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Notations

Symbol

RYOZT RN % Ry
x T )ag, x5, ..., N+
X T)x,y+T )xo, 3, ... TN, Y+

Meaning

The upper half space of R0 2

An element of the euclidean space RY

An element of the euclidean space Rév 02

rTp|T 230 230 %00 z3, Module of x

Au Laplacian of u
) APy Fractional Laplacian of u
E,)u+ a-harmonic extension of u
35T N3Na Critical fractional Sobolev exponent
Il Lebesgue measure of the domain
0’ Boundary of *
F Tk ]l,e +
oLF 0" x]l,e +
Cr)X i+ Ball in Révo 2 of radius R centered at X4
Cr Ball in Rév 02 of radius R centered

at the origin

)k Inner product in RV
f o “ %ppen subset of ~ with ~ o *
Oug Dirac delta at z;
a.e. Almost everywhere
0 Positive part of v, v° T n d™}v, 1(
v Negative part of v, v T nd } v, 1{
) + The space of continuous functions defined in
Cy) + The space of functions in C') * +with compact support
ck) + The space of functions with & continuous derivatives in



Meaning

The space of functions in C*)“ +with compact support
The space of infinitely differentiable functions in *
The space of functions in C< )~ +with compact support

u;” R, ucontinuous || tvr )2+ u)y cc
zy/ wCy HZE y”—Y
Holder space of functions with & derivatives in C7) “ +

u; /R ||u measurable , n||uH’<€ (,2>p<e

Normin L?) " +
tu;” R ||u measurable and BC such that |u)z+> C
ae.x /(

Completion of C'F )~ +with respect to the norm
2/3

S ] R

Completion of CF )F +with respect to the norm

2/3
S A

{
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Introduction and thesis contents

In the past decades the elliptic problem

Au T g)z,u+ in " <RV, M
u T 1 ond’,

has been widely investigated. See for example the survey [3] and also the list (far from
complete) [4, 5, 24, 50, 51, 60, 71, 81] for more specific problems, where different
nonlinearities and different classes of domains, bounded or not, are considered. Other
different diffusion operators, like the p—Laplacian, fully nonlinear operators, etc, have
also been treated, see for example [13, 29, 35, 48] and the references therein. This
work is devoted to study a nonlocal version of the problem (1) involving the so-called
fractional Laplacian, ) A ©/3_ for some specific nonlinearities.

A brief introduction to the fractional Laplacian

Non local operators, like the fractional Laplacian, arise in a great variety of fields
like elasticity problems [69], combustion [30], crystal dislocation [82], quasi-geostrophic
flows [32, 61] and others. Problems involving the fractional Laplacian include frac-
tional porous medium equation [62, 63], blow up problems [12], obstacle problem
[70], etc. On the other hand, from a probabilistic approach, the fractional Laplacian
operator, defined in the whole space, can be interpreted as the generator of a a-stable
Levy process, see [11, 14, 15, 16, 17]. This kind of stochastic processes appeared in
some finance models, see for instance [7, 18, 57].

There exist different equivalent definitions of the fractional Laplacian when it is
defined in the whole space RV, see Section 1.1. When one try to extend those equiv-
alent definitions in the case of bounded domains, different operators are obtained, see
Section 1.2. In this work we are interested in looking at the fractional Laplacian as
fractional powers of the classical Laplacian, which is a positive self-adjoint operator,
both in the whole space or in a bounded domain with appropriate boundary conditions.



In [31], L. Caffarelli and L. Silvestre develop an extension tool that allows to trans-
form a nonlocal problem involving the fractional Laplacian into an equivalent local
problem. As we will see, this tool, inspired in the classical Dirichlet to Neumann
operator, implies the use of an extra variable as well as a linear operator with a degen-
erate/singular weight. On the other hand, the fractional powers of a linear positive self-
adjoint operator in a bounded domain ~ are defined by means of its spectral decom-
position. In [28], the authors consider the fractional operator ) A £/ defined using
the Dirichlet to Neumann operator, restricted to the cylinder & T “ % Ry <<]R(])V 0 2,
and show that this definition coincides with the spectral one. This technique has been
extended to deal with the case o IT' 2 in [19], see also [33, 76]. We will use this ap-
proach along this work. We recall that this is not the unique possibility of defining the
fractional Laplacian in a bounded domain, see Section 1.4.

After this preliminary work, the subsequent chapters are devoted to study the frac-
tional Laplacian problem associated to the classical problem (1),

} ) APy T gz,u+  in” <RV,

u T 1 ond’, 2)

withl < o < 3, N > aand ~ aregular bounded domain.

In particular, we study the case g)z,u+T u? 0 Au? where A / R, 1 < ¢ <p >

Joe T 35 2,and 2 < p. The number 35 T 2 is the critical exponent with

respect to some fractional Sobolev embedding. For the critical power, we also consider

a zero order perturbation, that is, g)x, u+T u~-« 0 f)x+ with f small in some sense.

Thesis contents

This work is organized as follows: In Chapter 1 we establish a series of characteri-
zations of the fractional Laplacian that we will use along the work. We describe also in
this chapter the proper functional framework to be used with the fractional Laplacian
as well as some useful inequalities. We extend to a T' 2 known results for the square
root of the Laplacian. We finish the chapter showing some alternative definitions for
fractional operators in bounded domains.

Chapter 2 is devoted to study the fractional subcritical concave-convex problem

)P,\—i—}) A€y T Mud0 u?, u>1 in ",

uw T 1 ond’, 3)

withl <a<3,1<¢g<2<p< %O"‘ N > a, A > 1and ~ <R asmooth

a’

bounded domain. For this problem we prove the following.

Theorem 1. There exists 3 > 1 such that for Problem ) Py+there holds:

1. If 1 < X\ < X there is a minimal solution. Moreover, the family of minimal
solutions is increasing with respect to \.



2. If \'T X there is at least one solution.
3. If A > X there is no solution.

4. Forany 1 < \ < X there exist at least two solutions.

For v / ]2, 3+we also prove uniform a priori L€ estimates. We use the classical
rescaling approach in [51] which usually yields to problems defined in unbounded
domains. We therefore prove some related Liouville-type results, see Section 2.2.

In Chapter 3 we extend the study of the problem ) Py +to the critical case p T 35 2.
We add also the cases ¢ T 2and 2 < ¢ < 35 2. That is, we study the problem
Bu T Iuf0 uNsa u>1 in’

Pl ) AP : ; 4

I } w T 1 ond’, @

withl < a<3,1<qg< %Og, N >a, A>1land ~ <RY asmooth bounded

domain. Due to the different methodology used with respect to the perturbation of the

critical power, we divide this chapter in the three cases: sublinear (1 < g < 2), linear

(¢ T 2) and superlinear (2 < q¢ < 35 2) perturbation, motivated by the works [4, 24]
for the classical Laplacian operator. We prove respectively the following results.

Theorem 2. Let 1 < q < 2. There exists ¥ > 1 such that for Problem )P/\il—there
holds:

1. If 1 < A < X there is a minimal solution. Moreover, the family of minimal
solutions is increasing with respect to \.

2. If A\ T X there is at least one solution.
3. If A > X there is no solution.
4. If a ~ 2, for any 1 < \ < X there exist at least two solutions.

Theorem 3. Let ¢ T 2, 1 < o« < 3and N ~ 3a. Let Ay be the first eigenvalue of
) A42/%on * under Dirichlet boundary conditions. Then Problem )Pt

1. has at least one positive solution if 1 < A < Xa.

2. has no solution if A ~ As.

Theorem 4. Let2 < g < %0 2 1< a<3and N > )20 2/q+ Then Problem ) P+

o
has at least one positive solution for any A > 1.

Finally, in Chapter 4 we study a perturbation of order zero of a critical pure-power
fractional problem . Namely, we study the problem

) A€BUT |uFsu0 flz+ in”,
)P+
uwT 1 ond’,



where 1 < a < 3, N > « and f belongs to the dual fractional Sobolev space
H ©/3)” 4 and is small in the sense

O foz A\t Fe /HY) dwith \@\ gy T 2 ®)

This problem was previously studied in [81] with the classical Laplacian operator.

Theorem 5. In the above hypotheses, Problem ) P+has at least one solution. If more-
over the inequality (10) is strict, then ) P—+has at least two solutions.

The content of this work can be found in the publications [9, 19, 39].



Introduccidn y contenido de la tesis

El problema eliptico

} Au T g)z,u+ en’ <RV,

u T 1 end’, ©)

ha sido ampliamente investigado en las ultimas décadas . Véase por ejemplo [3] asi co-
mo la lista [4, 5, 24, 50, 51, 60, 71, 81] para problemas mas especificos. En estos
trabajos, se consideran diferentes no linealidades asi como diferentes clases de domi-
nios, acotados o no acotados. Otros operadores de difusiéon, como el p—Laplaciano,
operadores completamente no lineales, etc, han sido también tratados, véase por ejem-
plo [13, 29, 35, 48] y las referencias alli incluidas. Este trabajo esta dedicado al estu-
dio de una versién no local del problema (6) con el llamado Laplaciano fraccionario,
) A3,

Una breve introduccion al Laplaciano fraccionario

Los operadores no locales, como el Laplaciano fraccionario, surgen en gran va-
riedad de campos como por ejemplo en modelos de combustién [30], dislocacién de
cristales [82], problemas de elasticidad [69], fluidos quasi-geostréficos [32, 61] y otros.
Algunos problemas que involucran el Laplaciano fraccionario incluyen la ecuacién
fraccionaria de los medios porosos [62, 63], problemas de explosion [12], problema del
obstaculo [70], etc. Por otro lado, desde un punto de vista probabilistico, el operador
Laplaciano fraccionario definido en todo el espacio puede ser interpretado como el
generador de un proceso de Levy a-estable, véase [11, 14, 15, 16, 17]. Este tipo de
procesos estocdsticos aparecen en modelos financieros, [7, 18, 57].

Existen varias definiciones equivalentes del Laplaciano fraccionario en todo el es-
pacio R™, véase la Seccién 1.1. Al intentar extender dichas definiciones al Laplaciano
fraccionario en dominios acotados se obtienen diferentes operadores no equivalentes,
véase Seccion 1.2. En el presente trabajo estamos interesados en el Laplaciano fraccio-
nario que se entiende como potencia fraccionaria del operador Laplaciano clasico.
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En [31], L. Caffarelli y L. Silvestre desarrollaron una herramienta que permite
transformar un problema no local involucrando al Laplaciano fraccionario en otro pro-
blema local equivalente. Como veremos, esta herramienta, inspirada en el operador
clasico de Dirichlet-Neumann, implica el uso de una variable extra asi como un ope-
rador lineal en forma de divergencia con un peso degenerado/singular. Por otro lado,
las potencias fraccionarias de un operador lineal positivo autoadjunto en un dominio
acotado ~ se definen a través de su descomposicion espectral. En [28], los autores
consideran el operador fraccionario ) A +£/3 definido a través del operador Dirichlet-
Neumann, restringido al cilindro infinito & T * * Ry < Rév 02y muestran que esta
definicién coincide con la definicién espectral. Esta técnica se extiende al caso o IT' 2
en [19], véase también [33, 76]. Usaremos esta aproximacion a lo largo de este trabajo.
Hacemos notar que esta no es la inica posibilidad de definir el Laplaciano fraccionario
en dominios acotados, véase la Seccion 1.4.

Después de este trabajo preliminar, los siguientes capitulos estardn dedicados al
estudio de problemas que involucren al Laplaciano fraccionario asociados al problema
clésico (6), es decir, problemas del tipo

) APy T g)z,u+  en” <RV, 7
u T 1 en 0’

conl <a<3,N>ay undominio acotado regular.

En particular, estudiaremos el caso g)z,u+T u? 0 Au? donde A / R, 1 < g <
p> % T 35 2y2< p. Elnimero3S T % se corresponde con el exponente

critico respecto de las inclusiones fraccionarias de Sobolev. Consideramos también

perturbaciones de orden cero para la potencia critica, es decir, g)x, u+T u~-« 0 f)z+4
con f pequena en algin sentido especifico.

Contenido de la tesis

Este trabajo estd organizado como sigue: En el Capitulo 1 establecemos una serie
de caracterizaciones del Laplaciano fraccionario que serdn usadas a lo largo de la tesis.
Describimos en este capitulo también el marco funcional necesario para trabajar con
el Laplaciano fraccionario asi como algunas desigualdades utiles. Extendemos al caso
«a T 2 resultados previamente demostrados para la raiz cuadrada del Laplaciano. Con-
cluimos el capitulo mostrando algunas definiciones alternativas del Laplaciano fraccio-
nario en dominios acotados.

El Capitulo 2 estd dedicado al estudio del problema céncavo-convexo subcritico

siguiente

) APy T Aud0 uP, u>1 in ",
)P’\+} v T 1 ond’, ®)
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conl<a<3 l<g<2<p< %OO‘,N>a,)\>ly’ < RY un dominio

«
acotado regular. Para este problema probamos el siguiente resultado.

Teorema 1. Existe ¥ > 1 tal que para el problema ) Py+se cumple:

1. Si 1 < X\ < ¥ existe una solucion minimal. Ademds, la familia de soluciones es
creciente con respecto a \.

2. Si AT X existe al menos una solucion.
3. Si A > X no existe solucion.

4. Para cada 1 < X\ < X existen al menos dos soluciones.

Para o / ]2, 3+probamos ademds estimaciones uniformes en L€ de la soluciones.
Utilizaremos una técnica cldsica de cambio de escala desarrollada en [51], generalmen-
te implica estudiar problemas en dominios no acotados. Probamos para ello algunos
resultados de tipo Liouville, véase la Seccién 2.2.

En el Capitulo 3 extendemos el estudio del problema ) Py+al caso critico p T 35
2. Incluimos en el estudio también los casos ¢ T 2y 2 < ¢ < 35 2. Resumiendo,
estudiamos el problema
)P§+ ) APy T Aui0 u%, u>1 in ", )
A u T 1 ond’,

conl <a<31<qc< %Og,N >a, A > 1y~ <RY un dominio acotado
regular. Debido a la diferente metodologia utilizada respecto a cada perturbacion del
problema critico puro fraccionario, dividimos el capitulo en tres casos: perturbacion
sublineal (1 < ¢ < 2), lineal (¢ T 2) y superlineal (2 < ¢ < 35  2), motivado por
los trabajos [4, 24] sobre el Laplaciano cldsico. Probaremos los siguientes resultados

respectivamente.

Teorema 2. Sea 1 < q < 2. Entonces, existe | < ¥ < € tal que para el problema
)PStse cumple:

1. Si 1 < X < ¥ existe una solucion minimal. Ademds, la familia de soluciones es
creciente con respecto a \.

2. Si AT X existe al menos una solucion.
3. Si A > X no existe solucion.
4. Sia~ 2, para cada 1l < X\ < X existen al menos dos soluciones.

Teorema 3. SeaqT 2,1 < o < 3y N ~ 3a. Sea \y el primer autovalor de ) A /3
en ~ bajo condiciones Dirichlet en la frontera. Entonces el problema )Pf—k
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1. tiene al menos una solucion si 1 < A < \o.

2. no tiene solucion si X ~ .

Teorema 4. Sea?2 < q < %O © 1<a<3yN>a)20 2/q+ Entonces el problema

)Pitiene al menos una solucién positiva para A > 1.

Finalmente, en el Capitulo 4 estudiamos una perturbacién de orden cero del pro-
blema critico. A saber, estudiamos al problema

ALy T uF5u0 flz+ in’
P ) 9
)P+ } uT1 ond’,

donde 1 < a < 3, N > ay f pertenece al espacio de Sobolev fraccionario dual
H “/3)" 4y cumple

(Vo= g\ 20 ete, Jo / HY®) 4with \@\ ox T2, (10)
- 0]

Este problema ha sido estudiado previamente en [81] con el operador Laplaciano (o T
3).

Teorema 5. Bajo estas hipdtesis, el problema )P+tiene al menos una solucion. Si
ademds la desigualdad (10) es estricta, entonces ) P-+tiene al menos dos soluciones.

El contenido de este trabajo puede encontrarse en las publicaciones [9, 19, 39].



The fractional Laplacian operator

The fractional Laplacian defined on RY can be found in the literature as a func-
tional operator related to the so-called o stable Levy processes. In the framework of
the partial differential equations. These operators can be defined in several ways in
both RY and bounded domains. This chapter is devoted to explore some of these def-
initions and their equivalences. Furthermore, we will give a brief introduction to the
functional spaces framework required to work with the fractional Laplacian.

1.1. Fractional Laplacian in R

This work will be focused, mostly, on a bounded domain setting. However, the
fractional Laplacian in RY is fundamental to understand its homologous in bounded
domains. We begin with the definition of the fractional Laplacian in R" via its Fourier
transform.

Fourier transform

Given a function u in the Schwartz class L{)]RN + we define its Fourier transform as

’H}uA)ngTn e 3TRy)xtd.
RN
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Let a be a real number in )1, 34 We define the fractional Laplacian of v in RY as
) ALBu)z+T HOBre|f w)éF)z+ (1.1)

This definition can be found in the literature under the name pseudo-differential oper-

ator of symbol |Br&|f*. Notice that ) A 42/3u does not necessarily belong to U)RY +
since |Br&|l introduces a singularity at the origin in its Fourier transform. Observe

also that, using the definition (1.1), one can easily check the following properties

) AR/ A A, asa 3,
) AR/ AT, asa N19.

This definition can be extended to v /) N,3". Fora > N, |Br&|[* is no longer a
tempered distribution and (1.1) makes no sense.

Integral representation

A second definition for the fractional Laplacian that we can find, see [55, 73, 76], is
the one referring to its integral form. Given a function u / U)R™ 4we have

wrt u)T+
dz
IZRELES

u)r+ u)T+
n dx
e 1t e T|>e e =z

) ABu)r+ T,uNaPVﬂ
(1.2)
T pin,a

where [y, stands for a normalizing constant to ensure the equivalence with (1.1). Its

exact value can be computed,

i T 3% 2a )N O a+/3+
“ aN/3 2 af3+

Notice that yuy o C cvasa / land uno C3 «asa /3. Here we can see the
nonlocal behaviour of the operator as follows: consider, for instance, a regular function
0)x-positive and with compact support in B. For every point x; of B one clearly has

A @)z +T 1 while ) A+/30)2;+< 1. Using the definition (1.2) it can be proved,
see [70], that given a ¢ / U)RN +

) C
) AEBg)aH> 20 [[oa

This allows us, by duality, to define the fractional Laplacian in the space

M)RN+T} f/UTRN 4 ﬂ zovtﬂiw <e <
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where UFRYN +refers to the dual space of U/)R™V 4 Additionally, in order to have the
integral (1.2) convergent, we can require u / C%)R™ 4 Therefore, we can avoid the
principal value as follows

T

PV ﬂ :H_, uox—|— 2 m 3u)r+ uw)z 0 Jor—i- u)x
ey [z b3 RN I[N
9 _
m 3u)r+ u)z 0 zcl— u)x d 02 m 3u)r+ w)x 0 zcl— u)x x+df.
3 5, | 3 B Y

Thus, the second integral converges since u / A )RY + The first integral converges
since the numerator is bounded by |[Z|f. In fact, the definition can be extended to
functions in C'*° E)RN +with e > 1, see [70]. In our context, we will focus on functions
that live in the following functional spaces:

Given o / )1,3+we define the homogeneous fractional Sobolev space /3 T
A/3)RN 4as the completion of 7= )R +under the norm

2/3
W T A0 T ) ) prepieitas{ . ad

Localization

The nonlocal behaviour of the operator will play an important role along this work.
Since every value of ) A -#/3% depends on the entire space, some of the tradicional
variational techniques cannot be used. On the other hand, simple operations like com-
position or multiplication turn complex when using the fractional Laplacian on them. A
way to avoid, in some cases, these difficulties is to use the so-called Caffarelli-Silvestre
extension [31]. In order to motivate it, one considers u a bounded regular enough
function in R™ and its harmonic extension

Aw)z,y+ T 1 Yz, y+/ Ré\mQ
w)z,y+ T u)r+ )z, y+/ RY

where Rév 02 RN« )1, € + Let us consider now the Dirichlet-Neumann operator . ;
u /' wy)z, 14 Applying the operator twice to u we have £3)u+T ¥) wy)z, 14T
wyy )2, 14T A, u. Thatis X T ) A -+/3. The Caffarelli-Silvestre procedure extends
this result to every power « / )1, 3-+of the Laplacian as follows: Given a bounded u
regular enough function in R™ we define its & harmonic extension, denoted by E, )u-
as the unique solution to the problem

/flx)y2 “ wt+ T1 in R)??2

(1.4)
w Tu on RV
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Then, in [31] the authors prove that the fractional Laplacian of u can be defined by the
formula

ow ow
A£/3 T — T ke 3% *—— 1.5
) AL 572wy BT ke g )Tyt (1.5)

i Jo/3+
with R T m

The proof of (1.5) is based on the following proposition where it is proved that one
can write the solution of (1.4) as a convolution of u with a convenient Poisson kernel.

Proposition 1.1.1 ([31]). Given o /)1, 3+ the function

83

(1.6)

Y
Pa)x,y+T da,N—Na
MelP o JylP+=

is the Poisson kernel for (1.4), that is, for every u / C)RN4A L€ YRN 4 the function

«

y
w)z, y+T PYou T do N ﬂ ) sHds (1.7)
'Y ) sPO [y

is the unique solution of (1.4). The constant d, n is chosen in order to have
ﬂ PY)a,y+dx T 2 Jy > 1,
RN
and satisfies akodo, N T o, N

For functions defined in R)'®? we will work in the space X*)R}??+defined as
the completion of 7 )Rév 92 tunder the norm

W Tra( ] o 2l W,y dady

+

The operator ) A 2/3 ; B/3)RN 4 4 H /3)RN tdefines an isometric isomor-
phism between </ 3) RN 4and its topological dual H */3)R™ 4 Besides, the operator
E,, is an isometry between X *)R)'® 2tand F*/3)RN 4 that is,

\Ea)ut o g, T N\ grajappr s 3/ AYHRN 4 (1.8)

see Remark 1.3.1. On the other hand, if [ s ; X®)R)? 24+ 7 B*/3)RN 4stands for the
trace operator over RY . we have

\ 5)24\}1&/2)RN+2 \Z\XG)Rf“-H 3z/ Xa)Révo 2 (1.9)
Even more, if z / X*)RY??+and w T E,)[ s)z-+then

\A\ka T\w\%a 0 \2 w\}a. (1.10)
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In particular, given v / F*/3)RN we have
\Ea)uh apprsr, T lo }\W\X“M“f[ $)w+T uV. (1.11)
We define now the operator L, from problem (1.4),
2
Lo)w+T y* 2f1x)y2 @ wAT Aw0 — w,,. (1.12)
Y

The next properties will be useful.

Lemma 1.1.2. Let o / )1, 3+and 2, V¥ regular enough functions defined in ]R(I)VO 2,
Then

Lo)QU+ T QLU0 WLLQO0 3) Q, U, (1.13)
L)9)Q+ T 994,00 97 Qff, (1.14)
L)IXP+ Ty)y0 N odiX|P 3, XTI (1.15)
where X T )x,y+/ RY° 2. Moreover, if Q is radial, @ T Q)r-+with r T |X || then
L,Q T Q=0 wgw (1.16)

Note that in the special case & T 2 we have Lo T A. Furthermore, the oper-
ador L, can be understood, formally, as the standard Laplacian acting in N 0 )3 «a-+
dimensions. Notice that, in fact, equations (1.13) and (1.14), which are dimension-
independent, mimic the behaviour of their homologous of the standard Laplacian.
However, equations (1.15) and (1.16), which are dimension-dependent, replace N 0 2
with N 0 )3  «+with respect to the case of the standard Laplacian.

The Caffarelli-Silvestre extension transforms nonlocal problems into local prob-
lems that involve the operator L. Roughly speaking, a local operator in divergence
form will be more convenient than one non-local in integral form in what concerns to
computations. However, the weight o)z, y+T y? < is singular and degenerated if
a T 2. In this case, the Caffarelli-Silvestre extension can be studied from the perspec-
tive of the differential equations with A3 weights, see [45, 46] for further information.

1.2. Fractional Laplacian in bounded domains

Given a bounded domain “, a natural way to define the fractional Laplacian in
that domain is to extend the previous definitions substituting R™ by “. Nevertheless,
depending on how we proceed, this can lead to different and no equivalent definitions.
Some examples of this fact can be checked in the Section 1.4. This section is devoted
to define the fractional Laplacian in bounded domains by means of the definitions of
the operator in R™V but keeping the equivalence between the different characterizations.
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Localization in bounded domains

We start defining the fractional Laplacian in bounded domains through the Caffarelli-
Silvestre extension, adapting it to this new context. This approach has been taken be-
fore in [28] for a T 2 and afterwards in, for instance, [33], for the general case. Let
" be a bounded domain and consider the infinity cylinder ¥ T ~ % )1,€ + Let us
denote its parabolic boundary as 9, F T 0 * ]1,€ + Let u be a regular function
defined in “ . Let us define its @« harmonic extension, E,, )u-; as the unique solution to
the problem

U fly? @ whr,y+ T 1, e, y+/ F
% w)z,y+ T u)r ENG VA
We will define the fractional Laplacian of u in * as
ow ow
/3 et 2 aYW
) Au)x+T 8ya)z’y+T Ko J}nﬁy oy )z, Y+ (1.18)

Spectral decomposition

It is classical that the powers of a positive operator are defined through the spec-
tral decomposition using the powers of the eigenvalues of the original operator. We
show next that in this case this is coherent with the Dirichlet-Neumann operator de-
fined above. Let )y;, p;+be the eigenfunctions and eigenvalues of A in * with zero
Dirichlet boundary data. Define the space of functions H;" / 3)
Cf )’ +under the norm

" 4as the completion of

5 2/3
N\ e T ) / ulp ( (1.19)

and also the energy space X{)F +as the completion of C'F )F -tunder the norm
\w\kg 7 T VJL 72 2w, yif dedy.

Next we establish a spectral characterization of the fractional Laplacian. See also
[26, 76].

Theorem 1.2.1. Let o / )1,3+ Letu T [ ujp; / H?/?’)' “+where u; are the
coeficients of u on the base }p;{ of L3) " + then

/ w;pd0; T) A€/, (1.20)
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Moreover; if E,, )u-+stands for the extension defined in (1.17), we have E,, )u+/ X{)F +
and

Eqo)uz, y+T / i) x#) s Yk (1.21)

where 1)) s-Hs the unique solution to the problem

)2

e T o, 551,
Ka ﬂn+32 *p%¥s+ T 2, (1.22)
s/ 1

( =D

Y1+ T 2.

Proof. Let
2/3
Z)x,y+T/ i) )y Yk

On one hand,

ral Vo2 ol 2, y4f dady
Fo

me 2 « 3. 2/3
TI y / ujpg)w) 0 )y%p; y+ <dy
/ ugpjé/3 ﬂ s a) £0 )Fs+E (ds T / u3p§¥/3.

(S
TQ v aﬂ)/ B e)adf)p) gL 0 wlpies)e-E)ger y+ 3(dwdy

(1.23)

Thus z / X{)F +and we obtain the norm equivalence. It is easy to see that z
verifies (1.17). Since the a-harmonic extension is unique in X¢)F +we have E,, Ju+T
z.

On the other hand, notice that for every k ~ 2, via the change of variables s T
2/3
y in (1.22) we have

0 o
Ko 1 g2 @ )w)pi/gy—H—T ,olC ® K Ihl s* “9¥s+T py /3,
yr 1t 8y s/

Therefore,

OE, o
) ALPUT ko i y? @ ;“+T/ w0y
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Heat semigroup

Our next step will be to establish, by means of the heat semigroup of A, a definition
that connects the fractional Laplacian in bounded domains and in RY. This definition
is motivated by the following identities

apTin

p>1
)P+ 1
) ﬂe &t (1.24)
P at
a? T ot )e 2%, l<p<2.

Moreover, this approach will allow us to define the fractional powers of a general class
of operators: Let L be a linear, positive and self-adjoint operator. Let e * be the heat

semigroup of L, that is, for every function u in a proper space, the function v T e L4
is the unique solution to the problem
ve0 Lo T1, }t>1(,
e, 0.9
We define then the fractional powers of L as
dt
T —— ﬂ tL y>1
(1.26)
2 N dt
LT ﬂ oo 1<y<2
) Yt Je W !

In particular, for the fractional Laplacian we have

Proposition 1.2.2. Consider o / )1,3+ * a bounded domain or © T RN and u /
U)" + Then the following identity holds

2 < dt
) AePwatt s [ D)o wesegrig, @/ (20

Proof. Assume first that “ is a bounded domain. Consider the operator

dt

2 S
A)u+T 7ﬂ el u  w 30 a/3

o7 (1.28)

and the equation (1.25) defined in “. Let }p;, ¢;( as before and u T [ u;p;. Then,
the solution of (1.25) is

v)x, t+T etAu):erT/ e Pitujp;)r+ (1.29)
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Substituting (1.29) into (1.28) we have

2 N dt
2 < dt
" a/3+/ UM)“Q ) ez

T/ ujp?/?’apj)x—i-T) A3 a4

Let now ~ T RYM. Recall that the unique solution to (1.25) can be expressed as a
convolution with the hear kernel, that is,

e u T K)xt+ou)z+

where K)xt-+holds
Ry 41 e el

In particular

Jz—y|?

e Mu)x, t+T )8rt+ N/gﬂ e T w)ytdy.
RN

Therefore, applying the Fourier transform to (1.27) and using (1.24) we have

— . 2 N . dt
) A‘ig/sTmQ Je ImelFe 2WT|BW5|F~

1.3. Fractional Sobolev and trace inequalities

In this section we prove two useful and long used inequalities that will be funda-
mental along this work.

Theorem 1.3.1 (Fractional trace inequality). Given N, o, r suchthat N > o, 1 < a <
3and?2 > r > A?—Na there exists a constant S)a, N,r, " +> 1 such that

3/r
S)a, N,r,” —|—>ﬂ ) dx{ > Ko m v: | 2,y dedy (1.30)
- Fo

for every z / X¢)F +wherev T [ 8)z+ If r T 2, the constant S)a, N, v, +is
independent of * and takes the exact value

2

0«
S)a, N+T 3972 )N?’ +)
)55 +)

\D. _QD

(1.31)

= ||z
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Moreover, if © T RN, the constant S)a, N-+is achieved only by the biparametric
family of functions w. T E,)uc.+where

—a N—a
ua+T e 7 o m|fo 8 T, (1.32)

for some x1 /RN, e > 1.

As a consequence, by (1.8) and (1.11), we have

Corollary 1.3.2 (Fractional Sobolev inequality). Under the same assumptions than in
the previous theorem we have

3/r
S)a, N,r,” +)ﬂ o)z dx{ > O ) AL/=p)aAf dx (1.33)

for every ¢ /Hla/g)'—t—

The classical case (o« T 3) was proven first in [68] for N T 4 and afterwards
generalized to all dimensions in [8] and [78], see also [44, 60].

In order to prove Theorem 1.3.1, we will prove some previous technical lemmas.

Lemma 1.3.3. Considerv / B®/3)RN tand set z T Eg)v-tits B-harmonic extension,
B /)a/3,3+ Then z / X*)RY 24and moreover there exist an universal constant
¢)a, B+such that

\\ gasz T ), B2\ xa. (1.34)

Inequality (1.3.1) needs only the case 5 T «, which is deduced directly from the
proof of the local characterization of ) A -%/3 in [31]. The calculations performed in
[31] can be extended to cover the range /3 < 8 < 3 and in particular includes the
case 8 T 2 proved in [83].

Proof. Since z T Eg)uv+ by definition z solves { lx)y2 B 24T 1, which is equivalent

to
2 B0z 0%z
A, — —0 —T1.
z0 y ayO By

Taking Fourier transform in z / RY for y > 1 fixed, we have

2 Bor 0%
Bipro =2 P9 Sy
8melE|Pz 0 Y 0 B )

and 2)&, 14T v)&+ Therefore 2)&, y+T v)EHo3)37|E |+ where ¢ solves the problem

$0 ¥¢°® O™T1,  ¢HT2, 1 ¢)s+T L. (1.35)
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In fact, pg minimizes the functional

HB>¢+TQ V)5 0 s 42 # ds,

and it can be shown that it is a combination of Bessel functions, see [56]. More pre-
cisely, ¢z satisfies the following asymptotic behaviour

bp)s+~ 2 casP, for s M1,
(1.36)
Gp)s+r cssTe ®, for s S €,
where
32 6 )2 8 352 12/3
c2) 4T 3 )BT ———.
B )5+ )5+

Now we observe that

ﬂ I z)x,y—H—de T ﬂ >|| xz)m,y—H—FO Egz)x,y{{ dx
RN RN Y
. 0%
o] Jseobig o ank,yf { ae

Then, multiplying by 2 < and integrating in v,

Qe QN v | )z, y4f dedy

T ﬂ ﬂ SO I)EAP 155)3m 4P O B33 lEly-4 {u? © dedy

) pas o psps? ~as (] prelr e e

Using (1.36) we see that the integral Z) sl O [pFIP 4>  ds is convergent provided
3 > a/3. This proves (1.34) with c)a, B+T ko Hy ) s +H2/2. ]

Remark 1.3.1. If B T 2 we have ¢2)s+T e °, y Hy)po+T 3% 2 )3 a see
[83]. Moreover, when 8 T «, integrating by parts and using the equation in (1.35),
and (1.36), we obtain

(S
H,)po+T N 162)s40 oo )s+s* *ds T i 52 “92)s+T acz)a+T 2/kKq.
1 s/

(1.37)
In particular, if 8 T o we have that ¢)a, a+T 2 and (1.8) holds.
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Lemma 1.34. Ifg / L%)RN +and f / B*/3)RN 4 then there exists a constant
), N4> 1 such that

fztg)z+dx > E)Q,N‘Rf\Ha/Q\g\A?i\fa. (1.38)

Moreover, the equality in (1.38) with the best constant holds when [ and g take the
Sform (1.32).

The proof follows by an standard argument that can be found, for instance in [41,
83].

Proof. By Parceval’s identity and Cauchy-Schwarz’s inequality, we have

n, f)wﬂ)erdw{S o), f)§+§>£+d5{3
2 ) el e ae{ ) pmel < e acf
The second term can be written using [59] as

« 37-193303— o
ﬂ Bl )& dg T b)ar, Qw'@ oo e 12de

where

N
ey
3amN/3 )e 4

We now use the following Hardy-Littlewood-Sobolev inequality, see again [59],

b)a, N+T

QM h)xf%fgr drda®> d)a, N-4hg\ 'z .

where
N

T )8 )NHY

JEFEd )5
with equality if g takes the form (1.32). From this we obtain the desired estimate (1.38)
with the constant £)a,, N+T  b)or, N4d)or, N+

d)a, N+T

When applying Cauchy-Schwarz’s inequality, we obtain an identity provided the
functions |g|F/3 f)¢+and [¢|| */3§)&+are proportional. This means

PEHT cleF HE+T o) A3 e

We end by observing that if g takes the form (1.32) and g T ¢) A-2/3f then f also
takes the form (1.32). O
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Proof of Theorem 1.3.1. Applying Lemma 1.3.4 with g T |[f||% % f we have

2N
VAR 2 Do, N4 P\ NS
Then, using Lemma 1.3.3 we obtain
\f\l\?ii]a > 0o, NP z\ xo.

with z T E,)f+ We conclude using Lemma 1.10. The best constant is S)a, N+T
2/03)a, N+ To obtain the result in bounded domains note that if u is defined in
H?/3)" 4 it can be approximated by regular functions that are zero outside . a

Remark 1.3.2. If we let o tend to 2, when N > 3, we recover the classical Sobolev
inequality for a function in H?)RN + with the same constant, see [78]. In order to
pass to the limit in the right-hand side of (1.30), at least formally, we observe that
)3 aty?® “dy is a measure on compact sets of Ry converging (in the weak-* sense)
to a Dirac delta. Hence

ﬂ%,ﬂ )ﬂ I z)x,y—H—de{)?) aty? O‘dyTﬂ | o) de.
«l 1 RN RN

We then obtain

N-—2

O s aof 2 980 ) o

RN

TN)N 3

2
with the best constant S)N+T ﬂn S)O‘ N+ T 2 +) ))]I\VI:(N It is achieved
2
when v takes the form (1.32) wzth « replaced by 2.

Remark 1.3.3. The uniqueness of the minimizing functions (1.32) is deduced directly
Sfrom [36]. There the authors prove the unique solutions to the problem ) AR/BfFT

cf%;—rg take the form (1.32).

Remark 1.3.4. The constant S)a, N-+cant be achieved in any * different from RY.
To see this, let us suppose = & RY and assume S)ca, N+is achieved for a function u.
Then, as before, approximating uy by functions that are zero out of ©~ we would have a
function defined in RN that achieves S)a., N+and it is not in the form (1.32) leading
to a contradiction.

1.4. Other fractional operators

Even when our focus will be the fractional Laplacian as defined in the previous sec-
tions, in this section we give a small review over other fractional operators in bounded
domains.
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1.4.1. Global fractional Laplacian

A natural way to extend the definition ) A 42/% to bounded domains consist on
extending by zero functions defined in “. This method leads to the so-called global
fractional Laplacian.

Definition 1.4.1. Let ’ <<BN be a bounded domain and let f be a function regular
enough defined in ~. Let f be its extension by zero to RN, that is, f)x+T f)a+if
x /" and f)x+T Lifa / €. Then, we define the global fractional Laplacian as

) AT ARRE
The operator is well defined in the space
TR 4T L F ) BRY W/
endowed with the norm
\\wr2y- 4T \f\JHa/2)RN#
First, note that given f,g /T 0‘/3) * 4-we have
ﬂf ALy T ﬂ f) A€PgT ﬂ gy ALBFT ﬂg ALY,
However,
QN a7 ABFT QN) aelgy Aol Aeig) aelr (39)
since) A4*/=gand) A/ :Fmay not be null out of “. In particular we have
ey, TL1 D A/ T Y 24210,

Note that the second term of (1.39) defines a scalar product in 7 of 4

1.4.2. Regional fractional Laplacian

The second operator arise when restricting the integral in (1.2) to the integral on
bounded domains.

Definition 1.4.2. Let ©~ < RY be a bounded domain and let f be a function regular
enough defined in ~ . We define the regional fractional Laplacian as

9)z+ g)T+

) A “/3fTuNaPVﬂbC Sjvoa 7
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Exploring again the integration by parts we have that, given 1, ¢ regular enough,

ﬂ¢ AP TuNaﬂPvﬂ¢ ot T

e oo
T“N“ﬂﬂ Pt ixwﬁfv)fj DT izdr  (1.40)

T ﬂw A,
However, as in the previous case
ﬂ¢ A4 %Tﬂ A7) AL/
The terms in (1.40) define a scalar product in
I%/3>/ 4T }f ; \f\M:/z),+< eV

where

PJN @ 1' + .f IE<H>
is the well known Gagliardo norm. The global fractlonal Laplacian and the regional
fractional Laplacian are connected by the formula

) a/BfT) fO MNaf .T‘ﬂ HNOa
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A concave-convex elliptic problem involving the
fractional Laplacian

2.1. Introduction

This chapter is devoted to study the following concave-convex problem involving
the fractional Laplacian operator

) APy T Aud0 w?, u>1 in ",
)PML} u T 1 ond’, @D

withl <a<3,1<¢g<2<p< 2 N>a A>1land  <RY asmooth
bounded domain.

As to the problems with concave-convex nonlinearities like the above, there is a
huge amount of results involving different (local) operators, see for instance [1, 4,
13, 35, 40, 48]. We quoted the work [4] from where some ideas are used in the present
chapter. In most of the problems considered in those papers a critical exponent appears,
(in the fully nonlinear case the situation is slightly different, but still a critical exponent
appears, [35]). In our case, the critical exponent with respect to the corresponding
Sobolev embedding will be 35 T J\:;’—Na This is a reason why problem ) Py Hs studied

in the subcritical case p < 35 2T %0 < see also the Pohozaev-type nonexistence

result for supercritical nonlinearities in Corollary 2.4.5.
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The main results that we prove characterize the existence of solutions of ) Py-in
terms of the parameter A\. A competition between the sublinear and superlinear powers
plays a role, which leads to different results concerning existence and multiplicity of
solutions, among others. By a solution we mean an energy solution, see the precise
definition in Section 2.4.

Theorem 2.1.1. There exists 3 > 1 such that for Problem ) Py+there holds:

1. If 1 < A < X there is a minimal solution. Moreover, the family of minimal

solutions is increasing with respect to \.

2. If \'T X there is at least one solution.

3. If A > X there is no solution.

4. Forany 1 < \ < X there exist at least two solutions.

For a / ]2,3+4; we also prove that there exists a universal L€ -bound for every
solution to Problem ) Py -+ndependently of \.

Theorem 2.1.2. Let o ~ 2. Then there exists a constant C' > 1 such that, for any
1> A\ > % every solution to Problem ) Py-satisfies

\u\e = C.
The prove of this result uses the classical argument of rescaling introduced in [51]

leading to problems on unbounded domains. Therefore some Liouville-type results are
required, and this is the point where the restriction o ~ 2 appears.

2.2. Some non-existence results in unbounded domains

We prove in this section two Liouville-type results in the half space Rév 92 and the

quarter space RY'0 2 that will be useful in Section 2.4.3 in order to obtain uniform a

priori bounds for the solutions to Problem ) Py+ These results have a corresponding
formulation for the fractional Laplacian operator.

2.2.1. A problem in the half-space

Theorem 2.2.1. Let 2 > « < 3. Then the problem in the half-space ]R(I)V 02

(flx)y2 > w+ T 1 in RO 2

0 2.2
e on ORY?? T RN 22)
ov®
has no positive bounded solution in C*° V)RY 24A CYRYC 2twith v > 1 provided

2<p< e
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Theorem 2.2.1 is proved in the case a T 2 by [54]. See also [37, 79, 47] for other
approaches to the general case.

The proof that we present here is based on the well known method of moving planes,
introduced by A.D. Alexandrov and firstly used in the context of PDE’s by [71] and
[50], among others. Recall that the problem (2.2) can be written as

\ Low T 1 inRy®?

2.3)
9w fory T
< ove

where L., is defined in (1.12).

We begin then by establishing some useful notation in order to apply the moving
planes method. The points of the upper half-space Rév 02 are denoted by X T )z, y+
where z T )xo, xxx, zy+and y > 1. Fix p > 1 and consider the sets

®,T}X /RY 2=y > p(, T,T }X JRYO 2y T pV/. 2.4)

For every X T )z, y+/ Rév 92 we define the reflection across the hyperplane T, by
XP T )al,y+T X0 3)p anden T )xa, xx,3p xn,y+ Let us also consider
the point P, T )1,...,1,3p, 14/ ®,, whose reflection is the origin, and the set qu T
D, VP,(. Let B? denote the half-ball B T }X|| < r,y > 1{ (B?)X;+when
the center X; T )y, 1-+Hs not the origin), and let its non flat part of the boundary be
denoted by S° T }IX|| T r, y > 1( (resp. S? ) X1+

Finally, also the so-called fractional Kelvin transform will be useful. We con-
sider, for a function f defined in RY | its fractional Kelvin transform as Ko)fHx+T
el & f)x/|le|P+ It is well known that this transform behaves under the action of the
fractional Laplacian in a similar way as the standard Kelvin transform does with the
Laplacian, ) A-/3K,)fHz+T ||| @ V) A/3f)z/|l|P+ We are interested in
defining the analogous fractional Kelvin transform for the function w and the operator
Lq. Let 2) X+T X |fw)é+4€ T X/|IX|P. Itis a calculus matter to see that

Lo2)X+T X1 7)Law)¢40 J70 N afX F)yw)e+ 3)e, w)£ﬁ++<.

Therefore, if we choose v T o N, and w is a-harmonic, we get that z is also
a-harmonic, and so it turns to be the a-harmonic extension of K, )f-+Hf w is the a-
harmonic extension of f. In other words, E, =K, T K, =E,.

Let now w be any solution to problem (2.3), and put px T tvr B W Then there

exists € > 1 such that w) X+~ e|[X|P ¥V for [[X||~ 2, y > 1. To see this observe
that by the Harnack inequality, Lemma 4.8 in [26], we have ¢ T IOgsj w ~ cp > 1.
We conclude by comparison, using Lemma 1.1.2 and Proposition 4.10 of [26]. Let
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v T K,)w+ We have that v satisfies analogous properties as w, but for the inversion
variable:

V) X+~ e in BY |
(2.5)
v)X+2> plXF N inRg°*NBY
as well as it is a solution to the problem
\ L,vT1 inR)Y"?,
v (2.6)
5pa L Il "v” fory T 1, [T 1,
wherey T)NO a+ )N afp > 1.
We now proceed with the reflection. Let
) X4+T v)XP+ v) X+ 2.7

Clearly L,)¢,+T 1in Révo 2. We want to prove that 1, ~ 1in <I,>Vp. Recall that v
may have a singularity at the origin, and therefore v, may have a singularity at P,. We
begin with the following result.

Lemma 2.2.2. With the above notation, we have v, ~ 1 in a,: provided p > 1 is
large enough.

Proof. Let 3 > 1 be some constant to be chosen later, and let
0p) X+T HZ”B’(/JP)X-L- ZT X0 enoa T )a,y0 2+ (2.8)
From the equation (2.6), we get
Lo)pp+ By” 2] %) BON a+49,0 3)Z, o, T 1. (2.9)
Assume by contradiction that there exists 4 > 1 such that

logp, T &< 1. (2.10)
QP

First of all we observe that (2.5) implies

llopll= el | ¥ 1 for |X|| e,

if we take 3 < N a. On the other hand, close to the possible singularity P,, we
have ¢, > 1. In fact, if X / Bg )P, then X? / BY, and then v)XP+~ . Since
V)X 4> plX | N > pp™ N, we get

eo) X+~ |ZIP)e  plplft M4+> 1 in By )Pyt
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provided p is large enough. Therefore the infimum in (4.14) is achieved in a point of
regularity of ¢,. As to the interior points, the above choice of /3 gives that equation
(2.9) does not allow for interior minima to exist. Finally, the fact that ¢, T 1 on T},
leads to the only possibility for the infimum to be achieved, namely on the part of the
boundary ®,A}y T 1(. Letthen )z, 14/ ®,A}y T 1( be such that ¢, )z, 1+T 6.

We claim that the boundary condition in (2.6) implies
0

o0y 1, 2.11)
a a
which will give the desired contradiction. It is at this point where the condition o ~ 2
enters.

By Leibniz’s rule, we have

v a)m +T|$172"'H5 z140 wp)xh _|£|9L”H
The first term is bounded below, since by using (2.6), (2.5), and the Mean Value Theo-
rem, we get

a¢§>$1+ T k7]l o), 1+ Jrea ]l Y0P )@y, T~ (]| 7)oP)2f, 1+ o)z, 1+
~ p‘th TP 2)‘7;17 1—|‘$p)$17 l—'?
(2.12)
and thus

0
|D$1’2W#)xl+’“ plr]| ¥ P 2N et ep B,

As to the second term,

L1 if oo < 2
(9 ]
HZWB ) +T ' Bz, 24F 3 ifaT?2,
{ S if o > 2.

0
We conclude in our case o > 2 that agop)xl—&—T 0 €. In the case a T 2 a sharp
Ve
control of the above terms gives (2.11); this is done in [54]. In the case @ < 2 the
condition (2.11) is not necessarily true. O

The moving planes method begins with a plane in which we find some kind of
symmetry and then we see how far this plane can be moved keeping that symmetry.
The above lemma, instrumental in unbounded domains, provides a “starting plane”.
The following lemma establishes that we can move that plane up to the origin.

Lemma 2.2.3. Let p1 be defined as
p1 Tinflp>1=p, ~1in®, forallp<p<ec (. (2.13)
Then p; T 1.
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Proof. By Lemma 2.2.2 p; is finite. Suppose that p; > 1. By continuity we have
©po T |Z|Ptpp, ~ 1in @,,. Since v > 1 and p; > 1 we have by the boundary
condition that 1,, C 1in {,,,. Also, by (2.12), 2220 ~ 1 on }y T 1{ A ®,,,. Clearly
Lo)¥py+T 1in R)® 2 and|in particular in the set Ry T X P, | T |p1|/3, v ~ 1(.
Therefore, by Proposition 4.10 of [26] we have v,, > 1in R;. Let § T llgﬂgwpo > 1.

The function 1),, may have a singularity at P,;, so we construct the following auxiliary
function. Let h. be the solution to the problem

\ La)heHX+T 1, e <X Bpll<lpsll3, y>1,
he) X+T 6, X PoolIT a3, y ~ 1,
he)X+T 1, X P,l|Te, y~1, 2.14)
Oh.
81/04)X+T 1, e<|X  Pyll<lplV/3, vy T 1.
Then Lemma 4.11 of [26] implies
Upo ~he ine>|X 0 Pp[[> [paf3, y ~ 1. (2.15)

Letting ¢ 19 we have in _, 1+ h. C J by the uniqueness of the a-harmonic exten-
sion. Therefore

Upo~ 6 in L< X Pyl ful)/3, y ~ 1. (2.16)

Since @, ~ 1), in TPU, we have

in |1 ~1 ~ 0. 2.17
i, Yogeo ~ logen @17

Being p; the infimum, there exists a sequence py \, p1 such that

logp,, < 1. (2.18)

Pk

Clearly 1iln Xy € ¢p. T 1. Recalling (2.17) the infimum in (2.18) must be attained at
some finite point X* / ®,, VB, 1/3) Py, +with [y, p1|/small enough. On the other
hand X* 1/ T, since ¢,, C 1in T),. Therefore X* must belong to the set

X /RN 2=y T Loy > 1, X P[P ~ [palf/8(. (2.19)

Reasoning like in Lemma 2.2.2 this leads to the desired contradiction. O

Now we can deal with the proof of the main theorem in this subsection.

Proof of Theorem 2.2.1.  Let w be any solution to Problem (2.2) and consider its
fractional Kelvin transform v T K, )w+ By Lemma 2.2.3 we have v)xa, ..., n, y+~
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v)Ta, ..., xn,y+orxy > 1. The same argument fits for negative = giving the re-
verse inequality. Therefore v) X -Hs symmetric with respect to the x y-axis. Obviously
we can apply this argument in every direction perpendicular to y-axis. Hence v) X +Hs
a two-variables function and so it is w) X + Indeed,

w)X+T @)l y+ (2.20)

for some function ¢. Hence setting |jz||as the origin w is independent of )zs, ..., zx+
and therefore w) X +T w)y+

To end the proof we are reduced to consider the problem in one dimension.

U )y? “w T 1, fory > 1,
\ i y® “wPy+T wP) 1+ 220
{ y/ 1+ '

The solutions of this problem are of the form w)y+T ¢ %ya with ¢ ~ 1, which
implies that the only nonnegative solution is w C 1. O

2.2.2. A problem in a quarter-space

Let us denote the quarter space as

Ryo T IX T ooy, yHz>/ RY 2 2y > 1,y > I,

Theorem 2.2.4. Let 2 > « < 3. Then the problem in the first quarter
( Low T 1, Ry 2,
\ ow
3 Jx¥rn+ T wP)ary, 14 (2.22)
Va
{ w)aSly+ T 1,

has no positive bounded solution in C*° " )YRYO 24A CYRYY 24with v > 1 provided

2<p< R0a

Theorem 2.2.4 is proved in the case o T 2 in [28]. We begin with a generalization
of Proposition 6.1 of [38]. Let N T 3.

Lemma 2.2.5. Suppose w is a solution of the following problem
| Low~1, w~1 inRY ,

(2.23)
* oy fory T 1.
ove
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Then w is a constant.
Proof. Let X1 T )a1,y1+/ @. Given e, § /)1, 2-+we define the function

V) X+T ew)X;Hpi )”)((53)(1”3{ 0 Cs, (2.24)
where
CsT nd w)Xi+ w)X+
SHXo+

where S9) X 4+T X  Xi||T 8, y ~ 1{. Its clear that 1)) X+C C; on S ) X;+and
taking o small enough we have

)X+~ w) X1+~ w) X1+ w)X+  on 8%, ) X1+ (2.25)
A direct calculation shows that, if o /)2, 34 then
\ Loy > 1, in R3
0
W . foryT1.
ove

Thus by the maximum principle
VX4~ w) X1+ w)X+ for X /R3,6<|X Xy|< e

Letting ¢ ,* 1 and then § 7 1, we have w) X1+ w)X+> 1 forany X;, X / @. |

Lemma 2.2.6. Let p ~ 1 and let C be a positive constant. Then there is no solution to
the problem

| LowT1, 1<w>C, inR3, T}z >1,y>1(,
90 g, on}e>1,yT 1, (2.26)
ove

%le, on}tzx T 1y~ 1(.

Proof. First, we show that w)z,14 7 1 as ¢ € . Suppose by contradiction that
there exists a sequence 7),,, ,* € as'm € and such that w)n,,, 1+, K > 1. Let
us denote w,y, )2, y+T w)x 0 Ny, y+ Its clear that it holds

\ Low,, T1, 1<w,, >C, inRy, T o> nm, y> 1,
Ow,y,
5 T w?, on }x > 0y, y T 1(, (2.27)
V&

&meL on }a T 1,y ~ 1(.
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Moreover wy, )1, 1+ 7 K. So that taking a subsequence of w,,, if necessary we have
Wy, w with

\ Lew T1, 1>w>C, inRY,
o (2.28)
e T w? ~ 1, fory T 1.
v

Since w)1, 14T K, Lemma 2.2.5 implies w C K but by the boundary condition we

have that
ow .

8 o
which leads to a contradiction. Therefore w)x, 14+ " lasxz S € .

O 4T @)L 14T KP > 1,

Following [26] we define the function

WerT 212 Yooy a4y

see also [28] for the case o T 2. Differentiating inside the integral, we have
2 9
L T T R R e

We want to see that this integral converges. By Lemma 4.3 of [26] we know that there
exists some 3 / )1, 24such that w / C*#. Moreover by Proposition 4.6 of [26]

ﬂy Vhtaaws [0 by tway |y >

ﬂfﬂmmmwwﬂy owall0 ooy lHely-+>
M40n

for some constants Mo, M3, My > 1. Notice that the last integral is convergent pro-
vided 2 < o < 3. We recall that in the case o T 2, a sharper estimate is used in [28].
Now let G)w+T Zf)s—ids. By dominated convergence, and since | w)z,y4 7~ 1
asy /€, integrating by parts we have

V)20 G)w)z, 1+, T ﬂ Y2 Mwepws  Wywey )z, y+dy 0 ] f)who, )z, 14+

T En] “wywy 0 f)w—kwx N, y+T gnl]yQ Ywywy e “wywy )z, y+T 1.

Therefore ¥)x+0 G)w)x, 14Hs constant. The rest of the proof is exactly the same as
in [28]. Using that w)xz, 14+ " 1 as z /* € and Lemma 5.1 of [26] we obtain

V)z+0 G)w)z, 1 HC 1.
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Sincew C 1in }a T 1,y ~ 1( it follows that
e
1T 30)14T N e |P)1, y-+dy
1

which implies w, T 1on }z T 1,y > e( for every ¢ > 1. Since L, is a non-
degenerated elliptic operator in }x T 1,y > ( by the Hopf’s Lemma this leads to a
contradiction. O

With these two results a standard argument completes the proof.

Proof of Theorem 2.2.4. By an analogous argument to the proof of Theorem 2.2.4 for
the )z, ...,z N o+variables (with the analogous Lemma 2.2.2 and Lemma 2.2.3), it is
easy to see that any positive solution of (2.22) depends only on two variables, z 5 and
y. Therefore applying Proposition 2.2.6 the proof is complete. o

2.3. The linear problem

We now use the extension problem (1.17) to reformulate the nonlocal problems
in a local way. Let g be a regular function and consider the following problems, the
nonlocal problem

) APy T gla+ in 7,
} u T 1 on 07, (2.29)
and the corresponding local one
| flx)y? @ wt+ T 1 in F,
& aTu;)a:,y—# T g¢g)z+ on ’

We want to define the concept of solution to (2.29), which is done in terms of the
solution to problem (2.30).

Definition 2.3.1. We say that w / X{*)JF +is an energy solution to problem (2.30), if
for every function p / X{)F it holds

Ka ﬂ 1> Y wz,y )z, y4 dedy T ﬂ g)z4p)x, 14+dx. (2.31)
= ,

In fact more general test functions can be used in the above formula, whenever the
integrals make sense. A supersolution (subsolution) is a function that verifies (2.31)
with equality replaced by ~ (>) for every nonnegative test function.

Definition 2.3.2. We say that v / Hy' / 3) " +is an energy solution to problem (2.29) if
it is the trace on * of a function w which is an energy solution to problem (2.30).
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A solution exists for instance for every g / H ©/ 3)” 4 see [33]. In order to deal
with problem (2.30) we will assume, without loss of generality, x, T 2, by changing
the function g.

In [26] this linear problem is also mentioned. There some results are obtained using
the theory of degenerate elliptic equations developed in [46], in particular a regularity
result for bounded solutions to this problem is obtained in [26]. We prove here that the
solutions are in fact bounded if g satisfies a minimal integrability condition.

Theorem 2.3.3. Let w be a solution to problem (2.30). If g / L") +r > % then
w /) LS)F +

Proof. The proof follows from the well-known Moser’s iterative technique, that we
take from [52, Theorem 8.15], and uses the trace inequality (1.30). Without loss of
generality we may assume w ~ 1, and this simplifies notation. The general case is
obtained in a similar way.

We define for 3 ~ 2 and K ~ k (k to be chosen later) a C?)]k, € +Hunction H,
as follows:

PLE z / |k, K",

H)Z+T} BKP 2)z K40 )2® KP4 2> K.

Let us also definev T w0 k, v T [ s)v+ and choose as test function ¢,
o TGt [ ) Tt ds, o T [HYoH v
k

Note that since |[H%v|{> SK” 2 then p / X{*)F + Replacing this test function into
the definition of energy solution we obtain on one hand:

N2 o)y w, plady T [y "g olP | o4 dady
Fo Fo
T m v (0 H)v4P dzdy (2.32)
Fo
~ C\H)u—«\?;%, )
where the last inequality follows by (1.30).On the other hand, since Hjs increasing
we have
GYv+> v|H%v4f T vG Y+

Thus
ﬂ g)zdp)x, 1+dx T ﬂ g)z46 ) v+de > O ) GYr+dx

> ﬂ g)z |[H v da (2.33)
> \o\r\v 2 H b,
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Inequality (2.32) together with (2.33), leads to

2/3
)b g > )é\g\r{ A (234)

by choosing £ T 1 and letting X' " € in the definition of H, the inequality (2.34)
becomes

WA s > OB B

2r(s ——>
Hence for all 5 ~ 2 the inclusion v / L )" +implies the stronger inclusion

u/LNfa) + since i’[l\]i>mr

[52], by an iteration argument, starting with 5 T ]\)[3\; ij;O >2andv / L3 e )+

This gives v / L€ )" 4and then w / L€ )F 4 In fact we get the estimate

\w\e 2 ) \w\xe 0 \g\rt

provided r > ﬁ The result follows now, as in

O

Corollary 2.3.4. Let w be a solution to problem (2.30). If g / LE )’ 4 then w /
C")F Hor some~y /)1,2+

Proof. Using Theorem 2.3.3, the result follows directly from [26, Lemma 4.4], where
it is proved that any bounded solution to problem (2.30) with a bounded g is C7. O

2.4. The nonlinear nonlocal problem

As we have said, we will focus on the particular nonlinearity
F)s+T fr)s+T As?0 sP. (2.35)

However many auxiliary results will be proved for more general reactions f satisfying
the growth condition

1> f)s+>¢)20 |s|P+ for some p > 1. (2.36)
Remark 2.4.1. In order to simplify the notation, the results on the coefficient \ for

the local problem (3.2)—(2.35) in this section are translated into problem ) Py+with A

multiplied by Iip)q a2

‘We consider now the functional

J)w+T gﬂ v* | wl|f dedy ﬂF)w—i—dm,
= .
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where F')s+T Y f)7+dr. For simplicity of notation, we define f)s+T 1 for s > 1.
Recall that the trace satisfies w / L") 4 (again this means [ s)w+/ L") 4, for every
2>r> 2L 0fN > a,2<r>¢€ if N > o Inparticular if 2 < p > {22, and

f verifies (2.36) then F)w+/ L?)” 4 and the functional is well defined and bounded
from below.

We consider also the minimization problem
LT log} ﬂ v* Y wlfdedy 5w ) XP)F + ﬂ F)w+dx T 2\/,
o R

for which, by classical variational techniques, one has that below the critical exponent
the infimum L is achieved. This gives in a standard way a nonnegative solution. Later
on we will see that this infimum is positive provided A > 1 is small enough. On the
contrary, for A large enough the infimum is the trivial solution.

We now establish two preliminary results. The first one is a classical procedure of
sub- and supersolutions to obtain a solution. We omit its proof.

Lemma 2.4.1. Assume there exist a subsolution ws and a supersolution ws to problem
(3.2) verifying wo > ws. Then there also exists a solution w satisfying ws > w > ws
in F .

The second one is a comparison result for concave nonlinearities. The proof follows
the lines of the corresponding one for the Laplacian performed in [21].

Lemma 2.4.2. Assume the function f)t4/t is decreasing for t > 1 and consider
wo,ws / XMF +positive subsolution and supersolution, respectively, to problem
(3.2). Then we > ws in F .

Proof. By definition we have, for the nonnegative test functions (2 and (3 to be chosen
in an appropriate way,

(g2 @) we ool dady> ) pusps de,

J0

n v *) ws, @3l dmdywnf)wri%d%
5 .

Now let 0)¢-+be a smooth nondecreasing function such that §)¢t+T 1 for¢ > 1, 0)¢t+T 2
for t ~ 2, and set 6. )t+T 0) ﬁf If we put, in the above inequalities

0o T wg b )ws w3+ w3 T wo b )wa  ws+

we get
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where
Iy ;T Q Y Yws wz  wz wa, Jwr wsH OJws  wztdzdy.
Now we estimate 5 as follows:
I, > ﬂ y? O‘> wo, )wy w3+ Jws  wst O0Jwe  wzdrdy
Fo
T rjb YY) we, y)ws  wiH dady
where 74T t025t+ Therefore, since 1 > . > ¢, we have
Iy > O flwe=)ws  wztHdx > ce.

We end as in [4]. Letting € tend to zero, we obtain

ﬂ Waw3 ) st_'— f)w2—|—{ der > 1,
T Alwi>ws| w3 w2
which together with the hypothesis on f gives wo > ws in ~. Comparison in F

follows easily by the maximum principle. O

Now we show that the solutions to problem (3.2)—(2.36) are bounded and Holder
continuous. Later on, in Section 2.4.3, we will obtain a uniform L€ -estimate in the
case where f is given by (2.35) and the convex power is subcritical.

Proposition 2.4.3. Let f satisfy (2.36) with2 < p < NO & and letw / X&) F +be an
energy solution to problem (3.2). Then w / L€ )JF —|—/\ CV)]-' +or some 1 < v < 2.

Proof. The proof follows closely the technique of [22]. As in the proof of Theorem
2.3.3, we assume w ~ 1. We consider, formally, the test function ¢ T w? P, for some
B > p0 2. The justification of the following calculations can be made substituting ¢
by some approximated truncature. We therefore proceed with the formal analysis. We
get, using the trace immersion, the inequality

)ﬂww P+a1)N{N > C)B,a. N, ,ﬂwﬂ'

This estimate allows us to obtain the following iterative process
ﬂ]

\w\g, = C\w\g! ",

with Bjo2 T 2=)5; 0 2 p+ To have Bjo2 > f3; we need 8; > 22 Since

w / L3 )" 4 starting with 31 T ﬂ we get the above restriction provided 2 <

p < %0 o. Itis clear that in a ﬁmte number of steps we get, for g)z+T flw)x, 1+

the regularity ¢ / L" for some r > % As a consequence, we obtain the conclusion
applying Theorem 2.3.3 and Corollary 2.3.4. O



43

2.4.1. A nonexistence result

The following result relies on the use of a classical Pohozaev type multiplier.

Proposition 2.4.4. Assume f is a continuous function with primitive F, and w is a
energy solution to problem (3.2). Then the following Pohozaev-type identity holds

Qﬂ y> M, vl wlfdo NOF)waO N aﬂwf)waT 1,

38L2

where v is the (exterior) normal vector to 0 .

Proof. Let us suppose w / C3)F +and assume the following identity

N,y wl flx)y® w+0f1X]y2 "‘)>)x,y+, wh w o D)z yd w F({
N & 2 «
0)=— <y | wlf T 1.
(2.37)
Since w is a solution of (3.2) it holds fIx)y? ¢ w+T 1. Integratingin ~ * )1, R+we
have 5
M fIX}yz “)>)x,y4s whow o )z wIF({
“x)1,R+
N
o) M 2o wfT
3 “4)1,R+
By the Divergence Theorem
ﬂ 2 « | 2
y )>)x,y+7 whw o Z)wyf WIF<><V
9}~ % )1,R4
N
o) M e wfT
3 “¥)L,R+

Since w T 1in OF and since

0y + JLRKT)  x yyT1{(+0)" = }y T R(+1)9" * )1, R+t

we have
zﬂ y* Yz, vl wifdoo ﬂ )z, Lw|a—u;
3 o «)LR eyl 1) ov
R
0 ﬂ y2 “)))e, wwl 0 Rwy(wy S| wIF( (238)
“x Jyl R

o)N O‘(ﬂ Vo wlf T L

3 “ ) LR+
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On one hand, integrating by parts
ﬂ >:v, sw! a—u; T ﬂ >:c, 2w fw+
el R VR

T ﬂ Yo, LF)ut T Nﬂ Fluw+
Tyl 1] Tyl 1

On the other hand, the third term of (2.38) holds

A A R

> C)fldn ) 40 24/ ) RS | wlf,
Yl B

for some positive constant C'. If we assume

ﬂrnlogm R Y wfTex>1
RE xR

then, there exists a positive R; such that for all Ry ~ R; we have

Ry o
m ﬂRB o wlf ddewcﬂ »dR, € cuando Ry € .
Ry~ r, B

0

This implies w 1/ X{*)” +and therefore a contradiction. Hence, there exists a subse-
quence R,, /* € such that

M€ byl R

1 ﬂ y? Q))>m7 w0 mey<wy RTmH w|P(T 1.

Integrating again by parts,
0
ﬂ el w|FTﬂ w u;()ﬂ Wy
COLRE Sehla T R

T ﬂ wf)w+0 n R? “wuw,.

Tyl 1 “ byl R

Reasoning as before we have a sequence R,, , € (extracting a subsequence and
renaming if necessary) such that the second integral approaches to 0 as m approaches
to € . As a consequence, taking R T R,,, /* € in (2.38) we have

gr;f y? M, vl wifdo NOF)w—kde %wa)w—kmel.
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Finally, we prove identity (2.37). Computing we have
2
2 « | =
le}y )))fmy% whw )z yy MF({T
2 « 2 2 «
flx)y >)x,ng w! w( gflx)y Y, yH w\F T
Doyt wl )y @ wi0 eyt w (y2 °w
= 2 o 2 «
2] WP my wlfo )l wF<y o y{ T

2
Nz y+ w! flx)y® ¢ w40 y* ¥ wf 3 )y? Oz, y+Hf wlf T

N «
S <y “| wl.

For energy solutions a classic approximation approach holds. O

As a consequence we obtain a nonexistence result in the supercritical case for do-
mains with particular geometry.

Theorem 2.4.5. If * is starshaped and the nonlinearity f, F are as in the previous
proposition, and satisfy the inequality ))N — a+4sf)s+ 3NF)s+H~ 1, then problem
(3.2) has no bounded solution. In particular, in the case [)s+T sP this means that

there is no bounded solution for any p ~ %O o

The case o T 2 has been proved in [28]. The corresponding result for the Laplacian
(Problem ) Py+with o T 3) comes from [66].

2.4.2. Proof of Theorem 2.1.1

We prove here Theorem 2.1.1 in terms of the solution of the local version (3.2). For
the sake of readability we split the proof of into several lemmas. From now on we will
denote

| flx)y? @ wt+ T 1, in F,
)YPA+C K w T 1, on JpF ,
% O w0 WP, w>1  in
ove

and consider the associated energy functional

Jy)w+T ;ﬂ y? | wl|f dedy nF,\)w+dx,
= .
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where
Sp() 2 )

A 2
Fy\)s+T 51920
q0 2 p0 2

Lemma 2.4.6. Let 3 be defined by
YT tvr }A > 1 ; Problem )P \-thas solution(.

Thenl < Y < €.

Proof. Consider the eigenvalue problem associated to the first eigenvalue A5, and let
2 > 1 be the associated eigenfunction. Then using o as a test function in ) Py-+we
have that

ﬂ)/\wq 0 wP4psdx T Ao ﬂ wpsy d. (2.39)
Since there exist positive constants ¢, § such that \t9 0 t? > cA%t, for any ¢t > 1 we
obtain from (3.6) (recall that w > 1) that cA\® < Ao which implies ¥ < € .

To prove X > 1 we use the sub- and supersolution technique to construct a solution
for any small A. In fact a subsolution is obtained as w T ey, € > 1 small. A
supersolution is a suitable multiple of the function ¢ solution to

( flx)y? @ g+ T 1 in F,
K g T 1 on dp,F ,

dg .
& o T 2 in

This proves the third statement in Theorem 2.1.1.

Lemma 2.4.7. Problem )Py-has at least a positive solution for every 1 < A\ < Y.
Moreover, the family }wy( of minimal solutions is increasing with respect to \.

Remark 2.4.2. Although this % is not exactly the same as that of Theorem 2.1.1, see
Remark 2.4.1, we have not changed the notation for the sake of simplicity.

Proof of Lemma 2.4.7. We already proved in the previous lemma that Problem )P+
has a solution for every A > 1 small. Another way of proving this result is to look
at the associated functional Jy. Using inequality (1.30), we have that this functional
verifies

2
Jy)w+ T gﬂ y? | wl|f dedy ﬂFA)w—Fdx
= .
g+1

2
~ 7ﬂ y? “ w|’3dxdy )\Cg)n y? “| w\Pdwdy :
3 Fo

p+1

CS)QQQ | wIFdwdy( .
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for some positive constants C'y and C'5. Then for A small enough there exist two so-
lutions of problem )P, one given by minimization and another one given by the
Mountain-Pass Theorem, [5]. The proof is standard, based on the geometry of the
function g)t+T %tg ACyt102 5702 gee Chapter 3 for more details. This in
particular proves X > 1.

We now show that there exists a solution for every A / )1, ¥+ Later, see Lemma
2.4.9, we will prove that in fact there are at least two solutions in the whole interval
)1, 34

By definition of 3, we know that there exists a solution corresponding to any value
of A close to 3. Let us denote it by p, and let w,, be the associated solution. Now
w,, is a supersolution for all problems ) Py+with A < . Take vy the unique solution
to problem (3.2) with f)s+T As?. Obviously v} is a subsolution to problem )P
By Lemma 2.4.2 vy > w,. Therefore by Lemma 2.4.1 we conclude that there is a
solution for all A / )1, u+ and as a consequence, for the whole open interval )1, 34
Moreover, this solution is the minimal one. The monotonicity follows directly from the
comparison lemma. a

This proves the first statement in Theorem 2.1.1.

Lemma 2.4.8. Problem ) Py+has at least one solution if \ T X.

Proof. Let }\,( be a sequence such that \,, \, . We denote by w, T w,, the
minimal solution to problem ) Py, + As in [4], we can prove that the linearized equation
at the minimal solution has nonnegative eigenvalues. Then it follows, as in [4] again,
JIx, Jwn+< 1. Since J{°)w,+T 1, one easily gets the bound \wy\xg)7,+ > k.
Hence, there exists a weakly convergent subsequence in X{*)F +and as a consequence
a weak solution of ) Py+for A T X. a

This proves the second statement in Theorem 2.1.1.

To conclude the proof of Theorem 2.1.1, we show next the existence of a second
solution for every 1 < A < 3. It is essential to have that the first solution is given as a
local minimum of the associated functional, .J. To prove this last assertion we follow
some ideas developed in [2].

Lemma 2.4.9. Problem ) Py-has at least two solutions for each \ /)1, %+
Proof. Let \1 /)1, 3+be fixed and consider Ay < ’/ig < X. Take o1 T wy,, @2 T wg,

the two minimal solutions to problem )ﬁ,\ 4with A T Ay and A T 3\2 respectively, then
by comparison, ¢1 < ¢o. We define

MTyw / X{)F+ 12w > ¢of.

Notice that M is a convex closed set of X¢)F + Since .Jy, is bounded from below in
M and it is semicontinuous on M, we get the existence of w / M such that Jy, )w+T
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logy, /nr Jx, )w+ Let v1 be the unique positive solution to problem

| flx)y? @ v+ T 1, in F,
K U1 T 1, on 81;]':, (240)
% g% T f, in ’

(The existence and uniqueness of this solution is clear, see Lemma 2.4.2). Since for
1 < e << A\, and Jy,)evi+< 1, we have ev; / M, then w T 1. Therefore
Jy, )Jw+< 1. By arguments similar to those in [77, Theorem 2.4], we obtain that w is a
solution to problem )P+ There are two possibilities:

= If w C w,,, then the result follows.

= If w C wy,, we have just to prove that w is a local minimum of .Jy,. Assuming
that this is true, the conclusion in part 4 of Theorem 2.1.1 follows by using a
classical argument: The second solution is given by the Mountain Pass Theorem,
we postpone the proof to the next sections that will include the more complicated
critical case.

We prove now that the minimal solution wy,, is in fact a local minimum of .J»,. We
argue by contradiction.

Suppose that w is not a local minimum of J), in X{*)F 4 then there exists a se-
quence }v,( < X¢)F +4such that \v,, g\xg S Land gy, )vp+< Iy, Jw+

Letw, T )v, ¢2L and 2, T nd }1,nlo}v,, ¢2{(. Itis clear that z, / M and

1 if v,)z, y+> 1,
o)z, y+  if 1> vn)x, y4+> d2)x, Y+
)

\
Zn) T, y+T \
% o)z, y+  if do)x, y+> vz, y+

We set

T C Ho,y+/ F 5 2p)x, y+T vp)w, yK, Sy C supp)wy,

T, TT, A", S, T S, A .
Notice that supp)v? +T T,, N S,,. We claim that
ISul- 1 asn e, (2.41)

where |A|} C ZXA):chd:E.
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A 2
By the definition of F), we set F,)s+T 01 5 sgo 20 ngo 2 for s / R, and get
q p

2
Pt T2 () g2 o walpdrdy () Fy o sda
! )

2 2
20V 2 ) salpdndy () By)ziidro 200 32 o) o dudy
TTI, S’n

s

2
Fr)ontdz0 2 ) g2 || v, [P dady
3

n

T2() 2 o) zufdedy () Fy)zetde
3 Tn Tn

2
0 gﬂ y? Y| wn 0 ¢l drdy r] Fy,)wn 0 ¢otda
Sn S,

n

2
0 201 42 2| v, |f dudy.
3 &
Since

(V2 o) zulPdedy T() 52 ) valfdedyo () 42 @ gof dedy
Fa S

n n

and

ﬂF)\O)zn—Fde r] Fy,)op+dz 0 Q Fy,)patde,
- T, Sn

n

by using the fact that ¢ is a supersolution to ) Py, we conclude that
2 m 2 «
D)ot T D)znt0 2LV 42 ) w0 6o | galf-4dudy
Sn

2
(V)0 oot Brortideo 21 32 o) o, | dedy
Sn Fa

2 2
~ )z t0 g\wn\g(g 0 g\vn \%(g*
(N E)wn 0 dot Fa)ézt VP )éaton( da
2 2
~ I Jut0 g\wn\g(g 0 g\vn \%{0

ﬂ }Fko)wn 0 ¢2+ FX0)¢2+ )FAO_‘ﬂ)¢2_RUTL< dzx.

On one hand, taking into account that 1 < ¢ 0 2 < 3, one obtains that

2
1> - nO 02
=70 2)10 Pof

2 w3
q0 2 q q n
— 5 Do = S50
q0 2 3(;52 4
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The well known Picone’s inequality (see [65]) establish:

u3
- ~1
b ) on

for differentiable functions v > 1, u ~ 1. In our case, by an approximation argument
we get

q
2

3
w’ﬂ
A1 O py dx > \wn\gcg
On the other hand, since p0 2 > 3,

2
1 > —)w, 0 ¢#°2

02 r
2 03 ¢ Shwn > gwp)wn 0 G 2

p0 2 3
> O)pHeh wd 0 w24

Hence using that p 0 2 < 35 and the claim (2.41)

p0 2 p0 2

ﬂ }2)wn 0 P02 Lqﬁgo 2 P, (d:c > 0)24\10”\%(3.
As a consequence we obtain that
Dadont ~ Ha)et0 S\w\)2 a 0240 2\, \i

S Ja)wt0 %\wn\ﬁ(g)z q 0)2+H0 0)2+

Since ¢ < 2, there results that Jy, )w+> Jx,)vp+~ Jy, )w+for n > nq, a contradic-
tion with the main hypothesis. Hence w is a minimum.

To finish the proof we have to prove the claim (2.41). For ¢ > 1 small, and § > 1
(6 to be chosen later), we consider

E, T }x /7  ;op)et~do)z+ { ¢da)o+> w)z+0 §(,
F, Tz /7 5 o)ete go)at+ { do)rd> w)a40 6.

Using the fact that

=
2

LT e/ s oer< kT f o /75 da)aez whai j<

2

, 2

T /" g)rt> w0 — [k
jr e J
we get for j; large enough, that if § < j% then

bz /75 ¢2)a+= w)z+0 6(([=

w | m
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Hence we conclude that ||, || > £.

Since \v, w\xg /" lasn /' €, in particular by the trace embedding, \v,,
w\r2)- 4+ 1. We obtain that, for n ~ n; large,

3
22 e~ () o wlfde ~ 5
Fo

En

Therefore ||E, |} > g Since S, < F, N E,, we conclude that H§;|# >eforn > ny.
Hence |[S, |}~ 1lasn € and the claim follows. O

2.4.3. Proof of Theorem 2.1.2 and further results

We start with the uniform L€ -estimates for solutions to problem ) Pyin its local
version given by ) Py+

Theorem 2.4.10. Assume o ~ 2, 2 < p < %Og and N ~ 3. Then there exists a

constant C'T C)p, ~ +> 1 such that every solution to problem ) P+satisfies
\w\G Z 07
foreveryl > \ > %

The proof is based on a scaling method of [51], and two nonexistence results, see
Theorems 2.2.1 and 2.2.4.

Proof of Theorem 2.4.10.  Assume by contradiction that there exists a sequence
twy, ( < X§)F +of solutions to ) Py+verifying that M,, T \w,\e¢ € ,asn €.
By the Maximum Principle, which holds for our problem, see [46], the maximum of
wy, is attained at a point )z,,, 1+where x,, / *~. We define ~,, T M%) © xp with

tn T M,)I2 p#a, i.e., we center at x,, and dilate by % e asn e
We consider the scaled functions

wn)xn 0 pnz, tpy+
M, ’

)z, y+T forx /", y~1.

It is clear that \v,,\ > 2, v,)1, 14T 2 and moreover

\ flx)y? @ v,+ T 1 in F,
\ Un T 1 on aL‘F . (242)
vy,

ove T AMZ Pvl0 0P in ", YI(.

By Arzela-Ascoli Theorem (the solution is C7, see Proposition 2.4.3), there exists a
subsequence, which we denote again by v,,, which converges to some function v as
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n ' € . In order to see the problem satisfied by v we pass to the limit in the weak
formulation of (2.42). We define d,, T dist)x,,, 0 4 then there are two possibilities as
n /€ according the behaviour of the ratio Z—":

1. }dn is not bounded.
Hn \

2. }dn< remains bounded.
Mn \ 4,

In the first case, since By, M)l—i—<< " n,and *, is smooth, it is clear that “ ,, tends
to RN and v is a solution to

\ flx)y> @ v+ T 1 inR)"2,
{ ;Tva T P on IR0 2.

Moreover, v)1, 14T 2 and v > 1 which is a contradiction with Theorem 2.2.1.

In the second case, we may assume that % s~ lasn /€ .Asaconsequence,

n

passing to the limit, the domains “,, converge (up to a rotation) to some half-space
H, T}z /RN ;2x > (. We obtain here that v is a solution to

L flx)y* * o+ T 1 in Hy* )1,€ +
0
871; T P on Hg * }1{(,
with \v\e T 2, v)1,1+T 2. In the case s T 1 this is a contradiction with the
continuity of v. If s > 1, the contradiction comes from Theorem 2.2.4. O

We next prove a uniqueness result for solutions with small norm.

Theorem 2.4.11. There exists at most one solution to problem ) P y+with small norm.

We follow closely the arguments in [4], so we establish the following previous
result:

Lemma 2.4.12. Let z be the unique solution to problem (2.40). There exists a constant
B > 1 such that

Ay al 127 26%do ~ B\O\Le, 36/ XDF 4 24)

Proof. We recall that z can be obtained by minimization

2 2 02 o
nlo}?)\w\%(g)}b-i- m\w\%q+1)-+; w/Xl)]:+<~
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As a consequence,

This implies that the first eigenvalue ay of the linearized problem

l flx)y? @ o+ T 1, in F,
o T 1, on JpF,
D04 1w, on e
v

is nonnegative.

Suppose that a; T 1 and let ¢ be a corresponding eigenfunction. Taking into
account that z is the solution to (2.40) we obtain that

qmzqcpd:rT mzqcpdz

which is a contradiction.

Hence a2 > 1, which proves (2.43). O

Proof of Theorem 2.4.11. Consider A > 1 such that pAP 2 < f3, where 3 is given in
(2.43). Now we prove that problem ) Py+has at most one solution with L€ -norm less
than A.

Assume by contradiction that )Py+has a second solution w T wy 0 v veri-
fying \w\e < A. Since wy is the minimal solution, it follows that v > 1 in
" % ]1,€ 4+ We define now n T )\ﬁ z, where z is the solution to (2.40). Then it
verifies f1x)y? @ n+T 1, with boundary condition An9. Moreover, w), is a superso-
lution to the problem that 7 verifies. Then by comparison, Lemma 2.4.2, applied with
t+T A, v T npand w T wy, we get

1
wy ~ ATaz on " * }1(. (2.44)

Since w T wy 0 v is solution to ) Py+we have, on ~ x }1(,

0 0
%T Nwy 0 v€0 Jwy 0 v > Awl 0 Aquw! *v0 )wy 0 v-E,
where the inequality is a consequence of the concavity, hence
ov

2
WEAQU}K v0 )wy 0 v wh.

Moreover, (2.44) implies w§ 2~ X 229 2 From the previous two inequalities we get

e > qz7 200 w0 v wh.
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Using that \wy 0 v\c > A, we obtain )wy 0 v w§ > pAP 2. As a consequence,

ov

Do qz? v > pAP %y,

Taking v as a test function and ¢ T v in (2.43) we arrive to
Bmv?’dw > pAP 2mv3d:1c.

Since p AP 2 < 8 we conclude that v C 1, which gives the desired contradiction. O

Remark 2.4.3. This proof also provides the asymptotic behavior of wy near X T 1,
1
namely wy C \1=4z, where z is the unique solution to problem (2.40).



On some critical problems for the fractional
Laplacian operator

3.1. Introduction

In this chapter we continue with the study of perturbations of the pure-power critical
case for the different fractional powers of the Laplacian. Thus, we study the following
problem

< 1) APy T Xu?0 wP, u>1 in ",
)Pﬁ} u T 1 ond’,

withl <g<pT %O Z, 1 < a < 3and N > a. As in the previous chapter, here

we will look only for positive solutions to ) PH(so many times we will omit the term
“positive”).

As we have seen in Theorem 2.4.5, and analogously to the classic case, the problem

}> APy T u¥=Su in <RY, 3.1

u T 1 ond’,
has no positive solutions whenever ~ is and star-shaped domain. In a pioneering work

[24], Brezis and Nirenberg showed that, contrary to intuition, the critical problem with
small linear perturbations can provide positive solutions. After that, in [4], using the
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results on concentration-compactness of Lions, [60], the authors proved some results
on existence and multiplicity of solutions for a sublinear perturbation of the critical
power, among others.

Recently, several studies have been performed for classical critical elliptic equa-
tions with the Laplacian operator substituted by its fractional powers. In particular, in
[80] it is studied the problem

) A3 T M0 uN in ", 32)
uT 1 ond’, '

the analogue case to the problem in [24], but with the square root of the Laplacian
instead of the Laplacian. The results of this chapter generalize those cases to every
power « /)1, 34of the Laplacian.

The cases 1 < ¢ < 2,q T 2and 2 < q < %Og will be treated with different

methodologies, thus we will divide the chapter according to those cases. Our main
results dealing with Problem ) P+tare the following.

Theorem 3.1.1. Let 1 < q < 2. Then, there exists 1 < X < € such that the problem
)P+
1. has no positive solution for X > 3;

2. has a minimal positive solution for any 1 < A\ > X. Moreover the family of
minimal solutions is increasing with respect to \;

3. if \'T X there is at least one positive solution;
4. if a ~ 2 there are at least two positive solutions for 1 < A < X..

Theorem 3.1.2. Letq T 2,1 < o« < 3and N ~ 3a. Then the problem )P/\il—

1. has no positive solution for X ~ Ao,

2. has at least one positive solution for each 1 < XA < Aa.

Theorem 3.1.3. Let2 < ¢ < {22, 1 < a < 3and N > «)20 2/q+ Then the

problem )P/\il—has at least one positive solution for any X > 1.

The restriction & ~ 2 in Theorem 3.1.1-)84seems to be technical. Note that the
same restriction appeared also in Chapter 2. Here, due to the lack of regularity, see
Proposition 3.5.2, it is not clear how to separate the solutions in the appropriate way,
Lemma 3.3.3, see also [40, 42].

On the other hand, the range < N < 3a in Theorem 3.1.2 is left open. See the
special case a T'3and N T 4 in [24]. If o T 2 this range is empty, see [80].
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As to the regularity of solutions, they are bounded and “classical( in the sense
that they have as much regularity as it is required in the equation, i.e., they possess «
“derivatives”, see Propositions 3.5.1 and 3.5.2. Even more, if o T 2, they belong to
C?4)” +or C€ )" 4 whenever 1 < g < 2 or q ~ 2, respectively.

3.2. Preliminaries
A natural definition of energy solution to problem ) PHs the following.
Definition 3.2.1. We say that u / H{' / 3) " +is a solution of ) PS+if the identity

ﬂ) A=) A£/Zpdx T ﬂ fup dz (3.3)

holds for every function ¢ / Hf/g) "4 where flu+T Au?0 uP.

Note that the right-hand side of (3.3) is well defined since ¢ / Hy' / 3) T+
L¥°a) wwhile u / H?)" thence f)u+t/ L¥ta) 4+ H @/3)" 4
Associated to problem ) PStwe consider the energy functional

I)u—i—T%ﬂ AR/=uf d mF)u+dx,

where F)u+T Zf)s—kd& In our case it reads

2 _ A N
— q — —

3N

This functional is well defined in H;' / 3)

correspond to solutions to ) P+

" 4 and moreover, the critical points of I

We can reformulate our problem in the local form ) PStas

L flx)y? @ wiT1 in F
)ﬁf-i- \le on O F
&ng,\wqowm in % Yy T (.
Voz

The associated energy functional to the problem )ﬁf—Hs

Ry 2 « A 02 N « ﬂ 2N
J T — ﬂ dxd — ﬂ ®~=d N-a dx.
Yw+ 3 fny | wl|f dedy q02iw i sy W T
(3.5)
Clearly, critical points of J in X{)F +correspond to critical points of / in Hy' / 3) T4
Even more, minima of J also correspond to minima of /, see Section 3.3.
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Remark 3.2.1. In the sequel, and in view of the above equivalence, we will use both
Sformulations of the problem, in ~ or in F , whenever we may take some advantage.
In particular, we will use the extension version ) Py+when dealing with the fractional
operator acting on products of functions, since it is not clear how to calculate this
action. This difficulty appears in the proof of the concentration-compactness result,
Theorem 3.5.3, among others.

3.3. Sublinearcase: 0 < ¢ < 1.

We prove here Theorem 3.1.1. As we have said in Remark 3.2.1, there are some
points where it is difficult to work directly with the fractional Laplacian, due to the
absence of formula for the fractional Laplacian of a product. Therefore we consider in
some occasions the extended problem )P+

To begin with that problem, we prove that local minima of the functional I corre-

spond to local minima of the extended functional .J.

Proposition 3.3.1. A function vy, / H{' / 3) " +is a local minimum of I if and only if
wy T Ey)ur+/ X¢)F +is a local minimum of J.

Proof. Firstly letu; / Hy' / 3) " +be a local minimum of /. Suppose, by contradiction,
that wy T E,)u;-+is not a local minimum for the extended functional J. Then by
(1.8) and (1.30), we have that, for any € > 1, there exists w. / X{)F 4 with \w;
we\xg) 7+ < € such that

Dui+T Jwi+> J)we+~ Iz +

where z. T w.)x1+/ H'*)" 4satisfies \uy 2\ yaszy- <€
0

On the other hand, let wy / X¢)F —be a local minimum of .J. It is clear, from the
definition of the extension operator, that w; is a-harmonic. So we conclude. O

We return now to the original problem )PAil,— posed at the bottom ~ * }y T 1(.
Lemma 3.3.2. Let ¥ be defined by
ST tvr JA > 1 ; Problem ) Psthas solution( .
Thenl < X < €.
Proof. Let )\a, po-tbe the first eigenvalue and a corresponding positive eigenfunction

of the fractional Laplacian in ~. Then, using 2 as a test function in ) P+ we have
that

Q ))\uq 0 uNTe <<p2 dr T Ao O ups dx. (3.6)
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Since there exist positive constants ¢, § such that \t? 0 ¢ LETEN cA\°t, forany t > 1 we
obtain from (3.6) that ¢\’ < A\, which implies ¥ < € .

To prove X > 1 we use the sub- and supersolution technique to construct a solution
for any small ), see [48, 4]. In fact a subsolution is obtained as a small multiple of ¢s.
A supersolution is a large multiple of the function g solution to

) A€/BgT2  in”,
gT1 ond’ .

O

Comparison is clear for linear problems associated to the fractional Laplacian, as it
is for the Laplacian. On the other hand, it is in general not true for nonlinear problems.
Nevertheless, it holds when the reaction term is a nonnegative sublinear function, see
[21, 4]. Therefore, it is easy to show, comparing with the problem with only the con-
cave terms Au?, that in fact there is at least one positive solution u, to problem ) P+
for every A in the whole interval )1, ¥4+ Even more, these constructed solutions are
minimal and are increasing with respect to A, see Lemma 2.4.7.

To prove existence of solution in the extremal value A T X, the idea, like in [4],
consists on passing to the limit as A, \, X on the sequence }z,( T }z,, (, where zj
is the minimal solution of )ﬁ,\ -+with A T \,,. Denote by J,, the associated functional.
Clearly Jy, )z, +< 1, hence

2
1 > Jy, )zt 3—§>J§:)zn—|,—zn|

2 2 (" ., 2 2 05
T>3 ?)é{\Zn\Xé‘)}'sﬁ )‘">q02 35{023 dr.

Therefore, by the Sobolev and Trace inequalities, (1.33) and (1.30) respectively, there

exits a constant C' > 1 such that \z,\ xg) 5,4+ > C. As a consequence, there exists a

subsequence weakly convergent to some zy; in X{)F + By comparison, zs; ~ z) > 1,

forany 1 < A\ < X, so one gets easily that zx, is a weak nontrivial solution to )P+
with A T X.

Having proved the first three items in Theorem3.1.1, we focus in the sequel on
proving the existence of a second solution, for which we recall that o ~ 2.

The proof is divided into several steps: we first show that the minimal solution
is a local minimum for the functional I; so we can use the Mountain Pass Theorem,
obtaining a minimax Palais-Smale (PS) sequence. In the next step, in order to find
a second solution, we prove a local (PS). condition for ¢ under a critical level s
To do that, we will construct path by localizing the minimizers of the Trace/Sobolev
inequalities at the possible Dirac Deltas, given by the concentration-compactness result
in Theorem 3.5.3.

We begin with a separation lemma in the C?-topology.
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Lemma 3.3.3. Let 1 < ps < Ay < puz < X. Let z,,, 25, and z,, be the corre-
sponding minimal solutions to )Pf—b AT po, A\ and pg respectively. If X T }z /
C?)" Mzpy, = 2 > 2,,(, then there exists € > 1 such that

}Z>\0< 0 EBQ <<AX7

where By is the unit ball in C3) " +

Proof. Since o ~ 2, we have that any solution u to ) P for arbitrary 1 < A\ < X
belongs to C?7)” +for some positive 7, see Proposition 3.5.2. Therefore, we deduce
that there exists a positive constant C' such that

wzr+> Cfltwz, 0 tz /. 3.7

On the other hand, applying Hopf Lemma, we get that there exists a positive constant
c such that
w)zt~ cfltwz, 0" fx /. (3.8)

These two estimates jointly with the regularity implies the result of the lemma. a

With this result we now obtain a local minimum of the functional I in C7) " 4 as a
first step, to obtain a local minimum in H 10‘ / 3) ==
Lemma 3.34. For all X\ / )1,%+there exists a solution for ) PS+which is a local
minimum of the functional I in the C*-topology.

Proof. Given 1 < pp < A < pug < X, let z,,, and z,,, be the minimal solutions of)PEl—i—
and )PE2 +respectively. Let z ;T z,, z,,. Since z,, and z,, are properly ordered,

then
})A—P‘/?’val in ",

zT 1 ond’.
We set
\ )z e+ ifs >z,
Iz, s+T \ fr)s+ if 2, > 5> 2,,
)zu)e+H ifz,, >,
FYz, 24T m [, sHds
1
and

2
< <
I5)2+T g\z\Hg/Q), N O FYyx, uHdx.
Standard calculation shows that 7 =achieves its global minimum at some vy / H f‘ / 3) ‘%
that is
INuy+> 192+ 3z /HY?) + 3.9)
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Moreover it holds

) A—ig/SuleS)xaul+ in /7
u T 1 ond’ .

By Lemma 3.3.3, it follows that }u1{ 0 eBs < X for 1 < & small enough. Let now z
satisfying
€
\z ui\op-+2 3
As IS)z+ I)z-+is zero for every z such that \ z ui\gp)- += 5, by (3.9) we obtain
that

€

DzAT 1924~ I 4T Nuyk 3z / C3)” 4 with \z u\gpy- 4= 3

O

To show that we have obtained the desired minimum in H f / 3) ” 4-we now check
that the result by Brezis and Nirenberg in [25] is also valid in our context.

Proposition 3.3.5. Let z; / Hla/j) " +be a local minimum of I in C?)” 4 i.e., there

exists v > 1 such that
D42 10210 24+ 32/ CF)" Hwith \2\gy)- > (3.10)
Then zy is a local minimum of I in Hf‘/:g) "+ that is, there exists €1 > 1 such that
Dz+> 10z 0 2+ 3z / Hla/s) " tawith \Z\HQ/Z)_ L2
0
Proof. Arguing by contradiction we suppose that

Je>1, Bz. / B:)z1+ suchthat T)z.+< I)z14

where B )z +T }z /Hf/g)' + \z zl\Hg/Q),+2 eV,

For every j > 1 we consider the truncation map given by

Tj)r+§} T 1<T,‘<],
J re~].
Let u
f,\,j)s—&—T f)\)T])S—H,- Fj)S—l-T ﬂ f)\7j)8—|d8, u>1,
1
and

2 3
AT DA [V E)zin
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Note that for each z / Hf‘/g) " 4we have that I;)z+ 7 I)z+as j /* € . Hence,
for each ¢ > 1 there exists j)e+big enough such that ;). )z.+ < I)z1+ Clearly
n)lo I (is attained at some point, say v.. Thus we have
Be)zo+

Ij)s_*_)’L)E‘FZ Ij)g_*_)25+< I)Zl‘i-’

Now we want to prove that v. * z1 in C}) " +as ¢ = 1. The Euler-Lagrange equation
satisfied by v, involves a Lagrange multiplier & in such a way that

>IJ('>)OE+)U5"?SO‘H7(1/2)7 %H(?/?)—JFT §5>'U57§0|H5¥/2)—+a e/ Hla/S) 0 (G1D

Since v, is a minimum of [}, , it holds

I Jv-+v
§€T>\Z})E\-g68|21 forl<e—2, and & Slase= 1. (3.12)
SHG)

Note that by (3.11), v, satisfies the problem

) A"'g/sve T if)\,j)sﬁ-)ve'f';T fiﬁj)ﬁ,)'ve"' in ",
v, T1 ond’ .

Clearly \UE\H((;/Q), P C, thus, by Proposition 3.5.1, this implies that \v.\ ;,c)- + >
C'. Moreover, by (3.12) it follows that \ ff) e Qvﬁ\ L)~ +=> C. Therefore, following
the proof of Proposition 3.5.2, we get that \v:\¢i,-y=, > C, forr T nlo}g,a  2(
and C' independent of . By Ascoli-Arzela Theorem there exists a subsequence, still
denoted by v., such that v. * z; uniformly in 012) " 4as € = 1. This implies that for
¢ small enough,

DvA+T Iy Jve+< 1)z +

for any v, with \ve ZI\C(})* L<e. O

Lemma 3.3.4 and Proposition 3.3.5 provide us a local minimum in H;' / 3) " 4 which

will be denoted by u;. We now perform a traslation in order to simplify the calcula-
tions.

‘We consider the functions

Nui0 s€ Ml 0 )ui 0 s£a 2 ude 2 ifs~l
T 1 1 ’ 3.13
g)z, 5+ } 1 ifs<1 O
U
Gu+T ﬂ 9)x, sHds, (3.14)
1
and the energy functional
— 2. 4
Iu+T §\U\H(§*/2)* N ﬂ Gz, udd. (3.15)
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Since v / HY' / %)" 4 G is well defined and bounded from below. Let the moved

problem
~ ) AeBuT g)r,u+  in " <RV, A>1
)Xt } uT1 ond’.

Hence, by standard variational theory, we know that if w C 1 is a critical point of I

then it is a solution of )PAi#which, by the Maximum Principle (Lemma 2.3 of [33]), it
is w > 1. Therefore u T u; 0 w will be a second solution of ) PS+for the sublinear
case. Thus we will need to study the existence of these non-trivial critical points for I.
Firstly we have

Lemma 3.3.6. v T 1 is a local minimum of I in Hf/3) "+

Proof. The proof follows the lines of [4], so we will be brief in details. Note that by
Proposition 3.3.5 it is sufficient to prove that « T 1 is a local minimum of [ in C%) " +

Letu / C?)” +then
GUuAT Flur 0wt Flurt ) Muf 0 uf* 2<u. (3.16)
Therefore
— 2. 4
Du+ T g\u\Hg/Q)f_k OG)U—HI
2 .
T g\u\za/z),Jr ﬂF)ul 0 u4dx 0 mF)uﬁd:z:O m)Au‘{ 0 u?a Q(de.
0 . . .
On the other hand,
2
Du; 0 u+ T g\ul 0 u\?I’{(()l/z)_+ OF)ul 0 udx
2 3 2 \3
Toghungy 0 g\

0 ﬂ) A€/7uy) A/7ude nF)ulO udx

2 s 2 s
T §\u1\Hg*/2)* +0 §\U\Hg/2)*+
0 ﬂ)xugo uds Z(de () Fyus 0 uetda.

Finally, as 4 is a local minimum of I, we have that

2
Du+ T Hup 0 u+ g\ul\:;g‘/z)’ L0 OF)ul—idx
T I)’I,Ll 0 u—+ I)U1+

~ 1T D+
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provided \u\¢1)- ;< e. a
As a consequence of Proposition3.3.1, we obtain for the moved functional

—~ 2
Tt 2Nk z [ Gy, 144,

with G as in (3.13)-(3.14), the following result.
Corollary 3.3.7. w T 1is a local minimum of J in X&) F +

Now assuming that v T 1 is the unique critical point of the moved functional J,
then a local (PS).. condition can be proved for c under a critical level =,

<m @ N
=T — N+« 3.17
T o S)a, N+ (3.17)
Following the ideas given in [4], and by an extension of a concentration-compactness
result by Lions, that we prove in Theorem 3.5.3, we obtain the following result.

Lemma 3.3.8. If v T 1 is the only critical point of Jin X M) F +then jvsatisﬁes a
local Palais Smale condition below the critical level ¢=

Proof. Let }w, ( be a Palais-Smale sequence for JA;/erifying

Nwp+ e < S JFwp+ 1. (3.18)

Since the fact that w; is a critical point implies J)w,+T J)z,+ J)w;+ where
zn T w, 0 wy, we have that

D) zn+c0 J)wi+ JVzn+ 1. (3.19)

On the other hand, from (3.18) we get that the sequence }z,,( is uniformly bounded in
X{)F + As a consequence, up to a subsequence,

Zn =z weakly in X7")F +
zn)x1+ 2 2)x1+ strongin L") 4 32>r <35 (3.20)
zn)X1+ 2 z2)x1+ a.e. in .

Note that as v T 1 is the unique critical point of ﬂhen, z T wy.

In order to apply the concentration-compactness result, Theorem 3.5.3, first we
prove the following.

Lemma 3.3.9. The sequence }y* | z, |[3<n/N is tight, i.e., for any n > 1 there exists
p1 > 1 such that

NNy *| zulfdzdz >n, 3In /N (3.21)

}y>pol
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Proof. The proof of this lemma follows some arguments of Lemma 2.2 in [6]. By
contradiction, we suppose that there exits ; > 1 such that, for any p > 1 one has, up
to a subsequence,

ﬂ ﬂ v* Y| zn|Pdedy >n  forevery n / N. (3.22)
Yy>pl T
Let € > 1 be fixed (to be precised later), and let > 1 be such that

ﬂ OyQ | zlfdzdy < e.

Yy>r|

Leth}Hﬂ{betheintegerpartandlkT /R s r0k>y>r0 k0 2(,

€

kT1,2, ..., 7. Since \2,\ xo)5,+> M, we clearly obtain that

J
ﬂ ﬂyQ “| zﬂFdxdyEﬂ v Y znlPdedy >€)5 0 24
1 I Jo

Therefore there exists k1 / }1, ..., j( such that (again up to a subsequence)
N N v* Y| zn|Pdedy > e, 3In. (3.23)
Ik(] -

Let x ~ 1 be the following regular non-decreasing cut-off function

1 ify>r0 kq,
X)y+T} 2 ify>r0 k02

Define vy, )z, y+T X)y+zn)x, y+ Since vy, )z, 14T 1 it follows that
DI Fzn+ JFvntkon|| T nam Y2 ) )z Unk vn|dxdy
Fo

T Ham myz a> )Zn Unh vn|dxdy-

Iy,

Moreover by the Cauchy-Schwartz inequality, (3.23) and the compact inclusion
H?) I, x ~,y* “+nto L3)I, *+ ~,y? “+ we have

DI Tzt JFVntvn||> Kag)zn  UnAg)vn+> CEae, (3.24)

where

1
2
g)v—ﬁ—T)ﬂ ﬂy2 | vlfdzdy| .
Iy -

0
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On the other hand, by (3.19), we get
DI Fvnton|l|> Crael 0)2+

So, for n sufficiently large,

J nhv¥n
ﬂ ﬂyQ N zp|Pdrdy > ﬂ y? | v,|Pdedy T 2 Fon%vn >Ce.
Yy>r0 ko0 2|~ F Ko
This is a contradiction with (3.22), which proves Lemma 3.3.9. O

Proof of Lemma 3.3.8 (cont.). In view of the previous result we can apply Theorem
3.5.3. Therefore, up to a subsequence, there exists an index set I, at most countable, a
sequence of points }2;( <, and nonnegative real numbers jux, Vg, such that

v2 | zalf S~y Y wilf O / 1110z, (3.25)
/1
and . )
)14 A v T fwi)x14f~ 0 / Vil (3.26)
/1

2
in the sense of measures, satisfying also the relation 5, ~ S)a, N—lylj“‘ , foreveryk /
1.

We fix any k1 / I, and let ¢ / F¢ )R(I)V Y21 be a nonincreasing cut-off function
verifying ¢ T 2 in BY )ap,+ ¢ T 1in B )ay, €. Let now ¢ )z, y+T é)x/e,y/ck
clearly | ¢.|> €. Wedenote 5. T BS. )y, +A }y T 1(. Then, using ¢.z, as a test
function in (3.19), we have

Ke 1N ﬂ y? Y zZn,  Ge| zndzdy
nl € —E’Z

naﬂ y? ] zn|F¢6d:Edy .
B )wry+

By (3.20), (3.25) and (3.26) we get
r/}ne Ra m 92 a> Zn;, ¢6| Zn dxdy
n

Fo (3.27)
T [ be dv 0 Aﬂ w1 |0 2. da naﬂ be dy.

B;'E)kaJr

On the other hand, using Theorem 1.6 in [46], with w T y2 ® / Asand k T 2, we
obtain that

2/3
)ﬂ Ry ¢>E|F|m|ﬁdxdy[ > 3>ﬂ v ©lenlPdady
B;s)gﬂko"" €

B;)l’ko"'

2/3
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2/3
> C>ﬂ vl anFdIdy[ :

B;s)xko+

Since z, / X{)F 4 the last expression goes to zero as € 1. Therefore

1 > i ¥ ) Zn, | zndady
nl € T
23 2/3
> m ) 2 e zn|dedy{ N 2 2 gl alfdady
nl € T B @iy +
N1

Hence, by (3.27), it follows that

1T 1dn
el 1

ﬂ ¢ dv 0 /\ﬂ o |° 2 ¢ dax Iiaﬂ ¢Edu{ZVkU Ktk -
2e 2 +

€ By )T

Therefore we get that
v, T'1 or Vley ™~ S)a,N—i—g.

Suppose that v, T' 1. It follows that
2
c0 Jyuy+ T r,hae J)zn+ §>J°)>zn—|,—zn|

« . (0% 2 2 q0 2
37]\[01‘)1 dr 0 37]\7”’600 )\)3 qOQ{mwl dx

~  J)wi 40 %S)Q,N—% T J)w; 40 =

Then we get a contradiction with (3.18), and since k; was arbitrary, v, T 1 for all
k / I. Hence as a consequence, u,, ,/” u in L)  + We finish in the standard way:
convergence of u,, in L¥ )~ -Hmplies convergence of f)u,,-Hn L%) “ 4 and finally
by using the continuity of the inverse operator ) A+ /3 we obtain convergence of

up in HY?) " 0

Now it remains to show that we can obtain a local (PS). sequence for J under the
critical level ¢ T ¢= To do that we will use w, T E, )u.+ the family of minimizers
to the Trace inequality (1.30), where u,. is given in (1.32). We remark that, despite
the cases a T 2 and o T 3, w. does not possesses an explicit expression. This is an
extra difficulty that we have to overcome. Taking into account that the family wu. is
self-similar, u.)z+T e ug)x/e+and the fact that the Poisson kernel (1.6) is also
self-similar

PR)esT - Py )y{ (3.28)
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gives easily that the family w, satisfies
we)z, y+T s“zNwQ)Z,y( (3.29)

We will denote P T P3*. Also, we will write ws , instead of w» to emphasize the
dependence on the parameter c.

Lemma 3.3.10. With the above notation it holds

C
| waa)zy iz Zwaa)z,ys a> 1) y+/ Ry (3.30)
and
H w2,a)xay+H2 Cw?,a 2)%%7 o> 27 )l’,y+/ R(JJVO 2' (331)
Proof. Differentiating with respect to each variable z; , ¢ T 2, ... , N, and the variable

1, it follows that

INO oy 2|
3 Ntago N—«o

BV )20 [l 2P+ 0%)20 |klP+=
NO « y*
ﬂ N+ta

3y v )P0 o 2P

Pz, wa,0)z, yHl >

—dz
)20 [klP+2

C
T gwg’a)ff,y"_

and

y* Pal 2 NyP+
3 N+o<02 N —«
RV )y2 0 [l 2P+=0%)20 [P+
ya 2

C ~ —dz
Y )y30 kb zPH72)20 (k[P

Pyw2,0)z,yH T

Y

C
T EU)27Q)ZL'7y"T

Therefore we get (3.30). To obtain (3.31) we recall that uy o)z+T )20 |k[f+ "=
Then, by (3.28) it follows that

Bywsa)z,yf T gy)ﬂ 2Pa>xyz{uza)z—|elz{

N
RN Y

T %)ﬂ PY)zuz o) ysz{
RN

T P24z, use)r  yzHdz
RN
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2 x z[.x =z
T m PD‘) { , Uo.o)zHdz
gy YN y ) y 2a)7t
S Vg P
- ry YV Y

Y20 [ppFz02
a 2
Y

Z )N OH'ﬂ Nta—1 N—a+1

z
RV )y2 0 [l 2P+7=)20 [P+
T ng,a 2)1‘,y—|-'

Doing the same calculations in variables x; for: T 2, ... , N, we obtain

|pa:iw2,a)xay+H T am)“ Pa)z'i‘u’Q,a)x yz—«d'z{
RN

> P24 usellz  yzHz
RN
2
T [ NP&)“T Z{H U, o) 22
RN Y Yy
oo e v M

'Y )30 o 2P )20 [RfFET02

T CwQ,a Q)Ia y+

O
Let us now introduce a cut-off function ¢;)s+,/ C€ )Ry + nonincreasing satisfying

N}

¢1)s+T 2if 1 > s > 3 ¢1)s+T 1if s ~ 2.
Assume without loss of generality that 1 / ~. We then define, for some fixed r» > 1
small enough such that ES < F, the function ¢)z,y+T ¢,)z,y+T $1) "L +with
oy T )2,y T )|e|P 0 y3#/3. Note that ¢w. / X7)F + Thus we get

Lemma 3.3.11. With the above notation, the family }pw.(, and its trace on }y T 1,
namely }ou.(, satisfy

\Gw\Soy 4> \we\Xoy 5,40 0)e™ (3.32)
: Ce®0 O)eN o if N > 3«
3 )
\pu\7zy- T } Ceoupi 12/e40 O)*+ if N T 3a. (3.33)
and
o N
\Pue\7ry- 1~ csNT, a<N<3a, rT 0 a (3.34)

N o’
for € small enough and C > 1.
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Proof. The product ¢w. satisfies
\Gw\gy s T maﬂ 2N welfO e GFO Bywe 6,6 we|dady
> \wg\?;(g% 40 /@aq v? “w.  o|fdrdy (3.35)
2
O3/€aﬂ v* Yw. ¢,¢ we|dady.
o
To estimate the second term of the right hand side we observe that 1 > u.)z+>

and Eo) |kl V4T )[k|P 0 42472 Trg, V. Let T }r/3> 1y >
<<<.7: Then

Q_ny? hoo ofdzdy > ) g2 “wldedy

r

> eV aﬂ y? orde Nidzdy (3.36)

™

T 0)N 4

For the remaining term we need to use the properties of the function w,. given in Propo-
sition 3.3.10. By (3.29) we get

ﬂ ¥ Yw. ¢.¢ we|drdy

Y

Ch 2 o),y we)w, yHady T

o )2 ) (s

cEﬂ P i), Sl )z, zdy.

&

(3.37)

H

Moreover, for )z, y+,/ /e and a > 1, we obtain that

Wa,q)T,y+ T ﬂ Pz z—l‘ug,a)z—ldzom Pz 2uz.q)zHz

Ikl 2= 1> 2=
d
> ceNoeye( ] o o] pojig a3)
ks kY RN
> CyaeN 0 CeN >N o

If a < 2, from (3.30), (3.37) and (3.38), it follows that

N v Nw. ¢, we|dedy > Ce20IN o+ ) y “dedy T 0)eN 24 (3.39)
Fo

r
€
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To obtain the similar estimate for o > 2 we use (3.31). Indeed by this estimate, together
with (3.37) and (3.38) we get that

f v Nwe ¢ ¢ we|dedy > CeDON o) y? “dxdy T O)eN “4 (3.40)
I

Note that for o T 2, as w, is explicit, we can obtain the same estimate directly.

Then we have proved that
\¢ws\§(g)}-ﬂ+2 \ws\f;(g)ﬁﬁo 0)eV o

We now show that (3.33) holds.

[e3

\qbug\%z)—Jr T ﬂ ¢3 x—i—de

ENa

Veler/s) IRIPO 34 o

N « EN «@
~ ﬂ ————dx 0 ﬂ ——dx
Hielke )33 @ Ye<llier/s) )3lElPAY

dx

T Ce®0 CeN aﬂ g3« 2 Ngg.

£

Finally, (3.34) follows in a similar way to (3.33), so we omit the details. O

With the above properties in mind, we define the family of functions 7. T #
¢ L%a(Q)

Lemma 3.3.12. There exists ¢ > 1 small enough such that
tvr J)tne4< = (3.41)
t—l1

Proof. Assume N ~ 3a, we make use of the following estimate

)a0 b ~aP0 b0 pa? ?b, a,b~1, p>2, forsomep>1.  (3.42)

Therefore 9
Gw+~ 3—<w « 0 gw?’wf 3 (3.43)
which implies
— +3 134 3 3% 3
J)tn.+> g\ﬂs\%{gmﬁ 3< gﬂ Jwy® U?dw-

Since there exists a; > 1 such that w; ~ a; in the support of 7. we have

— B, 2 3
J)tn-+> g\na\xg)ﬁﬁ- E gmﬁe\p)uﬁ
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Since \ue\ ;23 is independent of €, by Lemma 3.3.11 we have
\ng\_?;(g)ﬁﬁz S)a, N40 0)eN 4 (3.44)
and
\\3 1 O)e*+ si N > 3a,
Me\L2)” + O)e“1mi )2/e+ si N T 3a.
This implies

3 tr

— 3
Dtn+2 <)), N40 G o %coga T g)t+

It is clear that trhle g)t+T €, and therefore tvr g)t+is achieved at some point
! t—1

t. ~ 1. If t. T 1 the result s trivially deduced. Let us suppose t. > 1. When
derivating above’s function we have

1T g%t +T t.)S)a, N+O CeN >4 P 2 . C%“, (3.45)

which implies
t. >)S)a, N40 CeN .
Observe that by (3.45) we have that for € > 1 small enough
t? 2T S)a, N40 CeN @ C%*~C > 1

and then t. ~ C' > 1 for some constant C'. On the other hand, the function
3
t Y g)S)a, N+ CceV oot

is increasing in |1,)S)a, N+0 CeV 42", From which

tvr AT g)tt> —)8)a, N40 CeN o Cee.
t—1 3N

For some constant C' > 1. Therefore, for N > 3, we have
« N o o « N
g)te+> 3—NS)04,N+Q 0 CeN Ce™ < S—NS)a,N—iﬂ T = (3.46)
If N T 3« the same conclusion follows.
The last case a < N < 3« follows by using the estimate (3.42) which gives

2 . .
G)w+~ 3?“’3” 0 wyw?s 2 (3.47)

[}

Then (3.47) jointly with (3.34) and arguing in a similar way as above finish the proof.
O
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Proof of Theorem 3.1.1-(3).

To finish the last statement in Theorem 3.1.1, in view of the previous results, we
seek for critical values below level ¢=. For that purpose, we want to use the classical
MP Theorem by Ambrosetti-Rabinowitz in [S]. We define

e T}y / AIL2LXT)F +15 7)IHT 1, )2+T tene

for some ¢. > 1 such that J)t.n.+< 1. And consider the minimax value

c. T I?g nd P )y)t+s 1> ¢ > 2(.
v/ e
According to Lemma 3.3.6, ¢, ~ 1. By Lemma 3.3.12, fore — 2,
ce > tvr jv)t775—|—< ST &S)Q,N—Hﬂx.
t—1 3N

This estimate jointly with Lemma 3.3.8 and the MPT [5] if the minimax energy level
is positive, or the refinement of the MPT [49] if the minimax level is zero, give the
existence of a second solution to ) Pe+ a

3.4. Linear and superlinear cases.

3.4.1. Linear case

The proof of Theorem 3.1.2 follows the ideas of [24]. Note that for « T 2, where
the minimizers given in (3.29) are explicit, this result was recently proved in [80].
The first part of that theorem is an straightforward calculus.

Proof of Theorem 3.1.2 (1). Let @y be the first eigenfunction of ) A-4/3in . We
have

ﬂ) AJ?‘/:u) AJ?‘/:gpz dx T ﬂ Aaups dz.

On the other hand,

ﬂ) A€/7u) AL/Zpydx T ﬂ]u?’i 20 My dr > ﬂ Augpg dx.

This clearly implies A < As. a

To prove the second part of Theorem 3.1.2 some notation is in order. We consider
the following Rayleigh quotient
\\kgyzme AN\

Q)\)w+T
\u\i2(§ )— +

and
Sx T loglQu)w | w / X{)F . (3.48)
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Proposition 3.4.1. Assume 1 < X\ < \o. Then Sy < S)a, N+

Proof. Let ¢ T ¢, be a cut-off function like in Lemma 3.3.11 and denote ¢)x+;T
¢)x, 14 Taking r sufficiently small we can use gw. / X{)F +as a test function

in Q,, where w, is defined in (3.29). Denoting Ko T \ug\B‘**

25 ¢ as before, K> is
independent of €, and moreover

puelprae T 1 pufpiar

]RN
O
lel<r/3
T K, ﬂ e P dac
le[>r/3
~ K50 0)eN+ (3.49)

Since w. is a minimizer of S)«, N4 we have that

N+1

K, 3k, Q v? | welf dedy T S)a, N+ (3.50)

Finally, by (3.49) and using the estimates (3.32) and (3.33), for V > 3a, we obtain
that
Ko ﬂN ) v | welfdzdy ACe*0 O)eN
+

QA)¢w5+Z +

K3% 0 0)eN 4

Therefore taking € small enough, we get

S)a, N+ ACe“K, %0 0)eN ot

>
Qw2 20 O)eN+
a 3/3, N «o
> S)a, N+ ACe"K, "0 O)e" “+
< S)a, N+

On the other hand, a similar calculus for the case N T 3¢, proves that for £ small
enough,

*

Q))pwe+> S)a, N+ ACe®1pi )2/c4K, ¥+ 0 0)e*+< S)ar, N+

which finishes the proof. |

Recall now the Brezis-Lieb Lemma,
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Lemma 3.4.2 ([20]). Let * be an open set and }u, ( be a sequence weakly convergent
in L) 43 > q < € and a.e. convergent in *. Then I/hle )\un\%q)w_ \tn,
n

u\qu)* ++T \u\%q)* +
This property allows us to we prove the following one.

Proposition 3.4.3. Assume 1 < \ < Ao. Then the infimum Sy defined in (3.48) is
achieved.

Proof. First, since A < Ay we have that S, > 1. Let us take a minimizing se-
quence of Sy, }w,,( < X{)F +such that, without loss of generality, w,, ~ 1 and
\wn ) ¥14 125y~ T 2. Clearly this implies that \w,\ xg)%,+=> C, then there exists a
subsequence (still denoted by }w,, () verifying

Wy, — W weakly in X{)F +
Wy ) X1+ S w)x1+ stronglyin L) 4 2 > ¢ < 35, (3.51)
wm) X1+ S w)x1l+ aein .
A simple calculation, using the weak convergence, gives that
\wm\i(g)]-bJr T \wm w\g(g‘)]:n+0 \w\iél)]:rﬂr
0 3naﬂ v w, wp, w|dxdy
Fo
T \wm w\ig)]-nJ) \w\imﬁﬁo 0)2+4
By Lemma 3.4.2, we have that \)wn, w4142, )- > 2 for m big enough. Hence
A\ )wm+ T \wm\g(g)]ir&- )‘\wm)>v<14\3i2)*+
T \wn w\i(g)]?ﬁo \Lu\g(él)];mr )\\wm)xlﬁiz)f 40 0)2+
~ S)a, NWwm  whx18Ga; - 0 Si\w)x1hGay)- 0 0)2+
3 3
~ S)a, NN)wp, uH}xH\L‘;E),JFO SA\w)xlﬁL‘;z), L0 0)2+

By Lemma 3.4.2 again, this leads to

Q) wmt ~ )S)a, N+ Sy )wn w%1+xf;3),+o sA\wm)>,<1+\f;;),+o 0)2+

T )8, N+ SxA\)wm w+)>,<14\i:;z), L0 8,0 0)2+
Since }w,, ( is a minimizing sequence for S, we obtain:

0)240 Sy ~)S)a, N+ Sih)wn  whxIhTs, 0 530 0)2+%
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Thus by Proposition 3.4.1
Wy ) X1+ w)x1+  in L3)" +
Finally, by a standard lower semi-continuity argument, w is a minimizer for Q. O

Proof of Theorem 3.1.2 (2). By Proposition 3.4.3 there exists an a-harmonic function
w / X{)F 4 such that \u\izz), ,T2and

\w\Yg) s A\u\zz)- T Sh

where u T w)x1+ Without loss of generality we may assume w ~ 1 (otherwise we
take |l||instead of w). So we get a positive solution of ) P+ ]

3.4.2. Superlinear case.

In order to prove Theorem 3.1.3, the only difficult part is to show that we have a
(PS).. sequence under the critical level ¢ T ¢= This follows the same type of compu-
tations like in Lemma 3.3.12, with the estimate \775\%231), o Ce 22790 5 which
holds for N > «)2 0 %—L— In this case there is no limitation on A > 1. We omit the
complete details.

3.5. Regularity and Concentration-Compactness

We begin this section with some results about the boundedness and regularity of
solutions. The next proposition is a refinement of Proposition 2.4.3 in order to cover
the critical case p T 3§ 2. It is essentially based on [22].

Proposition 3.5.1. Letu / Hy' / 3) " +be a solution to the problem

I( ) Ay T flz,ut+  in 7,
u>1 in”, (3.52)
{ uT 1 ond’

with f satisfying
1> f)o,s+> C)20 [sP+ I)a,s+/ " * R, andsome 1 <p >3 2. (3.53)

Thenw / L€ )" 4with \u\ pee)- 4> C’)\U\Hg/z), I

Proof. Letw / X{)F +be a solution to the problem
( flx)y? * w+T1 inF,
O wr i (3.54)
ov®

%\le on Jr F .
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Then v T w)x1-+Hs a solution to (3.52). Let

iz, ut

;T .
@)z 20 u)r+

Clearly
1>a>C)20 u? 24/ Le) + forl<p>3S 2 (3.55)

Given T > 1 we denote
wr Tw J)w T+, urTwr)xl+
For 3 ~ 1 we have
a, 3
\wwqﬁw\g(gmﬁT Ko rlﬂ y? wTBH w\F dxdy

0k4)3680 ﬁ3+ﬂ y? *w| w|f dedy.

Jw> T
Using ¢ T ww;ﬁ / X{)F +as a test function we obtain
Ka r]L yr ) w, )ww;ﬁ—ﬂr dxdy T O f)u—luug’ﬁ dx > 30 a)20 u3—|‘u;’f3 dx.
On the other hand, it is clear that
(L y: ) w, )ww;ﬁ—& dxdy T (17 y? aw;ﬂH wlf dady0

035 ﬂ y? *w?| w|f dedy.
Jw>T|

Summing up, we have
\wwg\ig)ﬁﬁz Cn a)20 u?’—l‘u;’«ﬁ dz,
which by (1.30) implies that

\uup\Fag -, > m )20 v’ de, (3.56)

with C’ some positive constant depending on «, 3, N and I || To compute the term on
the right-hand side we add the hypothesis ©° 2 / L3)’ 4 With this assumption we get

ﬂ augug’ﬁ dx > T ﬂ u‘?’ug’ﬁ dx 0 ﬂ au?’u:}ﬁ dx
- Ya< To| Ya—Tyo|

>02T10>ﬂ agdxl )ﬂ)uu?—ﬁzdﬂc{%.

}a—)Tol

2Je
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By the same calculation,

2

~ 2
Oau%ﬁ dr > C3T1 0 )ﬂ as da:[ )ﬂ)u?—ﬁ’” dm{ ° ,

}a*)Tgl

where, since u”°2 / L?)” 4 Cy and C3 can be taken independent of 7. Hence, by
(3.55) it follows that

dﬂ#T)ﬂ <ﬁdx[ 21 asTy €.

Ya—To|

Therefore, choosing T} large enough such that C'e)T7 +< %, by (3.56), we obtain that
there exists a constant K')7} 4 independent of 7', for which it holds

N\ - > K)Tik

LettingT € we conclude that u?° 2 / L3«)” 4 Clearly we can obtain that f)xu+/
L") +for some r > N/, in a finite number of steps. Thus, we conclude applying
Theorem 2.3.3. O

Now we characterize the regularity of the solutions of ) Ptor the whole range of
exponents.

Proposition 3.5.2. Let u be a solution of ) Px+ Then the following holds

(i) Ifa T 2and q ~ 2 thenu / C€ )" +
(ii) Ifa T 2and q < 2 thenu / C*7)” +
(iii) If o < 2thenu / C*)” +

(iv) If o > 2 thenu / C*® 2)" &

Proof. First we observe that, by Proposition 3.5.1, we have v / L€ )’ +and also
fut/ LE) +

(i) Applying Proposition 3.1 of [28], we get that u / C7)” 4 for some y < 2. Since
q ~ 2then fx)u+/ C7)" + so, again by Proposition 3.1 of [28], it follows that
u / C%7)” 4 Iterating the process we conclude that . / C< )~ +

(ii) As before we have u / C7)” + for some v < 2. Therefore f)u+/ C97)” +
It follows that u / C*%7)” + which gives fx)u+/ C?)” + Finally this implies
u /) C%9)7 +

(iii) By Lemma 2.8 of [33] we obtain that u / C")” Horall ¥ /)1, a+ This implies
that fx)u+/ C")” +for every 7 < nlo}qa, a(. Therefore, again by [33], this
time using Lemmas 2.7 and 2.9, we get thatu / C*)” +
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(iv) Since a > 2, we can write problem ) Ptas follows

L) ARBuT s in ",
) ALY 235 T fl)ut+  in 7, (3.57)
{ uTsT1 ond’.

Reasoning as before, we obtain the desired regularity in two steps, using Propo-
sition 3.1 in [28] and Lemmas 2.7 and 2.9 in [33].

O

We end this section adapting to our setting a concentration-compactness result
by P.L. Lions [60], used in the proof of Lemma 3.3.8. This property has been used
in [4, 24, 53] for the standard case, and for example [10, 72] for a different nonlo-
cal operators which include a different fractional Laplacian. We recall that a related
concentration-compactness result for the fractional Laplacian has been recently ob-
tained in [64]. Nevertheless, we need the version corresponding to the extended prob-
lem, and it cannot be deduced from the one in [64].

Theorem 3.5.3. Let }w,(, /n be a weakly convergent sequence to w in X{*)F + such

that the sequence }y* *|| wy|P(, w is tight. Let u, T Tr)w,+and u T Tr)w+ Let
W, v be two non negative measures such that

v ) walf A and  ualfr Sv, asn e (3.58)

in the sense of measures. Then there exist an at most countable set I and points
Yai(i 1 < such that

1. vT|u

F:‘ 0 / ykézk, v > 1,
/1
2 «
2. p~y? o wlfo / [0 i > 1,

/1

Proof. Let p / CF )F + By the trace inequality (1.30) with 7 T 35 it follows that
3/3%
S)a,N—&—)ﬂ ||prn|Fad:B{ > Ka ﬂ v* Y ) pwnAfdady. (3.59)
- Fo

Let K<;T Ky * K3 < F be the support of ¢ and suppose first that the weak limit
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w T 1. Then we get that

m y2 “U) cpwn#er:z:dmi y2 “I ) gawnﬁjﬂsdxdy
N o honlP by 0 N UolP || wn Py (3.60)
K*

03 y? “wpe) ©, wy|dedy.
K*

Since K =is a bounded domain, and y2 @ is an Az weight, we have the compact inclu-
sion

3INO 2+

H)K< 2a+/\/\L’r‘)K< 20é+22,’,< N 2 ,

a /)1, 3+

Therefore, for a suitable subsequence, we get the limit

() 3 “honlbl elfdody 71, asn e

By the weak convergence, given by hypothesis, we obtain
ﬂ y “wnp) @, wy|dxdy N1, asn SE.
Hence, by (3.58) we conclude that
M g2 o) Yowntpdady A o), yfdu, asn 7e.
e Fo
Then, from (3.59) we get
NE B
S)a, N+)ﬂ |¢|Fadu{ >wal ) folfdn, 3¢ /CENE+ (6D
N FQ

If now w T' 1, we apply the above result to the function v,, T w,, w. Indeed if

vl valf S dp and Jp) x4 Sy, asn e,

it follows that
3/3% B
S)a,N+)ﬂ|widu{ >kl ) lolPdu, 3¢ / CEVF 4
- Fo

therefore, ([60]), for some sequence of points }ay ( 1 <, we have

dl/ T / Vk(swk ) d/'[/ N/ ,uk)6$k )
/1 yai
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with g ~ S)a, N—«y,‘z‘*‘/g. Hence, by Lemma 3.4.2, we obtain

dv T |ulf= 0 / Vil -

/1

Let now ¢ be a test function. We have

ﬂ y? “ol| wn|f3d:rdy T ﬂ y? “ol| w\Fda:dyO ﬂ y? Yol Jwy, erﬁBdscdy
Fo Fo Fo

03ﬂ 2 o) Jw, wh w|drdy.
Fo

Taking limits as n € we get that

ﬂgoduT Q

y* ol wlPdzdy0 M
Fo 0

2

~ N y* ol wlPdxdy0 N y? “w/ [0z, ddy,
Fo Fo 1

with the same condition g ~ S)a, N —+y,z’a/ ®. So we obtain the desired conclusion. [






Perturbations of a critical fractional equation

4.1. Introduction

In this last chapter we study perturbations of order zero of the problem (3.1).
Namely, we will focus on the problem

—2a .,
1py L) ARBUT P00 ot i
uT 1 ond’,
where 1 < o < 3, N > « and f belongs to a suitable space.

The equivalent problem for the classical Laplace operator A was previously stud-
ied in [67] and [81]. We follow the approach of the latter along the chapter. We remark
that a parallel work on this problem, for positive solutions, has been performed in [74].

The operator L)u+T ) A4/3u  |lulP 3u is well defined from H®/*)” into its
dual H ©/3)’ +by the Sobolev inequality, see (1.33). Thus it is natural to consider
data f in that space: we have that f / H ®/3)” +if and only if f T ) A42/3g with
g/ Hf/?’) ” 4 the associated norm is given by \ f\ g-a/2 T \g\Hg/z.

Finally we will consider solutions of Problem ) P-+n the following sense.

Definition 4.1.1. Let f / H /%) + We say that u / Hla/s) " s an energy solution
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to problem ) P+f it holds

() aeimw aepde Dy 2u0 prode, 30 /877 + @

4.2. Main results and preliminaries

We will focus on functions f / H ©/3)” 4that are small in the following sense

e <o) NAQDIT Fp / HYP) dwith \p\, T2, (42)
- 0

where c)a, N4+T 29 ) 8@ N0 a/3a The main result of the chapter is the follow-
ing

Theorem 4.2.1. Assume [ C 1 satisfies (4.2). Then the problem ) P-thas at least two
solutions. Moreover, if f ~ 1 a.e. in ~ then these solutions are nonnegative a.e. in ’

We will also prove that, if we relax the strict inequality in condition (4.2), namely
we replace it with the condition

(Vo= 0o, Nap\20ee 30/ B2 4with\p\, T2, (43)
- 0

then we still obtain the existence of at least one solution.

Theorem 4.2.2. Assume [ C 1 satisfies (4.3). Then the problem ) P+has at least one
solution. Moreover, if f is nonnegative a.e. in * then this solution is non-negative a.e.
in’

The condition (4.2) is equivalent to

\p\ e
Of(p<c)a7N—|H+/a, HQO/H?/S)"W}M- (4.4)
\‘P\p
Moreover, since
O f@ Z \f\H*"L/2 \¢\Hg/27 (4’5)

then using the Sobolev inequality (1.33) we obtain the following sufficient condition
on f to satisfy (4.2)
\F\g-arz > c)o, N48)ar, N4/3. (4.6)
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Remark 4.2.1. 1. We point out that an assumption on the size of [ is natural in
order to find solutions of Problem )P+ In fact, if for example [ is a positive
large enough constant then Problem ) P+has no solutions.

2. Condition (4.6) seems to be not sharp in view of the result in [34] for the case
aT 3.

The associated energy functional to problem ) P-Hs given by
2 _ 2
Iu+T 3ﬂ€ A—Q/_ug dz ];ﬂ\w ﬂfudx.

Again critical points of I correspond to solutions of ) P+Hn the sense of (4.1). Indeed,
one of the solutions we will construct in the proof of Theorem 4.2.1 is a local minimum

of Iin HM3) +

4.3. Proof of Theorem 4.2.1

4.3.1. First Solution
We start with the definition of the Nehari manifold associated to problem ) P4
S TYyu/HM®) 4uC1;)[Futul T 1(.

It is natural to look for solutions in this manifold. Note that the condition v / S is
equivalent to the identity

\u\? .o T\u\20 N fu. 4.7)
HS po
Therefore the functional I restricted to S takes the equivalent forms

« - NO «
Dt T gies Sgr (i s
T e 2 ’
3N P30 '

We will use both expressions in the sequel. In particular, using the first one we deduce
that the functional I is bounded from below on S :

NO « INO af

Du+~ SiN\u\Zéz/z ST\f\Hfam\U\Hgﬂ ~ W\f\%w/% (4.9)

where the last step is a consequence of the minimization of the function at® )N 0

OH\f\H_a/zt.
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Remark 4.3.1. Taking (4.9) into account it makes sense to define

c T lggl > €, (4.10)

while the functional is not bounded from below in the whole space Hy' / 3) T+

Note that if % is a local minimum of I in H f‘ / 3) " +then necessarily

\ut\jarz )P 2hun\f ~ 1.
In fact, as we will prove in Lemma 4.3.4 this inequality is strict, namely

\ut\parz )P 2hua\p > 1. (4.11)
In the same way, if u; is a local maximum of [ it holds

\ut\jarz )P 2hun\j < 1. 4.12)

Thus, we first minimize the functional I restricted to S in order to find a critical
point and therefore a solution to the problem )P+ As we will see, ¢; is achieved. To
prove that we start with some preliminary results.

Lemma 4.3.1. Let f C 1 satisfy (4.2). Givenu / Hla/s) " 4assume N fu > 1. Then
there exist two unique constants 1 < o)u+< 7)u+such that both o)u4, T)ut / S
and verify the inequalities (4.11) and (4.12) respectively.

Proof. Let 0)t+T t\u\i{ w2 7 2\u\b. We can compute the point of maximum value
0

of this function,
)N a+/3«a
Nkl |
0

tyT | —--- 22—
M YINO adu\h > '
and
NO at/«a NO at/«
30 N o (VO30 \u\iqa/2 M \u\iqa/2 M
Oty +T N )NO { #TC)Q,]\H#.
@ « \u\p \u\p

Note that 6 is a concave function, increasing on )1, ¢5;+and decreasing on )t,/, € +
with1h 4, ¢ 0)i+T €. By 44) wegetl < qu dx < 0)tpr+ Thus there exist
two unique values 1 < o < tp; < 7 such that

0)r+T ﬂ fudx T 0)o+ 09r+< 1 < 0%o+ (4.13)



87
Multiplying in the previous expression by 7 we have
1T 70)r+ Tﬂ fudx T \7'11\?1,(1/2 \7u\p ﬂ 7 fu,
. S .

thus 7u / S . Moreover,
\Tu\ilgm ) 2RTu\p T 30%r+< 1.
Arguing in a similar way for o, we obtain ou / S and
\ou\zg/2 ) 2hou\l T o°0%0+> 1.

O

Observe that without the condition Y fu > 1 we still can find a value 7 > 1 with
Tu / S satisfying (4.11). Conversely, the condition qu > 1 is guaranteed for any
function u / S that satisfies (4.11).

We notice that the purpose of the strict condition (4.2) on f in the previous Lemma
is just to obtain . fu dxz < 0)tp+ It also appears to be of importance in Lemma 4.3.3
below. It is known that, when one deals with the problem associated to the standard
Laplacian and under certain hypothesis, the condition (4.2) is not sharp, see [34]. We
suspect that a similar fact can occur in our case.

Corollary 4.3.2. In the hypotheses of Lemma 4.3.1, it holds I)Tu+T n d” Itutand
—0o
DNou+T nlo Itu+
1>t>71

Proof. Tt is straightforward once we notice that the function g)t+T I)tu-satisfies
gFtHT 0)t+ qu dx. O

The next property uses a technical result analogous to Lemma 2.2 in [81]. The
proof follows almost word by word the proof performed in that paper, see also [23].
We only have to adapt the calculations to the functional framework of the fractional
Laplacian, we leave the details for the interested reader.

Lemma 4.3.3. Let f C 1 satisfy (4.2). Then

p 5T /Hw)l?% m)o)a,zw\u\jf;?**“ Ofudx{ (4.14)
u 0 ;U op

is achieved and moreover 1 > 1.

Next, the following lemma establishes a crucial property for minima of the func-
tional, see inequality (4.11).
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Lemma 4.3.4. Let f C 1 satisfy (4.2) and letw / S . Then
s Jp AW

roof. Consider the functional, defined for u +uC1,
Proof. Consider the functional, defined f HY?Y 1
\u s
¢)u+T c)a,N—i—HD—N/a ﬂ fudz.
U\p -

If \u\, T 2, we have

¢)tu+T t)c)a, N—}\u\)NO oo O fu dx{ ,

HE/?
thus, by Lemma 4.3.3, given v > 1, to be chosen later, clearly
log  @)ut~ yui.
U p—rY
Note that this infimum is also positive.
Now we suppose by contradiction that there exists v / S such that
\\des 2R T L
By the Sobolev inequality (1.33), we obtain
S)oz,N—P\u\f, P 2Ahu\p > 1,

which implies

S)a, N+ 2Dp 3+
Now, substituting (4.16) into (4.7) we get

1T \u\ilgm \u\p Ofuda: T)p  3Hu\p Ofudx.

Finally, by (4.15) and (4.17) we conclude

N o (NOa3a \u\lﬁo/fﬁa
1 <~vyu > ¢)u+T )p 3+ e
NO a e
P
N YN0 ayza \u\ N0 oV L
T)p 3+ 2 — e \u\
NO « \u\{o\//a p |
) )N oH%u\?;qu/2 {)N a4/ 3o &
T 3 _ 2¢T 1

which is a contradiction.

(4.15)

(4.16)

(4.17)

Ofudx
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Lemma 4.3.5. Let [ C 1 be a function satisfying (4.2). Given u / S there exists a
a/3

positive function i, ; H{'")" + 7 R differentiable in a neighborhood of the origin
Uy <<Hf/3) * +such that,
pa)14T 2, pu)zHu 24/ S,

and
() aermw aeim pl Vpp 2us (e

W p 2R SRR

Y142 T

4.18)

Proof. Consider the function
P AT e s w22 [V fu oo
o )+ p ,

By Lemma 4.3.4 we have that

oF

afu)?, 14T \U\zg/z )p 2Ru\p T L.
The proof finishes applying the Implicit Function Theorem to the function F at the
point )2, 1+ a

We are now in a position to prove one of the main results of the chapter.

Proposition 4.3.6. The functional I possess a local minimum in Hy' / 3) "+ in par-
ticular, )P+has a solution. Moreover, if f is nonnegative a.e. in ~ this solution is
nonnegative a.e. in ’

Proof. Consider v the unique solution to the equation ) A ©/3y T fin H U / 3) "+ Let
o T o)v+be as defined in Lemma 4.3.1. Thus, since o)v+ / S, we have

o3 3 oP » 3
Iov+T E\U\Hg/2 ?\v\p O'\U\Hgi/z

3 5 3 (4.19)
o 3 NO « ao 3 ao 3
T E\U\Hg” 0 3N oP\v\} < 37N\U\H§/2 T 37N\f\H—a/z-
Then, by (4.9) and (4.19), the infimum in (4.10) satisfies the estimate
INO af ao’
W\f\%—am > < W\f\%—am <L (4.20)

Note that by the expression (4.8), it is clear that the functional / constrained on
S is weakly lower semi-continuous. Therefore, by the Ekeland’s variational principle
[43], we obtain a minimizing subsequence }u,( <& such that for every n / N:

2 2
Vit Dup+<c¢10 —, it —\un v\ a2 ~ Dup+ Hog v /S
n n 0
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So that, by )i+ (4.20) and (4.8) we have

NO «
3N

« 2 ao?
DNu,+T ﬁ\un\i’g/g O fun <c1 0 < W\f\?{_a/Q

for n large enough. Therefore

N

OZO'3

NO «

0« Ofun. (4.21)

\A\Gase > m Jun and \un\i{aﬂ >
- 0 «

These inequalities, together with (4.5), give

ac? NO «a
N O a\f\H—a/? 2 \un\Hgﬂ >

\f\gr-arz. 4.22)

(67

Thus we have, for a subsequence, that u,, — uq weakly in H o/ 3) " 4withu; € 1. We

claim that \I¥u1 -\ ;o2 T 1. Take z / Hf‘/?’) " 4with \2\ a2 T 2. By Lemma
0

4.3.5, for every n / N there exists a positive function y,,, such that
ws T po, )0z-Hu, 0z+/S

with 0 > 1 small enough. Set ¢,)d0+T p,,, )dz+ Thus, putting v T w; in )ii+and
using the Mean Value Theorem, we have

2
ﬁ\wg u"\Hg/2 ~ )2 )0 Vwstun| 0 0ty)0HIYws+z| 0 0)o+
Dividing by § and taking the limit as § goes to 1 we have

2120 11t g -4~ \TFun Ao

with [[29) 14T )ug® )14 2|. So that, by (4.22) we get

\IFun Ay oo > 2)20 O O‘|¢§>1W\Hm{. (423)

«

Thus we are done once we prove that [£5914l]is uniformly bounded. By Lemma 4.3.5
and (4.22) we obtain

C

un\zgm )P 24\un\£

Fr)1H4=>

for some constant C'. Assume by contradiction that

\un\jpaiz Jp 2R\ /1 asn € (4.24)



91
By (4.24) and (4.7) we deduce the estimate
ﬂ fun T)p 3Au,\p 0 0)2+

Moreover, by (4.22) we derive \uy,\, ~ < for some constant v > 1. Thus, reasoning
like in Lemma 4.3.4 we get

1< N0y >\, \ YT, )+

0
)N a+/3a
)N a#\un\?]’q:ﬂ ’V
INO at+ X

T 3+ Nt \pAY ¥ %/‘ L

which leads to a contradiction. Therefore \ I°Fu;\ y-o,2 T 1 and we have obtained a
weak solution of ) P+

To obtain the strong convergence we proceed as usual. Recalling that I is weakly
lower semicontinuous in S , we get

¢ > Du+> nllhle Dup+T ¢.

This implies, using (4.8), the limits

"r,hle \Un\Hgﬂ T \Ul\Hé‘/Za nr/hle \un\p T \ut\p.
To see that w4 is a local minimum in A f‘ / 3) " +we first show that (4.11) holds. In fact,
sinceu; /S and also Z:;‘ul > 1 by (4.21), it is clear that one of the values o)u; +or
T)uq+given by Lemma 4.3.1 is one. Assume by contradiction, see Lemma 4.3.4, that
uy satisfies (4.12), i.e. o)ui+< 7)uy+7T 2. By Corollary 4.3.2, I')o)uj 41 +< T)ui4
which contradicts the fact that u; is the infimum in S . Hence u; satisfies (4.11) and
o)u;+T 2. Remark that having the strict inequality in (4.4) is crucial in the present
argument. In particular we have obtained 2 T o)u;+< tpr < 7)uq-+ or which is the
same,

)N a+/3«
)N a*\ul\;:ﬂ ’V

2 4.25
<IN ahung X (29
Take £ > 1 small enough such that
N oa+/3a
Nk A [
2< g (4.26)

T tar e
INO afur  2\b 2o A

for \ 2\ HE'? < e. By Lemma 4.3.5 we have that there exists a positive function fi,,, ;

Hf‘/?’) "+ " Rsuch that pu,,,)zHu;  z+/ S forevery \Z\Hg/z < &, with ¢ smaller
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if necessary. Indeed, by continuity we have fi,,,)z+< tar, - fore > 1 sufficiently small.
Thus we get that j1,,,)zHju;  z+verifies (4.11), and as a consequence of Lemma 4.3.1
and Corollary 4.3.2, applied to u; 2, we obtain

Ds)uy  zH~ Dy )zHur 2+~ DHui+ Js /)L, tam, o+

Since, by (4.26) we can take s T 2, we conclude I)u;  z+ ~ I)uj+for every
\2\ jjo/2 < &, i.e, uy is alocal minimum in Hla/s) ==
0

To finish we assume that f ~ 1, then it follows ZfHulH > 1. Take o T o) |y |H>
land 7 T 7)1 |H> 0. We have

\u1\g 0 ﬂ fur T \ul\‘;’{a/2 > )p 2—|\u1\g
- 0
and, since 7|juq ||satisfies (4.12), we get

P20 ()l T P\ N <Dp 247N\,
Thus,

o 3hus < Vpun > ffalz e 307 2w,
which implies 7 > 2. Therefore, by Corollary 4.3.2 we have

D> Dol 42 )i

On the other hand, by the generalized Stroock-Varopoulos inequality [62], we have
ﬂ AT > ﬂ A=y |

which implies T) |y |H> I)u;+ As a consequence, I)ui+T I)|ui|Ho T 2, and thus
lui|l/ S is a solution. -

4.3.2. Second Solution

As in Chapter 3, we will look for the second solution using a classical approach
that relies on the well-known Mountain Pass Theorem, see [5]. As it is usual in critical
problems, the functional I does not satisfy a global PS condition, i.e. a PS. condition
for every c. Our aim is to prove that I satisfies a PS. condition for ¢ below a precise
critical level ¢=. We define

< @ N
=T — N+, 4.27
c c1 0 3NS)OZ, o 4.27)

Note that this critical level differs from the one applied in Section 3.3. This is
caused by the shifting applied to the functional in that section.
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Lemma 4.3.7. The functional I satisfies a local PS,.. condition for any ¢ < c=

Proof. Let }u,( < Hy / %)” 4+be a PS sequence of level ¢ < ¢= It is easy to check

that }u,, ( are uniformly bounded in H/3)” 4 Thus, there exists a subsequence (still
denoted u,,) such that u,, — z; weakly in H 1“ / 3) "+ As aconsequence, z; / H 10‘ / 3) T+
is a solution of ) P+

We rewrite u,, as u, T u; 0 ¢, with ¢, * 1, then applying the Brezis-Lieb
Lemma we get
\un\g T \U1\£ 0 \¢n\g 0 0)2+ (4.28)

On one hand, by (4.28) and taking n large enough we have
< 2 3 2 p
¢ > DuadT Huidd 2\0n\}on - \0n\j0 0)2+
0
2 3 2
~ C1 0 §\¢n\Hg/2 ;\(bﬂ\g 0 0)2+

Hence by definition of c=in (4.27) we obtain

2 3 2 p « N

§\¢H\Hg/2 1;\(bn\p < 37NS)G{,N+“ 0 O)2+ (429)
Taking into account that }u,,( is a PS sequence, in particular we have that

0)2+ T ) IVu,+u,| T \un\z[a/2 \un\p ﬂ fun
S B

T \U1\3H§/2 \Ul\g O Ju1 0 \¢7L\3H(<Jx/2 \d)n\g 0 0)2+ (4.30)
T >Io})u1'ia_u1‘ 0 \¢n\§_1(c;/2 \d)n\g 0 0)2"7
T\ \6a\DO 024

Now we want to prove that ¢,, has a subsequence strongly convergent to 1 in H;' / 3) "%

Suppose on the contrary that there exists C, k > 1 such that \¢,,\ ;;o/2 ~ C, In ~ k.
0
Thus, using (1.33) in (4.30) we get
\Gn\E ? ~ S)a, N40 0)2400 \¢,\E ~ S)a, N42 0 0)2+  (431)
Therefore, by (4.29) and (4.31) we have that

o N o 2 3 2 o N

which is a contradiction. O

Recall that the minimizers for the Sobolev inequality (1.33) are given by the two-
parameter family of functions
E)N a+/3
e 2P 0 3PN o3

Ue 3o )T+T (4.32)
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where 1 / RN, e > 1, see (1.32). In what follows we will denote

2/3
AT \uss\y. BTV Aﬁ/—um\sT)ﬂ |f|r|[a5,wo>aﬂ3d§{ C433)

RN

Note that the last quantity defines a norm in the homogeneous fractional Sobolev space
B/ 3)RN + Both numbers A and B are clearly independent of ¢ and 1, and moreover,
B3 T S)a, N+A43.

Without loss of generality we may assume that 1 / “. We define a cut-off function
6 / CE)RN+by 0)z+T 61)|k|/p+with p > 1, where 6; / C€ )R+is a non-
increasing function satisfying

01)s+T 2if s >

[SCRN V)

01)s+T 1if s ~ 2.

Note that if u4 is the solution constructed in the previous subsection, we can find a
set & < of positive Lebesgue measure such that u; ~ v > 1 a.e. in @ (replace uq
with uy and f with  fif necessary). Forzy / ®, wesetuz 5, T Quc 5, / Hf/g) =
Proposition 4.3.8. In the above notation, for a.e. ©1 / ® there exists e<T eSw1+> 1
sufficiently small such that

tvr Dug 0tz 4y +< 5 Jl<e<es (4.34)

t—1

We observe that when one evaluates the functional in (4.34), one needs to evalu-
ate \Uz z, \ /25 1-€., one needs to evaluate the fractional Laplacian of a product of
0

functions. As in the previous chapters, this is dealt by using the a-harmonic extension.
Consider the family w. z, T Eq)ue 5,4+ With u. 4, given in (4.32). We want to

find a family of modified minimizers in the extended space, by using a cut-off function
in F . To do that we take

/
@)z, y+T gl)wﬁ 2P 0 32 3{’

P

where 6 is defined above. With this notation we define w; ,, T w5, / X{)F +
and 7,4 ) X 14T 1z, ) %

In Chapter 3 the following estimate for w; ,, is proved
\Wezo\Xg T \We,zo\xa 0 O)™ (4.35)
In view of (1.8), (1.9) and (4.35), we have

\Ue,zo\jyar2 2 B*0 0)e (4.36)
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Moreover, there is the following one

\Uzzo \E ~ AP 0 0)eN + (4.37)

We establish now a result that will be useful in the proof of Proposition 4.3.8.

Lemma 4.3.9. Assume a,b > 1, uy, ug 5, defined as above. Fort / |a,b’, it holds

N1 0 20 \2 T \u\20 Nz, \2 O ptl VP Puriic oy do

B (4.38)
0 pt? 2 ﬂ Wz 2o IF 3tz zpur dz 0 o)»sNT (

The proof of this result follows the same arguments as in [23] with the obvious
changes to our setting, so we omit the details.

Proof of Proposition 4.3.8. On the one hand, since I)u; 0 tuc . 4} 1 T ¢1 < cS, by
a continuity argument, we can find ¢1,; > 1 both small enough such that

Duy 0 tuz go+< ¢S 3t /)44 e /), e1+

On the other hand, by Proposition 4.3.9, together with (4.37) and the fact that A and B
are independent of € we have

Duy 0 tug »,+" € ast /e, Je > 1.
Hence there exist t5 > 1 large enough such that
Duy 0tz go+<c1 < ¢S Ft~ty, Ie /),e1+
Thus, we just need to prove that there exist e / )1, £;+such that

tvr Dug 0 tug 5y +< s
to>t>t

forevery 1 < e < &=

Take t / |t1,t2" Clearly we have

~ 2 _ —
Duy 0 tuz g+ T g\ul\ZQ/Q 0 tﬂ) A/7uy) AUz, da
: .

3 2 N
0 g\us,zo\zgm “\ug 0tz 4, \b (4.39)

p
O fuy dx tn fug z, do.



96

Since S)a, NHs attained for the function u. 4, substituting (4.36), (4.37) and (4.38)
in (4.39) we have

s 2 _ _
DHuy 0 tue oo+ = g\ul\gHQ/z 0 tﬂ) A—g/_ul) A‘ig/_us,xo dx
S _

3 2 P

0 §B3 “\ug\p —AP
P P

tm ”ul HU 3“’1@,10 dr P 2 n ||E;$O hp 2U1 dx

N—«o

Oful dx tm fuz 4o dz 0 0)e 2

On the other hand, since u; is solution of ) P4we get

. t3
DNuy 0 tug, o+ > Iui+0 §B3 tP 20 e 2o 2u da

4.40)
tP o (
— AP0 o)sNT%
p
Extending u; by zero outside ~ we get
YNO a+/3
2 D 2\, <
O Hﬁ;ro hp upde T rﬂl" Ul).’b—lg ){E ')wg I1|P 0 63411\[0 a+/3 dz

o 2
) e )
RN £ 9

with 7)z+T )||f 0 24 IN0 @¥3 Thus, there exists a constant v > 1 such that

Ty

2 T
ﬂ uy)x40P 2)x4€*N77>

RN

{deKV

for every ¢ > 1 sufficiently small, z; / ® and K T E\, n)x+dx < € . Therefore

O iz 2o IP %uy dz T e T Kv0 0)5¥—L— (4.41)

Substituting (4.41) in (4.40) we have

N—«

— 3 3 9 tP N-a
DNup 0 tug yo+>¢1 0 §B P “e77 Kv —AP0 o)e™ 2z +
p

Let us now define the function
3 C D
g)s+T B s 2T Ky S—Ap, fors > 1,
3 p
and let s; > 1 be the point of global maximum, i.e.,

1T gFs+T s.B3 )p 24P 3% 2 Ku  sP 24P, (4.42)
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We denote S; T B3/Ap{2/)p % Note that 1 < 5. < S; and s, S Srase = 1. Let
5. > 1 besuch that s, T S1)2 6§+ Since B3/AP T S7 3, by (4.42) we have

BB)p 2+ ﬁ 3 N-a
> YT { 2 0. )2 & )p 247 )2 6. P77 KvTl,
which implies

1
B3)p 24 (p—2 Lo —a
) 3+> e { 5.T)p 2487 3" Kv0 o)st ( (4.43)

This, together with (4.43), gives

3 —a b —a
Duy 0 tuz o+ >¢1 0 %EBS sP 2.5 Ky S—EAPO O>€N2<
p

S3 —a SP —a
Te 0 ?133 SY 2.5 Kk, 2lgrg 0)5N2<
p

Tec 0 %S)Q,N—«—% SP 2T K0 0)5N2a<

TcS S 2 Kv 0 0)6N2‘u<.

This finishes the proof by taking e sufficiently small. o

Lemma 4.3.10. Assume [ C 1 satisfies (4.2). Then the functional I possess a critical
point different from wy, in particular ) P+has a second solution. Moreover, if | ~ 1
a.e. in * then this solution is nonnegative a.e. in *

Proof. Set e v T ur 0 Mug 4, with 1 < e < e<and 1, / @ such that (4.34) holds.
Assume that M > 1 is large enough such that I)n. pr+< ¢;.

Now we set
T by ;11,27 7 HY®) 7 5 such that )14 ur, 9)24T 500 V.
By Proposition 4.3.8 we have that

1 < co T log nd™ IY)tH< =
1 2 v/gt/]l,Z' )7)

Thus, using the Mountain Pass Theorem we obtain a PS sequence of level co, and as a

consequence of Lemma 4.3.7 we can find a critical point uy in Hy' / 3) * 4with energy
level ¢ > ¢1, i.e., us is a solution of ) P+with ug C u;.

To prove the positivity of the solution in the case that f ~ 1, we denote

‘S/'V;T tu /S ;uverifies (4.12)(



98
and c3 T log/. Is easy to see that, taking a larger M if necessary, we can assume
n
e <c3>ep < cS (4.44)

Now, using the Ekeland’s variational principle and following the steps of the proof
of Proposition 4.3.6, we can obtain a PS sequence of level c3. Again, Lemma 4.3.7
implies the existence of a solution uz / S such that I)uz+T c3. Put 7 T 7)|us|H> 1.
Then 7lus]| / S . Finally by Corollary 4.3.2

log! T Iuz+T nd” Itug+~ I)Tuz+~ I)7|us|H
A t—t s

which finishes he proof. |

Remark 4.3.2. Note that us could coincide with us.

4.4. Proof of Theorem 4.2.2

When f satisfies condition (4.3) instead of (4.2) we use an approximation argument.

Proof of Theorem 4.2.2. Consider a sequence of numbers }ey (1 /v < )1, 2+such that
er = lask /€ ,anddefine fr T )2 ep4f. Clearly f} satisfies condition (4.2) for
every k / N. We define [}, and S, in a natural way

Ik)u+T§O A—FX/_uEd:c %O'W (M o de,

ST Yu/HYY 0 C 1) IYubul T 1.
Let ux / S be the local minimum found via Theorem 4.2.1, namely
I )ur+T logly ;T .
Nk
In particular it holds
VJup+2] T1 3z /) HY?) 4 (4.45)

and moreover
\urg\d e \u\p | frug T 1, (4.46)
o _

which by (1.33) and (4.5) implies \uk\za/2 < C for any k& / N and some constant
C > 1 independent of k. Take u / S veriofying (4.11). Then

mfku>1 Ik /N
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Applying Lemma 4.3.1 with f T fi,and S T S, we find the values 1 < oy, < tas, <
Tk such that oxu, Tpu / S. Since w satisfies inequality (4.11), we have 7, > 2, thus
by Corollary 4.3.2 we have I} )o,u+> Ii)u+ which leads to

e > Ix)opu+> I )u+> Iu+0 Ek\f\Hfa/z\u\Hg/z > Nut0 Cey.

In particular ¢ > ¢; 0 Cey. Finally, reasoning like in (4.19) with f T f; we obtain

INO af

JNO af
:Na

Na \fe\Y az > ¢k > 10 Cey.

\f\?{w/z <

After passing to a subsequence we can assume that ¢, converges to some value c>such

that
YNO af

:Na

Moreover, since \uk\BHQ /» 1s uniformly bounded, again for a subsequence if necessary,
0

\f\?'_lfa/Q > > C1.

we have u, — uSweakly in H2/%)” + Then, by (4.45) we have that

MFustz| T1 3z /HY?)

and I)uS+> c¢;. This implies v / S and I)u=+T ¢, which finishes the proof.
The positivity of the solution when the datum f is taken nonnegative follows the same
argument as in the proof of Theorem 4.2.1. |

We finally remark that the solution constructed in this way is not necessarily a
minimum of the functional. Therefore we cannot apply the technique of Section 4.3.2
to find a second solution.
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