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Abstract

According to the World Health Organization (WHO), 1 out of every 3 women
suffer from physical or sexual violence in some point of their lives, reflecting
the effect of Gender-based Violence (GBV) in the world. In particular in Spain,
more than 1, 100 women have been assassinated from 2003 to 2022, victims of
gender-based violence.

There is an urgent need for solutions to this prevailing problem in our society.
They may involve the appropriate investment in technological research, among
legislative, educational and economical efforts. An Artificial Intelligence (AI)
driven solution that made a comprehensive analysis of aspects such as the person’s
emotional state, plus a context or external situation analysis (e.g.: circumstances,
location) and therefore automatically detect when a woman’s security is in danger,
could provide an automatic and fast response to ensure women’s safety.

Thus, this PhD thesis stems from the need to detect gender-based violence risk
situations for women, addressing the problem from a multidisciplinary point of
view by bringing together Artificial Intelligence (AI) technologies and a gender
perspective. More specifically, we direct the focus to the auditory modality,
analysing speech data produced by the user given that voice can be recorded
unobtrusively, can be used as a personal identifier and indicator of affective sates
reflected in it.

The immediate response in a human being when in a situation of risk or danger
is the fight-flight-freeze response. Several physiological changes affect the body:
breathing, heart rate, muscle activation including the complex speech production
apparatus and vocalisation characteristics, affecting our speech production. Due to
all these physical and physiological changes and their involuntary nature as a result
of being in a situation of risk, we considered relying on physiological signals such
as pulse, perspiration, respiration, and also speech, in order to detect the emotional
state of a person with the intention of recognising fear, which could be a consequence
of being in a threatening situation. For such, we developed “Bindi”. This is a
an end-to-end, AI-driven, inconspicuous, connected, edge computation-based, and
wearable solution targeting the automatic detection of GBV situations. It consists
of two smart devices that monitor the physiological variables and the acoustic
environment including voice of an individual, connected to a smartphone and a
cloud system able to call for help.

Ideally, in order to build a Machine Learning or Deep Learning Artificial
Intelligence system for the automatic detection of risk situations from auditory data,
we would like to count on speech recorded under realistic conditions belonging to
the target user.

In our first steps, we found the difficulty of the lack of suitable data available,
as there were non-existent (or non-available) speech datasets of real fear (not acted)
currently in the literature. Real, original, spontaneous, in-the-wild and emotional
speech are the ideal categories we needed for our application. Therefore, we
decided to choose stress as the closest emotion to the target scenario possible for
data collection to be able to flesh out the algorithms and acquire the knowledge
needed. Thus, we describe and justify the use of datasets containing such emotion
as the starting point of our investigation. Additionally, we describe the need for the
creation of our own set of datasets to fill such literature niche.
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Then, members of our UC3M4Safety team captured the UC3M4Safety
Audiovisual Stimuli Database, a dataset of 42 audiovisual stimuli to elicit emotions.
Using them, we contributed to the community with the collection of WEMAC, a
multi-modal dataset, which comprises a laboratory-based experiment for women
volunteers that were exposed to the UC3M4Safety Audiovisual Stimuli Database.
It aims to induce real emotions by using a virtual reality headset while the user’s
physiological, speech signals and self-reports are collected.

But recording emotional speech in fearful conditions that is realistic and
spontaneous is very difficult, if not impossible. To get as close as possible
to these conditions and hopefully record fearful speech, the UC3M4Safety team
created the WE-LIVE database. With it we collected physiological, auditory and
contextual signals from women in real-life conditions, as well as the labelling of
their emotional reactions to everyday events in their lives, using the current Bindi
system (wristband, pendant, mobile application and server).

In order to detect GBV risk situations through speech, we first need to detect the
voice of the specific user we are interested in, a speaker recognition task, among all
the information contained in the audio signal. Thus, we aim to track the user’s voice
separating it from the rest of the speakers in the acoustic scenario, trying to avoid the
influence of emotions or ambient noise on the identification of the speaker as these
factors could be detrimental for it.

We study speaker recognition systems under two variability conditions,
1) speaker identification under stress conditions, to see how much these stress
conditions affect speaker recognition systems and, 2) speaker recognition under
real-life noisy conditions, isolating the speaker’s identity, among all additional
information contained in the audio signal.

We also dive into the development of the Bindi system for the recognition of
fear-related emotions. We describe the architectures in Bindi versions 1.0 and 2.0,
the evolution from one another, together with their implementation. We explain the
approach followed for the design of a cascade multimodal system for Bindi 1.0, and
also the design of a complete Internet of Things system with edge, fog and cloud
computing components, for Bindi 2.0; specifically detailing how we designed the
intelligence architectures in the Bindi devices for fear detection in the user.

We then perform monomodal inference first by targeting the detection of
realistic stress through speech. Later, as core experimentation, we work with
WEMAC for the task of fear detection using data fusion strategies. The
experimental results show an average accuracy of fear recognition of 63.61%
with the Leave-hAlf-Subject-Out (LASO) method, which is a speaker-adapted
subject-dependent training classification strategy. To the best of the UC3M4Safety
team’s knowledge, this is the first time that a multimodal fusion of physiological
and speech data for fear recognition has been given in this GBV context. Besides,
this is the first time a LASO model considering fear recognition, multisensorial
signal fusion, and virtual reality stimuli has been presented. We even explored
how the gender-based violence victim condition could be detected only by speech
paralinguistic cues.

Overall, this thesis explores the use of audio technology and artificial intelligence
to prevent and combat gender-based violence. We hope that we have lit the way for
it in the speech community and beyond and that our experimentation, findings and
conclusions can help in future research. The ultimate goal of this work is to ignite
the community’s interest in developing solutions to the very challenging problem of
GBV.

https://www.uc3m.es/instituto-estudios-genero/UC3M4Safety
https://www.uc3m.es/instituto-estudios-genero/UC3M4Safety
https://www.uc3m.es/instituto-estudios-genero/UC3M4Safety
https://www.uc3m.es/instituto-estudios-genero/UC3M4Safety
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Extended Summary

MOTIVATION

According to the World Health Organization (WHO), 1 out of every 3 women
suffer from physical or sexual violence in some point of their lives, reflecting
the effect of Gender-based Violence (GBV) in the world. In particular in Spain,
more than 1, 100 women have been assassinated from 2003 to 2022, victims of
gender-based violence.

GBV, in all its forms, leads to psychological trauma, having behavioural and
physical consequences; survivors may struggle with depression and are at a higher
risk of suicide. Therefore, there is an urgent need for solutions to this prevailing and
widespread problem in our society in the short and medium terms, the latter being
the purpose of the projects in which this thesis is framed.

Solutions to GBV may involve the appropriate investment in technological
research, among legislative, educational and economical efforts. But despite the
technological efforts, several GBV experts question the existing solutions to date
and regard them as outdated, as they present different research gaps. These experts
demand more advanced research in technology for GBV solutions. And in spite
of the impressive advances of Artificial Intelligence (AI), there are no technological
solutions for the automatic detection of life-threatening situations for women that
incorporate intelligence.

An AI-driven solution that made a comprehensive analysis of aspects such as
the person’s emotional state, plus a context or external situation analysis (e.g.,
circumstances, location) and therefore, detect automatically if a woman’s integrity is
in danger, could provide an automatic and fast response to ensure her safety.

The Bindisystem described in this thesis is conceived as an AI-driven,
inconspicuous and and wearable solution that targets the automatic detection of
GBV situations. It consists of two smart devices concealed inside jewelry that
monitor physiological variables and the acoustic scene, including the voice. These
are connected to a smart phone with an application with an AI-driven core that
can produce different kinds of alerts, and also encrypt and send the information
to a securitized server. Bindi is a cutting-edge technology that combines intelligent
Affective Computing (AC) and IoT with physical and physiological multisensorial
signal acquisition and fusion and a secure server infrastructure to autonomously
detect risky situations, flagging alarms, and recording data for further legal actions.

Thus, this PhD thesis is based on the detection of gender-based violence risk
situations for women, addressing the problem from a multidisciplinary point of
view by bringing together Artificial Intelligence (AI) technologies and gender
perspective. More specifically, we direct the focus to the auditory modality, which
we capture with Bindi, analysing speech data produced by the user as voice can
be recorded unobtrusively and can be used as a personal identifier and indicator of
affective state reflected in it.

BASIS OF EMOTIONS

In this thesis, we also give an overview of the basis of affect, mood and emotion
and from where they emerge, the different theories of emotion in cognitive sciences,
their current applications and some important ethical considerations. We explain
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its relationship with the field of Affective Computing, which is the one in charge
of studying and developing technological devices and systems that can recognize,
process, simulate and interpret human emotions and affects.

The immediate response in a human being being threatened is the
fight-flight-freeze response. This response triggers automatically a physiological
reaction that occurs when an event is recognized as frightening. It is an active
defense response where the person either fights, flees or stays. The body is affected
by physiological changes in order to prepare the person to act appropriately and
rapidly.

In response to perceived danger, the Autonomic Nervous System starts a
chain reaction that implies a whole series of changes to the heart rate, breathing
and muscle activation, including the complex speech production apparatus and
therefore characteristics of vocalisations, to meet the challenge of the moment.
Muscle tension can lead to having a constricted throat and vocal chords and
resulting in a person’s voice becoming high pitched, low voice or even absence of
voice entirely. Muscle constriction can also cause increased speech speed, jaw and
tonge tension, hindering intelligibility, and the shutting down of salivation makes
the mouth feel dry and can produce a hoarse voice.

Due to all these physical and physiological changes and their involuntary nature
– the person has no control over them – that occur in a person as a result of being
in a situation of risk, we considered relying on physiological signals such as pulse,
perspiration, respiration, and also speech, in order to detect the emotional state of a
person in Bindi with the intention of recognising fear, which could be a consequence
of being in a threatening situation. An example of a life-threatening situation that
could trigger the fight-flight-freeze responses in women are gender-based violence
situations, those in which a women suffers a physical or sexual assault.

Yet there is still no scientific consensus on a single valid theory of the
fundamental nature of emotion. This is because emotions are very subjective, and
there is no objective way to categorize and quantify them. Thus its inference is a
challenge. Emotion labeling depends on, first, the intrinsic difficulty in interpreting
innermost feelings of oneself. Second, how much we externalize an emotion. And
third, how we interpret certain situations, which can give rise to different emotions.

Another challenge to take into account is the gender personalization challenge.
There seems to be clear differences in the expression of emotions according to sex.
It has been found that gender-stereotypical expressions, – arising from gendered
socialization –, are displayed differently in men and women, as most frequently men
express anger and contempt than women, who most frequently express fear than
men.

DATA CHARACTERIZATION

Ideally, in order to build our Machine Learning (ML) or Deep Learning (DL) AI
system for the automatic detection of risk situations from audio data, we would like
to count on speech recorded under realistic conditions belonging to the target user.

In our first steps, we found the difficulty of the lack of suitable data available,
as speech datasets of real fear (not acted) were unavailable or non-existent in the
literature. Real, original, spontaneous, in-the-wild and emotional speech are the
ideal categories we needed for our application. Therefore, we decided to choose
stress as the closest emotion to the target scenario possible for data collection to
be able to flesh out the algorithms and acquire the knowledge needed. Thus, we
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describe and justify the use of datasets containing such emotion as the starting point
of our investigation.

Additionally, and as a consequence of the previous problem, we describe one of
the main contributions by the UC3M4Safety team that is the creation of our own
set of datasets to fill such literature niche. This has the intention of triggering
and collecting human variables to emotional stimuli that could serve in AI or
ML/DL systems to distinguish emotions automatically and in real time, specially
the emotions of fear or panic in women.

First, our team captured the "UC3M4Safety Audiovisual Stimuli Database".
It is a high-quality dataset of audiovisual stimuli to trigger up to 12 different
emotions in women – including fear – under a controlled scenario. It contains a
dataset of 42 audiovisual stimuli validated with a discrete and continuous emotional
categorization by more than 50 raters each in a crowd-sourcing setting with high
level of agreement.

Second, we contributed to the community with the collection of "WEMAC",
a multi-modal dataset which comprises a laboratory-based experiment conducted
with women volunteers that visualize the UC3M4Safety Audiovisual Stimuli
Database. It aims to induce real emotions by using a virtual reality headset while
the user’s physiological, speech signals and self-reports are collected. Virtual reality
is used to maximize the immersive experience and, consequently, achieve a better
emotion elicitation.

The database consists of 101 women volunteers who never suffered from GBV
and 43 gender-based violence victims (GBVV) women volunteers. The latter
group performed the experiment under the supervision of a psychologist. The 28
audio-visual stimuli are selected from UC3M4Safety Audiovisual Stimuli Database
to be presented, some of them are stereoscopic 360◦ videos. Right after every
emotional video clip visualization, the volunteers are asked to answer out loud two
questions about the video stimuli, to make the volunteers relive the emotions felt
during the video visualization, aiming to capture at least traces of emotion in their
voice.

In addition to the voice, volunteers label their emotional reactions after the
visualization with a joystick. They use the "Modified Self-Assessment Manikins
(SAM)" to annotate continuous labels of emotion (Valence/Pleasure, Arousal, and
Dominance) and one discrete emotion label out of a total of 12 emotional categories.

We published the first release of the WEMAC database with the aim of sharing it
with the research community, encouraging the improvement of the baseline results
and advancing the research of multi-modal emotion analysis in general and, in
gender equality, in particular. However, we cannot publish or realease the raw
speech signals due to ethical and privacy issues, so we have processed the speech
signals and extracted low-level and high-level descriptors widely used in literature
so that the research community can analyze and work with them.

WEMAC is still far from real-life conditions as recording emotional speech
in fearful conditions that is realistic and spontaneous is very difficult, if not
impossible. To get as close as possible to these conditions and perhaps record
fearful speech, the UC3M4Safety team created the "WE-LIVEd̈atabase. With it we
collected physiological, auditory and contextual signals from women in a relevant
and uncontrolled environments (real-world conditions), as well as the labelling
of their emotional reactions to everyday events in their lives, using the current
Bindi system (wristband, pendant, mobile application and server). The database
is composed of 13 women volunteers, some of them being GBVV.

https://www.uc3m.es/instituto-estudios-genero/UC3M4Safety
https://www.uc3m.es/instituto-estudios-genero/UC3M4Safety
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SPEAKER RECOGNITION

For our goal of detecting GBV risk situations through speech, we first need to
detect the voice of the specific user we are interested in, a speaker identification
task, among all the information contained in the audio signal. Thus, we aim to track
the user’s voice separated from the rest of the speakers in the acoustic scenario,
trying to avoid the influence of emotions or ambient noise on the identification of
the speaker as these factors could be detrimental for it. But the performance of ML
models for detecting speakers through the voice drops a lot when they are under
emotional conditions. So the fact that the voice of a GBVV could be influenced by
her emotional state constitutes a challenge for a speaker identification system.

We study speaker identification systems under two variability conditions, 1)
under stress conditions, to see how much these stress conditions affect the SR
systems — in the absence of databases of speech in conditions of realistic fear at that
time in literature -–, and 2) under real-life noisy conditions, isolating the speaker’s
identity, among all additional information contained in the audio signal.

With our studies, we verified that stressed speech in the testing stage affects
negatively when SI systems use an MLP model and are trained only with neutral
speech. As for the case of match and mismatch conditions, in the mixed setting –
using neutral and stressed original utterances for both training and testing – the SI
system achieves a very satisfactory rate for this type of tasks, demonstrating that the
set of features chosen for the task is adequate.

Regarding our experiments in which we augment the data by means of
generating artificial stress, we can conclude that the generation of different
synthetically generated stressed utterances of speech by modifications in pitch
and speed, and their addition to the used database, enlarges meaningfully the
instances to work with, improving substantially the results achieved by the Speaker
Identification system with a 99.45% of accuracy.

In the line of the speaker identification field under real-life conditions, we
studied how speech recorded in real conditions including environmental noise is
detrimental for SR systems, and so we explored how to eliminate it with effective
denoising methods in order to achieve the best SR performances.

We use robust speaker discriminator oriented embeddings extracted from a
Recurrent Denoising Autoencoder combined with a Shallow Neural Network acting
as a back-end classifier for the task of Speaker Identification. The proposed
end-to-end architecture used a feedback loop to encode information regarding the
speaker into low-dimensional representations extracted by a spectrogram denoising
autoencoder. We employed data augmentation techniques by additively corrupting
clean speech with real life environmental noise in a database containing real stressed
speech.

Our proposed architecture achieves reliable results for the whole range of SNRs
contaminated signals, being a more robust approach than the rest of the tested
architectures, specially in lower SNRs. In the resulting tables, lower SI rates were
observed when performing inference in stressed utterances, showing the difficulties
induced by stress. This suggests the need to specifically cater for distortions caused
by emotional speech for speaker identification tasks.

EMOTION DETECTION

In this thesis, we also dive into the development of the Bindi system for the
recognition of fear-related emotions, their detection and classification in a highly
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multidisciplinary approach as there are many contributions supported by other
members of the UC3M4Safety team.

First we describe the architectures in Bindi versions 1.0 and 2.0, the evolution
from one another, together with their implementation. We explain the approach
followed for the design of a cascade multimodal system for Bindi 1.0, and also
the deployment of a complete Internet of Things system with edge, fog and cloud
computing components, for Bindi 2.0; specifically detailing how we designed the
intelligence architectures in the Bindi devices for fear detection in the user. In
an additional study using Biospeech data, we demonstrated that extending our
database with stressful acoustic events is even beneficial for the recognition of stress
in speech and audio.

We then describe our monomodal experimentation with speech for the detection
of fear-related emotions, first by targeting the detection of realistic stress. Later,
as core experimentation, we work with WEMAC for the task of fear detection
with data fusion strategies. There is a strong multimodal component, since we
work on the part of emotions recognition from speech together with data from
physiological signals, in the same way Bindi’s two wearable devices would work.
We use three multimodal data fusion strategies which are evaluated and validated.
The experimental results show an average accuracy of fear recognition of 63.61%
with the Leave-hAlf-Subject-Out (LASO) method, which is a speaker-adapted
subject-dependent training classification strategy.

To the best of the UC3M4Safety team’s knowledge, this is the first time that a
multimodal fusion of physiological and speech data for fear recognition has been
given in this GBV context. Besides, this is the first time a LASO model considering
fear recognition, multisensorial signal fusion, and virtual reality stimuli has been
presented.

ADDITIONAL RESEARCH DIRECTIONS FOR AUDIO AND GENDER-BASED
VIOLENCE

We end this thesis with some parallel and complementary lines of research which
opened up in collaboration with other members of the research group and could be
of help in the prevention of gender-based violence. We explain the work carried
out in the field of "Acoustic Scene Analysis" and the importance of audio events
analysis for the detection of risk situations. We define the term of "Affective Acoustic
Scene Analysis" and with it the need to unify the work carried out on acoustic scenes
and emotions under the same title, in order to lift the research and move it forward.
We study robust and interpretable acoustic embeddings that characterize emotions
in the UC3M Audiovisual Stimuli Dataset.

Additionally, we perform a brief study of fatigue expression, observing the
results by gender, and in future research it would be interesting to characterize it
to see the differences between stress, fear, and fatigue on physiological variables and
their effects on the voice. Furthermore, we explore how the gender-based violence
victim condition could be detected only by speech paralinguistic cues. Finally, and
following another objective aligned with the social good, we briefly explore the
relationship between gender-based violence and climate change.

https://www.uc3m.es/instituto-estudios-genero/UC3M4Safety
https://www.uc3m.es/instituto-estudios-genero/UC3M4Safety
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CONCLUSIONS

Much of the work in this thesis – just as that of the rest of the members of the
UC3M4Safety team– is carried out with a gender perspective in mind, which is
to the best of the team’s knowledge the first time this is done in research, so we
can consider this investigation to be in a preliminary stage in which we are laying
the foundations, and in which we aim to continue doing future work. Overall,
this thesis explores the use of technology and artificial intelligence to prevent and
combat gender-based violence. We hope that we have lit the way for it in the speech
community and beyond and that our experimentation, findings and conclusions can
help in future research. The ultimate goal of this work is to ignite the community’s
interest in developing solutions to the very challenging problem of GBV.

To conclude the thesis we consider some options for future work, such as
using WEMAC and WE-LIVE in more complex deep learning architectures for the
disentanglement of the speaker’s identity and the emotional information with (e.g.,
adversarial model) into different embeddings – low-dimensional space vectors –, to
make the detection of speaker and emotion jointly.

In the general terms of the development of Bindi we also have to consider that
many women remain in a state of shock when assaulted or becoming victims of
an aggression, instead of producing fearful speech. We must take into account this
fact for further developments in the Bindi system, or by analyzing the occurrence
of silences in the audio, together with the other variables that have already been
explored.

Regarding the analysis of acoustic events and acoustic context within Bindi,
also of special interest it is the detection of vocal bursts such as grunts, growls,
heavy-breathing, squeals or shrieks, and also acoustic events such as hits, bumps
or impacts, which would likely denote that a dangerous situation is happening.

The analysis of emotions, particularly fear, and the condition of gender-based
violence discussed in this thesis could also help health-oriented audio AI research,
in particular with applications in mental health care and psychotherapy.

https://www.uc3m.es/instituto-estudios-genero/UC3M4Safety
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Chapter 1

Introduction to Gender-based
Violence

This chapter introduces the motivation and context of this Doctoral Thesis. The first
part gives answers to questions regarding the problem we want to solve, and the
justification of the relevance of this work. The second part encompasses aspects
such as the challenges we face both from the technical and societal points of view.

1.1 Motivation

According to the World Health Organization (WHO), 1 out of every 3 women suffer
from sexual or physical violence in some point of their lives, reflecting the effect of
Gender-based Violence (GBV) in the world [21]. In particular in Spain, more than
1,100 women have been assassinated from 2003 to 2022, victims of gender-based
violence [22]. Gender discrimination and its violence manifestation, are a pervasive
problem in our society that affects 50% of the worldwide population.

According to the European Institute for Gender Equality (EIGE) the term of
gender-based violence is defined as “the violence directed towards a person by
reason of their gender”. They also state that “both women and men experience
gender-based violence but the vast majority of victims are women and girls, and
most of the offenders are men” [23]. Thus, throughout this thesis, we will indistinctly
use the terms gender-based violence and violence against women as we believe that using
the term ‘gender-based’ puts the focus on the existing power inequalities between
men and women, which is the origin of gender-based violence.

Gender-based violence is demonstrated under many distinct not mutually
exclusive manifestations, various incidences of violence can happen at the same
time and reinforce each other. Acts of violence can be driven towards people who
experience inequalities, such as related to their age, race, disability, religion, social
class or sexuality. Thus, the violence and discrimination that women face is not only
based on gender, but they also experience diverse and interlinked forms of violence
[24].

Violence against women can fall under four key forms of violence, this promotes
an exhaustive comprehension of what is considered as gender-based violence. These
forms are: physical, sexual, psychological and economic [25].

• Physical violence: Any unlawful physical force that results in any kind of
physical harm. Physical violence can be manifested as serious and minor
assault, limitation of liberty and ultimately homicide, among others.

• Sexual violence: When any sexual act is performed on a person against their
will, either when consent cannot be given or when they do not give explicit
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consent – either because the person has a mental disability, is a child, or is
unconscious or intoxicated as a result of drugs or alcohol – [26]. It can take the
shape of sexual assault or rape.

• Psychological or Emotional violence: Any action or behaviour that causes
psychological harm to a person, causing fear by intimidation or sabotaging
a person’s sense of self-worth through continuous criticism. Psychological
violence can be manifested as, for instance, intimidation, defamation,
harassment, humiliation or verbal insult.

• Economic violence: All actions or behaviours that cause economic harm to
a person, making the person financially dependent, keeping partial or total
control over their financial resources. Economic violence can be manifested as
restricting access to education, to financial resources or to the labour market;
property damage, or not meeting with economic responsibilities – such as the
maintenance allowance – [27] among others.

In this era of the digital space, new types of discrimination and violence
against women have emerged recently, currently defined as cyber violence
against women and girls (CBAWG). This type of cyber-violence includes
actions such as non-consensual pornography (also called ‘revenge porn’), cyber
stalking, ‘slut-shaming’, ‘doxing’, unrequested pornography, rape and death
threats, gender-based slurs and harassment, ‘sextortion’, gender-based slurs and
harassment, and electronically enabled trafficking [28]. Cyber VAWG is a
continuation of the violence that ocurrs offline. For instance, cyber stalking by an
ex-partner or partner has similar consequences to offline stalking and is considered
the same type of intimate partner violence. The only simple difference it is that
it is facilitated by technology. Thus CVAWG can be manifested as multiple forms
of violence, including psychological and sexual violence. The rising trendencies
also point out that economic violence is on the rise, which happens for instance
when the victim’s employment status (or future employment) is endangered by
information that is released online. The importance for violence in the cyber-space
to be manifested also psychically should be taken into account too [29]. In the last
couple of years, the COVID-19 pandemic has aggravated the risks of cyber-violence
against girls and women. According to [30], “Internet use has increased between
50%-70% from the levels that it was used before the pandemic, and this increased
vulnerability has led to a ghost pandemic of online gender-based violence”.

Structural inequalities is one of the causes gender-based violence is normalised
and reproduced. These are the societal norms, attitudes and stereotypes around
gender in society. Therefore, it is important to recognize structural and institutional
violence when trying to explain the pervasiveness of gender-based violence in
our society. This is defined as “the subordination of women in economic, social
and political life” [24]. Much violence against women is made invisible, which is
barely reported due to the shame and stigmatization suffered by the victims, and
the impunity enjoyed by the perpetrators. GBV is not an individual problem but
a social phenomenon intersecting many different areas of life, in which invisible
violence is the basis for sustaining the most life-threatening forms of violence.
Gender inequality is what lies below the surface, thus it is essential that society
acknowledges and recognizes types of visible and invisible violence, represented
in the iceberg of violence in Fig. 1.1, in order to disarm the social and cultural
framework which perpetrates such violence.
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FIGURE 1.1: Iceberg metaphor of visible and invisible forms of
Gender-based Violence. Illustration based on [31].

GBV, in all its forms, leads to psychological trauma, having behavioural and
physical consequences; survivors may struggle with depression and are at higher
risk for suicide. Therefore, there is an urgent need for solutions to this prevailing
and widespread problem in our society in the short and medium terms, the latter
being the purpose of the projects in which this thesis is framed.

1.1.1 Economic Framework for Gender-Based Violence in Europe

According to the European Institute for Gender Equality (EIGE), the European
Union (EU) spends 366 billion euros a year on the consequences of gender-based
violence [32]. This updated study based on the 2014 titled report Estimating the costs
of gender-based violence in the European Union [33], provides “revised estimates of the
costs of gender-based and intimate partner violence in the EU”.

By extrapolating the results from the UK case study to the European Union, “the
estimated cost of gender-based violence against women in the EU-27 was more than
€290 billion, representing 79% of all costs of GBV against both women and men”.
Besides, “the estimated cost of intimate partner violence against women in the EU-27
was nearly €152 billion, representing 87% of all costs of intimate partner violence
against both women and men” [33].

The different costs of GBV in the report are broken down as follows, with the
greatest cost being the emotional and physical impact on victims (56%) understood
as the harm they suffered as a consequence of the crime, followed by criminal
justice services (21%) (justice system and police) and loss of economic output
(14%) explained as a general increase in incidence data for both women and men.
Other costs to consider can include civil justice services (e.g., divorce and child
custody procedures) and financial support for housing and child protection services.
Specifically, during the Covid-19 pandemic and as one of the consequences of
lockdown restrictions, “intimate partner violence spiked, accounting for almost half
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(48%, €174 billion) of the cost of gender-based violence”. From these, “intimate
partner violence against women makes up 87% of this sum (€151 billion)”.

Even when the amounts taken into account are in the order of billions of
euros, the money that goes to support gender-based violence victims (GBVV) is not
enough, as services such as shelters for women in situations of violence account for
only 0.4% of the cost of GBV.

The United Nations (UN) proclaimed in 1993 the “Declaration on the Elimination
of Violence against Women” [34], and since then, “violence against women and
domestic violence are considered forms of discrimination, matters of criminal law
and violations of human rights”. The 2030 Agenda for Sustainable Development [35]
was adopted by the UN Member States in 2015 and it provides a “shared plan for
prosperity and peace for the planet and the people, in the present and in the future”
1. On it they proclaim the 17 Sustainable Development Goals (SDGs), among which
they recognize “the goal to achieve gender equality and empower all women and
girls” (SDG 5). The SDGs present an urgent call for action in a global cooperation by
all countries.

Moreover, combating GBV is part of the European Commission’s activities to
protect the main EU values and guarantee that the EU Charter on Fundamental
Rights is maintained. As for March 2022, the European Commission proposed
new rules applying to the whole EU to combat gender-based violence and domestic
violence[36], including the criminalisation of female genital mutilation, rape based
on lack of consent, and cyber violence, as well as strengthening the access of victims
to justice, among others.

While it is impossible for human pain and suffering, even a human life, to have a
“price tag” [33], being aware of the cost of violence can guide countries conduct the
money to where it is actually necessary; most life-saving-efficient and cost-effective,
which are both a moral imperative and an intelligent use of economy.

1.1.2 Eradication of Gender-Based Violence

The underlying cause of gender-based violence is related to structural gender
inequality, based on the patriarchal system of society and the imbalance of power
between men and women. The concept of intersectionality recognizes that systemic
inequalities are shaped by the overlapping of different social factors, such as sexual
orientation, gender identity, ethnicity, race, disability, and economic class, among
other factors of discrimination. All these intersect to create particular dynamics
and effects of crossed discrimination. All forms of inequality are jointly reinforcing
and should be analysed and addressed at the same time to prevent inequalities
from reinforcing one another [37]. Therefore in particular, there are certain groups
of women who are more vulnerable to violence, because they already suffer from
gender discrimination, these are the ones that have more difficulties to resist when
confronted with this threatening phenomenon. This includes young and elder
women, children, disabled, racial, ethnic, migrant or indigenous female persons,
perceived to be LGBTIQ+ (defined as “people who have identified themselves as
lesbian, gay, bisexual, transgender, intersex, or questioning”), as well as substance
abusers and those with family or economic difficulties, these are at a higher risk of
suffering from GBV.

This leads to the conclusion that the profile of a GBVV is not homogenous, and
to ensure effective help and support for victims, diverse intervention strategies,

1https://sdgs.un.org/2030agenda

https://sdgs.un.org/2030agenda
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prevention, education and therapy programs are needed. GBVV usually have
individual/special protection needs, in which some are especially vulnerable to
repeat victimization, mostly based on psycho-social-cultural aspects that must be
taken into account when when targeting solutions to this prevailing problem.

Solutions to GBV may involve the correct allocation of economic resources for
legal and social means (e.g.,for the protection of victims and their children), for
education and, in addition, for investment in technological research.

At the general population level, it is necessary to extend prevention from an
integral perspective as awareness-raising measures, based on respect for human
rights, teaching the rejection of all types of violence and including specific actions
against gender-based violence.

In the educational field it is fundamental to go beyond the development of
one-off materials and programs so that prevalent educational measures are used.
Through collaborative experiences between girls and boys in the classroom, based
on mutual respect, great progress could be made in overcoming two of the main
conditions that underlie gender violence: the resistance to change that this situation
produces and the unequal distribution of power in society [38]. Additionally,
institutions such as schools and high schools, ought to develop protocols on how
to act in the event that it becomes aware of violence among students or their
families, by means of educational intervention. Because it is not enough to provide
information, but it is necessary to build equality from practice from the awareness
and education of the new generations.

In the legislative field, there are state regulations in Spain [39], Europe [40] and
Internationally [41] that take care of regulating aspects such as the judiciary, or the
labor field regarding GBV. In Spain, the Law 1/2004 for Integral Protection Measures
against Gender Violence [42] would establish “the essential judicial mechanisms
to avoid a double victimisation of suffering women, involving the unification of a
framework of assistance and protection for all women, whatever is their personal
situation”. This law also establishes “all-inclusive protection measures, whose
purpose is to prevent, eradicate and punish gender-based violence and to provide
assistance to women and minors under their custody, also victims of this violence”.

In the European Union, all EU Member States have signed up to the “main
human rights mechanisms”, which oblige them to “combat violence against women
as it is considered a violation of human rights, and a specific form of gender-based
violence linked to discrimination against women”. In such way, Member States are
obliged to terminate impunity and prohibit all kinds of violence, to provide adequate
protection to survivors, to take measures to prevent it, and to ensure help [40].
Examples of the interest in the prevention of violence and gender equality is the
creation in 2006 of the EIGE2 – already mentioned in Sec. 1.1.1 – which is in charge
of the collection, analysis and dissemination of information on equality and GBV; as
well as the establishment of the Istanbul Convention [43] by the Council of Europe
in 2011 on the fight and prevention of domestic violence and gender-based violence.

From the technological and research fields, the fight against violence in the
European Union has made the EU fund research and innovation projects to fight
Gender-based Violence for more than two decades3. And their research findings
have been translated into recommendations tailored to the different sectors involved
in the protection of victims, namely, police, health and social sectors, needing for
multi-agency cooperation.

2https://eige.europa.eu/
3https://eige.europa.eu/topics/research?ts=technology

https://eige.europa.eu/
https://eige.europa.eu/topics/research?ts=technology
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1.1.3 Technological solutions to combat Gender-Based Violence

Technology has achieved many medical and scientific breakthroughs, but it has also
given rise to new types of online discrimination, hate speech, and virtual human
rights violations, including online gender-based violence or cyberviolence.

Technology can be a tool for empowerment and security for women, to make
them active participants escaping violent relationships. Various target groups can
benefit from the use of technology: not only recovering victims but also social
agents involved in prevention of gender-based violence and protection against it
such as therapists, secutity forces and health services. Technical solutions improve
the efficiency of professional intervening GBV. That results in a better quality of
services offered to citizens and greater security.

All women are at risk of suffering GBV, that’s why effective strategies to prevent
and reduce violence must aim at its roots. “The development of safe technology
to address gender-based violence requires leadership by and collaboration with
women and girls”, UNICEF states [44]. As the causes of GBV significantly differ
from other types of violence, we need to systemize the existing knowledge and then
use it as a standard to adapt technological tools in a way that responds to it. The
rights, needs, and requirements of survivors of this particular violence, are key for its
design. Because UNICEF also states that “technology and its tools should not expose
girls and women to any more harm; solutions have to be built with an extensive and
strong foundation of ethical protocols an standards of the GBV community, while
ensuring digital safety and privacy standards – e.g., anonymity and data protection
–, in order to prevent discrimination and victimization”.

In recent years, digital technology growth has benefited the development of
novel web and smartphone applications aimed to fight against GBV. Together with
the advent of the Internet of Things (IoT), these technologies have triggered the
development of several solutions that range from Law Enforcement Agencies (LEAs)
to mapping sexual violence exposure within a location [45].

Applications based on geolocation features can increment awareness and reduce
a user’s risk of violence, supporting prevention [44]. For instance, Ec Shlirë (Walk
Freely)4, is an app developed by Girls Coding Kosova, enables users to report
instances of sexual harassment in a discreet manner, that are shared with authorities.
A similar app for smartphones, Safetipin5, crowdsources and maps real-time user’s
data — mainly women and girls -– to provide location safety scores in order to
improve public safety.

Another innovative tech use to facilitate access to information and services
without the need of on-site attendance, in a way that is safe, culturally suitable
and with high user accessibility, is the use of interactive chatbots or dissemination
apps. Some examples are Project Caretas6 in Brazil, Maru7 by Plan International
NGO, Virtual safe spaces (VSS)8 and Springster9 by UNICEF. These apps provide
resources and real advice from activists and experts, supplying with information
about self-care and empowerment, gender-based violence and reproductive and
sexual health for women and girls. However, in the case of chatbots, some are
AI-driven and only a few include human interaction in the background. Recent

4http://iwalkfreely.com/
5https://safetipin.com/
6https://www.unicef.org/brazil/projeto-caretas
7https://plan-international.org/news/2020/11/25/new-chatbot-to-tackle-online-hara

ssment-faced-by-girls/
8https://www.unicef.org/media/111806/file/UNICEF-Virtual-Safe-Spaces-21.pdf
9https://global.girleffect.org/products-showcase/big-sis-chatbot-springster/

http://iwalkfreely.com/
https://safetipin.com/
https://www.unicef.org/brazil/projeto-caretas
https://plan-international.org/news/2020/11/25/new-chatbot-to-tackle-online-harassment-faced-by-girls/
https://plan-international.org/news/2020/11/25/new-chatbot-to-tackle-online-harassment-faced-by-girls/
https://www.unicef.org/media/111806/file/UNICEF-Virtual-Safe-Spaces-21.pdf
https://global.girleffect.org/products-showcase/big-sis-chatbot-springster/
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studies are concerned about the potential and efficacy of such chatbots to provide
effective online emotional support to humans, and conclude that “users seemingly
consider human-generated support more reliable than machine automated support”
[46]. That is why the inclusion of human-on-the-loop [47] it is crucial in such apps.

In the case of apps for GBVV, technology also offers improved delivery of
gender-based violence services and reaction quality. Primero/GBVIMS+10 is a
technological solution open source-abed for the management of GBV cases. The
system improves quality of care for survivors and remote collaboration between
supervisors and workers working on such cases. Another app, ROSA11 provides
essential education and the exchange of knowledge for staff to support people who
suffer from GBV. Medicapt12 collects forensic evidence – which is court-admissible
– from survivors of sexual violence, and it can securely transmit these data to
police, jugdes and lawyers. And, VictimsVoice13, which is an app that enables GBV
survivors to annotate incidences of abuse in a legally admissible, secure and safe
manner [44].

Still, these solutions are lacking important features when it comes to GBV
live protection, ensuring women’s safety from physical GBV, that is, attacks and
aggressions. Thus, other solutions aim to target such situations, such as SAFER
PRO14, which is a wearable device developed by a company in New Delhi, India,
that contains a chip built into a wristband that sends alerts to emergency contacts,
when the device is activated by the user, informing of an emergency situation.
Additionally, India issued a directive related to the mandatory inclusion of a panic
button on every mobile phone sold as of 2017. However, panic buttons present
significant limitations regarding women’s safety, such as the requirement of an
active role in their self-protection –certainly not possible under some types of
aggression–, their lack of inconspicuous design –that can lead to stigmas in GBVV–,
or even worse, the lack of infrastructure support [48].

Particularizing the GBV technological solutions developed to date in national
territory, Spain is pioneer in GBV technology. Some institutional solutions include
technological tools to support and protect GBV such as the following:

• VioGén15, a protocol followed by police officers who take a statement from
the complainant of a gender-based violence victim. They fill in a specific
questionnaire which results in a risk rating which, if high, activates police
protection measures. These can range from making follow-up calls to placing
a patrol car 24 hours a day at the door of the victim’s home.

• ATENPRO16, a mobile telephone and telecommunications device that allows
users to contact a Call Centre staffed by personnel specifically trained to
provide an appropriate response to their GVB situation at any time.

• AlertCops [49], it is a service to help citizens in dangerous situations, with the
aim of sending warnings, including geolocalised data, with photographs or

10https://www.gbvims.com/primero
11https://www.rescue-uk.org/perspective/why-we-need-go-mobile-protect-women-violen

ce
12https://phr.org/issues/sexual-violence/medicapt-innovation-2/
13https://victimsvoice.app/
14https://theindexproject.org/award/nominees/3198
15http://www.interior.gob.es/web/servicios-al-ciudadano/violencia-contra-la-mujer/s

istema-viogen
16https://violenciagenero.igualdad.gob.es/informacionUtil/recursos/servicioTecnico/h

ome.htm

https://www.gbvims.com/primero
https://www.rescue-uk.org/perspective/why-we-need-go-mobile-protect-women-violence
https://www.rescue-uk.org/perspective/why-we-need-go-mobile-protect-women-violence
https://phr.org/issues/sexual-violence/medicapt-innovation-2/
https://victimsvoice.app/
https://theindexproject.org/award/nominees/3198
http://www.interior.gob.es/web/servicios-al-ciudadano/violencia-contra-la-mujer/sistema-viogen
http://www.interior.gob.es/web/servicios-al-ciudadano/violencia-contra-la-mujer/sistema-viogen
https://violenciagenero.igualdad.gob.es/informacionUtil/recursos/servicioTecnico/home.htm
https://violenciagenero.igualdad.gob.es/informacionUtil/recursos/servicioTecnico/home.htm
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audio, to police officers to warn them of a witness or the presence of a crime.
AlertCops incorporates an SOS button to reinforce the protection of victims of
gender violence and healthcare personnel17.

• More specific to the protection of GBVV, the COMETA18 Centre offers the
monitoring, operation and installation services of devices that monitor both
the GBVV and the aggressor. The system is designed to trigger an alarm in
cases the GBVV is at risk, such as if the offender gets too close to her, or in case
of the manipulation of the strap or breakage of the bracelet, among others.

A research study performs a thorough analysis of the technological solutions [50]
and states that “the objective must be to achieve an holistic solution, as the proper
integration of diverse approaches could lead to a multi-strategy proposal that could
improve women’s safety and contribute to the end of this kind of violence”.

Despite the technological efforts, the solutions existing to date present different
research gaps questioned by several GBV experts who demand more advanced
research [51] and technology for some solutions regarded as outdated. And in spite
of the impressive advances of Artificial Ingelligence (AI), there are no solutions
that incorporate intelligence for the automatic detection of a risk situation that
could endanger women’s lives. We have already mentioned that panic buttons, or
telematic help centres, are solutions that involve the engagement of the victim in her
own safety. And in cases where women are attacked by an offender or aggressor,
they may not have the resources to carry out these actions.

Novel paradigms are emerging in which new AI tools are proposed, but not as
replacing the existing ones, but rather as complementary, including advantages in
comparison to traditional ones. AI-powered predictive analysis is able to collect
user data, analyze it, and draw valuable insights from it. Predictions regarding
women’s safety can be accurately estimated with a correctly trained AI algorithm, by
analysing the data (i.e.: users state, context) with which it has been fed. AI provides
features such as analytical study of user state and context, custom-made predictions
and decisions, a dynamic cycle of personalized and actionable insights, real-time
accurate data-driven output, and elimination of irrelevant information, providing a
comprehensive solution that would ensure women’s safety.

An AI-driven solution that made a comprehensive analysis of aspects such as
the person’s emotional state, plus a context or external situation analysis (e.g.,
circumstances, location) and therefore, detect automatically whether a woman’s
integrity is in danger, would avoid the person’s requirement for active involvement
their self-protection –certainly not possible under some types of aggression– and
could provide an automatic, faster response to ensure her safety.

1.1.4 A cutting-edge AI technology solution to combat GBV: Bindi

In response to the requirements discussed above and after a socio-psychological
study of the advantages and disadvantages of the technology currently employed
in Spain, the multidisciplinary UC3M4Safety team was born in 2016 – to which both
the author and the supervisor of this thesis belong – to develop an innovative AI
solution called Bindi.

This thesis project was framed in EMPATIA-CM (ProtEcción integral de las
víctimas de violencia de género Mediante comPutación AfecTIva multimodAl), a project

17https://alertcops.ses.mir.es/mialertcops/en/index.html
18https://violenciagenero.igualdad.gob.es/informacionUtil/recursos/dispositivosContr

olTelematico/home.htm

https://www.uc3m.es/instituto-estudios-genero/UC3M4Safety
https://www.uc3m.es/instituto-estudios-genero/EMPATIA
https://alertcops.ses.mir.es/mialertcops/en/index.html
https://violenciagenero.igualdad.gob.es/informacionUtil/recursos/dispositivosControlTelematico/home.htm
https://violenciagenero.igualdad.gob.es/informacionUtil/recursos/dispositivosControlTelematico/home.htm
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of the Convocatoria 2018 de Proyectos Sinérgicos de I+D en Nuevas y Emergentes
Áreas Científicas Comunidad de Madrid that was awarded to the multidisciplinary
UC3M4Safety team from April 2019 until June 2022. Currently, the group
has been awarded a second continuation project until June 2023 namely S4B
(SistemA ciberfísico Para el seguimIENTo y prevencIón de cAsos de violencia de género:
SAPIENTAE4Bindi)) to increase the technological maturity level (TRL) of the
research results of EMPATIA-CM and this thesis is framed in both projects,
EMPATIA-CM and S4B.

The UC3M4Safety team set up from the need to join efforts in the fight against
Gender Violence (GBV) from multiple disciplines. The project has 42 researchers
from the Institute of Gender Studies (IEG) and the departments of Electronic
Technology, Telematics and Signal Theory and Communications of the University
Carlos III of Madrid (UC3M). In addition, the group collaborates closely with
the Centro de Electrónica Industrial (CEI), Universidad Politécnica de Madrid
(UPM). And this multidisciplinarity of the team refers to the involvement of
diverse researchers providing knowledge from several disciplines on it, each one
contributing to the project from their own area.

The UC3M4Safety team started its journey in the Anu and Naveen Jain Women’s
Safety XPrize19 competition in which it was a semi-finalist. It has registered a utility
model application [52] and has obtained several grants and awards.

The main objective that EMPATIA-CM had and now continues in S4B is to
improve the protection that society offers to women in situations of GBV aggression,
generating a reliable and robust protocol to detect, prevent and solve these crimes.
The mission of the innovative technologies proposed in the projects carried out is
to help prevent GBV by means of: 1) the early detection of risk situations, 2) the
interconnection of potential victims and protective agents, 3) the secure and accurate
collection of evidence of the alleged crime, as well as 4) to have sufficient data. All
of these means will help us to study the problem of GBV in a comprehensive and
multidisciplinary way. To this end, the team proposes the use of cyber-physical
systems with Affective Computing (AC). In particular, wearable devices (wearables)
with intelligent sensors that monitor in real time, detect the circumstances in
which the user is and the emotions experienced in risk situations and connect
with protective agents, governmental and / or non-governmental, warning in real
time. The expected impact is the notable improvement of women’s vulnerability
by providing tools that improve women’s safety and favor their personal and
professional development.

This is the multidisciplinary environment of social commitment and
cutting-edge research in which this thesis project is developed. The human
and material resources dedicated to the project are optimal thanks to the adequacy
of the profiles of the researchers involved, the technological infrastructure available
and the funding obtained in the EMPATIA-CM and S4B projects.

Regarding Bindi’s technical operation, this system is conceived as an end-to-end,
smart, inconspicuous, connected, edge-computing, and wearable solution targeting
the automatic detection of GBV situations.

As can be observed in Fig. 1.2, the GBVV wears two smart devices hidden
inside jewelry that monitor the physiological variables and the acoustic environment
including voice. These are connected to a smart phone with an application with an

19https://portal.uc3m.es/portal/page/portal/inst_estudios_genero/proyectos/Women_Saf
ety_XPrize_2018

https://www.uc3m.es/instituto-estudios-genero/UC3M4Safety
https://www.uc3m.es/instituto-estudios-genero/EMPATIA
https://www.uc3m.es/instituto-estudios-genero/EMPATIA
https://www.uc3m.es/instituto-estudios-genero/UC3M4Safety
https://www.uc3m.es/instituto-estudios-genero/UC3M4Safety
https://www.uc3m.es/instituto-estudios-genero/EMPATIA
https://www.uc3m.es/instituto-estudios-genero/EMPATIA
https://portal.uc3m.es/portal/page/portal/inst_estudios_genero/proyectos/Women_Safety_XPrize_2018
https://portal.uc3m.es/portal/page/portal/inst_estudios_genero/proyectos/Women_Safety_XPrize_2018
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FIGURE 1.2: Outline of Bindi’s operation [53]. Reproduced with
permission of the copyright owner, UC3M4Safety team.

AI-driven core that can produce different kinds of alerts, and also encrypt and send
the information to a securitized server.

Bindi is a cutting-edge technology that combines intelligent Affective Computing
and IoT with physical and physiological multisensorial signal acquisition and fusion
and a secure server infrastructure to autonomously detect risky situations, flagging
alarms, and recording data for further legal actions. More specifically, Bindicaptures
metadata and data regarding the user and her context (e.g., custom routines,
geolocation, physiological variables, speech, acoustic events,...) and determines the
affective state of the user considering the circumstances in which it finds herself.
With such data, Bindi uses its AI core to evaluate each situation, and has the
ability to detect automatically when a situation could be life-threatening for the user,
triggering its alarms, alerting emergency services, and offering support and help
on-the-fly. In Fig. 1.3 we represent the evolution of the wearable devices from Bindi
version 1.0 to 2.0.

1.2 Context: Technical Challenges

After having discussed the motivation for this work, we consider it essential to
explain the context in which it is framed. In this subsection we will discuss the
technical challenges arising from this work.

The thesis focuses on the analysis of the affective state of a person by means
of different input or data modalities, but more specifically of the auditory one,
and in particular from speech. Thus, we review some of the challenges regarding
the bias problem in AI algorithms, pointedly on the gender aspect. Moreover,
this technological solution is intended to be embedded in wearable devices and
smartphones, so we expose the concern on the computational challenges of such
devices. Lastly, our ultimate goal with it is to detect when a woman’s life is in danger
due to a situation of gender-based violence, therefore, we briefly present the great
challenge that is to be able to provide solutions to all women/people.

1.2.1 Research, Data & Biases

Intersecting and overlapping social hierarchies found in power, religion, race,
ethnicity, gender, age, sexual orientation, or class, result in the unequal distribution

https://www.uc3m.es/instituto-estudios-genero/UC3M4Safety
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FIGURE 1.3: Evolution of Bindi wearable devices [53]. Reproduced
with permission of the copyright owner, UC3M4Safety team.

access to resources and rights, constituting social inequality. And from an historical
perspective, research advances –and more specifically, in science and technology–
have been oriented, focused and directed towards a specific profile of people due to
the prevailing and historical social inequality.

Social groups to which research, science and technology have not been
historically oriented towards, have been demonstrated to have difficulties in getting
such developments applied and working for them. A clear example of such social
groups are women.

In the medical field, there was a near doubling of the rate of death in women than
in men due to heart disease [54] until the year 2000. There were clear research gaps
in myocardial infarction, carried out taking into account mostly male patients. This
resulted in less adequate diagnosis and treatment received by women than men,
as a result of the education and information received by the physicians. Up to that
date, women were thought to experience a greater variety of symptoms, being called
‘atypical syndromes’, because they did not correspond to the ones experienced by
men and thus myocardial diseases were seldom properly identified in women.

In the field of technology and AI, there are countless examples of such
discrimination, some of the most recent are described next. A well known car brand
was forced to request for return of one of its car models form the market because
male drivers in Germany did not trust the female voice giving directions in the car’s
navigation system [55]. Another study [56] that evaluated the accuracy of YouTube’s
automatically-generated captions across the two standard genders showed robust
differences in accuracy for both genders, with significantly lower accuracy for
women’s voices, displaying the need for sociolinguistically-stratified validation of
systems. An additional study [57] evaluated 3 commercial facial classification
systems showing considerable discrepancies in “the accuracy of classifying darker
females, lighter females, darker males, and lighter males in gender classification

https://www.uc3m.es/instituto-estudios-genero/UC3M4Safety
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systems”. Females with dark skin were the most misclassified group – “error rates
of up to 34.7%” [58] –, whereas “the maximum error rate for lighter-skinned males
was 0.8%”. We can find a further example of the research gap between social groups
in [59], where “wearable devices are be less accurate for detecting heart rate in
individuals with darker skin tones”. Investigators concluded that “wearables are
less accurate for detection of heart rate in such participants, being a possible cause
the lack of research on darker-skinned subjects at the moment of such wearables
being developed”.

We would also like to highlight that, in the speech recognition field, it is known
for a long time that models oriented towards voice recognition of men on the one
hand and of women on the other hand work better if designed separately due to the
known and different speech characteristics each gender has [60].

These are just a few of the many examples that evidence that AI is generally
biased towards specific social groups, discriminating others, as it is the case of
women [61], where AI is historically clearly lacking gender perspective. This
points out that specific attention is needed if research is to build absolutely fair,
transparent and accountable AI algorithms. The role of AI in achieving United
Nations (UN) Sustainable Development Goals (SDG) is controversial: it may enable
the accomplishment of 134 targets across the goals, but also inhibit 59 [62]. Along
with the huge explosion of advances in AI in recent decades, an ignited activism
for social rights has also emerged as algorithmic systems have been criticized for
perpetuating bias, unfair discrimination, and contributing to inequality [63].

Despite the breakthroughs uncovering biases in subfields of AI such as Natural
Language Processing (NLP) [64], Computer Vision (CV) [65] and Medicine and
Healthcare [66], from the Affective Computing point of view – when the task
requires recognizing, or simulating human affects –, there is little evidence in
literature of the biases of AI algorithms (e.g., using psychobiological features [67])
when the data used for the task are speech signals. Nevertheless, this does not mean
that biases do not exist in such cases, but that it is such a recent field that literature
has not yet been systematically reviewed on the topic.

Thus, extrapolating analysis from other research fields, we provide a brief review
of some of the possible biases in Affective Computing, and more specifically in the
task of Speech Emotion Recognition (SER) that result in possible gender-unbalanced
solutions, and possible ways to mitigate them:

• Sampling bias in datasets creation: Increased amount of data gathered from
male subjects or speakers. There is an active tendency, in emotion speech
recognition databases, to provide the same amount of male and female speaker
data, but for the vast majority of databases that have an imbalance, it is due to
a greater number of male over female speaker data [68].

• Negative set bias (or Closed World Fallacy): Refers to not having enough
samples to make a reliable representation of the whole world in the available
dataset. Datasets may be unbalanced if we want to represent all the categories
or types of data that exist in the world and the dataset does not contain them.
This is a very common bias and factually challenging to address.

• Labelling bias: Labels that come along with data are usually generated by
humans (e.g., expert annotators, crowdsourcing,...) and this bias refers to
the fact that various labelers may annotate the same data differently. Each
annotator bases on their background for labelling, according to their training,
origin, context or trajectory. Therefore the annotation is a consequence of the
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previous perceptions and experience of the annotators. For example, in the
case of emotion annotation, whose character is inherently subjective, the label
may vary according to characteristics of the labeler, such as his or her culture,
emotional intelligence, etc.

• Human evaluation bias: Consists of drawing conclusions based on the
experience or trajectory of the person or persons conducting the research, who
will have perception and analysis biases depending on their context.

The solution to all these biases goes through including a balanced, rich and
diverse number of: data, annotators for such data, and evaluators; in order
to faithfully capture reality, characterize content and data reliably, and draw
appropriate conclusions taking such biases into consideration.

It is important to look out for biases in data and AI algorithms and mitigate
them, because AI can exacerbate and reinforce social biases, with all the negative
consequences that this entails. Data captures reality and reality is biased, if
such biases feed AI algorithms, they will ultimately reinforce and perpetrate
discrimination. Researchers should take biases into account and work towards
fairness and achieving equality in society with their systems, but all of us should
go beyond debiasing, and tackle the discrimination problem on its roots, by taking
social responsibility against structural inequality.

1.2.2 Hardware: Computational complexity and battery

The success of AI algorithms relies in many factors, such as the amount or quality
of the data used for training, the complexity of the models and the accuracy of
the labels, among others. Complex and deep computational models have proven
to be successful due to their good generalization capabilities, and so are more
suitable when the training phase contains lots of data, compared to using smaller
datasets and shallow machine learning algorithms [69]. Thus one of the main
disadvantages of AI models these past few years is this tendency to grow towards
bigger architectures and schemes [70], in order to achieve better performances.
But bigger is not always better for machine learning. However groundbreaking
they are, the consequences of bigger models are severe for both budgets –need of
more computational power and energy supply– and the environment –the more the
energy consumption, the worse for the environment in terms of pollution– [71].

In Bindi the IoT architecture designed considers a three-layer division, i.e.,
edge, fog, and cloud computing [1]. In the system, the edge-computing layer is
conceived as a smart cyber-physical network composed of two devices (a pendant
and a bracelet). The fog computing layer in Bindi is conceived as a smartphone
application. Finally, the relevant information obtained throughout the edge and fog
layers is securely stored in specific computing services in the cloud. And power
consumption management is a requirement for the design of such wearable systems.
If we want to employ AI algorithms in such devices, an accurate measure of the state
of the battery charge and autonomy of the hardware devices involved in each layer
is essential to ensure that the system works when needed.

As part of the UC3M4Safety team’s work, quantitative consumption analysis on
the wearable devices is studied [72], measuring the most energy-demanding actions
through the monitoring part [1]. The team measured the power consumption due to
sensor data communication and acquisition, as they are essential for the system and
are intrinsically related to the specific hardware design of the devices [1].

https://www.uc3m.es/instituto-estudios-genero/UC3M4Safety
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1.2.3 A solution for all women? The generalization challenge of AI in
GBV

In spite of current expectations about the role of Artificial Intelligence in our society
and the impressive advances we have witnessed in the last decade, the robustness
of AI is of great concern. Indeed, the European Union has developed the Artificial
Intelligence Act [73], providing a set of guidelines to protect European citizens from
possible misuses and errors with an emphasis on trustworthiness and the avoidance
of all kinds of biases regarding the demographic characteristics of the users.

There are different approaches to improve AI robustness in the literature, but
most of them coincide in the diagnosis of the roots of the problem: the mismatch
between the mathematical models obtained from training with laboratory data
(captured under controlled conditions) and used then in the real-world where the
conditions are uncontrolled. The more complex the reality, the more data is needed
to correctly obtain accurate models. All data collected needs to capture the diversity
and complexity of the phenomenon to be modeled.

We are aware, as previously stated, that individual vulnerability to GBV is
related to psycho-socio-cultural aspects. Therefore, it is a massive challenge to
develop oneAI support tool for all women, and more specifically for GBVV. Such
solutions can be non acceptable, nor appropriate, and/or non available, or even
dangerous in some circumstances. This is the reason for which we shall consider
a broader dimension. Because this technological solution is very important to save
lives and assure women’s safety. We are aware that we should be able to provide
solutions to all women/people, but it is still a great and complex challenge.

One of the drawbacks of this type of technological solutions is their limited
generalization abilities. This means that the technologies are not currently capable
of automatically adapting to the diversity of GBVV and their changing situations,
for example in daily routines, cultural habits, diversity of familiar situations, etc.
This could impact the performance severely and the rate of false alarms triggered
to raise significantly, which would make the LEA’s resources needed to attend them
completely unaffordable.

As we have mentioned, the complexity of the problem of GBV is dynamic and
hard to measure since the measures taken to combat them, together with the raise of
public awareness and educational efforts, that the different countries apply, modify
its aspect and prevalence. From the point of view of automatically modelling it by
using technological tools and different sensory devices, it is clear that we need to
split the problem, first by understanding the different socio-cultural realities, and
second, the psychological situation of the victims, by means of expert knowledge
and quantitative methodologies from the social sciences.

The observed balance between collective and individual behaviors has to be
translated into a methodology to collect and model data, and to articulate the
relationships between the mathematical sub-models obtained by AI. But not only
the virtuous circle closes when the technologies obtained with the help of the social
sciences are used to enhance the socio-psychological understanding of GBV, but
when the from of the smart integration and aggregation of data captured make
quantitative methods improve substantially.

1.3 Objectives and Relevance

Having given the motivation and context of the challenges to be faced, in this section
we break down the objectives of this thesis and their justification and relevance.
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We believe that the solutions to the GBV problem from the social sciences could
come hand in hand with technology and Artificial Intelligence. We believe that
technology is an enabler for eradicating GBV, but not the only solution itself. Thus,
this PhD thesis aims at detecting situations of risk of gender-based violence for
women, addressing the problem from a multidisciplinary point of view by bringing
together AI technologies and a gender perspective, needing from techniques of
several disciplines.

We want to analyse the emotional state of woman through the auditory
and physiological modalities, – being auditory, speech and acoustic –, but more
specifically, we direct the focus to the auditory modality, analysing the speech
produced by the user, for the detection of emotions in the voice and the ways it
can be combined with physiological information.

Thus, we aim to research on Affective Computing, particularizing on Speech
Technologies and its applications, from a gender perspective, to give a technological
solution that can protect women from gender-based violence risk situations. Fig. 1.4
presents this definition in a conceptual map of this thesis.

Gender Perspective

Affective Computing

Speech
Physiological 

Signals

Acoustic
Scenes

Emotions

GBV 
Condition
Detection

Speaker

Noise

FIGURE 1.4: Conceptual Map framing this PhD Thesis.

There are several key aspects why the voice was selected as a variable to be
recorded with Bindi for the protection of the users. First, in order to capture the
voice, there is no need to carry heavy or complex devices like a helmet, a headband
or a chest band. Voice is one of the signals that can be recorded unobtrusively, just
by using a smartphone or a lavalier microphone; thus it is easy to capture and use
voice data, and also users can easily access to the technology that can record such.

Second, voice is an unique identifier of a person. Any other body signal like skin
temperature (SKT), will not include information regarding the person, without being
able to make a direct link between the person and the signal. Whereas, by capturing
voice, we do capture a lot of relevant information regarding person speaking [74],
voice can be used as a personal identifier, e.g., it can be used for judicial evidence if
stored correctly and protected to avoid modifications and hacks. And third, because
emotions are reflected in the voice, as we will further see in Chapter 2, especially fear
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– for which the absence of voice is also important (further discussion regarding the
aid of physiological variables is done in Sec. 2.2.1).

As stated previously, this thesis was born framed within the EMPATIA-CM
project, more precisely under the Objective 2: To research, design and verify algorithms to
automatically detect risk situations in victims of Gender Violence. Towards the end of the
thesis, it has also taken shape from SAPIENTAE4Bindi, under Objective 1: To reach a
level of maturity of the Bindi system equivalent to a TRL (Technology Readiness Level) 7-8
to be able to implement it with guarantees in the mechanisms of protection and attention to
the Victims of Gender Violence in public administrations, continuing the analysis of the
input modalities of the Bindi portable devices and their processing for the automatic
detection of situations of risk.

To define the focus of this thesis, we describe the general and specific objectives
as follows:
General Objective (GO):

(GO.1): To understand the reactions of women – including victims of gender-based
violence – to situations of risk or danger to the point of being able to generate
automatic detection mechanisms for these situations from the auditory
modality.

Specific Objectives (SO):

(SO.1): To identify the voice of the speaker from among all the information contained
in the audio signal, coping with the influence of emotions or ambient noise.
This is needed first to then perform emotion recognition in speech.

(SO.2): To develop robust machine or deep learning computational models based on
the speech signal to detect fear or panic – or in its absence, its close relative:
stress – in the voice of the target speaker, reflecting the emotional state the user
and giving insight of the context in which the user is in.

(SO.3): To investigate and develop robust multimodal computational models with
the same function as SO.2 where different modalities are combined in an
intelligent way according to the constraints of the Bindi wearable devices. This
thesis project will explore methods of merging the SO.2 models with those
of other modalities contributed by other UC3M4Safety team. This objective
is interdisciplinary, as it requires from data fusion techniques, performing a
very thorough, conscientious and precise work.

(SO.4): Research and develop methods to customise the SO.2 and SO.3 models to
the individual user, in particular with regard to the auditory modality. This
personalization step is crucial to increase the performance of the generic
models.

(SO.5): To ignite the interest of the research community in developing solutions for
the prevention of the very challenging problem of GBV.

1.4 Contributions and Structure of the thesis

In this section we present the contributions of this thesis and the structure to be
followed throughout the chapters. The main scientific contributions of this thesis
are as follows:

https://www.uc3m.es/instituto-estudios-genero/EMPATIA
https://www.uc3m.es/instituto-estudios-genero/UC3M4Safety
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• A comprehensive analysis of the pervasive problem of gender-based violence
and the use of AI as a technological solution, including challenges,
existing strategies and solutions, and limitations. Particularly, the ethical
considerations and challenges of the use of Affective Computing from the
gender perspective.

• A study of realistic stressful speech databases in literature that would be
suitable for our goal of fear recognition through speech and its constraints,
including a robust and stable method to label emotions when annotated
continuously by a limited amount of expert raters.

• A novel multimodal laboratory database for the elicitation of realistic emotions
– including fear – by means of virtual reality called WEMAC together with
other UC3M4Safety team. It includes the physiological and speech variables
of the participants, together with different emotional annotations.

• A novel multimodal database in real-life conditions captured with Bindi called
WE-LIVE, that includes physiological and speech variables, geolocation and
wrist accelerometers, together with different emotional annotations also in
close collaboration with other UC3M4Safety team.

• A data augmentation strategy to cope with the negative effects of stress
conditions in speech for the task of speaker recognition by means of
synthetically generated stressed speech. This technique could be extrapolated
to the problem of fear detection through speech when data are limited.

• A robust machine learning model for the task of speaker recognition under
noisy conditions that denoises speech at the time that identifies the speaker,
including speech under stress conditions. We prove the model to be more
robust and stable than other methods for the detection of the speaker in
conditions of loud noise.

• A design of a cascade multimodal system for Bindi 1.0 and its consequent
evolution to an asynchronous hybrid fusion system of the physiological and
speech modalities for fear detection.

• A design of an overarching Internet of Things system with edge, fog and
cloud computing components for of BINDI 2.0 again together with other
UC3M4Safety team. Specifically detailing how we designed the intelligence
architectures in the Bindi devices for fear detection in the user and the
experimental validation of such data pipelines.

• A design of low computational complexity models for the detection of realistic
stress through speech.

• A design and validation of a system for the detection of realistic fear using
monomodal – speech – and multimodal – speech and physiological signals –
data systems, emulating the live operation of Bindi’s two wearable devices,
using different data fusion approaches and a speaker-adaptation strategy.

• A methodology and an use case in a preliminary research on the field of
Affective Acoustic Scene Analysis, to study the relationship between an acoustic
scenes and the emotions that they can provoke in people immersed on them,
in collaboration with other UC3M4Safety team.

• A preliminary study on gender-based violence condition detection through
speech and paralinguistic cues also together with other UC3M4Safety team.

As we have introduced before, this thesis is a comprehensive study of how we
can use the auditory modality from the gender perspective for women’s protection
against GBV. Now, we briefly present the structure of the rest of the dissertation.

https://www.uc3m.es/instituto-estudios-genero/UC3M4Safety
https://www.uc3m.es/instituto-estudios-genero/UC3M4Safety
https://www.uc3m.es/instituto-estudios-genero/UC3M4Safety
https://www.uc3m.es/instituto-estudios-genero/UC3M4Safety
https://www.uc3m.es/instituto-estudios-genero/UC3M4Safety
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In Chapter 1 we describe what is GBV and its consequences, serving as the
motivation and background for this thesis.

Chapter 2 presents an introduction to affects, emotions and how they emerge
and their effects in the human body. It also introduces to the topic of Affective
Computing, the AI research field aiming to give the ability of emotional intelligence
to machines, including to simulate empathy.

Chapter 3 describes and and justifies the use of datasets containing stress as
the starting point of our investigation. Additionally, and as a consequence of
lack of realistic fearful speech databases in literature, we describe one of the main
contributions of our UC3M4Safety team that is the creation of our own set of datasets
to fill such literature niche: UC3M4Safety Audiovisual Stimuli Dataset, WEMAC
and WE-LIVE.

Chapter 4 and Chapter 5 are task-focused and experimental, each introducing
the topics of Speaker Recognition – studying topics such as speech denoising
and speaker identification under stress conditions –, and Emotions Recognition –
particularity focused on negative ones, e.g., stress, fear –, respectively, including the
works carried out on this thesis for each field. A comprehensive overview and
discussion about the operation and significance of Bindi is also offered in Chapter 5.

In Chapter 6 we address other complementary research works to this thesis,
such as Affective Acoustic Scene Analysis or gender-based violence victim condition
detection from speech.

Finally, Chapter 7 presents the conclusions from the research works conducted
on this multimodal and multidisciplinary thesis and what we aim to continue doing
after it as future work.

https://www.uc3m.es/instituto-estudios-genero/UC3M4Safety
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Chapter 2

A Multidisciplinary Perspective on
Affective Computing

The present chapter consists of a definition of the field of Affective Computing. It
covers the basis of affect, mood and emotion and from where do they emerge, the
different theories of emotion in affective sciences, their current applications and a
few important ethical considerations.

2.1 Affect, Emotions and Mood

The research field of Affective Computing (AC) comprises “the study and
development of systems that can recognize, interpret, process, and simulate
human affects and emotions” [75]. It is a multidisciplinary field that involves
the fields of computer science, psychology, and cognitive sciences, focused in
allowing robots and computers to respond in an intelligent way to natural human
emotional feedback.

Affect is the unified term to describe states of feeling, such as moods and
emotions. In [76] the authors define that “affective states vary in several ways,
including their intensity, duration, and levels of arousal and pleasantness” – which
we will describe further in Sec. 2.3.2 –. The study also declares that “emotions
play an important role in regulating cognition, behavior, and social interactions,
and affect is considered the experiential state of feeling. Even though in everyday
language, terms like affect, emotion and mood are often used interchangeably, affect
is conceived as the superior category to which emotions and moods belong” [76].

Moods and emotions are mostly differentiated by their duration in time and
they are triggered by specific cause. Emotions are rather intense and ephemeral
experiences that can happen for two reasons. On the one hand, they can be triggered
in response to a particular external stimuli (for instance, events, actions or objects),
and might emerge somewhat unconsciously. In the other hand, they can follow a
cognitive judgement of a stimulus happening in the moment (e.g., How personally
relevant is this stimulus?, Does this stimulus have any relationship with my goals?)
[77].

Moods moreover, have a longer duration in time than emotions, and have a more
diverse nature. For example, a generalized feeling of sadness without a definite
origin could be understood or interpreted as a mood state. These experiences of
affect happening recurrently over a prolonged time period can denote people’s
subjective well-being, for instance their global satisfaction with life, or be a sign of
depression.
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Affect has essential cognitive functions, we use it as a supply of information
when making deductions about objects or people, priming agreeable memories, and
influencing information processing and decision making [77].

In this thesis we focus on the detection of emotions rather than moods. Emotions
can be described as “the brain’s best guesses of what the bodily sensations mean,
guided by the past experience” [78].

2.2 Neurophysiological basis of Affects and Emotions

The limbic system of the brain comprises a group of structures which are in charge
of regulating emotions and behavior. Located deep within the brain, it’s the part
responsible for behavioral and emotional responses [79]. Some of the structures
that are implicated with the actions of the limbic system are located beneath the
cerebral cortex and over the brainstem [80]. Some of them are the thalamus,
the hypothalamus which is in charge of the production of principal hormones
and managing thirst, hunger, and moods among others; and basal ganglia, which
reward processing, habit formation, leaning and movement. But the two major and
most important for emotional processing structures are the hippocampus and the
amygdala [81].

– Hippocampus: It is in essence the memory centre of the brain. It is where
episodic memories are formed, catalogued and archived in long-term storage
crosswise several parts of the cerebral cortex. Connections created in the
hippocampus help to associate the senses with memories. Spacial orientation
has also some origin in the hippocampus [80].

– Amygdala: It is key for the generation of emotional responses and it is located
right next to the hippocampus, specially responsible of feelings like pleasure,
fear, anxiety and anger. Emotional content attached to the memories is due to
the amygdala. The amygdala modifies the intensity and emotional content of
memories and plays a crucial role in creating new memories, especially ones
related to fear. Fearful memories are created only after a few reoccurrences,
which makes ‘fear learning’ a well-known method to research on memories
formation and consolidation, and recall [80].

– Hypothalamus: The hypothalamus is one part of the brain that takes charge
of growth, metabolism, sexual differentiation, emotional responses, and the
desires and drives which are necessary so that an individual can survive
[82]. The hypothalamus, together with the pituitary gland, administers
the blood pressure, emission of hormones, force and rate of the heartbeat,
body temperature, and electrolyte and water levels. The hypothalamus is
also the core for the administration of the activity of the two parts of the
Autonomic Nervous System (ANS), the sympathetic and parasympathetic
nervous systems. Emotional expression depends largely on the sympathetic
nervous system, and it is controlled by regions of the brain hemispheres above
the hypothalamus and by the midbrain below it.

The limbic system, particularly the amygdala, are key controlling different
emotional behaviors, such as anxiety, rage and fear [83]. And from a biological
point of view, fear is a key emotion, as it assist the body to answer accordingly
to threatening situations that could be of harm for an individual. The fear response
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is caused by the stimulation of the amygdala. Initially the amygdala triggers the
hypothalamus, which initiates the fight-or-flight response.

2.2.1 Fight-flight-freeze response

The fight-flight-freeze response –also known as fight-or-flight response– occurs as
a consequence to an event that is recognized as stressful or frightening, it is an
automatic physiological reaction of the body [84]. Examples of such can be seeing
an oncoming vehicle getting fast in the way, getting spooked by someone, or
acknowledging someone walking behind you while walking down a street. The
fight-or-flight response, from an evolutionary perspective, is considered an adaptive
instinct that humans evolved when environmental stimuli or predators endangered
the survival of humans.

Specifically, fight-or-flight is an active defense response where the person either
fights or flees. The body is affected by physiological changes to get the person
ready to act appropriately and rapidly. Freezing can happen before the brain decides
fighting or fleeing, being fight-or-flight on hold momentarily. It’s also called reactive
immobility or attentive immobility. But the moment in which the mind and the
body are conscious, by a process called neuroception, that fighting or running are
no longer alternatives to deal with the perceived threat, this response switches to the
option of remaining still during the entire threatening situation as a last alternative
to save itself [85]. Fight-flight-freeze is an automatic – non-concious – reaction of the
brain and the body, which can’t be triggered or controlled.

The fight-flight-freeze response can not only be triggered by an event, but also
by a psychological fear. The brain associates negative experiences with a specific
situation, which means that fear is conditioned. What can cause fear is called
a perceived threat, or something the brain considers to be dangerous, which are
different for each person. When facing a perceived threat, the brain thinks the person
is in danger, as it acknowledged the situation to be a threat for one’s life. Thus, the
body unconsciously reacts with the fight-flight-freeze answer to preserve one-self’s
life [86].

In such cases, the fight-flight-freeze response is called to be overactive. Which
means it happens when situations from normal life that are not actually threatening
trigger the reaction. These overactive responses are frequent in people who have
experienced traumatic events or suffer from an anxiety disorders. The example of
seeing somebody walking behind you on the street alone need not be dangerous per
se, but can trigger the fight-or-flight response if you are a woman, the person is a
corpulent man, and it is past midnight.

Unlike males, who mostly experience the fight-or-flight response under a
threatening situation – first proposed by Bradford Cannon in 1915 –, women seem
to have two equally likely responses to stressful conditions, fight-or-flight and
tend-and-befriend presented by Shelley Taylor in 2000 [87]. This tend-and-befriend
response produces similar biochemical changes in the body to the fight-or-flight
response.

Due to the exclusion of women from clinical trials in research – as we already
described in subsection 1.2.1 –, the tend-and-befriend theory was discovered just
two decades ago. It states that when faced with a perceived threat, females will
tend to the protection of their offspring (tending) and to look up for social group to
get mutual defense (befriending) [88]. It is believed that, due to natural selection,
humans have a biological system that manages social interactions in the same way
it regulates basic needs as thirst or hunger. And it appears to have its roots in
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this instinctual need to protect children and affiliate with others for greater safety.
Additionally to the basic needs for physical wellbeing, humans are social creatures
that rely on their instincts to interact with others. The females are often inclined to
protect and take care of offspring.

Consequences in Physiology

When faced with a dangerous or threatening situation, the emotional state of
the person can be fear, panic, stress, nervousness, shock, insecurity, worry, ...
Afterwards, a series of reactions triggered by the fight-flight-freeze mechanism
involve physical and physiological changes occurring in the human body.

The first reaction to a threatening situation is generated by the amygdala on
the brain, more specifically in the limbic system [77]. The amygdala is responsible
for regulating the fight-or-flight response and plays a key role in processing of
fear. In the moment that danger is perceived, the amygdala triggers a signal to the
hypothalamus, responsible for hormone release, and connects the endocrine and
nervous systems. The latter then informs the rest of the body via the autonomic
nervous system, which is in charge for controlling the involuntary mechanisms of
the body, and stimulates the sympathetic nervous system (SNS).

When the amygdala triggers a distress signal, the hypothalamus turns on the
sympathetic nervous system by transmitting signals to the adrenal glands [89].
These glands react by injecting adrenaline through the bloodstream.

This causes a series of physiological changes that retrace energy from areas of the
body which are associated with resting or passive processes – such as the digestive
system – to areas of the body that support the individual to be ready for action in
case of an emergency so that it can avoid harm [90]. The heart starts then to beat
faster than in a normal state, providing blood to the muscles, heart and other vital
organs. Heart rate and blood pressure also increase. The blood vessels in the muscles
dilate and muscle tension increases to give the body greater speed and strength [77].
The breathing rate increases and the airways of the lungs open so that they can get
in the maximum amount of oxygen in each breath. All the extra oxygen available is
sent to the brain so that alertness is increased. Senses such as hearing and sight are
also sharpened [89] [91].

During the fight-or-flight response, besides causing vasodilation in skeletal
muscle for speed and strength, the SNS also causes vasoconstriction in the skin,
to allow blood to reach the major organs, leaving the skin looking paler. As
blood vessels narrow, the body can heat up very quickly, so fight-or-flight response
also increases perspiration (sweating). The body is cooled to prevent overheating
by evaporating sweat, and thus allows to continue fleeing or fighting from harm
without feeling exhausted from the heat.

In addition, epinephrine – also known as adrenaline – triggers the release of fats
and blood sugar, at it is these nutrients which flood the bloodstream, providing with
energy to all parts of the body. As long as the threat remains, the hypothalamus will
continue to signal the SNS to keep secreting adrenaline and cortisol to maintain the
body’s activation [92]. The release of excessive adrenaline can cause sympathetic
Acute Stress Disorder (ASD), also known as state of shock.

Specifically, the (ANS) – composed of the sympathetic and parasympathetic
systems – is responsible for regulating involuntary physiological processes.
Within the limbic system, the hippocampus – responsible for the creation of
memories with emotional context – forms emotionally meaningful representations
and interpretation of events. The amygdala – responsible for associating fear
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with threatening situations – is also particularly important in the processing of
fear-related emotions. This connection between the amygdala, the hypothalamus
and the ANS is closely related to reflexes and fight-or-flight responses, fear
expressions in the body, and the activation of neurotransmitters such as adrenaline
and cortisol, which are linked to stress responses.

When the response is neither fight or flight, but freezing, the parasympathetic
nervous system (PNS) takes charge, and takes its role of relaxation to the extreme
by activating the unmyelinated vagus nerve, the main nerve of the PNS [93]. This
neural network works as a vagal brake on the heart, because it slows it to a lower
beat than the one at rest state, it also numbs senses and muscles by dispensing
chemicals into the bloodstream [85].

From the fight-flight-freeze responses, the resulting outcome depends on how
the body has learnt by experiences to deal with each kind of threat, along with
the inborn fight-or-flight plan in the brain, which determines the most favourable
reaction in order to overcome the threat [94] [95].

Consequences in Speech Production

As a reaction to perceived or real danger, the ANS performs many different changes
in the body, regarding the heart rate, muscle activation and vocalisation, breathing,
just to be able to deal with the threatening situation. Depending on the situation
and the individual, each experience different variations of the flight, fight and freeze
responses [96].

One of the main responsible for these changes is the 10th Cranial nerve or the
Vagus nerve. It is the longest nerve of the ANS and goes through the mouth, tongue,
larynx, heart, lungs and digestive system [97]. The vocal tract specifically – formed
by the vocal folds, larynx and pharynx – has a complex nerve system which includes
input from the SNS.

Stress, anxiety and fright can have a profound affect on vocal performance
when triggering the fight-or-flight response. Muscle tension can lead to having
a constricted throat and vocal chords and resulting in a person’s voice becoming
higher pitched, quietening voice or even loss of voice entirely [96]. Muscle
constriction can also cause increasing speech speed, tension in the jaw and tongue
hindering intelligibility, and the shutting down of salivation makes the mouth feel
dry and can produce a raspy voice. The increased breathing rate can also lead to loss
of breath while speaking [96].

When freezing, the heart slows to a beat lower than that at rest, and the muscles
feel numb due to the release of chemicals into the bloodstream. This reaction also
locks the vocal folds apart to keep the oxygen flowing into the lungs. This is the
reason why in the freezing mode a person may feel it physically impossible to speak,
scream or call for help [85].

Due to all these physical and physiological changes and their involuntary nature
– the person has no control over them – that occur in a person as a result of being
in a situation of risk, we considered relying on physiological signals such as pulse,
perspiration, respiration, and also speech, in order to detect the emotional state of
a person – with the intention of recognising fear –, which could be a consequence
of being in a threatening situation. An example of a life-threatening situation that
could trigger the fight-flight-freeze responses in women are gender-based violence
situations, those in which a women suffers a physical or sexual assault. Finding
oneself in a situation of potential danger can entail the aforementioned physical and
physiological changes in the body.
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2.3 Theories of Emotion in Science

After examining where the emotional response arises in the brain and how it affects
the body, – especially fear –, now we present the two main different perspectives
of emotional theory in the field of emotion perception. Whereas it is the discipline
of affective neuroscience the one that aims to develop an deep understanding of
emotions, moods, and feelings and how they are integrated within the brain, yet
there is still no scientific consensus on that there is only one valid theory of the
fundamental nature of emotion. This is where the two apparently opposed theories
that govern the field of emotion perception arise: the categorical theory and the
dimensional theory.

2.3.1 Emotions as Discrete Categories

The categorical theory of emotions posits the existence of six well-defined universal
emotions: “happiness, anger, sadness, surprise, disgust, and fear” [98].

These emotions are basic to humans as we are equipped with biological
instruments to react to universal life situations – such as successes or losses –, and
each emotion guides for a reaction that, during evolution, worked more effectively
than other solutions in similar relevant circumstances for human survival [99].
Each one of the basic emotions is not an individual physiological or affective state
but somewhat a family of related states that people from all cultures may have
experienced due to similar adaptive problems, so these emotions are described as
universal.

Even though the categorical perspective of human emotion does not essentially
need an evolutionary explanation of its origins, humans and animals experience
discrete categories of each emotion as each is believed to come up from an adaptation
that was developed to solve a singular adaptive problem [99]. As an example, the
discrete emotion of fear was thought to be developed as a mechanism to enhance
the survival of the individuals by avoiding dangers over time via evolution [100].
Table 2.1 provides the six categorical basic emotions and next to each, the adaptive
difficulty the emotion might have evolved to solve [101].

Discrete Emotion Adaptive Problem

Happiness Seeking valuable mates
Anger Managing physical threat in the environment

Sadness Strengthening social bonds by inducing compassion [102]
Surprise Awaring of a schema-discrepancy signal [103]
Disgust Avoiding or expelling poisonous food

Fear Avoiding danger

TABLE 2.1: Adaptive problems solved by the basic 6 emotion
categories, from an evolutionary perspective [101].

Basic emotion theory, by applying the Darwinian theory, suggests that the
adaptability feature of emotions increased our gene survival by improving
reproductive options (e.g., joy encourages people to explore and meet new possible
mates) or by by dealing with threats to reproduction (e.g., disgust assists us in
avoiding death) [101] [100]. Yet, some AI applied research is investigating emotions
beyond the big six [104], and the ultimate theory of emotions has not yet been agreed
upon in the research community.
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2.3.2 Dimensional Space of Emotions

Dimensional theories are opposed to the theories of discrete, basic emotions due to
the latter not fully explaining some observations in empirical studies of affective
neuroscience. The circumplex model of affect [105] is a dimensional theory that
suggests that “all affective states derive from cognitive perceptions of neural
impressions that are the product of minimum two independent neuro-physiological
systems: one related to arousal or alertness, and the other related to valence – a
pleasure-displeasure continuum –” [106].

These models based in continuous dimensions – dimensional models – think of
affective experiences as a continuous range of well interconnected and indefinite
states [105]. In the end, emotions are seen as “the product of an intrincate
communication between cognitions, probable of occurring initially in neocortical
structures, and neurophysiological changes related to these valence and arousal
systems” [105]. There is one system associated generally with pleasure and reward,
the mesolimbic dopamine system, and it might represent a neural substratum for the
dimension of valence [105]. In addition, the reticular formation is believed to adjust
arousal balance of the central nervous system over its connections with the limbic
system, thalamus and amygdala [106].

However, since 1974, there are psychologists discussions around this theory,
about the specific interpretation of the dimensions connected to affect and cognition
And from the point of view of categorization of emotions, using the arousal-valence
representation or space, emotions such as fear or anger would lay very close to each
other, when in fact they have different physiological consequences and the sensation
of each is different [107].

The PAD space dimensional theory adds one axis to the arousal-valence space
[108]. The PAD space, pleasure (valence), arousal and dominance, is formed by three
independent emotional dimensions that are thought to describe human emotions
[109]. Pleasure – which is the valence – is believed to be as a continuum ranging
from intense happiness to extreme unhappiness or pain; it comprises extremes
such as happy-unhappy, satisfied-unsatisfied and pleased-annoyed, in order to
determine the level of pleasure of an individual. Arousal is known to be the amount
of mental activity along a single dimension describing emotions, which ranges
from sleep to extreme excitement. On each end, the words that describe arousal
are stimulated-relaxed, excited-calm and awake-sleepy. Additionally, dominance
was thought to be related to feelings of control and restriction, expressing how
much an individuals dominates the emotion from his behaviour. The degree of
dominance lies in a continuum range from complete dominance to submissiveness,
with descriptors such as autonomous, influential and controlling [109].

Emotional databases can be labeled either w.r.t discrete emotions or continuous
emotions, thus recent works propose a discrete-continuous mapping in AC research
[110], [111], [112] and some even suggest the need for a fourth axis to accurately
represent discrete emotions in a 4D continuous space [113].

Focusing on dominance, it refers to the feeling of influence and control over
other people or/and the surroundings or environment versus feeling controlled or
influenced by others or the situation (e.g., anger, power, versus anxiety and fear) [109].
And since in this thesis we have a focus in detecting the fear provoked by a GBV
situation, the dominance axis is of special relevance for the labeling of the emotions,
clearly explaining when a person feels completely overwhelmed by the emotion and
controlled in such situation.
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FIGURE 2.1: Emotional mapping from discrete to continuous
abbreviated PAD emotions space [112]. Reproduced with permission

of the copyright owner, Springer Nature.

2.4 Interpretation and Understanding in Affective
Computing

After describing how emotions arise and what theories there are on how to classify
them, in this section we explain more in depth about the comprehension of this
branch of artificial intelligence that deals with emotion-related tasks.

Affective Computing gives an account of, appears from, or impacts emotion
[114]. It is a multidisciplinary field that is continuously growing. It investigates
how machines can get to interpret human affect, and how communication between
humans and machines can be embedded by affect, how we can design systems with
affect so that their capabilities are enhanced, and how computer interaction can
be transformed by sensing and affective strategies [115]. It encompasses several
disciplines such as psychology, engineering, cognitive science, education, sociology,
and more.

Affective Computing is based on Machine Learning and Deep Learning.
According to [116], “Machine Learning is the subfield of computer science and
a branch of artificial intelligence, which aims to develop techniques that enable
computers to learn”. An agent is considered to learn when its efficiency is improved
by experience with the use of data. In the process of machine learning, first a
computer software is fed with data an it observes it, then it builds a model based on
such data, and uses the model in two ways, first as an hypothesis about the world
and second as a method to solve problems and make inferences and predictions
about new data.

On the other hand, deep learning is a set of machine learning algorithms with the
same purpose, they aim to model high-level representations in data using complex
computational architectures that support non-linear transformations of data [117],
thus having the most flexible ability to model real-world problems with more
generalisability. Deep learning is part of a wider group of machine learning methods
which are based on comprehending representations of data. Research in this area
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attempts to define which representations are optimal to be understood and how to
create models to recognise and interpret these representations.

Artificial Intelligence disciplines can be classified according to the type of data
they employ, e.g., the Computer Vision field analyses images and videos, Speech
Technologies work with the processing of speech data, Natural Language Processing
(NLP) utilizes textual data, ... But Affective Computing is a discipline of AI defined
by the task to be achieved, not restricted by the type of data used.

One categorization that has been made in the field [118] establishes four
areas on it, which are namely, “ 1. the analysis and characterization of affective
states –identification or detection–, 2. the automatic recognition of affective state
–recognition–, 3. the expression of affective states –generation and elicitation–, 4. and
adaption of response to user’s affective state”.

Thus, within the target tasks involving emotions in AC, helped by dictionary
definitions [119], we can then describe the following:

Detection - “to notice something that is partly hidden or not clear or to discover
something, especially using a special method”. In AC, it can be also known as
identification, and it applies to finding an alteration of the emotional state of a
person, by a discovery of something happening that it is altering the neutral basal
state in which the person was inertially. Among the applications of this area are the
identification of emotions or triggers that provoke them.

Recognition - “to know someone or something because it has been seen or heard or
experienced before”. It goes a step further than the detection in AC, because it analyses
the new detected state and categorizes it, in some category –either continuous or
discrete– of already known emotional states. This area is a consequence of the
previous one, as in addition to identifying the moment in which an emotion occurs,
it is also in charge of classifying it into a known type.

Generation - “the production or creation of something”. To this area belongs
the ability to create and synthesize emotions by machines. Examples such as
the generation of emotions in speech –Emotional Text-to-Speech (TTS)– or the
generation of text with emotional content.

Elicitation - “to produce something, especially a reaction”. This area is in charge of
inducing, triggering or evoking an emotional state in a person, which ultimately can
influence their actions or reactions. With applications such as inducing comfort in
telephone customer support.

The convergence of the four aforementioned areas results in the ability of
adaptation in machines, mirroring empathy. Adaptation is defined as “something
produced to adjust to different conditions or uses, or to meet different situations”. Then it
can be said that they simulate empathy, when they are able to identify an emotional
state in a person, and then recognise it, to then generate a synthetic affect response,
and be able to elicit other emotional reactions in people, imitating the mechanism of
human empathy.

But this so-called empathy is an holistic process for which machines need to
understand not only the emotions but also the context and situation that led the
person to that affective state. In our specific case, we aim to detect risk situations
for women, and this can’t only by achieved by recognizing the affective state of a
woman by means of her user data –i.e., physiological variables, speech– but also
together with the situational data –i.e., GPS location, environmental sounds, time
of the day–. All these data together give contextual information to perform an
holistic interpretation and understanding of the situation, which could, ultimately,
determine when the life of a person is in danger.



28 Chapter 2. A Multidisciplinary Perspective on Affective Computing

Interpreting and understanding is classic in other AI fields, i.e., in Speech
Recognition, phonemes of spoken speech are identified – voice-unvoiced decision
–, and recognized – vowels and consonants – which words and sentences that
ultimately have a meaning, interpreted by our higher cognitive understanding.
In this work we are pursuing a similar goal, to make it possible to identify, for
instance, a sudden rise in heart rate, along with the recognition of hurried footsteps
and panting from an audio signal, and that we can interpret together those – at
first glance, isolated – events, making a holistic understanding of the situation,
determining its level of risk to the user.

That said, with all this information we aim to take one step forward with Bindi
on Affective Computing, towards a higher cognitive level. We aim not only at
analysing data from an user in order to detect and recognise isolated emotions
from a basic computational level, but going beyond to interpreting and understanding
such affective states, together with the situational information. This will lead us
to comprehend its context and circumstances, to finally be able to detect a risk,
threatening or dangerous situation for a woman.

2.5 Challenges: Subjectivity, Annotations and Gender

Rosalind Picard, who coined the term Affective Computing [75], describes the
term emotion as “the relations among external incentives, thoughts, and changes
in internal feelings; just like weather is a superordinate term for the changing
relations among wind velocity, humidity, temperature, barometric pressure, and
form of precipitation” [120]. She defines a weather metaphor, stating that “a unique
combination of meteorological qualities creates a storm, a tornado, a blizzard,
or a hurricane, events that are analogous to the temporary but intense emotions
of fear, joy, excitement, disgust, or anger. But wind, temperature, and humidity
vary continually, and not necessarily produce such extreme combinations. Thus
meteorologists do not ask what weather means, but determine the relations among
the measurable qualities and later name whatever coherences they discover” [120].
In the end, Rosalind Picard states that it is difficult to expect researchers to be
successful matching human labels when those labels might not specifically exist,
comparing the problem to not having specific terms for most of the states of weather
but only names for its extreme states, and so the same applies to emotions.

This metaphor makes it clear that emotions are not objective, they are not
digits that can be clearly recognized and differentiated. Emotions are imbued with
subjectivity, and this particularity is bi-directional, as it has two parts/directions.

First, there is an intrinsic difficulty in labeling or categorizing the innermost
feelings of oneself, even though we have better access to them than anyone else.
Still many people do not know how to connect with their own feeling state and
recognize them, although people have feelings permanently [121]. Many Affective
Computing databases are labeled by self-annotations of the subjects participating;
sometimes w.r.t. discrete emotion categories and sometimes referring to continuous
axis – PAD space –. It also depends on the emotional training of each person, i.e., if
the person has not been taught to identify their own emotions or has no experience
recognizing them – lack of emotional intelligence, still a pending subject in many
schools [122] – their own emotions, they may have different perceptions of what the
Likert scales of Arousal or Valence mean. This can vary very much depending on the
person’s background and culture. Just as 2mm of precipitation per hour is a weak
rain in Spain, in the Philippine Islands it may not even be considered rain.
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Second, some other databases are labeled by external annotators, independent
from the subject experimenting the emotion. And in the path of an emotion from
generation to externalisation, the person can have some degree of control of such
externalization – we already explained some of the uncontrollable consequences
of fear from the autonomic nervous system, but not all of the externalization is
automatic, straightforward or unavoidable –, making it difficult for the annotator
to ascertain correctly the emotion being presented by the subject if the person does
not openly externalise it.

To these two is added a third subjectivity. In the particular case in which the
aim is to annotate the elicited emotions in a subject by means of the visualisation of
an audio-visual –or other sensory (i.e., olfactory, gustatory or tactile)– stimulus, or
an real-life experience of a specific kind, aiming for a target emotion, the situation
can be perceived differently by one person than by another. For one person the
visualization – or the experience – of the nightlife in a crowded city can be exciting,
appealing, thrilling, but for others it can be stressful, disturbing or tense. This would
mean that even when trying to elicit a certain emotion in the viewers –i.e., for the
generation of a database– it may not be able to elicit the target emotion because not
all people react in the same way to the same stimuli.

All this subjectivity of emotions means that in the field of Affective Computing,
where AI models are trained with data and labels, they do not have “black-white”,
objective labels as in other areas of AI. Then, either self-annotated or externally
annotated emotional labels should not be taken as absolute gold standard labels.
People can react diversely to the same stimuli, including during different moments
of time according to many variables, such as the state of mind, past experiences,
culture and background. That makes Affective Computing, a field of Artificial
Intelligence subjective and slightly elusive, in which all of these nuances must be
taken into account.

In line with the interpretation and understating of situations as a whole,
there are to date no databases – to the best of our knowledge – that specifically
serve to identify and understand emotional situations. And as described in Sec.
2.4, decisions should be taken away from the theoretical framework in which
isolated emotions are analysed and processed, to understand emotional or affective
situations in an holistic manner, taking the context into account, to fully understand
why a situation elicits a certain emotion in a person. This is crucial in the detection
of risk situations.

On a different note in parallel to Section 1.2.3, and in line with the subjectivity
of emotions that depend on the person, another challenge that arises is the
gender personalization challenge. There seems to be clear differences in the
expression of emotions according to sex [123]. It has been found that men and
women more precisely display gender-stereotypical expressions, – arising from
gender socialization –, as men more correctly express anger and contempt, while
women more exactly express fear and happiness [124] [125]. Specifically regarding
the elicitation of emotions, when visualizing gender-based violence videos, the
identification of the viewers with the protagonist in the video affects directly to the
labelling as women favour to label mainly fear while men label the emotion as anger
or sadness [126]. It could be that societal restrictions on the emotional expression in
men were a reason for the high rates of violence against women perpetrated by men.
These masculine ideals, such as the pressure to meet to expectations of dominance
that society imposes, might increase the potential for boys to involve themselves in
general acts of violence, as assaults, bullying and/or physical and verbal aggressions
[127].
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Regarding such gender differences on the data used to train Machine Learning
(ML) models, some studies show that taking age and gender into account in AC can
convey an improvement in the accuracy of emotion recognition tasks [67], stating
that subject-specific variables should not be overseen in AC analysis, such as gender,
personality and age. It is well known that gender-dependent emotion recognition
systems perform more efficiently than gender-independent ones, thus some studies
improve the discerning quality of gender-dependent features [128], or model gender
information for more robust emotional representation [129], in order to achieve
better accuracies. Results on this topic can be found on Sec. 3.3.1.

2.6 Ethical, Practical and Legal Application Considerations

Affective Computing has made great social impact since its emergence. Some ethical
concerns to be discussed in AC are related to, generically discrimination and biases,
abuse of influence and manipulation, mental health and safety, and sensitive data
privacy.

Yet, there is not guideline of principles to contemporary research ethics protocols
and standards, but some studies aim to gather the most common ones, such as
[130], [131]: “1. informed consent, which implies the avoidance of covert or secret
participant observation 2. privacy of participants (confidentiality and anonymity)
3. avoiding harm (including psychological effect) and doing good 4. cognisance of
vulnerable groups 5. participants’ right to withdraw or terminate 6. restricted use of
data 7. due care in the storage of data 8. avoidance of conflicts of interest”.

Rosalind Picard [132] raises the concern that “a computer that can express itself
emotionally will someday act emotionally”. In the case of the aforementioned
adaptation of machines, the downside is the ability of machines of manipulating
humans. For instance in the case of companies further understanding their clients’
needs and wants, making possible to create a new type marketing, targeting
emotional attachment and control.

In [133], there is a comprehensive discussion on the topic of privacy preservation
and technologies in speaker and speech characterisation tasks. In [134], they give
an overview of the paralinguistic phenomena that can be or even is used to obtain
personal information by means of speech signals. In [131] the authors suggest
guidelines for good practice in Computational Paralinguistics (CP) and AC, such
as choosing the proper performance metric, and accounting for interpretability and
representativity [135].

From the point of view of our application – developing a wearable device that is
able to detect risk situations for the user and alert emergency services automatically
if needed – there are some key ethical concerns to consider.

It is possible that such system – specially in its first stages of development – can
make mistakes. It could trigger up false alarms and even miss out risk situations.
And this possibility of failure could have dangerous consequences. There is a need
to strike a balance between having false negatives and not having false positives,
being preferable to have never any of the former at the expense of having some of
the latter. An approach called passive-aggressive learning takes charge of fixing the
false positives and reducing alerts, in machine learning models [136].

We have previously discussed ML biases in Sec. 1.2.1. On many occasions the
problem of biases in ML comes from the fact that most algorithms are considered
black boxes, i.e., they provide the desired outputs in response to the inputs that are
introduced but are not able to explain how they achieved that conclusion. When
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we let such algorithms make decisions that have great significance for the people
who make those decisions, as in the case of risk situations detection, we should be
able to explain the reasons for those decisions. For both the supervisory technical
staff and the user using Bindi, having a highly explainable system would provide
everyone with confidence in its use, as well as being able to see more clearly how
the developers’ changes to the system affect the decisions Bindi makes.

A couple points to consider, also mentioned in Sec. 1.2.3 are PTSD and diversity.
The fact that users using Bindi would necessarily include victims of

gender-based violence, needs special attention because the violence they suffered
has post-traumatic stress consequences on them. Bindi has to take into account the
specific needs that this type of users may need from women who have never suffered
it, somehow taking into account an assessment of post-traumatic symptomatology.

There is a great cultural diversity in Spain, and even more so in Europe and the
World. Culture is an orientation system for a nation, society, organization or group.
Culture is also a subconscious action-influencing system of values and norms. And
all these aspects affect the way we interact with the world, including how we express
emotions. Bindi needs to take into account the target group that to which it is
oriented and which will use at any given time, in order to be able to provide a system
that can protect all women, taking into account their individual differences.

In the legal aspect, the European and National Regulatory Framework
emphasizes the challenges of AI linked to the need to process real data including the
trade-off between privacy and data protection and the tensions between explanation
and prediction. Addressing these challenges is a task that requires the existence
of appropriate legislation. There is already European legislation related to data
protection, the General Data Protection Regulation (GDPR) [137], but in addition,
work is also underway to specifically regulate AI: the Artificial Intelligence Act by
the European Commission [73] is a draft that is expected to be approved shortly. The
Secretary of State for Digitalization and Artificial Intelligence (Secretaría de Estado
de Digitalización e Inteligencia Artificial (SEDIA)) proposes to test in Spain the new
European Regulation on Artificial Intelligence through a pilot project that will test a
new agency: the Algorithm Oversight Agency (Agencia de Supervisión de Algoritmos)
which is expected to be set up by the end of 2022. The new European regulation will
come into force on January 1, 2024.

2.7 Literature Review on Affective Computing and
Gender-based Violence

Affective Computing makes use of AI – Machine Learning and Deep Learning
– models for the aforementioned tasks: detection, recognition, generation and
elicitation, of emotions. And there is not much literature on AC and GBV together
due to the lack of data from gender-based violence victims, as explained in Section
1.2.1. But it is an emerging field as the world and the research community are are
seeing it as the threat to human life and human rights that it is, and research on the
merger of these two fields is growing.

In the NLP field, researchers [138] captured a dataset for the identification of
feminicide (the murder of women because they are women) from 400 written media
reports, together with its labels. They also trained a machine learning model using
these data, achieving an accuracy on the test data set of 81.1%, with 400 samples
(written articles).



32 Chapter 2. A Multidisciplinary Perspective on Affective Computing

In [139], the authors examine the fundamentals of activist and civil society efforts
to collect counter data about feminicide and gender-related killings, reviewing on
the efforts of activists to monitor and challenge gender-related violence.

In [140], they use a database of data collected over two decades of GBV in
Spain. They use feature selection, predictive algorithms are applied and compared
to predict quite successfully the number of GBV complaints to be presented to a
court within the next six months in the country. The same team [141] has a study on
a biosensors-based surveillance solution for the protection of GBVV, similar to our
contribution [1], serving as a statement which shows that technology is increasingly
being accepted and used as a solution to combat and mitigate gender-based violence.

With the rise of social networks in the last decade, and together cyber-activism
and cyber-bullying, some works [142], [143] explore neural network models to
identify gender-based violence on messages from Twitter in Spanish language based
in Mexico, and discriminate among manually labelled GBV-intentioned tweets.

From the point of view of the other side of the violence, i.e., the perpetrator,
in [144] they analyze the most influential variables and also predict the chance
of perpetration of GBV by using questionnaires data from homeless youth in Los
Angeles. Several supervised machine learning algorithms are used to build an
intimate partner violence (IPV) perpetration triage tool to detect which young
people are at high-risk for engaging in violence perpetration.

Regarding mental health, GBV leads to traumatic disorders such as Acute Stress
Disorder (ASD) and Posttraumatic Stress Disorder (PTSD), and there is current
literature on the usage of machine learning methods in the estimation of subjects
with ASD and PTSD [145] where multiple levels of biological data – clinical,
neuro-endocrine, psycho-physiological– or other data sources – i.e., demographic
information– are used to predict early symptoms or identify risk factors related to
PTSD or ASD.

There is also an interest in the research community in generating gender-neutral
voices for voice assistants and eliminating gender bias [146]. But in general in
the field of speech technologies there is little or no work to combat or prevent
gender-based violence. Thus, this thesis aims to fill that niche and to explore
and investigate the use of speech technologies for the prevention of gender-based
violence, also igniting the interest of the research community in developing solutions
for the prevention of the very challenging problem of GBV.
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Chapter 3

Data Characterization for the
Detection of GBV Situations

The way data is captured influences the methodology that can be applied to it, thus
the methodology has to go hand in hand with the data capture process. In this
chapter we want to bring together the methodological effort from the databases
point of view, explaining the decisions taken with respect to the data used in
chronological order for the research on this thesis. We detail the difficulties found to
achieve our objectives due to the lack of suitable data available, as speech datasets
of real fear (not acted) were are unavailable or non-existent in the literature. The
closest realistic emotion to it is stress, so in this chapter we describe and justify the
use of datasets containing such emotion as the starting point of our investigation.
Additionally, and as a consequence of the previous problem, we describe one of the
main contributions by the UC3M4Safety team that is the creation of our own set of
datasets to fill such literature niche.

The design and collection of the datasets described in Secs. 3.3 and 3.4 has
involved a huge effort of the members of UC3M4Safety team participating in the
EMPATIA-CM project. As part of this effort, the following contributions were made
to this thesis: the design of speech and audio data collection, protocol technical
assistance and support, processing of speech data pipeline as well as assistance with
its capture and user tracking both in WEMAC and WE-LIVE.

In line with a modern Data-Centric AI conceptualization [147], we want to focus
in the use of appropriate data for our task, prioritizing the importance of good,
i.e.fitting, data. This unique and recent technique involves constructing AI systems
with quality data, with an emphasis on ensuring that the data clearly expresses what
the AI must learn, rather than focusing on writing code. It emerged due to former
more costly AI solutions adopted by improving AI models over the years – resources
and economically wise –, and this approach bets for a necessary fundamental shift
to truly unleash AI’s full potential, by providing a systematic method for improving
data, reaching a consensus on the data, and cleaning up inconsistent data.

3.1 Challenges of Auditory Data when used for GBV
Detection

In our application we want to detect risk GBV situations through the auditory
modality. We define in Fig. 3.1 an outline of the auditory data, tasks and conditions
in which it can be recorded, to be used in the detection of GBV situations. There are
3 major components into which the tasks that can use audio data can be divided:
speech – in which speaker and emotion tasks can be performed –, audio (other
than speech) – for the detection of acoustic events and the classification of sounds,

https://portal.uc3m.es/portal/page/portal/inst_estudios_genero/proyectos/UC3M4Safety
https://portal.uc3m.es/portal/page/portal/inst_estudios_genero/proyectos/UC3M4Safety
https://www.uc3m.es/instituto-estudios-genero/EMPATIA
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among others –, and background noise – which could add beneficial or detrimental
information, depending on the task–.

Auditory
Data

Speech

Audio 
(other than

speech)

Background 
Noise

Conditions

Laboratory or         
In-the-wild

Original or
Synthetic

Acted or Real

Spontaneous or
Read

Tasks

Emotions
Recognition

Speaker 
Identification

Detection of
Acoustic Events

Sounds
Classification

Noise Removal

Audio 
Enhancement

FIGURE 3.1: Auditory Data outline to be used in the detection of GBV
situations.

Ideally, in order to build our ML or DL AI system for the automatic detection of
risk situations from auditory data, we would like to count on speech belonging to
the user concerned, plus background audio that could give us the acoustic context
in which the user is set. The former ideally would be clean (not noisy) in-the-wild
and spontaneous speech, including neutral and emotional – and fearful – speech.
The latter ought to include acoustic events and background noise – which is not
always detrimental but can add situational information – so that the situation can
be fully comprehended. Additional sources of information such as physiological
biosensors measuring information from the user would also be desirable, as those
would give a more reliable insight of the circumstances, for a full and comprehensive
understanding of the situation; and the use of such fitting data would lead to the
development of successful ML models for the detection of risk situations.

In this thesis we follow a bottom-up approach, focusing on identifying and
understanding the speaker and emotional content first, and then complement the
conclusions gathered with the additional auditory info, to get a complete overview
of the situation. As a first step, we need to recognise the user (Speaker Identification)
and then the appearance of fear in speech (Emotion Recognition), and for this
purpose we make an analysis of available databases in literature that can be used and
afterwards we provide a full description of our efforts to create a suitable database
for our purposes.

Audio databases are usually recorded under laboratory conditions but
increasingly there are some that are recorded in-the-wild. This metaphor, alike to
the dictionary definition of in-the-wild – beings living free and in a natural state, not



3.1. Challenges of Auditory Data when used for GBV Detection 35

looked after 20 –, invokes realistic, in real-life, natural conditions and with natural
characteristics. However, the performance of models evaluated in-the-wild is still
unreliable partly because of diversity and often unknown contextual factors such as
recording conditions that can be encountered in data in-the-wild.

The laboratory conditions mentioned usually have the advantage of coming from
studio work where there is a target speech to record, exactly intended to capture,
which is highly helpful. The counterpart is that these laboratory conditions are
usually far from real-life conditions because they do not include everything that
can appear when recording in the wild. Laboratory audio recordings are usually
clear and clean – with non-existent or very little noise –, whilst in-the-wild those
conditions are not met (noise from vehicles, domestic, outdoor and indoor sounds,
even bumping sounds in microphone or rubbing if it is being wore). These two
setting conditions are vastly different, the in-the-wild setting is affected by a lot of
variability that can worsen the performance of the tasks.

Synthetically generated audio data cannot perfectly emulate original and real
audio data, but this artificial generation is a way to test how the models work under
specific conditions by using only a few resources – without using the great amount
of resources needed (personnel, material, time, ...) for a database recording –. When
we refer to synthetically generated data we are not describing synthesized data which
results from text-to-speech models, voice-overs or voice generators; instead we refer
to augmented auditory data (in terms of artificial modifications such as speed, pitch,
combination or sum of two signals, etc). These synthetically generated data could
serve as a preliminary way to test ML models or to obtain similar or indicative
results of what we could expect with data recorded in such specific conditions.

The databases with emotional and neutral speech are either recorded by actors
simulating speech under those emotions, or by people under actual real emotions,
which are previously induced. Due to the characteristics of our task at hand, we
prefer to prioritize the use of real emotional databases rather than acted ones, since
actor’s databases may be overacted, which calls into question the value of using
actors to research actual emotions [148]. The difference between spontaneous or
read speech gives rise to another type of categorisation. For our use case, we are
looking for speech that is preferably spontaneous, again, more like real-life speech.

An ML model that could be trained with this type of data would be good for
inference and predictive ability in real-world situations with spontaneous and real
emotional speech. But in the literature there are very few databases that are original,
real and spontaneous including emotional speech – most importantly including fear
– from different speakers, specially female. Thus, taking into account these three
limitations, we initially work with the most suitable databases found in literature
with original, real and spontaneous speech, which include stress, a close relative of
fear.

Because of its importance along the thesis, we believe it is necessary to mention
the subject of stress. Despite the fact that stress is not considered as a recognized
emotion, anxiety and nervousness are closely tied to it [3]. It is described as a condition
of stress one brought on by challenging or unfavorable situation. Both internal and
external variables, such as workload, noises, vibrations, lack of sleep, fatigue, etc.,
can cause stress. This literature work provides a very comprehensive overview of
stress detection system [149], including the role of machine learning in emotion
detection systems, feature selection methods, different evaluation measures, tasks

20https://dictionary.cambridge.org/dictionary/english/wild?q=in+the+wild

https://dictionary.cambridge.org/dictionary/english/wild?q=in+the+wild
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and applications. In addition to studying the connection between the biological
nature of people’s emotions and mental stress.

Stress has several physiological consequences, such as respiratory changes
(faster breathing), increased heart rate, more sweating (skin perspiration), including
increased muscle tension which is also reflected in the vocal cords and vocal
tract, affecting speech production. All of these factors may, directly or indirectly,
negatively affect the quality of speech [150] and help us discriminate between
stressed or neutral speech when using machine learning algorithms [3].

3.2 Compatible and Available Speech Databases in
Literature

Referring to the categorization of speech data in Fig. 3.1, the bold categories are
ideally the ones we need for our fear speech data and our application, but due to the
unavailability of such open databases in literature, we tried to find the most suitable
for our objectives, and we prioritized the use of real speech over acted the most. The
closest alternative there is to real fear are datasets recorded by actors [151], [152].
These include databases with movie clips such as SAFE [153] with a focus on the
emotion of fear. The recording of original, real, spontaneous stress is in turn difficult
to find in literature, since there are very few datasets in which stressed speech is
either simulated or recorded under real conditions. Some examples are SUSAS
database [154], a collected speech data for speech recognition analysis and the design
of robust algorithms to noise and stress; or UT-Scope [155] which provides automatic
and perceptive estimation of Lombard speech from built-in speaker recognition –
the Lombard effect is the unconscious tendency of speakers to increase the volume
of their voice to improve intelligibility when speaking in a noisy environment –; or
the VOCE Corpus [156] – a database in neutral and stress conditions of realistic, read
and spontaneous speech –. Another read stress database we used is Biospeech [157],
to which their authors granted us access.

Some of the work found for stress or real fear use proprietary databases that
have not been released to the public. For fear we found some such as [158], where
they present speech data recordings from emergencies (real urgent and fearful
situations) from an emergency call center; or [159], where speech is recorded from
fear-induced users with agoraphobia. Regarding stress, some realistic state-of-the-art
databases are not fully available to use, such as [160] which include Russian voice
recordings (words, phrases, and sentences) recorded by witnesses of in adverse
events experiencing stress; or [161, 142], where they use virtual environments to
induce stress in the participants; or three German corpora – the FAU, Ulm- and
Reg-TSST – which were all collected following the well-known Trier Social Stress
Test (TSST) protocol [163]. While, it is positive that there is work done and described
in the field, we cannot fully benefit from it since it is not openly available for
research.

3.2.1 VOCE Corpus Database

Since Bindi will be used in real-life to detect dangerous situations it is necessary to
1. work with databases containing speech in real-life conditions and 2. that those
include real fear, panic, or anxiety feelings, which could be evoked in the type of
situations to be detected in the use case. The VOCE Database was used in works [2],
[3] and [10].
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The first condition is relatively easy to obtain in the literature, but not the second
one. As a result, we chose to select a dataset generated in real-life conditions but
studying a relatively close feeling such as stress. Specifically, we selected the VOCE
Corpus [156] because of three main reasons, 1) it includes data captured in real stress
conditions and 2) some sensors used during the capturing stage are similar to those
present in the bracelet for getting additional heart rate measurements, and 3) due
to the existence of previous studies [164] confirming the feasibility of relating heart
rate metrics with stress in speech.

VOCE [156] comprises 45-speaker’s recordings in neutral and stress conditions of
realistic, read and spontaneous speech [3]. The last updated version of this dataset
includes a total of 135 voice recordings that result from a set of 45 students (21 men,
17 women and 7 unidentified) from the University of Porto, with ages between
19 and 49 years. For each user, speech was recorded on three different scenarios:
pre-baseline, baseline and recording, which were acquired as the speaker is reading a
paper 24 hours before the public speech, as the speaker reading the same paper only
30 minutes but before the public speaking setting, and in a public speaking setting
where the speaker is under stress conditions respectively. The heart rate (HR) was
also acquired every second for the three recordings.

Together with these audio files, 117 files containing 2 measured physiological
variables are provided and used to estimate the Heart Rate (HR). These
measurements, taken with a Zephyr HxM BT2 device, are 1. (i) Zecg representing an
averaged and filtered HR value with a sampling period of 1s; and 2. (ii) Zts values
that refer to the instants of time in which R peaks occur in the electrocardiogram
obtained with the device, measured with an internal clock of 16 bits. Each of these
values is accompanied by the Universal Time Coordinated (UTC) corresponding
moment. Furthermore, the database contains a metadata file that includes gender,
age, health information, experience in public speaking, STAI (State-Trait Anxiety
Inventory) [165] test scores and information about the quality of the recordings
(energy level, saturation... ). Unfortunately, this is only provided for 38 out of the
45 individuals in the database and the database only gathers complete information
(the 3 audio files and its corresponding HR values) from 21 individuals.

We divided these 21 speakers into two sets, Set 1 was composed of 10 speakers
whose HR were coherent with the recordings – in the sense that, when a speaker
was reading the heart rate remained stable, but on the public speaking setting the
HR rose –. Set 2 was made out of the other 11 remaining speakers. In Table 3.1
the number of samples per setting are specified, each sample representing 1s audio
frames.

Samples Neutral Stressed Total

Set 1 1.389 3.989 5.378
Set 2 1.716 4.858 6.574
Total 3.105 8.847 11.952

TABLE 3.1: Number of speech utterances (samples) of the
preprocessed VOCE Corpus Database [10].

Data pre-processing

For its use in this thesis, we process the speech data as well as the the HR signals. For
simplicity, we begin with a conversion from stereo to mono of the audio recordings,
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followed by a downsampling from 44.1kHz to 16kHz to reduce the computational
cost without loosing too much precision. Then we continue by performing a
z-score normalization. Finally, the signals go through a voice activity detector
(VAD) [166] that removes silent audio frames as those do not include valuable
information to our task. This specific VAD algorithm is designed for improving
speech detection robustness in noisy environments, by removing one-second length
chunks of non-speech audio where no decision about stress or speaker can be taken.
As for the HR measures collected in the database, the original signed Zecg values
were converted to unsigned ones from 0 to 255. The Zts sequences were discarded
since they were considered too noisy and Zecg already provided the HR information
needed with a reasonable temporal resolution

Labelling

Labelling an audio signal to determine stress presence is a delicate matter since there
is not a prescribed way to do so given stress is non binary and very subjective.
Taking a pragmatical perspective, once more we relied on previous work [164]
where the recordings of this corpus were labeled according to each user’s heart rate
(HR). Instead of the labels included in the original VOCE Corpus to each recording
situation (0 for the full prebaseline or baseline sequences and 1 for recording) we
generated the labels from the HR sequences. Every 1s audio utterance is labelled
as stressed or neutral using a speaker dependent HR threshold established for each
of the speakers using their respective prebaseline recordings. Two different HR
thresholds were compared: the prebaseline HR average plus the standard deviation
and the 75% percentile of the HR value, and finally the former one was discarded.

Balancing and Data Augmentation

The fact that the data instances were not balanced – i.e., there are speakers with
significantly more samples than others – led us to perform an adjustment for each
set and condition to get consistent estimates. Then, all classes – in this case,
speakers – need to be seen as equally important from the point of view of a
speaker recognition classifier to minimize the loss accordingly in the training phase.
Nevertheless, the use of a purely statistical over-sampling technique would have
a big drawback in our case since the imbalance is very severe and the amount
of artificial data created would be too large. To cope with this problem, we first
under-sampled the set of neutral data admitting a maximum of 120 samples per
speaker in both sets (1 and 2) as well as the stressed set using a threshold of 300
samples. Applying an over-sampling technique (in particular, SMOTE [167]) to the
under-sampled data resulted in sufficient new samples achieving a balanced data
set but without including a disproportionate amount of artificial data. Furthermore,
we experimented with applying modifications in the locution speed and the pitch on
the original database, to produce synthetically generated stressed samples of speech,
and measure its effect with ML classifiers. This process is detailed in Sec. 4.3.1

3.2.2 Biospeech

Biospeech (BioS-DB) [157] is a multimodal public speaking database which includes
continuous-time emotional annotations. It consists of 55 speakers reading two texts,
one in German and one in English, while their physiological variables – Blood
Volume Pulse (BVP), Skin Conductance (SC) – and speech are being recorded [8].
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This database responds to the idea that performance anxiety can happen when
speaking aloud, and can be reflected in the physiological variables and speech. Three
annotators with previous training use a joystick to obtain continuous time labels for
the emotional state of the speaker in a 2D space, of which their axis represent the
aforementioned described in Sec. 2.3.2 arousal and valence. Biospeech was used in
[8].

The aim of using these data for the thesis is twofold, 1. detecting stress in speech
and 2. recognizing the speaker even when the speech is under stress conditions.
For such, we perform classification with the data, rather than regression. Both
regression and classification tasks make predictions about data, but the difference is
that regression aims to predict continuous values, and classification predicts discrete
values among a limited number of classes to which each data point belongs.

In order to create a gold standard for the emotional labels from the three
individual time-continuous annotations, the authors of BioS-DB used the evaluator
weighted estimation (EWE) metric [168]. The EWE is reliable when the number of
annotators is rather large, but in this case we only count with 3 evaluators, which
makes the possibility of disparity in the ratings very high.

The background of each annotator affects their ratings, besides the bias of the
possible comparisons between consecutive speakers. These factors can induce
variability and discrepancies in the ratings, and a weighted combination of the labels
of each annotator may not be the optimal merging method. This was detrimental for
our classification purposes, that are different from those of the creators of the dataset,
which was regression.

Reinterpretation of Labels for a Classification approach

Thus, as part of this thesis, we propose a re-labelling of BioS-DB values of arousal
and valence by quantizing them into 4 categorical quadrants [169]. This is crucial to
define a classification task instead of using a regressor. These four quadrants are:

• High Valence, High Arousal (HVHA): Q1
• Low Valence, High Arousal (LVHA): Q2
• Low Valence, Low Arousal (LVLA): Q3
• High Valence, Low Arousal (HVLA): Q4

FIGURE 3.2: Four Quadrants of Valence-Arousal space [169].
Reproduced with permission from the copyright owner © 2012 IEEE.
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We also believe that although BioS-DB has a very precise temporal resolution
in the labelling, a coarser time resolution for capturing the underlying emotions
in speech is more suitable in classification tasks such as ours. In particular, the
raw annotations in BioS-DB from each annotator were originally sampled at 2Hz
and their range was [−1000, 1000]. Therefore for our purposes, we downsample the
signals to 1Hz to obtain one label per second, which will be our baseline working
frequency for future data fusion schemes. To compute a combined final label for
each second, we chose the two annotators that had labelled closer in the 2D space,
and based on the sign of the arousal and valence values, we convert these into a
categorical label in each of the four quadrants. If the quadrant where the two labels
considered coincides, it is chosen as the aggregated label, otherwise, we assign a
provisional undetermined value, x.

Then, we analyze several cases for the undetermined labels, as shows Fig. 3.3. If
x is due to a transition between quadrants (one annotator has crossed the boundary
but the other has not yet), we randomly choose any of the two quadrants. Otherwise,
we consider whether two annotators fall into the same quadrant even though they
are not the closest in the 2D space. If so, the aggregated label is the corresponding
to that quadrant. This process solves a great amount of undetermined labels. For
the rest and those cases where we found several x in a row, we used a 5-second
window and replaced the unknown labels with majority voting. Our process takes
into account the proximity of the labels of the raters, which provides confidence
about the resulting label since the annotators interpret the 2D space in terms of the
quadrants meaning.

Algorithm 1 Aggregated label value

1: procedure solveIndeterminacy
2: xt ← quadrant label to determine in instant t
3: ann1t ← quadrant label from annotator 1 in instant t
4: ann2t ← quadrant label from annotator 2 in instant t
5: ann3t ← quadrant label from annotator 3 in instant t
6: if not (ann1t == ann2t == ann3t) then
7: (annAt, annBt)← argmin(euclideanDistanceCoord2D(ann1t, ann2t, ann3t))

// Computes the Euclidean Distance between the 2D coordinates

for each pair or labels

8: annCt ← the annotator left
9: if (annAt == annBt) then

10: return xt ← annAt

11: else if (annAt == annBt+1) or (annAt+1 == annBt) then
12: return xt ← random(annAt, annBt)
13: else if annCt == annAt then
14: return xt ← annAt

15: else if annCt == annBt then
16: return xt ← annBt

17: else return xt ← majorityV oting(xt−2, xt−1, xt+1, xt+2)
18:

1

FIGURE 3.3: Proposed procedure to determine new combined
quadrant label for Biospeech.

Transitions between quadrants are considered carefully since people do not leap
from one emotional state to another suddenly. The smoothing window provides a
smooth label signal by avoiding sharp changes between quadrants. Finally, for our
task of automatic detection of gender-based violence situations, the second quadrant
Q2 where emotions related to stress, anxiety and fear lie, will be chosen as target.
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Thus, we considered two types of labellings for our tasks: quadrants and binary
(considering Q1, Q3, Q4 as the negative label, and Q2 as the positive), and the result
of the relabelling can be observed in Table 3.2.

Q1 (HVHA) Q2 (LVHA) Q3 (LVLA) Q4 (HVLA)
Original 29.22 22.56 8.53 39.67

Reinterpreted 22.16 39.04 8.56 30.24

TABLE 3.2: Percentage (%) of labels in each PAD quadrant for the
relabelling of Biospeech [8]. Reproduced with permission from the

copyright owner, ISCA.

3.2.3 Biospeech+

As stated in previous sections, our ultimate goal is to develop an autonomous tool
to detect gender-based violence risk situations. Regarding speech and audio, we
aim at tracking and identifying the user’s voice and then use it to detect fear or
panic – or its close relative, stress –. To improve the precision of the system, we
aim to contextualize it – in line with understanding and interpreting the situation
2.4 – by the analysis of the acoustic scene (background sounds and noises) by using
an Acoustic Event Detection and Classification (AED/C) system. BioS-DB is being
used as a proxy to our problem. However, for our specific purposes it is key to
complement the spoken information with knowledge about the events present in the
acoustic scene: in many cases, panic could cause a GV victim to remain silent. That
is why environmental sounds, that is, the characterization of the acoustic scene, may
provide useful information for the detection system. Together with other members
of UC3M4Safety team, we introduced a preliminary procedure to extend BioSpeech
into Biospeech+, consisting of the original speech files synthetically enriched with
environmental sounds [8].

There, we make use of AudioSet [170], a large-scale collection of human-labeled
10-second sound clips captured from YouTube. Audioset provides 2, 084, 320
samples containing 527 weak annotations at clip level of sound events. We have
selected a subset of 2, 108 samples from Audioset, belonging to 83 classes, to extend
the original BioS-DB. To choose classes related to events that induce fear, we selected
violent events and employed the audiovisual stimuli collection [126], [11.1], selected
for the development of the WEMAC dataset [11]. The initial selection was made by
experts in VG and later on validated by more than 1300 volunteers [126].

At the preprocessing stage, the audio signal is normalized, and converted into
16kHz mono. Then a log-mel spectrogram of 64 bins is computed to extract a
time-frequency representation of the audio signal as an image.

Regarding the synthetic mixing, the process is based on the data augmentation
pipeline followed in Task 4 of the Detection and Classification of Acoustic Scenes and
Events (DCASE) 2019 challenge [171]. Scaper [172] allows us to define probability
distributions for the occurrence and duration of the sound events. Thus, the system
generates as many synthetically generated mixes as desired from audio previously
classified as foreground or background. In our particular case, foreground events
are the original BioS-DB samples and background events are the samples of the
Audioset subset. The number of generated mixes has been set to 110: we
generate one mix per BioS-DB file, considering recordings captured by the lavalier
microphone, i.e. 55 German and 55 English-speaking audio recordings.

https://www.uc3m.es/instituto-estudios-genero/UC3M4Safety
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FIGURE 3.4: Procedure of generation of Biospeech+, mixing
BioSpeech and Audioset samples with Scaper [8]. Reproduced with

permission from the copyright owner, ISCA.

The algorithm detailing the mixing procedure, taking into account the new
binarized labels explained in Sec. 3.2.2, is presented in pseudocode format in Fig.
3.4. The rationale for this methodology for the augmentation of the dataset is to
provide a non-deterministic relationship between stressful or potentially frightening
sounds and the appearance of stress in the speaker. In addition to managing
probability distributions and timing of the events, Scaper allows pitch shifting and
time stretching operations over foreground samples, and both could be used for
further augmenting the dataset.

3.3 WEMAC: Women and Emotion Multimodal Affective
Computing Database

So far we have discussed the lack of labelled databases in literature – up to the time
of the work presented here – on real speech under conditions of fear. It seemed clear
that the next step was to contribute with the collection of a database that would serve
exactly our goal of detecting risk situations through voice. As we said in Sec. 1.1.4,
this thesis is part of the EMPATIA-CM project that aims to develop a multimodal
wearable device for automatic and inconspicuous detection of these situations, so
the databases collected and explained below are also multimodal.

WEMAC is a multimodal dataset consisting of laboratory experiments on
female volunteers exposed to audiovisual stimuli validated to evoke real emotions
using virtual reality headsets, capturing and collecting physiological, vocal, and
self-reported state variables to which I have contributed jointly with others. For
its collection we have used the validated audiovisual stimuli collection, part of
the UC3M4Safety Audiovisual Stimuli Dataset but its creation is due to the other
members of the UC3M4Safety team. It arises from the need to elicit realistic
emotions, especially fear, which is key for the detection of GBV risk situations.
We believe this database will serve and assist research on multimodal Affective
Computing using physiological and speech information, and it to be specially
effective for the task of GBV risk situations detection.

https://www.uc3m.es/instituto-estudios-genero/EMPATIA
https://www.uc3m.es/instituto-estudios-genero/UC3M4Safety
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3.3.1 UC3M4Safety Audiovisual Stimuli Database

Other members of the UC3M4Safety team conducted the [126] study to obtain a
comprehensive, high-quality dataset of audiovisual stimuli to elicit emotions in
controlled scenarios. This dataset is designed to collect additional human responses
(physiological variables and speech) that can be used by AI ML/DL systems aimed
at automatic and real-time emotion identification. Although the primary goal is to
recognize fear or panic, we use carefully curated video clips and a comprehensive
12 emotion range tagging system to categorize the range of emotions people
experience.

The paper presents the identification of emotions elicited after the visualization
of the audiovisual stimuli collected. In addition, the authors conducted a statistical
study of gender differences in emotional responses on 1, 332 volunteers (811 women
and 521 men). The research study produced a dataset of 42 audiovisual stimuli –
referred to as the UC3M4Safety Audiovisual Stimuli Database [11.1] [126] – that
triggers a range of 12 emotions in the viewers. Each stimuli has a high level
of agreement and one discrete emotional categorization, as well as a continuous
emotional categorization in the Pleasure-Arousal-Dominance (PAD) Affective Space.

The selection of the series of audiovisual stimuli was performed in five steps,
as shown in Fig. 3.5. Each blue coloured box reflects the step-by-step process and
criteria used for the clip selection, while the white boxes denote the supervisors
involved in the process.

FIGURE 3.5: Video clips’ processing in the creation of the UC3M
Audiovisual Stimuli Database. Reproduced with permission from the
copyright owner, the authors of [126] via Creative Commons License

CC-BY 4.0 from MDPI.

Initially, five researchers collected samples of emotional content from commercial
films, TV series, documentaries, short films, advertisements and Internet videos.
These clips were originally tagged with a target emotion by other members of the
UC3M4Safety team, with advice from a panel of experts. The discrete emotions
contained in the audiovisual stimuli sought by the researchers were joy, sadness,
surprise, contempt, hope, fear, attraction, disgust, tenderness, anger, calm and tedium.

Secondly, from the 370 samples obtained in Step 1, 162 clips were selected for
further evaluation based on selection criteria (see Step 2, Fig. 3.5). An additional
criterion was considered for films about gender-based violence: the protagonist
in the films must be a woman who is the victim of some sort of violence (sexual,
physical, psychological, etc.).

Thirdly, the list of 162 stimuli was labelled with discrete emotion categories in
a crowd-sourcing setting by a large set of volunteers. Every clip is labelled with

https://www.uc3m.es/instituto-estudios-genero/UC3M4Safety
https://www.uc3m.es/instituto-estudios-genero/UC3M4Safety
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the experimented emotion after its visualization. The reported emotions by the
volunteers are not always equal to the ones originally expected the clip to elicit
by the team and the experts. Only 80 video clips obtained enough answers to be
considered for further analysis (each had more than 50 visualizations and therefore
emotional labels).

Two conditions had to be met for the final selection of audio-visual stimuli.
The first condition sought the highest percentage of consent among participants,
meaning at least 50% of the volunteers considering both genders or at least 50%
of one gender individually, who visualized each stimulus, labelled it with the same
categorical emotion. The second condition also tested the uniqueness of this label by
checking that all other possible emotions matched at most 30% of the time. Finally,
some videos were removed to evenly balance the distribution between the target
emotions considered as fear and non-fear, producing a selection of 42 clips. They
obtained a percentage of 44.44% for fear and 55.55% for the rest of emotions, as
shown in Table 3.3.

Fear 44.44% Tedium 2.22%
Joy 8.89% Tenderness 6.67%
Hope 2.22% Calm 11.11%
Surprise 4.44% Disgust 8.89%
Anger 4.44% Sadness 6.67%

TABLE 3.3: Percentages of categorical emotions elicited by the
UC3M4Safety Audiovisual Stimuli Dataset for the final sample of 42

clips [126].

Gender Differences for Emotional Annotations

The results obtained by the team in [126] show similar reported positive emotions
in discrete values (and also in the PAD space) for both genders, while negative
emotions (especially fear and contempt) reports are more different. Autobiographical
memory may influence the perception of fear in those video clips related to
gender-based violence. The gender-based violence is hard to label, and the fact that
the viewer identifies herself with the main characters in the video clip may be having
a big impact in her emotional state. In the clips were women mostly label fear, men
label anger and sadness.

Proper labeling of women’s fear will benefit our main goal of developing an
automatic system to protect them from violent or sexual assaults. Considering
the observed results, the gender variable should be considered both in the
stimulus selection phase of the database and in the training phase of the machine
learning algorithms. Although in the study there were no significant differences
between some emotions and others (especially fear and hope), gender differences in
reported emotions should be considered to improve emotion classification. This
is particularly important in this work, because the main aim is to identify the
conditions that cause fear to women, including victims of gender-based violence.
In this case, gender must be taken into account because the emotion perceived for
fear video stimuli differs by gender. Even key for the particular case of stimuli
reproducing situations of gender-based violence, where there is a big difference in
the labelling between women and men (fear versus anger and sadness).

These results corroborate those of other studies [173], where authors conclude
that women reported more fear than men; and sadness, compassion and fear emotions
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are felt more by women than men, which could be due to stronger empathetic traits
and care-taker syndrome mostly occurring in women.

3.3.2 WEMAC Database Collection

In the database called WEMAC [11], we – the UC3M4Safety team – use a virtual
reality environment – a headset and a joystick – to present immersive audio-visual
stimuli (i.e., video clips) to women to elicit, label and measure realistic emotional
reactions to them.

The participants are women volunteers, including women that suffered from
GBV – so GBVV and non-GBVV volunteers –. They are divided into balanced age
groups defined by 10-year intervals: G1 (18 − 24), G2 (25 − 34), G3 (35 − 44), G4
(45 − 54), and G5 (55 on-wards). The database consists of 104 women volunteers
who never suffered from GBV (47 on the first release and 57, on the second) and
43 women GBVV volunteers. The latter group performed the experiment under
the supervision of a psychologist. Fig. 3.6 shows a simplified diagram of the
specific methodology followed during the experimentation for every volunteer and
stimulus.

Neutral 

video 

recording

23 to 120 –

seconds 

Video

Interactive 

Self-

Assessment

Researcher 

triggers 

next trial

Recovery 

stabilization

During the recording

Before the recording

Documentation Reading:

• Informed consent

• Personal data processing

• General questionnaire

Equipment 

Set-Up

Self-Assessment 

Demo

FIGURE 3.6: Experimental methodology followed during the
development of the WEMAC dataset, prior and during the

visualizations [11].

Volunteers were recruited through social media advertisements and internal
communication channels within the University Carlos III. Prior to the experiment,
all the different phases to be followed are explained to the recruited volunteers,
including a set of documents with an informed consent and an initial generic
questionnaire. The former is necessary for personal data processing and protection
regulation. The latter collects information such as personality traits, gender,
age, whether they performed any recent physical activity or if they were taking
medication – the use of medication might modify the physiological response of
the user –, self-identified emotional burdens due to work, economic and personal
situations, mood bias (fears, phobias, traumatic experiences), among others. This
information could be relevant and informative of the emotional reactions of the users
captured in the experiment, affecting their perception, evaluation and attention.

In this database collection, the UC3M4Safety team followed the methodology
also presented in [174], which is a study for the detection of fear using the

https://www.uc3m.es/instituto-estudios-genero/UC3M4Safety
https://www.uc3m.es/instituto-estudios-genero/UC3M4Safety
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concentration of the hormone catecholamine in blood. The last step in the
experiment preparation is an introductory demonstration where the volunteers get
used to the virtual reality environment – headset and joystick – and get familiar
with the labelling particularities. This environment is used to present the clips to the
users, and also to annotate them according to different categories through interactive
screens.

The whole process of documentation reading, equipment set-up, virtual
environment demo, together with the visualization and labelling of the videos,
usually takes from 60 to 100 minutes per participant.

Audiovisual Stimuli Visualization

We used an Oculus Rift-S virtual reality Headset21 to present the audio-visual
stimuli. Virtual reality is used to maximize the immersive experience and
consequently, achieve a better emotion elicitation. During the recording experiment,
every volunteer visualises a total of 14 audio-visual emotion-related stimuli, some
of them presenting a 360◦ experience. These stimuli were selected from a 28
audio-visual stimuli pool resulting in two batches of 14 videos each, from the final
42 video clips of the UC3M4Safety Audiovisual Stimuli [126], as seen in Fig. 3.7.
The criteria applied for the selection were the following: 1) the highest emotional
discrete agreement observed in female raters, 2) an adequate laboratory experiment
duration and 3) a balanced distribution of fear/no-fear clips in each batch [53].

28
Video clips

• Constrained
duration
• Balancing Fear/No-
fear
• Highest agreement
in women

3 criteria
(research

team)

Final selection of clips 
of UC3M4Safety 

Audiovisual Stimuli
Database

Subselection of
clips presented in 

WEMAC Database

FIGURE 3.7: Schematic of subselection of clips from UC3M4Safety
Audiovisual Stimuli dataset used in WEMAC database.

The stimuli average time length is 100 seconds. Both batches have 8 stimuli
belonging to the second arousal-valence model of quadrants to maintain a proper

21https://www.oculus.com/rift-s/

https://www.oculus.com/rift-s/
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balance between fear and non-fear emotions. Note that the balance premise is
assessed considering the valence-arousal – or pleasure-arousal, PA – model, rather
than the pleasure-arousal-dominance (PAD) space, for simplicity. Due to this fact,
stimuli prelabelled as anger or fear are considered within the second quadrant, then
being within the positive class for the binary ground truth labelling.

The 28 audio-visual stimuli were selected based on three main premises: the
highest emotional discrete labelling agreement observed in women during the
prelabelling experiment [126], targeting for an adequate laboratory experiment
duration, and a balanced distribution of fear vs. no-fear categories and within the
four quadrants in the arousal-valence space.

Before the presentation of each of the stimuli, a neutral video clip is displayed to
set the participant in a neutral emotional state. These neutral video clips have been
selected from the large pool provided by the Stanford Psycho-Physiology Laboratory
[175]. Similarly, 3D recovery scenes are also shown to the volunteers after the
interactive emotion labelling process. These 3D scenes were selected by unanimous
consensus of the research team. The main difference between the neutral and
recovery clips is that while during the display of the former no action is taken – i.e.
there is no recovery monitoring –, for the latter there is a physiological monitoring
through Bindi bracelet to ensure the volunteer’s physiological stabilisation.

Physiological Signals Captured

During the audio-visual stimuli presentation, the physiological signals of the
participants are captured22. The equipment used for this purpose includes the
following devices and sensors:

• The BioSignalPlux23 research toolkit system, which is commonly used to
acquire different physiological signals, particularly: finger Blood Volume Pulse
(BVP), ventral wrist Galvanic Skin Response (GSR), forearm Skin Temperature
(SKT), trapezoidal Electromyography (EMG), chest respiration, and wrist
inertial movement through an accelerometer.

• The Bindi bracelet, represented in Fig. 3.8a, that measures dorsal wrist BVP,
ventral wrist GSR, and SKT. The hardware and software particularities of this
element are detailed in previous publications from the team [176], [177], [178].

• An additional GSR sensor to be integrated in the next version of the Bindi
bracelet. Its hardware and software particularities are detailed in [179].

Note that the BioSignalPlux toolkit is employed to provide gold standard measures
to be compared with the sensors included in the Bindi bracelet. In fact, BVP and
GSR signals obtained from BioSignalPlux and Bindi were successfully compared and
correlated in [176] and [178]. The acquisition synchronisation of all sensors together
with the stages of the experiment runs on a laptop through a program based on the
Unity framework24. In this sense, the sampling frequency of the devices sensing
physiological information is 200 Hz.

Labelling Process: Speech Signals and Self-annotations

After every emotional video clip visualization, volunteers find a set of interactive
screens within the virtual reality environment, developed with Unity software [180].

22Processing available in: https://github.com/BINDI-UC3M/wemac_dataset_signal_processing/
23https://biosignalsplux.com/products/kits/researcher.html
24https://unity.com/es

https://github.com/BINDI-UC3M/wemac_dataset_signal_processing/
https://biosignalsplux.com/products/kits/researcher.html
https://unity.com/es
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(A) Bindi 1.0 bracelet for the capture of
physiological signals (B) Bindi 1.0 pendant for the capture of auditory

signals

FIGURE 3.8: Bindi 1.0 wearable devices. Reproduced with permission
of the copyright owner UC3M4Safety team.

On these screens, volunteers label their emotional reactions. The annotation is done
in the following order:

1. Two questions are presented to the volunteers about the video stimuli right
after its visualisation – with the intention of capturing at least a speech
signal of one minute’s duration –, as a result, an audio signal containing the
user’s emotional speech is captured by the Oculus Rift S Headset embedded
microphone. These questions were designed to make the volunteers relive the
emotions felt during the video visualization, aiming to capture the last traces
of emotion in their voice. Table 3.4 presents the set of questions.

2. Modified Self-Assessment Manikins (SAM) are used to annotate the values
of Valence/Pleasure, Arousal, and Dominance by a 9-point Likert scale. Such
modified SAMs appear in Fig. 3.9, and the process of redesign and assessment
is detailed in [181].

3. Familiarity With the emotion felt and the situation displayed in the video-clip
is also annotated. Both are answered using the same 9-point Likert scale as for
the SAMs.

4. Liking of the video is annotated through a binary yes-no question.
5. Selection of one discrete emotion out of a total of 12, already described in Sec.

3.3.1 [126].

First question Second Question
“Close your eyes and think about the situation you watched...”

Describe what has just happened in your own words What details can you describe?
Explain the situation you have seen in your own words What details do you remember?

Describe what you saw in your own words What struck you the most?
Describe what you heard in your own words What happened at the beginning?

Describe where and when the situation happened What would you have done if you had been there?
What would you have done if you had been in that situation?

TABLE 3.4: Questions asked in the annotation phase of WEMAC. Two
questions were asked to each participant, randomly chosen after each

video visualization. These questions were originally in Spanish.

https://www.uc3m.es/instituto-estudios-genero/UC3M4Safety
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FIGURE 3.9: Modified SAM by the UC3M4Safety team [11].
Reproduced with permission from the copyright owner, the authors

of [181] via Creative Commons License CC-BY 4.0 from Frontiers.

Audio Features and Embeddings Extraction

Since we cannot release the raw speech signals due to ethics and privacy issues – as
this could identify the users and relate them to whether or not they have suffered
gender-based violence –, we have processed the speech signals and extracted low-
and high-level features so that the research community can analyze and work with
them25.

We use different Python toolkits to extract information at a window size of 1
second and a hop size of 1 second per audio file. We follow a similar approach to
the one followed in the MuSe Challenge 2021 [182] for the feature and embeddings
extraction of the audio signals. That is:

1. librosa [183]: we extract the mean and the standard deviation of a collection of
features computed at a window size of 20ms and a hop size of 10ms through
the librosa toolkit. The 38 features extracted are 13 Mel-Frequency Cepstral
Coefficients (MFCC), Root-Mean-Square (RMS) or Energy, Zero Crossing Rate,
Spectral Centroid, Spectral Roll-off, Spectral Flatness, and Pitch.

2. eGeMAPS [184]: we compute 88 features related to speech and audio through
the openSMILE Python toolkit [185] on its default configuration, i.e., a window
size of 25ms and a hop size of 10ms.

3. ComParE: we extract the 6, 373 features used in the ComParE 2016 challenge
[186] by using the openSMILE Python toolkit.

4. DeepSpectrum [187]: we extract 6, 144-dimensional embeddings by this toolkit
for the extraction of audio embeddings based on different deep neural network
architectures (DNN) trained with ImageNet [188]. Specifically, two different
configurations were considered, ResNet50 network and the output of the last
Average Pooling layer (avg_pool), resulting in 2, 048-dimensional embeddings,
and VGG-19 net and the last Fully Connected layer (fc2), resulting in
4, 096-dimensional embeddings.

5. VGGish: we extract 128-dimensional embeddings from the output layer of the
VGG-19 network trained for AudioSet [170].

25Available in: https://github.com/BINDI-UC3M/wemac_dataset_signal_processing/tree/mas
ter/speech_processing

https://portal.uc3m.es/portal/page/portal/inst_estudios_genero/proyectos/UC3M4Safety
https://github.com/BINDI-UC3M/wemac_dataset_signal_processing/tree/master/speech_processing
https://github.com/BINDI-UC3M/wemac_dataset_signal_processing/tree/master/speech_processing
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We published – Table 3.5 – the first release of WEMAC database with the aim
of sharing it with the research community, encouraging the improvement of the
baseline results – presented in [1] – through the use of fusion methods, attention
models, transfer learning, semi-supervised or self-learning strategies or any other
that the research community finds adequate; and advancing in the research of
multimodal emotion analysis in general, and in gender-based equality in particular.

Database Datasets Conditions Participants

UC3M4Safety

Database [14]

Audiovisual Stimuli: Videos [11.2]
Crowdsourcing

General public and

Audiovisual Stimuli: Emotional Ratings [11.1] expert judges

WEMAC: Biopsychosocial Questionnaire [11.3]

Laboratory GBVV and Non-GBVV
WEMAC: Physiological Signals [11.4]

WEMAC: Audio Features [11.5]

WEMAC: Self-reported Emotional Annotations [11.6]

TABLE 3.5: Hierarchy, subdivisions and references of the
UC3M4Safety Database datasets [126] [11].

3.4 Women and Emotion in Real Life Affective Computing
Dataset: WE-LIVE

WEMAC is a laboratory database for detecting realistic emotions from a multimodal
point of view in women, but it is still far from real-life conditions. Recording
emotional speech in fearful conditions that is realistic and spontaneous is very
difficult, if not impossible. To get as close as possible to these conditions and perhaps
record fearful speech, the UC3M4Safety team created the “Women and Emotion in
real LIfe affectiVE computing dataset” (WE-LIVE).

The objective with WE-LIVE is to collect physiological, physical and contextual
signals from women in a relevant and uncontrolled environment, as well as labelling
of their emotional reactions to everyday events in their lives, using the current Bindi
system (wristband, pendant, mobile application and server). Through Bluetooth®
connection to the mobile phone, the data captured by Bindi is sent to a protected and
encrypted server. Relevant environment is understood as everyday activity within
their usual routines. The devices will only perform data collection and the signal
acquisition will be performed simultaneously: physiological, geolocation, audio and
speech signals are temporally contextualised.

The database is composed of 13 women volunteers, including GBVV. Some of
them also participated in the collection of WEMAC. As with the latter, volunteers
were recruited through social media advertisements and outreach to students and
researchers at the university.

First, to record the database, the information guide is explained to each
participant including what the experiment will consist of. During that session
the devices are given to the user and the phone application is installed in her
smartphone. Their functionality and daily use is also thoroughly explained, together
with certain particularities associated with them. The volunteers are also asked to
fill a routine questionnaire in to collect their routine activities, to be then classified
by a specialized psychologist according to activity relevance. At any time during the
experiment, the volunteer can decide not to continue with it.

https://www.uc3m.es/instituto-estudios-genero/UC3M4Safety
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3.4.1 Data Captured

Each volunteers is given the devices for 7 days, extendable to 10 days, if they
wish. There is a specific person – from the technical staff in UC3M4Safety team
– responsible for each volunteer with whom she can contact anytime. The user
lives a normal life and the devices capture relevant data. The pendant and
wristband devices from Bindi capture GSR, BVP, SKT, audio, geo-location and also
accelerometers, in different patterns depending on the routine the user is in at any
given moment. Different patterns include longer recording during the most relevant
activity slots of the day and briefly during the time slots with little activity. In Fig.
3.10 we represent the 2.0 version of Bindi wearable devices.

FIGURE 3.10: Bindi 2.0 wearable devices. Reproduced with
permission of the copyright owner UC3M4Safety team.

The speech part is the most relevant for this thesis, and it is recorded by
the microphone located in the pendant. The pendant includes a MP34DT06
omnidirectional microphone26. According to Spanish regulations 27 the consent of
third parties is not required when the purpose of the data processing is to protect a
vital interest of the data subject. Furthermore, the captured audio is not intended to
be heard by any person, only analysed by ML algorithms, so the privacy of the users
remains intact.

The smartphone app allows the user to control the connection of the devices
with the user’s mobile phone, the labelling of situations, and the deactivation of
the devices. This app also allows the monitoring of the user by the technical team.
There is also a sleep mode that allows the user to deactivate the devices at will in case
she wants to deactivate them for a period of time, commonly done during the night
when the user is sleeping and the devices are charging. It also has a manual sports

26https://www.mouser.es/datasheet/2/389/mp34dt06j-1387393.pdf
27Artículo 6.2 Ley Orgánica 15/1999, de 13 de diciembre, de Protección de Datos de Carácter

Personal https://www.boe.es/buscar/pdf/1999/BOE-A-1999-23750-consolidado.pdf

https://portal.uc3m.es/portal/page/portal/inst_estudios_genero/proyectos/UC3M4Safety
https://www.uc3m.es/instituto-estudios-genero/UC3M4Safety
https://www.mouser.es/datasheet/2/389/mp34dt06j-1387393.pdf
https://www.boe.es/buscar/pdf/1999/BOE-A-1999-23750-consolidado.pdf
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mode, which labels the time period while it is activated as high physical activity, due
to the user doing sports.

3.4.2 Labelling

Data captured gives us very insightful information about the user’s activity, but we
also need emotional labelling on her side so that our ML models can work with the
data and make inferences and predictions.

Users are asked to label when an emotion is happening, defined for them as ”a
brief, intense reaction to a particular stimulus (internal, e.g., memory; or external, e.g., the
sound of a crash), which results in bodily changes (pulse, muscle tension, facial expression,
etc.) and influences our behaviour and thinking.” The volunteers are requested to
characterise and define the emotional events that have occurred in a given period,
as well as the context of these events through the participant’s mobile app labelling
screen. To facilitate the users’ timely annotation, there are two labelling modes:

• Triggered by prompts: This type of labelling is prompted periodically after
each of the corresponding routine activity slots and reminds the user that it is
convenient for her to tag the emotions she is experiencing at each at least once.

• On-demand: This type of tagging is be activated when the user requires it
through the smartphone app directly.

Additionally, the user is asked to complete some other labelling fields for each
emotional label with the goal of making them more informative, accurate and
provide as much context as possible:

1. Arousal: In a calm-activation 9-point scale using the modified SAM [181].
2. Valence: In a negativity-positivity 9-point scale.
3. Dominance: In a dominance-submissiveness 9-point scale.
4. Category: Several tags of discrete emotion categories to select one among

boredom, disgust, joy, calm, attraction, surprise, hope, contempt, gratitude, anger,
fear and sadness.

5. Emotion intensity: From low to high on a 9-point scale.
6. Boolean experience: A boolean switch to mark if the user thinks that the

emotional reaction is related to traumatic and/or shocking experiences from
the past.

7. Context: Discrete categories from which to select as many as the user wishes,
that bring contextual information. Some are: home, school, work, gym, restaurant,
hospital, transport, coffee, party, drinks.

8. Audio note: This is an optional response, where the user can record and
audio signal to describe the situation, the stimulus or reasons that triggered
the emotional reaction, feelings, what they attribute it to, etc.

Once all fields are complete, the emotional label is saved in the system. For
each of the labels or annotations created in the app, there are 3 types of timestamps
associated to it:

• Created: Manual or automatic, every time the time slot of routines changes, or
right when the user creates the label.

• Happened: Manual, the moment the user selects the stimuli that elicited the
emotion that happened.

• Sent: Manual, denotes when the label is complete and the users click on ’Send’
or ’Save’.

During the 7 to 10 days of the experiment, a follow-up telephone call from the
technical team to the user was done twice to check that everything was working
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correctly and to collect feedback on how comfortable the user felt using the devices
and the app, providing factors such as ease of use.

All personal data as well as the data recorded during the experiment are
anonymised. That means that we generate a code for each of them so that it is
impossible to associate the collected data with the person who volunteered for the
experiment. The anonymised data will be kept for a maximum of 5 years. We store
them in a safe encrypted server.

3.5 Conclusions, Insights and Improvements

In this chapter we have explained which databases were available in the literature
that more closely meet our needs. We have detailed the modifications we made to
them, and explained our purposes to do so. We have also made clear that for our
specific purposes – training a GBV risk situations detector – this was not enough.
Thus, we have created new datasets accordingly, describing the effort that it has
taken and illustrating why we think this is an important contribution since they
are a first step towards our goal. In this section we provide some brief take-home
messages learnt from the databases collection and the way we are going to continue
with the use of these databases for the development of better ML models for GBV
risk situations detection.

The VOCE corpus database served us as a first approach to evaluate the
differences between stressed and neutral speech, as well as to observe the
relationship between speech and heart rate changes. Along the same research lines,
we also used Biospeech. The use of the latter allowed us to change from a binary
stressed setting to a more specific emotional state that included 4 arousal-valence
combinations. These databases also made it possible to work towards enhancing
speaker recognition thanks to the diversity of speakers available. Besides, the
reinterpretation of the Biospeech labels and the addition of acoustic events resulting
in Biospeech+ enabled us to study the influence of such events in the detection of
stress in speech.

As we have previously stated, we are aware that stressed speech is not fearful
speech, but the use of the former has helped us to analyze speech in similar
emotional conditions, its characteristics and to look for appropriate models for our
challenges and needs, while pursuing the goal of GBV risk situations detection.

Some of the challenges involved in creating databases for our specific application
have already been described in Sec. 1.2. In our case, we collected two databases only
with female users’ data, without a need to perform a gender balance due to the use
it will be given in the field of gender equality, but the data was actually balanced in
terms of age: there were 5 age balanced groups, in both WEMAC and WE-LIVE.
Regarding cultural background, all the participants were residents in Spain, the
country in which Bindi is going to be put into practice and for which the recorded
data would be used.

When it comes to the labelling process, we explained thoroughly the annotation
process in WEMAC as well as WE-LIVE in order to get the most reliable and accurate
labels as possible, but it is indeed possible that background bias is present in the
data, both from the crowdsourced annotators in the Audiovisual Stimuli dataset,
and in WEMAC and WE-LIVE. This is why we should handle these labels with
care, especially those that only have self-annotations. Instead of using them as
ground-truth labels, we could study new ways to use them in the future, for instance,
taking into account other aspects of the background of each user that may influence
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the labelling, or using an aggregate emotion label to have a more reliable label for
each video in the case of WEMAC.

Focusing on speech, we expect the captured speech in WEMAC to have traces
of the emotion in it, but we cannot assert this as the recording is performed right
after the emotion eliciting stimuli visualization. During the database collection, we
have observed that some users took a short break between viewing the stimuli and
capturing the speech signal, to recover from the stimuli they had seen – which is
normal as there were videos that were intended to cause real fear. However, this
means that the emotional content of the speech signals can be variable, and that is
something we also need to keep in mind when working with such data.

As for the WE-LIVE database, the recording of the database was completed in
July 2022, and the processing and analysis of the captured data for further use is
still a work in progress. It is necessary to do a thorough work in this regard, first of
all with data cleaning, since the devices have recorded a huge amount of data that
not always contains relevant information for the task; then regarding coordination
and alignment of data, since it is necessary to synchronise the different modalities
and solve the problem of missing data in each particular modality. Also in the
case of WE-LIVE, we acknowledged some problems during the time of the capture,
most failures were due to disconnections of the devices with the smartphone – via
Bluetooth (BT) –, and due to malfunctioning of the bracelet when sweat came in.
This is being addressed by the team and an enhanced version in the next Bindi
prototype expected to be designed: Bindi 3.0.



55

Chapter 4

Speaker Recognition under
Variability Conditions

For our goal of detecting GBV risk situations through speech, the first step to be
taken seems to be to detect the voice of the specific user we are interested in, from
among all the information contained in the audio signal. To consistently detect
emotion, especially fear, in a user’s speech, the user’s voice must first be isolated
from other speakers in an acoustic scenario. This practice also opens up interesting
opportunities in situations where all speakers in a scene need to be identified, for
example in forensic evidence. Thus, we dedicate this chapter to the research on the
field of Speaker Recognition (SR) because after we detect the user we can make an
analysis of the emotions they experience.

This field is slightly elusive in our case, because we need to detect the user’s
voice in order to identify them, but the performance of ML models for detecting
speakers through the voice drops when they are under emotional conditions. So the
fact that the voice of a GBVV could be influenced by her emotional state constitutes
a challenge for a speaker identification system. We are interested in achieving good
performances for the recognition of the speaker even when the voice expresses stress
or fear.

Then, the contributions of this chapter rely on our study of speaker recognition
systems under variability conditions, 1) speaker identification under stress
conditions, to see how much these stress conditions affect the SR systems28

and 2) speaker recognition under real-life noisy conditions, which is where our
application will ultimately work, isolating the speaker’s voice, among all additional
environmental noises.

4.1 Introduction

Speaker Recognition (SR) refers to the task of the automatic detection of a person
from the characteristics of their voices, also known as voice biometrics [189]. On it,
we can distinguish two subtasks, Speaker Identification (SI) and Speaker Verification
(SV). The first refers to the recognition of a particular user among a known number
of users (a multi-class setting), and the second aims at identifying one user versus the
rest (binary setting). It is on speaker identification where we focus along this chapter,
in the ability to detect to whom the voice belongs, even under emotional conditions.
The effects of emotions in SI [190] have been studied in the literature but research
is scarce about the influence of stress specifically. The technological development

28In the absence of databases of speech in conditions of realistic fear in literature – which is explained
in detail in Sec. 3.1 – in the moment this part of this thesis was conducted
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of Speech Emotion Recognition (SER) is plenty, but the task of SR under emotional
conditions it is still an early stage scientific field.

As for the SI system to be designed, it should be adapted to what we expect
Bindi to find in a real world situation: the goal of our system is to detect the users
speaking even when their voices present fearful or stressed conditions. For this
reason, we could be facing a mismatch learning problem in which we may only have
neutral speech utterances available for training, gathered in an initial Bindi setup –
given that the possibility of forcing the user to speak while under fear or stressed
conditions is difficult – whereas the real environment operating conditions would
contain both neutral and stressed or fearful samples together.

More technically, in this chapter we study and design robust Speaker
Identification systems to the variability conditions that could be induced by a
microphone embedded in a wearable device working in a real environment, such
as emotions – stress and fear, particularly – and environmental noise conditions in
speech. We track these problems by means of different techniques such as data
augmentation (DA) or synthetic data generation, that takes into account Bindi’s
computational restrictions and audio input characteristics.

4.2 Related Work

We have already mentioned the difficulties faced when looking for suitable
databases to develop machine learning models appropriate for our task in Sec.
3.1. There are very few databases in which stressed speech is recorded under real
conditions – and there is none in the case of real fear –, in addition to the challenge
of labelling process.

Handcrafted Features

Various strategies of hand-crafted or hand-selected features are used for
speech-related applications in the literature., [191], [192], [193]. Speaker
Identification systems work with speech signals and try to use acoustic features
that differ between individuals to discriminate among them. Some of the features
that exhibit good performance when used in neutral or emotionless conditions in
speech-based systems are Mel-Frequency Cepstral Coefficients (MFCC) [194]. The
MFCCs model the human auditory system to capture the phonetically important
speech features, by distributing frequency mel-filters almost linearly at low
frequencies and logarithmically at high frequencies. Although many of coefficients
can be calculated, usually the first 12 or 13 coefficients are usually calculated.
Prosodic features are widely used as well.

Prosodic features are suprasegmental characteristics that appear when sounds
are put together in connected speech. Some of the domains or phenomena for
which features are implemented are intonation, stressed syllables and rhythm.
Besides, phonetic features are also used. They also model acoustics by capturing
pronunciation variation between speakers and tessellating the acoustic space,
enabling the modeling of longer-term patterns such as detection of the phonemes
and their statistics. Along the same line, Linear Prediction (LP) is used in audio and
speech processing for defining the so-called spectral envelope of speech signals in
compressed form, using the optimized coefficients of a linear predictive model. It is
also a powerful speech analysis technique to provide estimates of speech parameters
like pitch, duration and energy [195].
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Although for speaker identification under stress conditions there is hardly any
previous work, MFCCs [196] together with prosodic features as the pitch, energy
and word duration [197] are used and achieve good performances[198]. However,
their generalization abilities and robustness against variability are limited.

Automatic Features

Beyond the previously mentioned hand-crafted features, learned features
(automatically obtained from the algorithms) extracted from raw data by DNN
(Deep Neural Networks) is a novel trend achieving very innovative results [199],
[200]. In the last decade, it has been found that when sufficient data is available,
automatically learnt feature representations or DNN-based embeddings are usually
more effective than hand-crafted or manually designed features, allowing to
develop better and faster predictive models [201], [202]. Most importantly,
automatically learnt feature representations are usually more flexible and powerful.
Representation learning consists in yielding abstract and useful features usually
from the signal waveform directly or from relatively sophisticated low-dimensional
representations, by using autoencoders and other deep learning architectures often
generalizing better to unseen data [203], [204]. Nevertheless, in our case, the use
of complex DNN approaches should be handled with care due to their high
computational load, delay and the availability of sufficiently big training datasets,
which are three very important limitations within the Bindi system, detailed in
Sec. 1.2.2. Besides, automatic features can be hard to understand or interpret by
humans, having low "explainability", which is detrimental for the "transparency" of
the machine learning models.

Due to the sequential nature of speech signals, their temporal context is of
great relevance for classification and prediction tasks [205]. Besides, the sequential
character of its frequency contents carries very relevant information of speech [206].
Recurrent Neural Networks (RNN) are powerful tools to model sequential data
[207], having become the state of the art due to their improved performance and
generalization capabilities. However, the availability of larger databases is, again,
of paramount importance for training such networks. Unfortunately, this is not the
case for data of real stressing situations in particular, such as the ones we are facing.

Deep neural networks are even able to condense efficiently the information
related to the identity of the speaker, being able to exclude the rest of irrelevant
info for tasks of SR, into what are called speaker embeddings. In a wide sense, all of
the neural embeddings which include some form of global temporal pooling and are
trained to identify the speakers in a set of training recordings are unified under the
term x-vectors according to [208], [209]. Variants of x-vector systems are characterized
by different encoder architectures; pooling methods and training objectives [210]
and in this sense all of the embeddings tested in this section could be consider such.

Data Augmentation

DA is a key ingredient of state of the art speech technologies as it is a common
strategy adopted to increase the amount of training data. It can also act as
a regularizer to prevent overfitting [211] and to improve the performance in
imbalanced class problems [167]. This makes the whole process more robust
achieving a better performance. Due to the scarcity of data we mentioned in Sec. 3.1
and even if it is not fully realistic, this is a good match for our case as the databases
we use can be quite small and may have data imbalances. By using DA, we can
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increase the amount of data available and deal with the lack of balance between
classes [212], approaching how the system would work in a real case for which we
would not yet have data.

Together with the wealth of research to cope with the widespread problem of
variability of speech signals, DA is a widely applied technique to enlarge databases
[213], for instance, by adding noise or applying transformations to the speech
signals, similarly to the ones introduced by transmission channels.

Speech enhancement techniques are also used to improve the overall perceptual
quality of speech, specifically intelligibility [214], [215], [216]. Remarkably, these
techniques can be modified towards a speaker recognition objective, instead of audio
quality [210].

Additionally, in order to alleviate the intrinsic variation mismatch and
specifically the one caused by emotions for the tasks of speaker identification,
literature considers several solutions, such as eliciting emotions in speakers in a
way that accomplishes similar effects as spontaneous [217] due to the difficulties of
recording authentic emotions – both in terms of privacy and labelling –. Likewise,
statistical estimations and domain adaptation methods are also used [218], [219],
[220]. This lack of datasets containing real and natural – not acted – negative
emotions in speech, as the ones a user could experience in a risk or violent situation,
is indeed a challenge.

Classification Models

Regarding models, algorithms such as Gaussian Mixture Models (GMM) were
generally employed for speaker recognition [221] and Support Vector Machines
(SVM) are also widely applied [222],[223]. Other studies suggest the use of DNN
for speaker recognition [224], [225] The improved accuracy achieved by DNNs,
as compared to other state-of-the-art systems, is the result of their ability to
extract discriminating representations from data that are robust to the variability
particularly in speech signals. In recent years Deep Learning algorithms have
skyrocketed in many scientific fields thanks to the availability of large amounts of
data.

However in the research conducted in this chapter, we aim to keep a balance
between computational complexity and accuracy due to the hardware constraints
of the device, where the battery consumption is critical – that our targeted device
hardware imposes – and the scarcity of training data originally available (see
challenges in Sec. 1.2).

Noise Variability

Recently, to deal with the problems of ambient noise that arises in real-life
situations, DA with additive and convolutional noise with neural networks has
risen to be one of the best approaches in SR. Then, the use of models to
effectively denoise – or dereverberate – speech samples maintaining specific
speaker information using DNNs is a flourishing field with emerging work
[226]. Current research includes two-stage models showing improved speaker
intelligibility [227], Long-Short Term Memory (LSTM) architectures exploiting
speech sequential characteristics [228], unsupervised feature enhancement modules
robust to noise unconstrained conditions [229], and specially targeted speech
enhancement modules with the joint optimization of speaker identification and
feature extraction modules [230],[204],[215].
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4.2.1 Challenges of Variability in Speaker Recognition

Speech in real life is commonly noisy and under unconstrained conditions that
are difficult to predict and complicate their recognition and understanding.
Speaker Recognition (SR) systems need high performance under these ‘real-world’
conditions. This is extremely difficult to achieve due to both extrinsic and
intrinsic variations and is commonly referred to as Speaker Recognition in-the-wild.
Usually, this problem of variability affects speech systems due to their reliance on
probabilistic models trained from clean training corpora. That means that there is a
need to develop robust systems that can handle variability without a degradation
in performance. Extrinsic variations encompass background chatter and music,
environmental noise, reverberation, channel and microphone effects, etc. On the
other hand, intrinsic variations are the inherent factors present in speech from the
speakers themselves, such as age, accent, emotion, intonation or speaking rate [231].

Automatic speech recognition (ASR) systems aim to extract the linguistic
information from speech in spite of the intrinsic and extrinsic variations [210].
However, speaker recognition (SR) takes advantage of the intrinsic or idiosyncratic
variations to find out the uniqueness of each speaker. Besides intra-speaker
variability (emotion, health, age), the speaker identity results from a complex
combination of physiological and cultural aspects. Still, the role of emotional speech
has not been deeply explored in SR. Although it could be considered an idiosyncratic
trait, it poses a challenge due to the distortions it produces on the speech signal. It
influences the speech spectrum significantly, having a considerable impact on the
features extracted from it and deteriorating the performance of SR systems.

At the same time, some examples of extrinsic factors are noise, music or the
reverberation present in the environment or in the transmission channel. Some
examples of extrinsic factors are the speaker’s accent, emotions, speaking rate,
and style. The mismatch problem between the statistical features of the training
utterances and those of real-life can lead to very different characteristics on the
speaker’s voice, causing speaker recognition models to lose some of their precision
and predictive power. Extrinsic variations have been a long standing challenge
affecting the basis of all speech technologies. Deep Neural Networks have given
rise to substantial improvements due to their ability to deal with real-world,
noisy datasets without the need for handcrafted features specifically designed for
robustness. One of the most important ingredients to the success of such methods,
however, is the availability of large and diverse training datasets.

4.3 Effects of Stress in Speaker Recognition Rates

In this section we detail the experiments conducted in our own contributions
published in [3] and [10]. In them, we aim to analyze how stress in speech affects
speaker recognition rates. We aim to find techniques for strengthening speaker
recognition systems, either by neutralizing the effects of stress – and ultimately fear
– or by being able to synthesize it from neutral speech, to strengthen the training of
the machine learning inference models. We propose the use of DA techniques using
synthetically generated speech under stressed conditions by modifying speech’s
pitch and speed, together with an analysis of the best feature extraction methods
to create robust SR inference models to emotions variability by adapting the data
while maintaining a lightweight architecture.

The block diagram for the methodology followed is represented in Fig. 4.1.
The characteristics of the database employed, the automatic labelling process based
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on heart rate measurement, the two stages feature extraction, the data augmentation
and normalization techniques are described in detail next.

FIGURE 4.1: Block diagram of the speaker recognition under stress
conditions methodology with VOCE Corpus. Reproduced with
permission from the copyright owner, the authors of [3] via Creative

Commons License CC-BY 4.0 from MDPI.

On this part of the thesis we used the VOCE Corpus Database [156] which
we already described in detail, together with the preprocessing and the data
augmentation techniques used in Sec. 3.2.1. Regarding the labelling, we work
with two types of labels for each audio utterance: boolean stress labels that indicate
the presence or absence of stress, and speaker labels, taking values from 1 to n,
representing the speaker id of each the audio sample, where n is equal to the total
number of speakers, different in each set; in Set 1 n is equal to 10, and in Set 2 n is
equal to 11, with a total of 21 speakers – see Sec. 3.2.1 –.

After the speech pre-processing block, we extract handcrafted acoustic features
from it. These should reflect the anatomy of the speech production system (e.g., size
and shape of the larynx and mouth) and the learned behavioral patterns that shape
the speaking habits (e.g., voice pitch, speaking style). For the feature extraction we
use a window of 20ms with 50% of overlap – very common values used to analyze
the temporal evolution of the signals in literature [232] –. To convert the feature
vectors into the resolution of 1s and align them with the stress labels, we perform
the mean and standard deviation of the acoustic characteristics over segments of one
second. Thus we obtain one feature vector per second of audio. These features add
up a total of 34 and are the mean and standard deviation of MFCC 1-13, formants
1 to 3 and pitch. They were selected according to the literature for emotions and
speaker recognition [232, 213].

4.3.1 Synthetically Generated Stressed Samples

The pitch and the elocution speed were two variables we informally observed to
be changing between neutral and stressed speech utterances. As a consequence,
we performed an analysis to measure the differences between the mean pitch from
neutral to stressed audio utterances for each speaker using the VoiceBox [166]
toolbox. An estimation of the average elocution speed for each user was calculated
by computing the mean number of words per second of each speaker, obtaining an
automatic transcription of each of the recordings using Google Speech Recognition
[234], and dividing it over the length of the audio signals after having removed silent
audio frames with a VAD module.

The differences in pitch from neutral to stressed speech were in a range between
a relative percentage of −2% and +7% for all speakers, increasing an average 2.2%
Hz. In regard to the elocution speed, subjectively, it seemed to rise in stressed speech
utterances, however our analysis gave us the opposite conclusion. The number of
words per second was higher when the user was reading a text, 2.2 words/s on
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average, in comparison with when the speaker was performing an oral presentation,
1.85 words/s. By listening to the signals, we determined that the words were spoken
faster during the public speaking setting but there were many short pauses and
pause fillers – words like ‘ehm’, ‘um’, ‘ah’ – between them, that did not count as
words for the transcription but were not removed by the VAD module either. Those
causes lead to a lower elocution rate in overall.

Thus, we applied modifications in the locution speed and the pitch on
the original database, to produce synthetically generated stressed samples
of speech. The pitch was modified by the following relative percentages
[−6%,−3%,+3%,+6%] and the speech signals were slowed down – with the aim of
extending the duration – by the following percentages [−20%,−15%,−10%,−5%].
All of these modifications were applied to the original audio signals and resulted in
what we call a new synthetically generated stressed set per modification. In this manner,
we augmented our data by a factor of 9, the original dataset plus 8 modifications.

4.3.2 Experimental Set-up and Results

Originally, for an initial experimental set-up we
used the data available for Sets 1 and 2 together
(21 speakers, detailed in Sec. 3.2.1, the number of samples can be observed in Fig. 4.1).
This preliminary experiment is made to observe the behaviour of the speaker
identification rate in mismatch conditions. First of all, we divided the data into
Neutral (N) and Stressed (S) speech utterances and experimented training with
one type of speech, testing with the other and then mixing both types, using a
conventional Multi-Layer Perceptron (MLP) as the inference model. The results in
terms of accuracy – the percentage of audio segments correctly classified – can be
found in Table 4.2. In order to get reliable results these experiments were repeated
50 times, where for each repetition the data used for testing (30%) was chosen
randomly – when in matched settings, the samples used for training were excluded.

Samples Neutral Stressed Total

Set 1 1389 3989 5378
Set 2 1716 4858 6574
Total 3105 8847 11952

TABLE 4.1: Number of samples of VOCE used [3].

As we could expect at first, matched settings are better than mismatched. When
training with neutral utterances and testing with stressed, accuracy decreases more
than a 15% with respect to match settings, so it seems that stressed speech does
have different characteristics compared to neutral speech that affect SI. On the
contrary, when training with stressed utterances of speech and testing with neutral,
the decrease in accuracy with respect to the matched setting is not that important (5%
absolute) comparing it to the reversed case. This may indicate that stressed speech
could be less homogeneous data in which neutral speech could be contained but
not vice versa. Regarding the mixed conditions experiments, the accuracy reached a
96.05%, achieving a positive result for this particular task.

In the next experimental set-up, we aim at measuring the accuracy achieved by
the system when training with the different synthetically generated stressed sets.
We perform pitch and speed modifications to artificially stress utterances for the
Set 1 of speakers, and test it with originally stressed speech. The results achieved
in these experiments should reflect which modification imitates best the original
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Training Set Test Set Mean (%) Std (%)

Neutral
Neutral
Stressed

96.73
79.21

0.33
0.90

Stressed
Stressed
Neutral

95.87
90.89

0.28
0.49

Mixed Mixed 96.05 0.12

TABLE 4.2: Accuracy results for speaker recognition under stress
conditions with VOCE under matched and mismatched settings [3].

stressed samples. We kept the test set fixed for these experiments, a 30% of the
samples of original stressed speech. Additionally, the same 30% in every synthetic
generated stressed set was removed to achieve a more accurate comparison between
experiments and guarantee that the test samples were never present in the training
set even if they had been modified by our augmenting procedure.

Set compositions in Fig. 4.2 were grouped forming different combinations in
order to acknowledge the differences in accuracy for each particular setting used
in the training stage. On the left side, we represent the original dataset, composed
by neutral and stressed samples. In this case, we used the 30% of the examples of
the the stressed collection as the Test set for later experiments. On the right, we
represent a diagram of one of the synthetically generated stressed sets (the original
neutral speech becomes "synthetic stressed speech" and the original stressed speech
becomes "synthetic super stressed speech"). The 30% of data used before as Test was
removed to obtain more reliable results. There are several synthetically generated
datasets, one per modification applied.

FIGURE 4.2: Schematic of Original and Modified Datasets of VOCE.
The red part refers to the equivalent to the Test samples on the block
in the left, meaning that they were correctly removed when SSS was
used for training. Reproduced with permission from the copyright
owner, the authors of [3] via Creative Commons License CC-BY 4.0

from MDPI.

In Figs. 4.3 and 4.4 we present the results obtained, we enumerate the data used
for the training step on the X axis, the Y axis represents the accuracy achieved,
and each colour bar indicates the modified set used for training. In Fig. 4.3 we can
observe that the modifications that obtain the highest accuracies are Pitch +3% and
Pitch −3%. When it comes to Fig. 4.4, although the speed results are very similar,
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the alteration that works worse is Speed −20%. As for the training sets used, the SSS
set works better than the SS in both cases.

FIGURE 4.3: Accuracy results training the model with synthetically
generated stressed data with pitch modifications, and testing with
original stressed utterances in Set 1. Reproduced with permission
from the copyright owner, the authors of [3] via Creative Commons

License CC-BY 4.0 from MDPI.

FIGURE 4.4: Accuracy results training the model with synthetically
generated stressed data with elocution speed modifications, and
testing with original stressed utterances in Set 1. Reproduced with
permission from the copyright owner, the authors of [3] via Creative

Commons License CC-BY 4.0 from MDPI.

For the next set of experiments we decided to perform the modifications to the
audio recordings of Set 2 that had achieved higher accuracy rates in Set 1. These were
pitch [−3%,+3%] and signal speed [−15%,−10%,−5%] as mentioned. We joined
Sets 1 and 2, transforming the problem in a 21-speaker SI task and combined all the
synthetically generated stressed data into one dataset, augmenting in a factor of 6
the original data size, 5 modifications plus the original dataset. The same analysis
were done for Set 1 and Sets 1 + 2.

In Table 4.3 we observe two types of experiments, some in which we substitute
data and others where we augment data on the training stage. These experiments
were repeated 20 times for reliability. As for substituting the original set by a
synthetically generated stressed one, we have experiments 6 and 7 to be compared
with experiments 1 and 2 respectively. Data substitution achieves similar results
to those with original data when using synthetically generated data from neutral
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Exp. Num. Case Set 1, Mean Set 1, Std Set 1 + 2, Mean Set 1 + 2, Std

1 N 89.71 0.56 78.55 0.60
2 S 98.59 0.16 97.37 0.21
3 N + S 98.48 0.23 97.21 0.26
4 N + SS 89.97 0.39 80.46 0.53
5 N + SSS 99.93 0.05 99.16 0.11
6 SS 89.72 0.53 78.19 0.71
7 SSS 99.88 0.07 99.21 0.13
8 N + S + SSS 99.91 0.07 99.45 0.08
9 N + S + SS + SSS 99.94 0.06 99.22 0.11
10 N + SS + SSS 99.91 0.07 98.97 0.14

TABLE 4.3: Accuracy results for speaker recognition under stress
conditions with VOCE with synthetically generated speech using

different combinations [3].

speech for training (case 1 vs. case 6) as well as better identification rates when
using synthetically generated data obtained from stressed speech (case 2 vs. case 7).

Data augmentation experiments are 3, 4, 5, 8, 9 and 10. The outcome is indeed
positive, the best results are achieved in experiment 8 with a 99.45% of accuracy
for Sets 1 + 2. These results show us that augmenting the data with synthetically
generated stressed utterances of speech boosts the SI rate.

One of the objectives of these experiments was to determine whether experiment
4 could outperform experiment 2. This would mean that we had accomplished
the task of generating appropriate synthetically generated stressed speech out of
neutral utterances. However, we can see that the procedure we employed was not
enough to be used as a substitute. Nevertheless, in Table 4.3 we observe that case
4 performs better than case 6, which in turn outperforms case 1. This shows that
synthetically generated stressed speech and using it as training data alongside with
original stressed data increases the performance of the SI system.

4.3.3 Discussion

Our goal in this section was to analyze how stressed speech utterances influenced
the performance of Speaker Identification systems. We have identified a problem,
stressed speech in the testing stage affects negatively when SI systems use an MLP
model and are trained only with neutral speech.

As for the case of match and mismatch conditions, in the mixed setting – using
neutral and stressed original utterances for both training and testing – the SI system
achieves a 96.05% of accuracy, a satisfactory rate for this type of tasks, demonstrating
that the set of features chosen for the task is adequate.

In the preliminary experiments for data substitution, depending on the
difference between the synthetically generated data and the original one used for
training, some substitutions outperform the results achieved using original data.
Besides, the modifications over the pitch of the speaker work better when we
include synthetically generated stressed samples for training, than when we include
the modifications in speech speed. However, when we use super synthetically
generated stressed samples for training, the sets modified by changes in speed
achieve better results.
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Regarding the experiments for augmenting the database with artificial stress,
we can conclude that the generation of different synthetically generated stressed
utterances of speech by modifications in pitch and speed, and their addition to the
database, enlarges meaningfully the instances to work with, improving substantially
the results achieved by the Speaker Identification system with a 99.45% of accuracy.

Several experiments and methods remained unexplored and are left for future
work, such as shifting the paradigm to a Speaker Verification setting, which could
narrow the conditions of the problem and make it more convenient for our task,
as well as using speech under conditions of real fear would make the training and
test conditions match completely. As Bindi works in real environments, it would
be opportune to strengthen the system by degrading audios as if they had been
recorded in a real environment, such as adding noise to the database used and
analyze its effect. It would also be of interest to further analyse the differences
between neutral and stressed speech to find new modifications to be applied to
neutral speech to transform it into appropriate synthetically generated stressed
speech.

4.4 Speaker Embeddings from an End-to-end Recurrent
Denoising Autoencoder

The variability that real life conditions induce in speech are indeed a handicap
for speaker recognition systems, for instance the emotional state of the speaker,
environmental noise,... This speech is called ’in-the-wild’. By means of the
principles of representation learning, in this section we aim to detail our own
contribution published in [2], on the design of a recurrent denoising autoencoder
that extracts robust speaker embeddings from noisy spectrograms to perform
speaker identification.

We address the combined problem of the lack of environmental noise robustness
of SR systems and the effects of negative emotional speech on their performance.
Our contribution capitalizes on using robust speaker discriminator oriented
embeddings extracted from a Recurrent Denoising Autoencoder combined with
a Shallow Neural Network – a feed-forward neural network, equivalent to a
Multi-layer Perceptron (MLP) – acting as a back-end classifier for the task of Speaker
Identification, as detailed in Fig. 4.5. This end-to-end architecture is designed to
work under adverse conditions, both from the point of view of distorted speech due
to stressing situations, and environmental noise.

We choose the VOCE Corpus Database [156] because it includes speech
recorded under spontaneous stress conditions, and due to the real-life nature of
it. Moreover, we augment our database with synthetic noisy signals by additively
contaminating the dataset with environmental noise to emulate speech recorded in
real environments.

We discuss a recurrent denoising autoencoder architecture based on Gated
Recurrent Units (GRU), where the recurrent architecture targets modelling the
temporal context of speech utterances. The encoder network extracts frame level
embeddings from the speech spectrograms and is jointly optimized with a feed
forward network whose output layer calculates speaker class posteriors. With
the help of the denoising module that attempts to remove environmental noise
information, and the SNN that targets recognizing the speaker, all the information
that is not directly employed for speakers’ identification is dismissed from the
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(A) Spectrogram Enhancement

(B) Speaker Identification

FIGURE 4.5: Proposed architecture components: Recurrent Denoising
Autoencoder and Shallow Neural Network [2]. Reproduced with

permission from the copyright owner, Springer Nature.

embeddings. In particular, the loss function associated with this last dense network
is also fed into the denoising autoencoder to guide its efforts towards the SR task.

Finally, we observe that these speaker discrimination oriented embeddings are
more robust to noise and stress variability than those optimized separately by
comparing the effects of automatically extracted embeddings by this two-stage
connected architecture against the two modules separately, hand-crafted features
previously demonstrated to be suited for this problem and a frequency recurrent
alternative obtained by transposing the inputs to the GRU autoencoder.

The main difference with respect to similar works such as the mentioned in Sec.
4.2 – in particular [204] – consists of, first the shallow approach of the back-end
oriented towards having a fast and real-time running system in a wearable device,
seeking for a balance between computational complexity and performance; and
second the use of an end-to-end system for extracting embeddings containing only
speaker-relevant information together with the identification task.

4.4.1 Model Architecture

The proposed architecture is the combination of a Recurrent Denoising
Auto-Encoder (RDAE) and a Shallow fully-connected Neural Network (SNN)
backend – which is equivalent to a MLP – in an end-to-end system.
Autoencoders are generally unsupervised machine learning algorithms trained
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towards reconstructing their inputs through a series of layers. Denoising
Auto-Encoders (DAE) take in a corrupted version of the data as the input and a
clean version as the desired output and try to reconstruct the latter from the former.
Our proposed RDAE is composed of a two-layer encoder and a symmetric decoder
based on GRUs. The SNN includes a dense plus a dropout layers.

An autoencoder is a mathematical model trained on unlabeled data and used
to convert the input data in a compressed feature representation (the so called
bottleneck), and then convert that feature representation, back to the fimension
of the input data. In our case, as an input the encoder takes a one-second
log-scaled mel-spectrogram, and encodes it into a low-dimensional representation.
Although SI systems tend to use longer temporal windows to secure their decisions,
Bindi needed a real-time and quicker outcome that has motivated this short-utterance
speaker identification architecture.

After its extraction, the embedding is fed simultaneously to the decoder and
the SNN (see Fig. 4.6). First, the decoder tries to reconstruct a clean spectrogram
from this embedding extracted from a noisy spectrum yielding the Mean Squared
Error (MSE) between the reconstructed and clean spectrograms. Second, the SNN in
charge of identifying the speaker to whom that utterance belongs to, computes the
cross-entropy of the predicted speaker and the true speaker labels.

(A) Jointly optimized training procedure

(B) Testing procedure

FIGURE 4.6: Procedure for training and testing stages in the proposed
architecture in [2]. Reproduced with permission from the copyright

owner, Springer Nature.

Equations 4.1 and 4.2 represent the loss functions, Ld and Ls, of the RDAE (mean
square error) and SNN (cross-entropy) respectively

Ld =
1
N

N

∑
i=1

(Si − Ŝi)
2 (4.1)

Ls =
N

∑
i=1
−logP(ŷi|yi) (4.2)

where S is the clean spectrogram, Ŝ the reconstructed spectrogram from the noisy
one, and y and ŷ are the original and predicted speaker labels. N represents the total
number of speech samples. Finally, instead of sequentially training the RDAE and
the SNN, the whole architecture is jointly optimized using an equally weighted cost
function that linearly combines the previous two metrics as Equation 4.3.
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LT = λLd + (1− λ)Ls (4.3)

We have empirically observed that the normalization of the spectrograms results
in a normalized MSE loss that falls roughly within the same dynamic range as the
cross-entropy loss. Since we did not have any a priori reason to think that one
of the tasks could influence the result more than the other we set λ = 0.5. This
showed good results in our test but further exploration of this parameter should be
undergone as future work.

4.4.2 Data Augmentation

The VOCE Corpus [156] is used in this experimentation since first, it contains data
taken in real stress conditions and second, it offers data from sensors similar to those
present in Bindi. In order to simulate real-life environments, speech signals were
additively contaminated with 5 different noises from −5dB to 20dB in steps of 5dB
Signal to Noise Ratios (SNR). Noise signals were chosen from the DEMAND dataset
[235]: DWASHING, OHALLWAY, PRESTO, TBUS, SPSQUARE and SCAFE. The
noises were chosen to emulate everyday life conditions similar to those envisioned
for Bindi deployment. The noises were high-pass filtered to eliminate frequencies
lower than 60Hz to remove the power line interference, specially noticeable in
Dwashing noise.

We used a 70ms FFT window, an overlap of 50% and 140 mel frequency bands
and extracted the spectrograms of the speech signals for each second of audio using
the spectrogram extraction module in [236, 217] thus resulting in 27 time steps and
140 mel-frequency bands mel-spectrograms. These choices showed to be reasonable
during a preliminary evaluation. Our choice of a higher number of mel frequency
bands and longer temporal windows than typically chosen in hand-crafted feature
extraction allows a balance of frequency and time resolution more suited for the
recurrent networks. Although the classical choices for these values are inspired in
the human auditory system, we hypothesize that machines could take advantage
of their computational power when analysing data more than just what humans
can hear, and therefore they could be able to overcome the human error rate given
enough data is provided.

4.4.3 Experimental Set-up and Results

To measure the robustness of the system we designed a multi-conditioning setting in
which all the contaminated speech signals at different SNRs, as well as clean speech
signals, are combined. This is a more realistic scenario in which the specific SNR
is not fixed a priori for each training. Special attention was taken to ensure that all
samples belonging to the same utterance but contaminated with different noises and
SNRs were grouped in the same validation fold, so that none of the various versions
of the samples in the validation subset appeared in the training set.

Nested cross-validation was used to optimize the hyper parameters for the
autoencoder and the SNN as speaker classifier. In nested cross-validation, an outer
loop of 33% of unseen data on the training stage is used to obtain the final test results;
an inner loop (3 validation folds) is used to find the optimal hyper parameters via
grid search. The test set is unseen so that structural decisions made using data from
the same distribution – for which final results are computed – do not undermine
the validity of the conclusions reached. A block diagram of the training and testing
procedures is detailed in Fig. 4.6.
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The spectrograms are reduced in the frequency axis from 27 × 140 to 27 × 40.
This low-dimensional image is flattened, obtaining a 1080 one-dimensional speaker
embedding. The layer sizes of the architecture are shown in Table 4.4.

The number of hidden units of the dense layer of the SNN was set to 1, 000,
dropout percentage to 30% and the L2 regularization parameter set to 0.01. We
trained for 15 epochs with a batch size of 128 and a learning probability of 0.001.
We also added a delay to the stop criterion, a patience of 5 iterations, after which
if no improvements are observed, training is stopped. The model with lower
validation loss during the training is selected as the optimal. The spectrograms were
normalized with respect to the mean and standard deviation of their training set.
Each spectrogram in the validation set was normalized in terms of the mean and
standard deviation obtained from its correspondent training set in the fold.

Layer Output
Input (27, 140)
GRU (27, 64)
GRU (27, 40)

Flatten (1080, 1)

Layer Output
Input (1080, 1)

Reshape (27, 40)
GRU (27, 40)
GRU (27, 64)
Time

Distributed (27, 140)

Layer Output
Input (1080, 1)
Dense (1000, 1)

Dropout (1000, 1)
Dense (21, 1)

TABLE 4.4: Output dimensions of the layers of the Autoencoder and
SNN backend architectures. Encoder (left), decoder (center) and SNN

(right) [2].

We compared the performance of our proposed jointly optimized method
(jRDAE) against three different architectures. First, the same system as ours in
which the RDAE and the back-end SNN have been independently optimized (iRDAE).
Second, a transposed (frequency) Recurrent Denoising Autoencoder that differs
from our approach in that the spectrograms used as input are transposed, as well
as the GRU layers, and it is the time axis the one reduced in dimensionality. This
aims at recurrently modelling the frequency domain. Finally, a system in which
hand-crafted features such as pitch, formants, MFCCs and energy, were chosen
based in the literature [3], are fed directly into the backend SI component, the only
module to be trained.

Our results are displayed in Fig.4.7, where confidence intervals are also depicted
for each of the results taken as one standard deviation on the 3-fold validation.
As a metric to compare the algorithms, we chose Accuracy in terms of speaker
identification as the classes were fairly balanced. For each experiment, the
confidence interval is shown as a small box-and-whisker plot representing the
standard deviation of the cross-validation experiments performed to indicate its
statistical significance. Our aim is to achieve robustness and therefore to obtain a
less degraded performance when the SNR is low.

The independently optimized cascaded architecture (iRDAE) is the algorithm
that achieves the lowest results at all SNRs (with the exception of Ohallway at SNRs
lower than 10dB where it is the second worst). We can conclude that the optimization
of the RDAE only, towards minimizing MSE is not consistent with the needs of the
SI.

The transposed architecture is the result of taking the spectrograms’ axis
transposed and therefore reducing the time axis in the autoencoder instead of the
frequency. As can be seen in the plots, this results in an inaccurate detection of
the speaker. We believe that reducing the sequential temporal characteristics of the
spectrograms is a handicap for the SI system.
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The handcrafted features (HC), on the other hand, achieve good results for high
SNRs, since the features where chosen specifically for the task. HC works acceptably
well when small amount of data is available, but its performance worsens very fast
when SNR decreases.

For most of the noises, the proposed architecture (jRDAE) achieves the best
results for lower SNRs and stable rates for higher ones. jRDAE achieves reliable
results for the whole range of SNRs, being a more robust approach than the rest of
the architectures. The exception is the Presto noise in which a closer look revealed
that the denoised spectrograms where rather far from the clean ones.

Additionally, we stratify the results for the proposed jRDAE system (Table 4.5)
to observe the differences in performance for neutral (N) and stressed (S) samples,
where in the the last two columns of Table 4.5, mean and std values are provided as a
summary. Clearly, lower SI rates were observed in stressed utterances, showing the
difficulties induced by stress, Presto and Scafe being the most affected. This suggests
the need to specifically cater for distortions caused by emotional speech.

Noise \ SNR -5 0 5 10 15 20 Clean Mean Std

DWASHING N 36.60 56.04 69.23 78.37 81.77 83.78 - 67.63 1.98
S 28.45 45.58 58.54 68.88 74.71 78.47 - 59.11 1.14

OHALLWAY N 49.00 68.76 78.09 81.96 83.87 85.27 - 74.49 2.42
S 43.43 60.98 71.17 76.74 79.98 81.44 - 68.96 1.28

PRESTO N 28.53 45.92 65.59 73.85 79.58 82.94 - 62.74 1.91
S 20.33 38.14 56.84 68.60 75.01 78.63 - 56.26 1.02

TBUS N 60.05 72.40 80.14 83.40 85.97 85.87 - 77.97 2.43
S 53.46 66.37 74.47 78.39 80.34 81.12 - 72.36 1.07

SCAFE N 41.21 61.49 75.29 80.89 84.20 85.59 - 71.45 2.05
S 29.90 51.25 66.55 74.13 78.71 80.68 - 63.54 1.47

SPSQUARE N 54.08 71.42 78.97 83.03 85.22 85.45 - 76.36 2.9
S 48.05 64.05 72.82 78.11 80.46 81.70 - 70.87 1.58

CLEAN N - - - - - - 86.29 - -
S - - - - - - 82.41 - -

TABLE 4.5: Accuracy results detailed by additive noise and SNR,
stratified by Stressed (S) and Neutral (N) samples for proposed

jRDAE [2].

In Fig. 4.8 we show a breakdown of the results in terms of neutral and stressed
speech, comparing the Handcrafted approach and the proposed jRDAE. On it we
can observe a similar deterioration in the stressed cases for all additive noises.
Specifically for the Handcrafted model, that follows a similar trend as the results
in Table 4.5. Confidence intervals are also depicted for each of the results taken as
one standard deviation on the 3-fold validation. The std values denote the average of
the std values of the 3-fold validation process for the 6 SNRs. Stress accuracy results
are slightly worse than neutral ones, and for lower SNRs, the results are notably
worse than for jRDAE.

With a few non-significative exceptions, we observe better results for neutral
speech while for stressed speech the SR achieves lower accuracy rates, for both
approaches – HC and jRDAE –. This highlights that stress affects speech and
deteriorates speaker recognition rates in spite of having included this particular
degradation within the training set. In this section, we are not using the stress vs.
neutral labels to actively work to combat stress or reduce its degrading effects and
therefore we believe there is still room to improve.
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4.4.4 Discussion

In this section we evaluated the performance of speaker oriented embeddings
extracted with an end-to-end architecture composed of a Recurrent Denoising
Autoencoder for an SR task using a Shallow Neural Network. With this approach,
we aimed at mitigating the effects on SR systems caused by variability induced by
ambient noise, both for neutral and stressed speech.

The end-to-end proposed architecture used a feedback loop to encode
information regarding the speaker into low-dimensional representations extracted
by a spectrogram denoising autoencoder. We employed data augmentation
techniques by additively corrupting clean speech with real life environmental noise
in a database containing real stressed speech. Our study presented that the joint
optimization of both the denoiser and speaker identification modules outperformed
– specially in lower SNRs – independent optimization of both components under
stress and noise distortions as well as the use of hand-crafted features.

Our proposed jRDAE architecture achieves reliable results for the whole range of
SNRs contaminated signals, being a more robust approach than the rest of the tested
architectures. In the resulting tables, lower SI rates were observed when performing
inference in stressed utterances, showing the difficulties induced by stress. This
suggests the need to specifically cater for distortions caused by emotional speech.

Regarding the system’s computational cost, we need to take into account that this
speaker identification module is expected to be embedded into a computationally
constrained device, and lightweight systems are preferred for such, in order to
increase battery life. The decision of using GRU cells instead of LSTM cells was
based on the fact that the number of parameters is significantly lower and therefore
GRUs are fast and less computationally expensive than LSTM. With this decision the
main speed bottleneck is now the SNN, with 1.1 million parameters. In the future,
we aim to reduce the number of parameters of this model to develop a lightweight
intelligent algorithm to be embedded within the Bindi system.

To further analyse the robustness of this speaker oriented embeddings and
end-to-end architecture, it could be tested in an adversarial fashion by using an
emotion – or stress – classifier as a domain adversarial module. We also intend
to use richer datasets that contain real life speech, specifically WEMAC [11]. To
deal with the problem of data scarcity, transfer models could be used and adapted
to emotional speech other large-scale datasets for speaker identification such as the
crowd-annotated VESUS [238] and VOXCeleb [239].

4.5 Speaker Recognition’s Response to Acoustic Events

In the line of speaker recognition under stress conditions, additionally we perform
some SR experiments with another speech database which includes realistic stress
conditions. The work detailed in this section is published in [8], for which we,
with the assistance of other members of UC3M4Safety team, are responsible for the
contribution.

We determined that BioSpeech (BioS-DB) [157] was a good fit to our interests
among other suitable databases, since it includes continuous-time annotations in
the Arousal/Valence space for non-acted presumably realistic stressed speech due
to its public speaking setting, and incorporates physiological data (Blood Volume
Pulse – BVP – and Skin Conductance – SC –) as in Bindi which could be of great
use for multimodal models in the future. Note, however, that the purpose of this

https://www.uc3m.es/instituto-estudios-genero/UC3M4Safety
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dataset collection is quite different from ours since their creators aimed at predicting
bio-signals from speech.

In general, the main difficulty with emotionally labelled data relies on the proper
labelling process (see Sec. 2.5). There is no universal agreement on how to categorize
or measure emotions. The self-assessment annotations by a specific subject can differ
from labels annotated by external evaluators observing the said subject. Moreover
in Sec. 3.2.2, we already introduced our own reinterpretation of the labelling of
BioS-DB, more suitable for a stressed speech classification task (further information
in Sec. 5.6.1).

On the other hand, the emotional state of the subject could influence negatively
the performance of any speech technology and in particular, their identification
[240]. Identifying the target user’s voice, separating it from the rest of the speakers,
opens an interesting possibility for situations where it would be desirable to identify
all the speakers involved in the scene, e.g., in case of legal evidence required.

The creation of Biospeech+ (see Sec. 3.2.3) arises from the need to find out if
we could use Acoustic Event Detection or Classification (AED/C) of background
events to assist the Speaker (SR) and Speech Emotion Recognition (SER) tasks. To
decide whether acoustic events could most likely cause a stressful reaction loosely
synchronized with the time instants where the emotional labels denote an acute
stress occurrence. For Biospeech+ we combined them at different SNR29 ratios (−5,
5 and 15 dB).

4.5.1 Experimental Set-up and Results

We extracted features from well-known libraries used for SR, SER and AED/C,
respectively: librosa [241], eGeMAPS [184] from the openSMILE toolkit [185] and
YAMNet embeddings [242], as we will later on explain. The size of our working
window is 1 second. This is a trade-off between computational complexity and
speed and a requirement in Bindi. Thus, from librosa we extracted 19 features
with a window size of 20ms and a 10ms overlap and then their mean and standard
deviations every second resulting in 38 features per second. Using openSMILE we
extracted the eGeMAPS feature set with 88 features. For extracting features suitable
for audio events we used the 1024-dimensional embeddings corresponding to the
activations of the top convolutional layer of YAMNet. We used a feature selection
method in which the correlation of the concatenation of the three feature sets was
used to remove the features with a correlation higher than 95%. This resulted
in a reduction of the 68% of the features. Examining the correlation matrices we
confirmed that most YAMNet features were highly correlated with each other. All
features were standardized by using z-score normalization.

With the chosen window size, BioS-DB contains approximately 5000 samples.
This is a small size for the use of deep neural networks, so a simple
Multi-Layer Perceptron (MLP) implemented with scikit-learn [243] and two shallow
network architectures implemented with Keras [244] are tested, working towards
maintaining a low computational complexity. The first of them consists of two
hidden fully-connected layers with 50 and 20 neurons, respectively. The second
is a combination of a convolutional 1D layer, a bidirectional Gated Recurrent Unit
(GRU) layer and a fully-connected layer. This model responds to the idea that it
is important to extract information from the temporal context distribution of the
features. The Keras models were compiled using an Adam optimizer with a learning

29For the SNR measure we consider the foreground speech from Biospeech as the ‘signal’ and the
audio events as ’noise’.
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rate of 0.001, categorical cross-entropy as the loss function. All the models used
F1-score as the metric to evaluate performance to mend imbalances in the dataset.
For all experiments we used a 5-fold cross-validation.

Model librosa p eGeMAPS p yamNET p L+E+Y p feat sel p
Speaker Recognition

MLP 100±0.0 28k 72.7±0.6 43k 17.8±1.4 324k 96.4±1.0 361k 98.35±0.3 128k
K2D 99.9±0.1 4k 64.3±2.0 7k 15.21±1.4 53k 95.9±0.8 60k 96.6±0.7 20k

KCGD 100±0.0 10k 50.9±0.7 13k 12.6±1.9 73k 90.8±1.3 81k 95.7±0.9 31k

TABLE 4.6: F1-score results for Speaker Recognition in clean
Biospeech [8]. MLP refers to the Multi-Layer Perceptron, K2D refers
to the 2-dense layers model in Keras and KCGD refers to the Keras
model composed of a Convolutional 1D, Bidirectional GRU and
Dense layers. Mean and standard deviation results are shown for a

5-fold validation.

The results for Biospeech without the audio events are shown in Table 4.6. When
using Biospeech database, the speaker’s samples are not equally balanced and we
aim to use the F1-score metric – commonly used in inference models for unbalanced
data – rather than the accuracy metric as we do when we use VOCE Database. In
Table 4.6 p represents the number of parameters of each model.

For the three tasks under consideration, MLP with librosa achieves the best
performance. It is worth noting that librosa features achieve the maximum score
for the SR task.

The differences in performance between features can be due to multiple reasons,
for instance, their nature. librosa and eGeMAPS features are manually extracted
whereas YAMNet’s are automatically extracted from a pretrained sound-event
detection network. Also, their number – 38, 88 and 1024 respectively –, and besides,
their specific potential to represent emotions or speaker information. It is worth
highlighting the results for eGeMAPS with the K2D model, which is the most
lightweight of the 3 models used, performing better than the KCGD with more
parameters; and also achieving a performance only less than 10% lower than the
MLP, having 1/6 of its parameters.

Fig. 4.9 provides the results for SR for Biospeech+ for different SNRs. We
can observe again an almost perfect performance for librosa features, and good
performances for eGeMAPS, l+e+y (early fusion of librosa, eGeMAPS and YAMNet
features) and feature selection, but a considerable decrease in efficiency for YAMNet
embeddings only. This means that acoustic events do not affect the SR task.
Besides, YAMNet embeddings do not seem to capture relevant information about
the acoustic cues of the speech that could help distinguish between speakers.

4.5.2 Discussion

In this section we aimed to evaluate whether adding acoustic events that were
statistically loosely related to the occurrence of stress utterances could improve the
performance of an SR system. We draw from the premise that detecting acoustically
GBV risk situations involves taking into account speech and acoustic contexts since
they could be correlated. However, there are no non-acted datasets that allow to
elicit this relationship so that it could be studied, thus, we generated Biospeech+,
augmenting BioS-DB with acoustic events.

Besides, in Sec. 3.2.2 we reinterpreted BioS-DB labels, including that the samples
labelled Q2 were interpreted as those related to fear, anxiety or stress, but we should
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note that without the dominance dimension, emotions such as anger or rage could
lay in that quadrant too, generating a misinterpretation of both.

In this preliminary study we focused on the relationship between speaker, stress
and acoustic events. Both the feature sets and algorithms were used with the aim
of keeping low the computational complexity and taking into account the number
of samples of the database used. And in conclusion, stressful acoustic events with
a non-deterministic correlation to stressed speech utterances proved not to affect in
the recognition of the speaker.

When it comes to the different feature extraction methods, widely used libraries
for feature extraction in speaker recognition tasks – librosa and eGeMAPS – work
much better than YAMNet features, which are used for acoustic events detection.
The fact that the librosa feature set achieved an F1-score of 100% was thoroughly
checked, as we were aware such a high accuracy could denote a training issue, but
no error was found. The possible reasons for this 100% score could be because it is
a feature set that works very well for the task of speaker recognition, making the
model learn the voice identity patterns very well, or due to the fact that the amount
of data on the test set is limited. Finally, in Sec. 5.6.1 we will re-use this database to
measure the effect of acoustic events in the task of stress recognition, and we advance
that for such task, the presence of acoustic events is beneficial.

4.6 Conclusions and Future Work on Speaker Recognition

In this chapter we have tackled the task of speaker recognition with the intention of
first identifying the user, for later detecting emotions in their voice that may indicate
a situation of risk. We focus on two variability aspects, first on the recognition of
the speaker under stress conditions, to understand how and how much these stress
conditions affect the speaker recognition task, and second on speaker recognition
under real-life (noisy) environments, which is where our application will ultimately
work.

In Sec. 4.3 we analyze how stressed speech influences the performance of SI
systems and we identify that it does impact negatively to speaker recognition rates
when SI systems use ML models trained only with neutral speech. We worked
with matched and mismatched settings for such purpose, and created synthetically
generated data to substitute the non-existent stressed data out of neutral speech,
which enlarges meaningfully the instances to work with, improving substantially
the results achieved by the systems. Therefore in the absence of real emotional
stressed speech – and ultimately speech in fearful conditions — we can augment
the data with increased pitch modifications and speech rate slowdowns to achieve
data that resembles real stress and can help maintain an acceptable recognition rate
in SR systems.

In Sec. 4.4 we employed data augmentation techniques by additively corrupting
clean speech with real life environmental noise in a database containing real
stressed speech, to study the relationship between these 3 factors – speaker, noise
and emotions – based on the premise that speech in-the-wild is a handicap for
speaker recognition systems due to the variability induced by real-life conditions,
such as environmental noise and the emotional state of the speaker. The design
of a recurrent denoising autoencoder that extracts robust speaker embeddings
from noisy spectrograms to perform speaker identification addresses the combined
problem of the lack of environmental noise robustness of SR systems, even when
including stressed speech for its training. This representation learning based
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method takes advantage of the joint optimization of a denoiser and SI block with
a combined loss function, which is shown to work better than a general purpose
denoiser. It achieves reliable results for the contaminated signals in the whole range
of SNRs, being a more robust approach than the rest of the tested architectures.
The performance difficulties induced by testing the architecture in stressed speech
are observed when achieving lower SI rates for stressed than for neutral speech
utterances. This suggests the need to keep on addressing specifically for distortions
caused by emotional speech.

In Sec. 4.5 we augmented speech data with additive acoustic events, drawing
from the premise that detecting risk situations involves taking into account speech
and acoustic contexts since they could be correlated. But stressful acoustic events
with a non-deterministic correlation to stressed speech utterances proved not to
affect detrimentally in the recognition of the speaker. Thus, the relationship between
stress detection and such acoustic events is left to be further studied in Chapter 5.

In closing, the lack of real emotional data is indeed a drawback for SR systems
without them to train our ML models the best recognition rates – in match conditions
– are difficult to achieve. It is also very important to consider that speech recorded
in real conditions includes environmental noise that is also detrimental for SR
systems, and so it must be eliminated with correct denoising methods in order to
achieve the best SR performances. In the absence of real stressed speech and noisy
conditions with which to train and test our SR inference models, we have found that
augmenting the data by synthetically stressing it and adding ambient noise allows
us to study and design SR models that are more robust to stress and noise.

WEMAC and WE-LIVE were created to give an answer to this problem, with
which we intend to work further and apply all the knowledge obtained in the
previously detailed studies performed in the field of SR for our GBV risk situations
detection application. To further analyse the robustness of speaker oriented
embeddings, a SR model could be tested in an adversarial fashion by using an
emotion – or stress – classifier as a domain adversarial module.

The use of data augmentation techniques, together with more realistic data
samples as the ones in our datasets – WEMAC and WE-LIVE – paves the way to
use of more complex deep neural networks for our problem. Along the lines of
foundation models and fine-tuning, the next step could be to use a pretrained neural
network and fine-tune it with the data we have available in WEMAC. In order to
work towards the challenging task of the detection of GBV risk situations using an
inconspicuous device such as Bindi we must constantly keep in mind its constrains,
already described in Secs. 1.1.4 and 1.2.2. However, it is worth taking into account
that, with the rapidly changing devices, it is possible that in future Bindi versions,
we are able to embed more complex and deep neural networks with more inference
power and capabilities.
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FIGURE 4.7: Results detailed by additive noise and SNR in terms of
accuracy for different architectures [2]. Reproduced with permission

from the copyright owner, Springer Nature.
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FIGURE 4.8: Results detailed by additive noise and SNR in terms of
accuracy for stress and neutral samples for Handcrafted and jRDAE
configurations [2]. Reproduced with permission from the copyright

owner, Springer Nature.
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FIGURE 4.9: Speaker Recognition F1-score results with Multi-Layer
Perceptron in Biospeech+ [8]. Reproduced with permission from the

copyright owner, ISCA.
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Chapter 5

A Multimodal Fear Emotion
Recognition System for Bindi

In this chapter we dive into the development of the Bindi system for the recognition
of fear-related emotions. This chapter is highly multidisciplinary as there are many
contributions supported by other members of the UC3M4Safety team. This chapter
recounts and reproduces in part or in full the content of the articles published in [9],
[1].

First, we describe the system hardware architecture of Bindi, developing the
components of the edge, fog and cloud computing systems. We then explain
the approach followed for the design of the multimodal fusion strategies for an
automatic alert system for Bindi, first a cascade multimodal system for Bindi 1.0,
and also, the deployment of a complete Internet of Things system with edge, fog
and cloud computing components, for Bindi 2.0. In the latter, we specifically detail
how we designed the intelligence architectures in the Bindi devices for fear detection
in the user. These contributions were made in conjunction with other members of
the team.

In addition, we describe the different data processing pipelines (physiological
and speech) and the monomodal experimentation with speech for the detection of
fear-related emotions, first by targeting the detection of realistic stress – for which
data was more easily accessible in the literature – [1].

Later, as core experimentation, jointly with other members of the UC3M4Safety
team, we work with our own database designed and captured by the team –
WEMAC [11] – for the task of fear detection. In this chapter there is a strong
multimodal component, since we work on the part of emotions recognition from
speech together with data from physiological signals, in the same way Bindi’s two
wearable devices would work.

Finally, a discussion about the architecture of Bindi, the results and their
significance followed by conclusions and future research directions are available in
the last sections.

This thesis’ main contribution relies on working in the speech modality, but it
also handles multimodality and the fusion of modalities. The complementary Ph.D.
thesis where we find with great detail all the work carried out on the physiological
modality – and in particular about the hardware components of Bindi, specifically
the bracelet – developed by the member of the UC3M4Safety team Jose Miranda
Calero, and can be found in [53].

https://www.uc3m.es/instituto-estudios-genero/UC3M4Safety
https://www.uc3m.es/instituto-estudios-genero/UC3M4Safety
https://www.uc3m.es/instituto-estudios-genero/UC3M4Safety
https://www.uc3m.es/instituto-estudios-genero/UC3M4Safety
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5.1 Introduction

As we explained in Sec. 1.1.4, Bindi’s technological solution surpasses the existing
panic buttons to detect threatening situations as they can cause difficulties
because victims have to use them manually even in difficult conditions. Instead,
Bindi, our end-to-end fully autonomous multimodal system, relies on artificial
intelligence techniques that automatically detect violent situations, based on
detecting fear-related emotions, and initiates a protection protocol when necessary.
To this end, “Bindi integrates modern cutting-edge technologies, such as the
Internet of Bodies, Affective Computing, and cyber-physical systems, gathering
i) affective IoT with auditory and physiological commercial off-the-shelf smart
sensors embedded in wearable devices, ii) hierarchical multisensorial information
fusion, and iii) the edge-fog-cloud IoT architecture” [1].

For the detection of risk situations in the context of GBV, we will rely on the
recognition of fear-related emotions from the speech and physiological variables of
a user, entering directly into the field of SER.

Speech Emotion Recognition, abbreviated as SER, is “the task of recognizing
human emotions and affective states from their speech”. This relies on the fact that
voice often reflects underlying emotions through its characteristics and features. For
the development of Bindi, we aim to detect fear emotions in the user that are the
result of a risk situation for them. In the previous chapter we took the first step to
recognize emotions, which is the recognition of the speaker of which the emotion
is desired to be recognized. And in this chapter, we focus in the classification
of emotions using speech and physiological variables – focusing on the former –,
specifically fear-related ones.

There are no databases available in literature that are suitable for this task, that
include speech under realistic fear conditions, so we first worked with stressed
speech, being it a close relative of fear, and then it became available with our
WEMAC Database, which was developed for closing that gap. With such data, we
aim to train machine learning models to automatically detect the emotional state of
a user, in particular, fear.

We make use of speech as well as physiological signals since Bindi aims to
be an inconspicuous device – for emotion recognition – and such modalities are
non-invasive and can capture data in a daily real-life setting, which is where we
target Bindi to work in. These type of interconnected wearable devices belong to
the field of Internet of Bodies (IoB), a subfield of Internet of Things (IoT). With the
use of these two modalities we develop unimodal and multimodal fear emotion
recognition systems.

Types of Fusion of Modalities in Machine Learning

Multimodality is a natural concept for living beings as a means of interacting with
the world around us. In all individuals, the acquired information comes from
internal and external sensors. This information is combined and fused to provide
rapid responses to the external constantly changing environment.

Focusing on the field of Affective Computing, handling more than one modality
is challenging because data differ in different aspects as origin, structure, and
relevance. However, the diversity within a multimodal emotion recognition
system (e.g., combining both physiological and auditory signals) usually allows
improving the insights in a way that cannot be achieved by a single modality
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[245]. In the literature, there are four main techniques for data fusion: feature-level,
decision-level, model-level, and hybrid fusion [246].

In feature-level fusion or early fusion, the different synthetic metrics or features
obtained from each input sensor are combined into another feature vector before
the machine learning model classification. The main drawback of this method is
the high dimensionality of the combined feature vector, which could lead to the
well-known curse of dimensionality.

Unlike early fusion, decision-level fusion or late fusion requires multiple training
stages, one per modality (e.g., one training stage for only physiological signals and
one for only auditory signals). This fusion mechanism is based on the unimodal
recognition results late combination by some criterion. In this case, each of the
modalities can be modeled more precisely by their classifiers, but the system does
not handle in any way the interactions or correlations between modalities. The initial
version of Bindi – Bindi 1.0 – considered a decision-level fusion technique according
to the unimodal inference outputs based on physiological and speech data.

Two other fusion methodologies can be applied to deal with the interaction
problem from the decision-level fusion technique: hybrid and model-level fusion
approaches. Both combine aspects from the two techniques already commented
(early and late fusion). Model-level fusion is based on the mutual correlation
between the different streams from the modalities in the system. It is usually
considered to explore the temporal correlation between those streams [246]. The
hybrid fusion implements more than one fusion level within the same system (e.g.,
combining feature- and decision-level approaches), which usually provides better
recognition results than applying solely one fusion technique.

5.2 Related Work

The multidisciplinary research field aimed at recognising human emotions is the
aforementioned Affective Computing [75], [247]. We find, among its applications,
to provide better working conditions, entertainment, or services to people. It relies
not only on smart sensors and digital signal processing but also on AI techniques,
such as machine and deep learning. The collaborative research among psychology,
computer science, smart sensors, and cognitive science fields [248] allows for
the detection of different emotional states through the monitorization of humans’
signals, such as physiological and physical signals. Some examples of physical
signals include audio, speech or voice, image or video signals, tracking either the
background of the scene or the user. Some examples of physiological variables
include Heart Rate (HR), Galvanic Skin Response (GSR), SKin Temperature (SKT),
ElectroMyoGram (EMG), and ElectroEncephaloGram (EEG).

5.2.1 Speech Perspective: Speech Emotion Recognition (SER)

Emotion detection has been widely reported in the literature with the use of speech
signals [249], [250]. In recent years, the interest in detecting and interpreting
emotions in speech is very extensive [251], [252]. Speech Emotion Recognition
(SER) consists of the identification of the emotional content of speech signals,
the task of recognizing human emotions and affective states from speech. In this
field, there are three important aspects being studied and discussed in the machine
learning community and literature: i) the choice of suitable acoustic features [232],
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ii) the design of an appropriate classifier [253] and, iii) the generation of an emotional
speech database [254], [255].

A review of the databases in literature that can be suitable for this thesis, and its
challenges can be found in Secs. 3.1 and 3.2.

Speech emotion recognition has applications in human-computer interaction, as
well as robots, mobile services, computer games, and psychological assessments,
among others. In spite of its many applications and the substantial progress due
to the advent of deep learning techniques [256], emotion recognition is still a
challenging task, mainly due to the subjectivity involved in emotions (see Sec. 2.5).

The lack of existing speech corpora with strong elicited fear in real situations
is a particular problem of our particular research (see Sec. 3.1). However, a few
studies have managed to achieve results in this regard. For instance, Clavel et al.
[153] developed an audio-based abnormal situations detection system for movie
clips. Their results achieved up to 70.3% accuracy for fear detection via a Leave
One Trial Out (LOTO) strategy for 30 movies. In [257], they performed emotion
detection with para-linguistic cues in a dialog corpus containing real agent-client
recordings obtained from a medical emergency call center. As a result, they achieved
a recognition rate with up to 64% accuracy for fear recognition.

5.2.2 Emotion Recognition Using Physiological Signals

One of the Bindi devices is a smart bracelet that can track physiological signals, as
for the design of an emotion recognition system, the physiological perspective is
extremely informative. In physiology and emotions research, the distinction of fear
– among other emotions – is not new [258].

However, to the best of our knowledge at the moment of the publication of this
thesis, there are only two fear recognition systems based solely on physiological
information and self-reported labels.

On the one hand, the authors in [259] used all signals available from the
Database for Emotion Analysis using Physiological signals (DEAP) [260] to provide
a specialized fear recognition system. They achieved a fear accuracy detection rate
below 90%, although they also considered EEG, which is not currently feasible
as an inconspicuous wearable device. On the other hand, in previous research
from other members of the UC3M4Safety team [261], only three physiological
variables available from the Multimodal Analysis of Human Nonverbal Behaviour
in real-world settings dataset (MAHNOB) [262] were used, obtaining a fear
recognition accuracy rate of up to 76.67% for a subject-independent approach using
data from 12 women volunteers. In the latter they concluded the need for a novel
data set focused on fear detection, including the usage of immersive technology,
considering the gender perspective, achieving proper balanced stimuli distribution
regarding the target emotions and having a greater number of participants.

5.2.3 Internet of Bodies

The growth of research on devices that monitor signals from the human body
during the last years – as both edge devices in Bindi – implies an imminent
extension of the Internet of Things (IoT) domain. This trend emerges concerning
interconnected devices (e.g., worn, implanted, embedded, and swallowed) located
in-on-and-around the human body forming a network, which is currently being
called the Internet of Bodies (IoBs) [263]. This novel field has many applications,
such as human activity recognition [264], user authentication [265], and even

https://www.uc3m.es/instituto-estudios-genero/UC3M4Safety
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emotion recognition [266]. This field also encompasses essential studies on the
limitations of such sensors, such as time delay and energy consumption issues [267].
Thus, such in-body sensors can acquire different types of physiological information
at the same time, which derives studies related to the use of multimodal data fusion
techniques [268], [269].

This IoB proliferation is accompanied by advances in machine learning and deep
learning technologies, resulting in an explosion of mobile intelligence and placing
increasing demands on computing resources that mobile edge devices cannot meet.
Consequently, edge computing capabilities are being boosted and explored to
deliver better intelligence engine inference services to end-users [270]. For instance,
in [271], they worked on accelerating the training process of large machine learning
models in IoT to meet the hardware limitations.

Within this IoB context, the works explained in the following sections intend
to provide and foster the generation of novel lightweight multimodal data fusion
techniques fed by human body monitoring toward their applicability to current
edge-computing devices, such as the ones in Bindi [1].

5.2.4 Multimodal Fusion Techniques

As Bindi is a multimodal system – it uses physiological and speech signals to detect
the user’s emotions – in this section we give a short review of multimodal theory
and architectures.

Some works proposed multimodal approaches combining visual and speech
data to improve and strengthen emotion recognition [272] [273]. This
conceptualization is not possible in Bindi because there is no visual component.
Thus, the additional information will come from physiological variables. Since
Bindi is a multimodal system which consists of a bracelet that captures physiological
signals (SKT, GSR, BVP) and a pendant that includes a microphone that captures
audio signals (acoustic events, speech) (more details in Sec. 1.1.4), these two
modalities – physiological and auditory – can work together towards the detection
of fear or panic and in consequence the detection of risk situations.

When dealing with emotion recognition combining different data modalities,
some comprehensive reviews can be found presenting current state-of-the-art data
fusion techniques [274, 255]. These works state the need for: 1) new approaches
to advance the community’s understanding of multimodal casuistry, and 2)
subject-independent emotion recognition models to ease the further deployments
under real-life conditions. They also agree on the potential performance
improvements with multimodal approaches compared to unimodal ones.

In fact, recently, research in multimodal systems is on the rise. For instance,
the authors in [276] proposed a hybrid multimodal fusion emotion recognition
system including facial expressions, GSR, and EEG. Their results yielded a
maximum subject accuracy of 91.50% and a mean accuracy of 53.80% using a
leave-one-subject-out (LOSO) strategy and a publicly available database (DEAP) for
different emotion detection use cases, such as angry, disgust, afraid, happy, neutral,
sad, and surprised. Moreover, they created their own dataset with which they
achieved a maximum subject accuracy of 81.2% and a mean accuracy of 74.2% using
a LOSO strategy for three emotion classes, i.e., sad, neutral, and happy. In [277],
a weighted-based fusion strategy accompanied by transfer learning techniques
was applied for multimodal emotion recognition using EEG and spontaneous
spatial expression detection. The work employed a Leave-One-Trial-Out (LOTO)
subject-dependent configuration and reported an average accuracy up to 69.75%
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and 70.00% for the valence and arousal classification, respectively. In addition to
these works, more research can be found regarding multimodal data fusion for
stress-related use cases [278], [279].

Analyzing these related works, most emotion recognition systems do not target
the fusion of physiological and auditory modalities nor consider vulnerable groups,
such as GBVVs. Specifically regarding such bimodal fusion of physiological and
vocal information, one of the few works that stands out is [280], to the best of our
knowledge. This work considered different data fusion schemes and achieved an
average accuracy of up to 55.00% for a subject-independent strategy using a feature
fusion when targeting a valence and arousal binary classification. Consequently,
there is a current need for research on these topics, which this chapter aims to
deepen.

5.3 Bindi System Hardware Architecture

Early in Sec. 1.1.4 we described Bindi, in this section we go deep into its
architecture design. A simplified system architecture of Bindi is presented in Fig.
5.1. The following sub-sections provide a technical overview regarding each system
component. The edge devices in the Bindi architecture are the bracelet and the
pendant.

BINDI 
BRACELET

BINDI 
PENDANT

BINDI 
APP

Edge Computing Edge Computing

Fog ComputingPhysiological 
Information

Speech 
and 

Acoustic
Information

• Multimodal AI

• Alarm Generation

• Evidence Collecting

BINDI 
SERVER

Cloud Computing

FIGURE 5.1: Simplified Bindi Hardware Architecture [1].
Reproduced with permission from the copyright owner, © 2022

IEEE.

Edge Computing: Bracelet

This device runs an embedded intelligence engine for fear detection based on
physiological information. Fig. 5.2 shows the hardware components integrated
into this device, which can be classified into four groups: physiological sensors,
actuators, power manager elements, and the microprocessor unit. For further details
about them refer to [1]. Note that the radio-frequency module through Bluetooth
Low Energy® communication is also integrated within this host unit.

The bracelet is equipped with a conventional electro-mechanical button for
manual user activation, acting as a panic button. The physiological sensors capture
the following variables:
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• HR: This is based on a photoplethysmography sensor that detects Blood
Volume Pulse (BVP) changes by measuring the absorption of light emitted
through the skin.

• GSR: This sensor utilizes two electrodes to measure the skin conductivity
through a DC exosomatic measurement.

• SKT: This integrated circuit is defined as a clinical-grade sensor for wearable
applications, providing an accuracy of ±0.1 °C over a 30 °C to 50 °C
temperature range.

BINDI BRACELET

Power Manager

Battery 
Charger

Battery

HR
Sensor

Panic
Button

Buzzer

Wireless Comm 

BLE®
Digital Signal Processing

Battery 
Monitor

GSR 
Sensor

SKT
Sensor Pre-

processing
Feature 

extraction
Machine 
Learning

Microprocessor Circuit

FIGURE 5.2: Simplified Bindi’s Bracelet Architecture [1]. Reproduced
with permission from the copyright owner, © 2022 IEEE.

The previously discussed physiological variables were chosen due to their
proven strong relationship with emotion recognition [281] and their ease of
implementation in wearable devices. The latter point is particularly relevant and
led us to discard other typical physiological sensors used in the field (such as
EEG), which do not meet the inconspicuousness requirement. The digital signal
processing pipeline within the bracelet entails both, the acquisition and filtering of
the physiological signals and the feature extraction and inference stages.

Edge Computing: Pendant

This device captures audio and speech information, which is fed to an intelligent
engine for fear detection. The pendant has the same hardware architecture
as the bracelet but integrates a microphone instead of physiological sensors.
Its architecture is shown in Fig. 5.3. The microphone is based on a
microelectromechanical system with an omnidirectional audio sensor. This part
includes a capacitive sensing element and an integrated circuit interface, allowing
a digital signal to be obtained directly. The digital signal processing pipeline within
the pendant entails both, the reception and filtering of the auditory signals (audio
and speech) and the wireless transmission to the smartphone. Note that, due to the
limited bandwidth of the wireless communication, the audio is compressed prior to
being transmitted.
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BINDI PENDANT

Power Manager

Battery 
Charger

Battery

Microprocessor
Circuit

Audio acquisition

Microphone

Panic 
Button

Buzzer
Wireless Comm

BLE®

OPUS Compression

Battery Monitor

Microprocessor

FIGURE 5.3: Simplified Bindi’s Pendant Architecture [1]. Reproduced
with permission from the copyright owner, © 2022 IEEE.

Fog Computing

The fog computing within Bindi is represented by the Bindi App running on a
smartphone. It provides an end-user graphical interface and performs the following
technical functionalities:

• It requests physiological and auditory data from the bracelet and the pendant
respectively, according to the data processing pipelines implemented.

• It handles the alarm triggers (SMS/Protection Unit or Emergency Services
alerts) and logs them into the server based on the intelligent engine response
or the manual panic button.

• It keeps track of each user’s location using GPS.
• It manages secure communications with the server adapted by the current

smartphone battery status.
• It collects and uploads auditory and physiological ciphered data to the cloud

as evidence of an alleged crime if the alarm is triggered.
• It performs the feature extraction and inference processes for the auditory

monomodal system. Moreover, it handles different data fusion strategies.

Cloud Computing

The cloud computing part is where the Bindi Server comes into operation. The
Bindi Server implementation consists of a MongoDB30 database and a NodeJS31 web
application server. This Bindi Server stores the information captured in the edge
with three main goals. First, it serves as an activity monitor, indicating potential
problematic situations regarding victims’ long-term affective evolution for people
supervising the well-being of the users. Second, it stores encrypted data, serving as
digital evidence in an eventual trial. Third, it makes decisions after the alarms are
triggered by following predetermined safety procedures.

30https://www.mongodb.com
31https://nodejs.org/es/
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5.4 Multimodal Fusion Strategies for Bindi

Data fusion is a powerful way to improve the robustness of the multimodal
intelligence engine in Bindi. Thus, this section proposes the data fusion architectures
considered to strengthen the reliability and robustness of Bindi, so that physiological
and audio data could be jointly considered in the decision to trigger the alarm.

We present an analysis of a multimodal late fusion strategy for combining the
physiological and speech data processing pipelines to determine the best intelligence
engine strategy for Bindi. Our goal is to analyze and gain a better understanding of
women’s responses to the fear emotion in risky situations.

5.4.1 Initial Cascaded Late Fusion: Bindi 1.0

In an initial approach in Bindi, both the speech and the physio-signals alert detection
systems were fused by following a decision-level approach, also called late fusion.
To this end, the authors considered a cascade approach in which the two systems
run one after the other.

The system starts by running the physiological signals’ system, which analyzes
the data captured in the bracelet and decides if the user is in a dangerous situation
or not. This physio-system is based on a KNN classification algorithm, which is run
in the processor inside the bracelet. If the physio-signals system results in a positive
detection, it communicates with the smartphone, which triggers a request to the
speech system to analyze the current situation. The speech system captures audio
data for a specific amount of time, which is sent to the smartphone with a previous
compression process. In the smartphone, the audio data is analyzed and sent to an
MLP model running in the smartphone’s microprocessor. The prediction done by
the speech system is then the global prediction reached in Bindi.

Thus, the physio-system acts as a trigger for activating the next stage in the
cascade. This design decision was assumed because the energy cost of the bracelet
capturing such physiological data, as well as the lightweight machine learning
algorithms inside the processor, allows the device to work during hours (at least
two days, at the moment of the publication of [9]). On the contrary, capturing audio
data and comprising the information for sending it is costly, and then it should be
reduced as much as possible. In addition, running the audio data analysis many
times is also costly for the smartphone in terms of battery. For all these reasons, the
speech system was decided to be in the second stage of the cascade.

5.4.2 Hybrid Fusion Approach

The work in this section is published in [9] together with other members of the
UC3M4Safety team. The initial fusion architecture in Bindi previously discussed
is done at the decision-level. This strategy is easy to implement, but it includes
the disadvantage of not considering the possible relationships between the different
modalities in the system, i.e., the possible correlations between physiological and
auditory information. Moreover, another disadvantage is the heterogeneity among
the confidence scores provided by the models from each modality. Before discussing
other fusion architectures for Bindi some key aspects should be considered:

• Bindi is a distributed system composed of three devices, a smartphone and two
embedded devices (a bracelet and a pendant). It means that communication
between them is essentially required.

https://www.uc3m.es/instituto-estudios-genero/UC3M4Safety
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• Bindi is within a constrained cyber-physical system, meaning that both
computational resources and battery are limited, especially for the two
embedded devices. Focusing on battery life, data transmission consumes more
energy than other usual tasks, as processing and sensing. Therefore, the less
data is transmitted, the longer the battery of the devices will last.

• The initial decision-level architecture implies that signals from the two
modalities are misaligned in time. Thus, the physiological signals which
trigger the alarm are acquired before the audio recording.

Taking into account these key aspects, and in contrast to other methods for fusing
physiological and vocal information through feature-level fusion that influenced this
work [280], the authors propose a hybrid data fusion architecture by combining both
the decision-level (late) and feature-level (early) approaches. As far as the authors
know – at the moment of the publication of [9] –, this hybrid approach was never
considered before for a multimodal physiological-audio wearable system.

The authors take two main design decisions for this hybrid architecture. First, the
two embedded devices cannot perform the feature-level fusion due to constraints
in computational capacity and battery. Therefore, the smartphone would be in
charge of this task. Second, it is not possible to continuously send physiological
and auditory information to the smartphone to perform the feature-level fusion and
therefore it cannot take place at all times.
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FIGURE 5.4: A Hybrid Data Fusion Architecture for Bindi 2.0 [9].
Reproduced with permission from the copyright owner, Springer

Nature.

Fig. 5.4 shows the hybrid data fusion proposed for Bindi. By default, the system
is performing the late fusion already included in the initial approach of Bindi 1.0
(see Sec. 5.4.1). It means that the bracelet is capturing physiological data over
time (step 1). Then, the ML system in the bracelet analyzes the input data. In
case it detects the targeted emotion, it generates a trigger to the smartphone (2).
The smartphone requests the pendant (3) to capture audio data (4). The audio
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information is compressed and sent to the smartphone (5). The smartphone runs the
MLP based model (6), getting the response for the late fusion architecture (7). In case
that the late fusion results in a positive detection, then the early fusion architecture
is performed. In such a case, the smartphone requests the physiological data from
the bracelet (8), which were captured in the past (i.e., the physiological data which
generated the trigger in the late fusion and the one obtained during the time the
pendant got audio data). After applying some compressing sensing techniques to
alleviate the battery usage, the information requested is sent to the smartphone (9)
that runs a classification algorithm combining both physiological and auditory data
(10). The output of this early fusion architecture is the output of the whole Bindi
system. Further processing is to be performed in the cloud [282].

5.4.3 Weighted Late Fusion Strategies: Bindi 2.0

Besides the hybrid fusion, the UC3M4Safety team also pondered other intermediate
fusion architectures, and their validation and comparative is part of the team’s
roadmap.

The original Bindi architecture is based on a late data fusion strategy, which is
executed following a two-layer cascade, where each layer has an intelligence model
associated to each data modality – physiological signals acquired by the bracelet
and audio and speech captured by the pendant, respectively –. The model in the
first layer acts as a low-cost switch to activate a more demanding second layer,
which is also related to a more powerful detection capability. This initial low-power
strategy is useful for deciding when the more powerful and costly audio capture in
the pendant should be carried out. However, the usage of the data captured in the
bracelet only for switching purposes could imply that the intelligent decision engine
is not considering all the information available.

In this section we propose three weighted late fusion strategies based on
the literature (e.g., [277]) which are considered as a trade-off between low
computational complexity and robustness considering the confidence of the system
in the predictions [1]. These late fusion strategies are fed from the binary labels
provided by the physiological and speech monomodal intelligence engines, as
shown in Fig. 5.5.
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FIGURE 5.5: Bindi’s Data Fusion Block Diagram [1]. Reproduced with
permission from the copyright owner, © 2022 IEEE.

https://www.uc3m.es/instituto-estudios-genero/UC3M4Safety
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As discussed previously, the physiological and speech monomodal subsystems
estimate a binary label, ym

k ∈ {0, 1}, for every time window k and modality m ∈
{phy, sp}, with phy and sp referring to the physiological and speech subsystems,
respectively. Note that each of the modalities uses a different time window length,
Tm, in seconds, due to their specific peculiarities. Bindi is intended to output a
response per time period n (each one of same length L), with n ∈ 1, 2, . . ., in seconds.
Thus, an estimation of fear probability pm

n for the n-th time period and the m-th
modality is computed as

pm
n =

Km

∑
k=1

ym
[Km·(n−1)+k]

Km
, (5.1)

where Km = ⌊ L
Tm
⌋, i.e., the number of time windows that we consider for each

modality for the estimation of probabilities.
Thereafter, a single binary label, Ym

n , based on pm
n can be calculated as

Ym
n =

{︄
0 for pm

n < thm

1 otherwise
, (5.2)

i.e., it will result in "1" (fear) if pm
n is higher than the modality-related predefined

threshold, thm ∈ {0, 1}, or "0" (no-fear) otherwise. Note that the thphy and thsp values
are discussed in Sec. 5.6.2.

As a metric to represent how confident each monomodal system is for the class
label predicted in a given period, entropy hm

n for the n-th time period and m-th
modality is calculated as

hm
n = −[pm

n · log(pm
n ) + (1− pm

n ) · log(1− pm
n )]. (5.3)

On this basis, three late fusion strategies are studied to produce fused system
response Yf

n for the n-th time period:

• Case 1, Lowest Entropy: The system’s response corresponds to the binary label
produced by the monomodal system with the smallest entropy, i.e., the most
confident one. To this end, fused fear probability p f

n for the n-th time period is
calculated as

pf
n =

{︄
pphy

n if hphy
n < hsp

n

psp
n otherwise

. (5.4)

Next, applying the same rationale as in Equation (5.2), a fused binary label is
obtained as

Yf
n =

{︄
0 if pf

n < thf

1 otherwise
, (5.5)

where, for now, thf is the conventional 0.5.

• Case 2, Inverse Entropy Weighted Combination: Fused fear probability p f
n for

the n-th time period is computed as a weighted sum of probabilities, as given
by

pf
n = ∑

m
wm

n · pm
n , (5.6)

where
wm

n =
1/hm

n

∑
m

1/hm
n

. (5.7)
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Next, a fused binary label is obtained according to Equation (5.5).

• Case 3, Logical OR: The system response corresponds to the logical OR
computation over the binary labels for each monomodal system. That is,

Yf
n = Yphy

n ∨ Ysp
n . (5.8)

When comparing the three fusion strategies theoretically, the logical OR (Case
3) facilitates obtaining a fear class prediction without checking the subsystem
confidence, which could lead to false detection. However, the lowest entropy
strategy (Case 1) trusts the most confident model without considering the differences
in the probabilities. Finally, the inverse entropy weighted combination (Case 2)
establishes a trade-off between the probabilities and entropies for each monomodal
subsystem. Thus, the confidence of this last strategy, Case 2, might be higher than
that of the others.

5.5 Data Processing Pipelines

One of the key objectives of our work is to validate the data processing chain within
Bindi, from data acquisition to alarm generation. Different arrangements of the
system components have been applied and compared to achieve this goal. This
fact has led to a design space exploration of different multimodal (physiological and
auditory information) system architectures [1]. Specifically, three time arrangements
have been evaluated:

1. The first version is Bindi 1.0 [177], which is based on a hierarchical or
cascaded strategy. In this version (described in Sec. 5.4.1), physiological
information is continuously collected by the bracelet, which runs a lightweight
monomodal physiological intelligence engine. When it detects that the user
is experiencing fear, it triggers a pre-alarm to the Bindi smartphone App.
This action causes the pendant to start recording audio for a brief period,
resulting in a low-energy consumption strategy for the microphone. The
auditory signal is then sent to the Bindi App to perform fear detection using a
speech-based monomodal intelligence engine. Finally, if the latter – speech –
system confirms the detection, the Bindi App starts a safety procedure to help
the user, triggering an alarm to the Bindi Server.

2. The subsequent version, Bindi 2.0a is based on the same two monomodal data
processing pipelines in Bindi 1.0 but at the final decision stage applies a late
fusion technique rather than a hierarchical agreement or confirmatory strategy
[9]. It inherits the pre-alarm functionality from Bindi 1.0 for low-energy
consumption for the microphone.

3. As a variation of Bindi 2.0a, Bindi 2.0b follows the late fusion scheme
introduced in Bindi 2.0a but bases it on continuous physiological and auditory
data acquisition, meaning that the pre-alarm functionality is not enabled.

The following subsections detail the physiological and auditory data processing
pipelines. The physiological processing contribution is developed by other members
of the UC3M4Safety team, the auditory pipeline is an own contribution as part of the
research conducted for this thesis, and the fusion strategies are a joint contribution
of the whole UC3M4Safety team.

https://www.uc3m.es/instituto-estudios-genero/UC3M4Safety
https://www.uc3m.es/instituto-estudios-genero/UC3M4Safety
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The particular nature of the data types (physiological, speech) entails different
challenges. Thus, the data processing schemes, methods, and feature extraction
techniques are tailored to each signal.

Physiological Data Subsystem

In this section we will give a brief account of the physiological system in Bindi in
order to help the understanding of the fusion system. For more details we refer the
reader to [1] and [53].

The first physiological data processing stage is signal acquisition and
windowing. In our case, the selected sampling frequencies are 100, 10, and 5 Hz
for the BVP, GSR, and SKT, respectively. These frequencies are adequate to capture
signal dynamics with the appropriate temporal resolution. For signal segmentation,
an overlapping fixed-length strategy of 20 s windows with a 10 s overlap is used.
This configuration provides a frequency resolution of 0.05Hz, which results in a
good trade-off between the data storage and physiological information available
to be extracted. Once the signals are captured and segmented, the filtering stage
removes the out-of-band noise specifically for every signal.

Feature extraction block extracts the information contained in the physiological
signals and is the next stage in the processing pipeline. Specifically, there are
25 features for BVP, 17 features for GSR, and six features for SKT. An extensive
description of the features is provided in [261]. For classification, a lightweight
K-Nearest Neighbors (KNN) binary supervised machine learning algorithm is used.
During the training stage, cost-sensitive learning is applied by modifying the
misclassification cost of KNN, which increases the sensitivity, i.e., the system will
be less likely to omit a dangerous situation for the use case [283]. Finally, the
physiological data subsystem output is a binary label every 10 s. This physiological
pipeline has been tested in previous work using a public dataset [261].

Speech Data Subsystem

The speech data processing includes the following fundamental modules:
Voice Activity Detection (VAD), frequency domain filtering, feature extraction,
normalization, and a neural-network-based classifier.

A basic lightweight VAD module [284] based on spectral energy is employed
to detect and remove silent parts of speech signals where the posterior feature
extractor would not extract any relevant speech information due to the absence of
it. Nevertheless, silence detection is crucial for correct functionality of the device, as
women in dangerous situations frequently react with shock and remain silent, so it
is intended to do more work in the characterisation of the silence in the future.

In combination with the VAD module, to ease the handling of the signals
while keeping all significant information from the speech data, it is necessary to
downsample the signals at 16kHz. Next, a low-pass filter is applied at 100Hz
to remove low-frequency noise captured by the microphone and possibly caused
by air-conditioning and electrical network buzzing, among other factors, as the
databases we work with are recorded under laboratory conditions. Afterward, the
filtered signals with a low-pass filter at 8kHz to maintain key information about
speech and still maintain low complexity.

Then, the speech feature extractor computes 38 speech features dedicated to
emotion detection using a 20 ms window with 10 ms overlapping, both of which are
standard values from the literature. Among the features considered are pitch, Mel
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frequency cepstral coefficients, formants, energy, and additional spectral features,
all of which are calculated through the librosa Python toolkit [241]. The features are
aggregated per second by computing their mean and standard deviation statistics to
be later normalized. Preliminary ablation experiments are performed before fixing
this 1 s aggregation, varying the temporal context of the aggregated speech features
for 1, 5, and 10 s.

Feature normalization is done by applying the z-score mean and standard
deviation values from the baseline features extracted when the user is in a resting or
neutral state, named basal state normalization. Other normalization schemes (e.g.,
per video, per user, and traditional z-score) are informally tested before considering
the basal state normalization described, but the latter was selected due to showing
better performance of the system. The normalized aggregated features are fed
into a user-adapted MLP neural network classifier trained for fear detection. This
subsystem generates a binary label every 1 s. The labels predicted by the monomodal
speech subsystem every second are smoothed in time using a 7 s window to maintain
consistent and stable detection. Note that each of the modalities uses a different time
window length in seconds, due to their specific peculiarities, which are fused using
the different fusion strategies (see Sec. 5.4.3).

5.6 Experimental Set-up and Results on Stress and Fear
Recognition

Within the field of speech-based emotion recognition we first perform voice-based
stress detection experiments to assess whether acoustic events (which could define
the acoustic context in which the user is) could help to detect stress in the auditory
modality. Afterwards, and in order to validate the fusion strategies proposed in
Sec. 5.4 we use WEMAC, a database captured by our UC3M4Safety team targeting
GBV-related fear elicitation.

5.6.1 Experiments on Unimodal Stress Recognition

In this section we briefly explain our contribution on the experimentation carried
out for stress classification of speech utterances, which could be understood as a
fear-related emotion, in a preliminary stage previous to working with the WEMAC
Database.

In our previously detailed study [8] in Sec. 4.5 we performed a speaker
identification task in Bios-DB [157] and Biospeech+ (see Sec. 3.2.3), an augmented
database with acoustic events based on Bios-DB. In this section we want to detail
the emotions recognition task performed on the same data and its results. The
methodology followed for this task is exactly the same as in Sec. 4.5, regarding
the features extracted from the speech signals, and the classifiers used for the task.
The main difference relies on the labels used, which now are two particular ones,
i) binary labels referring to stress and neutral utterances, and ii) the reinterpreted
emotions in the 4 quadrants of the PAD space as described in Sec. 3.2.2.

The results are presented in Table 5.1, where p represents the number of
parameters of each model. MLP refers to the Multi-Layer Perceptron, K2D refers
to the 2-dense layers model in Keras and KCGD refers to the Keras model composed
of a Convolutional 1D, Bidirectional GRU and Dense layers. Mean and standard
deviation results are shown for a 5-fold validation. For the two tasks under
consideration, MLP with librosa achieves the best performance.

https://www.uc3m.es/instituto-estudios-genero/UC3M4Safety
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Model librosa p eGeMAPS p yamNET p L+E+Y p feat sel p
Binary Stress Recognition

MLP 89.1±0.9 12k 65.4±1.8 27k 57.2±1.4 307k 75.3±1.7 345k 75.8±1.3 111k
K2D 82.4±1.0 3k 54.2±0.8 5k 32.7±9.0 52k 66.3±1.4 58k 65.1±1.2 19k

KCGD 80.9±1.8 9k 54.3±2.7 12k 30.4±5.6 72k 66.7±1.3 80k 67.2±1.3 30k
Speech Emotions Recognition (SER) 4-Q

MLP 90.0±0.9 12k 45.5±1.1 27k 35.8±1.7 307k 59.5±1.0 346k 60.4±1.6 112k
K2D 73.2±1.0 3k 47.7±2.0 6k 37.6±1.0 52k 56.8±1.0 59k 57.8±1.2 19k

KCGD 73.2±0.9 9k 47.9±1.0 12k 37.6±0.9 72k 58.7±1.2 80k 56.9±1.7 30k

TABLE 5.1: F1-score results for Stress and Emotions Recognition in
clean Biospeech [8].
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FIGURE 5.6: F1-score results for Binary Stress Recognition with
Multi-Layer Perceptron in Biospeech+ [8]. Reproduced with

permission from the copyright owner, ISCA.

Fig. 5.6 provides the results for different SNRs (on the horizontal axis) in
Biospeech+ (see Sec. 3.2.3). Specifically, it shows the results for the binary stress
labels classification for the model that performed the best (MLP). All the feature sets
– except maybe librosa, which remains stable – show a trend to improve the F1-score
as the SNR value gets lower, that is when the acoustic events overlay the speech32

ratios (-5 and 5 dB) 33. This demonstrates that extending our database with stressful
events comes in handy for the recognition of stress in speech and audio. All the
feature sets, in a greater or lesser extent, seem to be are able to capture information
about the acoustic events which are considered stress triggers.

5.6.2 Experiments on Monomodal and Multimodal Fear Recognition
using WEMAC for Bindi

In this section, we aim to validate and evaluate the different fusion architectures
for Bindi for the task of fear recognition using WEMAC. This study is published in
[1] jointly with other members of the UC3M4Safety team. This work is intended to
be the first multimodal framework acting as a baseline to enable further work with
real-life elicited fear in women. To the best of our knowledge, this is the first time

32For the SNR measure we consider the foreground speech from Biospeech as the ’signal’ and the
audio events as ’noise’.

33Note that the ’infinity’ symbol denotes the baseline for when no acoustic events are added to the
database.

https://www.uc3m.es/instituto-estudios-genero/UC3M4Safety
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FIGURE 5.7: Statistical distributions of the positive and negative
classes for the fear-binarized self-reporteded emotion labels in
WEMAC. Volunteers in brackets are those excluded [1]. Reproduced

with permission from the copyright owner, © 2022 IEEE.

that a multimodal fusion of physiological and speech data for fear recognition has
been given in this GBV context.

We start working on the analysis of the labels. We first binarize the reported
discrete emotions to each audiovisual stimuli by each user, to transform the
modeling problem into a binary classification, where ”1” (positive class) represented
fear and ”0” (negative class) any other emotion, turning the problem into a binary
fear classification problem. It was observed that some particular volunteers
presented a considerably unbalanced distribution in their self-reported labels, as
shown in Fig. 5.7. Therefore, we decided to exclude volunteers 5, 6, 15, 33 and
40 from the evaluation since they had only around 25% of the positive class
distribution. Consequently, the evaluation was to be performed with only 42 of the
47 initial volunteers. The class distribution for these 42 volunteers was around 60%
and 40% for the negative and positive classes, respectively. This distribution fits the
information presented in Table 3.3 for the different emotions.

Note that the experimental results in this section are an account of the validation
process performed offline, to evaluate the functionality of the data processing
pipelines and fusion strategies, and later embed such modules in the architecture,
balancing the trade-offs observed.

Considerations for the Experimental Set-up on the Monomodal Subsystems
Training and Testing Stages

Some points had to be considered to design the training and testing strategies
of the two monomodal subsystems. First, according to the WEMAC database
design, it should be noted that physiological data were gathered during the stimulus
visualization (and therefore, also emotion elicitation), whereas speech recording
was registered during the subsequent speech annotation. That means that the
physiological and speech data were not aligned in time in WEMAC. However,
both data types had to be fused in Bindi 2.0b for every emotional reaction per
user or experiment, unlike for Bindi 1.0 and Bindi 2.0a where the fusion was
conditioned to the physiological pre-alarm (see Sec. 5.4 for the description of Bindi
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fusion strategies). Therefore, we obtained a single pm
n per experiment and modality,

according to Equation 5.1; note that L is the length of the audio-visual stimuli for
the physiological modality and the total length of the audio recording for the speech
modality. During the labeling, the volunteers were requested to relive the emotions
felt during the stimulus elicitation, so it was assumed that the correspondence was
solid enough between both time instants. However, this assumption will need
further validation when the rest of the subsets in WEMAC become available.

Second, for the train-test split, a LASO strategy was applied. This was
a speaker-adapted subject-semi-independent (thus, subject-dependent) approach
procedure for training the 42 models required, i.e., one per user. This approach
was chosen due to the fact that the subject personalization provided by LASO is
crucial for an emotion detection model such as ours [285]. Thus, each model was
trained with all available data from the rest of the users and fine-tuned with half
the instances of the subject to be tested, particularly, the data acquired from the first
seven audio-visual stimuli (from a total of 14). The rest of the utterances of the last
seven videos of the session were to be used as test samples. Thus, the test data
were not seen during the training stage but some information about the subject was
obtained by the model, as intended.

Third, regarding specific training particularities, for the physiological
monomodal subsystem, the same mis-classification cost of 1.6 to the positive class
to deal with the commented class imbalance was considered for all physiological
models generated. This cost was fixed by an experimental parameter sweep.
Moreover, the training was validated by a stratified k-fold cross-validation strategy,
with k = 5. Finally, the normalization applied for the dataset was based on the
z-score technique applied to the features extracted from all volunteers.

For the speech monomodal subsystem, the classifier consisted of a shallow
lightweight neural network with input, fully-connected hidden, and fully-connected
output layers. The network had 38 units in its input layer, i.e., one per feature.
The number of hidden units in the dense layer was fixed to 250 to avoid largely
increasing the computational cost but achieve fairly good prediction rates. The
output layer yielded one predicted label as an output. All samples, except the
ones from the user of interest, were used to train the model during 300 epochs,
with early stopping after a 30-epoch plateau in the model validation loss, a binary
cross-entropy loss function, using Adam optimizer, and a learning rate of 0.001.
Then, samples from the user of interest (half of the ones available according to the
LASO strategy) were used to fine-tune the model for a maximum of 100 epochs, with
an early stopping approach (i.e., stopping after a 10-epoch plateau in the model loss).
Regarding the z-score normalization used, the features extracted from the speech
recordings of the sixth audio-visual stimuli were used as the baseline, as this video
was expected to elicit a calm emotion and was assumed to evoke a neutral state in
the user, so we used the aforementioned basal state normalization.

Finally, regarding the testing procedure, as discussed in Sec. 5.4, the monomodal
subsystem’s outputs were arrays of binary labels. Specifically for WEMAC, the
length of the arrays was equal to dividing the duration of each stimulus by the
monomodal sampling periods, i.e., 10 and 1 s for the physiological and speech
subsystems, respectively. Afterward, those collected arrays were processed by
calculating the probabilities and their corresponding binary labels by applying
the physiological (thphy) and speech (thsp) thresholds. The data fusion strategies
proposed also generated their corresponding binary labels, as described in Sec. 5.4.
The evaluation metrics selected, i.e. the accuracy and F1-score, fed on the hard
labels obtained. Accuracy could fairly represent the prediction rates since the class
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imbalance was low, anyhow the F1-score was considered first to deal with the slight
imbalance observed and second due to the higher importance of the positive class in
our case of use, since the F1-score is a good metric for a detection problem in which
the number of positives is lower in comparison with the negatives yet the detection
of the positive class is crucial.

Results for Fear Recognition

This section presents the experimental results regarding the prediction of fear
using WEMAC for the different configurations of the system discussed in Sec.
5.5. Note that this is the first time this database has been used; therefore, these
results represent the first step toward real (non-acted) fear emotion detection from
physiological and auditory variables for the problem of GBV and are meant as a
baseline for future developments.

The first analysis concerns the performance of the physiological and speech
subsystems working independently in a continuous setting, i.e., taking into account
all samples. This experiment was essential to determine the thresholds, thphy and
thsp, that convert the set of binary labels predicted during a video visualisation,
into a single binary label for such period (see Equation 5.2). This step was relevant
to determine whether the architecture was more or less prone to false alarms,
regardless of the version of Bindi being considered. Thus, each parameter was
swept in the range [0.3, 0.6] with steps of 0.1 while generating the corresponding 42
monomodal subsystems following the LASO approach. In this regard, Figs. 5.8a and
5.8b show the thphy and thsp values versus the accuracy and F1-score average metrics
for the 42 testing groups in the physiological and speech subsystems, respectively.

th
phy

%

Accuracy
F1-Score

(A)

th
sp

%

Accuracy
F1-Score

(B)

FIGURE 5.8: Parameter sweep for the monomodal subsystems: thphy
in the physiological subsytem and thsp in the speech subsystem [1].
Reproduced with permission from the copyright owner, © 2022 IEEE.

Analyzing Fig. 5.8a, we observe how the F1-score decreases as thphy grows,
whereas the accuracy remains rather stable. Note that the F1-score depends to a
great extent on the number of true positives (TPs) predicted but mostly disregards
the true negatives (TNs). Thus, if TPs increase and the sum of false positive (FP)
and false negative (FN) rates decrease, then the F1-score increases. This trade-off
caused the behavior observed, where the lower the thphy gets, the higher the F1-score
becomes. According to this analysis, thphy was fixed to 0.40, obtaining 66.66%
and 64.60% for F1-score and accuracy, respectively. The reason behind choosing
this value was the good compromise observed between both metrics and the fact
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that missing a TP could be dramatic for the GBVV. The combined multimodal
system should also refrain from triggering false alarms to avoid overwhelming the
institutions in charge of protecting the users, and this is why the speech subsystem
was chosen to be more conservative in this regard. Fig. 5.8b shows how the
F1-score and accuracy began to diverge from 0.50 onward for the speech subsystem.
Therefore, thsp was fixed to this value, obtaining 54.07% and 57.82% for the F1-score
and accuracy, respectively. Note that the accuracy could be increased by choosing a
higher thsp.

Once thphy and thsp were fixed, we studied the average performance prediction
over the 42 testing groups for the different architecture configurations, as shown
in Fig. 5.9. From left to right, the configurations are: physiological monomodal
subsystem, the speech monomodal subsystem, Bindi 1.0, Bindi 2.0a with lowest
entropy data fusion, Bindi 2.0a with inverse entropy weighting data fusion, Bindi
2.0b with lowest entropy data fusion, Bindi 2.0b with inverse entropy weighting
data fusion, and Bindi 2.0b with logical OR data fusion. Note that Bindi 2.0a was not
combined with logical OR data fusion because it is equivalent to Bindi 1.0.
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FIGURE 5.9: Average performance using the LASO strategy for the
different architecture configurations: a) F1 score, b) Accuracy score,
[1]. Reproduced with permission from the copyright owner, © 2022

IEEE.

The physiological monomodal subsystem achieved the highest accuracy, a
64.63%, surpassing even the fusion schemes. For the F1-score metric, this subsystem
also provided the second highest rate of 66.67%. This behavior could be first related
to the bias introduced toward detecting the positive class with the misclassification
cost of the classifier, and second with the parameter sweep of thphy. The speech
monomodal subsystem provided significantly lower metrics than the physiological
subsystem. This fact could be related to the limited number of samples available
to train the neural network and, possibly, some fading of the emotion felt when
the samples were taken. This situation caused Bindi 1.0 to provide the lowest
metrics since the final system response relies on the speech subsystem. Bindi 2.0a
and Bindi 2.0b both provided similar accuracies close to those of the physiological
subsystem in most cases. However, Bindi 2.0b achieved the highest F1-score in all
cases, especially with the logical OR data fusion. This latter strategy provided the
highest F1-score of 67.59%, although the accuracy was limited. This performance
of the F1-score could be related to the positive bias contributed by the physiological
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Physiological
Monomodal

Speech
Monomodal

BINDI
1.0

Bindi 2.0a
Lowest

Entropy

Bindi 2.0a
Inverse

Entropy
Weighting

Bindi 2.0b
Lowest

Entropy

Bindi 2.0b
Inverse

Entropy
Weighting

Bindi 2.0b
Logical

OR

F1
mean 66.67 54.48 50.23 56.68 56.33 60.87 60.58 67.59

std 17.31 26.73 27.64 23.91 24.05 26.63 26.98 14.27

Acc.
mean 64.63 58.50 62.93 63.61 63.61 63.27 63.27 60.20

std 16.56 16.73 14.30 14.35 14.35 17.94 18.21 15.75

TABLE 5.2: Average performance analysis for binary fear recognition
predicting over the 42 speaker-adapted subject-semi-independent

testing groups [1].

subsystem due to the lower thphy chosen, that introduced a conservative bias toward
not missing TPs at the cost of increasing FPs. However, as for the other architectures
with fusion strategies, the speech subsystem may have been slightly deteriorating
the system performance in terms of the F1-score and accuracy but preventing Bindi
2.0a and Bindi 2.0b from producing too many FPs. Moreover, auditory information
was expected to play an important role in detecting silences, which could mean that
the user is in a state of shock caused by a GBV situation, and provide acoustic
information about the environment. The meaning and consequences of these
indicators over the real-life system performance should be thoroughly analyzed in
the light of more robust metrics, such as in [286]. A short preview of this analysis and
discussion of the confusion matrices obtained for each configuration can be found
in Sec. 5.6.2.

To elaborate on the results shown in Fig. 5.9, Table 5.2 presents detailed
results for the different configurations, including the average standard deviation
per volunteer tested. Low standard deviation rates are good indicators of a better
generalization ability as long as the results are comparable. Note for example that,
although Bindi 1.0 presented the lowest standard deviation, which could be seen as
a good generalization, its scores were surpassed by most of the configurations, as
previously stated. Moreover, it can be observed that the standard deviation values
obtained are relatively high, especially for the F1-score. The cause is shown in Fig.
5.10, where the F1-score and accuracy are provided for each of the 42 tests and
monomodal subsystems. It can be noted that some volunteers had an F1-score of
zero for the speech subsystem. This situation occurs because the F1-score depends
on the TPs detected and there were no positive predictions for some users.
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FIGURE 5.10: Individual performance analysis for binary fear
recognition for the two monomodal subsystems [1]. Reproduced with

permission from the copyright owner, © 2022 IEEE.
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Confusion Matrices for the Systems: Monomodal and Fusion

Fig. 5.11, 5.12, and 5.13 show the confusion matrices for the arrangements evaluated.
In these figures, the rows correspond to the predicted class, and the columns
correspond to the true class or ground truth. From left to right and from top to
bottom, each confusion matrix shows the TN, FP, and false omission rates in the first
row. The next row shows the FN, TP, and precision rates. The last row shows the FN
rate, specificity, and overall accuracy.
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FIGURE 5.11: Monomodal confusion matrices for binary fear
detection [1]. Reproduced with permission from the copyright owner,

© 2022 IEEE.

The physiological subsystem confusion matrix reflects its tendency to predict
the positive class at the cost of missing TNs. Meanwhile, the speech monomodal
subsystem achieves lower overall rates than the others but achieves a higher TN
rate. Finding a balance between these two behaviors is very important in our
application, where missing alerts can be dramatic for the users, but triggering too
many false alerts could overwhelm the institutions in charge of protection. Thus, the
fact that the speech subsystem can hold back the FPs triggered by the physiological
monomodal system looks very promising. In this line of work, the fusion strategies
whose confusion matrices are shown in Figs. 5.12a, 5.12b, 5.13a and 5.13b differ only
in a couple of instances but are more balanced between TNs and TPs. However, the
strategy shown in Fig. 5.13c reflects much higher FP and TP rates than the others but
misses more TNs than any other, and Fig. 5.12c shows how the hierarchical decision
making of Bindi 1.0 performs poorly, proving that fusion is indeed essential.

Discussion

Regarding the usual IoT layer architecture (edge, fog, and cloud) considered in
Bindi, a relevant system design question concerns which part of the system should
be implemented in each of the layers.

First, the cloud computing layer is intended to collect and process great amounts
of data without limitations regarding computing resources, energy demand, or
response times [287]. This definition fits the needs of the centralized computing
services of Bindi, which are therefore placed in the cloud layer to manage potential
criminal evidence and historical information for victims’ long-term monitoring.
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FIGURE 5.12: Confusion Matrices for Data Fusion Strategies for
Bindi 2.0a and Bindi 1.0 [1]. Reproduced with permission from the

copyright owner, © 2022 IEEE.

Second, edge computing takes place in the IoT nodes that capture data in
the edge of the network. These devices are constrained by their computing and
energy capabilities because, in most cases, they are powered by batteries or situated
in hazardous environments [288]. This definition fits with the devices by which
physiological and auditory data are captured over time in Bindi, i.e., a bracelet and
a pendant.

Finally, the fog computing layer follows a concept similar to that of the edge
computing layer. However, fog devices are less constrained in computing and
energy capabilities while still remaining close to the data origin [289]. According to
this description, Bindi’s smartphone can be considered a fog device because it does
not capture data but is close to the data origin, and both the computing and energy
capabilities are less constrained than the ones in the edge devices (the bracelet and
the pendant). Some authors assert that the fog does not exist, and then implement
the fog layer functionalities described before, inside the edge layer [290]. Under
this focus, it is still possible to structure devices in different layers inside the edge.
From this point of view, the smartphone would be in an upper layer inside the edge,
whereas the bracelet and the pendant would constitute the bottom layer. For further
discussion about and review of the edge, fog, and cloud layers, readers are referred
to [291] and [292].
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FIGURE 5.13: Confusion Matrices for Data Fusion Strategies for Bindi
2.0b [1]. Reproduced with permission from the copyright owner, ©

2022 IEEE.

The proposed data fusion techniques in this work achieved a maximum of
up to 63.61% average accuracy for a speaker-adapted subject-semi-independent
fear recognition use case. This result was obtained using multimodal speech
and physiological signals and the lowest entropy fusion strategy approach. The
obtained average accuracy fell within the range of accuracy rates achieved by
similar works presented in Sec. 5.2.4 and outperformed the system proposed in
[280], which considered the same multimodal sources of information. It should be
noted that as a differentiating feature of our system, we make use of non-invasive
signal monitoring, rather than EEG headsets or face detection sensors [276, 257].
Additionally, the number of users considered (i.e., 42), provide more variability in
the data and, therefore, produced a more robust model.

It is worth highlighting that the configurations described here for fear detection
through physiological and speech data are just possible ways to characterize the
situations and contexts in which Bindi users could be involved. These are meant as
initial baselines for further developments and have allowed for the identification of
important challenges. To start, finding a suitable trade-off between TPs and TNs and
FPs and FNs is crucial since the cost of missing a true need for help is appalling, but
we also need to avoid interfering with the everyday life of GBVVs and saturating
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the protection services with false alarms.
Thus, in this work, we tried to reduce FNs as much as possible, while FPs were

maintained at an adequate rate. To this end, we considered strategies based on
misclassification costs and threshold parameter setting. Specifically, we fixed thphy
in the physiological subsystem to obtain a higher outcome of positive predictions
with this system so that, in a later stage, the speech (in Bindi 1.0) and data fusion
strategies (in Bindi 2.0a and Bindi 2.0b) would help in correcting the bias while
trying to maintain the TP prediction. During this experimentation, the current
speech monomodal system provided lower performance rates than expected. A
possible explanation for this behavior could be the temporal misalignment of the
physiological and speech data in WEMAC. The vanishing of the emotion elicited by
the time the voice sample is collected could be behind this decrease in performance.
Moreover, only classical processing and classification techniques have been used as
a baseline for future exploration with this novel dataset. A similar situation applies
to the fusion strategies, conceived to check the reliability of the pre-alarms triggered
by the physiological model and acting as modulators to lower the FP class prediction
rate.

Regarding future work, this study opens the door for further research in many
directions. For example, the use of recurrent neural networks to exploit the temporal
context of signals, the analysis of other fusion alternatives, or the evaluation of
alternative score metrics, such as mutual information or area under the curve,
could be used to continue finding a proper balance between false alarms and
miss probability. Additionally, adding data acquired from more volunteers in
laboratory conditions would add robustness to the models. Likewise, including
GBVV data would help to better understand the GBVV activation mechanisms
under fear-related situations. Lastly, it should be noted that the development of
subject-adaptation techniques is critical for our GBV use case.

5.7 Conclusions

In this chapter we evaluated the detection and classification of fear-related emotions
from a multimodal perspective for the development of the Bindi system. It should
be noted the high level of multidisciplinary of the present work as the contributions
were performed jointly with other members of the UC3M4Safety team.

In Sec. 5.3 we described in depth the components and functioning the
system – bracelet, pendant, app and server –. Then, in Sec. 5.4, we described
the proof-of-concept architecture evolution from Bindi 1.0 to Bindi 2.0. We
analysed the monomodal data pipelines available and proposed a hybrid data
fusion architecture by combining both the decision-level (late) and feature-level
(early) approaches based on the combination of physiological signals and audio
for detecting gender-based violence situations. This novel architecture includes
a third layer (i.e., early fusion) to the beforehand implemented system in Bindi,
still to be validated. Alternative fusion techniques need to be tackled, specifically
tailored for this problem and able to account for its inherent limitations, such as
the necessary bandwidth optimization including data compression, hardware and
computational constraints, and battery consumption trade-offs. Later in Sec. 5.4 we
further shape the fusion architectures for Bindi 2.0 and describe the theory behind
each fusion architecture devised. We also detail each the data processing pipelines –
physiological and speech – in Sec. 5.5.

https://www.uc3m.es/instituto-estudios-genero/UC3M4Safety
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Regarding Sec. 5.6.1, stressful acoustic events with a non-deterministic
correlation to stressed speech utterances proved to be beneficial to some extent for
the classifications of binary emotional utterances. This study leaves many open
questions and future lines of work. The programming library used to create the
synthetic mixes allows the definition of probability distributions for the appearance
and duration of the sound events – as the procedure described in Sec. 3.2.3 –.
And it is ready to perform the addition of background events when binary label
is Q2. And so the data could also be extended by proceeding in a similar way
with non-stressful events whenever binary label is not Q2, making the resulting
mix sound more realistic. Also background sounds in the mixing process can be
adapted to any kind of problem, resulting into new combinations of the BioS-DB
and other datasets. As the main goal of Bindi is to detect and prevent Gender-based
Violence, these background events could correspond to audio clips of movie scenes
representing a GBV scenario, selected with expert knowledge and guidance.

Finally, regarding Sec. 5.6.2, we presented Bindi 2.0, an end-to-end autonomous
multimodal system that leverages affective IoT throughout auditory and
physiological commercial off-the-shelf smart sensors, hierarchical multisensorial
signal fusion, and secure server architecture, with the final objective of providing
safety for and ensuring the well-being of GBVVs. Specifically, Sec. 5.4.3 proposed
three system architectures for Bindi, consisting of specific arrangements of the
data processing subsystems developed, i.e., physiological, speech, and data fusion
subsystems in the near future of Bindi. These architectures were validated and
evaluated using the WEMAC dataset belonging to the UC3M4Safety Database.
Note that the dataset was specifically built to detect fear in women in a laboratory
environment.

The experimental results show an average accuracy of the fear recognition rate
of up to 63.61% with the Leave-hAlf-Subject-Out (LASO) method. The obtained
metrics are in line with similar multimodal-based state-of-the-art systems, such as
the ones reviewed in Sec. 5.2.4. Moreover, our system outperforms the only system
in the literature dealing with the same bimodal combination as in this work [280].
To the best of our knowledge, this is the first time a LASO model considering
fear recognition, multisensorial signal fusion, and virtual reality stimuli has been
presented. Note that the significance of the results is limited by the number of
participants at the moment of the publication [1], i.e. 47 women.

This experimentation serves as an initial multimodal approach toward working
with real elicited fear in women and its proper processing. Bindi is a very
complex system that requires a thorough balance of many aspects, such as battery
consumption, computational power, resource usage, and algorithm performance.
We aimed to point out that the ultimate goal of this work is to ignite the community’s
interest in developing solutions to the very challenging problem of GBV.

All of this work in fear emotion recognition and the conclusions gathered are
intended to pave the way and shape the next version of Bindi: Bindi 3.0.
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Chapter 6

Additional Research Directions for
Audio and GBV

At the same time that we carried out our research in this thesis, parallel but
complementary lines of research opened up that could help in the prevention
of gender-based violence using the auditory modality. In the beginning of this
chapter, we talk about the affective characterization of the acoustic context, in the
background of the detection of GBV risk situations, including first, the analysis
of acoustic events and then the holistic analysis of acoustic scenes or scenarios.
Afterwards, we superficially explore fatigue analysis on speech, seeing that it may
be related to stress on speech. Next, we perform a preliminary ablation study on
the detection of gender-based violence only through the use of speech utterances.
And finally, the relationship between climate change and gender-based violence are
broadly commented.

These lines of research do not form part of the bulk of the thesis, but we felt
that they were important fields to investigate and that they could provide insight
into and contribute to the prevention of gender-based violence through audio
technology.

6.1 Affective Characterisation of the Acoustic Context

Within the audio signal that we capture with Bindi we have several sources of
information, among them: the user’s speech, the silences, environmental noise,
acoustic events, auxiliary sounds, etc. By joining all of the sources together we
can get an idea of the context in which the user is located in. In this thesis we
have worked especially on speaker identification and the detection of emotions in
the voice mainly, but it seems reasonable to think that acoustic events and noise,
forming the acoustic context, could give us more information about the situation in
which the user is. We are also interested in investigating the relationship between
acoustic scenes and the emotions they can elicit.

We take into account this acoustic modality, because all the modalities alone are
too brittle to give a reliable result of the prediction of a risk situation. So we can’t
look at just one but all of them contribute to a more robust and reliable prediction.
This is also why it is difficult to isolate emotion detection or speaker identification
from the analysis of the rest of the audio, and from each other. They are always
intertwined under this challenge of gender violence.

The study of the characterisation of the acoustic events and scenes for the
detection of gender-based violence risk situations is a very challenging and complex
field, which would require a separate doctoral thesis itself, but we wanted to do
some initial preliminary work that might light the way forward.
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6.1.1 Affective Acoustic Events Characterization

The field of Acoustic Event Detection (AED) is a research field of AI in which
different approaches have been developed and used for the detection of sound
events, oftentimes imitating the human auditory system, and including different
feature sets and detection algorithms. Sound detection can help us to emotionally
characterise an audio signal, relating the acoustic events that appear with the
emotion the audios tend to elicit.

Moreover, the DCASE community34 has been releasing several datasets for the
“detection and classification of acoustic scenes and events” since 2013. This has
fostered a wealth of research contributions in this field. Moreover, a large-scale
dataset of hand-crafted annotations of audio events, AudioSet [170], triggered the
investigation in deep learning models, several opened to the research community
such as YAMNet [242]. This offers a robust alternative for the representation of the
acoustic environment that can be transferred to other domains and tasks.

In this section we introduce the acoustic event detection system proposed as a
proof of concept for Bindi 2.0, to be included in Bindi 3.0.

Acoustic Information Subsystem in Bindi 2.0

This section describes the preliminary audio processing pipeline for acoustic scene
threat detection developed by other members of UC3M4Safety team. We used it to
provide an affective characterization of WEMAC in Sec. 6.1.2. This component has
not yet been included in the arrangements studied in [1] and it is here conveyed
as a proof of concept for further versions of Bindi. This subsystem is based on the
architecture presented in [8]. Its main task is to detect whether the sound events
recorded from the microphone represent a threat to the user’s safety according to
our use case.

The acoustic event detection system begins by processing the audio signal. First,
the audio signal is normalized, just as for the speech pipeline (see Sec. 5.5). Second,
a log-Mel spectrogram is computed to obtain a time-frequency representation of the
signal in an image form to later feed it to the event detection network. Thus, an initial
spectrogram is computed through a Short-Time Fourier Transform (STFT) with the
following parameters: a window size of 25ms, window hop of 10ms, and Hanning
window. The frequency dimension of the spectrogram is mapped to 64 Mel bins to
cover frequencies ranging from 125 to 7500Hz and the amplitude is transformed into
a log scale with an offset of 0.001.

The spectrograms taken as features are framed into examples of 0.96 seconds
with an overlapping of 50%. Each example covers 96 frames of 10ms each and 64
Mel frequency bands. Therefore, the dimensions of these features are 96x64. The
resulting features are fed into a pre-trained Convolutional Neural Network (CNN)
to detect the audio events in a scene.

The selected model for this task is YAMNet. Specifically, the MobileNet_v1
[293] depthwise separable convolution architecture is considered. This model has
been pretrained on 521 classes of the AudioSet YouTube corpus [170], a multilabel
sound event classification database for general purposes, and is prepared to perform
inference for the detection of acoustic events. The performance of these types of
networks has been widely studied in the field of sound event detection [294].

The procedure to feed the network is as follows: First, the 96× 64 patches from
the feature extraction stage are transformed into a 3× 2 array for the 1024 kernels

34https://dcase.community/

https://www.uc3m.es/instituto-estudios-genero/UC3M4Safety
https://dcase.community/
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of the top convolutional layer. After being processed through the feature extraction
layers, these examples are averaged to obtain a 1, 024-dimension embedding. Then,
a logistic layer performs the classification in 521 target classes.
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FIGURE 6.1: YAMNet processing a sample of BioSpeech+. Temporal
representation (top), spectrogram with bands spanning 125 to 7500
Hz (middle), and principal events found (bottom) [8]. Reproduced

with permission from the copyright owner, ISCA.

As for the Acoustic Events Detection and Classification (AED/C) task we are
interested in analysing the set of stimuli used in WEMAC. In Fig. 6.1 we observe the
performance of YAMNet classifying a 90s mixed audio as part of a small informal
analysis for the identification of acoustic events present in one audio signal of the
generated Biospeech+ database (see Sec. 3.2.3) [8]. The Biospeech+ dataset is
pre-processed to match YAMNet’s requirements ( fs = 16KHz, mono, amplitude
normalized to [−1, 1]) and then fed into the model. The only free parameter is
patch_hop, which was set to 0.48s.

This analysis aims to characterize the problem of GBV detection from an
acoustics perspective since the development of an empirical description of the
problem is important for its automatic detection. Thus, the acoustic information
subsystem was applied to the audio signal of the audio-visual stimuli in WEMAC to
analyse the acoustic events conforming each acoustic scene in the context of GBV.
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The results obtained appear in Fig. 6.11, where all the occurrences of the
YAMNet acoustic events labels in the audio-visual stimuli of WEMAC are depicted.
Interestingly, some labels were exclusively found in fear audio-visual stimuli, such
as heartbeats, explosions, and breathing, whereas other labels never appeared for fear,
such as tender music, lullabies, and crowds. There were also intermediate cases in
which labels appear for both types of stimuli, such as spatial-contextualization labels
(indoors or outdoors-related), animals, silence, and laughter. Therefore, automatic
classification of acoustic events seems to be promising as certain patterns can be
deduced from extreme cases in which labels exclusively appear for one of the two
types of audio-visual stimuli. It must be noted that YAMNet labels are very general
themselves, i.e., they can appear to be related to many circumstances and scenes.
Thus, they must be analyzed as a set, which is a feasible way to infer some qualities
of the context of a particular scene, e.g., violence.

From this exploratory analysis, we can conclude that the information extracted
from acoustic events can be very beneficial to disambiguate potential GBV situations
detected automatically in Bindi with the rest of the sensors. The surrounding sound
events of a scene can help infer its context, which is critical to determine whether the
scene is or not violent. Thus, we expect the acoustic information subsystem to play
a key role in the evaluation of WE-LIVE, where volunteers are performing everyday
activities, outside of the laboratory environment.

6.1.2 Affective Acoustic Scene Characterization

After the analysis of acoustic events, in this section we present preliminary work
carried out together with other members of the UC3M4Safety team in the study of
acoustic scenes and emotional soundscapes. In the previous section we described
the detection of acoustic events without actually relating one to one another, but in
this section we want to analyse them together in order to be able to characterise an
holistic acoustic scene in an affective way.

Acoustic Scene Analysis and Interpretation is a research field that aims to explain
the acoustic information in the environment often captured by a multi-microphone
acquisition system [295]. Although some work on the relationship between
acoustic scenes and emotions exists in the literature, it has not been collectively
identified or specifically defined. There is not a single title or acronym, as for
example with the widely known field of Speech Emotions Recognition (SER)
where a solid corpus of work is being developed. Thus, we found related
work on acoustic scenes and emotions under different names: Assessments of
Acoustic Environments by Emotions, Emotions in Soundscapes [296], Emotional
(Acoustic) Scene Understanding, Induced Emotions in Sonification [297], Evoked
Emotion Recognition by General Sound Events, Sound Design Theory [298] or
Acoustic Design of Virtual Environments [299], among others. However, despite
the limited number of works, there is still some promising research in the field.
The motivation of such works in the literature is to provide machines with the
ability of understanding what a person is experiencing from her acoustic frame of
reference. This includes her acoustic contextual information, meaning the situation
and auditory surroundings of the person. And our purpose with this work [4] is to
provide an overarching view of this subfield, collecting it under the term of Affective
Acoustic Scenes Analysis (AASA).

This innovative work [300] aimed to develop comprehensive computer models
of affect in sound. In it, a high degree of coherence across domains indicated that
the encoding of the two main dimensions of emotion (arousal and valence) resulted

https://www.uc3m.es/instituto-estudios-genero/UC3M4Safety
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from the evolution of voice and music together in a multimodal way, including
combining nature sounds for expressive effects. However, these findings where
established on the basis of acted and spontaneous emotional speech, music and
general sound events [301] in isolation. Targeting a holistic model that is able
to explain affect in sound, we aim to characterize the emotions elicited by being
immersed in a specific acoustic scene, taking into account the acoustic information in
the environment as a whole.

The common underlying representation of emotion triggers from sounds, music
and speech is discussed in [300], but in spite of the abundant literature, pointing
towards the relevance of the acoustic environment and human emotions in the
cognitive sciences (e.g.,[302]), there are very few studies that investigate the
relationship between acoustic events and the elicitation of emotions [301] and
scarcely any investigate the relationship between fear and sounds [303].

As mentioned previously, we are specially interested in discussing how
real-world acoustic environments can affect and influence emotions, and therefore,
analyze and characterize them. These tasks could be encompassed in a subfield of
Affective Computing that we term Affective Acoustic Scene Analysis.

To the authors’ knowledge, no prior work focuses on the intrinsic emotional
information of a soundscape and proposes a method to find direct and unsupervised
relations between the audio events of an acoustic scene and its elicited emotion. So
in the following subsection, we present a methodology for the Affective Acoustic Scene
Analysis and then we adopt a setup based on information retrieval classical methods
to produce a representation of the affective acoustic scene based on the well-known
TF-IDF (term-frequency – inverse document frequency) algorithm [304], [305],
where we build the vector space of acoustic events occurring in a scene balancing
the acoustic event frequency and the inverse scene frequency.

Methodology for an Information Retrieval-based Approach

In this section we detail our proposed methodology for Affective Acoustic Scenes
Analysis (AASA) step by step [4]. We put forward that this is a more comprehensive
alternative to the classical machine learning setting that extracts features from audio
signals and then plugs them directly into a machine learning model for inference,
that also facilitates interpretability and accountability. Fig. 6.2 illustrates such
methodology in a block diagram.

Audio Data

Signal-level 
Labels

Acoustic/Sound
Events Detection

Event-Emotion 
Mapping

Sound/event-
level Labels

Acoustic/Sound
Events

Acoustic/Sound
Events Analysis

Affective Acoustic 
Scene Emotional 

Fingerprint

i) ii) iii) vi) v)

FIGURE 6.2: Block Diagram of Affective Acoustic Scene analysis
methodology [4].
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Starting on the blocks from the left, i) the first step is to use audio data, specially
useful if recorded in realistic conditions or a synthetic mixture that imitates such
(for example, a Virtual Reality Environment, movie clip, realistic video game,
etc.). Ideally, such data would be labelled according to affective states or emotions
perceived by the users that actively listen to it. Affect labels such as arousal, valence
or dominance, pleasure, categorical emotions and liking, could be used. The aim of
these labels is to reflect the emotion or affective state perceived by a person that is
immersed in such acoustic environment.

As the next step, which could be optional, ii) an acoustic events detection or
classification module can be applied, that identifies the acoustic events or sounds
from the audio signal. Such module might be a pre-trained machine learning model
with databases that include emotional labels from sounds, iii) so a relationship or
alignment between the detected sounds and their emotional component annotated
could be found.

Once the acoustic events or sounds have a corresponding emotional label, iv)
the mapping between the two needs to be analysed, either in a supervised or
unsupervised manner, with an algorithm that can evaluate the relation between the
acoustic events or sounds and the emotional labels. This step can be performed
with any pair or data-label, for instance, the separate acoustic events together with
the whole original signal-level emotional label. Finally, v) an acoustic emotional
fingerprint or embedding is extracted from the analysis, which condenses the
emotional information from the analysed audio.

An important challenge that arises is related to the intensity of the emotional
event, that is, its emotional saliency. It is is an adaptive biological signal that
influences how events are remembered and how they are incorporated into memory.

Moreover, different sounds or acoustic environments can lead to different
emotions elicited in the listeners based on their previous experience and the
memory associations that the sounds evoke. Thus, there may be a majority
emotional reaction, but we should not forget the individual differences in each
person, specifically in the case of women who have suffered or are suffering from
gender-based violence.

As we have already mentioned, the associative and relational memory
component of an acoustic event can also play a role in the emotional reaction of
a person. The sounds of keys opening a door may be a sound of joy meaning
welcoming a loved person, but for a victim of gender-based violence it may mean
that her abuser has arrived. The emotional effect can be completely different even
though the acoustic event may be the same. Therefore, the need for a method that
can be adapted and personalised is of paramount importance in this field with such
a high level of subjectivity.

As part of the block diagram represented in Fig. 6.2, optionally we can aim
to classify the acoustic events occurring in the audio data available. For such
classification, we could employ pre-trained sound event classification models, able
to detect acoustic events or sounds. We refer to this step as optional because a
direct analysis of the complete acoustic signal and its emotional label could be
also performed, but we believe this step to be key to identify the acoustic events
composing an audio signal so that our later interpretation is more transparent and
direct, more explainable.

The core part of the methodology is an algorithm that analyses the relationship
between acoustic events or sounds and elicited emotions. Somehow, we have to
extract from the audio signals the most salient or relevant moments, which allow us
to condense the information, within the audio signal, that can trigger an emotion in a
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listener. One way would be to extract audio features from the sound signal, as if the
task were a speech emotion recognition task, for subsequent emotional classification
using ML prediction models.

Another type of process that can be used and which is the one we use in our use
case, is the TF-IDF algorithm, as we will explain in the next subsection.

Once we have extracted the acoustic emotional embeddings or fingerprints, they
could be used as input for machine learning models. These can be supervised
– re-using emotional labels as ground truth labels, as for ML regression or
classification models – or unsupervised, using some kind of clustering or similarity
metric to be applied. We consider it is also key that the results could be
visualised, with the help of explainability models (XAI), to verify and interpret the
accountability of the results gathered.

Experimental Set-up on UC3M4Safety Audio-visual Stimuli Dataset

To infer the emotions embeddings space, we use the UC3M4Safety Audiovisual
Stimuli Dataset – see Sec. 3.3.1 – designed to collect the multimodal dataset
WEMAC recently released [11] and specifically designed to portray the emotion of
fear. By using the cosine similarity function, we find that the TF-IDF representation
embeddings show the acoustic similarity of emotions as expressed in the dataset.
Note that this emotional categorization is different (and could be complementary) to
the classical Acoustic Scene Classification and Detection where scenes are typically
related to the physical places to be characterized, e.g., airport, metro station or urban
park.

In this research, 42 from a total of 79 videos of the UC3M4Safety Audiovisual
Stimuli Dataset collection [11.1] – see Sec. 3.3.1 – are used to create a standard
representation of acoustic information and events that induce certain emotions. Each
stimuli lasts between 30− 120 seconds, and the collection consists of movie clips,
ambience scenarios, and video compilations. In this subset from the first release,
each video is assigned an emotion label by crowd-sourcing, corresponding to the
emotion that it elicits in the viewers. Of such videos, 19 are categorized as fear and
the 24 remaining are labeled with categories of other 9 discrete emotions.

The data we use for the work in this section is the audio component only, from
the audiovisual stimuli collection. It contains different types of sounds – speech,
music, sound effects – that, along with the visual information, induce in the viewers
the labeled emotions. To identify the acoustic events occurring the audio data we
employ a pre-trained sound event classification model: YAMNet [242].

We take the acoustic event labels predicted by YAMNet as words, and the audio
stimuli eliciting emotions as documents, where our set of audio stimuli is equivalent
to the collection of documents. We obtain a vector of TF-IDF scores per clip – with
one value per acoustic event label – which represents the affective acoustic fingerprint
of potential emotional triggers of each video.

TF-IDF (term frequency - inverse document frequency) [304] is a statistical
method widely applied in Information Retrieval that evaluates how important a
“word” is in a “document” in a “document collection”. This importance is given
by a score, which results of “multiplying two metrics: the number of times such
word appears in a document (TF), and the inverse document frequency of the word
across a set of documents (IDF)”. The score increases proportionally to the number
of times that a word appears in a document, but decreases when there is a high
number of documents that contain such word. When theTF-IDF score of a word is
high, then the more relevant the word is in that particular collection of documents.
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These TF-IDF scores could be fed to machine learning algorithms as word vectors as
they are a way of representing the data.

With the purpose of computing how similar each pair of TF-IDF vectors of each
video of the UC3M4Safety dataset collection are, we use a similarity metric based the
cosine distance (detailed in Eq. 6.1). Cosine similarity is widely used in information
retrieval as a simple and effective way of providing a useful measurement of
how similar two documents are likely to be, independently of the length of such
documents. Thus, as our videos have different lengths, we rely on this distance to
measure the similarity between the affective acoustic embeddings represented by the
TF-IDF vectors.

Results on Affective Acoustic Scene classification

In order to perform the affective acoustic scene analysis we first extract sound events
from the audio waveforms that allow us to characterize the acoustic scene with
YAMNet. Our goal here is to obtain a corpus of weighted label scores that represent
the occurring sound events per time window, so that we can later establish a
metric that measures how close these representations are within the gathered video
stimulus of the UC3M4Safety Audiovisual Stimuli Dataset. In this section we are
concerned with the construction and evaluation of the vector space of acoustic
events and the vectors that represent the directions of the different emotions. Thus,
the following pipeline has been applied and is publicly available on GitHub35.

Each of the 42 videos from the collection elicits one emotion, validated by more
than 50 users each36. Both the acoustic and the visual modality are the ones inducing
these emotions, thus, we first extract the audio only with the command-line tool
ffmpeg. Apart from speech, these audios also contain information about the acoustic
scene that induces such emotions. It is the acoustic scene and context what we would
like to further analyze.

At the preprocessing stage, we have used the audio information subsystem of
Bindi 2.0 which were already described in Sec. 6.1.1. Next we use YAMNet to detect
and classify the acoustic events present in the audio signals of all the video stimuli.

FIGURE 6.3: Word Cloud of acoustic labels output by YAMNet
for audiovisual stimuli annotated as ‘Fear’ [5]. Reproduced with

permission from the copyright owner, ISCA.

As YAMNet is a general sound event classifier, it may produce very detailed class
labels which may not provide useful information to our acoustic characterization
given the audiovisual stimuli used, but would only make the task and descriptions
more complex. So considering the Audioset Ontology, the children classes of Music
and Animal labels are filtered out, except the classes of Music Mood and Wild

35https://github.com/erituert/acoustic_information_retrieval
36The emotion chosen was the one that most annotators chose

https://github.com/erituert/acoustic_information_retrieval
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FIGURE 6.4: Word Cloud of acoustic labels output by YAMNet for
audiovisual stimuli annotated as ‘Tenderness’ [5]. Reproduced with

permission from the copyright owner, ISCA.

Animals, where all subclasses are kept. From the total of 521 classes that YAMNet
classifies, the filtered ones result in 351. Figs. 6.3 and 6.4 represent the word cloud
of acoustic labels output by YAMNet for audiovisual stimuli annotated as ’fear’ and
’tenderness’ respectively. As an example of a video chosen to elicit ‘fear’ as analysed
through YAMNet. Fig. 6.5 represents an audio signal: at first a woman speaking can
be heard, then a strong noise similar to a squeal followed by an engine sound occurs
at second 18. Heartbeat sounds are present during the last part of the audio.
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For correct comparison purposes, since the scoring ranges from YAMNet can
be extremely low, all the scores are log-scaled and then binarized. The goal of the
binarization is to keep only the events with an output score high enough to consider
that they have occurred and are not a misinterpretation of the network. Therefore,
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the threshold is set to the global mean value among all scores of all files, and sound
events whose score is lower than the threshold are not considered.

The next step in the pipeline is to obtain a text-form corpus of the occurring
events in the dataset. Thus, each audio file is treated as a text document composed
by terms, which are the words of each sound event referenced through the internal
identification code provided in the Audioset database (mid).

Finally, we use the TF-IDF 37 algorithm from the sklearn Python library to obtain
the TF-IDF matrix for each of the 42 audiovisual stimuli in the dataset, resulting in a
scores matrix of dimensions (42, 351).

With the aim of analysing the distance between the TF-IDF vectors or affective
acoustic embeddings representing each of the instances in the dataset to understand
the underlying patterns that relate the emotions, we use a similarity metric based on
the cosine distance:

similarity(x⃗, y⃗) = 1− cos(θ) = 1− x⃗ · y⃗
|x⃗||y⃗| (6.1)

where θ is the angle between the two vectors.
In Fig. 6.7 we represent as a heatmap the results of computing Eq. 6.1 for each

audiovisual stimuli with its labeled emotion with respect to the rest of audiovisual
stimuli, with a total of 37, after removal of outliers (which were still present in Fig.
6.6). Lighter colours on the heatmap represent higher similarity, and darker colours

37https://scikit-learn.org/stable/modules/generated/sklearn.feature_\extraction.tex
t.TfidfVectorizer.html

https://scikit-learn.org/stable/modules/generated/sklearn.feature_ \ extraction.text.TfidfVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_ \ extraction.text.TfidfVectorizer.html
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show lower similarity, between affective acoustic embeddings. As each video aims to
trigger a single emotion, in this manner we can understand how each video is related
to the way the rest of them represent each of their corresponding emotions.

Outlier detection and removal was performed after comparing each affective
acoustic embedding with the rest of embeddings of the same emotion category. For
instance, V32 was identified as an outlier considering that its embedding had a big
dissimilarity with respect of the rest of embeddings labeled with disgust. Further
analysis reveals that the acoustic context does not match the visual information,
since V32–which is a video compilation–contains mostly classical music, similar to
videos labeled in the calm category, and therefore its embedding is similar to these
later emotion embeddings.

We can observe that similar emotions present alike coloured clusters in Fig.
6.7, meaning that videos labeled with the same emotion have a similar acoustic
characterization. On Fig. 6.7, four clusters can be roughly observed: a big cluster
including anger, disgust, fear, tedium and surprise, another cluster for joy, and another
cluster for calm and tenderness, and the last one including hope and sadness. These
four groupings are to some extent consistent with the similarity in the PAD space on
the Valence and Arousal axes [107] of these emotions.

Afterwards, we performed the mean of the TF-IDF matrix for every audiovisual
stimuli labeled with the same emotion category. In that manner we can understand
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how each acoustic label impacts in the classification of each emotion. In Fig. 6.8
we present the resulting heatmap, from the acoustic point of view, of emotion
embeddings. We can observe how the results are promising, as similar emotions
present a greater similarity between them (e.g., calm and tenderness), than emotions
that humans categorize as more different (e.g., tedium and joy). In particular,
the fear category lays close to the disgust and surprise labels, which hinders the
discrimination between them if we only take into account the acoustic context.

Discussion

In Fig. 6.9 we plotted the affective acoustic embeddings using the t-sne algorithm.
We can observe that the distances and clustering between them are somehow similar
to the grouping happening in Fig. 6.7.

The relationship between fear and anger is peculiar, as contrary than what we
would expect present a great similarity. This could be explained taking in to account
the gender bias [126], that states that in certain situations, people can feel different
emotions to the same stimuli depending on their gender. This deserves further
investigation.

Two factors may be influencing the robustness of this analysis, first the
agreement among the annotators that labeled each video and their gender, and
second, the amount of videos per each emotion category. Thus, as future work,
a more insightful analysis with a more in-depth study could be carried out using
the original set of videos – up to 79 – or other databases of acoustic scenes with
emotional annotations. The annotators agreement per gender as a variable can also
be taken into account to study its relevance. Furthermore, using the TF-IDFvectors
as features, machine learning models could be fed with such data and predict
emotional labels in supervised learning.

As a final note, we work to try to answer the question of whether it is possible to
characterize an acoustic scene or soundscape with respect to the emotions it elicits.
We draw from the premise that characterizing the affective acoustic scene involves
taking into account the acoustic context. And regarding the results presented
achieved, we seem to have achieved a favourable emotional characterization of the
acoustic scene in audiovisual material, being a first start to affective acoustic scene
analysis in real-world environments.

We conclude that using the Affective Acoustic Scene analysis methodology
is a promising method for which the results can be highly interpretable, for
characterizing an acoustic scene with respect to the emotional information. Robust
embeddings that acoustically characterize emotions can be used to measure the
emotional load of – or the emotion to be elicited by – the acoustic information in
other databases.

Other indicators besides the acoustic context – such as information from other
modalities (e.g., bio-signals from the subject) – are crucial to accurately characterize
a situation and to detect if the life of the user is at risk.

6.2 Intersectional Fairness Analysis on Fatigue Classification

In line with the detection of stress in the voice, we also published a study on the
detection of fatigue through the voice and breathing in speech signals [7], in a joint
collaboration with the University of Augsburg’s Chair of Embedded Intelligence
for Health Care and Wellbeing (EIHW). This study had two objectives: first, to

https://www.uni-augsburg.de/en/fakultaet/fai/informatik/prof/eihw/
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understand the fatigue or stress that can be caused by running or jogging exercise in
order to study and characterise it, developed by members of EIHW; and second, to
carry out a gender analysis in how this fatigue is observed in each gender, the part
we were in charge.

We model the Borg Received Perception of Exertion (RPE) scale [306], “a
well-validated subjective measure of fatigue”, by means of audio signals that
were captured in real outdoor environments by placing a smartphone attached in
runners’ arms and using machine learning models. By fine-tuning (pre-training) a
convolutional neural network (CNN14 [307]) on log-Mel spectrograms, researchers
at EIHW performed subject-dependent experiments and obtained a mean absolute
error (MAE) of 2.35, showing that audio can be acquired more easily and
non-invasively than signals from other sensors, while being effectively used to
model fatigue.
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owner, © 2022 IEEE.

Among the results derived from this study, we performed a gender analysis,
in which the model performs almost equally for male and female runners. This is
despite the fact that the used data (KIRun database 38) is biased towards females
(27 female runners vs 21 male). This indicates that relative data quantity may not
be the only factor causing performance imbalances. Finally, we noted that while
CNN14-pretrained performance was overall better for females in most age groups,
the reverse is true for the age group (21− 30), where females show an MAE of 2.37
compared to 1.86 for males.

Another interesting pattern is the difference of behaviour between
CNN14-random and CNN14-pretrained. For some particular age groups, the
two models show very different behaviour. For example, for the age group
(31 − 40) CNN14-random shows a much larger MAE for females, but the
performance of CNN14-pretrained is almost the same for both sex groups. This
shows that pre-trained models not only improve absolute performance, but might
also change model behaviour across different strata of the dataset – which is

38https://www.uni-augsburg.de/de/fakultaet/fai/informatik/prof/eihw/forschung/proj
ekte/vergangene-projekte/
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an unwanted side-effect of the underspecification phenomenon observed in ML
architectures [308].

To conclude, the intersectional fairness analysis performed reveals that
performance differs between age groups and sex combinations, and that
individual-level performances are important. This conclusion should also be
recognised for the fear recognition systems, and it would be ideal to perform further
work that includes data from these different but also similar affect states – fatigue,
stress and fear – in order to separate them and analyse their differences, so that Bindi
can be trained to detect the right conditions and not to misclassify them.

6.3 Automatic Detection of Gender-based Violence
Condition in Speech

In the preliminary work based on [309] and published in [6] jointly with other
members of UC3M4Safety team, we explored whether the GBVV condition could
be detected from audio only by a small set of features from speech paralinguistic
cues from the WEMAC Database [11]. The work in [309] addresses the use of feature
selection techniques for features extracted from speech paralinguistic cues, and from
that basis the present classification was made.

The data used comprises 26 non-GBVV and 26 GBVV from the same age ranges.
The feature extraction process is coded in Python39 and includes the features
presented in Sec. 3.3.2. Statistical tests were applied as feature selection methods
between both groups (GBVV and Non-GBVV) to check if there were any speech
features that presented significant differences between groups, and thus allowed
for distinction between them (further details in [309]). The statistical analyses
conducted led to the use of different sets of features for its subsequent classification
(see [6]).

Afterwards, a shallow neural network, a Multilayer Perceptron (MLP) – coded
in Python with the sci-kit learn library – was created in order to validate
the statistical results. Two approaches were implemented: a subject-dependent
and a subject-independent strategy. The results show that the MLP model is
capable of distinguishing between GBVV and non-GBVV with a subject-dependent
approach better than with the subject-independent approach. When removing the
dependency, the scores diminish significantly, which we believe could be explained
by the existence of outliers and the small amount of data [6]. Nevertheless, we need
to take into account that this is preliminary work to be continued, and that it has a
main limitation, which is the fact that the sample contains 52 subjects in total. Part
of the planned future work is to re-perform this analysis with a bigger sample once
it is available.

6.4 Climate Change and Gender-based Violence

In line with the seventeen Sustainable Development Goals (SDGs) planned and
adopted by all the United Nations member states in the 2030 Agenda, the 13th SDG
is “a call for action to combat climate change for a better world”, and here we have
briefly explored the literature linking gender-based violence and climate change.

39Available in: https://github.com/BINDI-UC3M/wemac_dataset_signal_processing/tree/master/speech
_processing

https://www.uc3m.es/instituto-estudios-genero/UC3M4Safety
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The largest and most comprehensive study of the topic to date wasconducted
by the International Union for the Conservation of Nature (IUCN), involving more
than 1,000 research sources over two years in Climate Change and Gender-based
Violence [310]. The study suggests that gender-based violence is increasing due
to climate change, because increase in environmental degradation and stress on
ecosystems creates scarcity of resources, which in turn creates stress for people. So,
where environmental pressures increase, gender-based violence increases.

This study [311] shares an extensive plan to device Gender Based Violence Index
(GBVI) in identifying the severity of abuse in relation to air pollution and vegetation
coverage, such as finding a link between air pollution and green canopies with
levels of aggression. There seems to be a correlation between climate change and
gender-based violence, and it may be that helping with one will reduce the cases of
the other.

Within the framework of this thesis, audio technologies have been used for
the detection of risk situations for women in the context of GBV, and it is this
same technology – computer audition – which can also be used to tackle the
problem of climate change. In this work [12], which is a joint collaboration
with the University of Augsburg’s Chair of Embedded Intelligence for Health
Care and Wellbeing (EIHW), we provide an overview of areas in which audio
intelligence – a powerful but in this context so far hardly considered technology
– can contribute to overcome climate-related challenges. We categorise potential
computer audition applications according to the five elements: water, air, fire, earth
and aether, proposed by the ancient Greeks in their five element theory. This
categorisation serves as a framework to discuss computer audition in relation to
different ecological aspects. Earth and water are concerned with the early detection
of environmental changes and, thus, with the protection of humans and animals,
as well as the monitoring of land and aquatic organisms. Air refers to aerial
audio, which can be used to monitor and obtain information about bird and insect
populations. Furthermore, acoustic measures can deliver relevant information for
the monitoring and forecasting of extreme meteorological phenomena. Finally, the
element fire deals with the automatic audio-based detection and classification of
wildfires as well as the assessment of structural damage caused by fire. This work
positions computer audition in relation to alternative approaches by discussing
methodological strengths and limitations, as well as ethical aspects. We conclude
with an urgent call to action to the wider community in order to collectively fight
climate change.

6.5 Conclusions

In this chapter we have indicated some research lines that emerged while
researching this thesis. These are highly interesting preliminary works in which
we have collaborated together with other members of the UC3M4Safety team and
the Chair of EIHW. Indeed they require more in-depth work in the future since their
outcomes are encouraging.

We detail the work carried out in the field of Acoustic Events and Scene Analysis
and the importance of audio events analysis for the detection of risk situations. From
it arises the term of Affective Acoustic Scene Analysis and with it we call for future
research under this perspective and denomination. In our study of Affective Acoustic
Scene Analysis [5] we present favourable results, with robust and interpretable

https://www.uni-augsburg.de/en/fakultaet/fai/informatik/prof/eihw/
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acoustic embeddings that characterize emotions in our UC3M4Safety Audiovisual
Stimuli Dataset.

Additionally we performed a brief contribution to the study of fatigue, providing
a gender analysis of fatigue expression, and in future research it would be
interesting to characterize it to see the differences between stress, fear, and fatigue
on physiological variables and their effects on the voice. The work performed on
the detection of GBV conditon from speech promisingly indicates that it is possible
to distinguish between GBVV and non GBVV by using their paralinguistic cues,
opening a new line of research on Affective Computing and for gender-based
violence victim detection with the use of WEMAC. Finally, and following another
objective aligned with the social good, we link climate change and gender violence.

Finally, as already mentioned, these lines of research require more attention
and future work for a more holistic understanding in the context of detection and
prevention of gender-based violence using audio technology.
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Chapter 7

Conclusions and Future Work

This chapter gathers the conclusions drawn from the research works conducted on
this thesis. Our main objective in this thesis was to understand the reactions of
women to situations of risk to be able to detect them through automatic detection
mechanisms using the auditory modality and machine learning algorithms. In this
chapter we give an overview of the conclusions gathered from the work done on the
analysis of gender-based violence in the Affective Computing field, the reasoning
behind the databases used, and the work on the task of speaker and emotions
recognition together with the evolution of inference systems in Bindi. This thesis
is both multimodal and multidisciplinary because there has been a great degree
of collaboration and the contributions are deeply intertwined with those of other
members. We detailed each of the contributions in the introductory part of every
chapter and section. A strong gender perspective guiding technology is a much
needed pioneering work, so we can consider this investigation, together with that
of the other members of UC3M4Safety team, to lay the foundations of this new
perspective in which we aim to continue doing future work.

7.1 Conclusions

Gender-based violence is experienced by 1 in 3 women globally at some time
in their lives, either physically or sexually, according to The World Health
Organization (WHO) [21]. In particular in Spain, more than 1, 100 women have been
murdered from 2003 to 2022, victims of gender-based violence [22]. Also GBV is
normalised and reproduced due to structural and social inequalities therefore, this
socially-invisible problem needs to be urgently tackled in order to protect women,
which comprise more than 50% of the worldwide population.

Since the creation of the UC3M4Safety team, we have been working to develop
an innovative technological solution that could go hand in hand with artificial
intelligence to stop violence against women. And that is how Bindi was born. Bindi
consists of a system formed by a smartwatch – bracelet – a pendant, a smartphone
app and a cloud server. It constitutes a system of devices that aim to detect
automatically when a situation could be life-threatening for a woman, and offering
support and help on-the-fly. Bindi uses as main sources of information physiological
and auditory signals, in addition to other situational variables such as time of day
and GPS location, to perform such analysis.

The detection and classification of emotions, within the field or Affective
Computing, is a great source of information as it could inform about a person’s
affective state. That a person is stressed, nervous, frightened, fearful or generates the
fight-flight-freeze reaction, could be an indicator that she is in a dangerous situation.
And so, the use of Affective Computing and the detection of emotions, could be key

https://www.uc3m.es/instituto-estudios-genero/UC3M4Safety
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in the detection of GBV. Emotions can be tracked through physiological (see [53])
and speech variables, and in this thesis we focus of the latter.

Not only emotions, but also the context and situation in which the person
finds herself can give us especially relevant information for the confirmation that
a situation is of risk, as the aforementioned GPS coordinates, the time of the day,
and the acoustic context (cars passing by, silence, or a scuffle). These other aspects
are currently under study by other members of the UC3M4Safety team we are
collaborating with.

But the detection of emotions and specifically of fear is very difficult. We have
already talked about the difficulties of emotional labels because of their subjective
nature and due to the difference in perception of the annotators who label them
in Sec. 2.5. Regarding the lack of real data, we have applied data augmentation
techniques generating synthetic stressed speech utterances – which we consider
a realistic emotion similar to fear – in addition to contaminating audio signals
additively with realistic environmental noise present in real-life settings, trying to
mimic the conditions where Bindi would work.

However, several problems arise when the goal of a system is to work with
real-life data, as Bindi is expected to do. First, the difficulty of finding realistic
data, and second, the low confidence on the architectures developed if the data
used to train them are acted or synthetic. This situation leads to the need to
generate databases with real elicited emotions, which is highly challenging and
time-consuming. This is how the datasets of UC3M Audiovisual Stimuli [11.1] [11.2],
WEMAC [11] and WE-LIVE emerged, fully detailed in Chapter 3.

Particularly, working with strong negative emotion elicitation, such as that
evoked in WEMAC for fear detection in women in a laboratory environment, can
lead to ethical issues. Thus, many resources must be devoted to safeguarding the
welfare of the volunteers participating in the databases collection. This particular
problem is magnified when the target group of volunteers comprises women
who have suffered GBV. This is because the failures of the system have critical
consequences for them. Although the investment of resources to provide safety
and comfortability during the recording of our databases is considerable, we were
totally committed to the volunteers’ well-being, providing constant psychological
assistance as the probability of triggering their post-traumatic stress disorder is very
high. It should be noted that the development of subject-adaptation techniques is
critical for our GBV use case. Nevertheless, we consider the generation of these
databases to be a great contribution, where we handled with great care the ethical
issues and limitations, with the purpose of serving to pave the path for research on
technology to combat gender-based violence.

But before detecting the affective state in which a person is, it is necessary to
confirm that the speech within the audio signal recorded by Bindi belongs to that
user, and that is the reason of our work in the Speaker Recognition or Identification
field in Chapter 4, to detect the user’s voice and therefore identity from among all
the acoustic information present in the audio signal. In this regard, we took special
care in our investigation about hardware constraints that our Bindi devices had (see
Sec. 1.2.2). We addressed the SR task taking into account two sources of variability
that an audio recorded in a real-life setting could include: stress conditions and
environmental noise. Stress proved to affect negatively the performance of SR when
only used in the testing phase, and so we augmented the database with synthetically
stressed speech for the training of the ML models, which proved to improve the
performance. Therefore in the absence of real emotional stressed speech we can
augment the data to achieve data that resembles real stress and can help maintain

https://www.uc3m.es/instituto-estudios-genero/UC3M4Safety
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an acceptable recognition rate in SR systems. Likewise, the contamination of audio
signals with environmental noise worsens the SR rates, including for systems with
computational constrains such as Bindi. So we worked towards developing models
robust to such noise that would indeed fit our conditions.

In Chapter 5 we detailed the development of the Bindi system. We evaluated
the detection and classification of fear-related emotions from a multimodal and
multidisciplinary perspective, from Bindi 1.0 to Bindi 2.0. We validated the use of the
monomodal data pipelines and data fusion architectures combining physiological
signals and audio for detecting fear out of speech utterances by using WEMAC
and achieved a promising result of an overall fear classification accuracy of 63.61%
for a speaker-adapted subject-dependent approach. We also described in depth
the components and functioning the system – bracelet, pendant, app and server –,
and described the work done in the task stress detection from speech utterances.
The experimentation carried out in Chapter 5 serves as an initial multimodal
approach toward working with real elicited fear in women and its proper processing.
Bindi is a very complex system that requires a thorough balance of many aspects,
such as battery consumption, computational power, resource usage, and algorithm
performance. All of this work in fear emotion recognition is intended to pave the
way and shape the next version of Bindi: Bindi 3.0.

In Chapter 6 we give voice to those lines of research that have arisen along
the way while additionally investigating fear detection through speech with a
gender-based violence perspective. We detail the work carried out in the field of
affective acoustic events and scene analysis and their importance for the detection
of risk situations through the analysis of the acoustic context. Additionally the
brief work performed in the study of fatigue would be interesting to use to
analyse the differences between stress, fear, and fatigue and their effects on speech.
The preliminary work performed on the detection of GBV condition from speech
promisingly paves the way for future work with applications in psychological
therapy. And finally, and following another objective aligned with the social good,
we link climate change and gender violence.

Overall, this thesis explores the use of technology and artificial intelligence to
prevent and combat gender-based violence. We hope that we have lit the way for it
in the speech modality and that our experimentation, findings and conclusions can
help in future research. The ultimate goal of this work is to ignite the community’s
interest in developing solutions to the very challenging problem of GBV.

7.2 Future Work

Specifically in the line of the work carried out in the field of speaker identification
and emotions using the speech modality, the greater amount of realistic data
available due to the databases we recorded allows us to use more elaborated
deep learning architectures, e.g., to be used in the disentanglement of the
speaker’s identity and the emotional information in the future. We could use an
adversarial model that could disentangle these two branches of data into different
low-dimensional vectors (embeddings) to synchronously detect the speaker and
emotion together. Thereby, in every speech instance we could infer the identity of
the speaker as well as her emotion at the same time. This is what we intend to
work on after this thesis, using the databases collected throughout it: WEMAC and
WE-LIVE.
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In general terms, for the development of Bindi we also have to consider that
many women remain in a state of shock when assaulted or are victims of an
aggression, instead of producing fearful speech. We must take into account this
fact for further developments in the Bindi system, or by analyzing the occurrence of
silences in the audio, together with the other variables we have already explored.

Regarding the analysis of acoustic events and acoustic context within Bindi,
it would be crucial to include a module for the study of acoustic information,
with its own data processing and pipeline, and its fusion branch together with the
physiological and speech modalities in order to have a more complete and holistic
GBV risk situation detector. The detection of vocal bursts such as grunts, growls,
heavy-breathing, squeals or shrieks, it is also of special interest for our application,
as well as the detection of acoustic events such as hits, bumps or impacts, which
would likely denote that a dangerous situation is happening.

Additionally, statistically speaking, it is more likely that men, rather than
women, commit any form of social violence (e.g., intimate partner violence, assault,
rape, murder) [312]. Thus, distinguishing male voices under dominant emotions
such as anger with Bindi could denote a risk situation, as most aggression to women
are perpetrated by men.

On a different note, AI-based systems are gaining popularity in healthcare, but
are limited by “high requirements for accuracy, robustness, and explainability” [74].
AI in health research, a subfield of digital health, explores many human-centered
approaches. There are many recent advances in the audio domain, which it has
been so far understudied but it is also highly promising, with a particular focus
on speech data present state-of-the-art technologies. This study [74] presents “the
latest research on the automatic detection of diseases through audio signals” in a
review style, “from acute and chronic respiratory diseases via psychiatric disorders
to developmental and neurodegenerative disorders”. The analysis of emotions,
particularly fear, and the condition of gender-based violence discussed in this thesis,
could help health-oriented audio AI research, in particular with applications in
mental health care and psychotherapy.
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