction characteristics and local variables has not only a theoretical
interest but offers also important practical implications. Firstly, it
should be noted that only global friction characteristics are directly
accessible from orthogonal cutting experiments. Knowing the
relationship between the local value m of the sliding friction
coefficient and global friction characteristics is helpful for deducing
the value of m, see [39]. In that perspective, it was important to
clarify the effects of the cutting speed, feed, tool edge radius and m
on global friction characteristics.

Another prospect is provided by the development of analytical
models of metal cutting processes. This aspect offers interesting
perspectives for the present research work. A central issue for the
calculation of cutting and thrust forces, contact length and shear
angle is related to the capability of describing the global frictional
response of the tool–chip interface which is a salient aspect of
this work.

Tool–chip contact length and contact forces exerted onto the
tool were also characterized by numerical and analytical means
and compared to experimental data. In particular, it was investi-
gated how the contact length between tool and chip is correlated to
global friction, shear angle, uncut chip thickness and to the profile
of the normal stress on the tool–chip interface.

In the present work, the sliding friction coefficient was sup-
posed to be constant i.e. to be independent from cutting conditions.
Despite this simplifying assumption, it appeared that many
experimental features could be well described for the work
material considered here (medium carbon steel 42CrMo4). How-
ever, there are some experimental evidences that the sliding
friction coefficient might be influenced in certain cases by contact
conditions (sliding velocity, contact pressure, contact temperature)
[40–41]. The functional dependence of the sliding friction coeffi-
cient with respect to contact conditions and the implications in the
modeling of machining are the object of a current work.
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Appendix A. Characterization of the average shear flow stress
sPZ along the primary shear zone

The method for characterizing tPZ is illustrated by considering
Fig. 22 showing the distribution of the Von-Mises equivalent stress
seq in the deformed workpiece. The cutting conditions are those of

test #58 of Table 4 (m¼0.8, V ¼ 15ms�1). A lower cut-off limit,

slim
eq ¼ 1100MPa, has been considered in Fig. 22. Thus, the variation

of seq is only displayed in the range: slim
eq rseqrsmax

eq , with

smax
eq ¼ 1158MPa. This region represents the part of the primary

shear zone where the chip is mostly formed by simple shearing.
According to the J2-flow theory, the shear flow stress is given for

simple shearing by: tPZ ¼ ðseq=
ffiffiffi
3
p
Þ. Here, seq ¼ ðsmax

eq þslim
eq =2Þ

represents the average value of seq in the shear band domain
shown in Fig. 22. It is worth noting that the amplitude of variation
of seq within this band is only 5%. For the test #58 it is found that
tPZ ¼ 650MPa.tPZ is taken as the mean flow stress in the primary
shear zone.
Appendix B. Characterization of the stress exponent n

The stress distribution along the rake face 0rxr lc is repre-
sented in Fig. 23 for cutting conditions of Table 4 and m¼0.8,
V ¼ 8ms�1. The distribution given by Eq. (11) (dashed line) is
compared to Finite Element calculations (solid line). The stress
exponent in Eq. (11) is characterized as x¼0.23 and the scaling
factor has the value s0 ¼ 1150MPa. The correspondence between
numerical data and Eq. (11) is rather good along 66% of the contact
length and appears to be less accurate in the last part of the contact.
However, Eq. (11) is mainly used for calculating force moments
with respect to the tool tip or stress average along the contact
length. The representation given by Eq. (11) appears to be sufficient
for that purpose.
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Appendix C

A zoom of the chip free-surface in the vicinity of the primary
shear zone is displayed in Fig. 24. The point I1 is at the intersection of
two straight lines D1 and D2 defined as follows. D1 is the horizontal
line aligned with the workpiece surface. In general, it is observed
that the transition between the workpiece surface and the chip is
made by a curve I4I2 followed by a straight segment I2I3 of small
extension on the chip free-surface, see Fig. 24. Beyond I3 the chip
starts to curl. D2 is the straight line aligned with the segment I2I3.
Appendix D

It would be hard to calculate analytically the moment of the
contact forces exerted on the domain D2 by accounting for the real
stress distribution around the tool edge. A heuristic and easiest way
to proceed consists in developing the line JA into a straight segment
23
JA0 by projection onto the axis Ix aligned with the tool rake face, see
Fig. 1b. The length of this projected line is nearly equal to lc+R,
where R is the tool edge radius. It is assumed that the distribution of
the normal stress along the line JA0 has the form given by relation-
ship Eq. (11)

sðxuÞ ¼ s0 1�
xu

lcþR

� �xA

ðD1Þ

However, the origin of the x-axis is now taken at A0. The
corresponding coordinate is denoted as x0 and the distance from
A0 to the end J of contact is lc+R. The stress exponent has the
effective value xA which is a priori different from x characterizing
the stress distribution along IJ (the stress profile is more peaked at
the tool edge). The moment with respect to A of the contact forces
exerted on the tool–chip interface AJ is evaluated by considering
the moment with respect to A0 (orthogonal projection of A onto the
axis IX) of the normal stress distribution Eq. (D1). Equilibrium of the
moments with respect to A of all the contact forces exerted on the
boundary of the domain D2 is considered. The following result can
be derived by assuming that the normal stress is uniformly
distributed on the segment ABA:

lcþR

t1
¼

xAþ2

2

sinðfAþlap�aÞ
sinðfAÞcosðlapÞ

ðD2Þ

fA is the inclination angle of the plane AI1 and lap ¼ arctanðmapÞ is
the apparent friction angle. The apparent friction coefficient map

defined by the relationship (5) is involved in the result (D2) since
the resultant of the contact forces exerted by the tool on the
boundary AJ of the domain D2 is in first approximation FCe

Y
�FT e

X

(if the clearance contact is neglected).
Appendix E

Let us denote by tðoÞ the mean shear stress applied on any
segment slightly disoriented by an angle o with respect to the
primary shear zone (PSZ). We have tð0Þ ¼ tPZ where tPZ is the mean
shear stress applied along the PSZ. tðoÞ is maximum foro¼0 since
the mode of deformation along the PSZ is simple shear. Considering
the Taylor expansion of tðoÞ with respect to o, it can be written
that tðoÞ ¼ tPZþðo2=2Þt00ð0Þ (tuð0Þ ¼ 0). Thus, to the second order
with respect to o, tðoÞ can be approximated by tPZ .
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