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Notations

Symbol Meaning

RN0 2
0 T RN ∗ R0 The upper half space of RN0 2

x T )x2, x3, ..., xN+ An element of the euclidean space RN

X T )x, y+T )x2, x3, ..., xN , y+ An element of the euclidean space RN0 2
0

r T ‖x‖T x32 0 x33 0 ×××0 x3N Module of x
Λu Laplacian of u

) Λ+α/3u Fractional Laplacian of u
Eα)u+ α-harmonic extension of u

3≤α T
3N

N α
Critical fractional Sobolev exponent

‖́ ‖ Lebesgue measure of the domain ´
∂´ Boundary of ´
F̄ ´ ∗ ]1,∈ +
∂LF̄ ∂´ ∗ ]1,∈ +

CR)X1+ Ball in RN0 2
0 of radius R centered at X1

CR Ball in RN0 2
0 of radius R centered

at the origin
〉×,×| Inner product in RN

´∞��´ ´∞open subset of ´ with ´∞�´
δx0

Dirac delta at x1
a.e. Almost everywhere
v0 Positive part of v, v0 T n d̄˜}v, 1〈
v Negative part of v, v T n d̄˜} v, 1〈
C)´ + The space of continuous functions defined in ´
C1)´ + The space of functions in C)´ +with compact support
Ck)´ + The space of functions with k continuous derivatives in ´
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Symbol Meaning

Ck
1 )´ + The space of functions in Ck)´ +with compact support

C∈ )´ + The space of infinitely differentiable functions in ´
C∈1 )´ + The space of functions in C∈ )´ +with compact support

C1,γ)´ +, Cγ)´ + }u ; ´ ↗ R , u continuous ‖ tvr
x,y � ¯ ,xC[ y

‖u)x+ u)y+‖

‖x y‖γ
< ∈ 〈

Ck,γ)´ + Hölder space of functions with k derivatives in Cγ)´ +

Lp)´ + }u ; ´ ↗ R ‖u measurable ,
⋂
¯

‖u‖p < ∈ 〈 , 2 ≥ p < ∈

\ ×\p Norm in Lp)´ +
L∈ )´ + }u ; ´ ↗ R ‖u measurable and BC such that ‖u)x+‖≥ C

a.e. x 
 ´ 〈
H

α/3
1 )´ + Completion of C∈1 )´ +with respect to the norm

\u\
H

α/2
0 )¯ +

⊆

)⋂
¯

‖) Λ+α/=u‖3 dx

{2/3
Xα
1 )F̄ + Completion of C∈1 )F̄ +with respect to the norm

\w\Xα)FΩ+⊆

)⋂
FΩ

y2 α‖ w‖3 dxdy

{2/3



Índice general

Agradecimientos I

Notations 1

Introduction and thesis contents 5

A brief introduction to the fractional Laplacian . . . . . . . . . . . . . . . 5

Thesis contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Introducción y contenido de la tesis 9

Una breve introducción al Laplaciano fraccionario . . . . . . . . . . . . . . 9

Contenido de la tesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1. The fractional Laplacian operator 13

1.1. Fractional Laplacian in RN . . . . . . . . . . . . . . . . . . . . . . . 13

1.2. Fractional Laplacian in bounded domains . . . . . . . . . . . . . . . 17

1.3. Fractional Sobolev and trace inequalities . . . . . . . . . . . . . . . . 21

1.4. Other fractional operators . . . . . . . . . . . . . . . . . . . . . . . . 25

1.4.1. Global fractional Laplacian . . . . . . . . . . . . . . . . . . . 26

1.4.2. Regional fractional Laplacian . . . . . . . . . . . . . . . . . 26

2. A concave-convex elliptic problem involving the fractional Laplacian 29

2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29



4

2.2. Some non-existence results in unbounded domains . . . . . . . . . . 30

2.2.1. A problem in the half-space . . . . . . . . . . . . . . . . . . 30

2.2.2. A problem in a quarter-space . . . . . . . . . . . . . . . . . . 35

2.3. The linear problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.4. The nonlinear nonlocal problem . . . . . . . . . . . . . . . . . . . . 40

2.4.1. A nonexistence result . . . . . . . . . . . . . . . . . . . . . . 43

2.4.2. Proof of Theorem 2.1.1 . . . . . . . . . . . . . . . . . . . . . 45

2.4.3. Proof of Theorem 2.1.2 and further results . . . . . . . . . . . 51

3. On some critical problems for the fractional Laplacian operator 55

3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3. Sublinear case: 0 < q < 1. . . . . . . . . . . . . . . . . . . . . . . . 58

3.4. Linear and superlinear cases. . . . . . . . . . . . . . . . . . . . . . . 73

3.4.1. Linear case . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.4.2. Superlinear case. . . . . . . . . . . . . . . . . . . . . . . . . 76

3.5. Regularity and Concentration-Compactness . . . . . . . . . . . . . . 76

4. Perturbations of a critical fractional equation 83

4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.2. Main results and preliminaries . . . . . . . . . . . . . . . . . . . . . 84

4.3. Proof of Theorem 4.2.1 . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.3.1. First Solution . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.3.2. Second Solution . . . . . . . . . . . . . . . . . . . . . . . . 92

4.4. Proof of Theorem 4.2.2 . . . . . . . . . . . . . . . . . . . . . . . . . 98

Bibliography 101



Introduction and thesis contents

In the past decades the elliptic problem}
Λu T g)x, u+ in ´ �RN ,
u T 1 on ∂´ ,

(1)

has been widely investigated. See for example the survey [3] and also the list (far from
complete) [4, 5, 24, 50, 51, 60, 71, 81] for more specific problems, where different
nonlinearities and different classes of domains, bounded or not, are considered. Other
different diffusion operators, like the p–Laplacian, fully nonlinear operators, etc, have
also been treated, see for example [13, 29, 35, 48] and the references therein. This
work is devoted to study a nonlocal version of the problem (1) involving the so-called
fractional Laplacian, ) Λ+α/3, for some specific nonlinearities.

A brief introduction to the fractional Laplacian

Non local operators, like the fractional Laplacian, arise in a great variety of fields
like elasticity problems [69], combustion [30], crystal dislocation [82], quasi-geostrophic
flows [32, 61] and others. Problems involving the fractional Laplacian include frac-
tional porous medium equation [62, 63], blow up problems [12], obstacle problem
[70], etc. On the other hand, from a probabilistic approach, the fractional Laplacian
operator, defined in the whole space, can be interpreted as the generator of a α-stable
Levy process, see [11, 14, 15, 16, 17]. This kind of stochastic processes appeared in
some finance models, see for instance [7, 18, 57].

There exist different equivalent definitions of the fractional Laplacian when it is
defined in the whole space RN , see Section 1.1. When one try to extend those equiv-
alent definitions in the case of bounded domains, different operators are obtained, see
Section 1.2. In this work we are interested in looking at the fractional Laplacian as
fractional powers of the classical Laplacian, which is a positive self-adjoint operator,
both in the whole space or in a bounded domain with appropriate boundary conditions.
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In [31], L. Caffarelli and L. Silvestre develop an extension tool that allows to trans-
form a nonlocal problem involving the fractional Laplacian into an equivalent local
problem. As we will see, this tool, inspired in the classical Dirichlet to Neumann
operator, implies the use of an extra variable as well as a linear operator with a degen-
erate/singular weight. On the other hand, the fractional powers of a linear positive self-
adjoint operator in a bounded domain ´ are defined by means of its spectral decom-
position. In [28], the authors consider the fractional operator ) Λ+2/3 defined using
the Dirichlet to Neumann operator, restricted to the cylinder F̄ T ´ ∗ R0 �RN0 2

0 ,
and show that this definition coincides with the spectral one. This technique has been
extended to deal with the case α �T 2 in [19], see also [33, 76]. We will use this ap-
proach along this work. We recall that this is not the unique possibility of defining the
fractional Laplacian in a bounded domain, see Section 1.4.

After this preliminary work, the subsequent chapters are devoted to study the frac-
tional Laplacian problem associated to the classical problem (1),}

) Λ+α/3u T g)x, u+ in ´ �RN ,
u T 1 on ∂´ ,

(2)

with 1 < α < 3, N > α and ´ a regular bounded domain.

In particular, we study the case g)x, u+T up 0 λuq where λ 
 R, 1 < q < p ≥
N0 α
N α T 3≤α 2, and 2 < p. The number 3≤α T 3N

N α is the critical exponent with
respect to some fractional Sobolev embedding. For the critical power, we also consider
a zero order perturbation, that is, g)x, u+T u

N+α
N−α 0 f)x+, with f small in some sense.

Thesis contents

This work is organized as follows: In Chapter 1 we establish a series of characteri-
zations of the fractional Laplacian that we will use along the work. We describe also in
this chapter the proper functional framework to be used with the fractional Laplacian
as well as some useful inequalities. We extend to α �T 2 known results for the square
root of the Laplacian. We finish the chapter showing some alternative definitions for
fractional operators in bounded domains.

Chapter 2 is devoted to study the fractional subcritical concave-convex problem

)Pλ+

}
) Λ+α/3u T λuq 0 up, u > 1 in ´ ,

u T 1 on ∂´ ,
(3)

with 1 < α < 3, 1 < q < 2 < p < N0 α
N α , N > α, λ > 1 and ´ �RN a smooth

bounded domain. For this problem we prove the following.

Theorem 1. There exists Σ > 1 such that for Problem )Pλ+there holds:

1. If 1 < λ < Σ there is a minimal solution. Moreover, the family of minimal
solutions is increasing with respect to λ.
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2. If λ T Σ there is at least one solution.

3. If λ > Σ there is no solution.

4. For any 1 < λ < Σ there exist at least two solutions.

For α 
 ]2, 3+we also prove uniform a priori L∈ estimates. We use the classical
rescaling approach in [51] which usually yields to problems defined in unbounded
domains. We therefore prove some related Liouville-type results, see Section 2.2.

In Chapter 3 we extend the study of the problem )Pλ+to the critical case p T 3≤α 2.
We add also the cases q T 2 and 2 < q < 3≤α 2. That is, we study the problem

)P≤λ+

}
) Λ+α/3u T λuq 0 u

N+α
N−α , u > 1 in ´ ,

u T 1 on ∂´ ,
(4)

with 1 < α < 3, 1 < q < N0 α
N α , N > α, λ > 1 and ´ �RN a smooth bounded

domain. Due to the different methodology used with respect to the perturbation of the
critical power, we divide this chapter in the three cases: sublinear (1 < q < 2), linear
(q T 2) and superlinear (2 < q < 3≤α 2) perturbation, motivated by the works [4, 24]
for the classical Laplacian operator. We prove respectively the following results.

Theorem 2. Let 1 < q < 2. There exists Σ > 1 such that for Problem )P≤λ+there
holds:

1. If 1 < λ < Σ there is a minimal solution. Moreover, the family of minimal
solutions is increasing with respect to λ.

2. If λ T Σ there is at least one solution.

3. If λ > Σ there is no solution.

4. If α ∼ 2, for any 1 < λ < Σ there exist at least two solutions.

Theorem 3. Let q T 2, 1 < α < 3 and N ∼ 3α. Let λ2 be the first eigenvalue of
) Λ+α/3 on ´ under Dirichlet boundary conditions. Then Problem )P≤λ+

1. has at least one positive solution if 1 < λ < λ2.

2. has no solution if λ ∼ λ2.

Theorem 4. Let 2 < q < N0 α
N α , 1 < α < 3 and N > α)2 0 2/q+. Then Problem )P≤λ+

has at least one positive solution for any λ > 1.

Finally, in Chapter 4 we study a perturbation of order zero of a critical pure-power
fractional problem . Namely, we study the problem

)P+

}
) Λ+α/3u T ‖u‖

2α
N−αu 0 f)x+ in ´ ,

u T 1 on ∂´ ,
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where 1 < α < 3, N > α and f belongs to the dual fractional Sobolev space
H α/3)´ +, and is small in the sense⋂

¯

fϕ ≥ c\ϕ\
)N0 α+/α

H
α/2
0

, ∃ϕ 
 H
α/3
1 )´ +with \ϕ\ 2N

N+α
T 2. (5)

This problem was previously studied in [81] with the classical Laplacian operator.

Theorem 5. In the above hypotheses, Problem )P+has at least one solution. If more-
over the inequality (10) is strict, then )P+has at least two solutions.

The content of this work can be found in the publications [9, 19, 39].



Introducción y contenido de la tesis

El problema elı́ptico}
Λu T g)x, u+ en ´ �RN ,
u T 1 en ∂´ ,

(6)

ha sido ampliamente investigado en las últimas décadas . Véase por ejemplo [3] ası́ co-
mo la lista [4, 5, 24, 50, 51, 60, 71, 81] para problemas más especı́ficos. En estos
trabajos, se consideran diferentes no linealidades ası́ como diferentes clases de domi-
nios, acotados o no acotados. Otros operadores de difusión, como el p–Laplaciano,
operadores completamente no lineales, etc, han sido también tratados, véase por ejem-
plo [13, 29, 35, 48] y las referencias allı́ incluidas. Este trabajo está dedicado al estu-
dio de una versión no local del problema (6) con el llamado Laplaciano fraccionario,
) Λ+α/3.

Una breve introducción al Laplaciano fraccionario

Los operadores no locales, como el Laplaciano fraccionario, surgen en gran va-
riedad de campos como por ejemplo en modelos de combustión [30], dislocación de
cristales [82], problemas de elasticidad [69], fluidos quasi-geostróficos [32, 61] y otros.
Algunos problemas que involucran el Laplaciano fraccionario incluyen la ecuación
fraccionaria de los medios porosos [62, 63], problemas de explosión [12], problema del
obstáculo [70], etc. Por otro lado, desde un punto de vista probabilı́stico, el operador
Laplaciano fraccionario definido en todo el espacio puede ser interpretado como el
generador de un proceso de Levy α-estable, véase [11, 14, 15, 16, 17]. Este tipo de
procesos estocásticos aparecen en modelos financieros, [7, 18, 57].

Existen varias definiciones equivalentes del Laplaciano fraccionario en todo el es-
pacio RN , véase la Sección 1.1. Al intentar extender dichas definiciones al Laplaciano
fraccionario en dominios acotados se obtienen diferentes operadores no equivalentes,
véase Sección 1.2. En el presente trabajo estamos interesados en el Laplaciano fraccio-
nario que se entiende como potencia fraccionaria del operador Laplaciano clásico.
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En [31], L. Caffarelli y L. Silvestre desarrollaron una herramienta que permite
transformar un problema no local involucrando al Laplaciano fraccionario en otro pro-
blema local equivalente. Como veremos, esta herramienta, inspirada en el operador
clásico de Dirichlet-Neumann, implica el uso de una variable extra ası́ como un ope-
rador lineal en forma de divergencia con un peso degenerado/singular. Por otro lado,
las potencias fraccionarias de un operador lineal positivo autoadjunto en un dominio
acotado ´ se definen a través de su descomposición espectral. En [28], los autores
consideran el operador fraccionario ) Λ+2/3 definido a través del operador Dirichlet-
Neumann, restringido al cilindro infinito F̄ T ´ ∗ R0 �RN0 2

0 , y muestran que esta
definición coincide con la definición espectral. Esta técnica se extiende al caso α �T 2
en [19], véase también [33, 76]. Usaremos esta aproximación a lo largo de este trabajo.
Hacemos notar que esta no es la única posibilidad de definir el Laplaciano fraccionario
en dominios acotados, véase la Sección 1.4.

Después de este trabajo preliminar, los siguientes capı́tulos estarán dedicados al
estudio de problemas que involucren al Laplaciano fraccionario asociados al problema
clásico (6), es decir, problemas del tipo}

) Λ+α/3u T g)x, u+ en ´ �RN ,
u T 1 en ∂´ ,

(7)

con 1 < α < 3, N > α y ´ un dominio acotado regular.

En particular, estudiaremos el caso g)x, u+T up 0 λuq donde λ 
 R, 1 < q <
p ≥ N0 α

N α T 3≤α 2 y 2 < p. El número 3≤α T 3N
N α se corresponde con el exponente

crı́tico respecto de las inclusiones fraccionarias de Sobolev. Consideramos también
perturbaciones de orden cero para la potencia crı́tica, es decir, g)x, u+T u

N+α
N−α 0 f)x+,

con f pequeña en algún sentido especı́fico.

Contenido de la tesis

Este trabajo está organizado como sigue: En el Capı́tulo 1 establecemos una serie
de caracterizaciones del Laplaciano fraccionario que serán usadas a lo largo de la tesis.
Describimos en este capı́tulo también el marco funcional necesario para trabajar con
el Laplaciano fraccionario ası́ como algunas desigualdades útiles. Extendemos al caso
α �T 2 resultados previamente demostrados para la raı́z cuadrada del Laplaciano. Con-
cluimos el capı́tulo mostrando algunas definiciones alternativas del Laplaciano fraccio-
nario en dominios acotados.

El Capı́tulo 2 está dedicado al estudio del problema cóncavo-convexo subcrı́tico
siguiente

)Pλ+

}
) Λ+α/3u T λuq 0 up, u > 1 in ´ ,

u T 1 on ∂´ ,
(8)
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con 1 < α < 3, 1 < q < 2 < p < N0 α
N α , N > α, λ > 1 y ´ �RN un dominio

acotado regular. Para este problema probamos el siguiente resultado.

Teorema 1. Existe Σ > 1 tal que para el problema )Pλ+se cumple:

1. Si 1 < λ < Σ existe una solución minimal. Además, la familia de soluciones es
creciente con respecto a λ.

2. Si λ T Σ existe al menos una solución.

3. Si λ > Σ no existe solución.

4. Para cada 1 < λ < Σ existen al menos dos soluciones.

Para α 
 ]2, 3+probamos además estimaciones uniformes en L∈ de la soluciones.
Utilizaremos una técnica clásica de cambio de escala desarrollada en [51], generalmen-
te implica estudiar problemas en dominios no acotados. Probamos para ello algunos
resultados de tipo Liouville, véase la Sección 2.2.

En el Capı́tulo 3 extendemos el estudio del problema )Pλ+al caso crı́tico p T 3≤α
2. Incluimos en el estudio también los casos q T 2 y 2 < q < 3≤α 2. Resumiendo,
estudiamos el problema

)P≤λ+

}
) Λ+α/3u T λuq 0 u

N+α
N−α , u > 1 in ´ ,

u T 1 on ∂´ ,
(9)

con 1 < α < 3, 1 < q < N0 α
N α , N > α, λ > 1 y ´ � RN un dominio acotado

regular. Debido a la diferente metodologı́a utilizada respecto a cada perturbación del
problema crı́tico puro fraccionario, dividimos el capı́tulo en tres casos: perturbación
sublineal (1 < q < 2), lineal (q T 2) y superlineal (2 < q < 3≤α 2), motivado por
los trabajos [4, 24] sobre el Laplaciano clásico. Probaremos los siguientes resultados
respectivamente.

Teorema 2. Sea 1 < q < 2. Entonces, existe 1 < Σ < ∈ tal que para el problema
)P≤λ+se cumple:

1. Si 1 < λ < Σ existe una solución minimal. Además, la familia de soluciones es
creciente con respecto a λ.

2. Si λ T Σ existe al menos una solución.

3. Si λ > Σ no existe solución.

4. Si α ∼ 2, para cada 1 < λ < Σ existen al menos dos soluciones.

Teorema 3. Sea q T 2, 1 < α < 3 y N ∼ 3α. Sea λ2 el primer autovalor de ) Λ+α/3

en ´ bajo condiciones Dirichlet en la frontera. Entonces el problema )P≤λ+
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1. tiene al menos una solución si 1 < λ < λ2.

2. no tiene solución si λ ∼ λ2.

Teorema 4. Sea 2 < q < N0 α
N α , 1 < α < 3 y N > α)2 0 2/q+. Entonces el problema

)P≤λ+tiene al menos una solución positiva para λ > 1.

Finalmente, en el Capı́tulo 4 estudiamos una perturbación de orden cero del pro-
blema crı́tico. A saber, estudiamos al problema

)P+

}
) Λ+α/3u T ‖u‖

2α
N−αu 0 f)x+ in ´ ,

u T 1 on ∂´ ,

donde 1 < α < 3, N > α y f pertenece al espacio de Sobolev fraccionario dual
H α/3)´ +y cumple⋂

¯

fϕ ≥ c\ϕ\
)N0 α+/α

H
α/2
0

, ∃ϕ 
 H
α/3
1 )´ +with \ϕ\ 2N

N+α
T 2. (10)

Este problema ha sido estudiado previamente en [81] con el operador Laplaciano (α T
3).

Teorema 5. Bajo estas hipótesis, el problema )P+tiene al menos una solución. Si
además la desigualdad (10) es estricta, entonces )P+tiene al menos dos soluciones.

El contenido de este trabajo puede encontrarse en las publicaciones [9, 19, 39].



1
The fractional Laplacian operator

The fractional Laplacian defined on RN can be found in the literature as a func-
tional operator related to the so-called α stable Lèvy processes. In the framework of
the partial differential equations. These operators can be defined in several ways in
both RN and bounded domains. This chapter is devoted to explore some of these def-
initions and their equivalences. Furthermore, we will give a brief introduction to the
functional spaces framework required to work with the fractional Laplacian.

1.1. Fractional Laplacian in RN

This work will be focused, mostly, on a bounded domain setting. However, the
fractional Laplacian in RN is fundamental to understand its homologous in bounded
domains. We begin with the definition of the fractional Laplacian in RN via its Fourier
transform.

Fourier transform

Given a function u in the Schwartz class U)RN+, we define its Fourier transform as

H]uˆ)ξ+T

⋂
RN

e 3πix×ξu)x+dx.
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Let α be a real number in )1, 3+. We define the fractional Laplacian of u in RN as

) Λ+α/3u )x+T H 2]‖3πξ‖α ũ)ξ+̂)x+. (1.1)

This definition can be found in the literature under the name pseudo-differential oper-
ator of symbol ‖3πξ‖α. Notice that ) Λ+α/3u does not necessarily belong to U)RN+
since ‖3πξ‖α introduces a singularity at the origin in its Fourier transform. Observe
also that, using the definition (1.1), one can easily check the following properties

) Λ+α/3 ↗ Λ , as α↗ 3 ,

) Λ+α/3 ↗ I, as α↗ 10 .

This definition can be extended to α 
 ) N, 3 .̂ For α ≥ N , ‖3πξ‖α is no longer a
tempered distribution and (1.1) makes no sense.

Integral representation

A second definition for the fractional Laplacian that we can find, see [55, 73, 76], is
the one referring to its integral form. Given a function u 
 U)RN+we have

) Λ+α/3u)x+ T μN,αP.V.
⋂
RN

u)x+ u)x+

‖x x‖N0 α
dx

T μN,α mln
ε′ 1+

⋂
‖x x‖>ε

u)x+ u)x+

‖x x‖N0 α
dx

(1.2)

where μN,α stands for a normalizing constant to ensure the equivalence with (1.1). Its
exact value can be computed,

μN,α T
3α 2α ))N 0 α+/3+

πN/3 )2 α/3+
.

Notice that μN,α ⊂ α as α ↗ 1 and μN,α ⊂ 3 α as α ↗ 3. Here we can see the
nonlocal behaviour of the operator as follows: consider, for instance, a regular function
θ)x+positive and with compact support in B2. For every point x1 of Bc

2 one clearly has
Λθ)x1+T 1 while ) Λ+α/3θ)x1+< 1. Using the definition (1.2) it can be proved,

see [70], that given a φ 
 U)RN+

‖) Λ+α/3φ)x+‖≥
C

)2 0 ‖x‖+N0 α
.

This allows us, by duality, to define the fractional Laplacian in the space

Nα)R
N+T

}
f 
 U∞)RN+;

⋂
RN

‖f)x+‖

)2 0 ‖x‖+N0 α
< ∈

(
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where U∞)RN+refers to the dual space of U)RN+. Additionally, in order to have the
integral (1.2) convergent, we can require u 
 C3)RN+. Therefore, we can avoid the
principal value as follows

P.V.
⋂
RN

u)x+ u)x+

‖x x‖N0 α
dx T

2

3

⋂
RN

3u)x+ u)x 0 x+ u)x x+

‖x‖N0 α
dx T

2

3

⋂
B1

3u)x+ u)x 0 x+ u)x x+

‖x‖N0 α
dx 0

2

3

⋂
Bc

1

3u)x+ u)x 0 x+ u)x x+

‖x‖N0 α
dx.

Thus, the second integral converges since u 
 Nα)RN+. The first integral converges
since the numerator is bounded by ‖x‖3. In fact, the definition can be extended to
functions in Cα0 ε)RN+with ε > 1, see [70]. In our context, we will focus on functions
that live in the following functional spaces:

Given α 
 )1, 3+we define the homogeneous fractional Sobolev space aHα/3 T
aHα/3)RN+as the completion of F∈1 )RN+under the norm

\u\Hα/2 ;T \) Λ+α/=u\3 T

)⋂
RN

‖3πξ‖α‖̃u)ξ+‖3 dξ

{2/3
. (1.3)

Localization

The nonlocal behaviour of the operator will play an important role along this work.
Since every value of ) Λ+α/3u depends on the entire space, some of the tradicional
variational techniques cannot be used. On the other hand, simple operations like com-
position or multiplication turn complex when using the fractional Laplacian on them. A
way to avoid, in some cases, these difficulties is to use the so-called Caffarelli-Silvestre
extension [31]. In order to motivate it, one considers u a bounded regular enough
function in RN and its harmonic extension⎛

Λw)x, y+ T 1 )x, y+
 RN0 2
0

w)x, y+ T u)x+ )x, y+
 RN

where RN0 2
0 T RN ∗ )1,∈ +. Let us consider now the Dirichlet-Neumann operatorΣ ;

u↗ wy)x, 1+. Applying the operator twice to u we have Σ3)u+T Σ) wy)x, 1++T
wyy)x, 1+T Λ xu. That isΣ T ) Λ+2/3. The Caffarelli-Silvestre procedure extends
this result to every power α 
 )1, 3+of the Laplacian as follows: Given a bounded u
regular enough function in RN we define its α harmonic extension, denoted by Eα)u+,
as the unique solution to the problem⎛

f lx)y2 α w+ T 1 in RN0 2
0

w T u on RN
(1.4)



16

Then, in [31] the authors prove that the fractional Laplacian of u can be defined by the
formula

) Λ+α/3u)x+T
∂w

∂να
)x, y+;T κα mln

y′ 1+
y2 α ∂w

∂y
)x, y+ (1.5)

with κα T
)α/3+

31−α )2 α/3+.

The proof of (1.5) is based on the following proposition where it is proved that one
can write the solution of (1.4) as a convolution of u with a convenient Poisson kernel.

Proposition 1.1.1 ([31]). Given α 
 )1, 3+, the function

Pα)x, y+T dα,N
yα

)‖x‖3 0 ‖y‖3+
N+α

2

(1.6)

is the Poisson kernel for (1.4), that is, for every u 
 C)RN+∧ L∈ )RN+, the function

w)x, y+T Pα ◦ u T dα,N

⋂
RN

yα

)‖x s‖3 0 ‖y‖3+
N+α

2

u)s+ds (1.7)

is the unique solution of (1.4). The constant dα,N is chosen in order to have⋂
RN

Pα)x, y+dx T 2 ∃y > 1,

and satisfies ακαdα,N T μα,N .

For functions defined in RN0 2
0 we will work in the space Xα)RN0 2

0 +defined as
the completion of F∈1 )RN0 2

0 +under the norm

\Ψ\3Xα T κα

⋂
R

N+1
+

y2 α‖ Ψ)x, y+‖3 dxdy.

The operator ) Λ+α/3 ; aHα/3)RN+↗ H α/3)RN+defines an isometric isomor-
phism between aHα/3)RN+and its topological dual H α/3)RN+. Besides, the operator
Eα is an isometry between Xα)RN0 2

0 +and aHα/3)RN+, that is,

\Eα)u+\Xα)RN+1
+ +T \u\Hα/2)RN+, ∃u 
 aHα/3)RN+, (1.8)

see Remark 1.3.1. On the other hand, if [ s ; Xα)RN0 2
0 +↗ aHα/3)RN+stands for the

trace operator over RN , we have

\ [ s)z+\Hα/2)RN+≥ \z\Xα)RN+1
+ +, ∃ z 
 Xα)RN0 2

0 +. (1.9)

Even more, if z 
 Xα)RN0 2
0 +and w T Eα)[ s)z++then

\z\3Xα T \w\3Xα 0 \z w\3Xα . (1.10)
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In particular, given u 
 aHα/3)RN+we have

\Eα)u+\Xα)RN+1
+ +T n lo

}
\ω\Xα)RN+1

+ +=[ s)ω+T u
√
. (1.11)

We define now the operator Lα from problem (1.4),

Lα)w+;T yα 2 f lx)y2 α w+T Λw 0
2 α

y
wyy. (1.12)

The next properties will be useful.

Lemma 1.1.2. Let α 
 )1, 3+and Ω,Ψ, ϑ regular enough functions defined in RN0 2
0 .

Then

Lα)ΩΨ+ T ΩLαΨ0 ΨLαΩ 0 3〉 Ω, Ψ| , (1.13)

Lα)ϑ)Ω++ T ϑ∞)Ω+LαΩ 0 ϑ∞∞‖ Ω‖3, (1.14)

Lα)‖X‖
γ+ T γ)γ 0 N α+‖X‖γ 3, X �T 1. (1.15)

where X T )x, y+
 RN0 2
0 . Moreover, if Ω is radial, Ω T Ω)r+with r T ‖X‖, then

LαΩ T Ω∞∞0
N 0 2 α

r
Ω∞. (1.16)

Note that in the special case α T 2 we have L2 T Λ . Furthermore, the oper-
ador Lα can be understood, formally, as the standard Laplacian acting in N 0 )3 α+
dimensions. Notice that, in fact, equations (1.13) and (1.14), which are dimension-
independent, mimic the behaviour of their homologous of the standard Laplacian.
However, equations (1.15) and (1.16), which are dimension-dependent, replace N 0 2
with N 0 )3 α+with respect to the case of the standard Laplacian.

The Caffarelli-Silvestre extension transforms nonlocal problems into local prob-
lems that involve the operator Lα. Roughly speaking, a local operator in divergence
form will be more convenient than one non-local in integral form in what concerns to
computations. However, the weight σ)x, y+T y2 α is singular and degenerated if
α �T 2. In this case, the Caffarelli-Silvestre extension can be studied from the perspec-
tive of the differential equations with A3 weights, see [45, 46] for further information.

1.2. Fractional Laplacian in bounded domains

Given a bounded domain ´ , a natural way to define the fractional Laplacian in
that domain is to extend the previous definitions substituting RN by ´ . Nevertheless,
depending on how we proceed, this can lead to different and no equivalent definitions.
Some examples of this fact can be checked in the Section 1.4. This section is devoted
to define the fractional Laplacian in bounded domains by means of the definitions of
the operator in RN but keeping the equivalence between the different characterizations.
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Localization in bounded domains

We start defining the fractional Laplacian in bounded domains through the Caffarelli-
Silvestre extension, adapting it to this new context. This approach has been taken be-
fore in [28] for α T 2 and afterwards in, for instance, [33], for the general case. Let
´ be a bounded domain and consider the infinity cylinder F̄ T ´ ∗ )1,∈ +. Let us
denote its parabolic boundary as ∂LF̄ T ∂´ ∗ ]1,∈ +. Let u be a regular function
defined in ´ . Let us define its α harmonic extension, Eα)u+, as the unique solution to
the problem

⎩⎝⎝⎪⎝⎝⎨
f lx)y2 α w+)x, y+ T 1, )x, y+
 F̄ ,

w)x, y+ T 1, )x, y+
 ∂LF̄ ,

w)x, y+ T u)x+, )x, y+
 ´ .

(1.17)

We will define the fractional Laplacian of u in ´ as

) Λ+α/3u)x+T
∂w

∂να
)x, y+T κα mln

y′ 1+
y2 α ∂w

∂y
)x, y+. (1.18)

Spectral decomposition

It is classical that the powers of a positive operator are defined through the spec-
tral decomposition using the powers of the eigenvalues of the original operator. We
show next that in this case this is coherent with the Dirichlet-Neumann operator de-
fined above. Let )ϕj , ρj+be the eigenfunctions and eigenvalues of Λ in ´ with zero
Dirichlet boundary data. Define the space of functions Hα/3

1 )´ +as the completion of
C∈1 )´ +under the norm

\u\3
H

α/2
0 )¯ +

;T
)∫

u3jρ
α/3
j

(2/3
(1.19)

and also the energy space Xα
1 )F̄ +as the completion of C∈1 )F̄ +under the norm

\w\3Xα
0 )FΩ+

T κα

⋂
FΩ

y2 α‖ w)x, y+‖3 dxdy.

Next we establish a spectral characterization of the fractional Laplacian. See also
[26, 76].

Theorem 1.2.1. Let α 
 )1, 3+. Let u T
∫

ujϕj 
 H
α/3
1 )´ +where uj are the

coeficients of u on the base }ϕj〈 of L3)´ +, then∫
ujρ

α/3
j ϕj T ) Λ+α/3u. (1.20)
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Moreover, if Eα)u+stands for the extension defined in (1.17), we have Eα)u+
 Xα
1 )F̄ +

and
Eα)u+)x, y+T

∫
ujϕj)x+ψ)ρ

2/3
j y+, (1.21)

where ψ)s+is the unique solution to the problem⎩⎝⎝⎝⎪⎝⎝⎝⎨
ψ∞∞0

)2 α+

s
ψ∞ T ψ, s > 1,

κα mln
s′ 1+

s2 αψ∞)s+ T 2,

ψ)1+ T 2.

(1.22)

Proof. Let

z)x, y+T
∫

ujϕj)x+ψ)ρ
2/3
j y+.

On one hand,

κα

⋂
FΩ

y2 α‖ z)x, y+‖3 dxdy

T

⋂∈

1

y2 α

⋂
¯

)∫
u3j‖ ϕj)x+‖

3ψ)ρ
2/3
j y+3 0 u3jρjϕj)x+

3)ψ∞)ρ
2/3
j y++3

(
dxdy

T

⋂∈

1

y2 α
∫

u3jρj

)
ψ)ρ

2/3
j y+3 0 )ψ∞)ρ

2/3
j y++3

(
dy

T
∫

u3jρ
α/3
j

⋂∈

1

s2 α
)
ψ)s+3 0 )ψ∞)s++3

(
ds T

∫
u3jρ

α/3
j .

(1.23)

Thus z 
 Xα
1 )F̄ +and we obtain the norm equivalence. It is easy to see that z

verifies (1.17). Since the α-harmonic extension is unique in Xα
1 )F̄ +we have Eα)u+T

z.

On the other hand, notice that for every k ∼ 2, via the change of variables s T

ρ
2/3
k y in (1.22) we have

κα mln
y′ 1+

y2 α ∂

∂y
)ψ)ρ

2/3
k y++T ρ

α/3
k κα mln

s′ 1+
s2 αψ∞)s+T ρ

α/3
k .

Therefore,

) Λ+α/3u T κα mln
y′ 1+

y2 α ∂Eα)u+

∂y
T
∫

ujϕjρ
α/3
j

�
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Heat semigroup

Our next step will be to establish, by means of the heat semigroup of Λ , a definition
that connects the fractional Laplacian in bounded domains and in RN . This definition
is motivated by the following identities

a p T
2

)p+

⋂∈

1

e at dt

t2 p
, p > 1

ap T
2

) p+

⋂∈

1

)e at 2+
dt

t20 p
, 1 < p < 2.

(1.24)

Moreover, this approach will allow us to define the fractional powers of a general class
of operators: Let L be a linear, positive and self-adjoint operator. Let e tL be the heat
semigroup of L, that is, for every function u in a proper space, the function v T e tLu
is the unique solution to the problem}

vt 0 Lv T 1, }t > 1〈 ,
v)1+T u.

(1.25)

We define then the fractional powers of L as

L γ T
2

)γ+

⋂∈

1

e tL dt

t2 γ
, γ > 1

Lγ T
2

) γ+

⋂∈

1

)e tL I+
dt

t20 γ
, 1 < γ < 2.

(1.26)

In particular, for the fractional Laplacian we have

Proposition 1.2.2. Consider α 
 )1, 3+, ´ a bounded domain or ´ T RN and u 

U)´ +. Then the following identity holds

) Λ+α/3u)x+T
2

) α/3+

⋂∈

1

)etΛu)x+ u)x++
dt

t20 α/3
, x 
 ´ . (1.27)

Proof. Assume first that ´ is a bounded domain. Consider the operator

A)u+T
2

) α/3+

⋂∈

1

)etΛu u+
dt

t20 α/3
(1.28)

and the equation (1.25) defined in ´ . Let }ρj , ϕj〈 as before and u T
∫

ujϕj . Then,
the solution of (1.25) is

v)x, t+T etΛu)x+T
∫

e ρjtujϕj)x+. (1.29)
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Substituting (1.29) into (1.28) we have

A)u+)x+ T
2

) α/3+

⋂∈

1

)etΛu)x+ u)x++
dt

t20 α/3

T
2

) α/3+

∫
ujϕj)x+

⋂∈

1

)etρj 2+
dt

t20 α/3

T
∫

ujρ
α/3
j ϕj)x+T ) Λ+α/3u)x+.

Let now ´ T RN . Recall that the unique solution to (1.25) can be expressed as a
convolution with the hear kernel, that is,

etΛu T K)×, t+◦ u)x+

where K)×, t+holds
K̃)ξ, t+T e t‖3πξ‖2 .

In particular

e tΛu)x, t+T )8πt+ N/3

⋂
RN

e
|x−y|2

4t u)y+dy.

Therefore, applying the Fourier transform to (1.27) and using (1.24) we have

̂) Λ+α/3 T
2

) α/3+

⋂∈

1

)e ‖3πξ‖2t 2+
dt

t20 α/3
T ‖3πξ‖α.

�

1.3. Fractional Sobolev and trace inequalities

In this section we prove two useful and long used inequalities that will be funda-
mental along this work.

Theorem 1.3.1 (Fractional trace inequality). Given N,α, r such that N > α, 1 < α <
3 and 2 ≥ r ≥ 3N

N α there exists a constant S)α,N, r, ´ +> 1 such that

S)α,N, r, ´ +

)⋂
¯

‖v)x+‖r dx

{3/r
≥ κα

⋂
FΩ

y2 α‖ z)x, y+‖3 dxdy (1.30)

for every z 
 Xα
1 )F̄ +where v T [ s)z+. If r T 3N

N α , the constant S)α,N, r, ´ +is
independent of ´ and takes the exact value

S)α,N+T 3απ
α
2

)N0 α
3 + )N3 +

α
N

)N α
3 + )N+

α
N

. (1.31)
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Moreover, if ´ T RN , the constant S)α,N+is achieved only by the biparametric
family of functions wε T Eα)uε+where

uε)x+T ε
N−α

2 ‖x x1‖
3 0 ε3

{ N−α
2 , (1.32)

for some x1 
 RN , ε > 1.

As a consequence, by (1.8) and (1.11), we have

Corollary 1.3.2 (Fractional Sobolev inequality). Under the same assumptions than in
the previous theorem we have

S)α,N, r, ´ +

)⋂
¯

‖ϕ)x+‖r dx

{3/r
≥

⋂
¯

‖) Λ+α/=ϕ)x+‖3 dx (1.33)

for every ϕ 
 H
α/3
1 )´ +.

The classical case (α T 3) was proven first in [68] for N T 4 and afterwards
generalized to all dimensions in [8] and [78], see also [44, 60].

In order to prove Theorem 1.3.1, we will prove some previous technical lemmas.

Lemma 1.3.3. Consider v 
 aHα/3)RN+and set z T Eβ)v+its β-harmonic extension,
β 
 )α/3, 3+. Then z 
 Xα)RN0 2

0 +and moreover there exist an universal constant
c)α, β+such that

\v\Hα/2 T c)α, β+\z\Xα . (1.34)

Inequality (1.3.1) needs only the case β T α, which is deduced directly from the
proof of the local characterization of ) Λ+α/3 in [31]. The calculations performed in
[31] can be extended to cover the range α/3 < β < 3 and in particular includes the
case β T 2 proved in [83].

Proof. Since z T Eβ)v+, by definition z solves f lx)y2 β z+T 1, which is equivalent
to

Λ xz 0
2 β

y

∂z

∂y
0

∂3z

∂y3
T 1.

Taking Fourier transform in x 
 RN for y > 1 fixed, we have

8π3‖ξ‖3ż 0
2 β

y

∂ż

∂y
0

∂3ż

∂y3
T 1,

and ż)ξ, 1+T v̇)ξ+. Therefore ż)ξ, y+T v̇)ξ+φβ)3π‖ξ‖y+, where φβ solves the problem

φ 0
2 β

s
φ∞0 φ∞∞T 1, φ)1+T 2, mln

s′ ∈
φ)s+T 1. (1.35)
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In fact, φβ minimizes the functional

Hβ)φ+T

⋂∈

1

)‖φ)s+‖3 0 ‖φ∞)s+‖3+s2 β ds,

and it can be shown that it is a combination of Bessel functions, see [56]. More pre-
cisely, φβ satisfies the following asymptotic behaviour

φβ)s+≈ 2 c2s
β , for s↗ 1,

φβ)s+≈ c3s
β−1
2 e s, for s↗ ∈ ,

(1.36)

where

c2)β+T
32 β )2 β

3+

β )β3+
, c3)β+T

3
1−β
2 π2/3

)β3+
.

Now we observe that⋂
RN

‖ z)x, y+‖3 dx T

⋂
RN

)
‖ xz)x, y+‖

3 0
(((∂z
∂y
)x, y+

(((3{ dx

T

⋂
RN

)
8π3‖ξ‖3‖̇z)ξ, y+‖3 0

(((∂ż
∂y
)ξ, y+

(((3{ dξ.

Then, multiplying by y2 α and integrating in y,⋂∈

1

⋂
RN

y2 α‖ z)x, y+‖3 dxdy

T

⋂∈

1

⋂
RN

8π3‖ξ‖3‖̇v)ξ+‖3 ‖φβ)3π‖ξ‖y+‖
3 0 ‖φ∞β)3π‖ξ‖y+‖

3
{
y2 α dξdy

T

⋂∈

1

)‖φβ)s+‖
3 0 ‖φ∞β)s+‖

3+s2 α ds

⋂
RN

‖3πξ‖α‖̇v)ξ+‖3 dξ.

Using (1.36) we see that the integral
∑∈
1
)‖φβ‖

30 ‖φ∞β‖
3+s2 α ds is convergent provided

β > α/3. This proves (1.34) with c)α, β+T )καHα)φβ++
2/3. �

Remark 1.3.1. If β T 2 we have φ2)s+T e s, y Hα)φ2+T 3α 2 )3 α+, see
[83]. Moreover, when β T α, integrating by parts and using the equation in (1.35),
and (1.36), we obtain

Hα)φα+T

⋂∈

1

]φ3α)s+0 )φ∞α+
3)s+̂s2 α ds T mln

s′ 1
s2 αφ∞α)s+T αc2)α+T 2/κα.

(1.37)
In particular, if β T α we have that c)α, α+T 2 and (1.8) holds.
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Lemma 1.3.4. If g 
 L
2N

N+α )RN+, and f 
 aHα/3)RN+, then there exists a constant
�)α,N+> 1 such that((((⋂f)x+g)x+dx

((((≥ �)α,N+\f\Hα/2\g\ 2N
N+α

. (1.38)

Moreover, the equality in (1.38) with the best constant holds when f and g take the
form (1.32).

The proof follows by an standard argument that can be found, for instance in [41,
83].

Proof. By Parçeval’s identity and Cauchy-Schwarz’s inequality, we have)⋂
RN

f)x+g)x+dx

{3
T

)⋂
RN

f̃)ξ+̃g)ξ+dξ

{3
≥

)⋂
RN

‖3πξ‖α ‖f̃)ξ+‖3 dξ

{ )⋂
RN

‖3πξ‖ α ‖̃g)ξ+‖3 dξ

{
.

The second term can be written using [59] as⋂
RN

‖3πξ‖ α ‖̃g)ξ+‖3 dξ T b)α,N+

⋂
R2N

g)x+g)x∞+

‖x x∞‖N α
dxdx∞,

where

b)α,N+T
)N α

3 +

3απN/3 )α3+
.

We now use the following Hardy-Littlewood-Sobolev inequality, see again [59],⋂
R2N

g)x+g)x∞+

‖x x∞‖N α
dxdx∞≥ d)α,N+\g\32N

N+α
,

where

d)α,N+T
π

N−α
2 )α3+) )N++

α
N

)N0 α
3 +) )N3 ++

α
N

,

with equality if g takes the form (1.32). From this we obtain the desired estimate (1.38)
with the constant �)α,N+T b)α,N+d)α,N+.

When applying Cauchy-Schwarz’s inequality, we obtain an identity provided the
functions ‖ξ‖α/3f̃)ξ+and ‖ξ‖ α/3g̃)ξ+are proportional. This means

g̃)ξ+T c‖ξ‖αf̃)ξ+T c]) Λ+α/3fˆ{ )ξ+.

We end by observing that if g takes the form (1.32) and g T c) Λ+α/3f then f also
takes the form (1.32). �
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Proof of Theorem 1.3.1. Applying Lemma 1.3.4 with g T ‖f‖
N+α
N−α 2f we have

\f\
2N

N+α
2N

N+α

≥ �)α,N+\f\Hα/2\f\
N−α
N+α
2N

N+α

.

Then, using Lemma 1.3.3 we obtain

\f\ 2N
N+α

≥ �)α,N+\z\Xα .

with z T Eα)f+. We conclude using Lemma 1.10. The best constant is S)α,N+T
2/�3)α,N+. To obtain the result in bounded domains note that if u is defined in
Hα/3)´ +, it can be approximated by regular functions that are zero outside ´ . �

Remark 1.3.2. If we let α tend to 2, when N > 3, we recover the classical Sobolev
inequality for a function in H2)RN+, with the same constant, see [78]. In order to
pass to the limit in the right-hand side of (1.30), at least formally, we observe that
)3 α+y2 α dy is a measure on compact sets of R0 converging (in the weak-* sense)
to a Dirac delta. Hence

mln
α′ 3−

⋂2

1

)⋂
RN

‖ z)x, y+‖3 dx

{
)3 α+y2 α dy T

⋂
RN

‖ v)x+‖3 dx.

We then obtain )⋂
RN

‖v)x+‖
2N

N−2 dx

{N−2
N

≥ S)N+

⋂
RN

‖ v)x+‖3 dx,

with the best constant S)N+T mln
α′ 3−

S)α,N+
3 α T 2

πN)N 3+

)
)N+

)N2 +

( 2
N

. It is achieved

when v takes the form (1.32) with α replaced by 2.

Remark 1.3.3. The uniqueness of the minimizing functions (1.32) is deduced directly
from [36]. There the authors prove the unique solutions to the problem ) Λ+α/3f T

cf
N+α
N−α take the form (1.32).

Remark 1.3.4. The constant S)α,N+cant be achieved in any ´ different from RN .
To see this, let us suppose ´ � RN and assume S)α,N+is achieved for a function u1.
Then, as before, approximating u1 by functions that are zero out of ´ we would have a
function defined in RN that achieves S)α,N+and it is not in the form (1.32) leading
to a contradiction.

1.4. Other fractional operators

Even when our focus will be the fractional Laplacian as defined in the previous sec-
tions, in this section we give a small review over other fractional operators in bounded
domains.
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1.4.1. Global fractional Laplacian

A natural way to extend the definition ) Λ+α/3 to bounded domains consist on
extending by zero functions defined in ´ . This method leads to the so-called global
fractional Laplacian.

Definition 1.4.1. Let ´ �RN be a bounded domain and let f be a function regular
enough defined in ´ . Let f̃ be its extension by zero to RN , that is, f̃)x+T f)x+if
x 
 ´ and f̃)x+T 1 if x 
 ´ c. Then, we define the global fractional Laplacian as

) Λ+
α/3
G f T ) Λ+α/3f̃ .

The operator is well defined in the space

I α/3)´ +T
}
f ; f̃ 
 aHα/3)RN+

√
endowed with the norm

\f\Nα/2)¯ +T \f̃\Hα/2)RN+.

First, note that given f, g 
 I α/3)´ +, we have⋂
¯

f) Λ+
α/3
G g T

⋂
RN

f̃) Λ+α/3g̃ T

⋂
RN

g̃) Λ+α/3f̃ T

⋂
¯

g) Λ+
α/3
G f.

However,⋂
RN

g̃) Λ+α/3f̃ T

⋂
RN

) Λ+α/=g̃) Λ+α/=f̃ �T

⋂
¯

) Λ+α/=g) Λ+α/=f (1.39)

since ) Λ+α/=g̃ and ) Λ+α/=f̃ may not be null out of ´ . In particular we have

\f\3Nα/2)¯ +T

⋂
RN

‖) Λ+α/=f̃‖3 �T \) Λ+
α/3
G f\33.

Note that the second term of (1.39) defines a scalar product in I α/3)´ +.

1.4.2. Regional fractional Laplacian

The second operator arise when restricting the integral in (1.2) to the integral on
bounded domains.

Definition 1.4.2. Let ´ �RN be a bounded domain and let f be a function regular
enough defined in ´ . We define the regional fractional Laplacian as

) Λ+
α/3
R f T μN,αP.V.

⋂
¯

g)x+ g)x+

‖x x‖N0 α
dx
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Exploring again the integration by parts we have that, given ψ, φ regular enough,⋂
¯

φ) Λ+
α/3
R ψ T μN,α

⋂
¯

P.V.
⋂
¯

φ)x+
ψ)x+ ψ)x+

‖x x‖N0 α
dxdx

T
μN,α

3

⋂
¯

⋂
¯

)φ)x+ φ)x++)ψ)x+ ψ)x++

‖x x‖N0 α
dxdx

T

⋂
¯

ψ) Λ+
α/3
R φ.

(1.40)

However, as in the previous case⋂
¯

φ) Λ+
α/3
R ψ �T

⋂
¯

) Λ+
α/=
R φ) Λ+

α/=
R ψ.

The terms in (1.40) define a scalar product in

I
α/3
≤ )´ +T

}
f ; \f\

N
α/2
∗ )¯ +

< ∈
√

where

\f\3
N

α/2
∗ )¯ +

T
μN,α

3

⋂
¯

⋂
¯

)f)x+ f)x++3

‖x x‖N0 α
dxdx

is the well known Gagliardo norm. The global fractional Laplacian and the regional
fractional Laplacian are connected by the formula

) Λ+
α/3
G f T ) Λ+

α/3
R f 0 μN,αf)x+

⋂
¯ c

2

‖x y‖N0 α
dy.



28



2
A concave-convex elliptic problem involving the
fractional Laplacian

2.1. Introduction

This chapter is devoted to study the following concave-convex problem involving
the fractional Laplacian operator

)Pλ+

}
) Λ+α/3u T λuq 0 up, u > 1 in ´ ,

u T 1 on ∂´ ,
(2.1)

with 1 < α < 3, 1 < q < 2 < p < N0 α
N α , N > α, λ > 1 and ´ �RN a smooth

bounded domain.

As to the problems with concave-convex nonlinearities like the above, there is a
huge amount of results involving different (local) operators, see for instance [1, 4,
13, 35, 40, 48]. We quoted the work [4] from where some ideas are used in the present
chapter. In most of the problems considered in those papers a critical exponent appears,
(in the fully nonlinear case the situation is slightly different, but still a critical exponent
appears, [35]). In our case, the critical exponent with respect to the corresponding
Sobolev embedding will be 3≤α T

3N
N α . This is a reason why problem )Pλ+is studied

in the subcritical case p < 3≤α 2 T N0 α
N α ; see also the Pohozaev-type nonexistence

result for supercritical nonlinearities in Corollary 2.4.5.
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The main results that we prove characterize the existence of solutions of )Pλ+in
terms of the parameter λ. A competition between the sublinear and superlinear powers
plays a role, which leads to different results concerning existence and multiplicity of
solutions, among others. By a solution we mean an energy solution, see the precise
definition in Section 2.4.

Theorem 2.1.1. There exists Σ > 1 such that for Problem )Pλ+there holds:

1. If 1 < λ < Σ there is a minimal solution. Moreover, the family of minimal
solutions is increasing with respect to λ.

2. If λ T Σ there is at least one solution.

3. If λ > Σ there is no solution.

4. For any 1 < λ < Σ there exist at least two solutions.

For α 
 ]2, 3+, we also prove that there exists a universal L∈ -bound for every
solution to Problem )Pλ+independently of λ.

Theorem 2.1.2. Let α ∼ 2. Then there exists a constant C > 1 such that, for any
1 ≥ λ ≥ Σ, every solution to Problem )Pλ+satisfies

\u\∈ ≥ C.

The prove of this result uses the classical argument of rescaling introduced in [51]
leading to problems on unbounded domains. Therefore some Liouville-type results are
required, and this is the point where the restriction α ∼ 2 appears.

2.2. Some non-existence results in unbounded domains

We prove in this section two Liouville-type results in the half space RN0 2
0 and the

quarter space RN0 2
0 0 that will be useful in Section 2.4.3 in order to obtain uniform a

priori bounds for the solutions to Problem )Pλ+. These results have a corresponding
formulation for the fractional Laplacian operator.

2.2.1. A problem in the half-space

Theorem 2.2.1. Let 2 ≥ α < 3. Then the problem in the half-space RN0 2
0 ,⎛

f lx)y2 α w+ T 1 in RN0 2
0

∂w

∂να
T wp on ∂RN0 2

0 T RN
(2.2)

has no positive bounded solution in Cα0 γ)RN0 2
0 +∧ C)RN0 2

0 +with γ > 1 provided
2 < p < N0 α

N α .
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Theorem 2.2.1 is proved in the case α T 2 by [54]. See also [37, 79, 47] for other
approaches to the general case.

The proof that we present here is based on the well known method of moving planes,
introduced by A.D. Alexandrov and firstly used in the context of PDE’s by [71] and
[50], among others. Recall that the problem (2.2) can be written as⎩⎪⎨

Lαw T 1 in RN0 2
0

∂w

∂να
T wp for y T 1.

(2.3)

where Lα is defined in (1.12).

We begin then by establishing some useful notation in order to apply the moving
planes method. The points of the upper half-space RN0 2

0 are denoted by X T )x, y+,
where x T )x2,×××, xN+and y > 1. Fix ρ > 1 and consider the sets

Φρ T
}
X 
 RN0 2

0 =xN > ρ
〈
, Tρ T

}
X 
 RN0 2

0 =xN T ρ
√
. (2.4)

For every X T )x, y+
 RN0 2
0 we define the reflection across the hyperplane Tρ by

Xρ T )xρ, y+T X 0 3)ρ xN+eN T )x2,×××, 3ρ xN , y+. Let us also consider
the point Pρ T )1, ..., 1, 3ρ, 1+
 Φρ, whose reflection is the origin, and the set Φ̃ρ T
Φρ∇}Pρ〈 . Let B0

r denote the half-ball B0
r T }‖X‖ < r, y > 1〈 (B0

r )X1+when
the center X1 T )x1, 1+is not the origin), and let its non flat part of the boundary be
denoted by S0r T }‖X‖T r, y > 1〈 (resp. S0r )X1+).

Finally, also the so-called fractional Kelvin transform will be useful. We con-
sider, for a function f defined in RN , its fractional Kelvin transform as Kα)f+)x+T
‖x‖α Nf)x/‖x‖3+. It is well known that this transform behaves under the action of the
fractional Laplacian in a similar way as the standard Kelvin transform does with the
Laplacian, ) Λ+α/3Kα)f+)x+T ‖x‖ α N ) Λ+α/3f)x/‖x‖3+. We are interested in
defining the analogous fractional Kelvin transform for the function w and the operator
Lα. Let z)X+T ‖X‖γw)ξ+, ξ T X/‖X‖3. It is a calculus matter to see that

Lαz)X+T ‖X‖γ =
)
Lαw)ξ+0 )γ 0 N α+‖X‖3)γw)ξ+ 3〉ξ, w)ξ+|+

(
.

Therefore, if we choose γ T α N , and w is α-harmonic, we get that z is also
α-harmonic, and so it turns to be the α-harmonic extension of Kα)f+if w is the α-
harmonic extension of f . In other words, Eα ≡Kα T Kα ≡Eα.

Let now w be any solution to problem (2.3), and put μ T tvrB+
1
w. Then there

exists ε > 1 such that w)X+∼ ε‖X‖α N for ‖X‖∼ 2, y > 1. To see this observe
that by the Harnack inequality, Lemma 4.8 in [26], we have ε T logS+

1
w ∼ cμ > 1.

We conclude by comparison, using Lemma 1.1.2 and Proposition 4.10 of [26]. Let
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v T Kα)w+. We have that v satisfies analogous properties as w, but for the inversion
variable:

v)X+∼ ε in B0
2 ,

v)X+≥ μ‖X‖α N in RN0 2
0 ∇B0

2 ,
(2.5)

as well as it is a solution to the problem⎩⎝⎪⎝⎨
Lαv T 1 in RN0 2

0 ,

∂v

∂να
T ‖x‖ γvp for y T 1, ‖x‖�T 1,

(2.6)

where γ T )N 0 α+ )N α+p > 1.

We now proceed with the reflection. Let

ψρ)X+T v)Xρ+ v)X+. (2.7)

Clearly Lα)ψρ+T 1 in RN0 2
0 . We want to prove that ψρ ∼ 1 in Φ̃ρ. Recall that v

may have a singularity at the origin, and therefore ψρ may have a singularity at Pρ. We
begin with the following result.

Lemma 2.2.2. With the above notation, we have ψρ ∼ 1 in Φ̃ρ, provided ρ > 1 is
large enough.

Proof. Let β > 1 be some constant to be chosen later, and let

ϕρ)X+T ‖Z‖βψρ)X+, Z T X 0 eN0 2 T )x, y 0 2+. (2.8)

From the equation (2.6), we get

Lα)ϕρ+ βy2 α‖Z‖ 3]) β 0 N α+ϕρ 0 3〉Z, ϕρ|ˆT 1. (2.9)

Assume by contradiction that there exists δ > 1 such that

log
˜Ωρ

ϕρ T δ < 1. (2.10)

First of all we observe that (2.5) implies

‖ϕρ‖≥ c‖X‖β0 α N ↗ 1 for ‖X‖↗ ∈ ,

if we take β < N α. On the other hand, close to the possible singularity Pρ, we
have ϕρ > 1. In fact, if X 
 B0

2 )Pρ+, then Xρ 
 B0
2 , and then v)Xρ+∼ ε. Since

v)X+≥ μ‖X‖α N ≥ μρα N , we get

ϕρ)X+∼ ‖Z‖β)ε μ‖ρ‖α N+> 1 in B0
2 )Pρ+,
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provided ρ is large enough. Therefore the infimum in (4.14) is achieved in a point of
regularity of ϕρ. As to the interior points, the above choice of β gives that equation
(2.9) does not allow for interior minima to exist. Finally, the fact that ϕρ T 1 on Tρ,
leads to the only possibility for the infimum to be achieved, namely on the part of the
boundaryΦρ∧}y T 1〈 . Let then )x1, 1+
 Φρ∧}y T 1〈 be such that ϕρ)x1, 1+T δ.

We claim that the boundary condition in (2.6) implies

∂ϕρ

∂να
)x1+> 1, (2.11)

which will give the desired contradiction. It is at this point where the condition α ∼ 2
enters.

By Leibniz’s rule, we have

∂ϕρ

∂να
)x1+T ‖)x1, 2+‖

β ∂ψρ

∂να
)x1+0 ψρ)x1, 1+

∂‖Z‖β

∂να
)x1+.

The first term is bounded below, since by using (2.6), (2.5), and the Mean Value Theo-
rem, we get

∂ψρ

∂να
)x1+ T ‖xρ

1‖
γvp)xρ

1, 1+ ‖x1‖
γvp)x1, 1+∼ ‖x1‖

γ )vp)xρ
1, 1+ vp)x1, 1++

∼ p‖x1‖
γvp 2)x1, 1+ψρ)x1, 1+,

(2.12)
and thus

‖)x1, 2+‖
β ∂ψρ

∂να
)x1+∼ pδ‖x1‖

γ )p 2+)N α+∼ cρ 3.

As to the second term,

∂‖Z‖β

∂να
)x1+T

⎩⎪⎨
1 if α < 2,
β‖)x1, 2+‖

β 3 if α T 2,
∈ if α > 2.

We conclude in our case α > 2 that
∂ϕρ

∂να
)x1+T 0 ∈ . In the case α T 2 a sharp

control of the above terms gives (2.11); this is done in [54]. In the case α < 2 the
condition (2.11) is not necessarily true. �

The moving planes method begins with a plane in which we find some kind of
symmetry and then we see how far this plane can be moved keeping that symmetry.
The above lemma, instrumental in unbounded domains, provides a “starting plane”.
The following lemma establishes that we can move that plane up to the origin.

Lemma 2.2.3. Let ρ1 be defined as

ρ1 T inf}ρ > 1=ϕμ ∼ 1 in Φ̃μ for all ρ < μ < ∈ 〈 . (2.13)

Then ρ1 T 1.
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Proof. By Lemma 2.2.2 ρ1 is finite. Suppose that ρ1 > 1. By continuity we have
ϕρ0 T ‖Z‖βψρ0 ∼ 1 in [Φρ0 . Since γ > 1 and ρ1 > 1 we have by the boundary
condition that ψρ0 �⊆ 1 in [Φρ0 . Also, by (2.12), ∂ψρ0

∂να ∼ 1 on }y T 1〈 ∧ Φρ0 . Clearly
Lα)ψρ0+T 1 in RN0 2

0 and in particular in the set R1 T }‖X Pρ0‖T ‖ρ1‖/3, y ∼ 1〈 .
Therefore, by Proposition 4.10 of [26] we have ψρ0 > 1 in R1. Let δ T log

R0

ψρ0 > 1.

The function ψρ0 may have a singularity at Pρ0 , so we construct the following auxiliary
function. Let hε be the solution to the problem⎩⎝⎝⎝⎝⎝⎝⎝⎝⎝⎪⎝⎝⎝⎝⎝⎝⎝⎝⎝⎨

Lα)hε+)X+T 1, ε < ‖X Pρ0‖< ‖ρ1‖/3, y > 1,

hε)X+T δ, ‖X Pρ0
‖T ‖ρ1‖/3, y ∼ 1,

hε)X+T 1, ‖X Pρ0‖T ε, y ∼ 1,

∂hε

∂να
)X+T 1, ε < ‖X Pρ0‖< ‖ρ1‖/3, y T 1.

(2.14)

Then Lemma 4.11 of [26] implies

ψρ0 ∼ hε in ε ≥ ‖X Pρ0‖≥ ‖ρ1‖/3, y ∼ 1. (2.15)

Letting ε↗ 10 we have mln ε′ 1+ hε ⊆ δ by the uniqueness of the α-harmonic exten-
sion. Therefore

ψρ0 ∼ δ in 1 < ‖X Pρ0‖≥ ‖ρ1‖/3, y ∼ 1. (2.16)

Since ϕρ0 ∼ ψρ0 in [Φρ0 , we have

mln
ρ′ ρ0

log
R0

ϕρ ∼ log
R0

ϕρ0 ∼ δ. (2.17)

Being ρ1 the infimum, there exists a sequence ρk ↘ ρ1 such that

log
˜Ωρk

ϕρk
< 1. (2.18)

Clearly mln ‖X‖′ ∈ ϕρk
T 1. Recalling (2.17) the infimum in (2.18) must be attained at

some finite point Xk 
 Φρk
∇B‖ρ0‖/3)Pρ0

+with ‖ρk ρ1‖small enough. On the other
hand Xk �
 Tρk

since ϕρk
⊆ 1 in Tρk

. Therefore Xk must belong to the set

}X 
 RN0 2=y T 1, xN > 1, ‖X Pρ0‖
3 ∼ ‖ρ1‖

3/8〈 . (2.19)

Reasoning like in Lemma 2.2.2 this leads to the desired contradiction. �

Now we can deal with the proof of the main theorem in this subsection.

Proof of Theorem 2.2.1. Let w be any solution to Problem (2.2) and consider its
fractional Kelvin transform v T Kα)w+. By Lemma 2.2.3 we have v)x2, ..., xN , y+∼
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v)x2, ..., xN , y+for xN > 1. The same argument fits for negative xN giving the re-
verse inequality. Therefore v)X+is symmetric with respect to the xN -axis. Obviously
we can apply this argument in every direction perpendicular to y-axis. Hence v)X+is
a two-variables function and so it is w)X+. Indeed,

w)X+T φ)‖x‖, y+ (2.20)

for some function φ. Hence setting ‖x‖as the origin w is independent of )x2, ..., xN+
and therefore w)X+T w)y+.

To end the proof we are reduced to consider the problem in one dimension.⎩⎝⎪⎝⎨
)y2 αw∞+∞T 1, for y > 1,

mln
y′ 1+

y2 αw∞)y+T wp)1+.
(2.21)

The solutions of this problem are of the form w)y+T c cp

α yα with c ∼ 1, which
implies that the only nonnegative solution is w ⊆ 1. �

2.2.2. A problem in a quarter-space

Let us denote the quarter space as

RN0 2
0 0 T }X T )x∞, xN , y+‖x∞
 RN 2, xN > 1, y > 1〈 ,

.

Theorem 2.2.4. Let 2 ≥ α < 3. Then the problem in the first quarter⎩⎝⎪⎝⎨
Lαw T 1, RN0 2

0 0 ,
∂w

∂να
)x∞, xN+ T wp)x∞, xN , 1+,

w)x∞, 1, y+ T 1,

(2.22)

has no positive bounded solution in Cα0 γ)RN0 2
0 0 +∧ C)RN0 2

0 0 +with γ > 1 provided
2 < p < N0 α

N α .

Theorem 2.2.4 is proved in the case α T 2 in [28]. We begin with a generalization
of Proposition 6.1 of [38]. Let N T 3.

Lemma 2.2.5. Suppose w is a solution of the following problem⎩⎝⎪⎝⎨
Lαw ∼ 1, w ∼ 1 in R30 ,

∂w

∂να
∼ 1, for y T 1 .

(2.23)
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Then w is a constant.

Proof. Let X1 T )x1, y1+
 R30 . Given ε, δ 
 )1, 2+we define the function

ψ)X+T εw)X1+mpi

)
‖X X1‖

3

δ3

{
0 Cδ, (2.24)

where
Cδ T n d˜

S+
δ )X0+

)w)X1+ w)X++,

where S0δ )X1+T }‖X X1‖T δ, y ∼ 1〈 . Its clear that ψ)X+⊆ Cδ on S0δ )X1+and
taking δ small enough we have

ψ)X+∼ w)X1+∼ w)X1+ w)X+ on S0
e1/ε

)X1+. (2.25)

A direct calculation shows that, if α 
 )2, 3+, then⎩⎝⎪⎝⎨
Lαψ ≥ 1, in R30 ,

∂ψ

∂να
T ∈ , for y T 1.

Thus by the maximum principle

ψ)X+∼ w)X1+ w)X+ for X 
 R30 , δ < ‖X X1‖< e2/ε

Letting ε↗ 1 and then δ ↗ 1, we have w)X1+ w)X+≥ 1 for any X1, X 
 R30 . �

Lemma 2.2.6. Let p ∼ 1 and let C be a positive constant. Then there is no solution to
the problem⎩⎝⎝⎝⎝⎪⎝⎝⎝⎝⎨

Lαw T 1, 1 < w ≥ C, in R30 0 T }x > 1, y > 1〈 ,

∂w

∂να
T wp, on }x > 1, y T 1〈 ,

w T 1, on }x T 1, y ∼ 1〈 .

(2.26)

Proof. First, we show that w)x, 1+↗ 1 as x ↗ ∈ . Suppose by contradiction that
there exists a sequence ηm ↗ ∈ as m ↗ ∈ and such that w)ηm, 1+↗ K > 1. Let
us denote wm)x, y+T w)x 0 ηm, y+. Its clear that it holds

⎩⎝⎝⎝⎝⎪⎝⎝⎝⎝⎨
Lαwm T 1, 1 < wm ≥ C, in Rm T }x > ηm, y > 1〈 ,

∂wm

∂να
T wp, on }x > ηm, y T 1〈 ,

wm T 1, on }x T ηm, y ∼ 1〈 .

(2.27)
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Moreover wm)1, 1+↗ K. So that taking a subsequence of wm if necessary we have
wm ↗ w̃ with

⎩⎝⎪⎝⎨
Lαw̃ T 1, 1 ≥ w̃ ≥ C, in R30 ,

∂w̃

∂να
T w̃p ∼ 1, for y T 1.

(2.28)

Since w̃)1, 1+T K, Lemma 2.2.5 implies w̃ ⊆ K but by the boundary condition we
have that

∂w̃

∂να
)1, 1+T w̃p)1, 1+T Kp > 1,

which leads to a contradiction. Therefore w)x, 1+↗ 1 as x↗ ∈ .

Following [26] we define the function

Ψ)x+T
2

3

⋂∈

1

y2 α)‖wx)x, y+‖
3 ‖wy)x, y+‖

3+dy,

see also [28] for the case α T 2. Differentiating inside the integral, we have

2

3

⋂∈

1

∂

∂x
]y2 α)‖wx‖

3 ‖wy‖
3+̂dy T

⋂∈

1

y2 α)wxxwx wywxy+dy.

We want to see that this integral converges. By Lemma 4.3 of [26] we know that there
exists some β 
 )1, 2+such that w 
 C3,β . Moreover by Proposition 4.6 of [26]⋂∈

1

y2 α)‖wxxwx‖0 ‖wywxy‖+dy ≥

M2)

⋂2

1

y2 α)‖wx‖0 ‖wy‖+dy 0

⋂∈

2

y2 α)‖wx‖0 ‖wy‖+dy+≥

M3)M4 0

⋂∈

2

y2 α

y 0 2
dy+< ∈ ,

for some constants M2,M3,M4 > 1. Notice that the last integral is convergent pro-
vided 2 < α < 3. We recall that in the case α T 2, a sharper estimate is used in [28].
Now let G)w+T

∑w

1
f)s+ds. By dominated convergence, and since ‖ w)x, y+‖↗ 1

as y ↗ ∈ , integrating by parts we have

]Ψ)x+0 G)w)x, 1++̂x T

⋂∈

1

y2 α]wxxwx wywxy )̂x, y+dy 0 ]f)w+wx )̂x, 1+

T mln
y′ 1

]y2 αwywx 0 f)w+wx )̂x, y+T mln
y′ 1

]y2 αwywx y2 αwywx )̂x, y+T 1.

Therefore Ψ)x+0 G)w)x, 1++is constant. The rest of the proof is exactly the same as
in [28]. Using that w)x, 1+↗ 1 as x↗ ∈ and Lemma 5.1 of [26] we obtain

Ψ)x+0 G)w)x, 1++⊆ 1.
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Since w ⊆ 1 in }x T 1, y ∼ 1〈 it follows that

1 T 3Ψ)1+T

⋂∈

1

‖wx‖
3)1, y+dy

which implies wx T 1 on }x T 1, y > ε〈 for every ε > 1. Since Lα is a non-
degenerated elliptic operator in }x T 1, y > ε〈 by the Hopf’s Lemma this leads to a
contradiction. �

With these two results a standard argument completes the proof.

Proof of Theorem 2.2.4. By an analogous argument to the proof of Theorem 2.2.4 for
the )x2, ..., xN 2+variables (with the analogous Lemma 2.2.2 and Lemma 2.2.3), it is
easy to see that any positive solution of (2.22) depends only on two variables, xN and
y. Therefore applying Proposition 2.2.6 the proof is complete. �

2.3. The linear problem

We now use the extension problem (1.17) to reformulate the nonlocal problems
in a local way. Let g be a regular function and consider the following problems, the
nonlocal problem }

) Λ+α/3u T g)x+ in ´ ,
u T 1 on ∂´ ,

(2.29)

and the corresponding local one⎩⎝⎝⎝⎪⎝⎝⎝⎨
f lx)y2 α w+ T 1 in F̄ ,

w T 1 on ∂LF̄ ,

∂w

∂να
)x, y+ T g)x+ on ´ .

(2.30)

We want to define the concept of solution to (2.29), which is done in terms of the
solution to problem (2.30).

Definition 2.3.1. We say that w 
 Xα
1 )F̄ +is an energy solution to problem (2.30), if

for every function ϕ 
 Xα
1 )F̄ +it holds

κα

⋂
FΩ

y2 α
〉

w)x, y+, ϕ)x, y+
∣
dxdy T

⋂
¯

g)x+ϕ)x, 1+dx. (2.31)

In fact more general test functions can be used in the above formula, whenever the
integrals make sense. A supersolution (subsolution) is a function that verifies (2.31)
with equality replaced by ∼ (≥) for every nonnegative test function.

Definition 2.3.2. We say that u 
 H
α/3
1 )´ +is an energy solution to problem (2.29) if

it is the trace on ´ of a function w which is an energy solution to problem (2.30).
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A solution exists for instance for every g 
 H α/3)´ +, see [33]. In order to deal
with problem (2.30) we will assume, without loss of generality, κα T 2, by changing
the function g.

In [26] this linear problem is also mentioned. There some results are obtained using
the theory of degenerate elliptic equations developed in [46], in particular a regularity
result for bounded solutions to this problem is obtained in [26]. We prove here that the
solutions are in fact bounded if g satisfies a minimal integrability condition.

Theorem 2.3.3. Let w be a solution to problem (2.30). If g 
 Lr)´ +, r > N
α , then

w 
 L∈ )F̄ +.

Proof. The proof follows from the well-known Moser’s iterative technique, that we
take from [52, Theorem 8.15], and uses the trace inequality (1.30). Without loss of
generality we may assume w ∼ 1, and this simplifies notation. The general case is
obtained in a similar way.

We define for β ∼ 2 and K ∼ k (k to be chosen later) a C2)]k,∈ ++function H ,
as follows:

H)z+T

}
zβ kβ , z 
 ]k,K ,̂
βKβ 2)z K+0 )zβ Kβ+, z > K.

Let us also define v T w 0 k, ν T [ s)v+, and choose as test function ϕ,

ϕ T G)v+T

⋂v

k

‖H∞)s+‖3 ds, ϕ T ‖H∞)v+‖3 v.

Note that since ‖H∞)v+‖≥ βKβ 2 then ϕ 
 Xα
1 )F̄ +. Replacing this test function into

the definition of energy solution we obtain on one hand:⋂
FΩ

y2 α
〉

w, ϕ
∣
dxdy T

⋂
FΩ

y2 α
(( v‖3‖H∞)v+‖3 dxdy

T

⋂
FΩ

y2 α
(( H)v+‖3 dxdy

∼ C\H)ν+\32N
N−α

,

(2.32)

where the last inequality follows by (1.30).On the other hand, since H∞is increasing
we have

G)v+≥ v‖H∞)v+‖3 T vG∞)v+

Thus ⋂
¯

g)x+ϕ)x, 1+dx T

⋂
¯

g)x+G)ν+dx ≥

⋂
¯

g)x+νG∞)ν+dx

≥

⋂
¯

g)x+ν‖H∞)ν+‖3 dx

≥ \g\r\ν
1
2H∞)ν+\32r

r−1
.

(2.33)
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Inequality (2.32) together with (2.33), leads to

\H)ν+\ 2N
N−α

≥

)
2

C
\g\r

{2/3
\ν

1
2H∞)ν+\ 2r

r−1
, (2.34)

by choosing k T 1 and letting K ↗ ∈ in the definition of H , the inequality (2.34)
becomes

\νβ\ 2N
N−α

≥ Cβ\νβ
1
2 \ 2r

r−1
.

Hence for all β ∼ 2 the inclusion ν 
 L
2r(β− 1

2
)

r−1 )´ +implies the stronger inclusion
ν 
 L

2Nβ
N−α )´ +, since 3Nβ

N α >
3r)β 1

2+

r 2 provided r > N
α . The result follows now, as in

[52], by an iteration argument, starting with β T N)r 2+
r)N α+0

2
3 > 2 and ν 
 L

2N
N−α )´ +.

This gives ν 
 L∈ )´ +, and then w 
 L∈ )F̄ +. In fact we get the estimate

\w\∈ ≥ c)\w\Xα 0 \g\r+.

�

Corollary 2.3.4. Let w be a solution to problem (2.30). If g 
 L∈ )´ +, then w 

Cγ)F̄ +for some γ 
 )1, 2+.

Proof. Using Theorem 2.3.3, the result follows directly from [26, Lemma 4.4], where
it is proved that any bounded solution to problem (2.30) with a bounded g is Cγ . �

2.4. The nonlinear nonlocal problem

As we have said, we will focus on the particular nonlinearity

f)s+T fλ)s+T λsq 0 sp. (2.35)

However many auxiliary results will be proved for more general reactions f satisfying
the growth condition

1 ≥ f)s+≥ c)2 0 ‖s‖p+, for some p > 1. (2.36)

Remark 2.4.1. In order to simplify the notation, the results on the coefficient λ for
the local problem (3.2)–(2.35) in this section are translated into problem )Pλ+with λ

multiplied by κ
p)q 2+ 2
α .

We consider now the functional

J)w+T
2

3

⋂
FΩ

y2 α‖ w‖3 dxdy

⋂
¯

F )w+dx,
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where F )s+T
∑s

1
f)τ+dτ . For simplicity of notation, we define f)s+T 1 for s ≥ 1.

Recall that the trace satisfies w 
 Lr)´ +, (again this means [ s)w+
 Lr)´ +), for every
2 ≥ r ≥ 3N

N α if N > α, 2 < r ≥ ∈ if N ≥ α. In particular if 2 < p ≥ N0 α
N α , and

f verifies (2.36) then F )w+
 L2)´ +, and the functional is well defined and bounded
from below.

We consider also the minimization problem

LT log
}⋂

FΩ

y2 α‖ w‖3 dxdy ; w 
 Xα
1 )F̄ +,

⋂
¯

F )w+dx T 2
√
,

for which, by classical variational techniques, one has that below the critical exponent
the infimum L is achieved. This gives in a standard way a nonnegative solution. Later
on we will see that this infimum is positive provided λ > 1 is small enough. On the
contrary, for λ large enough the infimum is the trivial solution.

We now establish two preliminary results. The first one is a classical procedure of
sub- and supersolutions to obtain a solution. We omit its proof.

Lemma 2.4.1. Assume there exist a subsolution w2 and a supersolution w3 to problem
(3.2) verifying w2 ≥ w3. Then there also exists a solution w satisfying w2 ≥ w ≥ w3
in F̄ .

The second one is a comparison result for concave nonlinearities. The proof follows
the lines of the corresponding one for the Laplacian performed in [21].

Lemma 2.4.2. Assume the function f)t+/t is decreasing for t > 1 and consider
w2, w3 
 Xα

1 )F̄ +positive subsolution and supersolution, respectively, to problem
(3.2). Then w2 ≥ w3 in F̄ .

Proof. By definition we have, for the nonnegative test functions ϕ2 and ϕ3 to be chosen
in an appropriate way,⋂

FΩ

y2 α
〉

w2, ϕ2
∣
dxdy ≥

⋂
¯

f)w2+ϕ2 dx,⋂
FΩ

y2 α
〉

w3, ϕ3
∣
dxdy ∼

⋂
¯

f)w3+ϕ3 dx.

Now let θ)t+be a smooth nondecreasing function such that θ)t+T 1 for t ≥ 1, θ)t+T 2
for t ∼ 2, and set θε)t+T θ) tε+. If we put, in the above inequalities

ϕ2 T w3 θε)w2 w3+, ϕ3 T w2 θε)w2 w3+,

we get

I2 ∼

⋂
¯

w2w3

)f)w3+
w3

f)w2+

w2

(
θε)w2 w3+dx,
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where

I2 ;T

⋂
FΩ

y2 α
〉
w2 w3 w3 w2, )w2 w3+

∣
θ∞ε)w2 w3+dxdy.

Now we estimate I2 as follows:

I2 ≥

⋂
FΩ

y2 α
〉

w2, )w2 w3+ )w2 w3+
∣
θ∞ε)w2 w3+dxdy

T

⋂
FΩ

y2 α
〉

w2, γε)w2 w3+
∣
dxdy

where γ∞ε)t+T tθ∞ε)t+. Therefore, since 1 ≥ γε ≥ ε, we have

I2 ≥

⋂
¯

f)w2+γε)w2 w3+dx ≥ cε.

We end as in [4]. Letting ε tend to zero, we obtain⋂
¯ ∧}w1>w2|

w2w3

)
f)w3+

w3

f)w2+

w2

{
dx ≥ 1,

which together with the hypothesis on f gives w2 ≥ w3 in ´ . Comparison in F̄
follows easily by the maximum principle. �

Now we show that the solutions to problem (3.2)–(2.36) are bounded and Hölder
continuous. Later on, in Section 2.4.3, we will obtain a uniform L∈ -estimate in the
case where f is given by (2.35) and the convex power is subcritical.

Proposition 2.4.3. Let f satisfy (2.36) with 2 < p < N0 α
N α , and let w 
 Xα

1 )F̄ +be an
energy solution to problem (3.2). Then w 
 L∈ )F̄ +∧ Cγ)F̄ +for some 1 < γ < 2.

Proof. The proof follows closely the technique of [22]. As in the proof of Theorem
2.3.3, we assume w ∼ 1. We consider, formally, the test function ϕ T wβ p, for some
β > p 0 2. The justification of the following calculations can be made substituting ϕ
by some approximated truncature. We therefore proceed with the formal analysis. We
get, using the trace immersion, the inequality)⋂

¯

w
(β−p+1)N

N−α

{N−α
N

≥ C)β, α,N, ´ +

⋂
¯

wβ .

This estimate allows us to obtain the following iterative process

\w\βj+1 ≥ C\w\

βj
βj−p+1

βj
,

with βj0 2 T
N

N α )βj 0 2 p+. To have βj0 2 > βj we need βj > )p 2+N
α . Since

w 
 L3
∗
α)´ +, starting with β1 T 3N

N α , we get the above restriction provided 2 <

p < N0 α
N α . It is clear that in a finite number of steps we get, for g)x+T f)w)x, 1++,

the regularity g 
 Lr for some r > N
α . As a consequence, we obtain the conclusion

applying Theorem 2.3.3 and Corollary 2.3.4. �
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2.4.1. A nonexistence result

The following result relies on the use of a classical Pohozaev type multiplier.

Proposition 2.4.4. Assume f is a continuous function with primitive F , and w is a
energy solution to problem (3.2). Then the following Pohozaev-type identity holds

2

3

⋂
∂LFΩ

y2 α
〉
x, ν
∣
‖ w‖3 dσ N

⋂
¯

F )w+dx 0
N α

3

⋂
¯

wf)w+dx T 1,

where ν is the (exterior) normal vector to ∂´ .

Proof. Let us suppose w 
 C3)F̄ +and assume the following identity〉
)x, y+, w

∣
f lx)y2 α w+0 f lx

]
y2 α

)〉
)x, y+, w

∣
w

2

3
)x, y+‖ w‖3

({
0
)N α

3

(
y2 α‖ w‖3 T 1.

(2.37)
Since w is a solution of (3.2) it holds f lx)y2 α w+T 1. Integrating in ´ ∗ )1, R+we
have ⋂

¯ ∗ )1,R+

f lx
]
y2 α

)〉
)x, y+, w

∣
w

2

3
)x, y+‖ w‖3

({
0
)N α

3

(⋂
¯ ∗ )1,R+

y2 α‖ w‖3 T 1.

By the Divergence Theorem⋂
∂}¯ ∗ )1,R+|

y2 α
)〉
)x, y+, w

∣
w

2

3
)x, y+‖ w‖3

(
×ν

0
)N α

3

(⋂
¯ ∗ )1,R+

y2 α‖ w‖3 T 1.

Since w T 1 in ∂F̄ and since

∂}´ ∗ )1, R+〈 T )´ ∗ }y T 1〈+∩ )´ ∗ }y T R〈+∩ )∂´ ∗ )1, R++

we have

2

3

⋂
∂¯ ∗ )1,R+

y2 α
〉
x, ν
∣
‖ w‖3 dσ 0

⋂
¯ ∗ }y[ 1|

〉
x, xw

∣ ∂w
∂να

0

⋂
¯ ∗ }y[ R|

y2 α
))〉

x, xw
∣
0 Rwy

(
wy

R

3
‖ w‖3

(
0
)N α

3

(⋂
¯ ∗ )1,R+

y2 α‖ w‖3 T 1.

(2.38)
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On one hand, integrating by parts⋂
¯ ∗ }y[ 1|

〉
x, xw

∣ ∂w
∂να

T

⋂
¯ ∗ }y[ 1|

〉
x, xw

∣
f)w+

T

⋂
¯ ∗ }y[ 1|

〉
x, xF )w+

∣
T N

⋂
¯ ∗ }y[ 1|

F )w+.

On the other hand, the third term of (2.38) holds(((⋂
¯ ∗ }y[ R|

y2 α
))〉

x, xw
∣
0 Rwy

(
wy

R

3
‖ w‖3

((((
≥ C)f ldn )´ +0 2+

⋂
¯ ∗ }y[ R|

R3 α‖ w‖3,

for some positive constant C. If we assume

mln log
R′ ∈

⋂
¯ ∗ }y[ R|

R3 α‖ w‖3 T c > 1

then, there exists a positive R1 such that for all R2 ∼ R1 we have⋂R1

R0

⋂
¯

R3 α‖ w‖3 dxdR ∼ c∞
⋂R1

R0

2

R
dR,↗ ∈ cuando R2 ↗ ∈ .

This implies w �
 Xα
1 )´ +and therefore a contradiction. Hence, there exists a subse-

quence Rm ↗ ∈ such that

mln
m′ ∈

⋂
¯ ∗ }y[ Rm|

y2 α
))〉

x, xw
∣
0 Rmwy

(
wy

Rm

3
‖ w‖3

(
T 1.

Integrating again by parts,⋂
¯ ∗ )1,R+

y2 α‖ w‖3 T

⋂
¯ ∗ }y[ 1|

w
∂w

∂να
0

⋂
¯ ∗ }y[ R|

wwy

T

⋂
¯ ∗ }y[ 1|

wf)w+0

⋂
¯ ∗ }y[ R|

R2 αwwy.

Reasoning as before we have a sequence Rm ↗ ∈ (extracting a subsequence and
renaming if necessary) such that the second integral approaches to 0 as m approaches
to ∈ . As a consequence, taking R T Rm ↗ ∈ in (2.38) we have

2

3

⋂
∂LFΩ

y2 α
〉
x, ν
∣
‖ w‖3 dσ N

⋂
¯

F )w+dx 0
N α

3

⋂
¯

wf)w+dx T 1.
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Finally, we prove identity (2.37). Computing we have

f lx
]
y2 α

)〉
)x, y+, w

∣
w

2

3
)x, y+‖ w‖3

({
T

f lx
)
y2 α

〉
)x, y+, w

∣
w
( 2

3
f lx
)
y2 α)x, y+‖ w‖3

(
T〉

)x, y+, w
∣
f lx)y2 α w+0

)〉
)x, y+, w

∣(
y2 α w

2

3

]
)y2 α)x, y++‖ w‖3 0

)
‖ w‖3

(
y2 α)x, y+

{
T

〉
)x, y+, w

∣
f lx)y2 α w+0 y2 α‖ w‖3

2

3
)y2 α)x, y++‖ w‖3 T

〉
)x, y+, w

∣
f lx)y2 α w+

)N α

3

(
y2 α‖ w‖3.

.

For energy solutions a classic approximation approach holds. �

As a consequence we obtain a nonexistence result in the supercritical case for do-
mains with particular geometry.

Theorem 2.4.5. If ´ is starshaped and the nonlinearity f, F are as in the previous
proposition, and satisfy the inequality ))N α+sf)s+ 3NF )s++∼ 1, then problem
(3.2) has no bounded solution. In particular, in the case f)s+T sp this means that
there is no bounded solution for any p ∼ N0 α

N α .

The case α T 2 has been proved in [28]. The corresponding result for the Laplacian
(Problem )Pλ+with α T 3) comes from [66].

2.4.2. Proof of Theorem 2.1.1

We prove here Theorem 2.1.1 in terms of the solution of the local version (3.2). For
the sake of readability we split the proof of into several lemmas. From now on we will
denote

)Pλ+⊆

⎩⎝⎝⎝⎪⎝⎝⎝⎨
f lx)y2 α w+ T 1, in F̄ ,

w T 1, on ∂LF̄ ,

∂w

∂να
T λwq 0 wp, w > 1 in ´ ,

and consider the associated energy functional

Jλ)w+T
2

3

⋂
FΩ

y2 α‖ w‖3 dxdy

⋂
¯

Fλ)w+dx,
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where
Fλ)s+T

λ

q 0 2
sq0 2 0

2

p 0 2
sp0 2.

Lemma 2.4.6. Let Σ be defined by

Σ T tvr }λ > 1 ; Problem )Pλ+has solution〈 .

Then 1 < Σ < ∈ .

Proof. Consider the eigenvalue problem associated to the first eigenvalue λ2, and let
ϕ2 > 1 be the associated eigenfunction. Then using ϕ2 as a test function in )Pλ+we
have that ⋂

¯

)λwq 0 wp+ϕ2 dx T λ2

⋂
¯

wϕ2 dx. (2.39)

Since there exist positive constants c, δ such that λtq 0 tp > cλδt, for any t > 1 we
obtain from (3.6) (recall that w > 1) that cλδ < λ2 which implies Σ < ∈ .

To prove Σ > 1 we use the sub- and supersolution technique to construct a solution
for any small λ. In fact a subsolution is obtained as w T εϕ2, ε > 1 small. A
supersolution is a suitable multiple of the function g solution to⎩⎝⎝⎝⎪⎝⎝⎝⎨

f lx)y2 α g+ T 1 in F̄ ,

g T 1 on ∂LF̄ ,

∂g

∂να
T 2 in ´ .

�

This proves the third statement in Theorem 2.1.1.

Lemma 2.4.7. Problem )Pλ+has at least a positive solution for every 1 < λ < Σ.
Moreover, the family }wλ〈 of minimal solutions is increasing with respect to λ.

Remark 2.4.2. Although this Σ is not exactly the same as that of Theorem 2.1.1, see
Remark 2.4.1, we have not changed the notation for the sake of simplicity.

Proof of Lemma 2.4.7. We already proved in the previous lemma that Problem )Pλ+
has a solution for every λ > 1 small. Another way of proving this result is to look
at the associated functional Jλ. Using inequality (1.30), we have that this functional
verifies

Jλ)w+ T
2

3

⋂
FΩ

y2 α‖ w‖3 dxdy

⋂
¯

Fλ)w+dx

∼
2

3

⋂
FΩ

y2 α‖ w‖3 dxdy λC2

)⋂
FΩ

y2 α‖ w‖3 dxdy
(q+1

2

C3

)⋂
FΩ

y2 α‖ w‖3 dxdy
(p+1

2

,
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for some positive constants C2 and C3. Then for λ small enough there exist two so-
lutions of problem )Pλ+, one given by minimization and another one given by the
Mountain-Pass Theorem, [5]. The proof is standard, based on the geometry of the
function g)t+T 2

3 t
3 λC2t

q0 2 C3t
p0 2, see Chapter 3 for more details. This in

particular proves Σ > 1.

We now show that there exists a solution for every λ 
 )1,Σ+. Later, see Lemma
2.4.9, we will prove that in fact there are at least two solutions in the whole interval
)1,Σ+.

By definition of Σ, we know that there exists a solution corresponding to any value
of λ close to Σ. Let us denote it by μ, and let wμ be the associated solution. Now
wμ is a supersolution for all problems )Pλ+with λ < μ. Take vλ the unique solution
to problem (3.2) with f)s+T λsq . Obviously vλ is a subsolution to problem )Pλ+.
By Lemma 2.4.2 vλ ≥ wμ. Therefore by Lemma 2.4.1 we conclude that there is a
solution for all λ 
 )1, μ+, and as a consequence, for the whole open interval )1,Σ+.
Moreover, this solution is the minimal one. The monotonicity follows directly from the
comparison lemma. �

This proves the first statement in Theorem 2.1.1.

Lemma 2.4.8. Problem )Pλ+has at least one solution if λ T Σ.

Proof. Let }λn〈 be a sequence such that λn ↘ Σ. We denote by wn T wλn the
minimal solution to problem )Pλn+. As in [4], we can prove that the linearized equation
at the minimal solution has nonnegative eigenvalues. Then it follows, as in [4] again,
Jλn)wn+< 1. Since J∞λn

)wn+T 1, one easily gets the bound \wn\Xα
0 )FΩ+

≥ k.
Hence, there exists a weakly convergent subsequence in Xα

1 )F̄ +and as a consequence
a weak solution of )Pλ+for λ T Σ. �

This proves the second statement in Theorem 2.1.1.

To conclude the proof of Theorem 2.1.1, we show next the existence of a second
solution for every 1 < λ < Σ. It is essential to have that the first solution is given as a
local minimum of the associated functional, Jλ. To prove this last assertion we follow
some ideas developed in [2].

Lemma 2.4.9. Problem )Pλ+has at least two solutions for each λ 
 )1,Σ+.

Proof. Let λ1 
 )1,Σ+be fixed and consider λ1 < ”λ2 < Σ. Take φ1 T wλ0 , φ2 T w(λ1

the two minimal solutions to problem )Pλ+with λ T λ1 and λ T ”λ2 respectively, then
by comparison, φ1 < φ2. We define

M T }w 
 Xα
1 )F̄ +; 1 ≥ w ≥ φ2〈 .

Notice that M is a convex closed set of Xα
1 )F̄ +. Since Jλ0 is bounded from below in

M and it is semicontinuous on M , we get the existence of ω 
 M such that Jλ0
)ω+T
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logw � M Jλ0)w+. Let v1 be the unique positive solution to problem⎩⎝⎝⎝⎪⎝⎝⎝⎨
f lx)y2 α v1+ T 1, in F̄ ,

v1 T 1, on ∂LF̄ ,

∂v1
∂να

T vq1, in ´ .

(2.40)

(The existence and uniqueness of this solution is clear, see Lemma 2.4.2). Since for
1 < ε << λ1, and Jλ0)εv1+< 1, we have εv1 
 M , then ω �T 1. Therefore
Jλ0)ω+< 1. By arguments similar to those in [77, Theorem 2.4], we obtain that ω is a
solution to problem )Pλ0+. There are two possibilities:

If ω �⊆ wλ0
, then the result follows.

If ω ⊆ wλ0 , we have just to prove that ω is a local minimum of Jλ0 . Assuming
that this is true, the conclusion in part 4 of Theorem 2.1.1 follows by using a
classical argument: The second solution is given by the Mountain Pass Theorem,
we postpone the proof to the next sections that will include the more complicated
critical case.

We prove now that the minimal solution wλ0 is in fact a local minimum of Jλ0 . We
argue by contradiction.

Suppose that ω is not a local minimum of Jλ0 in Xα
1 )F̄ +, then there exists a se-

quence }vn〈 �Xα
1 )F̄ +such that \vn ω\Xα

0
↗ 1 and Jλ0)vn+< Jλ0)ω+.

Let wn T )vn φ2+
0 and zn T n d˜}1, n lo}vn, φ2〈〈 . It is clear that zn 
 M and

zn)x, y+T

⎩⎝⎝⎪⎝⎝⎨
1 if vn)x, y+≥ 1,

vn)x, y+ if 1 ≥ vn)x, y+≥ φ2)x, y+,

φ2)x, y+ if φ2)x, y+≥ vn)x, y+.

We set

Tn ⊆ })x, y+
 F̄ ; zn)x, y+T vn)x, y+〈 , Sn ⊆ supp)wn+,

T̃n T Tn ∧ ´ , S̃n T Sn ∧ ´ .

Notice that supp)v0n+T Tn ∩ Sn. We claim that

‖̃Sn‖̄ ↗ 1 as n↗ ∈ , (2.41)

where ‖A‖̄ ⊆
∑̄

χA)x+dx.
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By the definition of Fλ, we set Fλ0)s+T
λ1

q 0 2
sq0 20 0

2

p 0 2
sp0 20 , for s 
 R, and get

Jλ0)vn+T
2

3

⋂
FΩ

y2 α‖ vn‖
3 dxdy

⋂
¯

Fλ0)vn+dx

T
2

3

⋂
Tn

y2 α‖ zn‖
3 dxdy

⋂
˜Tn

Fλ0)zn+dx 0
2

3

⋂
Sn

y2 α‖ vn‖
3 dxdy⋂

˜Sn

Fλ0)vn+dx 0
2

3

⋂
FΩ

y2 α‖ vn ‖
3 dxdy

T
2

3

⋂
Tn

y2 α‖ zn‖
3 dxdy

⋂
˜Tn

Fλ0)zn+dx

0
2

3

⋂
Sn

y2 α‖ )wn 0 φ2+‖
3 dxdy

⋂
˜Sn

Fλ0)wn 0 φ2+dx

0
2

3

⋂
FΩ

y2 α‖ vn ‖
3 dxdy.

Since⋂
FΩ

y2 α‖ zn‖
3 dxdy T

⋂
Tn

y2 α‖ vn‖
3 dxdy 0

⋂
Sn

y2 α‖ φ2‖
3 dxdy

and ⋂
¯

Fλ0)zn+dx T

⋂
˜Tn

Fλ0)vn+dx 0

⋂
˜Sn

Fλ0)φ2+dx,

by using the fact that φ2 is a supersolution to )Pλ0+, we conclude that

Jλ0)vn+ T Jλ0)zn+0
2

3

⋂
Sn

y2 α)‖ )wn 0 φ2+‖
3 ‖ φ2‖

3+dxdy⋂
˜Sn

)Fλ0)wn 0 φ2+ Fλ0)φ2++dx 0
2

3

⋂
FΩ

y2 α‖ vn ‖
3 dxdy

∼ Jλ0)zn+0
2

3
\wn\

3
Xα

0
0
2

3
\vn \

3
Xα

0⋂
¯

}Fλ0)wn 0 φ2+ Fλ0)φ2+ )Fλ0+u)φ2+wn〈 dx

∼ Jλ0)ω+0
2

3
\wn\

3
Xα

0
0
2

3
\vn \

3
Xα

0⋂
¯

}Fλ0)wn 0 φ2+ Fλ0)φ2+ )Fλ0+u)φ2+wn〈 dx.

On one hand, taking into account that 1 < q 0 2 < 3, one obtains that

1 ≥
2

q 0 2
)wn 0 φ2+

q0 2 2

q 0 2
φq0 2
2 φq

2wn ≥
q

3

w3
n

φ2 q
2

.
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The well known Picone’s inequality (see [65]) establish:

‖ u‖3
)
u3

v

{
× v ∼ 1,

for differentiable functions v > 1, u ∼ 1. In our case, by an approximation argument
we get

λ1

⋂
¯

w3
n

φ2 q
2

dx ≥ \wn\
3
Xα

0
.

On the other hand, since p 0 2 > 3,

1 ≥
2

p 0 2
)wn 0 φ2+

p0 2 2

p 0 2
φp0 2
2 φp

2wn ≥
r

3
w3

n)wn 0 φ2+
p 2

≥ C)p+)φp 2
2 w3

n 0 wp0 2
n +.

Hence using that p 0 2 < 3≤α and the claim (2.41)⋂
¯

}
2

p 0 2
)wn 0 φ2+

p0 2 2

p 0 2
φp0 2
2 φp

2wn

(
dx ≥ o)2+\wn\

3
Xα

0
.

As a consequence we obtain that

Jλ0)vn+ ∼ Jλ0)ω+0
2

3
\wn\

3
Xα

0
)2 q o)2++0

2

3
\vn \

3
Xα

0

⊆ Jλ0)ω+0
2

3
\wn\

3
Xα

0
)2 q o)2++0 o)2+.

Since q < 2, there results that Jλ0)ω+> Jλ0)vn+∼ Jλ0)ω+for n > n1, a contradic-
tion with the main hypothesis. Hence ω is a minimum.

To finish the proof we have to prove the claim (2.41). For ε > 1 small, and δ > 1
(δ to be chosen later), we consider

En T }x 
 ´ ; vn)x+∼ φ2)x+ { φ2)x+> ω)x+0 δ〈 ,
Fn T }x 
 ´ ; vn)x+∼ φ2)x+ { φ2)x+≥ ω)x+0 δ〈 .

Using the fact that

1 T ‖}x 
 ´ ; φ2)x+< ω)x+〈‖T

((((((
∈̂

j[ 2

}
x 
 ´ ; φ2)x+≥ ω)x+0

2

j

(((((((
T mln

j′ ∈

((((}x 
 ´ ; φ2)x+≥ ω)x+0
2

j

(((((,
we get for j1 large enough, that if δ < 2

j0
then

‖}x 
 ´ ; φ2)x+≥ ω)x+0 δ〈‖≥
ε

3
.
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Hence we conclude that ‖Fn‖̄ ≥ ε
3 .

Since \vn ω\Xα
0
↗ 1 as n ↗ ∈ , in particular by the trace embedding, \vn

ω\L2)¯ +↗ 1. We obtain that, for n ∼ n1 large,

δ3ε

3
∼

⋂
FΩ

‖vn ω‖3dx ∼

⋂
En

‖vn ω‖3dx ∼ δ3‖En‖̄ .

Therefore ‖En‖̄ ≥
ε

3
. Since S̃n �Fn ∩ En we conclude that ‖̃Sn‖̄ ≥ ε for n ≥ n1.

Hence ‖̃Sn‖̄ ↗ 1 as n↗ ∈ and the claim follows. �

2.4.3. Proof of Theorem 2.1.2 and further results

We start with the uniform L∈ -estimates for solutions to problem )Pλ+in its local
version given by )Pλ+.

Theorem 2.4.10. Assume α ∼ 2, 2 < p < N0 α
N α and N ∼ 3. Then there exists a

constant C T C)p, ´ +> 1 such that every solution to problem )Pλ+satisfies

\w\∈ ≥ C,

for every 1 ≥ λ ≥ Σ.

The proof is based on a scaling method of [51], and two nonexistence results, see
Theorems 2.2.1 and 2.2.4.

Proof of Theorem 2.4.10. Assume by contradiction that there exists a sequence
}wn〈 �Xα

1 )F̄ +of solutions to )Pλ+verifying that Mn T \wn\∈ ↗ ∈ , as n↗ ∈ .
By the Maximum Principle, which holds for our problem, see [46], the maximum of
wn is attained at a point )xn, 1+where xn 
 ´ . We define ´ n T 2

μn
)´ xn+, with

μn T M
)2 p+/α
n , i.e., we center at xn and dilate by 2

μn
↗ ∈ as n↗ ∈ .

We consider the scaled functions

vn)x, y+T
wn)xn 0 μnx, μny+

Mn
, for x 
 ´ n, y ∼ 1.

It is clear that \vn\ ≥ 2, vn)1, 1+T 2 and moreover⎩⎝⎝⎝⎪⎝⎝⎝⎨
f lx)y2 α vn+ T 1 in F̄ n ,

vn T 1 on ∂LF̄ n ,

∂vn
∂να

T λMq p
n vqn 0 vpn in ´ n ∗ }1〈 .

(2.42)

By Arzelà-Ascoli Theorem (the solution is Cγ , see Proposition 2.4.3), there exists a
subsequence, which we denote again by vn, which converges to some function v as
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n ↗ ∈ . In order to see the problem satisfied by v we pass to the limit in the weak
formulation of (2.42). We define dn T dist)xn, ∂´ +, then there are two possibilities as
n↗ ∈ according the behaviour of the ratio dn

μn
:

1.
}
dn
μn

(
n

is not bounded.

2.
}
dn
μn

(
n

remains bounded.

In the first case, since Bdn/μn
)1+�´ n, and ´ n is smooth, it is clear that ´ n tends

to RN and v is a solution to⎩⎪⎨
f lx)y2 α v+ T 1 in RN0 2

0 ,

∂v

∂να
T vp on ∂RN0 2

0 .

Moreover, v)1, 1+T 2 and v > 1 which is a contradiction with Theorem 2.2.1.

In the second case, we may assume that dn

μn
↗ s ∼ 1 as n↗ ∈ . As a consequence,

passing to the limit, the domains ´ n converge (up to a rotation) to some half-space
Hs T }x 
 RN ; xN > s〈 . We obtain here that v is a solution to⎩⎪⎨

f lx)y2 α v+ T 1 in Hs ∗ )1,∈ +,

∂v

∂να
T vp on Hs ∗ }1〈 ,

with \v\∈ T 2, v)1, 1+T 2. In the case s T 1 this is a contradiction with the
continuity of v. If s > 1, the contradiction comes from Theorem 2.2.4. �

We next prove a uniqueness result for solutions with small norm.

Theorem 2.4.11. There exists at most one solution to problem )Pλ+with small norm.

We follow closely the arguments in [4], so we establish the following previous
result:

Lemma 2.4.12. Let z be the unique solution to problem (2.40). There exists a constant
β > 1 such that

\φ\3Xα
0 )FΩ+

q

⋂
¯

zq 2φ3 dx ∼ β\φ\3L2)¯ +, ∃φ 
 Xα
1 )F̄ +. (2.43)

Proof. We recall that z can be obtained by minimization

n lo

}
2

3
\ω\3Xα

0 )FΩ+

2

q 0 2
\w\q0 2Lq+1)¯ +; ω 
 Xα

1 )F̄ +

(
.



53

As a consequence,

\φ\3Xα
0 )FΩ+

q

⋂
¯

zq 2φ3 dx ∼ 1, ∃φ 
 Xα
1 )F̄ +.

This implies that the first eigenvalue a2 of the linearized problem⎩⎝⎝⎝⎪⎝⎝⎝⎨
f lx)y2 α φ+ T 1, in F̄ ,

φ T 1, on ∂LF̄ ,

∂φ

∂να
qzq 2φ T a2φ, on ´ ∗ }1〈 ,

is nonnegative.

Suppose that a2 T 1 and let ϕ be a corresponding eigenfunction. Taking into
account that z is the solution to (2.40) we obtain that

q

⋂
¯

zqϕdx T

⋂
¯

zqϕdx

which is a contradiction.

Hence a2 > 1, which proves (2.43). �

Proof of Theorem 2.4.11. Consider A > 1 such that pAp 2 < β, where β is given in
(2.43). Now we prove that problem )Pλ+has at most one solution with L∈ -norm less
than A.

Assume by contradiction that )Pλ+has a second solution w T wλ 0 v veri-
fying \w\∈ < A. Since wλ is the minimal solution, it follows that v > 1 in
´ ∗ ]1,∈ +. We define now η T λ

1
1−q z, where z is the solution to (2.40). Then it

verifies f lx)y2 α η+T 1, with boundary condition ληq . Moreover, wλ is a superso-
lution to the problem that η verifies. Then by comparison, Lemma 2.4.2, applied with
f)t+T λtq , v T η and w T wλ, we get

wλ ∼ λ
1

1−q z on ´ ∗ }1〈 . (2.44)

Since w T wλ 0 v is solution to )Pλ+we have, on ´ ∗ }1〈 ,

∂)wλ 0 v+

∂να
T λ)wλ 0 v+q 0 )wλ 0 v+p ≥ λwq

λ 0 λqwq 2
λ v 0 )wλ 0 v+p,

where the inequality is a consequence of the concavity, hence

∂v

∂να
≥ λqwq 2

λ v 0 )wλ 0 v+p wp
λ.

Moreover, (2.44) implies wq 2
λ ∼ λ 2zq 2. From the previous two inequalities we get

∂v

∂να
≥ qzq 2v 0 )wλ 0 v+p wp

λ.
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Using that \wλ 0 v\∈ ≥ A, we obtain )wλ 0 v+p wp
λ ≥ pAp 2v. As a consequence,

∂v

∂να
qzq 2v ≥ pAp 2v.

Taking v as a test function and φ T v in (2.43) we arrive to

β

⋂
¯

v3 dx ≥ pAp 2

⋂
¯

v3 dx.

Since pAp 2 < β we conclude that v ⊆ 1, which gives the desired contradiction. �

Remark 2.4.3. This proof also provides the asymptotic behavior of wλ near λ T 1,
namely wλ ⊂ λ

1
1−q z, where z is the unique solution to problem (2.40).



3
On some critical problems for the fractional
Laplacian operator

3.1. Introduction

In this chapter we continue with the study of perturbations of the pure-power critical
case for the different fractional powers of the Laplacian. Thus, we study the following
problem

)P≤λ+

}
) Λ+α/3u T λuq 0 up, u > 1 in ´ ,

u T 1 on ∂´ ,

with 1 < q < p T N0 α
N α , 1 < α < 3 and N > α. As in the previous chapter, here

we will look only for positive solutions to )P≤λ+(so many times we will omit the term
“positive”).

As we have seen in Theorem 2.4.5, and analogously to the classic case, the problem}
) Λ+α/3u T ‖u‖

2α
N−αu in ´ �RN ,

u T 1 on ∂´ ,
(3.1)

has no positive solutions whenever ´ is and star-shaped domain. In a pioneering work
[24], Brezis and Nirenberg showed that, contrary to intuition, the critical problem with
small linear perturbations can provide positive solutions. After that, in [4], using the
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results on concentration-compactness of Lions, [60], the authors proved some results
on existence and multiplicity of solutions for a sublinear perturbation of the critical
power, among others.

Recently, several studies have been performed for classical critical elliptic equa-
tions with the Laplacian operator substituted by its fractional powers. In particular, in
[80] it is studied the problem}

) Λ+2/3u T λu 0 u
N+1
N−1 in ´ ,

u T 1 on ∂´ ,
(3.2)

the analogue case to the problem in [24], but with the square root of the Laplacian
instead of the Laplacian. The results of this chapter generalize those cases to every
power α 
 )1, 3+of the Laplacian.

The cases 1 < q < 2, q T 2 and 2 < q < N0 α
N α will be treated with different

methodologies, thus we will divide the chapter according to those cases. Our main
results dealing with Problem )P≤λ+are the following.

Theorem 3.1.1. Let 1 < q < 2. Then, there exists 1 < Σ < ∈ such that the problem
)P≤λ+

1. has no positive solution for λ > Σ;

2. has a minimal positive solution for any 1 < λ ≥ Σ. Moreover the family of
minimal solutions is increasing with respect to λ;

3. if λ T Σ there is at least one positive solution;

4. if α ∼ 2 there are at least two positive solutions for 1 < λ < Σ.

Theorem 3.1.2. Let q T 2, 1 < α < 3 and N ∼ 3α. Then the problem )P≤λ+

1. has no positive solution for λ ∼ λ2;

2. has at least one positive solution for each 1 < λ < λ2.

Theorem 3.1.3. Let 2 < q < N0 α
N α , 1 < α < 3 and N > α)2 0 2/q+. Then the

problem )P≤λ+has at least one positive solution for any λ > 1.

The restriction α ∼ 2 in Theorem 3.1.1-)8+seems to be technical. Note that the
same restriction appeared also in Chapter 2. Here, due to the lack of regularity, see
Proposition 3.5.2, it is not clear how to separate the solutions in the appropriate way,
Lemma 3.3.3, see also [40, 42].

On the other hand, the range α < N < 3α in Theorem 3.1.2 is left open. See the
special case α T 3 and N T 4 in [24]. If α T 2 this range is empty, see [80].
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As to the regularity of solutions, they are bounded and “classical( in the sense
that they have as much regularity as it is required in the equation, i.e., they possess α
“derivatives”, see Propositions 3.5.1 and 3.5.2. Even more, if α T 2, they belong to
C2,q)´ +or C∈ )´ +, whenever 1 < q < 2 or q ∼ 2, respectively.

3.2. Preliminaries

A natural definition of energy solution to problem )P≤λ+is the following.

Definition 3.2.1. We say that u 
 H
α/3
1 )´ +is a solution of )P≤λ+if the identity⋂

¯

) Λ+α/=u) Λ+α/=ϕdx T

⋂
¯

f)u+ϕdx (3.3)

holds for every function ϕ 
 H
α/3
1 )´ +, where f)u+T λuq 0 up.

Note that the right-hand side of (3.3) is well defined since ϕ 
 H
α/3
1 )´ + ↪↗

L
2N

N−α )´ +, while u 
 H
α/3
1 )´ +hence f)u+
 L

2N
N+α )´ +↪↗ H α/3)´ +.

Associated to problem )P≤λ+we consider the energy functional

I)u+T
2

3

⋂
¯

((() Λ+α/=u
(((3 dx

⋂
¯

F )u+dx ,

where F )u+T
∑u

1
f)s+ds. In our case it reads

I)u+T
2

3

⋂
¯

((() Λ+α/=u
(((3 dx

λ

q 0 2

⋂
¯

uq0 2 dx
N α

3N

⋂
¯

u
2N

N−α dx . (3.4)

This functional is well defined in H
α/3
1 )´ +, and moreover, the critical points of I

correspond to solutions to )P≤λ+.

We can reformulate our problem in the local form )P≤λ+as

)P
≤
λ+

⎩⎝⎝⎪⎝⎝⎨
f lx)y2 α w+T 1 in F̄
w T 1 on ∂LF̄
∂w

∂να
T λwq 0 w

N+α
N−α in ´ ∗ }y T 1〈 .

The associated energy functional to the problem )P
≤
λ+is

J)w+T
κα

3

⋂
FΩ

y2 α‖ w‖3 dxdy
λ

q 0 2

⋂
¯

wq0 2 dx
N α

3N

⋂
¯

w
2N

N−α dx .

(3.5)

Clearly, critical points of J in Xα
1 )F̄ +correspond to critical points of I in H

α/3
1 )´ +.

Even more, minima of J also correspond to minima of I , see Section 3.3.
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Remark 3.2.1. In the sequel, and in view of the above equivalence, we will use both
formulations of the problem, in ´ or in F̄ , whenever we may take some advantage.
In particular, we will use the extension version )P

≤
λ+when dealing with the fractional

operator acting on products of functions, since it is not clear how to calculate this
action. This difficulty appears in the proof of the concentration-compactness result,
Theorem 3.5.3, among others.

3.3. Sublinear case: 0 < q < 1.

We prove here Theorem 3.1.1. As we have said in Remark 3.2.1, there are some
points where it is difficult to work directly with the fractional Laplacian, due to the
absence of formula for the fractional Laplacian of a product. Therefore we consider in
some occasions the extended problem )Pλ+.

To begin with that problem, we prove that local minima of the functional I corre-
spond to local minima of the extended functional J .

Proposition 3.3.1. A function u1 
 H
α/3
1 )´ +is a local minimum of I if and only if

w1 T Eα)u1+
 Xα
1 )F̄ +is a local minimum of J .

Proof. Firstly let u1 
 H
α/3
1 )´ +be a local minimum of I . Suppose, by contradiction,

that w1 T Eα)u1+is not a local minimum for the extended functional J . Then by
(1.8) and (1.30), we have that, for any ε > 1, there exists wε 
 Xα

1 )F̄ +, with \w1
wε\Xα

0 )FΩ+
< ε, such that

I)u1+T J)w1+> J)wε+∼ I)zε+

where zε T wε)×, 1+
 H
α/3
1 )´ +satisfies \u1 zε\Hα/2

0 )¯ +
< ε.

On the other hand, let w1 
 Xα
1 )F̄ +be a local minimum of J . It is clear, from the

definition of the extension operator, that w1 is α-harmonic. So we conclude. �

We return now to the original problem )P≤λ+, posed at the bottom ´ ∗ }y T 1〈 .

Lemma 3.3.2. Let Σ be defined by

Σ T tvr }λ > 1 ; Problem )P≤λ+has solution〈 .

Then 1 < Σ < ∈ .

Proof. Let )λ2, ϕ2+be the first eigenvalue and a corresponding positive eigenfunction
of the fractional Laplacian in ´ . Then, using ϕ2 as a test function in )P≤λ+, we have
that ⋂

¯

)
λuq 0 u

N+α
N−α

(
ϕ2 dx T λ2

⋂
¯

uϕ2 dx. (3.6)
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Since there exist positive constants c, δ such that λtq 0 t
N+α
N−α > cλδt, for any t > 1 we

obtain from (3.6) that cλδ < λ2 which implies Σ < ∈ .

To prove Σ > 1 we use the sub- and supersolution technique to construct a solution
for any small λ, see [48, 4]. In fact a subsolution is obtained as a small multiple of ϕ2.
A supersolution is a large multiple of the function g solution to}

) Λ+α/3g T 2 in ´ ,
g T 1 on ∂´ .

�

Comparison is clear for linear problems associated to the fractional Laplacian, as it
is for the Laplacian. On the other hand, it is in general not true for nonlinear problems.
Nevertheless, it holds when the reaction term is a nonnegative sublinear function, see
[21, 4]. Therefore, it is easy to show, comparing with the problem with only the con-
cave terms λuq , that in fact there is at least one positive solution uλ to problem )P≤λ+
for every λ in the whole interval )1,Σ+. Even more, these constructed solutions are
minimal and are increasing with respect to λ, see Lemma 2.4.7.

To prove existence of solution in the extremal value λ T Σ, the idea, like in [4],
consists on passing to the limit as λn ↘ Σ on the sequence }zn〈 T }zλn〈 , where zλn

is the minimal solution of )Pλ+with λ T λn. Denote by Jλn the associated functional.
Clearly Jλn)zn+< 1, hence

1 > Jλn)zn+
2

3≤α
〉J∞λn

)zn+, zn|

T

)
2

3

2

3≤α

{
\zn\

3
Xα

0 )FΩ+
λn

)
2

q 0 2

2

3≤α

{⋂
¯

zq0 2n dx.

Therefore, by the Sobolev and Trace inequalities, (1.33) and (1.30) respectively, there
exits a constant C > 1 such that \zn\Xα

0 )FΩ+
≥ C. As a consequence, there exists a

subsequence weakly convergent to some zΣ in Xα
1 )F̄ +. By comparison, zΣ ∼ zλ > 1,

for any 1 < λ < Σ, so one gets easily that zΣ is a weak nontrivial solution to )Pλ+
with λ T Σ.

Having proved the first three items in Theorem3.1.1, we focus in the sequel on
proving the existence of a second solution, for which we recall that α ∼ 2.

The proof is divided into several steps: we first show that the minimal solution
is a local minimum for the functional I; so we can use the Mountain Pass Theorem,
obtaining a minimax Palais-Smale (PS) sequence. In the next step, in order to find
a second solution, we prove a local (PS)c condition for c under a critical level c≤.
To do that, we will construct path by localizing the minimizers of the Trace/Sobolev
inequalities at the possible Dirac Deltas, given by the concentration-compactness result
in Theorem 3.5.3.

We begin with a separation lemma in the C2-topology.
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Lemma 3.3.3. Let 1 < μ2 < λ1 < μ3 < Σ. Let zμ1 , zλ0 and zμ2 be the corre-
sponding minimal solutions to )P≤λ+, λ T μ2, λ1 and μ3 respectively. If X T }z 

C2
1 )´ +‖zμ1 ≥ z ≥ zμ2〈 , then there exists ε > 1 such that

}zλ0〈 0 εB2 �X,

where B2 is the unit ball in C2
1 )´ +.

Proof. Since α ∼ 2, we have that any solution u to )P≤λ+, for arbitrary 1 < λ < Σ
belongs to C2,γ)´ +for some positive γ, see Proposition 3.5.2. Therefore, we deduce
that there exists a positive constant C such that

u)x+≥ C f ltu)x, ∂´ +, x 
 ´ . (3.7)

On the other hand, applying Hopf Lemma, we get that there exists a positive constant
c such that

u)x+∼ c f ltu)x, ∂´ +, x 
 ´ . (3.8)

These two estimates jointly with the regularity implies the result of the lemma. �

With this result we now obtain a local minimum of the functional I in C2
1 )´ +, as a

first step, to obtain a local minimum in H
α/3
1 )´ +.

Lemma 3.3.4. For all λ 
 )1,Σ+there exists a solution for )P≤λ+which is a local
minimum of the functional I in the C2-topology.

Proof. Given 1 < μ2 < λ < μ3 < Σ, let zμ1 and zμ2 be the minimal solutions of )P≤μ1
+

and )P≤μ2
+respectively. Let z ;T zμ2 zμ1 . Since zμ1 and zμ2 are properly ordered,

then }
) Λ+α/3z ∼ 1 in ´ ,
z T 1 on ∂´ .

We set

f≤)x, s+T

⎩⎝⎝⎪⎝⎝⎨
fλ)zμ1)x++ if s ≥ zμ1 ,

fλ)s+ if zμ1 ≥ s ≥ zμ2 ,

fλ)zμ2)x++ if zμ2 ≥ s,

F≤)x, z+T

⋂z

1

f≤)x, s+ds

and
I≤)z+T

2

3
\z\

H
α/2
0 )¯ +

⋂
¯

F≤)x, u+dx.

Standard calculation shows that I≤achieves its global minimum at some u1 
 H
α/3
1 )´ +,

that is
I≤)u1+≥ I≤)z+ ∃ z 
 H

α/3
1 )´ +. (3.9)
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Moreover it holds }
) Λ+α/3u1 T f≤)x, u1+ in ´ ,
u1 T 1 on ∂´ .

By Lemma 3.3.3, it follows that }u1〈 0 εB2 ≤ X for 1 < ε small enough. Let now z
satisfying

\z u1\C1
0 )¯ +

≥
ε

3
.

As I≤)z+ I)z+is zero for every z such that \z u1\C1
0 )¯ +

≥ ε
3 , by (3.9) we obtain

that

I)z+T I≤)z+∼ I≤)u1+T I)u1+, ∃ z 
 C2
1 )´ +, with \z u1\C1

0 )¯ +
≥

ε

3
.

�

To show that we have obtained the desired minimum in H
α/3
1 )´ +, we now check

that the result by Brezis and Nirenberg in [25] is also valid in our context.

Proposition 3.3.5. Let z1 
 H
α/3
1 )´ +be a local minimum of I in C2

1 )´ +, i.e., there
exists r > 1 such that

I)z1+≥ I)z1 0 z+ ∃z 
 C2
1 )´ +with \z\C1

0 )¯ +
≥ r. (3.10)

Then z1 is a local minimum of I in H
α/3
1 )´ +, that is, there exists ε1 > 1 such that

I)z1+≥ I)z1 0 z+ ∃z 
 H
α/3
1 )´ +with \z\

H
α/2
0 )¯ +

≥ ε1.

Proof. Arguing by contradiction we suppose that

∃ ε > 1, Bzε 
 Bε)z1+ such that I)zε+< I)z1+,

where Bε)z1+T
}
z 
 H

α/3
1 )´ +; \z z1\Hα/2

0 )¯ +
≥ ε
√

.

For every j > 1 we consider the truncation map given by

Tj)r+⊆

}
r 1 < r < j,
j r ∼ j.

Let

fλ,j)s+T fλ)Tj)s++, Fj)s+T

⋂u

1

fλ,j)s+ds , u > 1 ,

and
Ij)z+T

2

3
\z\3

H
α/2
0 )¯ +

⋂
¯

Fj)z+dx.
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Note that for each z 
 H
α/3
1 )´ +we have that Ij)z+↗ I)z+as j ↗ ∈ . Hence,

for each ε > 1 there exists j)ε+big enough such that Ij)ε+)zε+< I)z1+. Clearly
n lo

Bε)z0+
Ij)ε+is attained at some point, say vε. Thus we have

Ij)ε+)vε+≥ Ij)ε+)zε+< I)z1+.

Now we want to prove that vε ↗ z1 in C2
1 )´ +as ε⇒ 1. The Euler-Lagrange equation

satisfied by vε involves a Lagrange multiplier ξε in such a way that

〉I∞j)ε+)vε+, ϕ|H−α/2)¯ +,H
α/2
0 )¯ +

T ξε〉vε, ϕ|Hα/2
0 )¯ +

, ∃ϕ 
 H
α/3
1 )´ +. (3.11)

Since vε is a minimum of Ij)ε+, it holds

ξε T
〉I∞j)ε+)vε+, vε|

\vε\3
H

α/2
0 )¯ +

≥ 1 for 1 < ε→ 2, and ξε ↗ 1 as ε⇒ 1. (3.12)

Note that by (3.11), vε satisfies the problem⎛
) Λ+α/3vε T

2
2 ξε

fλ,j)ε+)vε+;T fε
λ,j)ε+)vε+ in ´ ,

vε T 1 on ∂´ .

Clearly \vε\Hα/2
0 )¯ +

≥ C, thus, by Proposition 3.5.1, this implies that \vε\L∞)¯ +≥
C. Moreover, by (3.12) it follows that \fε

λ,j)ε+)vε+\L∞)¯ +≥ C. Therefore, following
the proof of Proposition 3.5.2, we get that \vε\C1,r)¯ +≥ C, for r T n lo}q, α 2〈
and C independent of ε. By Ascoli-Arzelá Theorem there exists a subsequence, still
denoted by vε, such that vε ↗ z1 uniformly in C2

1 )´ +as ε ⇒ 1. This implies that for
ε small enough,

I)vε+T Ij)ε+)vε+< I)z1+

for any vε with \vε z1\C1
0 )¯ +

< ε. �

Lemma 3.3.4 and Proposition 3.3.5 provide us a local minimum in H
α/3
1 )´ +, which

will be denoted by u1. We now perform a traslation in order to simplify the calcula-
tions.

We consider the functions

g)x, s+T

}
λ)u1 0 s+q λuq

1 0 )u1 0 s+3
∗
α 2 u

3∗α 2
1 if s ∼ 1,

1 if s < 1,
(3.13)

G)u+T

⋂u

1

g)x, s+ds, (3.14)

and the energy functional

Ĩ)u+T
2

3
\u\3

H
α/2
0 )¯ +

⋂
¯

G)x, u+dx. (3.15)
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Since u 
 H
α/3
1 )´ +, G is well defined and bounded from below. Let the moved

problem

)P̃≤λ+

}
) Λ+α/3u T g)x, u+ in ´ �RN , λ > 1
u T 1 on ∂´ .

Hence, by standard variational theory, we know that if ũ �⊆ 1 is a critical point of Ĩ
then it is a solution of )P̃≤λ+which, by the Maximum Principle (Lemma 2.3 of [33]), it
is ũ > 1. Therefore u T u1 0 ũ will be a second solution of )P≤λ+for the sublinear
case. Thus we will need to study the existence of these non-trivial critical points for I .
Firstly we have

Lemma 3.3.6. u T 1 is a local minimum of Ĩ in H
α/3
1 )´ +.

Proof. The proof follows the lines of [4], so we will be brief in details. Note that by
Proposition 3.3.5 it is sufficient to prove that u T 1 is a local minimum of Ĩ in C2

1 )´ +.

Let u 
 C2
1 )´ +, then

G)u+T F )u1 0 u+ F )u1+
)
λuq

1 0 u
3∗α 2
1

(
u. (3.16)

Therefore

Ĩ)u+ T
2

3
\u\3

H
α/2
0 )¯ +

⋂
¯

G)u+dx

T
2

3
\u\3

H
α/2
0 )¯ +

⋂
¯

F )u1 0 u+dx 0

⋂
¯

F )u1+dx 0

⋂
¯

)
λuq

1 0 u
3∗α 2
1

(
udx.

On the other hand,

I)u1 0 u+ T
2

3
\u1 0 u\3

H
α/2
0 )¯ +

⋂
¯

F )u1 0 u+dx

T
2

3
\u1\

3

H
α/2
0 )¯ +

0
2

3
\u\3

H
α/2
0 )¯ +

0

⋂
¯

) Λ+α/=u1) Λ+α/=udx

⋂
¯

F )u1 0 u+dx

T
2

3
\u1\

3

H
α/2
0 )¯ +

0
2

3
\u\3

H
α/2
0 )¯ +

0

⋂
¯

)
λuq

1 0 u
3∗α 2
1

(
udx

⋂
¯

F )u1 0 u+dx.

Finally, as u1 is a local minimum of I , we have that

Ĩ)u+ T I)u1 0 u+
2

3
\u1\

3

H
α/2
0 )¯ +

0

⋂
¯

F )u1+dx

T I)u1 0 u+ I)u1+

∼ 1 T Ĩ)1+
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provided \u\C1
0 )¯ +

< ε. �

As a consequence of Proposition3.3.1, we obtain for the moved functional

J̃)w+T
2

3
\w\3Xα

0 )FΩ+

⋂
¯

G)w)x, 1++dx,

with G as in (3.13)-(3.14), the following result.

Corollary 3.3.7. w T 1 is a local minimum of J̃ in Xα
1 )F̄ +.

Now assuming that v T 1 is the unique critical point of the moved functional J̃ ,
then a local (PS)c condition can be proved for c under a critical level c≤,

c≤T
α

3N
S)α,N+

N
α . (3.17)

Following the ideas given in [4], and by an extension of a concentration-compactness
result by Lions, that we prove in Theorem 3.5.3, we obtain the following result.

Lemma 3.3.8. If v T 1 is the only critical point of J̃ in Xα
1 )F̄ +then J̃ satisfies a

local Palais Smale condition below the critical level c≤.

Proof. Let }wn〈 be a Palais-Smale sequence for J̃ verifying

J̃)wn+↗ c < c≤, J̃∞)wn+↗ 1. (3.18)

Since the fact that w1 is a critical point implies J̃)wn+T J)zn+ J)w1+, where
zn T wn 0 w1, we have that

J)zn+↗ c 0 J)w1+, J∞)zn+↗ 1. (3.19)

On the other hand, from (3.18) we get that the sequence }zn〈 is uniformly bounded in
Xα
1 )F̄ +. As a consequence, up to a subsequence,

zn ⇀ z weakly in Xα
1 )F̄ +

zn)×, 1+ ↗ z)×, 1+ strong in Lr)´ +, ∃ 2 ≥ r < 3≤α (3.20)
zn)×, 1+ ↗ z)×, 1+ a.e. in ´ .

Note that as v T 1 is the unique critical point of J̃ then, z T w1.

In order to apply the concentration-compactness result, Theorem 3.5.3, first we
prove the following.

Lemma 3.3.9. The sequence
}
y2 α‖ zn‖

3
〈
n� N

is tight, i.e., for any η > 1 there exists
ρ1 > 1 such that ⋂

}y>ρ0|

⋂
¯

y2 α‖ zn‖
3dxdx ≥ η, ∃n 
 N. (3.21)
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Proof. The proof of this lemma follows some arguments of Lemma 2.2 in [6]. By
contradiction, we suppose that there exits η1 > 1 such that, for any ρ > 1 one has, up
to a subsequence,⋂

}y>ρ|

⋂
¯

y2 α‖ zn‖
3dxdy > η1 for every n 
 N. (3.22)

Let ε > 1 be fixed (to be precised later), and let r > 1 be such that⋂
}y>r|

⋂
¯

y2 α‖ z‖3dxdy < ε.

Let j T
]

M
καε

{
be the integer part and Ik T }y 
 R0 ; r 0 k ≥ y ≥ r 0 k 0 2〈 ,

k T 1, 2, . . . , j. Since \zn\Xα
0 )FΩ+

≥M , we clearly obtain that

j∫
k[ 1

⋂
Ik

⋂
¯

y2 α‖ zn‖
3dxdy ≥

⋂
FΩ

y2 α‖ zn‖
3dxdy ≥ ε)j 0 2+.

Therefore there exists k1 
 }1, . . . , j〈 such that (again up to a subsequence)⋂
Ik0

⋂
¯

y2 α‖ zn‖
3dxdy ≥ ε, ∃n. (3.23)

Let χ ∼ 1 be the following regular non-decreasing cut-off function

χ)y+T

}
1 if y ≥ r 0 k1,
2 if y > r 0 k1 0 2,

Define vn)x, y+T χ)y+zn)x, y+. Since vn)x, 1+T 1 it follows that

‖〉J∞)zn+ J∞)vn+, vn|‖ T κα

⋂
FΩ

y2 α〉 )zn vn+, vn|dxdy

T κα

⋂
Ik0

⋂
¯

y2 α〉 )zn vn+, vn|dxdy.

Moreover by the Cauchy-Schwartz inequality, (3.23) and the compact inclusion
H2)Ik0 ∗ ´ , y2 α+into L3)Ik0 ∗ ´ , y2 α+, we have

‖〉J∞)zn+ J∞)vn+, vn|‖≥ καg)zn vn+g)vn+≥ C κα ε, (3.24)

where

g)v+T

)⋂
Ik0

⋂
¯

y2 α‖ v‖3dxdy

[ 1
2

.
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On the other hand, by (3.19), we get

‖〉J∞)vn+, vn|‖≥ C κα ε 0 o)2+.

So, for n sufficiently large,⋂
}y>r0 k00 2|

⋂
¯

y2 α‖ zn‖
3dxdy ≥

⋂
FΩ

y2 α‖ vn‖
3dxdy T

〉J∞)vn+, vn|

κα
≥ C ε.

This is a contradiction with (3.22), which proves Lemma 3.3.9. �

Proof of Lemma 3.3.8 (cont.). In view of the previous result we can apply Theorem
3.5.3. Therefore, up to a subsequence, there exists an index set I , at most countable, a
sequence of points }xk〈 �´ , and nonnegative real numbers μk, νk, such that

y2 α‖ zn‖
3 ↗ μ ∼ y2 α‖ w1‖

3 0
∫
k � I

μkδxk
(3.25)

and
‖zn)×, 1+‖

3∗α ↗ ν T ‖w1)×, 1+‖
3∗α 0

∫
k � I

νkδxk
(3.26)

in the sense of measures, satisfying also the relation μk ∼ S)α,N+ν
2

2∗α
k , for every k 


I .

We fix any k1 
 I , and let φ 
 F∈1 )RN0 2
0 +be a nonincreasing cut-off function

verifying φ T 2 in B0
2 )xk0+, φ T 1 in B0

3 )xk0+
c. Let now φε)x, y+T φ)x/ε, y/ε+,

clearly ‖ φε‖≥
C
ε . We denote 3ε T B0

3ε)xk0+∧ }y T 1〈 . Then, using φεzn as a test
function in (3.19), we have

κα mln
n′ ∈

⋂
FΩ

y2 α〉 zn, φε|zndxdy

T mln
n′ ∈

)⋂
2ε

‖zn‖
3∗αφε dx 0 λ

⋂
2ε

‖zn‖
q0 2φε dx

κα

⋂
B+

2ε)xk0
+

y2 α‖ zn‖
3φε dxdy

[
.

By (3.20), (3.25) and (3.26) we get

mln
n′ ∈

κα

⋂
FΩ

y2 α〉 zn, φε|zn dxdy

T

⋂
2ε

φε dν 0 λ

⋂
2ε

‖w1‖
q0 2φε dx κα

⋂
B+

2ε)xk0
+

φε dμ.
(3.27)

On the other hand, using Theorem 1.6 in [46], with w T y2 α 
 A3 and k T 2, we
obtain that)⋂

B+
2ε)xk0

+

y2 α‖ φε‖
3‖zn‖

3dxdy

[ 2/3
≥

3

ε

)⋂
B+

2ε)xk0
+

y2 α‖zn‖
3dxdy

[ 2/3
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≥ C

)⋂
B+

2ε)xk0
+

y2 α‖ zn‖
3dxdy

[ 2/3
.

Since zn 
 Xα
1 )F̄ +, the last expression goes to zero as ε↗ 1. Therefore

1 ≥ mln
n′ ∈

((((⋂
FΩ

y2 α〉 zn, φε|zndxdy

((((
≥ mln

n′ ∈

)⋂
FΩ

y2 α‖ zn‖
3dxdy

{2/3)⋂
B+

2ε)xk0
+

y2 α‖ φε‖
3‖zn‖

3dxdy

[ 2/3
↗ 1 .

Hence, by (3.27), it follows that

1 T mln
ε′ 1

]⋂
2ε

φε dν 0 λ

⋂
2ε

‖w1‖
q0 2φε dx κα

⋂
B+

2ε)xk0
+

φε dμ

{
≥ νk0 καμk0 .

Therefore we get that

νk0 T 1 or νk0 ∼ S)α,N+
N
α .

Suppose that νk0 �T 1. It follows that

c 0 J)w1+ T mln
n′ ∈

J)zn+
2

3
〉J∞)zn+, zn|

∼
α

3N

⋂
¯

w
3∗α
1 dx 0

α

3N
νk0 0 λ

)
2

3

2

q 0 2

{⋂
¯

wq0 2
1 dx

∼ J)w1+0
α

3N
S)α,N+

N
α T J)w1+0 c≤.

Then we get a contradiction with (3.18), and since k1 was arbitrary, νk T 1 for all
k 
 I . Hence as a consequence, un ↗ u1 in L3

∗
α)´ +. We finish in the standard way:

convergence of un in L
2N

N−α )´ +implies convergence of f)un+in L
2N

N+α )´ +, and finally
by using the continuity of the inverse operator ) Λ+ α/3, we obtain convergence of
un in H

α/3
1 )´ +. �

Now it remains to show that we can obtain a local (PS)c sequence for J̃ under the
critical level c T c≤. To do that we will use wε T Eα)uε+, the family of minimizers
to the Trace inequality (1.30), where uε is given in (1.32). We remark that, despite
the cases α T 2 and α T 3, wε does not possesses an explicit expression. This is an
extra difficulty that we have to overcome. Taking into account that the family uε is
self-similar, uε)x+T ε

α−N
2 u2)x/ε+and the fact that the Poisson kernel (1.6) is also

self-similar

Pα
y )x+T

2

yN
Pα
2

)
x

y

{
, (3.28)
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gives easily that the family wε satisfies

wε)x, y+T ε
α−N

2 w2

)x
ε
,
y

ε

(
. (3.29)

We will denote Pα T Pα
2 . Also, we will write w2,α instead of w2 to emphasize the

dependence on the parameter α.

Lemma 3.3.10. With the above notation it holds

‖ w2,α)x, y+‖≥
C

y
w2,α)x, y+, α > 1, )x, y+
 RN0 2

0 (3.30)

and
‖ w2,α)x, y+‖≥ Cw2,α 2)x, y+, α > 2, )x, y+
 RN0 2

0 . (3.31)

Proof. Differentiating with respect to each variable xi , i T 2, . . . , N, and the variable
y, it follows that

‖∂xiw2,α)x, y+‖ ≥

⋂
RN

)N 0 α+yα‖x z‖

)y3 0 ‖x z‖3+
N+α

2 0 2)2 0 ‖z‖3+
N−α

2

dz

≥
N 0 α

3y

⋂
RN

yα

)y3 0 ‖x z‖3+
N+α

2 )2 0 ‖z‖3+
N−α

2

dz

T
C

y
w2,α)x, y+

and

‖∂yw2,α)x, y+‖ T

(((((
⋂
RN

yα 2)α‖x z‖3 Ny3+

)y3 0 ‖x z‖3+
N+α

2 0 2)2 0 ‖z‖3+
N−α

2

dz

(((((
≥ C

⋂
RN

yα 2

)y3 0 ‖x z‖3+
N+α

2 )2 0 ‖z‖3+
N−α

2

dz

T
C

y
w2,α)x, y+.

Therefore we get (3.30). To obtain (3.31) we recall that u2,α)z+T )2 0 ‖z‖3+
N−α

2 .
Then, by (3.28) it follows that

‖∂yw2,α)x, y+‖ T

((((∂y )⋂
RN

2

yN
Pα

)
x z

y

{
u2,α)z+dz

{((((
T

(((( ∂y

)⋂
RN

Pα)z+u2,α)x yz+dz

{((((
T

((((⋂
RN

Pα)z+〉z, u2,α)x yz+|dz

((((
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T

(((( ⋂
RN

2

yN
Pα

)
x z

y

{
〉
x z

y
, u2,α)z+|dz

((((
≥ )N α+

⋂
RN

2

yN
Pα

)
x z

y

{
‖x z‖

y

‖z‖

)2 0 ‖z‖3+
N−α

2 0 2
dz

≥ )N α+

⋂
RN

yα 2

)y3 0 ‖x z‖3+
N+α−1

2 )2 0 ‖z‖3+
N−α+1

2

dz

T Cw2,α 2)x, y+.

Doing the same calculations in variables xi for i T 2, . . . , N , we obtain

‖∂xiw2,α)x, y+‖ T

(((( ∂xi

)⋂
RN

Pα)z+u2,α)x yz+dz

{((((
≥

⋂
RN

Pα)z+‖ u2,α‖)x yz+dz

T

⋂
RN

2

yN
Pα

)
x z

y

{
‖ u2,α‖)z+dz

≥ )N α+

⋂
RN

yα

)y3 0 ‖x z‖3+
N+α

2

‖z‖

)2 0 ‖z‖3+
N−α

2 0 2
dz

T Cw2,α 2)x, y+.

�

Let us now introduce a cut-off function φ1)s+
 C∈ )R0 +, nonincreasing satisfying

φ1)s+T 2 if 1 ≥ s ≥
2

3
, φ1)s+T 1 if s ∼ 2.

Assume without loss of generality that 1 
 ´ . We then define, for some fixed r > 1

small enough such that B
0

r ≤ F̄ , the function φ)x, y+T φr)x, y+T φ1)
rxy

r +with
rxy T ‖)x, y+‖T )‖x‖3 0 y3+2/3. Note that φωε 
 Xα

1 )F̄ +. Thus we get

Lemma 3.3.11. With the above notation, the family }φwε〈 , and its trace on }y T 1〈 ,
namely }φuε〈 , satisfy

\φwε\
3
Xα

0 )FΩ+
≥ \wε\

3
Xα

0 )FΩ+
0 O)εN α+, (3.32)

\φuε\
3
L2)¯ +T

}
Cεα 0 O)εN α+ if N > 3α,
Cεαmpi )2/ε+0 O)εα+ if N T 3α,

(3.33)

and

\φuε\
r
Lr)¯ +∼ cε

N−α
2 , α < N < 3α, r T

N 0 α

N α
, (3.34)

for ε small enough and C > 1.
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Proof. The product φwε satisfies

\φwε\
3
Xα

0 )FΩ+
T κα

⋂
FΩ

y2 α)‖φ wε‖
3 0 ‖wε φ‖3 0 3〉wε φ, φ wε|+dxdy

≥ \wε\
3
Xα

0 )FΩ+
0 κα

⋂
FΩ

y2 α‖wε φ‖3dxdy (3.35)

0 3κα

⋂
FΩ

y2 α〉wε φ, φ wε|dxdy.

To estimate the second term of the right hand side, we observe that 1 ≥ uε)x+≥

ε
N−α

2 ‖x‖α N and Eα)‖x‖
α N+T )‖x‖3 0 y3+

α−N
2 T rα N

xy . Let r T }r/3 ≥ rxy ≥
r〈 �F̄ . Then⋂

FΩ

y2 α‖wε φ‖3dxdy ≥ C

⋂
r

y2 αw3
εdxdy

≥ CεN α

⋂
r

y2 αr3)α N+
xy dxdy (3.36)

T O)εN α+.

For the remaining term we need to use the properties of the function wε given in Propo-
sition 3.3.10. By (3.29) we get⋂

FΩ

y2 α〉wε φ, φ wε|dxdy ≥

C

⋂
r

y2 α‖wε)x, y+\ wε)x, y+‖dxdy T

Cε N0 α 2

⋂
r

y2 α
(((w2,α )x

ε
,
y

ε

((((((( w2,α

)x
ε
,
y

ε

((((dxdy T

Cε

⋂
r
ε

y2 α‖w2,α)x, y+‖‖ w2,α)x, y+‖dxdy.

(3.37)

Moreover, for )x, y+
 r/ε and α > 1, we obtain that

w2,α)x, y+ T

⋂
‖z‖< 1

4ε

Pα
y )x z+u2,α)z+dz 0

⋂
‖z‖> 1

4ε

Pα
y )x z+u2,α)z+dz

≥ CεN0 αyα
⋂
‖z‖< 1

4ε

dz

‖z‖N α
0 CεN α

⋂
RN

Pα
y )z+dz (3.38)

≥ CyαεN 0 CεN α ≥ CεN α.

If α < 2, from (3.30), (3.37) and (3.38), it follows that⋂
FΩ

y2 α〉wε φ, φ wε|dxdy ≥ Cε20 3)N α+

⋂
r
ε

y αdxdy T O)εN α+. (3.39)



71

To obtain the similar estimate for α > 2we use (3.31). Indeed by this estimate, together
with (3.37) and (3.38) we get that⋂
FΩ

y2 α〉wε φ, φ wε|dxdy ≥ Cε3)20 N α+

⋂
r
ε

y2 αdxdy T O)εN α+. (3.40)

Note that for α T 2, as wε is explicit, we can obtain the same estimate directly.

Then we have proved that

\φwε\
3
Xα

0 )FΩ+
≥ \wε\

3
Xα

0 )FΩ+
0 O)εN α+.

We now show that (3.33) holds.

\φuε\
3
L2)¯ + T

⋂
¯

φ3)x+
εN α

)‖x‖3 0 ε3+N α
dx

∼

⋂
}‖x‖<r/3|

εN α

)‖x‖3 0 ε3+N α
dx

∼

⋂
}‖x‖<ε|

εN α

)3ε3+N α
dx 0

⋂
}ε<‖x‖<r/3|

εN α

)3‖x‖3+N α
dx

T Cεα 0 CεN α

⋂r/3

ε

θ3α 2 Ndθ.

Finally, (3.34) follows in a similar way to (3.33), so we omit the details. �

With the above properties in mind, we define the family of functions ηε T φwε

φuε
L
2∗α (Ω)

.

Lemma 3.3.12. There exists ε > 1 small enough such that

tvr
t→1

J̃)tηε+< c≤. (3.41)

Proof. Assume N ∼ 3α, we make use of the following estimate

)a 0 b+p ∼ ap 0 bp 0 μap 2b, a, b ∼ 1, p > 2, for someμ > 1. (3.42)

Therefore
G)w+∼

2

3≤α
w3∗α 0

μ

3
w3w

3∗α 3
1 (3.43)

which implies

J̃)tηε+≥
t3

3
\ηε\

3
Xα

0 )FΩ+

t3
∗
α

3≤α

t3

3
μ

⋂
¯

w
3∗α 3
1 η3εdx.

Since there exists a1 > 1 such that w1 ∼ a1 in the support of ηε we have

J̃)tηε+≥
t3

3
\ηε\

3
Xα

0 )FΩ+

tp

p

t3

3
μ̃\ηε\

3
L2)¯ +.
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Since \uε\L2∗α )¯ +is independent of ε, by Lemma 3.3.11 we have

\ηε\
3
Xα

0 )FΩ+
≥ S)α,N+0 O)εN α+ (3.44)

and

\ηε\
3
L2)¯ +∼

}
O)εα+ si N > 3α,
O)εαmpi )2/ε++ si N T 3α.

This implies

J̃)tηε+≥
t3

3
)S)α,N+0 CεN α+

tp

p

t3

3
C∞εα ;T g)t+.

It is clear that mln
t′ ∈

g)t+T ∈ , and therefore tvr
t→1

g)t+is achieved at some point

tε ∼ 1. If tε T 1 the result s trivially deduced. Let us suppose tε > 1. When
derivating above’s function we have

1 T g∞)tε+T tε)S)α,N+0 CεN α+ tp 2
ε tεC

∞εα, (3.45)

which implies
tε ≥ )S)α,N+0 CεN α+

1
p−2 .

Observe that by (3.45) we have that for ε > 1 small enough

tp 2
ε T S)α,N+0 CεN α C∞εα ∼ C > 1

and then tε ∼ C > 1 for some constant C. On the other hand, the function

t ∀↗
t3

3
)S)α,N+0 CεN α+

tp

p

is increasing in ]1, )S)α,N+0 CεN α+
1

p−2 .̂ From which

tvr
t→1

g)t+T g)tε+≥
α

3N
)S)α,N+0 CεN α+

2N
α C̃εα.

For some constant C̃ > 1. Therefore, for N > 3α, we have

g)tε+≥
α

3N
S)α,N+

N
α 0 CεN α Cεα <

α

3N
S)α,N+

N
α T c≤. (3.46)

If N T 3α the same conclusion follows.

The last case α < N < 3α follows by using the estimate (3.42) which gives

G)w+∼
2

3≤α
w3∗α 0 w1w

3∗α 2. (3.47)

Then (3.47) jointly with (3.34) and arguing in a similar way as above finish the proof.
�
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Proof of Theorem 3.1.1-(3).

To finish the last statement in Theorem 3.1.1, in view of the previous results, we
seek for critical values below level c≤. For that purpose, we want to use the classical
MP Theorem by Ambrosetti-Rabinowitz in [5]. We define

ε T }γ 
 F)]1, 2 ,̂ X
α
1 )F̄ ++; γ)1+T 1, γ)2+T tεηε〈

for some tε > 1 such that J̃)tεηε+< 1. And consider the minimax value

cε T log
γ � ε

n d˜}J̃)γ)t++; 1 ≥ t ≥ 2〈 .

According to Lemma 3.3.6, cε ∼ 1. By Lemma 3.3.12, for ε→ 2,

cε ≥ tvr
t→1

J̃)tηε+< c≤T
α

3N
S)α,N+

N
α .

This estimate jointly with Lemma 3.3.8 and the MPT [5] if the minimax energy level
is positive, or the refinement of the MPT [49] if the minimax level is zero, give the
existence of a second solution to )P≤λ+. �

3.4. Linear and superlinear cases.

3.4.1. Linear case

The proof of Theorem 3.1.2 follows the ideas of [24]. Note that for α T 2, where
the minimizers given in (3.29) are explicit, this result was recently proved in [80].
The first part of that theorem is an straightforward calculus.

Proof of Theorem 3.1.2 (1). Let ϕ2 be the first eigenfunction of ) Λ+α/3 in ´ . We
have ⋂

¯

) Λ+α/=u) Λ+α/=ϕ2 dx T

⋂
¯

λ2uϕ2 dx.

On the other hand,⋂
¯

) Λ+α/=u) Λ+α/=ϕ2 dx T

⋂
¯

]u3
∗
α 2 0 λu ϕ̂2 dx >

⋂
¯

λuϕ2 dx.

This clearly implies λ < λ2. �

To prove the second part of Theorem 3.1.2 some notation is in order. We consider
the following Rayleigh quotient

Qλ)w+T
\w\3Xα

0 )FΩ+
λ\u\3L2)¯ +

\u\3
L2∗α )¯ +

and
Sλ T log}Qλ)w+‖ w 
 Xα

1 )F̄ +〈 . (3.48)
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Proposition 3.4.1. Assume 1 < λ < λ2. Then Sλ < S)α,N+.

Proof. Let φ T φr be a cut-off function like in Lemma 3.3.11 and denote φ)x+;T
φ)x, 1+. Taking r sufficiently small we can use φwε 
 Xα

1 )F̄ +as a test function
in Qλ, where wε is defined in (3.29). Denoting K2 T \uε\

3∗α
L2∗α )¯ +

, as before, K2 is
independent of ε, and moreover⋂

¯

‖φuε‖
3∗αdx T

⋂
RN

‖φuε‖
3∗αdx

∼

⋂
‖x‖<r/3

‖uε‖
3∗αdx

T K2

⋂
‖x‖>r/3

‖uε‖
3∗αdx

∼ K2 0 O)εN+. (3.49)

Since wε is a minimizer of S)α,N+, we have that

K
3/3∗α

2 κα

⋂
R

N+1
+

y2 α‖ wε‖
3 dxdy T S)α,N+. (3.50)

Finally, by (3.49) and using the estimates (3.32) and (3.33), for N > 3α, we obtain
that

Qλ)φwε+≥

κα

⋂
R

N+1
+

y2 α‖ wε‖
3 dxdy λCεα 0 O)εN α+

K
3/3∗α
2 0 O)εN+

.

Therefore taking ε small enough, we get

Qλ)φwε+ ≥
S)α,N+ λCεαK

3/3∗α
2 0 O)εN α+

2 0 O)εN+

≥ S)α,N+ λCεαK
3/3∗α

2 0 O)εN α+

< S)α,N+.

On the other hand, a similar calculus for the case N T 3α, proves that for ε small
enough,

Qλ)φwε+≥ S)α,N+ λCεαmpi )2/ε+K
3/3∗α

2 0 O)εα+< S)α,N+,

which finishes the proof. �

Recall now the Brezis-Lieb Lemma,
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Lemma 3.4.2 ([20]). Let ´ be an open set and }un〈 be a sequence weakly convergent
in Lq)´ +, 3 ≥ q < ∈ and a.e. convergent in ´ . Then mln

n′ ∈
)\un\

q
Lq)¯ + \un

u\qLq)¯ ++T \u\
q
Lq)¯ +.

This property allows us to we prove the following one.

Proposition 3.4.3. Assume 1 < λ < λ2. Then the infimum Sλ defined in (3.48) is
achieved.

Proof. First, since λ < λ2 we have that Sλ > 1. Let us take a minimizing se-
quence of Sλ, }wm〈 �Xα

1 )F̄ +such that, without loss of generality, wm ∼ 1 and
\wm)×, 1+\L2∗α )¯ +T 2. Clearly this implies that \wm\Xα

0 )FΩ+
≥ C, then there exists a

subsequence (still denoted by }wm〈 ) verifying

wm ⇀ w weakly in Xα
1 )F̄ +,

wm)×, 1+ ↗ w)×, 1+ strongly in Lq)´ +, 2 ≥ q < 3≤α,
wm)×, 1+ ↗ w)×, 1+ a.e in ´ .

(3.51)

A simple calculation, using the weak convergence, gives that

\wm\
3
Xα

0 )FΩ+
T \wm w\3Xα

0 )FΩ+
0 \w\3Xα

0 )FΩ+

0 3κα

⋂
FΩ

y2 α〉 w, wm w|dxdy

T \wm w\3Xα
0 )FΩ+

0 \w\3Xα
0 )FΩ+

0 o)2+.

By Lemma 3.4.2, we have that \)wm w+)×, 1+\L2∗α )¯ +≥ 2 for m big enough. Hence

Qλ)wm+ T \wm\
3
Xα

0 )FΩ+
λ\wm)×, 1+\

3
L2)¯ +

T \wm w\3Xα
0 )FΩ+

0 \w\3Xα
0 )FΩ+

λ\wm)×, 1+\
3
L2)¯ +0 o)2+

∼ S)α,N+\)wm w+)×, 1+\3
L2∗α )¯ +0 Sλ\w)×, 1+\

3
L2∗α )¯ +0 o)2+

∼ S)α,N+\)wm w+)×, 1+\
3∗α
L2∗α )¯ +

0 Sλ\w)×, 1+\
3∗α
L2∗α )¯ +

0 o)2+.

By Lemma 3.4.2 again, this leads to

Qλ)wm+ ∼ )S)α,N+ Sλ+\)wm w+)×, 1+\
3∗α
L2∗α )¯ +

0 Sλ\wm)×, 1+\
3∗α
L2∗α )¯ +

0 o)2+

T )S)α,N+ Sλ+\)wm w+)×, 1+\
3∗α
L2∗α )¯ +

0 Sλ 0 o)2+.

Since }wm〈 is a minimizing sequence for Sλ, we obtain:

o)2+0 Sλ ∼ )S)α,N+ Sλ+\)wm w+)×, 1+\
3∗α
L2∗α )¯ +

0 Sλ 0 o)2+.
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Thus by Proposition 3.4.1

wm)×, 1+↗ w)×, 1+ in L3
∗
α)´ +.

Finally, by a standard lower semi-continuity argument, w is a minimizer for Qλ. �

Proof of Theorem 3.1.2 (2). By Proposition 3.4.3 there exists an α-harmonic function
w 
 Xα

1 )F̄ +, such that \u\3
L2∗α )¯ +

T 2 and

\w\3Xα
0 )FΩ+

λ\u\3L2)¯ +T Sλ

where u T w)×, 1+. Without loss of generality we may assume w ∼ 1 (otherwise we
take ‖w‖instead of w). So we get a positive solution of )P≤λ+. �

3.4.2. Superlinear case.

In order to prove Theorem 3.1.3, the only difficult part is to show that we have a
(PS)c sequence under the critical level c T c≤. This follows the same type of compu-
tations like in Lemma 3.3.12, with the estimate \ηε\

q0 2
Lq+1)¯ +∼ Cε

α−N
2 q0 α+N

2 which
holds for N > α)2 0 2

q+. In this case there is no limitation on λ > 1. We omit the
complete details.

3.5. Regularity and Concentration-Compactness

We begin this section with some results about the boundedness and regularity of
solutions. The next proposition is a refinement of Proposition 2.4.3 in order to cover
the critical case p T 3≤α 2. It is essentially based on [22].

Proposition 3.5.1. Let u 
 H
α/3
1 )´ +be a solution to the problem⎩⎪⎨ ) Λ+α/3u T f)x, u+ in ´ ,

u > 1 in ´ ,
u T 1 on ∂´

(3.52)

with f satisfying

1 ≥ f)x, s+≥ C)2 0 ‖s‖p+ ∃ )x, s+
 ´ ∗ R, and some 1 < p ≥ 3≤α 2. (3.53)

Then u 
 L∈ )´ +with \u\L∞)¯ +≥ C)\u\
H

α/2
0 )¯ +

+.

Proof. Let w 
 Xα
1 )F̄ +be a solution to the problem⎩⎝⎝⎪⎝⎝⎨

f lx)y2 α w+T 1 in F̄ ,

∂w

∂να
T f)×, w+ in ´ ,

w T 1 on ∂LF̄ .

(3.54)



77

Then u T w)×, 1+is a solution to (3.52). Let

a)x+;T
f)x, u+

2 0 u)x+
.

Clearly
1 ≥ a ≥ C)2 0 up 2+
 L

N
α )´ +, for 1 < p ≥ 3≤α 2. (3.55)

Given T > 1 we denote

wT T w )w T+0 , uT T wT )×, 1+.

For β ∼ 1 we have

\wwβ
T \

3
Xα

0 )FΩ+
T κα

⋂
FΩ

y2 αw3β
T ‖ w‖3 dxdy

0 κα)3β 0 β3+

⋂
}w≥T |

y2 αw3β‖ w‖3 dxdy.

Using ϕ T ww3β
T 
 Xα

1 )F̄ +as a test function we obtain

κα

⋂
FΩ

y2 α〉 w, )ww3β
T +| dxdy T

⋂
¯

f)u+uu3βT dx ≥ 3

⋂
¯

a)2 0 u3+u3βT dx.

On the other hand, it is clear that⋂
FΩ

y2 α〉 w, )ww3β
T +| dxdy T

⋂
FΩ

y2 αw3β
T ‖ w‖3 dxdy0

0 3β

⋂
}w≥T |

y2 αw3β‖ w‖3 dxdy.

Summing up, we have

\wwβ
T \

3
Xα

0 )FΩ+
≥ C

⋂
¯

a)2 0 u3+u3βT dx,

which by (1.30) implies that

\uuβ
T \

3
L2∗α )¯ +≥ C̃

⋂
¯

a)2 0 u3+u3βT dx, (3.56)

with C̃ some positive constant depending on α, β, N and ‖́ ‖. To compute the term on
the right-hand side we add the hypothesis uβ0 2 
 L3)´ +. With this assumption we get⋂

¯

au3u3βT dx ≥ T1

⋂
}a<T0|

u3u3βT dx 0

⋂
}a→T0|

au3u3βT dx

≥ C2T1 0

)⋂
}a→T0|

a
N
α dx

[ α
N )⋂

¯

)uuβ
T+

3∗α dx

{ 2
2∗α

.
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By the same calculation,⋂
¯

au3βT dx ≥ C3T1 0

)⋂
}a→T0|

a
N
α dx

[ α
N )⋂

¯

)uβ
T+

3∗α dx

{ 2
2∗α

,

where, since uβ0 2 
 L3)´ +, C2 and C3 can be taken independent of T . Hence, by
(3.55) it follows that

ε)T1+T

)⋂
}a→T0|

a
N
α dx

[ α
N

↗ 1 as T1 ↗ ∈ .

Therefore, choosing T1 large enough such that Cε)T1+<
2
3 , by (3.56), we obtain that

there exists a constant K)T1+, independent of T , for which it holds

\uuβ
T \

3
L2∗α )¯ +≥ K)T1+.

Letting T ↗ ∈ we conclude that uβ0 2 
 L3
∗
α)´ +. Clearly we can obtain that f)×, u+


Lr)´ +for some r > N/α, in a finite number of steps. Thus, we conclude applying
Theorem 2.3.3. �

Now we characterize the regularity of the solutions of )P≤λ+for the whole range of
exponents.

Proposition 3.5.2. Let u be a solution of )P≤λ+. Then the following holds

(i) If α T 2 and q ∼ 2 then u 
 C∈ )´ +.

(ii) If α T 2 and q < 2 then u 
 C2,q)´ +.

(iii) If α < 2 then u 
 Cα)´ +.

(iv) If α > 2 then u 
 C2,α 2)´ +.

Proof. First we observe that, by Proposition 3.5.1, we have u 
 L∈ )´ +and also
fλ)u+
 L∈ )´ +.

(i) Applying Proposition 3.1 of [28], we get that u 
 Cγ)´ +, for some γ < 2. Since
q ∼ 2 then fλ)u+
 Cγ)´ +, so, again by Proposition 3.1 of [28], it follows that
u 
 C2,γ)´ +. Iterating the process we conclude that u 
 C∈ )´ +.

(ii) As before we have u 
 Cγ)´ +, for some γ < 2. Therefore fλ)u+
 Cqγ)´ +.
It follows that u 
 C2,qγ)´ +, which gives fλ)u+
 Cq)´ +. Finally this implies
u 
 C2,q)´ +.

(iii) By Lemma 2.8 of [33] we obtain that u 
 Cγ)´ +for all γ 
 )1, α+. This implies
that fλ)u+
 Cr)´ +for every r < n lo}qα, α〈 . Therefore, again by [33], this
time using Lemmas 2.7 and 2.9, we get that u 
 Cα)´ +.
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(iv) Since α > 2, we can write problem )P≤λ+as follows⎩⎪⎨
) Λ+2/3u T s in ´ ,
) Λ+)α 2+/3s T fλ)u+ in ´ ,
u T s T 1 on ∂´ .

(3.57)

Reasoning as before, we obtain the desired regularity in two steps, using Propo-
sition 3.1 in [28] and Lemmas 2.7 and 2.9 in [33].

�

We end this section adapting to our setting a concentration-compactness result
by P.L. Lions [60], used in the proof of Lemma 3.3.8. This property has been used
in [4, 24, 53] for the standard case, and for example [10, 72] for a different nonlo-
cal operators which include a different fractional Laplacian. We recall that a related
concentration-compactness result for the fractional Laplacian has been recently ob-
tained in [64]. Nevertheless, we need the version corresponding to the extended prob-
lem, and it cannot be deduced from the one in [64].

Theorem 3.5.3. Let }wn〈n � N be a weakly convergent sequence to w in Xα
1 )F̄ +, such

that the sequence }y2 α‖ wn‖
3〈n� N is tight. Let un T Tr)wn+and u T Tr)w+. Let

μ, ν be two non negative measures such that

y2 α‖ wn‖
3 ↗ μ and ‖un‖

3∗α ↗ ν, as n↗ ∈ (3.58)

in the sense of measures. Then there exist an at most countable set I and points
}xi〈 i � I �´ such that

1. ν T ‖u‖3
∗
α 0

∫
k � I

νkδxk
, νk > 1,

2. μ ∼ y2 α‖ w‖3 0
∫
k � I

μkδxk
, μk > 1,

3. μk ∼ S)α,N+ν
2

2∗α
k .

Proof. Let ϕ 
 C∈1 )F̄ +. By the trace inequality (1.30) with r T 3≤α it follows that

S)α,N+

)⋂
¯

‖ϕwn‖
3∗αdx

{3/3∗α
≥ κα

⋂
FΩ

y2 α‖ )ϕwn+‖
3dxdy. (3.59)

Let K≤ ;T K2 ∗ K3 ≤ F̄ be the support of ϕ and suppose first that the weak limit
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w T 1. Then we get that⋂
FΩ

y2 α‖ )ϕwn+‖
3dxdy T

⋂
K∗

y2 α‖ )ϕwn+‖
3dxdy

T

⋂
K∗

y2 α‖wn‖
3‖ ϕ‖3dxdy 0

⋂
K∗

y2 α‖ϕ‖3‖ wn‖
3dxdy

0 3

⋂
K∗

y2 αwnϕ〉 ϕ, wn|dxdy.

(3.60)

Since K≤is a bounded domain, and y2 α is an A3 weight, we have the compact inclu-
sion

H2)K≤, y2 α+↪↗↪↗ Lr)K≤, y2 α+, 2 ≥ r <
3)N 0 2+

N 2
, α 
 )1, 3+.

Therefore, for a suitable subsequence, we get the limit⋂
K∗

y2 α‖wn‖
3‖ ϕ‖3dxdy ↗ 1, as n↗ ∈ .

By the weak convergence, given by hypothesis, we obtain⋂
K∗

y2 αwnϕ〉 ϕ, wn|dxdy ↗ 1, as n↗ ∈ .

Hence, by (3.58) we conclude that⋂
FΩ

y2 α‖ )ϕwn+‖
3dxdy ↗

⋂
FΩ

‖ϕ)x, y+‖3dμ, as n↗ ∈ .

Then, from (3.59) we get

S)α,N+

)⋂
¯

‖ϕ‖3
∗
αdν

{3/3∗α
≥ κα

⋂
FΩ

‖ϕ‖3dμ, ∃ ϕ 
 C∈1 )F̄ +. (3.61)

If now w �T 1, we apply the above result to the function vn T wn w. Indeed if

y2 α‖ vn‖
3 ↗ dμ and ‖vn)×, 1+‖

3∗α ↗ dν, as n↗ ∈ ,

it follows that

S)α,N+

)⋂
¯

‖ϕ‖3
∗
αdν

{3/3∗α
≥ κα

⋂
FΩ

‖ϕ‖3dμ , ∃ ϕ 
 C∈1 )F̄ +,

therefore, ([60]), for some sequence of points }xk〈k � I �´ , we have

dν T
∫
k � I

νkδxk
, dμ ∼

∫
k � I

μkδxk
,
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with μk ∼ S)α,N+ν
3∗α/3
k . Hence, by Lemma 3.4.2, we obtain

dν T ‖u‖3
∗
α 0

∫
k � I

νkδxk
.

Let now ϕ be a test function. We have⋂
FΩ

y2 αϕ‖ wn‖
3dxdy T

⋂
FΩ

y2 αϕ‖ w‖3dxdy 0

⋂
FΩ

y2 αϕ‖ )wn w+‖3dxdy

0 3

⋂
FΩ

y2 αϕ〉 )wn w+, w|dxdy.

Taking limits as n↗ ∈ we get that⋂
FΩ

ϕdμ T

⋂
FΩ

y2 αϕ‖ w‖3dxdy 0

⋂
FΩ

ϕdμ

∼

⋂
FΩ

y2 αϕ‖ w‖3dxdy 0

⋂
FΩ

y2 αϕ
∫
k � I

μkδxk
dxdy,

with the same condition μk ∼ S)α,N+ν
3∗α/3
k . So we obtain the desired conclusion. �





4
Perturbations of a critical fractional equation

4.1. Introduction

In this last chapter we study perturbations of order zero of the problem (3.1).
Namely, we will focus on the problem

)P+

}
) Λ+α/3u T ‖u‖

2α
N−αu 0 f)x+ in ´ ,

u T 1 on ∂´ ,

where 1 < α < 3, N > α and f belongs to a suitable space.

The equivalent problem for the classical Laplace operator Λ was previously stud-
ied in [67] and [81]. We follow the approach of the latter along the chapter. We remark
that a parallel work on this problem, for positive solutions, has been performed in [74].

The operator L)u+T ) Λ+α/3u ‖u‖p 3u is well defined from H
α/3
1 )´ +into its

dual H α/3)´ +by the Sobolev inequality, see (1.33). Thus it is natural to consider
data f in that space: we have that f 
 H α/3)´ +if and only if f T ) Λ+α/3g with
g 
 H

α/3
1 )´ +; the associated norm is given by \f\H−α/2 T \g\

H
α/2
0

.

Finally we will consider solutions of Problem )P+in the following sense.

Definition 4.1.1. Let f 
 H α/3)´ +. We say that u 
 H
α/3
1 )´ +is an energy solution
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to problem )P+if it holds⋂
¯

) Λ+α/=u) Λ+α/=ψ dx T

⋂
¯

)‖u‖p 3u 0 f+ψ dx, ∃ψ 
 H
α/3
1 )´ +. (4.1)

4.2. Main results and preliminaries

We will focus on functions f 
 H α/3)´ +that are small in the following sense

⋂
¯

fϕ < c)α,N+\ϕ\
)N0 α+/α

H
α/2
0

, ∃ϕ 
 H
α/3
1 )´ +with \ϕ\p T 2, (4.2)

where c)α,N+T 3α
N α )

N α
N0 α+

)N0 α+/3α. The main result of the chapter is the follow-
ing

Theorem 4.2.1. Assume f �⊆ 1 satisfies (4.2). Then the problem )P+has at least two
solutions. Moreover, if f ∼ 1 a.e. in ´ then these solutions are nonnegative a.e. in ´ .

We will also prove that, if we relax the strict inequality in condition (4.2), namely
we replace it with the condition⋂

¯

fϕ ≥ c)α,N+\ϕ\
)N0 α+/α

H
α/2
0

, ∃ϕ 
 H
α/3
1 )´ +with \ϕ\p T 2, (4.3)

then we still obtain the existence of at least one solution.

Theorem 4.2.2. Assume f �⊆ 1 satisfies (4.3). Then the problem )P+has at least one
solution. Moreover, if f is nonnegative a.e. in ´ then this solution is non-negative a.e.
in ´ .

The condition (4.2) is equivalent to

⋂
¯

fϕ < c)α,N+
\ϕ\

)N0 α+/α

H
α/2
0

\ϕ\
N/α
p

, ∃ϕ 
 H
α/3
1 )´ +∇}1〈 . (4.4)

Moreover, since ⋂
¯

fϕ ≥ \f\H−α/2\ϕ\
H

α/2
0

, (4.5)

then using the Sobolev inequality (1.33) we obtain the following sufficient condition
on f to satisfy (4.2)

\f\H−α/2 ≥ c)α,N+S)α,N+N/3α. (4.6)
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Remark 4.2.1. 1. We point out that an assumption on the size of f is natural in
order to find solutions of Problem )P+. In fact, if for example f is a positive
large enough constant then Problem )P+has no solutions.

2. Condition (4.6) seems to be not sharp in view of the result in [34] for the case
α T 3.

The associated energy functional to problem )P+is given by

I)u+T
2

3

⋂
¯

((() Λ+α/=u
(((3 dx

2

p

⋂
¯

‖u‖p
⋂
¯

fu dx.

Again critical points of I correspond to solutions of )P+in the sense of (4.1). Indeed,
one of the solutions we will construct in the proof of Theorem 4.2.1 is a local minimum
of I in H

α/3
1 )´ +.

4.3. Proof of Theorem 4.2.1

4.3.1. First Solution

We start with the definition of the Nehari manifold associated to problem )P+,

S T }u 
 H
α/3
1 )´ +, u �⊆ 1 ; 〉I∞)u+, u| T 1〈 .

It is natural to look for solutions in this manifold. Note that the condition u 
 S is
equivalent to the identity

\u\3
H

α/2
0

T \u\pp 0

⋂
¯

fu. (4.7)

Therefore the functional I restricted to S takes the equivalent forms

I)u+ T
α

3N
\u\3

H
α/2
0

N 0 α

3N

⋂
¯

fu

T
α

3N
\u\pp

2

3

⋂
¯

fu.

(4.8)

We will use both expressions in the sequel. In particular, using the first one we deduce
that the functional I is bounded from below on S :

I)u+∼
α

3N
\u\3

H
α/2
0

N 0 α

3N
\f\H−α/2\u\

H
α/2
0

∼
)N 0 α+3

:Nα
\f\3H−α/2 , (4.9)

where the last step is a consequence of the minimization of the function αt3 )N 0
α+\f\H−α/2t.
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Remark 4.3.1. Taking (4.9) into account it makes sense to define

c1 T log
∩

I > ∈ , (4.10)

while the functional is not bounded from below in the whole space H
α/3
1 )´ +.

Note that if u1 is a local minimum of I in H
α/3
1 )´ +then necessarily

\u1\
3

H
α/2
0

)p 2+\u1\
p
p ∼ 1.

In fact, as we will prove in Lemma 4.3.4 this inequality is strict, namely

\u1\
3

H
α/2
0

)p 2+\u1\
p
p > 1. (4.11)

In the same way, if u1 is a local maximum of I it holds

\u1\
3

H
α/2
0

)p 2+\u1\
p
p < 1. (4.12)

Thus, we first minimize the functional I restricted to S in order to find a critical
point and therefore a solution to the problem )P+. As we will see, c1 is achieved. To
prove that we start with some preliminary results.

Lemma 4.3.1. Let f �⊆ 1 satisfy (4.2). Given u 
 H
α/3
1 )´ +assume

∑̄
fu > 1. Then

there exist two unique constants 1 < σ)u+< τ)u+such that both σ)u+u, τ)u+u 
 S
and verify the inequalities (4.11) and (4.12) respectively.

Proof. Let θ)t+T t\u\3
H

α/2
0

tp 2\u\pp. We can compute the point of maximum value

of this function,

tM T

⎞⎠ )N α+\u\3
H

α/2
0

)N 0 α+\u\pp

⎡∑)N α+/3α

,

and

θ)tM+T
3α

N α

)
N α

N 0 α

{)N0 α+/3α \u\
)N0 α+/α

H
α/2
0

\u\
N/α
p

T c)α,N+
\u\

)N0 α+/α

H
α/2
0

\u\
N/α
p

.

Note that θ is a concave function, increasing on )1, tM+and decreasing on )tM ,∈ +,
with mln t′ ∈ θ)t+T ∈ . By (4.4) we get 1 <

∑̄
fu dx < θ)tM+. Thus there exist

two unique values 1 < σ < tM < τ such that

θ)τ+T

⋂
¯

fu dx T θ)σ+, θ∞)τ+< 1 < θ∞)σ+. (4.13)
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Multiplying in the previous expression by τ we have

1 T τθ)τ+ τ

⋂
¯

fu dx T \τu\3
H

α/2
0

\τu\pp

⋂
¯

τfu,

thus τu 
 S . Moreover,

\τu\3
H

α/2
0

)p 2+\τu\pp T τ3θ∞)τ+< 1.

Arguing in a similar way for σ, we obtain σu 
 S and

\σu\3
H

α/2
0

)p 2+\σu\pp T σ3θ∞)σ+> 1.

�

Observe that without the condition
∑̄

fu > 1 we still can find a value τ > 1 with
τu 
 S satisfying (4.11). Conversely, the condition

∑̄
fu > 1 is guaranteed for any

function u 
 S that satisfies (4.11).

We notice that the purpose of the strict condition (4.2) on f in the previous Lemma
is just to obtain

∑̄
fu dx < θ)tM+. It also appears to be of importance in Lemma 4.3.3

below. It is known that, when one deals with the problem associated to the standard
Laplacian and under certain hypothesis, the condition (4.2) is not sharp, see [34]. We
suspect that a similar fact can occur in our case.

Corollary 4.3.2. In the hypotheses of Lemma 4.3.1, it holds I)τu+T n d˜
t→σ

I)tu+and

I)σu+T n lo
1≥t≥τ

I)tu+.

Proof. It is straightforward once we notice that the function g)t+T I)tu+satisfies
g∞)t+T θ)t+

∑̄
fu dx. �

The next property uses a technical result analogous to Lemma 2.2 in [81]. The
proof follows almost word by word the proof performed in that paper, see also [23].
We only have to adapt the calculations to the functional framework of the fractional
Laplacian, we leave the details for the interested reader.

Lemma 4.3.3. Let f �⊆ 1 satisfy (4.2). Then

μ1 ;T log
u � H

α/2
0 )¯ +, u p[ 2

)
c)α,N+\u\

)N0 α+/α

H
α/2
0

⋂
¯

fu dx

{
(4.14)

is achieved and moreover μ1 > 1.

Next, the following lemma establishes a crucial property for minima of the func-
tional, see inequality (4.11).
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Lemma 4.3.4. Let f �⊆ 1 satisfy (4.2) and let u 
 S . Then

\u\3
H

α/2
0

)p 2+\u\pp �T 1.

Proof. Consider the functional, defined for u 
 H
α/3
1 )´ +, u �⊆ 1,

φ)u+T c)α,N+
\u\

)N0 α+/α

H
α/2
0

\u\
N/α
p

⋂
¯

fu dx.

If \u\p T 2, we have

φ)tu+T t

)
c)α,N+\u\

)N0 α+/α

H
α/2
0

⋂
¯

fu dx

{
,

thus, by Lemma 4.3.3, given γ > 1, to be chosen later, clearly

log
u p→γ

φ)u+∼ γμ1. (4.15)

Note that this infimum is also positive.

Now we suppose by contradiction that there exists u 
 S such that

\u\3
H

α/2
0

)p 2+\u\pp T 1. (4.16)

By the Sobolev inequality (1.33), we obtain

S)α,N+\u\3p )p 2+\u\pp ≥ 1,

which implies

\u\p ∼

)
S)α,N+

p 2

{2/)p 3+

;T γ.

Now, substituting (4.16) into (4.7) we get

1 T \u\3
H

α/2
0

\u\pp

⋂
¯

fu dx T )p 3+\u\pp

⋂
¯

fu dx . (4.17)

Finally, by (4.15) and (4.17) we conclude

1 < γμ1 ≥ φ)u+T )p 3+

)
N α

N 0 α

{)N0 α+/3α \u\
)N0 α+/α

H
α/2
0

\u\
N/α
p

⋂
¯

fu dx

T )p 3+

⎤⎦)N α

N 0 α

{)N0 α+/3α \u\
)N0 α+/α

H
α/2
0

\u\
N/α
p

\u\pp

⎣⎢
T )p 3+\u\pp

⎤⎥⎦
⎞⎠ )N α+\u\3

H
α/2
0

)N 0 α+\u\pp

⎡∑)N α+/3α

2

⎣⎧⎢ T 1,

which is a contradiction. �
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Lemma 4.3.5. Let f �⊆ 1 be a function satisfying (4.2). Given u 
 S there exists a
positive function μu ; H

α/3
1 )´ + ↗ R differentiable in a neighborhood of the origin

∪1 �H
α/3
1 )´ +such that,

μu)1+T 2, μu)z+)u z+
 S ,

and

〉μ∞u)1+, z| T

3

⋂
¯

) Λ+α/=u) Λ+α/=z p

⋂
¯

‖u‖p 3uz

⋂
¯

fz

\u\3
H

α/2
0

)p 2+\u\pp
, ∃ z 
 ∪1.

(4.18)

Proof. Consider the function

F )μ, z+T μ\u z\3
H

α/2
0 )¯ +

μp 2\u z\pp

⋂
¯

f)u z+.

By Lemma 4.3.4 we have that

∂F

∂μ
)2, 1+T \u\3

H
α/2
0

)p 2+\u\pp �T 1.

The proof finishes applying the Implicit Function Theorem to the function F at the
point )2, 1+. �

We are now in a position to prove one of the main results of the chapter.

Proposition 4.3.6. The functional I possess a local minimum in H
α/3
1 )´ +, in par-

ticular, )P+has a solution. Moreover, if f is nonnegative a.e. in ´ this solution is
nonnegative a.e. in ´ .

Proof. Consider v the unique solution to the equation ) Λ+α/3v T f in H
α/3
1 )´ +. Let

σ T σ)v+be as defined in Lemma 4.3.1. Thus, since σ)v+v 
 S , we have

I)σv+T
σ3

3
\v\3

H
α/2
0

σp

p
\v\pp σ\v\3

H
α/2
0

T
σ3

3
\v\3

H
α/2
0

0
N 0 α

3N
σp\v\pp <

ασ3

3N
\v\3

H
α/2
0

T
ασ3

3N
\f\3H−α/2 .

(4.19)

Then, by (4.9) and (4.19), the infimum in (4.10) satisfies the estimate

)N 0 α+3

:Nα
\f\3H−α/2 ≥ c1 <

ασ3

3N
\f\3H−α/2 < 1. (4.20)

Note that by the expression (4.8), it is clear that the functional I constrained on
S is weakly lower semi-continuous. Therefore, by the Ekeland’s variational principle
[43], we obtain a minimizing subsequence }un〈 �S such that for every n 
 N:

)i+ I)un+< c1 0
2

n
, )ii+

2

n
\un v\

H
α/2
0

∼ I)un+ I)v+, ∃v 
 S .



90

So that, by )i+, (4.20) and (4.8) we have

I)un+T
α

3N
\un\

3

H
α/2
0

N 0 α

3N

⋂
¯

fun < c1 0
2

n
<

ασ3

3N
\f\3H−α/2

for n large enough. Therefore

ασ3

N 0 α
\f\3H−α/2 ≥

⋂
¯

fun and \un\
3

H
α/2
0

≥
N 0 α

α

⋂
¯

fun. (4.21)

These inequalities, together with (4.5), give

ασ3

N 0 α
\f\H−α/2 ≥ \un\Hα/2

0
≥

N 0 α

α
\f\H−α/2 . (4.22)

Thus we have, for a subsequence, that un ⇀ u1 weakly in Hα/3)´ +with u1 �⊆ 1. We
claim that \I∞)u1+\H−α/2 T 1. Take z 
 H

α/3
1 )´ +with \z\

H
α/2
0

T 2. By Lemma
4.3.5, for every n 
 N there exists a positive function μun such that

wδ T μun)δz+)un δz+
 S

with δ > 1 small enough. Set tn)δ+T μun)δz+. Thus, putting v T wδ in )ii+and
using the Mean Value Theorem, we have

2

n
\wδ un\Hα/2

0
∼ )2 tn)δ++〉I

∞)wδ+, un| 0 δtn)δ+〉I
∞)wδ+, z| 0 o)δ+.

Dividing by δ and taking the limit as δ goes to 1 we have

2

n
)2 0 ‖t∞n)1+‖\un\Hα/2

0
+∼ \I∞)un+\H−α/2

with ‖t∞n)1+‖T 〉μ
∞
un
)1+, z| . So that, by (4.22) we get

\I∞)un+\H−α/2 ≥
2

n

)
2 0

N 0 α

α
‖t∞n)1+‖\f\H−α/2

{
. (4.23)

Thus we are done once we prove that ‖t∞n)1+‖is uniformly bounded. By Lemma 4.3.5
and (4.22) we obtain

‖t∞n)1+‖≥
C((((\un\3

H
α/2
0

)p 2+\un\
p
p

((((
for some constant C. Assume by contradiction that

\un\
3

H
α/2
0

)p 2+\un\
p
p ↗ 1 as n↗ ∈ . (4.24)



91

By (4.24) and (4.7) we deduce the estimate⋂
¯

fun T )p 3+\un\
p
p 0 o)2+.

Moreover, by (4.22) we derive \un\p ∼ γ for some constant γ > 1. Thus, reasoning
like in Lemma 4.3.4 we get

1 < γ)N0 α+/3μ1 ≥ \un\
α/N

H
α/2
0

φ)un+

T )p 3+

⎤⎥⎦
⎞⎠ )N α+\un\

3

H
α/2
0

)N 0 α+

⎡∑)N α+/3α

)\un\
p
p+
)N α+/3α

⎣⎧⎢↗ 1,

which leads to a contradiction. Therefore \I∞)u1+\H−α/2 T 1 and we have obtained a
weak solution of )P+.

To obtain the strong convergence we proceed as usual. Recalling that I is weakly
lower semicontinuous in S , we get

c1 ≥ I)u1+≥ mln
n′ ∈

I)un+T c1.

This implies, using (4.8), the limits

mln
n′ ∈

\un\Hα/2
0

T \u1\Hα/2
0

, mln
n′ ∈

\un\p T \u1\p.

To see that u1 is a local minimum in H
α/3
1 )´ +we first show that (4.11) holds. In fact,

since u1 
 S and also
∑̄

fu1 > 1 by (4.21), it is clear that one of the values σ)u1+or
τ)u1+given by Lemma 4.3.1 is one. Assume by contradiction, see Lemma 4.3.4, that
u1 satisfies (4.12), i.e. σ)u1+< τ)u1+T 2. By Corollary 4.3.2, I)σ)u1+u1+< I)u1+,
which contradicts the fact that u1 is the infimum in S . Hence u1 satisfies (4.11) and
σ)u1+T 2. Remark that having the strict inequality in (4.4) is crucial in the present
argument. In particular we have obtained 2 T σ)u1+< tM < τ)u1+, or which is the
same,

2 <

⎞⎠ )N α+\u1\
3

H
α/2
0

)N 0 α+\u1\
p
p

⎡∑)N α+/3α

. (4.25)

Take ε > 1 small enough such that

2 <

⎞⎠ )N α+\u1 z\3
H

α/2
0

)N 0 α+\u1 z\pp

⎡∑)N α+/3α

;T tM, ε (4.26)

for \z\
H

α/2
0

< ε. By Lemma 4.3.5 we have that there exists a positive function μu0
;

H
α/3
1 )´ + ↗ R such that μu0)z+)u1 z+
 S for every \z\

H
α/2
0

< ε, with ε smaller
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if necessary. Indeed, by continuity we have μu0)z+< tM, ε for ε > 1 sufficiently small.
Thus we get that μu0)z+)u1 z+verifies (4.11), and as a consequence of Lemma 4.3.1
and Corollary 4.3.2, applied to u1 z, we obtain

I)s)u1 z++∼ I)μu0
)z+)u1 z++∼ I)u1+, ∃ s 
 )1, tM, ε+.

Since, by (4.26) we can take s T 2, we conclude I)u1 z+∼ I)u1+for every
\z\

H
α/2
0

< ε, i.e, u1 is a local minimum in H
α/3
1 )´ +.

To finish we assume that f ∼ 1, then it follows
∑̄

f‖u1‖> 1. Take σ T σ)‖u1‖+>
1 and τ T τ)‖u1‖+> σ. We have

\u1\
p
p 0

⋂
¯

fu1 T \u1\
3

H
α/2
0

> )p 2+\u1\
p
p

and, since τ‖u1‖satisfies (4.12), we get

τp\u1\
p
p 0 τ

⋂
¯

f‖u1‖T τ3\‖u1‖\
3

H
α/2
0

< )p 2+τp\u1\
p
p.

Thus,

)p 3+\u1\
p
p <

⋂
¯

fu1 ≥

⋂
¯

f‖u1‖≥ )p 3+τp 2\u1\
p
p,

which implies τ > 2. Therefore, by Corollary 4.3.2 we have

I)u1+≥ I)σ‖u1‖+≥ I)‖u1‖+.

On the other hand, by the generalized Stroock-Varopoulos inequality [62], we have⋂
¯

((() Λ+α/=‖u1‖
(((3 ≥⋂

¯

((() Λ+α/=u1

(((3 ,
which implies I)‖u1‖+≥ I)u1+. As a consequence, I)u1+T I)‖u1‖+, σ T 2, and thus
‖u1‖
 S is a solution. �

4.3.2. Second Solution

As in Chapter 3, we will look for the second solution using a classical approach
that relies on the well-known Mountain Pass Theorem, see [5]. As it is usual in critical
problems, the functional I does not satisfy a global PS condition, i.e. a PSc condition
for every c. Our aim is to prove that I satisfies a PSc condition for c below a precise
critical level c≤. We define

c≤T c1 0
α

3N
S)α,N+

N
α . (4.27)

Note that this critical level differs from the one applied in Section 3.3. This is
caused by the shifting applied to the functional in that section.
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Lemma 4.3.7. The functional I satisfies a local PSc condition for any c < c≤.

Proof. Let }un〈 �H
α/3
1 )´ +be a PS sequence of level c < c≤. It is easy to check

that }un〈 are uniformly bounded in Hα/3)´ +. Thus, there exists a subsequence (still
denoted un) such that un ⇀ z1 weakly in H

α/3
1 )´ +. As a consequence, z1 
 H

α/3
1 )´ +

is a solution of )P+.

We rewrite un as un T u1 0 φn with φn ↗ 1, then applying the Brezis-Lieb
Lemma we get

\un\
p
p T \u1\

p
p 0 \φn\

p
p 0 o)2+. (4.28)

On one hand, by (4.28) and taking n large enough we have

c≤ > I)un+T I)u1+0
2

3
\φn\

3

H
α/2
0

2

p
\φn\

p
p 0 o)2+

∼ c1 0
2

3
\φn\

3

H
α/2
0

2

p
\φn\

p
p 0 o)2+.

Hence by definition of c≤ in (4.27) we obtain

2

3
\φn\

3

H
α/2
0

2

p
\φn\

p
p <

α

3N
S)α,N+

N
α 0 o)2+. (4.29)

Taking into account that }un〈 is a PS sequence, in particular we have that

o)2+ T 〉I∞)un+, un| T \un\
3

H
α/2
0

\un\
p
p

⋂
¯

fun

T \u1\
3

H
α/2
0

\u1\
p
p

⋂
¯

fu1 0 \φn\
3

H
α/2
0

\φn\
p
p 0 o)2+

T 〉I∞)u1+, u1| 0 \φn\
3

H
α/2
0

\φn\
p
p 0 o)2+,

T \φn\
3

H
α/2
0

\φn\
p
p 0 o)2+.

(4.30)

Now we want to prove that φn has a subsequence strongly convergent to 1 in H
α/3
1 )´ +.

Suppose on the contrary that there exists C, k > 1 such that \φn\Hα/2
0

∼ C, ∃n ∼ k.
Thus, using (1.33) in (4.30) we get

\φn\
p 3
p ∼ S)α,N+0 o)2+∞ \φn\

p
p ∼ S)α,N+

N
α 0 o)2+ (4.31)

Therefore, by (4.29) and (4.31) we have that

α

3N
S)α,N+

N
α ≥

α

3N
\φn\

p
p0 o)2+T

2

3
\φn\

3

H
α/2
0

2

p
\φn\

p
p0 o)2+<

α

3N
S)α,N+

N
α ,

which is a contradiction. �

Recall that the minimizers for the Sobolev inequality (1.33) are given by the two-
parameter family of functions

uε,x0)x+T
ε)N α+/3

)‖x x1‖3 0 ε3+)N α+/3
, (4.32)
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where x1 
 RN , ε > 1, see (1.32). In what follows we will denote

A T \uε,x0\p , B T \) Λ+
α/=
H uε,x0\3 T

)⋂
RN

‖ξ‖α‖̃uε,x0)ξ+‖
3 dξ

{2/3
. (4.33)

Note that the last quantity defines a norm in the homogeneous fractional Sobolev space
aHα/3)RN+. Both numbers A and B are clearly independent of ε and x1, and moreover,
B3 T S)α,N+A3.

Without loss of generality we may assume that 1 
 ´ . We define a cut-off function
θ 
 C∈ )RN+by θ)x+T θ1)‖x‖/ρ+with ρ > 1, where θ1 
 C∈ )R+is a non-
increasing function satisfying

θ1)s+T 2 if s ≥
2

3
, θ1)s+T 1 if s ∼ 2.

Note that if u1 is the solution constructed in the previous subsection, we can find a
set Φ �´ of positive Lebesgue measure such that u1 ∼ ν > 1 a.e. in Φ (replace u1
with u1 and f with f if necessary). For x1 
 Φ, we set ũε,x0 T θuε,x0 
 H

α/3
1 )´ +.

Proposition 4.3.8. In the above notation, for a.e. x1 
 Φ there exists ε≤T ε≤)x1+> 1
sufficiently small such that

tvr
t→1

I)u1 0 tũε,x0+< c≤, ∃ 1 < ε < ε≤. (4.34)

We observe that when one evaluates the functional in (4.34), one needs to evalu-
ate \ũε,x0\Hα/2

0
, i.e., one needs to evaluate the fractional Laplacian of a product of

functions. As in the previous chapters, this is dealt by using the α-harmonic extension.

Consider the family wε,x0 T Eα)uε,x0+, with uε,x0 given in (4.32). We want to
find a family of modified minimizers in the extended space, by using a cut-off function
in F̄ . To do that we take

φ)x, y+T θ1

)
)‖x x1‖

3 0 y3+2/3

ρ

{
,

where θ1 is defined above. With this notation we define w̃ε, x0 T φwε,x0 
 Xα
1 )F̄ +

and w̃ε, x0)×, 1+T ũε, x0)×+.

In Chapter 3 the following estimate for w̃ε,x0 is proved

\w̃ε,x0\
3
Xα

0
T \wε,x0\

3
Xα 0 O)εN α+. (4.35)

In view of (1.8), (1.9) and (4.35), we have

\ũε,x0\
3

H
α/2
0

≥ B3 0 O)εN α+. (4.36)
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Moreover, there is the following one

\ũε,x0\
p
p ∼ Ap 0 O)εN+. (4.37)

We establish now a result that will be useful in the proof of Proposition 4.3.8.

Lemma 4.3.9. Assume a, b > 1, u1, ũε,x0 defined as above. For t 
 ]a, b ,̂ it holds

\u1 0 tũε,x0
\pp T \u1\

p
p 0 tp\ũε,x0

\pp 0 pt

⋂
¯

‖u1‖
p 3u1ũε,x0

dx

0 ptp 2

⋂
¯

‖̃uε,x0‖
p 3ũε,x0u1 dx 0 o

)
ε

N−α
2

(
.

(4.38)

The proof of this result follows the same arguments as in [23] with the obvious
changes to our setting, so we omit the details.

Proof of Proposition 4.3.8. On the one hand, since I)u1 0 tũε,x0+‖t[ 1 T c1 < c≤, by
a continuity argument, we can find t1, ε1 > 1 both small enough such that

I)u1 0 tũε,x0+< c≤ ∃t 
 )1, t1+, ∃ε 
 )1, ε1+.

On the other hand, by Proposition 4.3.9, together with (4.37) and the fact that A and B
are independent of ε we have

I)u1 0 tũε,x0+↗ ∈ as t↗ ∈ , ∃ε > 1.

Hence there exist t2 > 1 large enough such that

I)u1 0 tũε,x0+< c1 < c≤ ∃t ∼ t2, ∃ε 
 )1, ε1+.

Thus, we just need to prove that there exist ε≤ 
 )1, ε1+such that

tvr
t0≥t≥t1

I)u1 0 tũε,x0+< c≤.

for every 1 < ε < ε≤.

Take t 
 ]t1, t2 .̂ Clearly we have

I)u1 0 tũε,x0+ T
2

3
\u1\

3

H
α/2
0

0 t

⋂
¯

) Λ+α/=u1) Λ+α/=ũε,x0 dx

0
t3

3
\ũε,x0\

3

H
α/2
0

2

p
\u1 0 tũε,x0\

p
p⋂

¯

fu1 dx t

⋂
¯

fũε,x0 dx.

(4.39)
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Since S)α,N+is attained for the function uε,x0 , substituting (4.36), (4.37) and (4.38)
in (4.39) we have

I)u1 0 tũε,x0+ ≥
2

3
\u1\

3

H
α/2
0

0 t

⋂
¯

) Λ+α/=u1) Λ+α/=ũε,x0 dx

0
t3

3
B3 2

p
\u1\

p
p

tp

p
Ap

t

⋂
¯

‖u1‖
p 3u1ũε,x0 dx tp 2

⋂
¯

‖̃uε,x0‖
p 2u1 dx⋂

¯

fu1 dx t

⋂
¯

fũε,x0 dx 0 o)ε
N−α

2 +.

On the other hand, since u1 is solution of )P+we get

I)u1 0 tũε, x0
+ ≥ I)u1+0

t3

3
B3 tp 2

⋂
¯

‖̃uε, x0
‖p 2u1 dx

tp

p
Ap 0 o)ε

N−α
2 +.

(4.40)

Extending u1 by zero outside ´ we get⋂
¯

‖̃uε,x0‖
p 2u1 dx T

⋂
RN

u1)x+θ
p 2)x+

ε)N0 α+/3

)‖x x1‖3 0 ε3+)N0 α+/3
dx

T ε
N−α

2

⋂
RN

u1)x+θ
p 2)x+

2

εN
η

)
x x1

ε

{
dx,

with η)x+T )‖x‖3 0 2+ )N0 α+/3. Thus, there exists a constant ν > 1 such that⋂
RN

u1)x+θ
p 2)x+

2

εN
η

)
x x1

ε

{
dx ∼ Kν

for every ε > 1 sufficiently small, x1 
 Φ and K T
∑
RN η)x+dx < ∈ . Therefore⋂

¯

‖̃uε,x0‖
p 2u1 dx T ε

N−α
2 Kν 0 o)ε

N−α
2 +. (4.41)

Substituting (4.41) in (4.40) we have

I)u1 0 tũε,x0+≥ c1 0
t3

3
B3 tp 2ε

N−α
2 Kν

tp

p
Ap 0 o)ε

N−α
2 +.

Let us now define the function

g)s+T
s3

3
B3 sp 2ε

N−α
2 Kν

sp

p
Ap, for s > 1,

and let sε > 1 be the point of global maximum, i.e.,

1 T g∞)sε+T sεB
3 )p 2+sp 3

ε ε
N−α

2 Kν sp 2
ε Ap. (4.42)
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We denote S1 T B3/Ap
{2/)p 3+. Note that 1 < sε < S1 and sε ↗ S1 as ε⇒ 1. Let

δε > 1 be such that sε T S1)2 δε+. Since B3/Ap T Sp 3
1 , by (4.42) we have

)
B3)p 2+

Ap

{ 1
p−2

2 δε )2 δε+
p 2
{

)p 2+Sp 3
1 )2 δε+

p 3ε
N−α

2 Kν T 1,

which implies

)p 3+

)
B3)p 2+

Ap

{ 1
p−2

δε T )p 2+Sp 3
1 ε

N−α
2 Kν 0 o

)
ε

N−α
2

(
. (4.43)

This, together with (4.43), gives

I)u1 0 tũε,x0+ ≥ c1 0
s3ε
3
B3 sp 2

ε ε
N−α

2 Kν
spε
p
Ap 0 o

)
ε

N−α
2

(
T c1 0

S31
3
B3 Sp 2

1 ε
N−α

2 Kν
Sp
1

p
Ap 0 o

)
ε

N−α
2

(
T c1 0

α

3N
S)α,N+

N
α Sp 2

1 ε
N−α

2 Kν 0 o
)
ε

N−α
2

(
T c≤ Sp 2

1 ε
N−α

2 Kν 0 o
)
ε

N−α
2

(
.

This finishes the proof by taking ε sufficiently small. �

Lemma 4.3.10. Assume f �⊆ 1 satisfies (4.2). Then the functional I possess a critical
point different from u1, in particular )P+has a second solution. Moreover, if f ∼ 1
a.e. in ´ then this solution is nonnegative a.e. in ´ .

Proof. Set ηε,M T u1 0 Mũε,x0 , with 1 < ε < ε≤and x1 
 Φ such that (4.34) holds.
Assume that M > 1 is large enough such that I)ηε,M+< c1.

Now we set

T
}
γ ; ]1, 2ˆ↗ H

α/3
1 )´ +, such that γ)1+T u1, γ)2+T ηε,M

√
.

By Proposition 4.3.8 we have that

c1 < c2 T log
γ �

n d˜
t � ]1,2˙

I)γ)t++< c≤.

Thus, using the Mountain Pass Theorem we obtain a PS sequence of level c2, and as a
consequence of Lemma 4.3.7 we can find a critical point u2 in H

α/3
1 )´ +with energy

level c2 > c1, i.e., u2 is a solution of )P+with u2 �⊆ u1.

To prove the positivity of the solution in the case that f ∼ 1, we denote

S̃ ;T }u 
 S ; u verifies (4.12)〈
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and c3 T log
˜∩
I . Is easy to see that, taking a larger M if necessary, we can assume

c1 < c3 ≥ c2 < c≤ (4.44)

Now, using the Ekeland’s variational principle and following the steps of the proof
of Proposition 4.3.6, we can obtain a PS sequence of level c3. Again, Lemma 4.3.7
implies the existence of a solution u3 
 S such that I)u3+T c3. Put τ T τ)‖u3‖+> 1.
Then τ‖u3‖
 S̃ . Finally by Corollary 4.3.2

log
˜∩
I T I)u3+T n d˜

t→tM
I)tu3+∼ I)τu3+∼ I)τ‖u3‖+,

which finishes he proof. �

Remark 4.3.2. Note that u3 could coincide with u2.

4.4. Proof of Theorem 4.2.2

When f satisfies condition (4.3) instead of (4.2) we use an approximation argument.

Proof of Theorem 4.2.2. Consider a sequence of numbers }εk〈k � N �)1, 2+such that
εk ⇒ 1 as k ↗ ∈ , and define fk T )2 εk+f . Clearly fk satisfies condition (4.2) for
every k 
 N. We define Ik and S k in a natural way

Ik)u+T
2

3

⋂
¯

((() Λ+α/=u
(((3 dx

2

p

⋂
¯

‖u‖p
⋂
¯

fku dx,

S k T }u 
 H
α/3
1 )´ +, u �⊆ 1 ; 〉I∞k)u+, u| T 1〈 .

Let uk 
 S k be the local minimum found via Theorem 4.2.1, namely

Ik)uk+T log
∩ k

Ik ;T ck.

In particular it holds

〉I∞k)uk+, z| T 1 ∃ z 
 H
α/3
1 )´ +, (4.45)

and moreover
\uk\

3

H
α/2
0

\uk\
p
p

⋂
¯

fkuk T 1, (4.46)

which by (1.33) and (4.5) implies \uk\
3

H
α/2
0

< C for any k 
 N and some constant

C > 1 independent of k. Take u 
 S verifying (4.11). Then⋂
¯

fku > 1 ∃k 
 N.
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Applying Lemma 4.3.1 with f T fk, and S T S k we find the values 1 < σk < tMk
<

τk such that σku, τku 
 S k. Since u satisfies inequality (4.11), we have τk > 2, thus
by Corollary 4.3.2 we have Ik)σku+≥ Ik)u+, which leads to

ck ≥ Ik)σku+≥ Ik)u+≥ I)u+0 εk\f\H−α/2\u\
H

α/2
0

≥ I)u+0 Cεk.

In particular ck ≥ c1 0 Cεk. Finally, reasoning like in (4.19) with f T fk we obtain

)N 0 α+3

:Nα
\f\3H−α/2 <

)N 0 α+3

:Nα
\fk\

3
H−α/2 ≥ ck ≥ c1 0 Cεk.

After passing to a subsequence we can assume that ck converges to some value c∞such
that

)N 0 α+3

:Nα
\f\3H−α/2 ≥ c∞≥ c1.

Moreover, since \uk\
3

H
α/2
0

is uniformly bounded, again for a subsequence if necessary,

we have uk ⇀ u≤weakly in H
α/3
1 )´ +. Then, by (4.45) we have that

〉I∞)u≤+, z| T 1 ∃z 
 H
α/3
1 )´ +,

and I)u≤+≥ c1. This implies u≤ 
 S and I)u≤+T c1, which finishes the proof.
The positivity of the solution when the datum f is taken nonnegative follows the same
argument as in the proof of Theorem 4.2.1. �

We finally remark that the solution constructed in this way is not necessarily a
minimum of the functional. Therefore we cannot apply the technique of Section 4.3.2
to find a second solution.
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