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Hydrodynamic Ram (HRAM) is a phenomenon that occurs when a high-energetic

object penetrates a fluid-filled container. The projectile transfers its momentum and

kinetic energy through the fluid to the surrounding structure increasing the risk of

catastrophic failure and an excessive structural damage on adjacent components. It is

of particular concern in the design of wing fuel tanks for aircraft because it has been

identified as one of the important factors in aircraft vulnerability. In order to study

the aforementioned phenomenon, water filled aluminium tubes (to different volume

percentages) were subjected to impact of spherical projectiles. This work is focused

on the analysis of energies, momenta and pressure contours obtained by means of

a previously developed and validated numerical model in order to achieve a better

understanding of the fluid/structure interaction problem that takes place during the

HRAM phenomenon.

I. Introduction

The process by which a high-speed projectile penetrates a fluid-filled tank and transfers kinetic

energy to the surrounding walls is known as Hydrodynamic Ram (HRAM). The HRAM effect in

fuel tanks is identified as one of the important factors in aircraft vulnerability because the fuel

tanks represent the largest exposed area of all the vulnerable components. HRAM is particularly
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dangerous for aircrafts with lightweight designs, because the structural resistance of their integral

fuel tanks cannot be improved by strengthening the airframe. Strengthening the frame would

counteract the requirements of a lightweight design. Studies by government agencies and aircraft

manufacturers show that the cost of installing countermeasures or strengthtening the aircraft to

defend against these threats is inapplicable for cost reasons. Therefore, it becomes necessary to

determine the damage caused by these projectiles, to enable the development of techniques to safely

land the damaged aircraft using the remaining systems [1].

Vulnerability to HRAM is usually, but not exclusively, related to military aircraft. In 1990 the

Federal Aviation Administration (FAA) established the Aircraft Catastrophic Failure Prevention

Research Program. The program considered that commercial aircrafts are at risk due to high

velocity impacts, so the analysis of the effects of an uncontained turbine engine fragment penetrating

aircraft fuel tanks was carried on [2]. Another example of the effect of an impact in a fuel tank of a

commercial aircraft happened in the year 2000, when a Concorde crashed after takeoff from Charles

de Gaulle airport (France). The final investigation report revealed that the HRAM had played a

significant role in the aircraft failure.

Hydrodynamic Ram consists of four principal stages: shock, drag, cavitation and exit. Each

stage contributes to structural damage through a different mechanism and to a different extent.

When the projectile penetrates the wall of the fluid filled structure, the impact energy is transferred

to the fluid and generates a high-pressure hemispherical shock wave. This leads to damage primarily

in the vicinity of the impact position. During the drag phase, the projectile travels through the

fluid, and its kinetic energy is partially transformed into fluid motion as the projectile is slowed by

viscous drag. The displacement of the fluid from the projectile path generates a radial pressure field.

In contrast to the pressure field developed during the shock phase, the fluid is accelerated gradually

rather than impulsively. This causes less intense peak pressures, but they are of greater temporal

extent. The displacement of fluid during the drag stage forms a cavity behind the projectile. The

subsequent expansion and collapse (oscillations) of the cavity is known as the cavitation stage. The

oscillations of the cavity can cause significant pressure pulses. The final stage of Hydrodynamic

Ram occurs when the projectile exits the container. In contrast to the perforation of the front wall,
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the exit of the projectile occurs through a pre-stressed wall. The pre-stress is caused by the initial

shock stage and the subsequent loading by the fluid.

The military industry has always been interested in the protection of the fuel tanks. In the

1970s, various groups within the US Defense Department expended a considerable research effort

to achieve a better understanding of the HRAM phenomenon and the associated fluid-structure

interaction problem. The Naval Weapons Center (NWC, China Lake, California), conducted an

interesting HRAM project in which a series of ballistic tests were performed to obtain fluid pressure

measurements at several locations for a variety of projectiles [3]. A digital computer code for

predicting the drag phase fluid pressure in a rectangular tank due to ballistic penetrators, based

upon the theory and the empirical data of Lundstrom et al. [3, 4], was subsequently developed

by Lundstrom and Fung [5]. The second phase of the same project involved the characterization

of the fluid-structure interaction during the loading of the fuel tank walls by the HRAM pressure

[6]. Description of the tests and their results are reported in refs. [7–17]. The University of

Dayton Research Institute also performed several impact experiments on fuel tanks during the

1970s. S.J. Bless et al. [18] carried out experiments using spherical projectiles of 11.1 and 14.3 mm

diameter with a velocity range of 1.5 to 2.4 km/s and obtained data for the entrance and side panel

displacement, fluid pressure and the projectile trajectory. In all the mentioned works, the fluid-

filled container consisted of a structure on which different panels could be placed and the top of the

tank was always open. The aforementioned works are probably some of the first studies of HRAM,

but some others can be found [19–24]. Recently, some authors analysed the HRAM phenomenon

through the results of intrumented experimental tests. Lecysyn et al. [25–27] studied the drag and

cavitation phases of the hydraulic ram, reporting measurements of the movement and deceleration

of a projectile after it impacts a fluid-filled vessel results. Disimile et al. [28–30] applied a large-scale

shadowgraph technique to a fuel tank simulator in order to visualize the pressure waves generated by

hydrodynamic ram, and the results were compared to pressure transducer signals; special attention

was given to the effect of the succesive cavity implosions. The same authors installed different

geometries of triangular bars to provide shock wave mitigation of the internal pressures.

In addition to the experimental programs, simulation of HRAM events was accomplished. The
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first methods were based on the use of the Piston Theory [31, 32] and the Variable Image Method

[33] for the fluid-structure interaction. In general, none of these methodologies provided a realistic

coupling between the fluid and the structure. Other codes such as HRSR (Hydraulic Ram Structural

Response) [34], ERAM or EHRSR were developed [35], but all of them shown their limitations on

simulating an HRAM event. The complicated physics and mechanics of HRAM phenomena were

not satisfactory solved until higher-order numerical algorithms were incorporated into the codes

in the late 1980s. The Coupled Euler-Lagrange methods have been under development since the

early-to-mid 1990s, combining the desirable characteristics of Lagrangian and Eulerian formulations.

These methods are used in multiple industries for a wide variety of analysis in which fluids interact

with structures or when high distortions may appear [2, 22, 36–42], including airbag and tire-water

dynamics in the automobile field [43, 44], the impact of bird strikes on aircraft [45, 46], and the

effects of sloshing on ships [47]. The Arbitrary Lagrangian Eulerian (ALE) technique is widely used

in those kind of problems. Recently, Sauer [48] presented a numerical study on the simulation of

impacts of projectiles on fluid-filled containers. Two different numerical approaches are compared

which are both implemented in a research hydrocode: a pure Lagrangian discretization with Finite

Elements (FE) and element erosion, and a coupled adaptive FE/SPH discretization. The results

showed a better agreement with experimental results by using the adaptive SPH approach. However,

the price that currently has to be paid are higher calculation times. In the last years, there have been

new advances in development and use of computational methods for fluid-structure interactions due

to the interest of reaching more effective computational techniques [49–54] and solving more difficult

problems motivated by different industries, such as aeronautics, naval or more recently biomedical

sciences. The HRAM phenomenon has also been investigated on composite structures [55].

In a previous work of the authors [56] experimental results were performed to obtain detailed

information on the projectile deceleration, cavity evolution, pressure within the fluid and deforma-

tion of the tank walls. Later on [57, 58] fully coupled numerical models were developed to simulate

the problem; these models were validated with experimental results, faithfully reproducing them,

and the most appropriate techniques to simulate the HRAM phenomenon were pointed out. In the

present work the simulation methodology, previously developed and validated, is used to analyze
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the fluid/structure interaction phenomenon that takes place during HRAM, taking advantage of the

broad range of quantitative results that the numerical code can provide. The impact of steel spher-

ical projectiles on aluminium square tubes filled to different volume percentages is simulated. The

link between projectile advance and deformation of the tank is established by means of a study of

the interactions between these two solids and the fluid. A detailed analysis of the transfer of energy

and momentum between projectile, fluid and recipient allowed to identify the beginning and the end

of each stage of the HRAM, and their influence in the permanent displacement of the structure.

II. Problem description and Finite element model

In order to analyze the HRAM effects and the associated fluid-structure interaction problem

in a structural element representative of a wing fuel cell, aluminium tubes filled with water were

impacted by a steel sphere with a diameter of 12.5 mm and a mass of 8 g. The tubes, filled with

water to different volume fractions 60, 75 and 100%, were impacted at different velocities: 600 and

900 m/s.

The tanks consisted of 6063-T5 square section aluminium tubes with the following dimensions:

750 mm long, 150 mm wide and 2.5 mm thick. The specimens were closed with two PMMA windows

30 mm thick, fixed to the specimen with four steel bars (Fig. 1); these transparent panels allowed

for the video recording of the impact process. Further details about experiments, both set-up and

results can be found in [56].

Fig. 1 Aluminium tank.

The numerical model was developed on the commercial finite element code LS-DYNA v.971.
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This software is particularly suitable for nonlinear dynamic problems, such as impacts or explosions.

It also allows the employment of different techniques such as ALE or SPH to solve fluid and fluid-

structure problems. On this paper, the ALE technique was adopted to obtain the results that will

be analyzed later.

A. Tank and projectile FE model.

The problem that is going to be modeled can be simplified attending the symmetries. When

the tubes are partially filled, only half of the whole geometry needs to be taken into account (Fig.

2, Left). The cases in which the tubes are completely filled, the model can be reduced to a quarter

of the whole geometry (Fig. 2, Right). Since the nature of this simulation demands a very high

mesh density, such a reduction in the model size is very desirable. The tank has been divided in

three parts, the walls impacted by the projectile (entry and exit walls), the lateral walls and the

PMMA window.

Fig. 2 Box model geometry used. Left: partially filled tube case. Right: completely filled

tube case.

The impacted walls and the PMMA window were discretized by means of eight-node solid

hexahedron Lagrangian elements with reduced integration. The impacted walls present 5 elements

through the thickness and elements of 1 mm in size in the other two directions near the impacted

zone. Based on previous simulations, the mesh size was considered appropriate to reproduce the

behavior of the solids in the impacted zone. Four-node Belytschko-Tsay shell elements were used to

discretize the lateral walls in order to reduce the number of elements. Finally, the mesh of the box

consisted of 31804 elements.
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The aluminium tubes were modeled by means of the Johnson-Cook thermoviscoplastic hardening

relation [59]. The required parameters for the Aluminium 6063-T5 were obtained from Yang [61]

and Karagiozova and Jones [60, 61]. In order to describe the material failure in the zone around the

impact point, an erosion criterion based on a critical value of the equivalent plastic strain εf = 0.2

was adopted.

An elastic material model was used for the PMMA window and the steel projectile since none of

them suffered plastic deformations nor damage. The PMMA properties were obtained from Vesenjak

et al. [62]. The projectile was discretized by means of eight-nodes solid hexaedron Lagrangian

elements with reduced integration. The elements size of the projectile, although relatively bigger

than that of the wall elements in the impact area, allows to solve in a properly way the contacts

with the tank walls. The material parameters used are detailed in Varas et al. [57].

B. Model for the Fluid

As a result of the HRAM phenomenon, the fluid inside the tank undergoes too large deformations

to consider a pure Lagrangian description as an appropriate option. For this reason, a multi-material

ALE formulation with a second order accurate advection method has been chosen for the treatment

of the fluid. The ALE formulation allows the motion of the mesh independently of the material flow

without distortion problems.

Fluids inside and outside the tank (water and air) are discretized by means of eight-node solid

hexahedron elements with an ALE formulation. It is necessary to model the air surrounding the tube

in order to allow the water to flow into it, and so deforming the walls of the structure. To achieve

that, water and air meshes have to share the same nodes at their interfaces. Four discretization

densities were analyzed in order to achieve an optimal fluid mesh density. It was found that the

finer meshes presented instability and leakage problems at the fluid/solid interfaces. To avoid these

problems, numerous iterations modifying some of the coupling parameters were made, and finally

it was decided to modify the mesh size in order to match the Lagrangian one at the interfaces.

This change in the mesh helped to control the leakage problems. Finally, the fluid mesh has 123038

elements in the partially filled tube cases and 61519 in the completely filled ones (Fig. 3).
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Fig. 3 Mesh of the fluids. Left: partially filled tube. Right: completely filled tube.

The water was modeled using a viscous constitutive equation in which the stress tensor is a

function of the dynamic viscosity, the deviatoric strain rate and the pressure. The pressure in the

water is calculated as a function of the compression, and of the internal energy per unit volume,

using the Mie-Grüneisen Equation of State. The required properties and constants of water were

obtained from [63]. The same constitutive equation as in water and a Linear Polynomial Equation

of State [64] were used to model the air. The mentioned Equation of State is linear in the internal

energy and polynomial in the compression. Further details and the parameters used are given in

[57].

The fluid-structure interaction, for both projectile/fluid and walls/fluid, is achieved by means

of a penalty-based ALE-Lagrangian coupling algorithm implemented within LS-DYNA. This allows

the fluid material to flow around the structure, but prevents its penetration into the mesh of the

structure applying penalty forces to the fluid and the structure. The penalty forces are proportional

to the penetration depth and penalty stiffness, behaving like a spring system.

The numerical model was validated with the experimental results of Varas et al. [56]. A

complete and detailed description of the validation can be found in [57].

III. Analysis of the numerical results for fully filled tubes

The results obtained by means of the validated numerical model will be analyzed in order

to achieve a greater understanding of the HRAM phenomenon. Due to the complexity of the

phenomenon, the analysis of each result in an independent way is little enlightening, because most
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of them are interrelated, so that each result can be used as an explanation of others. Therefore,

initially a general case has been analyzed, showing all its results in order to explain certain aspects

of the HRAM, which will be common to other cases. Subsequently some peculiarities observed in

the remaining cases will be discussed.

On this section, the results concerning the case of a completely filled tube impacted at 900

m/s are analyzed. This analysis will help to have a complete and detailed view of the HRAM

phenomenon. Similar energy balances and momenta could be found at other impact velocities.

It has to be mentioned that all curves in the following Figures of sections III and IV correspond

to half a tube (obtained taking into account the symmetry of the quarter a tube model for the fully

filled case) and half a projectile, so that the results can be easily compared.

A. Energy time histories

Figs. 4 and 5 depict the kinetic and internal energies of the different parts considered on the

problem: projectile, water and the walls of the tube. The internal energy in the fluid must be

associated to its volumetric strain due to the pressure increase, while it must be related to the

plastic strain in the walls of the tube. Since the projectile has been modeled as elastic, its internal

energy has not been taken into account on this analysis. The lateral wall referred in some of the

following figures correspond to one of the walls of the tube where the projectile does not impact

(Fig. 2, Left).

Figs. 4 and 5 show the existence of a first stage that corresponds to the passage of the projectile

through the tube. In that stage, the kinetic energy of the projectile is transferred to the fluid and,

through it, to the tank walls. The exit of the projectile occurs at t=0.3 ms. At that moment, the

work done over the group tube-fluid ends and, from then, there is a transfer between the different

terms of energy of structure and fluid.

Most of the energy is related to the fluid once the projectile exits the tank, as shown in Figs. 4

and 5. This is mainly due to the velocity that the projectile has transmitted to the water, rather

than to the water pressure increase. After the exit of the projectile, however, the kinetic energy in

the fluid decreases whereas the internal energy due to pressure keeps a constant and higher value for
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Fig. 4 Time history of energies in projectile and fluid. Fully filled tank and V=900 m/s.
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Fig. 5 Time history of energies in aluminium walls. Fully filled tank and V=900 m/s.

a much longer time than the one required by the projectile to pass through the tank. An increment

of the internal energy of the water due to the cavity growth during the analyzed period could be

expected; however this pressure increment is (due to the cavity growth) rapidly redistributed along
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the tube. This assessment has been checked by means of the pressure contours in the fluid. The

analysis of experimental images in [57] shows that the cavity grows very quickly during the projectile

penetration on the fluid, while it slows down when the projectile is about to exit the tank. On the

other hand, once the cavity reaches its largest size, it is maintained during a relative long time until

the collapse process begins. It must be noted that, after the shock phase, the increase of energies

in water is related to the formation of the cavity; its growth rate to the kinetic component and its

size to the internal component or pressure. Thus, the numeric results of time history of energies in

the fluid are consistent with the experimental observations of cavity evolution.

In Fig. 4 it can also be observed that the kinetic energy in the water begins to decrease before

the exit of the projectile, which means that the fluid has already started to transmit part of its

energy to the surrounding walls. On this first stage, the exit wall is the most affected, which would

justify its pre-stressing before being impacted by the projectile. Later on it will be shown that the

effect of the projectile contact on the entry wall is negligible for its acceleration and deformation.

For a better understanding of the structural response of the tube it is necessary to analyze

in detail the internal and kinetic components of energy in the different walls. In Fig. 6 it can be

observed that during the stage of projectile penetration, the kinetic energy of the walls is greater than

the deformation energy, as happened in the fluid. This fact confirms the essentially dynamic nature

of the first stage of HRAM, with the prevalence of inertial forces, against a behavior characterized

by a more uniform pressure value in the fluid and slower walls deformation once the projectile has

exited the tank.

B. Pressure contours

At the beginning of the cavity growth stage, the fluid pressure affects the entry wall, increasing

its kinetic energy and deformation before any other wall of the tube. The lateral and the exit

walls begin to accelerate when the pressure wave reaches each of them (t≃0.054 ms y t≃0.104

ms respectively). Thereafter, the kinetic energy increases up to t≃0.12 ms, instant in which the

growth ceases both in the lateral and the exit wall. Later on the kinetic energy increases in the exit

wall until a maximum shortly before the exit of the projectile. For a better understanding of this
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Fig. 6 Detail of the time history of energies in aluminium walls. Fully filled tank and V=900

m/s.

phenomenon, Fig. 7 shows the contours of pressure generated in the fluid during the advance of the

projectile. It has to be noted that different contour scale has been used for each image; this allows

a better visualization of overpressure zones.

The pressure contours clearly show the existence of two zones of overpressure [26]. The first one

(zone “A” in Fig. 8) advances at the speed of sound in the fluid and is bounded between a spherical

front centered on the impact point and a rarefaction front that appears as a result of the interaction

with boundary conditions on the entry wall. The second zone (zone “B” in Fig. 8) advances in

front of the projectile, at the same speed, and its value and extension decreases as the projectile

decelerates [27]. Zone “A”, due to its larger extension, affects both the exit and the lateral wall.

Zone “B”, with a smaller size area, mainly affects the exit wall when the projectile approaches it,

and in a smaller extent the lateral walls. Fig. 7 clearly allows to observe the instants in which the

overpressure wave “A” reaches both the lateral and the exit wall. Those instants match with the

time determined from the kinetic energy curves for the same events. On t≃0.12 ms the exit wall is

no longer affected by the first over-pressure front, which would explain the plateau observed in the

kinetic energy of the exit wall. Then, around t=0.2 ms the over-pressure front “B” begins to act

12



Fig. 7 Pressure contours in the fluid at 0.05, 0.10, 0.11, 0.12, 0.14 y 0.20 ms. Fully filled tank

and V=900 m/s. Pressure units in GPa.

on the exit wall and causes a much higher kinetic energy rising than before. Therefore, the second

over-pressure front seems to have more influence than the initial wave on the exit wall deformation.

Finally, the maximum kinetic energy value on the exit wall occurs at the instant in which the

projectile contacts it, decreasing from that moment and progressively turning into internal energy.

It is worth to mention that the gap between the over-pressure zones “A” and “B” becomes more

noticeable at lower impact velocities because the first front always moves at the same speed, while

the second one travels at the projectile velocity. In those cases, the reduced growth phase of kinetic
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energy on the entry and exit walls is longer. Regarding the lateral walls, they are affected by both

over-pressure fronts “A” and “B” because of their proximity to the area of influence of the second

front. On fuel tanks with lateral walls which are further away from the projectile trajectory, the

second over-pressure front “B” should have no influence on their deformation.

Fig. 8 Sketch of the overpressure zones in the fluid.

After the exit of the projectile, the walls continue their deformation due to the overpressure

caused by the cavity formation. This overpressure is less intense than the overpressure generated by

the two aforementioned fronts (as can be seen on the pressure values obtained both numerically and

experimentally in the previous works of Varas et al. [56, 57]), but of greater temporal extent due

to the fact that is not related neither to the sound waves propagation nor to the projectile advance.

Therefore, its effect on the tube walls deformation is important (Fig. 5).

C. Momentum time histories

In addition to the pressure contours, the analysis of the momentum time history, both in the

fluid and in the structure, allows to obtain information of interest for a better understanding of

the HRAM phenomenon. From now on, the wall momenta that will be shown correspond to the

perpendicular direction to each of them. Fig. 9 shows the momentum of projectile, water, entry

wall and exit wall along the advance direction of the first one (Z-direction). First of all, it should

be highlighted the negative sign for momentum on the entry wall, which can only be due to the

pressure exerted by the fluid, bearing out the small effect of the contact of the projectile in what its
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acceleration and deformations concerns. The entry wall begins to move from the beginning of the

impact because of the over-pressure that the projectile penetration causes in the fluid. Regarding

the exit wall, the momentum on Z-direction begins to rise when the mentioned wall is reached by

the overpressure front “A” (t≃0.104 ms). Once the whole wave has reached the wall, the momentum

increases in a moderate way until the overpressure “B” affects the wall (t≃0.2 ms), causing a high

increase. When the projectile contacts the exit wall, the “B” front stops its effect on the wall and

the momentum stops increasing. It is interesting to note that the stages of increasing momentum

in the exit wall match with the stages of decreasing momentum in the fluid, proving the transfer

of momentum between the water and the aluminum wall. After the exit of the projectile, the

momentum in water increases again due to the exit of the fluid through the hole produced by the

projectile.
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Fig. 9 Momentum of projectile, water, entry and exit walls in the direction of projectile

advance. Fully filled tube and V=900 m/s.

Once the behavior of structure and fluid in the impact direction has been analyzed, the mo-

mentum of fluid and lateral walls in the perpendicular direction to the latter will be studied (Fig.

10). It has to be noted that the Y-momentum of water corresponds to the upper half of the volume

(quarter of a tube) to avoid nil values due to symmetries. It can be observed that the values of
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Fig. 10 Momentum of water and lateral wall in the perpendicular direction to projectile

advance. Fully filled tube and V=900 m/s.

momentum in the fluid in the considered directions are higher than in the Z-direction due to the

cavity formation, since a great amount of water is displaced essentially in a perpendicular direction

to the path of the projectile. Particles located ahead of the projectile move at maximum velocity

in Z-direction, but the volume that these particles take up is much smaller than the volume that

the cavity moves in the other two directions (Fig. 11). Also, some differences in the evolution of

the momentum in direction X and Y (perpendicular directions to projectile advance) in water are

observed. The fluid continues its movement in X-direction due to the great distance of a boundary

on that direction, while the momentum in the Y-direction decreases because of the presence of the

lateral wall. The momentum on that wall begins to increase at t≃0.05 ms, instant in which the

overpressure front “A” reaches the mentioned lateral wall (Fig. 7). When the influence of the “A”

front finishes (t≃0.1 ms) a sudden change in the slope of the curve can be observed . In addition,

it can also be seen that the momentum of the lateral wall in the Y-direction is larger than the

momentum of entry and exit walls in the Z-direction (Fig. 9); this is due to the higher value of

momentum of water in the Y-direction, with which the lateral wall exchanges momentum.
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Fig. 11 Sketch of the velocity zones in the fluid.

The analysis performed in this section, regarding a completely filled tube impacted at 900 m/s,

can be applied to the rest of the cases taking into account certain special features that are exposed

in the next section for partially filled tubes.

IV. Analysis of the numerical results for partially filled tubes

In order to analyze the response of partially filled tubes impacted at different velocities, the

results obtained for the case of a 75% filled tube impacted at 900 m/s will be shown. The qualitative

aspects of this analysis can be extrapolated to the rest of configurations with partial filling.

A. Energy time histories

Figs. 12 and 13 show some special features compared to completely filled tubes. Unlike in 100%

filled tubes, where the lateral walls are in contact with the fluid from the beginning and they behave

in the same way to the impact, partially filled tubes show differences between the dry upper lateral

wall (which is not in contact with water at the beginning) and the wet lower lateral wall (which is

in contact with the fluid from the beginning).

The main difference of a partially filled case when compared to a completely filled tube is a

slow decrease in the kinetic energy of water between t≃0.24 ms and t≃0.624 ms (Fig. 12). That

is the time period from the instant in which the projectile contacts the exit wall to the instant in

which the water reaches the dry upper lateral wall [56]. During this time the water loses kinetic
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Fig. 12 Time history of kinetic energy in projectile and fluid. Completely and 75% filled tank,

V=900 m/s.
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Fig. 13 Time history of energies in aluminium walls. 75% filled tank and V=900 m/s.

energy at a slower rate than if it was confined, due to the fact that the water layer generated over

the projectile can freely move upwards to fill the existing void in the tube. Regarding the three
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remaining walls: wet lower lateral wall, entry wall and exit wall (Fig. 13), it can be observed the

same trends as in the case of completely filled tubes (Fig. 5), but with smaller values. This is due,

firstly, to the lower pressure in the fluid, compared to a completely filled tank situation, as a result

of the presence of an initial void volume. In addition, the entry and exit walls have less surface of

contact with water, so the energy transmitted by the fluid is even lower. Thus, in a partially filled

tank configuration, the HRAM affects in a smaller way the structure of the fuel tank.

Fig. 14 depicts in more detail the energy evolution in the walls. The kinetic energy in the dry

upper lateral wall increases before water impacts it (t≃0.624 ms). This is because the mentioned

wall begins to move towards the inside of the tube because of the outward deformation of the

adjacent walls [55]. Once the water layer generated over the projectile reaches the dry upper wall

and begins to transmit part of its energy, the kinetic component on the dry upper wall increases

until it reaches a maximum value, which corresponds to the instant when the entire surface has

been reached by the water. The other walls show similar trends as observed in the completely filled

tube.
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Fig. 14 Detail of the time history of energies in aluminium walls. 75% filled tank and V=900

m/s.
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B. Momentum time histories

As in the case of completely filled tubes, Fig. 15 shows the momentum of projectile, water,

entry and exit walls in the projectile advance direction in order to analyze the structural response

of the tubes. The momenta for the partially filled cases correspond to the model of half tube used

in the simulations. Similar trends to those corresponding for a completely filled tube (Fig. 9) are

observed, so the analysis performed in that section can be perfectly applied in this case.

Fig. 15 Momentum of projectile, water, entry and exit walls in the direction of projectile

advance. 75% filled tube and V=900 m/s.

Fig. 16 depicts the momentum of lateral walls and water in the perpendicular directions to

projectile advance (X and Y). The momentum of fluid increases until the water contacts the dry

upper lateral wall (t≃0.6 ms). Until that instant, the momentum of the dry wall has negative values

due to the outward deformation of the adjacent walls that causes the motion of the dry wall towards

the inside of the tube, as it was already mentioned. The upper dry wall changes its displacement

direction when impacted by the fluid and so, the momentum towards the outside of the tube is

increased. The momentum of the water in that direction (Y) stops increasing at around t=1 ms

since the fluid is completely in contact with the dry upper wall. That time corresponds to the

instant in which the kinetic energy of the upper dry wall is maximum. The momentum of the fluid
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Fig. 16 Momentum of water and lateral walls in the perpendicular direction to projectile

advance. 75% filled tank and V=900 m/s.

in that direction continues increasing because of the displacement of the water towards areas further

from the impact trajectory.

Although a similar behavior has been observed in all cases of partially filled tubes, there is a

difference in the kinetic energy of the dry upper wall. In the tube filled at 60% the maximum value

of kinetic energy is reached before than in the case of the tube filled at 75%. This is due to the fact

that, for a given impact velocity, it takes less time to the fluid to reach the dry upper wall when the

tube has less fluid as it was observed experimental [56] and numerically [57] (Fig. 17).

V. Conclusions

The analysis of the results obtained from the numerical simulations has allowed to achieve a

better understanding of the Hydrodynamic Ram. The tank walls deformation (effect) has been

associated to the impact of the projectile (cause) by means of a detailed study of the interactions

between these two solids and the fluid. This study has allowed to identify the process stages, the

events which marked the beginning and the end of each of them and their respective influence in the

permanent displacement of the structure. The main conclusions of this work could be summarized
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Fig. 17 Velocity contours, impact velocity 900 m/s. Left: 75%. Images at 0.03, 0.28 y 0.60

ms. Right: 60%. Images at 0.03, 0.30 y 0.38 ms.

as follows:

• The tube walls deformations are due to the fluid pressure; the effect of projectile contact on

the aluminium walls is negligible. Only in the exit wall the impactor is responsible of the

petalling.

• The first stage of the Hydrodynamic Ram phenomenon presents essentially a dynamic nature,

with the prevalence of inertial forces, against a behavior characterized by a more uniform
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pressure value in the fluid and slower walls deformation once the projectile has exited the

tank.

• The exit wall is affected by the two overpressure fronts (A and B zones), while the lateral

walls are affected mainly by the first front (A Zone); this results on smaller deformations on

the lateral walls compared to the exit wall.

• The transferred momentum from the fluid to the walls during the drag and cavitation stages,

is the most important factor in the tube deformation. In partial filled tubes, the fluid moves

normally to the walls in regions close to the impact point, while it moves parallel to the walls

in regions far from the impact point.

• The cavity growth generates a third overpressure stage inside the tube. Although its intensity

is smaller than the other two overpressure fronts (A and B zones), its duration is longer in

time causing the main plastic deformations of the walls.

• In partially fluid filled tubes, the plastic deformation of the dry lateral upper wall is due to the

impact of the water layer created by the cavity growth. The magnitude of this deformation is

proportional to the kinetic energy of this layer, which is higher for less filled tubes.

• The kinetic energy of the projectile is transferred to the structure by means of the cavity; hence

any method which avoid the formation of the cavity, will diminish the structural damage and

prevent the consequent catastrophic failure.

• The size of the two overpressure fronts, and so the effect on the surrounding zones, should be

taken into account when designing the geometry and dimensions of a fuel tank which could

be exposed to a high velocity impact.
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