
This is a postprint version of the following published document:

Carretero J., Vasile-Cabezas M., Sosa V. (2019)
Adaptive Application Deployment of Priority Services
in Virtual Environments. In: Montella R., Ciaramella
A., Fortino G., Guerrieri A., Liotta A. (eds) Internet
and Distributed Computing Systems. IDCS 2019.
Lecture Notes in Computer Science, vol 11874.
Springer, Cham.

DOI: 10.1007/978-3-030-34914-1_5

© Springer Nature Switzerland AG 2019

Universidad
uc3m Carlos Ill

de Madrid
0 -Archivo

https://doi.org/10.1007/978-3-030-34914-1_5

Adaptive Application Deployment of
Priority Services in Virtual Environments

Jesus Carretero(B), Mario Vasile-Cabezas, and Victor Sosa

Computer Science and Engineering Department,
University Carlos III of Madrid, Madrid, Spain

jesus.carretero@uc3m.es

Abstract. This paper introduces an adaptive application deployment
service for virtualized environments (named DECIDE). This service facil-
itates the definition of customized cluster/cloud environment and the
adaptive integration of scheduling policies for testing and deploying con-
tainerized applications. The service-based design of DECIDE and the
use of a virtualized environment makes it possible to easily change the
cluster/cloud configuration and its scheduling policy. It provides a differ-
entiated service for application deployment based on priorities, accord-
ing to user requirements. A prototype of this service was implemented
using Apache MESOS and Docker. As a proof of concept, a federated
application for electronic identification (eIDAS) was deployed using the
DECIDE approach, which allows users to evaluate different deployment
scenarios and scheduling policies providing useful information for deci-
sion making. Experiments were carried out to validate service functional-
ity and the feasibility for testing and deploying applications that require
different scheduling policies.

Keywords: Application deployment · Resource management ·
Application scheduling

1 Introduction

Virtualization technologies provide a way to share resources and to create
portable, scalable and elastic applications. Virtual machines facilitate the
dynamic building of clusters or clouds. Containers are a lightweight virtual-
ization technique that has demonstrated to be a scalable and high-performance
alternative to virtual machines for a more portable and faster deploying of appli-
cations. Apache Mesos is a resource manager that provides a two-level scheduling
mechanism. Mesos slaves (agents) report to master the amount of free resources
they can provide and master decides how many resources to offer to the
framework, i.e., the system that manages and executes applications. The deci-
sions about which application should receive the next resource offer is based on
the Dominant Resource Fairness (DRF) algorithm, which is a solution to the
problem of fair resource allocation in a system sharing different resources (cpu,

1

memory, storage, etc). However, applications like the federated electronic iden-
tification system presented in require a different treatment, where resource
fairness is not the main concern. Mesos allows customizing its scheduling mod-
ule, what motivated us to implement DECIDE. The main contributions of this
paper are: (a) design and implementation of a web-based application deploy-
ment service (DECIDE) that facilitates the creation of customized cluster or
cloud scenarios; (b) implementation of an adaptive deployment service based
on user requirements; and (c) prototype of a federated electronic identification
system that demonstrates the feasibility of using the DECIDE service and its
benefits.

This paper is structured as follows, Sect. presents related work, Sect.
introduces the DECIDE architecture and its adaptive deployment algorithm.
Sectiondescribes our use case. Section depicts experiments and obtained
results and Sect. presents conclusions.

2 Related Work

Nowadays, new platforms for resource sharing in virtualized cluster or clouds,
such as Mesos, DC/OS (Mesosphere), Kubernetes and Swarm have arisen.
Scheduling is a fundamental part that determines quality of service aspects such
as response time, availability, service continuity, etc. Mesos is a platform for
sharing commodity clusters between multiple diverse cluster computing frame-
works, such as Hadoop and MPI. Mesos manages resources, but delegates control
over scheduling to the frameworks using a decentralized scheduling model. Mesos
resource allocation is called Hierarchical DRF and it is based on online domi-nant
resource fairness (DRF), which provides fairness with dynamic resource
partitioning harmonizing the execution of heterogeneous workloads (in terms
of resource demand) by maximizing the sharing of resources. The major prob-
lem with this policy is that a mistake in the allocation of mandatory resources
could leave a high number of tasks pending for an indeterministic duration, which
is not possible in prioritized system with some quality of service. DC/OS is a
distributed system, cluster manager, container platform, and an operating
system . It includes two built-in task schedulers, Marathon (applications) and
Metronomo (jobs), and two container runtimes (Docker and Mesos). Docker is a
Linux based lightweight container that allows different applications to run
isolated from each other but safely share the machine’s resources. Docker provides
a good basis to run composite applications in the cloud. Therefore, a number of
tools emerged that claim to solve the problem. The paper classifies the solutions
to deploy a container management solution for multiple hosts and presents they
own suite. One possible solution to provide complex environment is to manage
dockers using Mesos, as shown in. Kubernetes is an open-source platform created
by Google for container deployment operations. It wraps one or more containers
into a higher-level structure called a pod, wherein resources are shared. Its
scheduler ensures that pods are only placed on nodes that have sufficient free
resources. Swarm [9] is an open-source container platform that is

2

the native Docker clustering engine. Swarm turns a pool of Docker hosts into a
virtual, single host. Swarm has a single scheduling strategy, called spread, which
attempts to schedule a task based on an assessment of the resources available on
cluster nodes. Most of the frameworks look for fairness in resource allocation [8],
which can be contradictory with a strict priority scheduling policy. Our proposal
faces this problem, that we have not seen solved in the literature.

3 Adaptive Deployment of Priority Services in Virtual
Environments

This section presents the architecture and algorithm of our proposal of an adap-
tive application deployment service for virtual environments named DECIDE.

3.1 Architecture and Tools

We have developed a prototype of DECIDE as an upper layer of a Mesos cluster
with a virtualized environment supported by Docker. However, our service-based
architecture, shown in Fig. 1, allows to use a different cluster environment, for
example Kubernetes [1]. The components of DECIDE are: (1) Web-based man-
ager to configure Mesos clusters and to instantiate frameworks in the virtual
environment; (2) adaptive deployment service with different scheduling poli-
cies which is integrated as framework of Mesos; and (3) application manager to
instantiate containers (applications) according to the deployment policies. The
most important tools used are: (a) Apache Mesos to manage cluster resources;
(b) Dockers as a container platform for deploying applications; (c) Apache Zoo
Keeper to provide fault tolerance; (d) HTML5+CSS3+JS (front-end) and Go
language (back-end) to develop the deployment services manager and the client
simulator.

The 6 main steps (see Fig. 1) to deploy applications are: (1) execution of
the web-based interface for user to select the cluster/cloud nodes that com-
prise the virtualized environment; (2) reading the configuration file that will be
sent to MESOS for setting the node roles (MESOS master, agent and Apache
Zookeeper); (3) selection of an available scheduling policy; (4) selection of the
applications configuration to be sent into MESOS; (5) reading of the previous
application configuration profiles to download the container images into the clus-
ter/cloud; and (6) scheduler execution until the whole workload is over.

3.2 Algorithm

The adaptive deployment service includes a generic framework implemented as
a decoupled framework of Mesos (Mesos scheduler). The scheduling algorithm
determines the order in which applications will be deployed in the containarized
infrastructure (Mesos + Docker) according to the scheduling policy configured.
The generic framework can be updated to modify the scheduling policy according
to the applications requirements. The current prototype of DECIDE includes the

3

Fig. 1. General architecture of the adaptive deployment service

following scheduling policies: Preemptive Priority and FCFS (First Come First
Served). In the current prototype, load balancing strategies were associated to
scheduling policies to distribute the workload into the resources offered by Mesos.

For FCFS, Round-Robin load balancing is used and for preemptive priority,
resource usage information will be the main indicator, giving always resources
first to high priority applications pending.

Algorithm 1 shows the general steps carried out by our deployment service.
The external loop in the algorithm verifies that the configured scheduler is a reg-
istered Mesos framework. The scheduler waits for the arrival of new application
deployment requests or for a signal from Mesos to manage applications. The func-
tion getNextTaskWithHighestPriority() returns the next task to be executed
depending on the scheduler registered. If it is FCFS, it will return the task in the
head of the scheduler queue. If it is using priorities, it will return the task in the
head of the highest priority queue that is not empty. This function has an adap-
tive behavior depending on the scheduling algorithm configured. The internal
loop creates a queue of tasks (containerized applications) that will be deployed
considering the number of instances required. The deployment service will carry
out the load balancing strategy associated to the scheduling policy using the load-
Balancer: RegisterServer function. The service-based design of DECIDE allows
to integrate a component to provide elasticity to the deployed applications. The
current prototype of DECIDE does not include this component. However, our
use case application implements a manager service that carries out this function.
In this way, if all existing servers are saturated, a new server is instantiated, up to
the maximum number defined in the application manager is reached. Initially a
minimum number of instances defined in the framework are created.

4

Apps
Repository

Algorithm 1. Scheduling algorithm
Input: Enqueued applications (tasks)
Output: successful enqueued or deployed applications

1 while SchedulerRegistered do
2 t = waitForaTask() OR availableTaskMesosSignal();
3 enqueueNewTask(tasks,t);
4 nextTask = getNextTaskWithHighestPriority();
5 i = 0;
6 var scheduledTasks = []MesosTasks;
7 while len(Mesos.offeredNodes) < nextTask.Instances AND i <

nextTask.Instances do
8 loadBalancer.RegisterServer(nextTask);
9 scheduledTasks [i] =

createTask(Mesos.offeredNodes[i],nextTask.Command);
10 i++;

11 end
12 deployTasks(scheduledTasks);
13 nextTask.Instances = nextTask.Instances - i;
14 if nextTask.Instances > 0 then
15 enqueueTask(tasks,nextTask);
16 end

17 end

After the internal loop, tasks are deployed. If there are still pending tasks in
the request because there were not enough available nodes, they will be enqueued
again to be scheduled in the next round. Thus, we can avoid discarding tasks
due to a temporary lack of resources.

4 Use Case: European Identity Federation Initiative

The Regulation (EU) 910/2014 [12], the so-called eIDAS Regulation, which is
in force in all Member States since the end of 2018, ensures that people and
businesses can use their own national electronic identification schemes (eIDs)
to access public services in other EU countries where eIDs are available. To
implement this system, a federation consisting of a network of eIDAS nodes has
been deployed, one per member state, which has the role of Identity Provider
for the national electronic identification scheme (eID) from any other country.
All Service Providers participating in the network must be subscribed to the
eIDAS Node of their country. This is a very ambitious approach, since it enables
crossborder authentication of Member States citizens without the need to unify
the authentication method (eID Scheme) of the member states participating in
the Identity Federation. A detailed description of a previous evaluation of the
eIDAS system is shown in [2]. The eIDAS nodes apply FCFS scheduling policy to
serve client requests, as it assumes that all requests will have the same priority,

5

which may be not truth in the near future. This is why we have decided to
evaluate the eIDAS service applying also a priority-based scheduling as use case.

5 Evaluation

This section presents the evaluation of our deployment service using the eIDAS
network use case.

5.1 Experiments Description

To test our proposal, eIDAS Manager, that uses the scheduler to send allocate
resources and execute eIDAS nodes in Mesos. We have defined a test scenario as
described in Fig. 2. All clients are created in a single node and they send requests
to our eIDAS Manager, which uses the deployment framework to allocate and
execute eIDAS servers in Mesos.

Fig. 2. Architectural view of clients and servers in the experimental scenario

The service has been deployed in the cluster defined in Table 1. The system
has been implemented using Dockers on Linux OS. Several dockers are started
at the beginning of the system depending on the configuration parameters. The
number of dockers evolves with the load following the scheduling policy. Load
is distributed among the cluster nodes. Each client requesting for an electronic
identification (eID) starts a protocol including 12 messages between the different
components of the eIDAS network. Because of consistency and security restric-
tions, each client request must be managed by the instance of the eIDAS node
accepting it, but, in case of preemption, the client can be stopped between two
messages. For these experiments, a maximum of 64 simultaneous servers can be
instantiated, a parameter that we have defined as a limitation in the MESOS
resources. In the case of the scheduling with priorities, we segment users into
three groups of priorities, high, medium, low. The allocation of priority fol-
lows a uniform distribution, so that they subscribe to the server destinations
with the same probability.

6

Table 1. Features of the experimental environment

Feature Compute 11 Compute 7

Application eIDAS servers eIDAS Manager and clients

Nodes 5 1

RAM 128 GB 128 GB

CPU Xeon E5-2603 v4 12 cores XeonE7-4807 24 cores

Network Ethernet 10 Gbps Ethernet 10 Gbps

HDD 1 TB 1 TB

Two scenarios have been tested (see Table 2), both processing 3750 eID client
requests. Every eIDAS client is associated to an eIDAS server that serves its
requests. In scenario A, FCFS policy is applied and the eIDAS manager asso-
ciates a client to an eIDAS server using a Round Robin approach to distribute
the load across the servers. In scenario B, priority scheduling is applied and
system usage information is used to dynamically allocate server resources. The
goal is to keep the waiting time as constant as possible, to enhance interactivity
and avoid timeouts in the eID protocol, while optimizing the usage of resources
and favouring the execution of high priority requests. To measure the results of
the experiments, we have chosen the following metrics: CPU and memory usage;
Average time and typical deviation for the identification process; Average time
and typical deviation for the waiting time of a ready ID request.

Table 2. Evaluation experiments executed.

Scenario Scheduler eIDAS servers Clients

A FCFS and Round Robin up to 64 3750

B Priorities and node usage up to 64 3750

5.2 Experiments Results

Scenario A. The scheduler (MESOS framework) has a single queue using FCFS
policy. The eIDAS Manager allocates the requests and instantiates resources
using Mesos taking the first eID requests in the queue (FCFS) and applying
a Round-Robin load balancing policy for all requests, as quality of service is
not enforced by the scheduler. Figure 3 shows the CPU and memory usage in
every cluster node when executing 3750 clients. eIDAS servers were deployed in
Compute 11-2, 11-4, 11-5, 11-6 and 11-7 nodes, while eIDAS manager and clients
were deployed in Compute 7-2 node. As may be seen, the distribution of load
is mostly uniform across the server nodes, even if two are more loaded. Table 3
shows the time metrics during the experiment. The total execution time for the

7

test is 280 s. In this scenario, eID clients had a low waiting time with a reasonable
execution time (Aver. Id time). The maximum number of simultaneous clients
processed by the 64 eIDAS servers, before discarding requests, was around 4000.
The worst-case execution time (WCET) of a client eID request was 25.17 s for
any request.

Fig. 3. CPU and memory usage with scenario A

Table 3. Scenario A. Time metrics with FCFS (all time in sec.)

Priority Aver. wait time Typical deviation Aver. Id time Typical deviation

FCFS 3.21 1.75 18.07 2,14

Scenario B. In this scenario, the scheduler uses priority policy based on one
queue per priority (low, medium, high). The eIDAS manager takes the first eID
requests in the highest priority queue available and uses resource information
provided by Mesos to start dynamically the servers. Figure 4 shows the CPU
and memory usage in every node to execute 3750 clients. As may be seen, load
distribution changes in the nodes due to the distribution per priority. Again, the
node running the eIDAS manager and clients has a negligible load, being able
to receive many more client requests. The manager could send the 3750 client
requests to the Mesos frameworks, even though the CPU load on some nodes
was very high. Memory was not overloaded in any node. The total execution
time for the test was 350 s. Table 4 shows how the waiting time is low for high
and medium priority clients, as desired, but it is higher for low priority requests.
With this policy, the worst-case execution time (WCET) of a high-priority client

8

eID request was 13.73 s. Preemption effect can be appreciated in the execution
time, which is higher for lower priority clients, because they are removed from
the system when high priority clients arrives and there are not free resources.
Obviously, this strict priority policy could lead to starvation of low priority
clients, but we are assuming that this fact comes with the policy. To avoid this
problem, aging could be applied to clients in low priority queues.

Fig. 4. CPU and memory usage with scenario A

Table 4. Scenario B. Time metrics per priority queue (all time in sec.)

Priority Aver. wait time Typical deviation Aver. Id time Typical deviation

High 2.83 1.03 8.00 2.87

Medium 3.31 1.72 13.11 2.87

Low 55.15 1.40 20.43 1.2

6 Conclusion

We introduced DECIDE, an adaptive application deployment service for virtual-
ized environments, which provides: (a) a tool to facilitate the setup of customized
cluster/cloud environments and the deployment of applications in resource shar-
ing platforms as Mesos; (b) a scheduling and deployment framework for a dif-
ferentiated services according to user requirements; and (c) a tool for testing
different scheduling policies to evaluate their convenience for applications. Set-
ting up a cluster and a framework dedicated to run a distributed application can
be a tedious and time consuming work. Mesos is a solution for sharing resources

9

of a cluster where different frameworks can be executed. However, Mesos applies
a fairness scheduling policy without considering special needs of applications
that require a prioritized access. However, our use case eIDAS might require a
different scheduling policy where fairness is not the main requirement. DECIDE
is a solution for this type of limitations, providing a polymorphic framework on
Mesos to deploy applications using a scheduling policy dynamically selected by
users. Experiments demonstrated the DECIDE functionality and its feasibility of
use. Future research directions will be to enhance low-priority requests response
times and extending the solution to other applications and policies.

Acknowledgments. This work was partially funded by the Spanish Ministry of Econ-
omy, Industry and Competitiveness under the grant TIN2016-79637-P “Towards Uni-
fication of HPC and Big Data Paradigms”.

References

1. Bernstein, D.: Containers and cloud: from LXC to docker to kubernetes. IEEE
Cloud Comput. 1(3), 81–84 (2014)

2. Carretero, J., Izquierdo-Moreno, G., Vasile-Cabezas, M., Garcia-Blas, J.: Federated
identity architecture of the european eID system. IEEE Access 6, 75302–75326
(2018)

3. Ghodsi, A., Zaharia, M., Hindman, B., Konwinski, A., Shenker, S., Stoica, I.: Dom-
inant resource fairness: fair allocation of multiple resource types. In: NSDI, vol. 11,
pp. 24–24 (2011)

4. Google: Kubernetes cluster configuration. https://kubernetes.io/docs/user-
journeys/users/application-developer/foundational/

5. Greenberg, D.: Building Applications on Mesos: Leveraging Resilient, Scalable, and
Distributed Systems. O’Reilly Media, Inc., Newton (2015)

6. Hindman, B., et al.: Mesos: a platform for fine-grained resource sharing in the data
center. In: NSDI, vol. 11, p. 22 (2011)

7. Kakadia, D.: Apache Mesos Essentials. Packt Publishing Ltd., Birmingham (2015)
8. Kesidis, G., Shan, Y., Jain, A., Urgaonkar, B., Khamse-Ashari, J., Lambadaris, I.:

Scheduling distributed resources in heterogeneous private clouds. In: 2018 IEEE
26th International Symposium on Modeling, Analysis, and Simulation of Computer
and Telecommunication Systems (MASCOTS), pp. 102–108. IEEE (2018)

9. Naik, N.: Building a virtual system of systems using Docker Swarm in multiple
clouds. In: 2016 IEEE International Symposium on Systems Engineering (ISSE),
pp. 1–3. IEEE (2016)

10. Peinl, R., Holzschuher, F., Pfitzer, F.: Docker cluster management for the cloud -
survey results and own solution. J. Grid Comput. 14(2), 265–282 (2016). https://
doi.org/10.1007/s10723-016-9366-y

11. Puetm, A.: Mesosphere: DC/OS distributed cloud operating system, June 2019.
https://dcos.io/

12. EU Regulation: No 910/2014 of the European Parliament and of the Council of 23
July 2014 on electronic identification and trust services for electronic transactions
in the internal market and repealing Directive 1999/93/EC (eIDAS Regulation).
European Union, pp. 44–59 (2014)

10

13. Saha, P., Govindaraju, M., Marru, S., Pierce, M.: Integrating apache airavata with
docker, marathon, and mesos. Concurr. Comput.: Pract. Exp. 28(7), 1952–1959
(2016)

14. Soltesz, S., Potzl, H., Fiuczynski, M., Bavier, A., Peterson, L.: Container-based
operating system virtualization: a scalable, high-performance alternative to hyper-
visors. SIGOPS Oper. Syst. Rev. 43(3), 275–287 (2007)

15. Turnbull, J.: The Docker Book: Containerization is the New Virtualization (2014)

11

