
Learning Pedagogical Policies from Few Training Data
Ana Iglesias and Paloma Martı́nez and Ricardo Aler and Fernando Fernández 1

Abstract.
Learning a pedagogical policy in an Adaptive Educational System

(AIES) fits as a Reinforcement Learning (RL) problem. However, to
learn pedagogical policies requires to acquire a huge amount of ex-
perience interacting with the students, so applying RL to the AIES
from scratch is infeasible. In this paper we describe RLATES, an
AIES that uses RL to learn an accurate pedagogical policy to teach
a course of Data Base Design. To reduce the experience required to
learn the pedagogical policy, we propose to use an initial value func-
tion learned with simulated students, whose model is provided by an
expert as a Markov Decision Process. Empirical results demonstrate
that the value function learned with the simulated students and trans-
ferred to the AIES is a very accurate initial pedagogical policy. The
evaluation is based on the interaction of more than 70 Computer Sci-
ence undergraduate students, and demonstrates that an efficient guide
through the contents of the educational system is obtained.

1 Introduction
Distance education is currently a hot research and development
area. Traditionally, the courses in educational systems consist of
static pages without student adaptability. However, since 1990s, re-
searchers began to incorporate adaptability into their systems. Sev-
eral Machine Learning (ML) techniques are used in educational
systems, mainly, to model the students (personal scheduling rules
and preferences): memory-based learning [11], supervised inductive
learning [12], deductive learning [15], etc. Furthermore, different
ML techniques are used to choose the best pedagogical strategy to
be applied in each moment, like neural nets [13].

To represent the pedagogical knowledge based on Reinforcement
Learning (RL) [1, 9] allows the educational system to adapt tutoring
to students’ needs. Thus, the system is able to sequence its content
in an optimal way avoiding the definition of all static and predefined
pedagogical policies for each student. Applying RL in AIES can be
seen as social navigation in adaptive hypermedia systems [7], char-
acterized by the use of other people’s experiences in order to acquire
knowledge for navigation.

However, RL algorithms need a great amount of experience in or-
der to converge to a good pedagogical policy in AIES [1]. More-
over, in the initial trials of the learning, RL systems behave almost
randomly, according to a value function randomly initialized. In an
educational system, to teach the students in a reasonable way in every
moment is essential, because the students could get bored and could
stop working with the system.

Some works have demonstrated that Reinforcement Learning can
be sped up if it uses knowledge previously acquired. For instance, ad-
vice rules [14] can be used to recommend that an action is preferred

1 Universidad Carlos III de Madrid, Spain, email: {aiglesia, pmf, aler, ffer-
nand}@inf.uc3m.es

to another in a specified set of states.
Transfer learning refers to the injection of knowledge from pre-

viously learned problems. Policy Reuse probabilistically reutilizes
policies learned for similar tasks [8]. The transfer of learning can also
be performed by transferring the Q-function instead of the policy.
These algorithms directly transfer the Q values associated to a pol-
icy that solves a task to initialize a new Q function in a new learning
process [2]. However, if the source and target tasks are very hetero-
geneous, transfer learning also requires expert knowledge to perform
the transfer [16].

Previous works in AIES have demonstrated that it is possible to re-
duce the time spent by the system in learning an optimal pedagogical
policy when it has been previously initialized with another pedagog-
ical strategy, even when this initialization does not completely match
with the actual simulated students’ needs [9].

In this paper, we propose to initialize the pedagogical policy of the
educational system using simulated students, transferring the knowl-
edge of their interactions with the system. The simulated students
behavior is modelled as a Markov Decision Process, according to the
information provided by a human expert. Thus, the system begins
teaching the actual students based on a pedagogical policy according
to the simulated student’s model. Then, while the current students
interact with the system, the pedagogical strategy is tuned according
to their real needs.

In this paper, RLATES (Reinforcement Learning in Adaptive and
inTelligent Educational System) is described. We focus on its peda-
gogical module, where RL has been applied in order to provide the
students with direct navigation support through the system’s con-
tents. We demonstrate that the pedagogical policy learned with the
simulated students is accurate and allows to teach the contents of the
tutor to the students. We also demonstrate that RLATES is able to
tune the initial pedagogical strategy according to the actual students’
needs.

A second system has been implemented in order to compare the
adaptation capability of RLATES. This system, called IGNATES (In-
direct Guidance iN Adaptive and inTelligent Educational Systems)
provides indirect navigation support, but the system does not learn
how to teach better to the students.

The paper is organized as follows: first, the architecture of
RLATES is summarized in Section 2. In Section 3, the pedagogi-
cal module of RLATES is formalized as a reinforcement learning
problem. Then, the experiments setup is described in Section 4 and
the experimental results are presented in Section 5. Finally, the main
conclusions are given in Section 6.

2 RLATES Architecture

RLATES adopts the typical structure of an adaptive educational sys-
tem, composed of four well differentiated modules: the student, do-

1

main, pedagogical and interface modules [3].
The domain module contains all the characteristics of the knowl-

edge to teach. RLATES adopts a hierarchical knowledge structure,
where each topic (knowledge item) has been divided into sub-topics,
and these into others sub-topics, and so on. At the same time, each
node of the tree contains tasks (definitions, examples, problems, ex-
ercises, etc.) in several formats (image, text, video, etc.). Figure 1
shows two examples of the knowledge trees. The first one shows the
different tasks that can be executed for each topic. The second one
only shows the topics.

The student module contains all important information about the
student in the learning process: goals, student background knowl-
edge, personal characteristics, historical behavior, etc. The user
model is defined as the explicit representation of learning charac-
teristics of each student. User models are usually used for looking
ahead in the student’s future behavior, his/her preferences or what-
ever s/he needs. We have represented the student characteristics us-
ing the overlay model [4], where the domain module overlays the
student module showing when the student knows or not each domain
topic.

The pedagogical module decides what, how and when to teach the
domain module contents, following pedagogical decisions according
to the user needs. Based on the pedagogical module, the system de-
cides which is the best way to teach the knowledge items and tasks
to each student (which is the best sequence of topics and tasks). The
definition of this problem as a Reinforcement Learning problem al-
lows the system to learn to teach each student based only on previous
interactions with other students with similar learning characteristics.
Moreover, the system is not only able to choose the next tasks to
teach to the student, but also chooses the format in which the knowl-
edge is going to be taught. Section 3 explain in detail how Reinforce-
ment Learning is applied to the RLATES pedagogical module.

Finally, the interface module facilitates the communication be-
tween the system and the student. The adaptive techniques used in the
interface module of the RLATES system are described in Section 4.2,
where direct navigation support (based on the pedagogical module)
and indirect navigation support (based on the domain knowledge) are
distinguished.

3 Reinforcement Learning applied to Educational
Systems

Reinforcement learning deals with agents connected to their envi-
ronment via perception and action. On each step of the interaction,
the agent observes the current state, s, and chooses an action to be
executed, a. This execution produces a state transition and the envi-
ronment provides a reinforcement signal, r, indicating how good the
execution of the action has been to solve the task. The final goal of
the agent is to choose the actions that tend to increase the long-run
sum of values of the reinforcement signal, r [10].

The reinforcement learning components in the educational system
environment are briefly defined next:

1. State space (S): A state is defined as the description of the stu-
dent’s knowledge. It is represented by a vector of values related to
the domain knowledge items (internal nodes of the domain knowl-
edge tree). The i-th value of the vector represents the knowledge
level of the student about the i-th topic. To maintain a reduced size
of the state space, these values are defined in the set {0, 1}. The
zero value indicates that the student does not know the item, and

the one value indicates that the item has been correctly learned2.
2. Action space (A): The actions that the tutor can execute are to

show the knowledge items defined in the leaves of the knowledge
tree.

3. Transition function (T : S × A → S): This function indicates
how the system changes its state when an action is executed. In an
educational system, an student could change his/her knowledge
state when a knowledge item is shown by the system (learning
the knowledge or not according his/her current learning charac-
teristics). The system perceives the current knowledge state of the
student by evaluating his/her knowledge by tests.

4. Reward (R : S × A → R): This function defines the reinforce-
ment signals (rewards) received from the environment. This re-
inforcement function supplies a maximum value upon arriving to
the goals of the tutor; i.e., when the student learns the total of the
system’s contents.

Using Reinforcement Learning, an action policy is learned by
systematic trial and error, guided by a wide variety of algorithms.
RLATES uses Q-learning [18] whose update equation of the Q ta-
ble is shown in equation 2. This equation updates the values of
the Q function only from experience obtained in the exploratory
process (notice that information provided by human experts -as is-
prerequisite relationships among topics- are not needed). The γ pa-
rameter controls the relative importance of future actions rewards
with respect to new ones, and the α parameter is the learning rate,
that indicates how quickly the system learns. Table 2 describes the
Q-learning algorithm adapted to the AIES domain.

Q-learning Algorithm Adapted to Educational Systems

• For each pair s ∈ S, a ∈ A, initialize the table entry Q(s, a).
• For each student

– Test the current student’s knowledge, obtaining s

– Repeat

∗ Select a knowledge tree leave, a, to show to the student, based on the
Boltzmann exploration strategy, shown in Equation 1.

P (a) =
ε

Q(s,ai)
τ

n∑
aj=1

ε
Q(s,aj)

τ

(1)

∗ Test the current student’s knowledge, s’.
∗ Receive the immediate reward, r. A positive reward is received when

the system goal is achieved. A null reward is obtained in any other case.
∗ Update the table entry for Q(s, a) according to Equation 2.

Qt(s, a) = (1− αt)Qt−1(s
′, a′)+

αt[R(s, a) + γ maxa′ Qt−1(s
′, a′)]

(2)

∗ Set s to the current student’s knowledge state, s′.

Until s is a goal state.

Figure 2. Q-learning adapted to AIES.

The quality of the selected exploration/exploitation strategy de-
termines the efficiency and efficacy of the learning process. A great

2 This simplification allows to represent the Q function as a table of (state,
action) pairs. Furthermore, the state space size is small enough, so no state
generalization methods are required.

2

.........

Def11 Def21

Topic 1: Basic Entity-Relationship Model

IntroductionsSubtopics TestsDefinitions

......

Topic 2: Entity

TDef. Int.

Topic 3: Attribute

Int11 Int21
T11 Tn1

Ex.

D12 D22

I12 I22

E12 E22

T12 T22

TDef. Int. Ex.

D13 D23

I13 I23

E13 E23

T13 T23
... ...

…………. Topic 1: Basic Entity/Relationship Model

Subtopics

Topic 2: Entity Topic 3: Attribute Topic 4: Relationship

Topic 5:
Cardinality

Topic 6:
Degree

Topic 7:
Connectivity

Topic 8:
Relationship

Attributes

(a) Domain Model A (b) Domain Model B

Figure 1. Domain Models

variety of exploration strategies could be used [17]. RLATES uses
the Boltzmann exploration policy, that estimates the probability of
choosing the action a according to the Equation 1, where τ is a pos-
itive parameter called temperature. If the τ is high, all the probabili-
ties of the actions have similar values and if the temperature is low, it
causes a great difference in the probability of selecting each action.

4 Experimentation Setup

In order to study the scalability of RLATES, we have performed ex-
periments with two different domain models. On the one hand, the
domain model A is shown in Figure 1(a) and contains three topics
(knowledge items) and 16 tasks, where most of the topics have 2 def-
initions, 2 introductions and 2 examples in two different formats: text
and video. On the other hand, the domain model B is shown in Fig-
ure 1(b), and presents eight topics. This domain module has fifty-two
tasks (not represented in the figure), where most of the topics have
two definitions tasks, two introductions tasks and four examples tasks
for execution in text and video formats.

Both domain models contain information about the Conceptual
Modelling in Database Design proposed by Chen in [5], where
Entity-Relationship Model is explained.

The next subsection describes how we perform the knowledge
transfer from the expert to the AIES by initializing the Q table.

4.1 Initialization

For the experiments, the table Q is previously initialized with infor-
mation about pedagogical strategies to teach Database Design. These
pedagogical strategies have been learned by reinforcement learning
using simulated students, which have been modelled as a Markov De-
cision Processes (the model is assumed to be markovian). The model
of the students has been built with information provided by a hu-
man expert about student learning characteristics and relationships
between topics in the Conceptual Modelling domain.

The predefined behavior of the simulated students is considered as
a Markov Decision Process (MDP), where it does not matter which
states the student has visited. That it, we assume that in order to get
to a particular state of knowledge, it does not matter the previous
history. This is a simplification, given the behavior of actual students

can hardly be called Markovian, but only the current student’s state
is necessary to know if he/she is able to learn the Web page’s content.

The MDP used to initialize RLATES for teaching the domain
model B is shown in Figure 3, where only the actions that pro-
duce state transitions appear. It is supposed that the student does not
change his/her state when a different action (an action that does not
appear in the state) is executed. That is to say, the students’ uncer-
tainty deals with by assessing the students’ understanding of the ma-
terial.

For the construction of the MDP, two kinds of information are pro-
vided by the expert: on the one hand, the is-prerequisite relationships
between topics; on the other hand, preferences on the students about
the format and the type of the contents. In Figure 3 we can see how
when the student is in the state0 (the students does not know anything
about Conceptual Modelling and the action12 in executed (a Web
page with an Introduction in text format about the Entity subtopic
is shown), the student will stay at the same state with a probability
of 75% and will change his/her state to the state1 (s/he obtained the
knowledge expected by the system for the topic Entity) with a proba-
bility of 25%. It is important to notice that the information provided
by the expert is only used to build the MDP.

0 112 (0.25) 3,4 (0.75) 16,17 (0.75)3 7 2353,55 (0.75)

55

36,39 (0.75)

119 70,72 (0.75)247 27,29 (0.75)47,49 (0.75)255

12 (0.75)
3,4 (0.25)

14(0.75)

14 (0.25)

16,17(0.25)

51 (0.75)

51 (0.25)

53,55 (0.25)
34 (0.75)

36,39 (0.25)

34 (0.25)
67 (0.25)

67 (0.75)
70,72 (0.25)25 (0.75)

27,29 (0.25)

25 (0.25)

45 (0.75)
47,49 (0.25)

45 (0.25)

Figure 3. MDP modelling simulated students behavior.

4.2 System Versions
In order to evaluate the advantages of adapting the teaching strategies
according to the student characteristics, we have implemented two
versions of the educational system. The first one is RLATES (Re-
inforcement Learning in Adaptive and inTelligent Educational Sys-
tems). The second one is IGNATES (Indirect Guide Navigation in
Adaptive and inTelligent Educational Systems).

3

The interface is very similar in both system versions, where the
content page is divided in two frames. The left frame contains the
system knowledge structured as a tree. The right frame shows to the
student a task (definition, introduction, example, etc.) about the cur-
rent topic (marked in bold red at the knowledge tree).

The main difference between RLATES and IGNATES is the navi-
gation support system, explained next for each system.

4.2.1 IGNATES system

The students interacting with the IGNATES system are guided in
an indirect way through the knowledge tree (notice that to guide in
an indirect way to the students is better than not guide at all). The
student chooses the next topic to visit, based only on the information
provided by the system and changes the color of the knowledge tree
links (using annotation). This information summarizes which topics
the student has previously visited (blue links), which are passed (the
student answered a test correctly; green links) and which ones are not
(orange links).

When the student clicks on a tree link (a specific topic), the sys-
tem shows him/her all the information about the topic (definitions,
introductions, examples, tests, etc.).

The interface of the IGNATES system is presented in Figure 4.
If the student clicks in the Next button the system shows him/her
the next topic of the knowledge tree, and if s/he clicks the Previous
button, the system shows him/her the previous topic in the knowledge
tree.

In this system, the student also decides when s/he is ready to an-
swer the test about a specific topic and when to finish the interaction.

Introductions Definitions Examples Problems

Next
Button

Previous
Button

Knowledge
Tree

Figure 4. IGNATES interface.

4.2.2 RLATES system

The students interacting with the RLATES system are guided directly
by the Next button at the interface right frame.

In this system, the students can see the knowledge tree, where the
color of the links follows the annotation rules of the IGNATES sys-
tem, but they can not click on these links. The students are only al-
lowed to click on the Next button to keep on learning.

When the student clicks the Next button, the system provides
him/her several links (see Figure 5(a)). Each link shows a specific
topic tasks (definition, introduction, example, etc.) in a specific for-
mat (image, text, etc.). The system chooses the five most appropriate

tasks for the student to learn according to the Reinforcement Learn-
ing algorithm and the Boltzmann exploration/exploitation policy pro-
vided by the pedagogical module, as defined in Section 3.

Then, the student decides which is the best task to learn next and
in which format to do it, based on the system recommendation, pro-
viding him/her an interaction control feeling.

When the student chooses a specific action, the system shows
him/her only two tags (see Figure 5(b)). The first tag shows the tasks
chosen for the student and the second one shows a test. The student
must answer the test in order to continue. Depending on whether s/he
passes the test or not, a knowledge state transition is generated. This
state transition is used to update the Q table.

It is important to notice that, in order to study the learning evolu-
tion of the system, the students interact with RLATES sequentially.
4.3 Experimentation Environment
More than seventy students have interacted with the system. All of
them are 2nd course undergraduate students of Computer Science at
the same university and, therefore, it is supposed that all of them have
similar level of knowledge about the system contents. Nevertheless,
their knowledge about the system material was confirmed with an
initial questionnaire about Database Design. In this way, we can as-
sume that all the students belong to the same cluster of students, and
modelled with the MDP provided by the expert.

In order to avoid the effects of the environment noisy variables,
some rules can be applied [6]. For instance, we have randomly dis-
tributed the students into experimentation groups, arbitrarily assign-
ing the students interaction time; the room where the students inter-
act with the system is quiet and it has no windows, posters or other
distractions; etc.

In addition, blind experiments have been carried out in order to
ease the subjectivity that the experimenter could add to the student
interaction. I.e., the responsible does not know the version of the
system the student is interacting with (RLATES or IGNATES).

5 Results
In the following experiments, we study the performance of RLATES,
and compare it with the performance of IGNATES. The performance
of both systems is measured by using three features: (i) the number
of web pages (actions) that they need to show to each student so
that the student learns the contents of the course; (ii) the total time
that each student is interacting with each system; and (iii) the final
student’s level of knowledge after the interaction with the systems.
The experiments have been divided in two sections, depending on the
knowledge tree used.

5.1 Domain Model A
Figure 6(a) shows the number of web pages required by RLATES
to teach the content of the AIES. The x-axis shows the number of
students that have interacted with the system. The figure is divided
in two parts. In the left, we show the learning performance when
simulated students interact with RLATES. The students follow the
model provided by the expert (and represented by an MDP). Initially,
RLATES needs around 90 actions to teach the content of the AIES
to the simulated students. However, after only 10 students interacting
with the system, the performance decreases down to 10 actions. After
the 150 simulated students, the pedagogical policy is tuned, obtaining
a performance of only 8 actions.Then, the Q table obtained with the simulated students is used to
initialize the pedagogical module of RLATES with actual students.
The result of the interaction with the actual students is shown in the

4

Action
Options

(1%) Practical element of ATRIBUTE topic

Definition

(a)Actions provided by the system (b) Content tags

Figure 5. RLATES interface.
Dominio A

0
10

20
30

40
50
60

70
80

90

100

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140
Simulated Student

N
um

be
r

of
 w

eb
 p

ag
es

 v
is

it
ed

1 2 3 4 5 6 7 8 9 10 11 12
Real Student

RLATES
IGNATES
RLATES
IGNATES
RLATES
IGNATES

Simulated Students Actual Students

N
um

be
r

of
W

eb
 p

ag
es

vi
si

te
d

0
5

10
15
20
25
30
35
40
45
50

1 3 5 7 9 11

Student number

T
im

e
sp

en
ti

n
 in

te
ra

ct
io

n

RLATES1
IGNATES

(a) Number of web pages (b) Time

Figure 6. Results of learning the Domain Model A.

right part of Figure 6(a). Notice that the unit of the x-axis differs
to the left part of the figure. For the initial students, RLATES needs
around 10 actions to teach the content of the AIES. However, while
the students are learning the tutor’s contents, RLATES also modifies
the pedagogical policy according to their actual learning characteris-
tics by tuning the Q table obtained with the simulated students. Then,
the policy is improved, and after a while, some students only need to
visit 3 Web pages.

For comparison, we also include in the right part of the figure the
number of Web pages visited by a different set of students that in-
teract with IGNATES. We can observe how the students interacting
with IGNATES visit more Web pages that students interacting with
RLATES, even when RLATES is still tuning the teaching policy.
That demonstrates that the pedagogical policy used by RLATES is
very useful for the students.

Figure 6(b) shows the time that the students take to learn the con-
tent of the AIES. We can conclude that the students interacting with
RLATES need less time (on average) to finish the interaction than the
students interacting with IGNATES. Again, this is an indication that
the RLATES teaching policy is good.

Finally, the level of knowledge of the students after their inter-
actions with the systems is studied. The students had to carry out
an exam with open-ended questions and they were evaluated by a

human tutor. The IGNATES student average qualification was 9.58
(marking from 0 to 10) and the RLATES student average qualifica-
tion was 9.62. With respect to the standard deviation, the IGNATES
student standard deviation between the interactions was 0.37 and the
RLATES student standard deviation was 0.35. Then, we can con-
clude that there is not significant differences between the student’s
final level of knowledge.

5.2 Domain Model B
Figure 7(a) shows the learning performance of RLATES and IG-
NATES teaching the domain module B. The figure follows the same
structure than Figure 6(a). We can observe that, after the simulated
students interact with the system, a performance of around 10 ac-
tions is achieved. Then, RLATES tunes the teaching policy according
to the actual students’ needs, obtaining an average number of Web
pages visited by the students of 44.73, with an average deviation of
26.65. Again, these values are much better than the ones obtained by
IGNATES (132.88 Web pages, with an standard deviation of 75.86).

Regarding the total time spent interacting with the system, in Fig-
ure 7(b) we can observe that the time spent in the interaction is not
directly proportional to the number of Web pages visited. For in-
stance, the RLATES curve shows that some students spent more time
reading and assimilating the Web page content than other students

5

0

50

100

150

200

250

300

350

400

450

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140
Simulated Student

N
um

be
r

of
 w

eb
 p

ag
es

 v
is

it
ed

1 3 5 7 9 11 13 15 17 19 21 23 25

Real Student

RLATES
IGNATES
RLATES
IGNATES
RLATES
IGNATES

Simulated Students Actual Students

N
um

be
r

of
W

eb
 p

ag
es

vi
si

te
d

Dominio B

student number

Ti
m

e
sp

en
t i

n
in

te
ra

ct
io

n

0

20

40

60

80

100

120

140

1 6 11 16 21 26

Student number

Ti
m

e
sp

en
t

in
 in

te
ra

ct
io

n

RLATES2
IGNATES

(a) Number of web pages (b) Time

Figure 7. Results of learning the Domain Model B.

and the curve does not seem to converge. The average time spent by
IGNATES students is higher (64.15 minutes) than the average time
spent by RLATES students (59.61 minutes). Furthermore, the stan-
dard deviation of the time spent in interactions is similar for both
systems, around 21 minutes.

As in the previous case, the students level of knowledge after their
interaction with the systems was studied. The average qualification
of the IGNATES students was 9.44±0.47 (marking from 0 to 10) and
the average qualification of the RLATES students was 9.54 ± 0.55,
so the differences are not significant either.

6 Conclusions
In this paper we describe the pedagogical module of an AIES as a
RL problem. The implemented system, called RLATES, updates the
pedagogical policy automatically according to the students’ needs
in each moment of the interaction. The pedagogical policy is based
only on previous experience with other students with similar learning
characteristics.

Due to the great amount of experience required in order for the
system to teach the students properly, we propose to initialize the
pedagogical policy with the one obtained using simulated students.
Simulated students are modelled as an MDP built based on informa-
tion provided by a human expert. With this transfer of knowledge,
the system is able to sequence its contents in an accurate way even
for the first student. Therefore, while it interacts with new students,
it tunes the teaching policy according to the actual students’ needs.

More than 70 undergraduate students have interacted with the sys-
tem, demonstrating that the system pre-training is useful for the ac-
tual students to learn the contents of the educational system, avoiding
to use pseudo-random teaching policies with the first students when
RL is applied from scratch.

In the future we will use a model-based reinforcement learning
strategy in order for the system to learn faster accurate pedagogical
strategies for the current students.

ACKNOWLEDGEMENTS
This work was supported by the project GPS (TIN2004/07083).

REFERENCES
[1] J. Beck, ADVISOR: A machine learning architecture for intelligent

tutor construction, Ph.D. dissertation, University of Massachusetts
Amherst, 2001.

[2] Michael Bowling and Manuela Veloso, ‘Bounding the suboptimality of
reusing subproblems’, in Proceedings of IJCAI-99, (1999).

[3] Hugh Burns and Charles Capps, ‘Foundations of intelligent tutoring
systems: An introduction’, in Foundations of Intelligent Tutoring Sys-
tems, ed., Lawrence Erlbaum Associates, 1–19, Hillsdale, N.J., (1988).

[4] B. Carr and I. Goldstein, ‘Overlays: A teory of modeling for computer
aided instruction’, Technical report, AI Laboratory, Massachusetts In-
stitute of Technology, Cambridge, MA. Technical Report AI Memo
406, (1977).

[5] P. Chen, ‘The entity-relationship model - toward a unified view of data’,
ACM Transactions on Database Systems, 1(1), (1976).

[6] D. Chin, ‘Empirical evaluations of user models and user-adapted sys-
tem’, User Modelling and User Adapted Interaction, 11(1), 181–194,
(2001).

[7] A. Dieberger, ‘Supporting social navigation on the world wide web’,
International Journal of Human-Computer Studies, 6(46), 815–825,
(1997).

[8] Fernando Fernández and Manuela Veloso, ‘Probabilistic policy reuse in
a reinforcement learning agent’, in Proc. 5th Int. Joint Conference on
Autonomous Agents and Multiagent Systems, (2006).

[9] A. Iglesias, P. Martı́nez, R. Aler, and F. Fernández, ‘Learning content
sequencing in an educational environment according to student needs’,
in Proc. 15th International Conference on Algorithmic Learning The-
ory, eds., S. Ben-David, J. Case, and A. Maruoka, pp. 454 – 463. LNCS,
(2004).

[10] Leslie P. Kaelbling, Michael L. Littman, and Andrew W. Moore, ‘Re-
inforcement learning: A survey’, Journal of Artificial Intelligence Re-
search, 4, 237–285, (1996).

[11] R. Kozierok and P. Maes, ‘A learning interface agent for scheduling
meetings’, in Proc. Int. Workshop on Intelligent User Interfaces, pp.
81–88, (1993).

[12] P. Langley and S. Ohlsson, ‘Automated cognitive modeling’, in Pro-
ceedings of the Second National Conference on Artificial Intelligence,
(1984).

[13] M. Lebowitz, ‘Experiments with incremental concept formation: Uni-
men’, Machine Learning, 2, 103–138, (1987).

[14] Richard Maclin, Jude Shavlik, Lisa Torrey, Trevor Walker, and Edward
Wild, ‘Giving advice about preferred actions to reinforcement learners
via knowledge-based kernel regression’, in Proceedings of the Twen-
tieth National Conference on Artificial Intelligence, (July 2005). To
appear.

[15] D. Sleeman and S. Brown, Intelligent Tutoring Systems. Computers and
People Series, Academic Press, London, 1982.

[16] Matthew E. Taylor and Peter Stone, ‘Behavior transfer for value-
function-based reinforcement learning’, in The Fourth International
Joint Conference on Autonomous Agents and Multiagent Systems, (July
2005). To appear.

[17] Sebastian Thrun, ‘Efficient exploration in reinforcement learning’,
Technical Report C,I-CS-92-102, Carnegie Mellon University, (Janu-
ary 1992).

[18] C. J. C. H. Watkins, Learning from Delayed Rewards, Ph.D. disserta-
tion, King’s College, Cambridge, UK, 1989.

6

