
FLUCTUATIONS AND PATTERNS IN ULTRATHIN
FLUID FILMS

ENRIQUE RODRÍGUEZ FERNÁNDEZ

A dissertation submitted by in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in

Mathematical Engineering

Universidad Carlos III de Madrid

Advisor: Rodolfo Cuerno Rejado

Leganés, March 2022



This Thesis is distributed under license
“Creative Commons Atributtion, - Non Commercial - Non Derivatives”.



Agradecimientos

Finalizar la escritura de la memoria de esta tesis cierra simbólicamente un peŕıodo
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i



Agradecimientos Fluctuations and patterns in ultrathin fluid films

ii



Contents

Agradecimientos i

Introduction vi

1 Self-organization processes in thin fluid films 1
1.1 Basic surface characterization . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Disordered surfaces: Kinetic roughening . . . . . . . . . . . . . . . . 4

1.2.1 Anomalous scaling . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.2 Anisotropic scaling in two-dimensional surfaces . . . . . . . . 8
1.2.3 Multiscaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.4 Linear models . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2.5 Nonlinear models . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2.6 Universality classes in kinetic roughening . . . . . . . . . . . . 13

1.3 Ordered systems: pattern formation . . . . . . . . . . . . . . . . . . . 19
1.4 Self-organization processes in this thesis . . . . . . . . . . . . . . . . 22

2 Mathematical modeling of thin fluid films 25
2.1 Thin film equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2 Weakly nonlinear approximations . . . . . . . . . . . . . . . . . . . . 29

2.2.1 The Kuramoto-Sivashinsky equation . . . . . . . . . . . . . . 29
2.2.2 Thin film equations related to the KS equation . . . . . . . . 30

2.3 Ultrathin fluid films . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3.1 Disjoining pressure . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3.2 Stochastic thermal stress . . . . . . . . . . . . . . . . . . . . . 32
2.3.3 Ultrathin fluid film falling down a slope . . . . . . . . . . . . . 33

2.4 Magnetic effects in fluid films . . . . . . . . . . . . . . . . . . . . . . 34
2.4.1 Stress tensor in magnetizable fluids . . . . . . . . . . . . . . . 34
2.4.2 Thin ferrofluid film equations . . . . . . . . . . . . . . . . . . 36

iii



Agradecimientos Fluctuations and patterns in ultrathin fluid films

3 Analytical and numerical tools 39

3.1 Numerical method for weakly nonlinear models . . . . . . . . . . . . 39

3.1.1 Pseudospectral methods . . . . . . . . . . . . . . . . . . . . . 40

3.1.2 Burgers equation with conserved noise . . . . . . . . . . . . . 42

3.2 Numerical method for strongly nonlinear thin film equations . . . . . 42

3.3 Monte Carlo integration . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4 Numerical characterization of time series:
Scale-Dependent Lyapunov Exponent . . . . . . . . . . . . . . . . . . 45

3.4.1 Numerical implementation of the SDLE . . . . . . . . . . . . . 47

3.5 Dynamic Renormalization Group . . . . . . . . . . . . . . . . . . . . 47

3.5.1 DRG determination of cumulants . . . . . . . . . . . . . . . . 51

4 Gaussian statistics as an emergent symmetry of the stochastic scalar
Burgers equation 55

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1.1 The stochastic Burgers equation (non-conserved noise) . . . . 55

4.1.2 Symmetry emergence: KPZ vs Burgers . . . . . . . . . . . . . 56

4.2 Universality class of the stochastic Burgers equation . . . . . . . . . . 57

4.2.1 Scaling exponents . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2.2 Fluctuation statistics . . . . . . . . . . . . . . . . . . . . . . . 59

4.3 Exact linear approximation . . . . . . . . . . . . . . . . . . . . . . . 61

4.4 Symmetry discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.5 Symmetry emergence in other equations . . . . . . . . . . . . . . . . 64

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5 Non-KPZ fluctuations in the derivative of the KPZ equation 69

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.1.1 The stochastic Burgers equation (conserved noise) . . . . . . . 69

5.1.2 Universality class: KPZ vs Burgers . . . . . . . . . . . . . . . 69

5.2 Universality class of the derivative of the KPZ equation . . . . . . . . 71

5.2.1 Scaling exponents . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2.2 Fluctuation statistics . . . . . . . . . . . . . . . . . . . . . . . 72

5.3 Noisy Burgers as the derivative of KPZ . . . . . . . . . . . . . . . . . 77

5.4 Exact linear approximation . . . . . . . . . . . . . . . . . . . . . . . 79

5.5 Symmetry discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.6 Behavior in higher dimensions . . . . . . . . . . . . . . . . . . . . . . 80

5.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

iv



Agradecimientos Fluctuations and patterns in ultrathin fluid films

6 Transition between chaotic and stochastic universality subclasses 85
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.1.1 Universality subclasses in the stochastic KS equation . . . . . 85
6.1.2 KS equation with conserved noise as a physical model . . . . . 86

6.2 Universality class of the KS equation . . . . . . . . . . . . . . . . . . 89
6.2.1 Scaling exponents . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.2.2 Fluctuation statistics . . . . . . . . . . . . . . . . . . . . . . . 91

6.3 Chaotic-stochastic transition . . . . . . . . . . . . . . . . . . . . . . . 95
6.3.1 Conserved KS equation . . . . . . . . . . . . . . . . . . . . . . 96
6.3.2 KS-KPZ equation . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7 Inviscid KPZ and Burgers equations: novel universality classes 103
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
7.2 Kinetic roughening . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.2.1 Kinetic roughening of the KdV equation . . . . . . . . . . . . 105
7.2.2 Kinetic roughening of the inviscid Burgers and KPZ equations 109

7.3 Ising model and the inviscid KPZ universality class . . . . . . . . . . 115
7.3.1 System description . . . . . . . . . . . . . . . . . . . . . . . . 115
7.3.2 Ginzburg-Landau approach . . . . . . . . . . . . . . . . . . . 116
7.3.3 Metropolis algorithm . . . . . . . . . . . . . . . . . . . . . . . 125

7.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

8 Ordered pattern formation in untrathin ferrofluid films 129
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
8.2 Interfacial equations for thin ferrofluid films: state of the art . . . . . 131

8.2.1 SAK model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
8.2.2 Conroy-Matar model . . . . . . . . . . . . . . . . . . . . . . . 131

8.3 Ultrathin ferrofluid film equation . . . . . . . . . . . . . . . . . . . . 133
8.4 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
8.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

Conclusions and outlook 147

Appendix 150

Bibliography 153

v



Introduction Fluctuations and patterns in ultrathin fluid films

vi



Introduction

Self-organization processes, in which some form of collective behavior arises from
local interactions in a physical system, are promising mechanisms in the context of
manufacturing at ultra small scales, where processing techniques are technically chal-
lenging. In many cases, the approach is to induce self-organization or self-assembly
phenomena on the system surface —which indeed acquires an increased importance
at small scales because of the enhanced surface-to-volume ratio— as a result of which
a desired surface morphology is achieved, with different properties depending on its
intended application.

In this thesis, we consider two important examples of self-organization processes
which take place at the surfaces of many small non-equilibrium systems. One of them,
kinetic roughening, reflects the dominance of fluctuations in the surface morphology,
with strong correlations which are quite similar to those of an equilibrium system at
a continuous phase transition. The second, opposite self-organization process is the
formation of ordered patterns. In the thesis, we will deal with the control of the level
and type of various surface properties, like roughness and other, and the conditions
for the emergence of a varying degree of spatial order in patterns via spontaneous
physical processes.

We work in the context of ultrathin fluid films on solid substrates, focusing on the
role of the physical effects that become relevant at these very small scales —but not
so much at larger scales—, while other loose their relevance. One of these aspects is
the thermal noise. The other one is the interaction between the fluid surface and the
substrate, that play a key role in the two reference physical systems we are going to
study: an ultrathin fluid film falling down an inclined plane —where the dynamics of
the fluid surface follows the celebrated Kuramoto-Sivashinsky (KS) equation— and
a ferrofluid ultrathin film under a magnetic field.

Both kinetic roughening and pattern formation usually exhibit some kinds of
universal behavior. The universality classes in the kinetic roughening processes that
occur in several approximations of the KS equation are widely studied in this the-
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sis. These universality classes are characterized by both how the fluctuations scale
with space and time and how these fluctuations are statistically distributed. We
will deal with the emergence of symmetries in the fluctuation distributions that are
unexpected considering the bare microscopic interactions; the non-trivial relation
between the universality class of closely related models; with a novel physical mech-
anism that induces the transition between different universality (sub)classes as the
system temperature and hence the dominant nature of the fluctuations (chaotic or
stochastic) changes, and finally with some anomalous kinetic roughening processes in
the limit of vanishing viscosity and surface tension. Finally, on the other hand, the
formation of highly ordered patterns is assessed in the context of ultrathin ferrofluid
films under a magnetic field, due to the spontaneous physical break-up of the film
into drops. The conditions under which higher levels of order are achieved will be
described. This is intended as a proof-of-concept, previous step that could encourage
experiments being performed for this type of systems.

The thesis is divided into eight chapters; Chapters 1 to 3 introduce the phenom-
ena, models and tools which will be considered in Chapters 4 to 8, each one with its
own conclusions section. In the final chapter, the main conclusions are summarized
from a unified perspective, and future research lines are also discussed.

We next explain briefly the content of each one of the thesis chapters:

• In Chapter 1 the self-organization processes which are assessed in several thin
film contexts throughout this thesis are discussed. On the one hand, the spon-
taneous evolution towards pattern formation, focusing on the level of order
achieved, and on the other hand the evolution towards highly disordered and
scale invariant systems, namely, kinetic roughening.

• In Chapter 2, the derivation of the Kuramoto-Sivashinsky (KS) equation in the
context of a thin fluid film falling down an inclined slope is discussed in detail.
Further considerations to be taken into account when the fluid is not thin but
ultrathin are made. Several equations related with particular cases of the fluid
film falling down an inclined slope context, which will be assessed elsewhere in
the thesis, are also presented.

• In Chapter 3, the main numerical and analytical tools used throughout this
thesis are presented. On the one hand, numerical methods for the integration
of the different thin film models. Weakly nonlinear equations are integrated by
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means of a pseudo-spectral method, while strongly nonlinear models are inte-
grated in real space using semi implicit finite-difference methods. Analytical
methods based on dynamic renormalization group (DRG) for the study of the
asymptotic behavior of critical behavior are also discussed.

• In Chapter 4, the universality class of kinetic roughening for the Burgers equa-
tion with non conserved noise is assessed, focusing on the fluctuation statistics
which result to be Gaussian, hence restoring the up-down symmetry which was
not present in the nonlinear term and allowing for exact linear approximations
in terms of the universality class.

• In Chapter 5, the universality class of the Burgers equation with conserved
noise is assessed and put in contrast with the universality class of the KPZ
equation. It is shown how although the relation between the scaling exponents
from both equations is straightforward, this is not the case for the fluctuation
statistics.

• In Chapter 6, a novel transition between two different universality subclasses is
assessed in the context of an ultrathin fluid film falling down an inclined slope
under thermal fluctuations, with the temperature being the parameter that
governs that transition. A parallel transition between chaotic and stochastic
nature of the fluctuations, which exhibit different probability distributions on
each universality subclass, is demonstrated.

• In Chapter 7, the Burgers and KPZ equations are studied in the zero viscosity
limit. A novel universality class with anomalous scaling behavior is described
for the inviscid KPZ case in 1D. A discrete model based on the evolution of an
Ising system that seems to belong to the same universality class as the inviscid
KPZ equation is also presented.

• In Chapter 8, the formation of patterns in ultrathin ferrofluid films is assessed,
focusing on the role of the interaction between the fluid and the substrate. The
conditions for which the highest level of order is achieved are described.
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Chapter 1

Self-organization processes in thin
fluid films

Surface dynamics has attracted the interest of physicist and engineers during the last
decades. Some properties of materials, like heat and mass transport, or electronic
and optical properties, are influenced by the morphology of their physical surface
at small scales. In this context, one important context within surface physics is the
physics of thin fluid films.

Novel material manipulation and characterization techniques have allowed the
control of fluid dynamics at the micro and nano scales; this has been the origin
of microfluidics [4] and nanofluidics [5]. These new disciplines have raised high
expectations due to the wide range of potential applications, e.g. to biomedicine,
energy, the environment, electronics, photonics, and drug delivery systems [6, 7].
These new application areas require novel physics-based approaches for engineering
and fabrication that go beyond the traditional methods. Self-organization processes
(complex behavior of surface dynamics in which the material self-organizes itself
to achieve e.g. a high level of spatial order, or else self-affine scale-free disordered
configurations) are promising as new mechanisms for the manufacturing of these
microscopic and nanoscopic systems.

Fluid mechanics is a field in which many self-organization phenomena can be
found [7]. In this thesis, two opposite behaviors are going to be studied in the frame
of the dynamics of ultrathin fluid films: self-organization towards high spatial order
(formation of ordered patterns), which appears in fluid systems like convection rolls
and ferrofluids, and self-organization towards high spatiotemporal disorder (kinetic
roughening), which occurs in several fluid systems due to e.g. turbulence.

Throughout this thesis we will deepen the study of several thin fluid film sys-
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Chapter 1 Fluctuations and patterns in ultrathin fluid films

Figure 1.1: Graphical representation of a random surface h(x, y, t) where the spatial domain
is a [0, L]× [0, L] substrate.

tems at very small scales, where the physical interactions between the fluid and the
substrate and the fluctuations due to thermal effects, both of them being negligible
at larger scales, become relevant and will play a conspicuous role in the different
self-organization processes assessed.

In this Chapter, the main tools used for the characterization of the level or
order and disorder of thin fluid film surfaces are presented. A detailed study of the
magnitude, scaling behavior in space and time, and correlations of the fluctuations
will be necessary in the full assessment of disordered systems, which we will classify
into different universality classes. On the other hand, the behavior of the surface
field in Fourier space will characterize the level of order achieved in the formation of
patterns. Finally, a general view of the different self-organization processes that we
will study in the different chapters of the thesis will be also presented.

1.1 Basic surface characterization

Henceforth 〈·〉 will denote an average either over initial conditions (for deterministic
processes) or over noise realizations (for stochastic processes). The main observables
which are going to be used in the characterization of surface morphologies from fluid

2
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films, h(x, y) as depicted in Fig. 1.1 in this thesis are [8]:

• The surface roughness: the standard deviation of the height values of a fluctu-
ating surface will be used as a basic measure of the level of disorder,

W (L, t) =

〈√
1

Ld

∫
Ω

(h(~x, t)− h̄(t))2d~x

〉
, (1.1)

where h̄ is the mean value of h in the d-dimensional domain Ω = [0, L]d with
lateral size L. In the example of Fig. 1.1, d = 2. For discrete systems, it takes
the form

W (L, t) =

〈√√√√ 1

Nd

N∑
i=1

(h(xi, t)− h̄(t))2

〉
, (1.2)

where N = L/δx, with δx being the lattice spacing.

• The height structure factor, also known as Power Spectral Density (PSD),
allows one to measure the level of (dis)order of the system by determining the
dominant spatial scales in the Fourier decomposition of the topography. It is
defined as

S(~k, t) = 〈ĥ(~k, t)ĥ(−~k, t)〉 = 〈|ĥ(~k, t)|2〉, (1.3)

where ĥ(~k, t) is the Foufier transform of h(~x, t), defined as

ĥ(~k, t) =

∫
Rn
h(~x, t)ei

~k·~xdx1...dxn. (1.4)

For finite systems, S(~k, t) is analytically related to the roughness as [9]

W 2(L, t) =
1

Ld

∑
~k 6=0

S(~k, t). (1.5)

• The height-height correlation function is an alternative characterization of the
field correlations in real space,

G(~l, t) = 〈[h(~x+~l, t)− h(~x, t)]2〉. (1.6)

It is analytically related to the structure factor as [8]

G(~l, t) =
1

Ld

∑
~k

S(~k, t)[1− cos(~k ·~l)]. (1.7)

3
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x

h
(x

)

Figure 1.2: Random walk process seen for two different window sizes. The statistical
indistinguishability of the surface shape in both cases illustrates the scale invariance.

1.2 Disordered surfaces: Kinetic roughening

In this section we discuss the limit case in which the formation of totally disordered
surface morphologies occurs. In such a case, the hydrodynamic (large-scale) behav-
ior of the surface is free from spatial and temporal typical scales (scale invariance).
A visual example of a surface in which there is such scale invariance is depicted in
Figure 1.2, where a morphology corresponding to a random walk is plotted. We can
appreciate how the different scales are not distinguishable, i.e. there is no charac-
teristic length. The concept of scale invariance emerges from the theory of phase
transitions in statistical physics. The lack of a characteristic length scale at the
critical temperature Tc in the Ising model, where the local imanation behaves as h
described here, implies that one cannot find a typical size for the spin clusters [10].

Kinetic roughening [8, 11] is that form of surface growth in which the surface
roughness envolves in the absence of spatial and temporal scales. In kinetic rough-
ening processes, the surface roughness increases with time up to a saturation value,
limited by the system size, according to the following laws:

• The surface roughness grows as a power of time with the growth exponent β,

W ∼ tβ, W < Wsat. (1.8)

• For finite systems, the surface roughness saturates to a value Wsat which grows
as a power of system lateral size L, characterized by the roughness exponent
α,

Wsat ∼ Lα. (1.9)

4
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Figure 1.3: Time evolution of the field roughness (left column) and the structure factor
(right column) in a kinetic roughening process (Edwards-Wilkinson equation (1.28), inte-
grated by means of the pseudospectral method described in Chapter 3). Both raw data
(top row) and collapsed data (bottom row) are shown for each case, using α = 1/2 and
z = 2 as scaling exponents.

The roughness exponent is related to the fractal dimension Df of the surface as
α = d+1−Df [12]. From this point of view, the interface is a self-affine fractal
(i.e. the whole interface has the same shape as one of its parts, as illustrated
in Fig. 1.2).

• The time needed to achieve saturation increases as a power of the system lateral
size L, characterized by the kinetic exponent z:

tsat ∼ Lz. (1.10)

As the saturation will be reached at a time related with the saturation roughness
Wsat,

Wsat ∼ Lα, Wsat ∼ tβsat ∼ (Lz)β , (1.11)

then α = βz holds for any kinetic roughening process [8]. As a consequence, at most
two of the three scaling exponents are independent. Additionally, scaling relations
can hold for certain cases and will be described in detail in Chapter 3.

It is possible to define a scaling function fW that summarizes the laws (1.8)-(1.10)

5
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into the single expression

W (L, t) ∼ LαfW

(
t

Lz

)
, (1.12)

namely,

fW (u) ∼
{
uβ if u� 1,
Constant if u� 1

. (1.13)

This type of scaling behavior is called Family-Vicsek [8]. The evolution of the surface
roughness according to this scaling behavior is shown in Figure 1.3 for a kinetic
roughening process (Edwards Wilkinson equation (1.28) below). In Fourier space,
the behavior of the structure factor is

S(k, t) ∼
{
t(2α+d)/z if k−1 � t1/z

k−(2α+d) if k−1 � t1/z.
(1.14)

There is also a scaling function fs for the evolution of the structure factor in kinetic
roughening processes, i.e.

S(k, t) ∼ fS(|k|zt)
|k|2α+d

, (1.15)

with the following behavior [11]

fS(u) ∼
{
u(2α+d)/z if u� 1
Cnst. if u� 1.

(1.16)

An example of this behavior is also shown in Figure 1.3, where both the roughness
and the structure factor are depicted for several times and collapsed onto the fW
and gS functions from Equations (1.12) and (1.15).

We can find examples of kinetic roughening behavior in the evolution of the sur-
faces of many experimental thin films. In Figure 1.4 we show a surface map in which
kinetic roughening occurs in a thin silica film displaying frozen capillary waves. In
this case the kinetic roughening behavior correspond to the same scaling as exhibited
by the linear Edwards-Wilkinson model Eq. (1.28) for a two-dimensional substrate
[13]. In the next section we show how the scaling exponents can be analytically
determined for simple linear models like this one.

1.2.1 Anomalous scaling

There are different scenarios in which kinetic roughening occurs beyond that of
Family-Vicksek, which are termed anomaluos scaling and are described below. Specif-
ically, we consider the possibility that the roughness exponent αs measured in Fourier
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Chapter 1 Fluctuations and patterns in ultrathin fluid films

Figure 1.4: Atomic Force Microscopy (AFM) top view of an annealed silica surface mor-
phology acquired in open air (left). The roughness scaling with the window size G2 ∼ r2α

(named W 2 in the plot) is also depicted for two different types of AFM contact modes
(right), where the small values for the slopes fit well αEW = 0, i.e. G ∼ log r. Adapted
from [13].

space from S(k, t) ∼ k−(2αs+d) differs from the exponent α for which the roughness
W diverges with the total size of the system (intrinsic anomalous scaling) and that
in which αs differs from the roughness exponent αloc measured in real space from
G(l, t) (super-roughness). Additionally, a scenario for some facetted surfaces occurs
when both intrinsic anomalous scaling and super-roughness take place at the same
time.

Intrinsic anomalous scaling

In this case, the local scaling (αs = αloc < 1) differs from the global scaling (α). The
structure factor scales in an anomalous way as [14]

S(k, t) ∼ |k|−(2α+d)fS′(|k|zt), (1.17)

where fS′ behaves as

fS′(u) ∼
{
u2α+d if u� 1
u2(α−αs) if u� 1,

(1.18)

7



Chapter 1 Fluctuations and patterns in ultrathin fluid films

Super-roughness

In cases for which αs > 1, a distinction between αs and the local roughness exponent
αloc, which governs the local behavior of the height-height correlation function in real
space, becomes necessary. This happens as the local exponent is bounded αloc ≤ 1
[14], hence αloc = 1 when αs > 1. In this case it is only the height-height correlation
function which scales in an anomalous way, as [14]

G(l, t) = tβfA

(
l

ξz

)
, (1.19)

where ξ ∼ t1/z is the correlation length. The scaling function fA scales as

fA(u) ∼
{
u2αloc = u2 if u� 1
Cnst. if u� 1,

(1.20)

For instance, the linear LMBE equation described in the next subsection exhibits
super-rough behavior for d = 1, as αLMBE = 3/2 > 1 governs the local behavior in
Fourier space, see Eq. (1.2.4).

Facetted systems

Both effects (αs 6= αloc due to αs > 1 as in super-roughness and α 6= αs as in intrinsic
anomalous scaling) do occur in this type of scaling. The behavior of the structure
factor for a system belonging to this class of kinetic roughening is shown in Fig. 1.5,
in which the behavior of S(k, t) is depicted for the so-called Sneppen model A of
self-organized depinning. Data collapse is achieved using Eq. 1.17.

1.2.2 Anisotropic scaling in two-dimensional surfaces

In kinetic roughening processes for two-dimensional surfaces, the scaling behavior can
be anisotropic when there is no x ↔ y symmetry, hence different exponent values
are exhibited along the x and y substrate directions. While the growth exponent β
must be the same in both directions [15], different values for α and z can be observed
in the x and y directions, hence the relation

β =
αx
zx

=
αy
zy

(1.21)

holds. The αx and αy exponents can be obtained from different observables as the
structure factor Sx and Sy defined as

S(kx, 0, t� 1) ∼ k−(2αx+1+ζ)
x , S(0, ky, t� 1) ∼ k−(2αy+1+1/ζ)

y , (1.22)

8



Chapter 1 Fluctuations and patterns in ultrathin fluid films

Figure 1.5: Bare (left) and collapsed (right) structure factor S(k, t) for an interface dep-
pining process [14]. Notice the presence of the two different slopes in the collapsed data
(2α + d and 2(α − αs)) and the systemic vertical displacement of S(k, t) for large values
of k which did not occur in the Family-Vicsek scaling (see e.g. Fig. 1.3). Here α = z = 1,
αs = 1.35, hence αloc = 1.

where ζ = αx/αy, and the local roughness (height-height correlation) functions

Gx(l, t) = 〈[h(x+ l, y, t)− h(x, y, t)]2〉 ∼ l2αx , (1.23)

Gy(l, t) = 〈[h(x, y + l, t)− h(x, y, t)]2〉 ∼ l2αy . (1.24)

An example of this behavior will be assessed in Chapter 4 in the study of the
universality class of the Burgers equation in higher spatial dimension (e.g. for the
anisotropic Hwa-Kardar equation).

1.2.3 Multiscaling

Another aspect of some kinetic roughening processes is that higher moments of the
height-height correlation function, namely

Gq(x, t) = 〈[h(x+ l, t)− h(x, t)]q〉1/q (1.25)

for different values of q, may not scale with the same roughness exponent α. In
that cases, the morphologies are said to exhibit multi-affinity [8]. This definition
generalizes Eq. 1.6 so that G(x, t) = G2

2(x, t). An illustrative example of multi-affine
surface is shown in Fig. 1.6, where the correlation function Gq(x) is seen to scale as
xαq , where αq take different values for different values of q.

9
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Figure 1.6: Multiscaling behavior of a deterministic multi-affine profile (inset) generated
as a deterministic fractal from a seed [0, b, 0, 0.5, 1] which is rescaled for each subinterval on
each iteration (here 8 iterations have been computed using b = 0.1), see [8]. Dashed straight

lines are guides to the eye that represent the exact value of the slope αq = log((bq+0.5q)/2)
q log(1/4) .
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Chapter 1 Fluctuations and patterns in ultrathin fluid films

1.2.4 Linear models

In this section, we illustrate the kinetic roughening behavior of some linear models
that will play an important role throughout this thesis. For these models [11, 8],
exact analytical results can be easily obtained. The most simple model,

∂th = η(x, t), (1.26)

describes a random deposition process (e.g. random deposition of atoms). Here, η is
a white noise term with correlations as

〈η(~x, t)〉 = 0, 〈η(~x1, t1)η(~x2, t2)〉 = 2Dδd(~x1 − ~x2)δ(t1 − t2), (1.27)

For a surface described by Eq. 1.26, the roughness increases as W ∼ t1/2, hence
β = 1/2. Moreover, the height values are uncorrelated and the surface does not
achieve a saturation value, hence the exponents α and z are not well-defined in this
case.

Beyond this simple model, we have also some conspicuous models as the Edwards-
Wilkinson (EW) equation,

∂th = ∇2h+ η(x, t), (1.28)

the Linear Molecular Beam Epitaxy (LMBE) equation,

∂th = −∇4h+ η(~x, t), (1.29)

and, in general, stochastic equations of the form,

∂th = −(−∇2)z/2h+ η(~x, t). (1.30)

The scaling exponents can be determined analytically for any dimension of the sub-
strate. In Fourier space Eq. (1.30) becomes

∂tĥ(~k, t) = −|~k|zĥ(~k, t) + η(~k, t), (1.31)

which is also well defined for arbitrary values of z. When z takes either odd or frac-
tional values, Eq. (1.31) becomes nonlocal in space, involving e.g. Hilbert transforms
for odd values of z. One example can be found in the case of z = 1, which has been
employed in the modeling of diffusion-limited erosion (DLE) [16, 11],

∂th = −∂xH[h] + η, (1.32)

11



Chapter 1 Fluctuations and patterns in ultrathin fluid films

where H[·] is the so-called Hilbert transformed, defined as

H[f ](x) =
1

π

∫ ∞
−∞

f(s)

x− s
ds, (1.33)

whose Fourier transform is

H[f ](k) = −i · sgn(k)f(k). (1.34)

Equation (1.31) can be expressed in variational form as

∂tĥ(~k, t) = −δH
δĥ

+ η(~k, t), H = −
∑
k

|k|zĥ(~k, t)ĥ(−~k, t). (1.35)

If we rescale space and time coordinates by an arbitrary factor b > 1,

x̃ = bx, t̃ = bzt, h̃ = b−αh(x̃, t̃), (1.36)

using that δd(b~x) = b−dδd(~x), the EW (z = 2) and LMBE (z = 4) equations become,
dropping the primes,

∂th = −bz−2(−∇2)z/2h+ b−d/2+z/2−αη, (1.37)

and
∂th = −bz−4(−∇2)z/2h+ b−d/2+z/2−αη, (1.38)

respectively, with ∇2 being the Laplacian operator. Exploiting the idea of scale
invariance, we request that the rescaled equation of motion remains invariant under
the transformation (1.36), which leads to the values of the critical exponents,

zEW = 2, 2αEW + d = zEW ⇒ αEW =
2− d

2
, (1.39)

for the EW equation and

zLMBE = 4, αLMBE =
4− d

2
, (1.40)

for the LMBE equation.
The evolution of the structure factor in both cases (and in general, for any value

of z) can be obtained analytically as

S(~k, t) = 〈ĥ(~k, t)ĥ(−~k, t)〉 =

=

∫ t

0

∫ t

0

e−|
~k|z(t−s1)e−|

~k|z(t−s2)〈η(~k, s)η(−~k, s)〉ds1ds2 = D
1− e−2|k|zt

|~k|z
, (1.41)

with the z = 2 case being depicted as an example in the top left panel of Fig. 1.3
from numerical simulations.
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1.2.5 Nonlinear models

Kardar-Parisi-Zhang equation

The Kardar-Parisi-Zhang (KPZ) equation, which describes the space-time evolution
of a scalar field h as

∂th = ν∇2h+
λ

2
(∇h)2 + η, (1.42)

where ν,D > 0 and λ are parameters and η is non-conserved, zero-mean, uncor-
related Gaussian noise, is a conspicuous example of a nonlinear kinetic roughening
system as well as a paradigmatic representative of a universality class. It has been
proposed [17] for the modeling of many non-equilibrium phenomena —randomly
stirred fluids, polymer dynamics in disordered media, and surface growth— and has
been recently found to describe the universal behavior of a surprisingly wide range
of systems [18], like bacterial range expansion [19], diffusion-limited growth [20],
turbulent liquid crystals [21], classical non-linear oscillators [22], stochastic hydrody-
namics [23], reaction-limited growth [24], random geometry [25], superfluid exciton
polaritons [26], or incompressible polar active fluids [27].

Nonlinear MBE equation

Another conspicuous example of nonlinear equation with kinetic roughening behavior
is a conserved-dynamics generalization of the KPZ equation,

∂th = −∇2

[
ν∇2h+

λ

2
(∇h)2

]
+ η. (1.43)

This equation is known as the nonlinear molecular-beam epitaxy (NMBE) equation
as it has been found to describe the kinetic roughening behavior in the growth of
epitaxial thin films [28].

1.2.6 Universality classes in kinetic roughening

Different systems in which kinetic roughening occurs with the same scaling exponent
values for the various dimension have been traditionally considered to be in the
same universality class. More recently, not only the scaling exponents but also
the statistical distribution of the surface fluctuations are being considered for the
characterization of universality classes. For instance, the Gaussian distribution holds
for any linear model like the EW and the LMBE equations (see Table 1.1), as the
Hamiltonian (see Eq. (1.35)) H is quadratic in h and the probability density function
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Chapter 1 Fluctuations and patterns in ultrathin fluid films

of the fluctuations behaves as P (h) ∝ e−H[h] [29]. However, this is not in general
the case for nonlinear models. Some relevant universality classes, as well as their
representative equations for 1-D spatially extended systems, the value of the scaling
exponents, and the fluctuation statistics probability distribution function (PDF) are
presented in Table 1.1.

Class Reference equation α β z αloc αs Fluctuations

EW ∂th = ν∂2
xh+ η 1/2 1/4 2 1/2 1/2 Gaussian

LMBE ∂th = −κ∂4
xh+ η 3/2 3/8 4 1 1 Gaussian

KPZ ∂th = ν∂2
xh+ λ

2
(∂xh)2 + η 1/2 1/3 3/2 1/2 1/2 Tracy-Widom

NMBE ∂th = −ν∂4
xh+ λ

2
∂2
x(∂xh)2 + η 1.0 0.3 3.0 1.0 1.0 Non-symmetric

Table 1.1: Characterization in terms of scaling exponents and fluctuation statistics of
some of the main universality classes for kinetic roughening processes in 1D substrates
[8, 11, 29, 30]. Notice that the exponent values for the NLMBE equation are not exact.

KPZ universality class

In spite of its nonlinear behavior, the scaling exponents of the KPZ equation are
known analytically for d = 1 [18]. For a periodic KPZ system, the fluctuations
within the nonlinear growth regime follow distributions of the celebrated Tracy-
Widom (TW) family [31, 32, 18, 33, 34], which reflect the lack of up-down symmetry
of the equation under h ↔ −h, see the non symmetric TW PDF in Figure 1.7 and
notice how the TW-distributed morphologies are not symmetric while Gaussian-
distributed ones are.

Beyond the one point statistics, the covariance function

C(x, t) = 〈h(x0, t)h(x0 + x, t)〉 − 〈h̄(t)〉2, (1.44)

is also known to display universal behavior scaling as C ∼ t2βA(x/tz), with A(y) ∼
cst.− y2α for y � 1 and 0 for y � 1 (see Fig. 1.8). The scaling function A(s) is the
covariance of the so-called Airy1 process [35, 18, 33].

The scaling exponents and the fluctuation statistics have been also numerically
determined for two-dimensional substrates. For higher dimensions, universal expo-
nents and fluctuation PDF are expected up to the critical dimension, which still
remains unknown [8].
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Chapter 1 Fluctuations and patterns in ultrathin fluid films

Figure 1.7: Gaussian vs Tracy-Widom distribution PDF shapes taken from [36] (middle
panel). Gaussian and TW-distributed morphologies [taken from numerical simulations of
the EW (left panel) and KPZ (right panel) equations in the growth regime] and their up-
down mirror reflections are also depicted on the left and right panels, respectively, in order
to illustrate the presence and lack of up-down symmetry.
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Figure 1.8: Collapse of the two-point correlation function C(x, t) at different times de-
scribed by the KPZ Eq. (1.42) for L = 256, δt = 10−2, ν = D = 1, λ = 10. Inset shows
the uncollapsed data. The solid line shows the exact covariance of the Airy1 process [35].
Arrows show time increase, with t doubling for each line, from t0 = 1.
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Chapter 1 Fluctuations and patterns in ultrathin fluid films

Figure 1.9: Interfaces between the different phases of turbulent liquid crystals for exper-
iments carried out by Takeuchi et al. [39]. The kinetic roughening behavior is in the
KPZ universality class. Left and right panels show circular and flat geometrical conditions
respectively, corresponding to two different subclasses of the KPZ universality class.

Independence between scaling exponents and fluctuation statistics

We could wonder if kinetic roughening systems with the same values for the scaling
exponents always display the same fluctuation statistics, or vice versa. The answer is
negative both ways. Systems with the same fluctuation statistics can present different
values for the scaling exponents: one trivial example can be found in linear models
— which always exhibit Gaussian fluctuations — with different values of the scaling
exponents, like the EW and the LMBE equations. Other nontrivial examples can
also be found in the literature, e.g. the same fluctuation PDF occurs under different
values of the scaling exponents in the KPZ equation and in some generalizations
of the Kuramoto-Sivashinsky equation in 2D described in [37]. On the other hand,
systems with the same values of the scaling exponents and different values of the
fluctuation statistics can also be found; this is the case of the KPZ equation and a
linear approximation (proxy) based on the linear model proposed in [38],

∂tĥ = −|k|3/2ĥ+ η, 〈η(k, t)η(k′, t′)〉 ∝ δk+k′|t− t′|2/3, (1.45)

which exhibits the same scaling exponents as the 1D KPZ equation but different
fluctuation PDF (which is Gaussian, as Eq. (1.45) is linear).

Universality subclasses

Different geometries for the spatial domain can result into different fluctuation be-
havior for the same system. This occurs in the KPZ case, where fluctuations in the
nonlinear growth regime follow different distributions within the TW family, while
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Figure 1.10: Tracy-Widom (GOE and GUE) as well as Baik-Reins F0 distribution PDFs
(solid lines) compared with numerical values from simulations of the KPZ equation, taken
from [18].

the scaling exponents are the same for different domain geometries. Not-enlarging
and enlarging spatial domains (e.g. in flat and circular geometries, respectively, see
Figure 1.9) result into TW-GOE and TW-GUE distributions (see Fig. 1.10), which
are the distributions for the largest eigenvalue of random matrices in the Gaussian
Orthogonal Ensemble (GOE) and the Gaussian Unitary Ensemble (GUE), respec-
tively. These systems with different fluctuation PDF but same scaling exponents can
be considered as members of different universality subclasses [21, 18].

Fluctuations after saturation to steady state

In the case of the KPZ equation in 1D spatial domains, we can define different
fluctuation fields as

X(x,∆t, t0) =
∆h−∆h

(Γ∆t)β
, (1.46)

where ∆h(x,∆t, t0) = h(x, t0 + ∆t) − h(x, t0), bar denotes space average, β is the
growth scaling exponent, Γ is a normalization constant [32], and ∆t � 1. In this
way, we can distinguish the fluctuation behavior in different time regimes. This
distinction in KPZ leads to different statistical distributions of X(x,∆t, t0) before
(t0 = 0,∆t � tsat) and after (t0 > tsat) saturation. While they are characterized
by the TW-GOE PDF before saturation, they follow the Baik-Reins (BR) PDF
after saturation [31, 32, 18, 33] (see Fig. 1.10). It is unclear if this special behavior
after saturation does also occur in other systems. The bare fluctuations at steady
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Figure 1.11: Two-point correlation function ∆G′ = G′(ξ,∆t, t0) − G′(0,∆t, t0) from nu-
merical simulations of KPZ Eq. (1.42) for L = 210, δt = 5 · 10−3, δx = 1, ν = D = 1,
λ = 6. Different sets of data, increasing from top to bottom, correspond to different values
of ∆t/t0 (0.001, 0.008, and 0.06).The black dash-dotted line is the stationary KPZ correla-
tion g(ξ)−g(0), and the green dotted line is the Airy1 correlation, as in [32]. Color evolves
from blue to red for increasing t0. The number of realizations is 102.

state (for t > tsat, ∆t = 0) happen to be Gaussian in this case as a result of the
fluctuation-dissipation relation by which the nonlinear term does not influence the
corresponding stationary solution of the Fokker-Planck equation governing the field
PDF, which becomes a Gaussian, equilibrium-like distribution, determined by the
linear and the noise terms [40, 11].

Not only the correlations of the fluctuations at steady state but also the two-time
two-point correlations for h after saturation exhibit a characteristic behavior in the
KPZ equation. The correlations defined as

G(l,∆t, t0) = 〈(δh(x+ l, t0 + ∆t)− δh(x, t0))2〉, δh = h− 〈h〉 (1.47)

behave, for large t0 and ∆t, as

G ′(ξ,∆t, t0) ≡ t−1/zG(ξ,∆t, t0) ' g(ξ), (1.48)

with ξ = l/t1/z and g(ξ) the exact solution for the rescaled stationary KPZ correlation
[41, 42, 32]. This is indeed the behavior found in Fig. 1.11. This behavior has been
previously assessed in [32] both for a discrete model and for liquid crystal experiments
in the 1D KPZ universality class. In Fig. 1.11 we provide the same results for direct
simulations of the continuous equation.
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Figure 1.12: Dispersion relation dependence on wavenumber k for type II (left panel) and
type I (center and right panels) instabilities.

The role of symmetries in the universality classes

In the case of the KPZ equation, the universal non-zero skewness of its PDF is
interpreted [11] as reflecting a privileged direction for fluctuations in h (e.g., a specific
growth direction for the surface of a thin film [8, 29]), as could be guessed by the lack
of up-down symmetry of the KPZ equation under the transformation h ↔ −h [11].
This conjecture is reinforced by the fact that the sign of the fluctuation skewness
is determined by the sign of the nonlinear term, hence the KPZ profiles in the long
time limit (but prior to saturation to steady state) can be expressed as

h(t) ' v∞t+ sign(λ)(Γt)βχ, (1.49)

where v∞ is a constant and χ is a TW-distributed random variable.
The NMBE equation also lacks the up-down symmetry [8, 11, 29] and similarly

displays non-zero skewness fluctuations, even if its PDF does not belong to the TW
family [30].

1.3 Ordered systems: pattern formation

Under suitable conditions, the surfaces of thin fluid films can present spatial patterns.
Here we will see how the degree of order of these patterns can be easily described in
Fourier space. If a surface profile h has some degree of spatial order with a predom-
inant length scale λ, the structure factor will present a prominent peak at the mode
with wavenumber k = 2π/λ. The formation of this pattern in linear partial differen-
tial equations of the form ∂tĥ = F (k)ĥ in Fourier space, for which the solutions take
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the form ĥ(k, t) = ĥ(k, 0)eF (k)t, can be described in terms of the linear dispersion
relation ω(k), which equals the real part of F (k). Since in this case the amplitude of
the Fourier modes envolves as S(k, t) ∼ e2ω(k)t, the functional dependence of ω with
k (which usually takes a polynomial form within a large lengthscale approximation)
leads to the following scenarios [43]:

1. ω(k) < 0 ∀k: stable flat solution. The amplitude of all Fourier modes of the
solution will decrease with time, leading to a flat surface at t→∞.

2. ω(k) > 0 ∀k < k∗ and ω(k) < 0 ∀k > k∗ (see the left panel in Figure
1.12): disordered pattern formation (type-II instability [44]). The growth of
Fourier modes h(k), k ∈ [0, k∗] leads to the growth of large wavelength pertur-
bations λ ∈ [2π/k∗,∞), resulting into the formation of disordered patterns for
sufficiently large systems.

3. ω(k) > 0 ∀k ∈ [k∗1, k
∗
2] and ω(k) < 0 k 6∈ [k∗1, k

∗
2] (see the center and right

panels in Figure 1.12): ordered pattern formation (type I instability in [44]).
The growth of a narrow band of Fourier modes is equivalent to the growth of a
narrow band of wavelengths λ ∈ [2π/k∗1, 2π/k

∗
2], leading to an ordered pattern

(the narrower the band, the more ordered the pattern).

This behavior is analogous to Landau’s theory of phase transitions, with type I
and type II instabilities being analogous to first and second order phase transitions,
respectively [45].

As a paradigmatic example, both of type I and type II instabilities, can be found
in the stationary solutions of the damped Kuramoto-Sivashinsky (KS) equation

∂th = −δh−∇2h−∇4h+ (∂xh)2, (1.50)

where δ is the damping factor. Here the dispersion relation takes the form

ω(k) = −δ + k2 − k4, (1.51)

hence both type (I) and type (II) instabilities can be found for δ = 0 and 0 < δ < 1/4,
respectively. A representative pattern for each case is shown in Figure 1.13, where
the presence of order and disorder is easily appreciated for suitable values of δ.

Experimental examples of ordered and disordered patterns in thin fluid films can
be found for instance in drop formation. In Figure 1.14 two experimental patterns
of drops are depicted. Drop formation by so-called spinodal dewetting (see Chapter
2) usually leads to the formation of a disordered pattern [46], while drop formation
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Figure 1.13: Stationary surface morphologies for the damped Kuramoto-Sivashinsky Eq.
(1.50) (top view) for δ = 0 (left) and δ = 0.24 (right), leading to a disordered and ordered
patterns respectively. Insets represent a color map for the structure factor in each case.
Simulations have been performed using the pseudospectral method described in Chapter
3, using δx = 1 with δt = 2 · 10−4 (left) and δt = 2 · 10−2 (right).

Figure 1.14: Experimental examples (top views) of a disordered drop pattern obtained by
dewetting experiments on a thin polystyrene film (left) taken from [46] and of an ordered
pattern of ferrofluid drops taken from [47].
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in ferrofluids under the action of an external magnetic field is a paradigmatic case of
high spatial order pattern formation at macroscopic and microscopic scales [48, 47].
In Chapters 2 and 8 these drop formation processes are described and mathematically
modelled. Moreover, the conditions under which a high spatially ordered pattern of
drops can be achieved in an ultrathin (nanoscale) ferrofluid film is studied in Chapter
8.

1.4 Self-organization processes in this thesis

Several aspects about surface self-organization processes described in this Chapter
are going to be addressed in Chapters 4-8 in the context of thin fluid films. Our
investigations will deepen into the following issues:

• The role of the equation symmetries in the fluctuation statistics is addressed in
chapters 4 and 5, where Burgers equation (which does lack up-down symmetry,
as the KPZ equation) is shown by numerical and analytical results to exhibit
symmetric, Gaussian fluctuations induced by the combined loss of up-down
and left-right x↔ −x symmetries.

• In analogy to the previous example for the KPZ universality subclasses, in
Chapter 6 we provide a novel example of an universality subclass induced
not by the system geometry but by the competition between stochastic and
chaotic nature of the fluctuations, in a system in which both sources of noise are
present. That is the case of the Kuramoto-Sivashinsky equation with conserved
noise, which is also derived in Chapter 6 as a model for the surface evolution
of an ultrathin fluid film falling down a slope subject to thermal stress. In this
system, the competition of chaotic and stochastic (thermal) fluctuations can
be tuned by adjusting the system temperature, hence the different universality
subclasses occur at low and high temperatures (below and under a threshold
temperature T ∗ > 0), respectively.

• In Chapter 7 we find (i) intrinsic anomalous scaling in the stochastic version
of the Korteweg-de Vries equation and the inviscid limit of the KPZ equation,
which had not been previously found in a continuous model with additive white
noise up to our knowledge and (ii) a novel class of anomalous scaling that does
not fit into the different classes described here in the conserved version of the
Korteweg-de Vries equation and the inviscid limit of the stochastic Burgers
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equation. Furthermore, we study a physical model based on an Ising-like sys-
tem which reproduces the intrinsic anomalous scaling of the inviscid 1D KPZ
equation, reinforcing the universal character of this scaling.

• Pattern formation in the context of dewetting in ultrathin (ferro)fluid films
is addressed in Chapter 8. We will assess the level of order in the formation
of stationary drop patterns under conditions for which a type-I vs type-II
instability occur, depending on the type of fluid-substrate interaction.
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Chapter 2

Mathematical modeling of thin
fluid films

In this chapter we present the physical derivation of the different equations for which
several self-organization processes (kinetic roughening behavior or pattern formation)
are studied in the subsequent chapters. All of them are derivations in which different
approximations are made starting from a common basic situation of a thin fluid
film falling down an inclined plane, which provides a paradigmatic example of the
dynamics of this fluid films [49]. The classic thin film equation for this system, both
in strongly and weakly nonlinear approximations, are presented as a base scenario.
Then, we make further approximations in which large scales, ultrathin film depths,
or magnetic properties of the fluid are considered, respectively.

2.1 Thin film equation

In this section, a general model is presented of a thin fluid film falling down an
inclined plane, as represented in Figure 2.1. Here partial derivatives are indicated
as subindexes in order to lighten the notation. We obtain the evolution equation for
the film thickness h(x, t) out from conservation laws for mass and linear momentum.

Assuming fluid incompressibility, the evolution equation for the film thickness,
h(x, t), can be obtained from the balance of mass [4]. If we take an infinitesimal
portion of fluid film of width ∆x and assume constant density ρ, mass conservation
implies

ρ(h∆x)t = ρ

(∫ h

0

u(x, y) dy −
∫ h

0

u(x+ ∆x, y) dy

)
. (2.1)
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Chapter 2 Fluctuations and patterns in ultrathin fluid films

Figure 2.1: Sketch of a thin liquid film falling down a rigid plane inclined at angle θ.

where u(x, t) is the streamwise component of the fluid velocity field along the x axis,
see Fig. 2.1 for coordinate conventions. In the limit of ∆x→ 0,

ht +

(∫ h

0

udy

)
x

= 0. (2.2)

The full velocity field (u, v) can be obtained from the balance of linear momentum
[49], namely,

ρ(ut + u ux + v uy) = µ(uxx + uyy)− px + ρ g sin θ, (2.3)

ρ(vt + u vx + v vy) = µ(vxx + vyy)− py − ρ g cos θ, (2.4)

where µ is the liquid viscosity (assumed constant), p denotes hydrostatic pressure,
and g is the acceleration of gravity.

We consider non-slip, no-penetration boundary conditions u = v = 0 at the
planar rigid substrate (y = 0) and a simple stress balance at the free surface of the
film [y = h(x, t)],

||~n T ~n|| = γC, ||~n T ~t|| = 0. (2.5)

Here, C is the curvature of the free surface and γ is the surface tension, assumed
isotropic [49], ~n and ~t are the unit normal and tangential vectors, namely

~n =
1√

1 + h2
x

(
−hx

1

)
, ~t =

1√
1 + h2

x

(
1
hx

)
, (2.6)
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and T is the stress tensor for a Newtonian fluid, which reads

T = −pI + µ

(
2ux uy + vx

uy + vx +2vy

)
=

(
−p+ 2µux µ(uy + vx)
µ(uy + vx) −p+ 2µvy

)
, (2.7)

where I is the 2× 2 identity matrix. Now, we consider the average thickness, h0, of
the liquid layer as a typical length scale, w0 = ρgh2

0/2µ as a velocity scale, w0/h0

as a time scale, and µw0/h0 as a representative scale for pressure and stress, and
use all these to rewrite the previous equations in dimensionless units. The resulting
momentum balance equations become

Re (ut + u ux + v uy) = uxx + uyy − px + 2 sin θ, (2.8)

Re (vt + u vx + v vy) = vxx + vyy − py − 2 cos θ, (2.9)

where Re = ρw0h0/µ is the Reynolds number, which represents the ratio between
inertial and viscous forces.

The stress balance at the free surface (y = h) yields

p =
h2
x2ux − hx[2(uy + vx)] + 2vy

1 + h2
x

− γ

µw0

hxx, (2.10)

0 = −h2
x(uy + vx) + hx[2(vy − ux)] + uy + vx. (2.11)

Now, we introduce a small parameter ε = h0/L and the new variables x′ = εx, t′ = εt,
and v′ = v/ε, adapted to a lubrication approximation [49] within which the cross-
stream dimension of the film will be considered much smaller than its streamwise
extent. We consider the capillary number, Ca = µw0/γ, to be order ε2 and define
Ca′ = Ca/ε2.

In the rescaled variables (omitting primes), the momentum balance equations
and the surface boundary conditions become, respectively,

Re ε(ut + u ux + v uy) = ε2uxx + uyy − εpx + 2 sin θ, (2.12)

Re ε2(vt + u vx + v vy) = ε3vxx + εvyy − py − 2 cos θ, (2.13)

p =
ε2h2

x(2εux)− εhx[2(uy + ε2vx)] + 2εvy
1 + ε2h2

x

− ε2 γ

µw0

hxx, (2.14)

0 = −ε2h2
x(uy + ε2vx) + ε2hx[2(vy − ux)] + uy + ε2vx. (2.15)

Now we expand u = u0 + εu1 +O(ε2), v = v0 + εv1 +O(ε2), and p = p0 + εp1 +O(ε2).
We need to compute the perturbative components of the velocity profile u = u0 +
εu1 +O(ε2) in order to obtain the evolution equation from mass conservation.
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At O(1), Eq. (2.12) becomes u0yy = −2 sin θ. As u0y = 0 at the fluid surface
y = h [leading order of Eq. (2.15)] and u0 = 0 at the substrate y = 0 (no-slip
condition), we obtain

u0 = 2 sin θ

(
hy − y2

2

)
, (2.16)

which is the celebrated parabolic Pouseuille velocity profile typical from laminar
flows [4]. We can also compute v0 from the non compressibility condition ux+vz = 0
at O(ε), i.e. u0x+vy = 0 in rescaled variables. Here, no-slip v0 = 0 at y = 0 provides
a boundary condition leading to

v0 = − sin θ y2hx. (2.17)

Considering Eq. (2.13) at O(ε), we have u1yy = p0x + Re(u0t + u0 u0x + v0 u0y).
Here we have u1y = 0 [Eq. (2.15) at O(ε)] and u1 = 0 as boundary conditions at the
fluid surface and the substrate, respectively, which allow us to obtain

u1 = Re sin2 θ hx

(
−4

3
h4y +

2

3
h2y3 − 1

6
hy4

)
− p0x

(
hy − y2

2

)
. (2.18)

The p0 contribution can be obtained from Eq. (2.13) at O(1), p0y = −2 cos θ,
with p0 = −hxx/Ca′ as a boundary condition at the fluid surface, obtaining p0 =
2 cos θ (h− y)− hxx/Ca′.

Finally, using that ∫ h

0

u0 dy =
2

3
sin θ h3, (2.19)

and ∫ h

0

u1 dy =
h3

3

(
8Re sin2 θ

15
h3hx − 2 cos θ hx +

1

Ca′
hxxx

)
, (2.20)

in the mass conservation Eq. (2.2), the evolution equation reads

ht +

(
2

3
sin θh3 + ε

h3

3

(
8Re sin2 θ

15
h3hx − 2 cos θ hx +

1

Ca′
hxxx

))
x

= 0. (2.21)

This equation is known as Benney equation as it was derived for first time in [50],
and is considered to be a classical equation in the context of thin fluid films. It
is a so-called strongly nonlinear model as all the terms in Eq. (2.21), except the
time derivative, are nonlinear. In the next section we derive a weakly nonlinear
approximation of Eq. (2.21) for small perturbations in the surface h, in which both
linear and nonlinear terms appear.
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2.2 Weakly nonlinear approximations

2.2.1 The Kuramoto-Sivashinsky equation

A weakly-nonlinear expansion allows us to derive the KS equation from Eq. (2.21).
Considering very small fluctuations around the flat film solution, h = 1 + εh̃, Eq.
(2.21) becomes

εh̃t +

(
[1 + 3εh̃+ 3ε2h̃2 +O(ε3)]

(
2

3
sin θ +

ε

3
Px

))
x

= 0, (2.22)

where

Px = ε

[
8Re sin2 θ

15
[1 +O(ε)]h̃x − 2 cos θ h̃x +

1

Ca′
h̃xxx

]
. (2.23)

If we expand (h̃2)x = 2h̃h̃x, and consider the change of variable z = x−2t and τ = εt
(thus, ∂t = −3∂z + ε∂τ and ∂x = ∂z) Eq. (2.22) becomes

h̃τ + 4 sin θh̃h̃z +

(
8Re sin2 θ

15
− 2

3
cos θ

)
h̃zz +

1

3Ca′
h̃zzzz = 0. (2.24)

By defining κ0 = 1/(3Ca′), ν0 = 8Re sin2 θ/15− 2 cos θ/3, and λ0 = 4 sin θ,

h̃τ + ν0h̃zz + κ0h̃zzzz + λ0h̃h̃z = 0, (2.25)

which is a particular case of the KS equation in its conserved version (which is
equivalent to Eq. (1.50) for δ = 0 under the change of variable u = ∂xh), after
coordinates and fields are renamed as (z, τ, h̃)→ (x, t, u).

Linear stability analysis

The linear stability of Eq. (2.25) is studied by considering sinusoidal perturbations
of different wavenumbers k around a flat solution, namely,

h̃ = h̃0 + ε(k, t)eikz, ε(k, t)� 1. (2.26)

The equation becomes ετ − ν0k
2ε+ κ0k

4ε+ λ0h̃0ikε = 0 whose solution reads

ε(k, τ) = ε(k, 0) exp [(ν0k
2 − κ0k

4 + iλ0h̃0k)τ ]. (2.27)

The amplitude of these small perturbations grows as |ε(k, τ)| ∼ eω(k)τ , with ω(k) =
ν0k

2 − κ0k
4 being the so-called linear dispersion relation for this equation. This

function presents a broad band of unstable Fourier modes (type II instability), hence
disordered patterns are expected to form on the fluid surface.
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2.2.2 Thin film equations related to the KS equation

The Burgers equation

As argued by Yakhot in [51], the Kuramoto-Sivashinsky equation, Eq. (2.25), is
expected to renormalize at large scales into an effective stochastic Burgers equation
with conserved noise,

∂th = ν∂2
xh+ λh∂xh+ ∂xη, (2.28)

where notably ν > 0, rendering asymptotically irrelevant the biharmonic term in Eq.
(2.25). The stochastic Burgers equation is a paradigm for non-equilibrium physics
[52, 53], appearing in many different contexts like traffic models, cosmology, or tur-
bulence, with different meanings for the field h like vehicle density, mass density, or
fluid velocity, respectively [54]. In this thesis we address the study of the stochastic
Burgers equation, both with non-conserved (Chapter 4) and conserved (Chapter 5)
noise, in terms of universality classes of kinetic roughening.

Burgers generalization in 2D: Hwa-Kardar equation

Moreover, the scalar Eq. (2.28) can be generalized to d = 2 as, e.g. [55]

∂th = νx ∂
2
xh+ νy ∂

2
yh+ λxh∂xh+ λyh∂yh+ η, (2.29)

where we have allowed for a non-conserved noise η. The particular λy = 0 case was
originally introduced by Hwa and Kardar (HK) as a continuum model of avalanches
in running sandpiles [56]. In Chapter 4 we will also consider these equations in our
study of the universality class of the stochastic Burgers equation with non-conserved
noise.

The Korteweg-de Vries (KdV) equation

If we take one more order in ε in the weakly nonlinear approximation of the Ben-
ney equation, Eq. (2.21), we obtain the generalized Kuramoto-Sivashinsky (gKS)
equation which takes the form [57, 149]

∂th+ ∂2
xh+ c∂3

xh+ ∂4
xh+ h∂xh = 0. (2.30)

Here, a dispersive term c∂3
xh appears. In the limit of large c, when this term becomes

dominant, the equation acquires soliton-like solutions [57], as it does in the celebrated
Korteweg-de Vries (KdV) equation,

∂th+ µ∂3
xh+ λh∂xh = 0. (2.31)
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This equation has been used as a paradigmatic model in the description of travelling
waves [57]. In Chapter 7 we study some interesting properties of the stochastic
version of this equation in terms of its kinetic roughening behavior.

2.3 Ultrathin fluid films

We are going to consider ultrathin fluid films throughout this thesis, for which the
thickness is nanometric. Hence, we will assume that (i) the Reynolds number is
extremely low (Re ' 0), (ii) the fluid surface and the substrate are so close to
each other that their interaction becomes relevant [58], and (iii) thermal fluctua-
tions could be relevant in the dynamics [59]. These assumptions require us to take
into account the disjoining pressure and stochastic thermal stress in the momentum
balance equations.

2.3.1 Disjoining pressure

When the thickness h of a fluid film is very small, the interaction between the fluid
surface and the substrate contributes an extra term to the hydrostatic pressure in the
Navier-Stokes equations, the so-called disjoining pressure Π, which can be described
in terms of an effective interface potential φ(h) [58] as

Π = −∂hφ. (2.32)

The curvature of this potential as a function of h determines the stability of the
film: if it is negative, the film surface will be unstable (perturbations to a flat
surface will grow with time); in case the curvature is positive, the film surface will
be stable (perturbations to a flat surface will decrease with time). Depending on
the physicochemical nature of both fluid and substrate, different types of effective
interface potentials can be found [60], which are sketched in Figure 2.2:

1. Stable, also known as complete wetting scenario. The positive curvature of the
potential makes the film unconditionally stable to perturbations (flat film).

2. Unstable. The negative curvature of the film makes it break into droplets
under perturbations, as seen in Figure 2.2. As this process does not have
to overcome an energy barrier in order for the film to break into drops, it is
known as spinodal dewetting scenario by analogy to spinodal decomposition in
e.g. ferromagnets.
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Figure 2.2: Dependence with film thickness h of the different types of effective interface
potentials, taken from [61] (left). Experimental drop formation in thin films under spinodal
[(2) unstable] and nucleation [(3) metastable] scenarios for dewetting (right), taken from
[62].

3. Metastable. For large values of h, the film is stable. However, if any pertur-
bation reduces film thickness below a value in which the sign of the potential
curvature changes, the film will also break up into drops, as seen in Figure 2.2.
This is known as the nucleation scenario for dewetting.

2.3.2 Stochastic thermal stress

The occurrence of relevant thermal fluctuations at very small scales makes the pres-
sure not a deterministic function, but a fluctuating one. This effect is modelled by
adding a fluctuating term S to the stress tensor T [59], which is symmetric, and
whose entries take random values which have zero mean and an intensity which is
proportional to the system temperature, namely,

〈Si,j(x, y, t)Sm,n(x′, y′, t′)〉 = 2µkBTδ(x−x′)δ(y−y′)δ(t−t′)(δimδjn+δinδjm). (2.33)

Here, kB is the Boltzmann constant and T is temperature. The symmetric character
of S gives rise to the (δimδjn + δinδjm) factor.

In the derivation of the thin film equation, some entries of the stress tensor are
integrated over the vertical direction, first in the generic [0, y] interval and then in
the [0, h] interval. This leads to the occurrence of stochastic terms in the effective
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interface equation, of the form (see the derivation of the stochastic KS equation in
Chapter 6 and [59]) ∫ h

0

∫ y

0

S(x, y′, t) dy′dy. (2.34)

Due to the correlations of S, the variance of the term in Eq. (2.34) can be easily
evaluated as ∫ h

0

∫ h

0

∫ y1

0

∫ y2

0

〈S(x1, y
′
1, t1)S(x2, y

′
2, t2)〉 dy′1dy1dy

′
2dy2 =

= µkBT
h3

3
δ(x1 − x2)δ(t1 − t2). (2.35)

Hence, the stochastic term in Eq. (2.34) can be modelled as√
µkBT

h3

3
η(x, t), (2.36)

with η being a white noise term with zero mean and unit variance. More rigorously,
this equivalence holds because the Fokker–Planck equation can be shown to be the
same (i.e., the same time evolution of the height distribution) for both the thin film
equation with additive noise contributions as in Eq. (2.34) or in Eq. (2.36) [59].

2.3.3 Ultrathin fluid film falling down a slope

In Chapter 6 we derive the weakly nonlinear approximation for the thin fluid film
equation of a fluid falling down a slope, taking into account the three particular
conditions mentioned at the beginning of this section for ultrathin films. Notice
that, when the Reynolds number is set to zero in Eq. (2.24), the resulting linear
dispersion relation,

ω(k) =

(
−2

3
cos θ

)
k2 − 1

3Ca′
k4 (2.37)

loses all its unstable modes! However, unstable modes can be restored with the
addition of an unstable [∂hΠ(1) > 0] disjoining pressure, which contributes to the
dispersion relation with a positive k2 term, in which case the linear instability of the
KS equation becomes

ω(k) =

(
1

3
∂hΠ(1)− 2

3
cos θ

)
k2 − 1

3Ca′
k4, (2.38)
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Figure 2.3: Stress over a magnetic fluid layer; scheme adapted from [48].

which now exhibits a broad band of unstable modes when ∂hΠ(1) > 2 cos θ. In
Chapter 6 a weakly nonlinear approximation of the evolution equation for an ultra-
thin fluid film is derived. The thermal fluctuations induce a conserved noise term,
hence the stochastic KS equation with additive conserved noise is obtained. To our
knowledge, the KS equation with this type of noise had not been derived previously
in the literature from a physical system. It exhibits an interesting transition between
two different universality classes for a finite value of temperature, as also assessed in
Chapter 6.

2.4 Magnetic effects in fluid films

2.4.1 Stress tensor in magnetizable fluids

Magnetic interactions also contribute to the stress tensor for magnetizable fluids, as
discussed in this section. We can derive such contribution by evaluating the change
in the free energy per unit volume, F , under an isothermal deformation, which is
equal to the work done by the fluid due to stress. We consider a system as sketched
in Fig. 2.3 in which the magnetic flux is adjusted not to change in order to avoid
electrical currents, and ~ξ is an infinitesimal displacement in an arbitrary direction.

The change in the free energy of the film due to the magnetic field is computed

as
∫ | ~B|

0
| ~H| dB, hence

F = F0 + | ~H|| ~B| −
∫ | ~H|

0

| ~B| dH, (2.39)
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where F0 is the free energy in absence of magnetic field, ~H is the magnetic field and
~B is the magnetic induction of the fluid. The mechanical work per unit area, which
can be computed as the scalar product of the contraction of the stress tensor T over
the displacement direction ~ξ and the normal direction ~n, equals the variation in the
free energy per unit area δ(Fa),

Ti,jξjni = δ(Fa). (2.40)

We use that δa
a

= δυ
υ

, with υ = ρ−1 being the specific volume of the fluid (notice that
F does depend on υ). Hence,

δ(Fa) = Fδa+ a
∂F

∂υ
δυ = δa

(
F + υ

∂F

∂υ

)
=

= δa

(
F0 + υ

∂F0

∂υ
−
∫ | ~H|

0

(
| ~B|+ υ

∂| ~B|
∂υ

)
dH + | ~H|| ~B|+ | ~H|υ∂|

~B|
∂υ

)
=

= δa

(
∂(υF0)

∂υ
−
∫ | ~H|

0

∂(υ| ~B|)
∂υ

dH + | ~H|| ~B|

)
+ a| ~H|δ| ~B|. (2.41)

The hydrodynamic pressure can be computed from the variation in the free en-
ergy, p = −∂(υF0)

∂υ
, and we can also define a magnetic pressure Ω as

Ω =

∫ | ~H|
0

∂(υ| ~M |)
∂υ

dH; (2.42)

hence, using that | ~B| = µ0| ~H|+ | ~M |,

δ(Fa) = −δa
(
p+ Ω +

1

2
µ0| ~H|2 − | ~H|| ~B|

)
+ a| ~H|δ| ~B|. (2.43)

The magnetic induction strength | ~B| decreases proportional to the increase in
the distance between the wires. As the direction of the PQ line in Fig. 2.3 is parallel
to ( ~B × ~n)× ~B,

δ| ~B|
| ~B|

= −1

a

(
1

B2
( ~B × ~n)× ~B

)
· ~ξ. (2.44)

Using the cross product property ( ~A× ~B)× ~C = ( ~A · ~C) ~B − ( ~B · ~C) ~A,

aδ| ~B| = (~ξ · ~B)( ~B · ~n)

| ~B|
− | ~B|(~ξ · ~n). (2.45)
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Finally, substituting δa = ~ξ · ~n, we can express

δ(Fa) = −
(
p+ Ω +

1

2
µ0| ~H|2

)
(~ξ · ~n) + | ~H|

(
| ~B|(~ξ · ~n) + aδ| ~B|

)
=

= −
(
p+ Ω +

1

2
µ0| ~H|2

)
(~ξ · ~n) + (~ξ · ~B)( ~H · ~n). (2.46)

As the identity Ti,jξjni = δ(Fa) must hold for any choice of the small displace-

ment ~ξ, then the stress tensor T must take the form T = T f + T m, where

T m =

(
HxBx HxBy

HyBx HyBy

)
+

[
1

2
µ0| ~H|2 − Ω

]
I (2.47)

and T f is the hydrostatic contribution. Here, we have written ~B = (Bx, By) and
~H = (Hx, Hy) for the magnetic field and induction components in the x, y directions.
The magnetic tensor Eq. (2.47) will be considered in the derivation of the ferrofluid
thin film equation in Chapter 8.

2.4.2 Thin ferrofluid film equations

The behavior of ferrofluid films under a magnetic field was studied by Cowley and
Rosensweig in [48]. They modeled the so-called normal field instability, in which a flat
ferrofluid film surface under an external magnetic field, perpendicularly oriented to
the flat surface, evolves to form an ordered structure of drops. In their approximation
the film is considered to be thick and Re is considered to be large. This well-ordered
structure appears as a consequence of the fact that the dispersion relation of the
instability takes the form [48, 5]

ρω2 = ρgk − µ0| ~M |2

1 + µ0/µ
k2 + γk3, (2.48)

where µ is the effective magnetic permeability of the ferrofluid. Indeed, Eq. (2.48)
presents a narrow band of unstable modes. Here the perturbations of the fluid surface
are considered to be of the form h = h0 + εei(ωt−kx), hence the imaginary values for
ω are those which induce the unstable behavior.

The formation of these ordered patterns is well known to occur in experiments,
both at macroscopic [63] and microscopic [47] scales (film depth h0 ' 10−5−10−6m).
A dispersion relation with a narrow band of unstable modes has also been derived for
a thin film in the viscous (Re� 1) approximation in [64] as ω ∼ (−k2 + Φk3 − k4),
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Figure 2.4: Dispersion relation Eq. (2.49) for parameter values as in the simulations in
Chapter 8.

with Φ being a physical parameter proportional to the external magnetic field. In
this thesis, we will address the question of what could be expected regarding the
formation of these well-ordered patterns at even smaller scales (nanoscales, i.e. film
thickness h0 ' 10−8 − 10−9m), when the film is not just thin but ultrathin, so
that not only are the inertial effects negligible but also the disjoining pressure must
be taken into account. Different models for thin ferrofluid films under an external
magnetic field Hext which appear in the literature are discussed in Chapter 8. None
of them presents a dispersion relation which could preserve the narrow band of
unstable modes that has been demonstrated in the macroscopic model derived by
Rosensweig. In contrast, we derive a strongly nonlinear effective equation for an
ultrathin ferrofluid film under a magnetic field whose dispersion relation takes the
form

ω(k) =
h3

0

3

(
∂hΠ(h0)k2 − 1

Ca′′
k4 + 2QHext

(
1− Hext

2 + βξh0|k|/3

)
|k|3
)
, (2.49)

where h0 is the initial film height and Ca′′, Q, β and ξ are constants (see Chapter 8
for the full details about the derivation of this equation). The interaction of the fluid
with the magnetic field leads to the ∼ |k|3 contribution to the dispersion relation,
while the ∼ k2 and ∼ k4 contributions are generated by the disjoining pressure
and surface tension terms, respectively, allowing for the presence of a narrow band
of unstable modes when the disjoining pressure potential is stable or metastable
[hence, ∂hΠ(h0) < 0] as shown e.g. in Fig. 2.4.
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Chapter 3

Analytical and numerical tools

In this Chapter, we introduce the main numerical methods used in the integration
of the thin film equations assessed throughout this thesis, as well as some relevant
numerical tools used for numerical integration and numerical characterization of
time series. Moreover, the analytical tools used in the asypmtotically approach to
the scaling exponents and fluctuating statistics (cumulants) are also discussed in the
context of Burgers equation, Eq. (2.28).

3.1 Numerical method for weakly nonlinear mod-

els

The stochastic weakly nonlinear models studied in this thesis have the following
structure,

∂th = L[h] +N [h] + η1 + ∂xη2, (3.1)

where L and N denote, respectively, a linear and a nonlinear operator, and η1, η2

are noise terms with zero mean and no correlations in space nor time,

〈ηi(x, t)ηi(x′, t′)〉 = 2Diδ(x− x′)δ(t− t′), i = 1, 2. (3.2)

In Fourier space for the spatial domain, Eq. (3.1) reads

∂tĥ = ωĥ+ N̂ [h] + η̂1 + ikη̂2, (3.3)

where ω is the dispersion relation induced by the linear operator L. In this section,
we discuss the different numerical methods used throughout this thesis for the in-
tegration of this type of equations (Burgers equation equation in Chapters 4 and
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5, Kardar-Parisi-Zhang equation in Chapter 5, Kuramoto-Sivashinsky equation in
Chapter 6, and Korteweg–De Vries equation in Chapter 7).

3.1.1 Pseudospectral methods

For equations like Eq. (3.1), pseudospectral simulation methods have demonstrated
a high reliability [65, 66, 67, 68, 69, 70]. Different pseudospectral schemes can be
chosen. The most simple choice is to use an explicit Euler method, i.e.

ĥ(k, t+ ∆t) = ĥ(k, t) + ∆t
(
ω(k)ĥ(k, t) + N̂ [h](k, t)

)
+

√
∆t

∆x
ν̂(k, t), (3.4)

where ν(x, t) is a random vector whose entries have zero mean and unit variance.
However, both the accuracy and the stability of this method are poor and they can
be improved using an integrating factor and/or considering multistep schemes for
the integration in time.

Integrating factor

Here we sketch the main idea of this method [67], in which the linear part is solved
exactly and just the nonlinear part is solved numerically. Multiplying both sides of
Eq. (3.3) by the integrating factor e−ωt, we get

e−ωt∂tĥ− e−ωtωĥ = e−ωtN̂ [h] + e−ωtη̂. (3.5)

Notice that the left hand side of Eq. (3.5) equals ∂t(e
−ωtĥ), hence the integral of Eq.

(3.5) over [t, t+ δt] becomes

e−ω(t+δt)ĥ(t+ δt)− e−ωtĥ(t) =

∫ δt

0

e−ω(t+τ)
(
N̂ [h](t+ τ) + η̂(t+ τ)

)
dτ. (3.6)

We isolate ĥ(t+ δt) as

ĥ(t+ δt) = eωδt
[
ĥ(t) +

∫ δt

0

e−ω(t+τ)
(
N̂ [h](t+ τ) + η̂(t+ τ)

)
dτ

]
. (3.7)

For small values of δt, we can approximate
∫ δt

0
e−ωτN̂ [h](t+ τ) dτ ' N̂ [h](t)δt. The

amplitude of the noise term ĝ(t) = eωδt
∫ δt

0
e−ωτ η̂(t+ τ) dτ can be computed as

〈ĝ(t)ĝ(t′)〉 = e2ωδt

∫ δt

0

∫ δt

0

e−ω(τ+τ ′)〈η̂(t+ τ)η̂(t′ + τ ′)〉 dτ dτ ′. (3.8)
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As the intervals [t, t + δt] and [t′, t′ + δt] just overlap when t = t′ and the noise η is
uncorrelated in time 〈η̂(t)η̂(t′)〉 = 2Df(k)δ(t− t′), where f(k) = 1 for non conserved
noise and f(k) = −k2 for conserved noise,

〈ĝ(t)ĝ(t′)〉 = 2Df(k)e2ωδt

∫ δt

0

e−2ωs ds = Df(k)
e2ωδt − 1

ω
. (3.9)

The integration step is finally obtained as

ĥ(t+ δt) = eωδt
(
ĥ(t) + N̂ [h](t)δt

)
+ ĝ(t), (3.10)

with the random ĝ(k, t) vectors being computed as

ĝ(k, t) =

√
D|f(k)|e

2ω(k)δt − 1

ω(k)
ν̂(k), (3.11)

where ν(x, t) is a random vector whose entries have zero mean and unit variance.

The evaluation of the e2ω(k)δt−1
ω(k)

term is numerically unstable, as it involves the quo-
tient between two very small numbers; instead it is computed for each value of the
wavenumber k at the beginning of the simulation using a residue integral in the
complex plane as

e2ω(k)δt − 1

ω(k)
= 2δt

∮
γ

ez − 1

z

1

(z − z0)
dz, (3.12)

where z0 = 2ω(k)δt and γ = {z ∈ C, |z − z0| = 1}.

Multistep predictor-corrector integration scheme

We combine the integrating factor with the four-step Adams-Bashforth and three-
step Adams-Moulton methods as predictor and corrector methods respectively, as
proposed in [69]. These schemes provide solutions to the differential equation ∂ty =
f(t, y) as, respectively,

yi+1 = yi +
δt

24
(55fi − 59fi−1 + 37fi−2 − 9fi−3), (3.13)

or

yi+1 = yi +
δt

24
(9fi+1 + 19fi − 5fi−1 + fi−2), (3.14)
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The resulting algorithms for the predictor and corrector steps are, correspond-
ingly,

ĥ(k, t+ δt) = eω(k)δt[ĥ(k, t) +
δt

24
(55N̂ (k, t)− 59N̂ (k, t− δt)eω(k)δt+

+37N̂ (k, t− 2δt)e2ω(k)δt − 9N̂ (k, t− 3δt)e3ω(k)δt)] + ĝ(k, t), (3.15)

or

ĥ(k, t+ δt) = ĥk(k, t)e
ω(k)δt +

δt

24
(9N̂ (k, t+ δt) + 19N̂ (k, t)eω(k)δt−

−5N̂ (k, t− δt)e2ω(k)δt + N̂ (k, t− δt)e3ω(k)δt) + ĝ(k, t), (3.16)

where the stochastic term ĝ(k, t) contained in Eqs. (3.15) and (3.16) is computed as
in Eq. (3.11). Due to the multistep nature of the method, the value of h in the first
three temporal steps is required prior to the integration, hence the second and third
steps need to be computed by means of a single step method.

3.1.2 Burgers equation with conserved noise

The pseudospectral method described above does not work properly in the specific
case of the Burgers equation with conserved noise,

∂tu = ν∂2
xu+ λu∂xu+ ∂xη, (3.17)

as the latter is conspicuously prone to numerical inaccuracies and instabilities [71].
For this equation, we use the numerical scheme proposed in [72]. It is a finite-
differences method in real space which reads

∂tuj = ν
uj+1 − 2uj + uj−1

δx2
+

+λ
u2
j+1 + ujuj+1 − uj−1uj − u2

j−1

3δx
+

√
2D

δt
(uj − uj−1). (3.18)

3.2 Numerical method for strongly nonlinear thin

film equations

The numerical integration of strongly nonlinear thin film equations which read

∂th = −∂x
[
h3

3
∂x
(
C1∂

2
xh+ C2F (h)

)]
, (3.19)
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has been carried out by means of a Crank-Nicholson-like scheme, based in the algo-
rithm reported in [73]. For each time step δt, the system of nonlinear equations

h(xi, t+ δt) + h(xi, t)

δt
= −(C1Ii + C2Ei), (3.20)

is solved for the unknowns h(xi, t + δt), where i = 1, ..., N . Here, I and E are the

discretizations of the surface tension, ∂x

[
h3

3
∂3
xh
]
, and the ∂x

[
h3

3
∂xF (h)

]
contribu-

tions to the thin film Eq. (3.19), for which we use implicit (averaging for times t and
t+ δt) and explicit finite-differences schemes respectively, namely,

Ii =
D+(t)D3(x+

i , t)−D−(t)D3(x−i , t)D3

2δx4
+

D+(t)D3(x+
i , t+ δt)−D−(t)D3(x−i , t+ δt)D3

2δx4
(3.21)

and

Ei =
D+(t)(F (h(xi+1, t))− F (h(xi, t))−D−(t)(F (h(xi, t))− F (h(xi−1, t))

δx2
, (3.22)

where

D+(τ) =
h3(xi+1, τ) + h3(xi, τ)

6
, D−(τ) =

h3(xi−1, τ) + h3(xi, τ)

6
, (3.23)

D3(x+
i , τ) = h(xi+2, τ)− 3h(xi+1, τ) + 3h(xi, τ)− h(xi−1, τ), (3.24)

and
D3(x−i , τ) = h(xi+1, τ)− 3h(xi, τ) + 3h(xi−1, τ)− h(xi−2, τ). (3.25)

Periodic boundary conditions are implemented in the equations for i = 1, 2, N −
1, N . The height vector h at time t is used as initial condition in order to solve
equation (3.20) for the unknowns h(xi, t + δt), i = 1, ..., N . From this initial guess,
Newton-Raphson iterations are applied in order to solve the nonlinear system of
equations. As a result of applying Newton-Raphson, a sequence of iterative pen-
tadiagonal linear systems is obtained, which is solved iteratively until convergence
condition ∣∣∣∣ ||hiteration i|| − ||hiteration i+1||

||hiteration i||

∣∣∣∣ < 10−8 (3.26)

is achieved.
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3.3 Monte Carlo integration

In this section we discuss the numerical Monte Carlo method used in order to approx-
imately compute the value of integrals which present difficulties in the analytical or
numerical evaluation with standard quadrature schemes [74]. This can be specially
useful for large multidimensional integration domains where the integral is not ana-
lytically solvable and the number of evaluations for quadrature numerical methods
scale too fast with the domain dimension. In this thesis, this tool becomes needed
for the estimation of some cumulants via dynamic renormalization gruop (DRG)
analysis in Chapters 4 and 5.

If we need to compute the approximate value of I =
∫
g(x) dx, we can take

advantage of the formula for the expected value of the evaluation of a random variable
χ over a function g(·), which reads

〈g(χ)〉 =

∫
g(x)fχ(x) dx, (3.27)

with fχ(x) being the probability density function (PDF) of χ. If we multiply and
divide the integrand by fχ(x), the value of I can be expressed as the expected value
of g/fχ(χ), i.e.

I =

∫
g(x)

fχ(x)
fχ(x) dx =

〈
g(χ)

fχ(χ)

〉
. (3.28)

Hence we obtain a convenient way to estimate the value of I as

I ' Sn =
1

N

N∑
i=1

g(xi)

fχ(xi)
, (3.29)

with {xi}Ni=1 being a sequence of independent random fχ-distributed numbers. The
variance of the estimator Sn takes the form

V ar(Sn) =
1

N

N∑
i=1

(
g(xi)

fχ(xi)

)2

− S2
n. (3.30)

It vanishes as N →∞ and decreases as the shape of the function g is more similar to
the shape of fχ. The limit case (g = cfχ) would nullify the estimator variance, but it
is not feasible as we would need to know the exact value for

∫
g prior to constructing

fχ. This fact allows us to enhance the precision of this method if we choose fχ as
similar as possible to the integrand g.
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In the case of the integration of a multivariate function g(x1, x2, ..., xm), the
estimator takes the form

Sn =
1

N

N∑
i=1

g(x1,i, x2,i, ..., xm,i)

fχ(x1,i)fχ(x2,i)...fχ(xm,i)
. (3.31)

Notice that the variance,

V ar(Sn) =
1

N

N∑
i=1

(
g(x1,i, x2,i, ..., xm,i)

fχ(x1,i)fχ(x2,i)...fχ(xm,i)

)2

− S2
n, (3.32)

also scales as 1/N , hence the problem scales computationally as the number of ran-
dom numbers that are need to be generated and evaluated. This fact makes this
method much more suitable for integration over high-dimensional domains [74].

3.4 Numerical characterization of time series:

Scale-Dependent Lyapunov Exponent

The distinction between stochastic and chaotic random fluctuations in time series
plays an important role in Chapter 6, where the competition of both chaotic and
stochastic fluctuations is studied in the context of the noisy Kuramoto-Sivashinsky
equation. In order to discriminate the character of random fluctuations in time
series, we use the so-called Scale-Dependent Lyapunov Exponent Λ(ε), a numerical
characterization of the effective Lyapunov exponent which was presented in [75, 76].
It is based on the study of how the distance ε between different close-by trajectories in
the time series diverges over time. The assessment of these trajectories is an efficient
tool to reconstruct the attractor of the dynamics as a consequence of Taken’s theorem
[77].

For each time t we consider that the distance between trajectories is effectively
evolving as

εt+∆t = εte
Λ(εt)t, (3.33)

where Λ(εt) is the effective Lyapunov exponent

Λ(εt) =
log εt+∆t/εt

∆t
. (3.34)

The dependence of is effective Lyapunov exponent with the distance ε exhibits dif-
ferent behaviors for different sources of fluctuation in time series. Some relevant
possibilities are as follows:
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Figure 3.1: Dependence of the Scale Dependent Lyapunov Exponent (SDLE) Λ (λ in the
figure) with the trajectory distance ε for (a) a purely chaotic time series (Mackey-Glass
delay-differential system), (b) purely stochastic time series (fractional Brownian motion
with different values of the Hurst exponent, H) and (c) a chaotic system with stochastic
noise of a varying intensity (Lorenz system with strength noise D). These panels are
extracted from [75].

(a) In purely chaotic systems, Λ becomes persistent with ε except for large values
of ε, for which it must decay, as the distance between trajectories can not grow
indefinitely, see panel (a) of Figure 3.1.

(b) For purely stochastic systems, consider e.g. a fractional Brownian motion for
which the standard deviation of the fluctuations grows as ∼ tH , with H being
the so-called Hurst exponent (related to the fractal dimension as dF = 2−H),
equivalent to the exponent α for kinetically rough surfaces. In this case, we
can easily conclude that Λ decays with ε as a power law, see panel (b) of Figure
3.1; indeed,

εt = ε0t
H ⇒ Λ(εt) =

log
(
t+∆t
t

)H
∆t

∼ H t−1 ⇒ Λ(εt) ∼ ε
−1/H
t . (3.35)

(c) In a fluctuating time series subject to both, stochastic and chaotic sources of
fluctuations, there is a competition between ε ∼ tH (due to stochastic noise)
and ε ∼ et (due to chaos). Hence, Λ decays as a power-law for low values of ε
while it remains non-decreasing for larger values of ε, see panel (c) of Figure
3.1.
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Figure 3.2: Illustration of the trajectory definition in time series, for m = 2 and 3.

3.4.1 Numerical implementation of the SDLE

We define trajectories Ti of dimension m from a time series y(1), ..., y(n) as Ti =
(y(i), y(i + 1), ..., y(i + m − 1))T (see Figure 3.2). We select all pairs of close-by
trajectories (i, j) for a certain ε0 � 1 such that

0 <
||Ti − Tj||

maxk,l ||Tk − Tl||
< ε0 � 1. (3.36)

For each selected pair (i, j) and for several times t = N∆t, we compute the distances

εt = ||Ti+N − Tj+N ||, εt+∆t = ||Ti+N+1 − Tj+N+1||, (3.37)

which allows us to compute the effective Lyapunov exponent via Eq. (3.34). We
finally define a vector ~ε where εi are logarithmically equispaced values between the
minimun one and the maximum one for all computed εt, and we bin together the
numerical values of Λ(εt) in order to construct the corresponding Λ.

3.5 Dynamic Renormalization Group

Dynamic renormalization group (DRG) analysis has been successfully employed in
order to determine the large-scale behavior of kinetic roughening processes [52, 78].
It is based on an iterative solution of the evolution equation in Fourier space which
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consists on a coarse-graining (in which small scales are eliminated) and a later rescal-
ing processes.

We illustrate here the main steps of this procedure for the Burgers equation,

∂tφ = ν∂2
xφ+ λ∂x(φ

2) + η. (3.38)

In Fourier space, the equation can be rewritten as

G−1
0 (k, ω)φ̂(k, ω) = η̂(k, ω)− λik

∫ ∞
−∞

dΩ

2π

∫ Λ0

−Λ0

dq

2π
φ̂(q,Ω)φ̂(k − q, ω − Ω), (3.39)

with

G0(k, ω) =
1

−iω + νk2
. (3.40)

Here hat is space-time Fourier transform, k is wave-number, ω is time frequency, and
i is the imaginary unit.

Coarse-graining

We now take an arbitrary positive parameter ` and separate slow (|k| < Λ0e
−`,

denoted by superindex <) from fast (Λ0e
−` < |k| < Λ0, denoted by superindex >)

Fourier modes, i.e.
φ̂ = φ̂> + φ̂<, η̂ = η̂> + η̂<, (3.41)

where

φ̂> = η̂> = 0, if |k| < Λ0e
−`, (3.42)

φ̂< = η̂< = 0, if |k| > Λ0e
−`. (3.43)

Equation (3.39) for slow and fast modes become, respectively,

G−1
0 (k, ω)φ̂<(k, ω) = η̂<(k, ω)− λik

∫ ∞
−∞

dΩ

2π

∫ Λ0

−Λ0

dq

2π
×

×[φ̂<(q,Ω)φ̂<(k − q, ω − Ω) + φ̂>(q,Ω)φ̂>(k − q, ω − Ω) +

+φ̂>(q,Ω)φ̂<(k − q, ω − Ω) + φ̂<(q,Ω)φ̂>(k − q, ω − Ω)], (3.44)

and

G−1
0 (k, ω)φ̂>(k, ω) = η̂>(k, ω)− λik

∫ ∞
−∞

dΩ

2π

∫ Λ0

−Λ0

dq

2π
×

×[φ̂<(q,Ω)φ̂<(k − q, ω − Ω) + φ̂>(q,Ω)φ̂>(k − q, ω − Ω) +

+φ̂>(q,Ω)φ̂<(k − q, ω − Ω) + φ̂<(q,Ω)φ̂>(k − q, ω − Ω)]. (3.45)
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We expand the fast modes φ̂> into a perturbative series in λ as

φ̂> = φ̂>0 + λφ̂>1 + λ2φ̂>2 +O(λ3). (3.46)

Using this expansion, we can compute φ̂>i solving Eq. (3.45) at order λi for each i.
That allows us to rewrite Eq. (3.44) as

G−1(k, ω)φ̂<(k, ω) = η̂<(k, ω)−λik

∫ ∞
−∞

dΩ

2π

∫ Λ0

−Λ0

dq

2π
φ̂<(q,Ω)φ̂<(k−q, ω−Ω), (3.47)

where

G(k, ω) =
1

−iω + νk2 + Σ(k, ω)
. (3.48)

Working within the one-loop approximation (up to order λ2), Σ(k, ω) is computed
as [52, 8]

Σ(k, ω) = 4λ2

∫ > dq

2π
ik i(k − q)

∫ ∞
−∞

dΩ

2π

× |G0(q,Ω)|2G0(k − q, ω − Ω), (3.49)

where the integration domain in
∫ >

is the fast modes region {q ∈ R|Λ(`) = Λ0e
−` <

|q| < Λ0}. The Feynman representation of this equation is depicted in Fig. 3.3(a).
After integration in the time frequency Ω, taking the long-time limit ω → 0,

Σ(k, ω) = −4λ2

∫ > dq

2π

Dk(k − q)
ν2q2(k2 − 2kq + 2q2)

= −4λ2

∫ > dq

2π

[
3Dk2

4ν2q4

]
+O(k3)

=
6Dλ2k2

ν2πΛ3(`)
(e−3` − 1) +O(k3). (3.50)

As we are interested in the large-scale behavior, only the lowest order in k will be
considered. For convenience, we identify k = Λ0e

−` in order to be able to discriminate
different values of k. We define a coarse-grained ν<(`) in the long-time limit such
that G(k, 0) = [ν<(`)k2]−1 [78],

1

ν<(`)k2
=

1

νk2
+

1

ν2k4

6Dλ2k2

ν2πΛ3(`)
(e−3` − 1) (3.51)

⇒ 1

ν<(`)
=

1

ν

[
1 +

6Dλ2

ν3πΛ3(`)
(e−3` − 1)

]
⇒ ν<(`) = ν

[
1− 6Dλ2

ν3πΛ3(`)
(e−3` − 1)

]
. (3.52)
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Rescaling

After coarse-graining, we proceed to rescale the DRG flow. We rescale space and
time as x̃ = bx, t̃ = bzt, and φ̃ = b−αφ(x̃, t̃). Burgers equation under rescaled
parameters (dropping tildes) reads

∂tφ = νbz−2∂2
xφ+ λbα+z−1∂xφ

2 +Dbz−2α−1η. (3.53)

Now we take b = e`. In the limit of vanishing ` = δ` → 0, the DRG flow equations
for the renormalized (coarse-grained and rescaled) parameters ν̃ = ν<b

z−2 (using ν<
as in Eq. (3.51)), λ̃ = λbα+z−1, and D̃ = Dbz−2α−1 read

dλ

d`
= lim

δ`→0

λ̃− λ
δ`

= λ(α + z − 1), (3.54)

dD

d`
= lim

δ`→0

D̃ −D
δ`

= D(z − 2α− 1), (3.55)

dν

d`
= lim

δ`→0

ν̃ − ν
δ`

= ν

(
z − 2 +

18Dλ2

ν3πΛ3
0

)
. (3.56)

The fixed points of this flow must fulfill

dλ

d`
=
dD

d`
=
dν

d`
= 0. (3.57)

• Requesting scale invariance at a non-linear (λ 6= 0) critical point, leads to
α+z = 1, a scaling relation associated with the Galilean invariance of Burgers
equation [8].

• Non-trivial fluctuations (D 6= 0) at the fixed point lead to hyperscaling [52, 8],
2α+d = z (with d = 1), here due to the fact that dynamics are conserved, but
the noise is not [79].

For the noisy Burgers equation, these two scaling relations are believed to hold at
any order in the loop expansion [52, 56].
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Large-scale behavior without rescaling

We can alternatively study the large scale behavior of Burgers equation without the
rescaling of the parameters. This allows us to make explicit the scale-dependence
of the equation parameters, as proposed in [78]. For that purpose, Eq. (3.51) is
conveniently rewritten as a differential flow. We must take ν as ν<(`) and consider
Λ(`)� 1, as we are interested in the large-scale behavior. Thus, the differential flow
for ν<(`) reads

dν<(`)

d`
=

18Dλ2

ν2
<(`)πΛ3(`)

, (3.58)

whose solution for the initial condition ν<(0) = ν is

ν<(`) =

[
ν3

3
+

6Dλ2

ν3πΛ3
0

(e3` − 1)

]1/3

. (3.59)

In the large-scale limit when ` � 1, the renormalized coefficient ν< scales with
wavenumber k as [52]

ν<(k) ∼
(

6Dλ2

ν3π

)1/3

|k|−1. (3.60)

Hence, the coarse-grained propagator takes the form

G(k, ω) =
1

−iω + ν<(k)k2
=

1

−iω +
(

6Dλ2

ν3π

)1/3 |k|
, (3.61)

and we obtain the value of the dynamic exponent z = 1, as G(k, 0) ∼ 1/|k|z in anal-
ogy with linear models. The value of the roughness exponent α can be determined
by means of the study of the scale dependence of the second cumulant (variance) of
the fluctuations, which is presented in the next section.

3.5.1 DRG determination of cumulants

We are able to exploit the dependence with the scale of the coarse-grained propagator
to estimate by DRG the cumulants of the statistical distribution of φ, following
the methodology successfully employed for the KPZ [80, 81, 82] and NLMBE [83]
equations. The n-th cumulant in Fourier space reads

〈φn〉c =

∫
R2n

n∏
j=1

dkjdωj
(2π)2

ei(kjx−ωjt)

〈
n∏
j=1

φ̂j

〉
. (3.62)
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Figure 3.3: Feynman diagrams representing (a) Eq. (3.49) and (b) the lowest-order correc-
tions to the cumulants, Ln,1, for n = 2, 3, 4, left to right. Bare propagator factors G0(q)
evaluated for low [|q| < Λ(`)] and high [Λ(`) < |q| < Λ0] wave vectors correspond to solid
and dashed lines, respectively. Noise contractions (convolution products) are represented
by open (filled) disks.

In terms of renormalized quantities, it takes the form

〈φn〉c =

∫
R2(n−1)

G(kn, ωn)Ln

n−1∏
j=1

dkjdωj
(2π)2

G(kj, ωj), (3.63)

where kn = −
∑n−1

j=1 kj, ωn = −
∑n−1

j=1 ωj, and the function Ln is perturbatively
computed to one loop order [80, 81, 82, 83] as

Ln = (2D)δn,2 + Ln,1, (3.64)

where Ln,1 = K(2D)nλninkn
∏n−1

j=1 kjln,1 is the lowest-order correction in the Feyn-
man expansion of the cumulants and K = (2n−2)!! is a combinatorial factor (number
of different fully-connected diagrams). Diagrammatic representations for L2,1, L3,1,
and L4,1 correspond to the amputated parts of the diagrams shown in Fig. 3.3(b).

As we are interested in the hydrodynamic (ki, ωi)→ (0, 0) limit (large spatiotem-
poral scales),

ln,1 =

∫ ∞
−∞

dΩ

2π

∫ > dq

2π
|G0(q,Ω)|2n. (3.65)
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After integration, and substituting ν → ν<(Λ),

ln,1 =

√
πΓ(n− 1

2
)

n!
(

6Dλ2

π

)2n−1

2
(
1− e−(4n−3)`

)
(4n− 3)Λ2n−2(`)

. (3.66)

We rewrite this equation in differential form as

dln,1
d`

=

√
πΓ(n− 1

2
)

n!
(

6Dλ2

π

)2n−1

2

Λ2n−2(`)
, (3.67)

whose solutions for large ` become

ln,1(`) '
√
πΓ(n− 1

2
)

n!
(

6Dλ2

π

)2n−1
(n− 1)

1

Λ2(n−1)(`)
. (3.68)

Due to the symmetry among k1, . . . , kn−1, we take [80, 81, 82, 83]

ln,1(k) =

√
πΓ(n− 1

2
)

n!
(

6Dλ2

π

)2n−1
(n− 1)

n−1∏
i=1

1

k2
i

. (3.69)

For n > 2, as |G(k, ω)| = |k|−zf(ω/|k|z) and z = 1, where f is a scaling function
[f(u)→ 1 for u→ 0], k−2

i ' |G(ki, ωi)|2. Finally,

〈φn〉c =
A

Dn−1λ3n−2

∫
R2(n−1)

G(kn, ωn)kn

×
n−1∏
i=1

dkidωi
(2π)2

kiG(ki, ωi)|G(ki, ωi)|2, (3.70)

where A = π2n− 1
2 inΓ(n− 1

2
)K/[n!(n− 1)3n22n−1].

Variance

Integration of Eq. (3.70) for n = 2 yields the variance (square of roughness) of φ,

〈φ2〉c =
1

(3072π2)1/3

(
D

λ

)2/3 ∫
R

dk

|k|
, (3.71)

whose logarithmic divergence (∼ logL) agrees with the expected value of the rough-
ness exponent, α = 0 [16, 11]. Higher-order cumulants estimated by this approach
are further discussed in Chapters 4 and 5.
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Chapter 4

Gaussian statistics as an emergent
symmetry of the stochastic scalar
Burgers equation

4.1 Introduction

4.1.1 The stochastic Burgers equation (non-conserved noise)

In Chapter 2 we derived the Kuramoto-Sivashinsky equation as an effective interface
equation for a thin fluid film falling down a slope. A stochastic generalization of this
equation can be derived as an interface model when the substrate height is disordered
and subject to small random vibrations, as done in [49]; such a model reads

∂th+ ν0∂
2
xh+ κ0∂

4
xh+ λ0h∂xh+ η = 0, (4.1)

where η is non-conserved, zero-mean, uncorrelated Gaussian noise, such that

〈η(x, t)η(x′, t′)〉 = 2Dδ(x− x′)δ(t− t′). (4.2)

As κ0 = 1/(3Ca′) (where Ca′ ∝ γ−1 is the capillarity number) and ν0 = 8Re sin2 θ/15−
2 cos θ/3 (where Re is the Reynolds number and θ is the angle of the slope), Burgers
equation,

∂tφ = ν∂2
xφ+ λφ∂xφ+ η = 0, (4.3)

is obtained in the viscous Re = 0 and ultra-low surface tension (γ = 0) limit of Eq.
(4.1), taking φ = h, ν = 2 cos θ/3, and λ = λ0 = 4 sin θ. As mentioned in Chapter
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1, Burgers equation, Eq. (4.3), is a paradigm for non-equilibrium physics, appearing
not only as a thin film model but also in many other different contexts, like traffic
models, cosmology, or turbulence, with different meanings for the field φ, like vehicle
density, mass density, or fluid velocity, respectively [54].

Moreover, the scalar Eq. (4.3) can be generalized to d = 2 as, e.g. [55]

∂tφ = νx ∂
2
xφ+ νy ∂

2
yφ+ λx φ∂xφ+ λy φ∂yφ+ η. (4.4)

The particular λy = 0 case was originally introduced by Hwa and Kardar (HK) as
a continuum model of avalanches in running sandpiles [56] in the context of self-
organized criticality. We refer to the full Eq. (4.4) as the generalized Hwa-Kardar
(gHK) equation [15].

4.1.2 Symmetry emergence: KPZ vs Burgers

Spontaneous symmetry breaking is a basic notion in Physics underlying collective
behavior in classical and quantum systems [84]. Among other important phenomena,
it provides the mechanism for continuous phase transitions in equilibrium Statistical
Mechanics, wherein the macroscopic state of a system shows a reduced symmetry
compared with the microscopic interactions when temperature T is below a certain
threshold Tc. As is well known, the corresponding (critical) system is remarkably
characterized by scale-invariant behavior right at T = Tc [85]. The converse situation
of emergent symmetries occurs when the system symmetries increase for a decreasing
T [86]. This can occur even for non-equilibrium systems, whose large-scale behavior
can display symmetries which are not explicit in the microscopic description. Recent
examples include driven exciton-polariton condensates [87], which give rise to novel
dynamic universality classes beyond the standard classification of dynamical phase
transitions [88].

Actually, the generalization of the criticality concept to non-equilibrium condi-
tions is proving itself a truly fruitful avenue to enlarge the domain of applicability
of Statistical Physics, to e.g. socio-technological [89] or living [90] systems. In this
process, an important conceptual role is being played by the elucidation of condi-
tions for the generic occurrence of critical behavior without the need (in contrast
with equilibrium systems) for parameter tuning, both in the presence or absence of a
time-scale separation between external driving and system relaxation, termed respec-
tively self-organized criticality (SOC) [91] or generic scale invariance (GSI) [79, 88],
in which kinetic roughening, one of the paradigmatic surface self-organization pro-
cesses presented in Chapter 1, is the particular case of GSI in the specific context of
surface growth.
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In the absence of noise, Burgers equation Eq. (4.3) is obtained as the space-
derivative of the deterministic KPZ equation, with φ = ∂xh [17]. The full stochastic
Eq. (4.3) can still be interpreted as the space derivative of a generalization of the
full Eq. (1.42) for a specific type of space-correlated noise, see e.g. [92]. We presently
view Eq. (4.3) as an instance of conserved dynamics with non-conserved noise (hence,
displaying kinetic roughening [88, 79]) which shares with the KPZ equation, Eq.
(1.42), the celebrated Galilean invariance [52] (i.e., it remains invariant under a
Galilean change of coordinates) and the lack of symmetry under reflection in the
field, φ ↔ −φ. Equation (4.3) also shares the type of dynamics and noise, and the
lack of up-down symmetry, with the NLMBE equation. However, as shown in this
Chapter, and in contrast with the cases of the latter and of the KPZ equation, the
field statistics for Eq. (4.3) are Gaussian at large scales, an effective up-down sym-
metry emerging in its asymptotic nonlinear behavior which differs from expectations
based on straightforward analysis of the symmetries of its “microscopic” description.
We reach this conclusion through a combined numerical and renormalization-group
(RG) study which addresses the statistics of the physical field through its cumu-
lants (analytically), and the full PDF (numerically). We show how this symmetry
emergence does also occur at higher dimension [Eq. (4.4)] and for some other model
equations with the same bare symmetries as Eq. (4.3).

4.2 Universality class of the stochastic Burgers

equation

4.2.1 Scaling exponents

The scaling exponents which characterize the kinetic roughening of Eqs. (4.3) and
(4.4) have been investigated analytically [52, 56, 92, 55] and numerically [15, 55, 93],
and are collected in Table 4.1. Note, HK scaling is anisotropic, hence the different
exponent values along the x and y directions, while αx/zx = αy/zy = β [15]. As
an illustration, Fig. 4.1(a) shows the time evolution of the structure factor for Eq.

(4.3), S(~k, t) = 〈|φ̃(~k, t)|2〉, where tilde is space Fourier transform, ~k is wave vector,
and brackets are noise averages. Here and below, numerical simulations employ the
pseudospectral method developed in [69] and described in Chapter 3 for periodic

systems. As expected, for |~k| larger than the inverse correlation length, power-

law behavior ensues as S(|~k|) ∼ |~k|−(2α+d) [8, 11, 29] (see Family-Vicsek scaling in
Chapter 1). For Eq. (4.3), the system crosses over from linear behavior at short
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Figure 4.1: S(~k, t) vs k for increasing times [bottom to top, (a) t = 0.32, 5.1, 82, 1300; (b)
t = 0.8, 6.4, 51, 410] for (a) Eq. (4.3), L = 214, and (b) Eq. (4.4) [cuts of S(kx, ky) for
ky = 0, L = 29], for ν = λ = νx = λx = νy = λy = D = 1. Insets show S(km, t) vs t.
Straight lines have the behavior indicated in the corresponding legends, with dashed lines
using the exponent values given in Table 4.1. All units are arbitrary.

Equation αx αy zx zy β

1D Burgers 0 not defined 1 not defined 0
Hwa-Kardar −1/5 −1/3 6/5 2 −1/6

g Hwa-Kardar −1/3 −1/3 4/3 4/3 −1/4

Table 4.1: Scaling exponents for Eqs. (4.3), (4.4) [52, 56, 15, 92, 55, 93].

times and large |~k| [the |~k|-dependent behavior of S(|~k|) ∼ |~k|−2 being induced by

the linear term in the equation] to nonlinear behavior at long times and small |~k|,
where S(|~k|) ∼ |~k|−1, inducing α = 0. In turn, z = 1 is implied [inset of Fig.
4.1(a)] by the S(km, t) ∼ t(2α+d)/z scaling at the smallest wave vector in the system,
km = 2π/L [8, 11, 29] (see Family-Vicsek scaling in Chapter 1). The numerical data
in Fig. 4.1(b) can be similarly discussed to justify the corresponding entries in Table
4.1 for the asymptotic behavior of the gHK equation in d = 2, see likewise [15] for
HK.

While α ≤ 0 as in Table 4.1 usually indicates that d is at or above the upper-
critical dimension dc [84, 85], for Eqs. (4.3) and (4.4) dc = 4 has been demonstrated
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[52, 56]. Specifically, for Eq. (4.3) α = 0 suggests the validity of the Gaussian
approximation, while asymptotics are nonlinear. Hence, it is interesting to study the
scaling behavior of this equation in detail. We resort to a dynamic renormalization
group (DRG) analysis, which has been successfully employed in this context [52, 78],
being based on an iterative solution of Eq. (4.3) in Fourier space. Actually, the DRG
analysis of Eq. (4.3) has been discussed in detail as an illustrative example of this
analytical tool in Chapter 3. After coarse-graining and rescaling, the one-loop DRG
flow for parameters ν, λ, and D reads as in Equations (3.54)-(3.56). Requesting
scale invariance at a non-linear (λ 6= 0) critical point leads to α + z = 1, associated
with the Galilean invariance of Eq. (4.3). Non-trivial fluctuations (D 6= 0) require
non-renormalization of the noise, leading to hyperscaling [52, 8], 2α + d = z (with
d = 1), due to the fact that dynamics are conserved but the noise is not [79]. These
two scaling relations are believed to hold at any order in the loop expansion [52, 56].
They provide an equation set for α and z whose unique solution in d = 1 (2) is the
one given for the Burgers equation (gHK) in the corresponding row of Table 4.1.
The case of the gHK equation is discussed in [55].

4.2.2 Fluctuation statistics

Having determined the scaling exponents, we henceforth perform a partial RG trans-
formation only, which omits the rescaling step. This allows us to make explicit the
scale-dependence of the equation parameters, as proposed in [78]. While λ and D do
not renormalize and are thus scale-independent, the coarse-grained linear coefficient
ν<(k) depends on wave vector as ν<(k) ∼ |k|−1 (see DRG section in Chapter 3). We
exploit this fact to estimate by DRG the cumulants of the statistical distribution
of φ, following the methodology successfully employed for the KPZ [80, 81, 83] and
NLMBE [82] equations. We obtained in Chapter 3 that the cumulants 〈φn〉c are
given by the expression

〈φn〉c =
A

Dn−1λ3n−2

∫
R2(n−1)

G(kn, ωn)kn

×
n−1∏
i=1

dkidωi
(2π)2

kiG(ki, ωi)|G(ki, ωi)|2, (4.5)

where kn = −
∑n−1

j=1 kj, ωn = −
∑n−1

j=1 ωj, and A is a numerical constant. The
estimation for the second cumulant yields the variance of φ,

〈φ2〉c ∼
∫
R

dk

|k|
, (4.6)
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Figure 4.2: Numerical computation of the fourth cumulant in [k1, k2, k3] ∈ [1/L,L]3, for
different values of L (symbols). The solid line shows a linear fit of the numerical data, and
corresponds to the straight line y = 1.05x+ 4.314, hence 〈φ4〉c ∼ (logL)1.05.

whose logarithmic divergence (∼ logL) agrees with the expected value of the rough-
ness exponent, α = 0 [16, 11]. Continuing with even-order cumulants, the fourth
cumulant is estimated by means of analytical integration in time frequencies ωi and
numerical integration in wavenumbers kj. Specifically, using a lower cut-off for the
latter, µ ∝ 1/L, in the 10−3 − 10−8 range, the integral (to simplify the notation, we
drop ω-dependencies in G and L4)

〈φ4〉c =

∫
R3

3∏
i=1

dωi
2π

∫∫∫
µ≤|kj |≤Λ0

3∏
j=1

dkj
2π
×

×G(k1)G(k2)G(k3)G(−k1 − k2 − k3)L4(k1, k2, k3) (4.7)

has been estimated for different values of the system size L by means of analytical
integration in ω1, ω2, ω3, and numerical integration in k1, k2, k3. Parameters have
been chosen so as to make A = 1 and 6Dλ2/π = 1, see Eq. (4.5). Integration
limits in k1, k2, k3 of the form [1/L, L] have been used for different values of L in
order to characterize the divergence of the integral with L. The conclusion is that
〈φ4〉c ∼ (logL)1.05, see Fig. 4.2. Thus, the excess kurtosis of the distribution, Ke =
〈φ4〉c/〈φ2〉2c , vanishes for increasing system size (L→∞).

For odd cumulants (odd n), after integration in ω1, ..., ωn−1, the integrand of
Eq. (4.5) can be represented as kng(k1, ..., kn)

∏n−1
i=1 ki, where all ki in g(·) are to
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be taken in absolute value and g(·) is a function. Now, this expression is anti-
symmetric under the transformation ki 7→ −ki, which maps the semispace S+ =
{(k1, ..., kn−1) ∈ Rn−1|

∑n−1
i=1 ki > 0} into S− = {(k1, ..., kn−1) ∈ Rn−1|

∑n−1
i=1 ki < 0}.

Hence, the integral over the full Rn−1 cancels exactly. Thus, all the odd cumulants
of the φ distribution are zero. Indeed, denoting the PDF of a stochastic variable X
by P (X) = F−1{exp[

∑∞
n=1(is)nCn(X)/n!]}, where Cn(X) are the cumulants, F is

Fourier transform and s is conjugate to X, as F preserves the parity of a function,
all the odd-order cumulants being zero lead to a symmetric PDF [94]. In conclusion,
with null odd cumulants and an excess kurtosis which decreases for increasing L,
these analytical results indeed suggest Gaussian statistics for the field fluctuations
in the stochastic Burgers equation (4.3). The exact cancellation of the odd cumu-
lants is particularly remarkable, in view of the lack of up-down symmetry in the
equation.

Given the approximations made in our one-loop DRG analysis, we have carried
out direct numerical simulations of the Burgers, the HK, and the gHK equations,
in order to explicitly compute the full PDF in each case. Histograms have been
constructed for times both in the nonlinear growth regime (t0 = 0,∆t � tsat) and
after saturation to steady state (t0 > tsat), using L = 220 for Burgers and L = 210

for the HK and gHK equations; other parameters are as in Fig. 4.1. In all cases
the PDF is Gaussian to a high precision, compare the symbols in Fig. 4.3 with the
exact Gaussian form (solid line). More quantitatively, Fig. 4.3 also shows the time

evolution of the skewness S = 〈X3〉c/〈X2〉3/2c and excess kurtosis Ke = 〈X4〉c/〈X2〉2c ,
where X is defined as in Eq. (1.46). While S(∆t) remains essentially null in all
cases for Eqs. (4.3) and (4.4), convergence of Ke to zero requires sufficiently large
∆t, specially for Eq. (4.3). All this supports our conclusions from the DRG analysis
of the stochastic Burgers equation.

4.3 Exact linear approximation

The α = 0, z = 1 values thus obtained for the asymptotics of Eq. (4.3) happen to
equal those of the linear, non-local continuum model that describes diffusion-limited
erosion (DLE) [16, 11],

∂tφ̃ = −|k|φ̃+ η̃, (4.8)

which, in real space, takes the form

∂tφ = −∂xH[h] + η, (4.9)
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Figure 4.3: Fluctuation histogram [(a), (b)] from direct simulations of the Burgers (�),
HK (4), and gHK (O) equations, Eqs. (4.3) and (4.4). Here, X is as in Eq. (1.46), blue
(red) denotes t0 = 0,∆t � tsat (t0 > tsat), with ∆t � 1. Full time evolution of the (c)
skewness, S and (d) excess kurtosis, Ke. Symbols as in (a,b). Convergence to Gaussian
(zero) values occurs in all cases.
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as was discussed in Chapter 1. Let us note that, since the scaling exponents of
Eqs. (4.3) and (4.4) fulfill hyperscaling, as does any linear model [11], an interesting
consequence of our results is that evolution equations can be formulated which share
with Eqs. (4.3) and (4.4) both, the exponent values and the Gaussian statistics, but
which are linear (thus, up-down symmetric)! Namely, the Gaussian approximation
becomes asymptotically exact in these cases. In general, by writing

∂tφ̃ =
(
−

d∑
i=1

|ki|zd
)
φ̃+ η̃, (4.10)

the choice z1 = 1 in d = 1 [the continuum DLE model, Eq. (4.8) [16, 11]] yields the
asymptotic behavior of Eq. (4.3), while in d = 2, choosing z2 = 4/3 provides the
exponents and Gaussian statistics of the gHK equation, and similarly for the HK
model using z2 = 6/5 and dropping the ky-dependence [15].

4.4 Symmetry discussion

Focusing on the stochastic Burgers equation, it is the nonlinear term φ∂xφ which is
responsible for the up-down asymmetry, and it indeed plays an essential role in the
nontrivial behavior described above. We can rationalize the emergence of the up-
down symmetry in the asymptotic nonlinear regime by considering the effect of this
term when isolated, i.e. for the inviscid (ν = 0) and deterministic (D = 0) Burgers
equation, whose solutions are known analytically [54, 95]. Note that the nonlinear-
ity also breaks the left-right (x ↔ −x) symmetry in the system and indeed, as is
well known, it generically induces sawtooth-like profiles [54, 95, 96], which notably
are symmetric around their mean under a combined (x, φ) ↔ (−x,−φ) reflection.
Analogous behavior also occurs in the full ν 6= 0, D 6= 0 stochastic Burgers equation,
becoming even apparent to the naked eye in the asymptotic regime. This is illus-
trated in Fig. 4.4, where typical morphologies are shown in the linear and nonlinear
regimes. For the latter, the parallel straight lines allow us to identify portions of the
profile which are “noisy sawtooths”. Quantitative confirmation is provided by the
slope histogram P (S), obtained for the corresponding linear and nonlinear regimes
and also given in Fig. 4.4. While the distribution of slopes is symmetric for times
dominated by the linear term in Eq. (4.3), the histogram becomes non-symmetric
in the nonlinear regime, large positive slopes being much more frequent than before
due to the abrupt jumps in the φ values that appear, see Fig. 4.4(b), reminiscent
of deterministic sawthooths. Thus, we believe that the asymptotic emergence of the
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Figure 4.4: Profiles described by Eq. (4.3) in the linear (a) and nonlinear (b) regimes
for parameters as in Fig. 4.1. Parallel straight lines are guides to identify sawtooth-like
patches. The slope histogram for time as in (a) [(b)] appears in (c) [(d)], where S =
(∂xφ − ∂xφ)/std(∂xφ) is normalized slope. The S > 0 tail (red squares) is reflected to
facilitate comparison with the S < 0 (blue triangles) data.

up-down symmetry in Eq. (4.3) can be traced back to the deterministic form of so-
lutions induced by its nonlinearity, this mechanism being also operative in the HK
and gHK equations. However, the competition with noise remains far from trivial
in these systems, whose solutions, as in the KPZ case [17], differ quite strongly with
those of their deterministic counterparts.

4.5 Symmetry emergence in other equations

In order to elucidate the generality of the symmetry emergence in the Burgers
equation due to the combined (x, φ) ↔ (−x,−φ) symmetry, we have also stud-
ied the kinetic roughening behavior of equations which do also exhibit the combined
(x, φ) ↔ (−x,−φ) symmetry while also lacking up-down and left-right symmetries.
Specifically, we assess the kinetic roughening of

∂tφ = −ν∂4
xφ+ λ∂x(φ∂

2
xφ) + η, (4.11)

where noise correlations are as in Eq. (4.2). We have also integrated numerically
additional equations with the same structure as Eq. (4.11) but with nonlinearities
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Figure 4.5: Time evolution of the roughness W (top left panel), structure factor S (top
right panel) and skewness and kurtosis of the fluctuations (botton left panel) of numerical
solutions of Eq. (4.11). Bottom right panel shows the fluctuation PDF in the nonlinear
growth regime. Here δx = 1, δt = 0.002, λ = ν = D = 1, and L = 256. Time increases in
all panels from blue to red. Black solid lines are guides to the eye for LMBE β = 3/8 and
expected β = 2/7 (top left panel), LMBE −(2α+1) = −4 and expected −(2α+1) = −7/3
(top right panel), Gaussian S = 0 and K = 3 (bottom left panel) and Gaussian PDF
(bottom right panel). Dashed line in bottom right panel represents a ∼ e−χ2

decay different
from the exact Gaussian that approximately fits the PDF tails.
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of the form ∂x(φ∂xφ) and ∂x(φ∂
3
xφ) leading to unstable solutions. The numerical

integration of Eq. (4.11) is done using the same numerical method that was employed
for the Burgers equation. We have assessed both the scaling exponents and the
fluctuation statistics in order to get a full description of the kinetic roughening
behavior for this equation. The scaling exponents fulfill the expected hypescaling
(2α+1 = z, due to the conserved dynamics and the non-conserved noise) and Galilean
(α+z = 3, by requesting scale invariance at a non-linear λ 6= 0 critical point) scaling
relations, leading to α = 2/3, z = 7/3, and β = 2/7. In Figure 4.5 these values are
clearly identified in the evolution of the surface roughness W and structure factor
S (see top panels). The linear (LMBE) behavior at short times and small scales, in
which the fluctuations are Gaussian, is followed by a nonlinear-dominated regime in
which the fluctuations remain symmetric but become non-Gaussian, decaying faster
than Gaussian in the tails.

4.6 Conclusions

In summary, we have obtained that, although the asymptotic behavior of the univer-
sality class of the Burgers equation with non-conserved noise in d = 1, 2 is controlled
by nonlinear terms that break the up-down symmetry, the statistics are nonetheless
Gaussian. This remains true under strongly-anisotropic perturbations, e.g. by setting
λy = 0 in the gHK equation to obtain the HK equation, with different exponents
but still Gaussian statistics. This fluctuation behavior allows for exact linear ap-
proximations in terms of the kinetic roughening universality class for the asymptotic
nonlinear regime of these equations. Our result is in spite of the close relation of Eqs.
(4.3) and (4.4) with the KPZ equation, whose statistics are paradigmatically non-
symmetric, and contrasts with the non-zero skewness of the NLMBE equation too
[30]. We conjecture that the symmetry in the fluctuations, in spite of the up-down
lack of symmetry in the equation, is restored by the lack of left-right asymmetry,
our argument being reinforced by the behavior of Eq. (4.11), which also exhibits
symmetric fluctuations while lacking both up-down and left-right and symmetry.
Although in this case the fluctuations are non-Gaussian in spite of being symmetric,
we could expect them to converge to Gaussian in the L → ∞ limit if the behavior
of the excess kurtosis is analogous of the corresponding one for the Burgers equation
(Ke → 0 when L→∞) as derived from our DRG analysis.

Overall, Gaussian statistics can hence emerge for suitable systems whose bare
interactions break the symmetries that might be naively associated with the former,
at least when they are broken as in the KPZ case. We hope that our results may aid
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in the challenge of fully understanding the role of symmetries in the fluctuations of
spatially-extended systems far from equilibrium.
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Chapter 5

Non-KPZ fluctuations in the
derivative of the KPZ equation

5.1 Introduction

5.1.1 The stochastic Burgers equation (conserved noise)

In Chapter 4 we showed how the stochastic Burgers equation with non-conserved
noise can be derived as a ultra-low surface tension limit of the stochastic Kuramoto-
Sivashinsky (KS) equation in the context of a thin fluid film falling down on an
inclined substrate which is disordered and subject to random vibrations. The KS
equation with additive conserved noise can be also derived when the sources of noise
are thermal fluctuations, instead of mechanical vibrations of the wall (see full details
about this derivation in Chapter 6). In such a case, the viscous ultra-low surface
tension limit leads to the noisy Burgers equation with conserved noise,

∂tu = ν∂2
xu+ λu∂xu+ ∂xη, (5.1)

where η is zero-mean, uncorrelated white noise [see Eq. (4.2)]. Equation (5.1) is
frequently known as the noisy Burgers equation [97, 98, 99], and it is a paramount
system not only for fluids [100] but also for e.g. plasma turbulence [101], interacting
particle systems [102], and driven-diffusive systems [88].

5.1.2 Universality class: KPZ vs Burgers

Under the u = ∂xh transformation, Eq. (5.1) can be obtained as the derivative of
the Kardar-Parisi-Zhang (KPZ) equation for 1D spatial domains. This relation was
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exploited e.g. in [17] to seminally obtain the exact scaling exponents of Eq. (5.1)
by adapting the earlier dynamical renormalization group (DRG) analysis [52] of the
equation as a model of a randomly stirred fluid. Both, the noisy Burgers and the KPZ
equations share the non-trivial z = 3/2 value for the dynamic exponent describing the
power-law increase of the correlation length, ξ(t) ∼ t1/z [11]. The roughness exponent
α quantifying the scaling of the field roughness with system size at saturation [11],
differs as expected (αKPZ = αBurgers + 1 = 1/2), since h(x) =

∫ x
0
u(x′) dx′. Thus, the

KPZ equation and Eq. (5.1) are frequently considered as two equivalent descriptions
of a same underlying process.

A key element determining the universality class of kinetic roughening is the
statistics of the field. Both 1D equations, KPZ [40, 11] and Eq. (5.1) [102], share
an “accidental” fluctuation-dissipation symmetry by which the nonlinear term does
not influence the corresponding stationary solution of the Fokker-Planck equation
governing the field PDF, P , which becomes a Gaussian, equilibrium-like distribution,
determined by the linear and the noise terms only [40, 102, 11]. However, the KPZ
equation shows that Gaussian behavior for the stationary P does not imply that
the height statistics prior to saturation (for L < ∞) are also Gaussian; indeed,
as discussed in Chapter 1, they have been proven to be described, depending on
global constraints on system size L and/or initial conditions, by some member of
the Tracy-Widom (TW) family of probability distribution functions (PDF) for the
largest eigenvalue of random matrices [31, 18, 33], demonstrating KPZ behavior as
a conspicuous instance among systems with non-Gaussian fluctuations [103].

From the point of view of the specific physical systems described by the noisy
Burgers equation [88, 100, 101, 102], it is crucial to clarify whether their field statistics
are also non-Gaussian in the growth regime, in order to accurately identify the
universality class of their kinetic roughening behavior. In this Chapter we show that
this is not the case, i.e., we show that the one-point PDF for u(x, t) as described by
Eq. (5.1) is Gaussian for times dominated by the nonlinearity, crucially prior-to and
(as expected) after saturation to steady state. We reach this conclusion by direct
numerical simulations of the equation, which are analytically supported by a DRG
analysis of the field statistics for Eq. (5.1). We also address the dynamics of the
space-integral of Eq. (5.1), explicitly illustrating that, in this case, the KPZ sum,
h(x, t), of (correlated) Gaussian Burgers variables u(x, t) indeed yields TW statistics
[104].
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Figure 5.1: Time evolution of the structure factor described by Eq. (5.1) for (a) u(x, t) and
(b) h(x, t) =

∫ x
0 u(x′, t) dx′, using D = ν = 1, λ = 4, and L = 256. Black (red) solid line

corresponds to the linear (nonlinear) regime, as implied by the data collapses in the insets.
The arrows indicate time increase, with t for each line being twice that of the previous
one, starting at t0 = 0.64. All units are arbitrary.

5.2 Universality class of the derivative of the KPZ

equation

5.2.1 Scaling exponents

We begin by addressing the full time dynamics described by Eq. (5.1). While the
invariant measure of the equation has been shown [102, 97, 98] to be Gaussian, and
the asymptotic scaling exponents are analytically known via DRG [52, 105], to our
knowledge the time crossover which occurs from linear to nonlinear behavior has not
been explicitly addressed yet. In order to assess it, we have performed numerical
simulations of Eq. (5.1). Note, this model is known to be conspicuously prone to
numerical instabilities [71]. We use the numerical scheme proposed in [72], which
provides consistent results. We consider flat initial conditions and periodic boundary
conditions.

Figure 5.1 shows the time evolution of the structure factor S(k, t) = 〈|φ̃(k, t)|2〉,
as described by Eq. (5.1). Panel (a) corresponds to φ(x, t) = u(x, t), while panel (b)
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is for its space integral, φ(x, t) = h(x, t) =
∫ x

0
u(x′, t) dx′, which should retrieve the

behavior expected for the KPZ equation. At relatively early times, the linear term
and the noise in Eq. (5.1) are expected to control the evolution of both the u and
h fields, hence z = 2 as provided by the exact solution of the linearized equation
[11]. This behavior is approximately reproduced by our simulations, as implied by
the data collapses shown in the insets for small times. Collapse is achieved for u(h)
using α = −1/2 (1/2), as also borne out from the exact solution of the linearized
equations (5.1) and KPZ, respectively. However, for sufficiently long times, the
value of z changes, indicating nonlinear behavior. Indeed, data collapse is now
obtained using z = 3/2 both, for u and for h, as expected in the asymptotic limit
[52, 17]. Note that, also in both cases, α remains fixed to its linear-regime value
as a consequence of the mentioned “accidental” fluctuation-dissipation symmetry
[102, 11, 40]. Overall, Eq. (5.1) is thus seen to account for the full dynamics of the
Burgers field, and for the KPZ behavior of its space integral. Conversely, in Section
5.3 we integrate numerically the KPZ equation showing that the evolution of its
slope field u(x, t) = ∂xh(x, t) coincides with results from Eq. (5.1). All this supports
the consistency of our numerical results.

5.2.2 Fluctuation statistics

One-point statistics

Beyond scaling exponents, we have also studied numerically the field statistics de-
scribed by Eq. (5.1), by considering fluctuations X as defined in Eq. (1.46). We
assess in Fig. 5.2 the histogram of X(x,∆t, t0) for the u and h fields, as numerically
obtained from Eq. (5.1). Full PDFs are shown in Figs. 5.2(a) and 5.2(b) for times
both in the nonlinear growth regime determined above (t0 + ∆t < tsat, blue empty
symbols) and after saturation to steady state (t0 > tsat, red filled symbols). Figures

5.2(c) and 5.2(d) show the time evolution of the field skewness, S = 〈X3〉c/〈X2〉3/2c

and excess kurtosis, Ke = 〈X4〉c/〈X2〉2c , respectively. The statistics of u(x, t) are
Gaussian to a high precision, both prior to and after saturation, see the PDFs in
panels (a,b). Indeed, the skewness and (somewhat more slowly) the excess kurtosis
converge rapidly to zero [panels (c,d)] for u(x, t).

In the case of the h(x, t) field, Eq. (5.1) correctly leads S(t) and Ke(t) to take
on the characteristic universal values of the KPZ equation, either TW-GOE or BR
[shown as blue or red solid lines, respectively, in Figs. 5.2(c) and (d)] for intermediate
values of ∆t within the expected ranges of t0 and ∆t (t0 = 0, tsat > ∆t � 0 and
t0 > tsat, t0 > ∆t� 0, respectively). Indeed, the PDF of h fluctuations approaches
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Figure 5.2: Histograms for X(x,∆t, t0) (a,b) from simulations of Eq. (5.1) with ν = 1,
λ = 103, D = 10−3, and L = 256, for φ = u (squares) and φ = h(x, t) =

∫ x
0 u(x′, t) dx′

(circles). Means and variances have been adjusted to TW-GOE and BR values. Dynamics
of skewness (kurtosis) appears in (c) [(d)]. In all panels blue (red) and empty (filled)
symbols correspond to the growth (saturation) regime, with black, blue, and red solid
lines showing exact Gaussian, TW-GOE, and BR values, respectively; tsat = 100, and
∆t = 25−50, 1.5−3, and 0.4−0.8 are used for Gaussian, TW-GOE, and BR-like histograms,
respectively. Thin lines in (c,d) are guides to the eye. All units are arbitrary.
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the TW-GOE or BR distributions for t0 = 0 or t0 = tsat, respectively, only for such
intermediate values of ∆t. This behavior has been also observed for discrete and
continuum models in the KPZ universality class [32, 106]. Specifically, the difference
between the actual PDF and the ideal TW-GOE or BR distributions reaches a
minimum for intermediate values of ∆t. It is for such ∆t that the numerical h-PDF
is plotted in Figs. 5.2(a,b). Means and variances have been adjusted to equal those
of the exact TW-GOE or BR distributions. As the pre- or post-saturation h-PDF
evolves from Gaussian to TW-GOE or BR, to become Gaussian again for large ∆t
[see panels 5.2(c,d)], the Gaussian black solid line on panels 5.2(a,b) seems to attract
the tails of the h distribution.

The Gaussian behavior numerically obtained for u as described by Eq. (5.1)
coincides with analytical expectations derived from a DRG evaluation of the field
cumulants. Specifically, we take the same approach taken in Chapter 3 for the
scalar Burgers equation with non-conserved noise [1], which performs a partial RG
transformation only, in which a coarse-graining of the equation is performed, while
omitting the standard additional rescaling step [52, 105]. Thus, within a one-loop
approximation [80, 81, 82, 83, 1] (see details in Appendix A), W 2 = 〈u2〉c = B

∫
R dk1,

where B is a numerical constant. Considering non-zero lattice spacing, s, and finite
L, the variance of u thus scales as 1/L for L� s, which indeed agrees with the ex-
pected value of the roughness exponent, α = −1/2. Moreover, W 2 ∼ s−1 for s � 1
[11, 107]. We have additionally characterized the divergence of the fourth cumu-
lant, 〈u4〉c, with lattice spacing to determine the asymptotic behavior of the excess
kurtosis, Ke = 〈u4〉c/〈u2〉2c . The fourth cumulant of the fluctuation distribution,

〈u4〉c = A
∫
R2(n−1) G(−k1 − k2 − k3,−ω1 − ω2 − ω3)×

(−k1 − k2 − k3)
∏3

i=1
dkidωi
(2π)2 kiG(ki, ωi)k

3/2
i ν2(ki)|G(ki, ωi)|2, (5.2)

where A = πn−1/2inΓ(n− 1/2)K2D/[n!(n− 1)λn−2], has been estimated for different
values of the lattice spacing s by using the Monte Carlo integration method described
in Chapter 3. Gaussian random variables have been used for ω1, ω2, ω3. For the
spatial wavenumbers k1, k2, k3, random variables distributed as ∼ k−1

i have been
chosen in order to enhance the numerical efficiency of the Monte Carlo estimation.
Parameters have been chosen so as to make A = 1 and Dλ2/2π = 1. Integration
limits in k1, k2, k3 of the form [1,Λ] have been taken for different values of Λ ∝ 1/s,
in order to characterize the divergence of the integral with the lattice spacing s. The
conclusion is that 〈u4〉c ∼ (ln Λ)0.79, see Fig. 5.3.

Moreover, as described in Chapter 4 for Burgers equation with non-conserved
noise, an exact symmetry in reciprocal space induces the exact cancellation of all
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Figure 5.3: Numerical computation of the fourth cumulant in the [k1, k2, k3] ∈ [1,Λ]3

region, for different values of Λ (symbols). The solid line shows a linear fit of the numerical
data, and corresponds to the straight line y = 0.79x− 3.94, hence 〈u4〉c ∼ (ln Λ)0.79.

odd-order cumulants (〈un〉c for odd n). Hence, the skewness is identically zero and,
more generally, the u-PDF is symmetric (as a Gaussian, but unlike the TW distri-
bution [1]). Combined with the vanishing kurtosis, these results fully agree with the
Gaussian statistics we have found numerically for the u field.

Covariance

A final difference in the critical behavior of the u (Burgers) and h (KPZ) fields, as
described by Eq. (5.1), lies in the behavior of the covariance C(x, t) as defined in Eq.
(1.44). The correlations for the h field obtained as the integral of the u field from
numerical simulations of Eq. (5.1) have been shown in the description of the KPZ
universality class in Chapter 1. Here, the behavior of the u field is depicted in Fig.
5.4. In both cases the expected scaling form holds [8, 11], C(x, t) = t2βc(x/t1/z) with
c(y) ∼ cst.−y2α for y � 1 and 0 for y � 1, but the exponents leading to collapse [i.e.,
those derived from Fig. 5.1] are different, as are the corresponding scaling functions
c(y). Hence, qualitative differences between Burgers and KPZ behaviors seem larger
for the one-point statistics than for C(x, t).

Our simulations of Eq. (5.1) likewise reproduce the expected two-point correla-
tions for h (whose results were also provided in Chapter 1 as illustration for the
KPZ fluctuation behavior after saturation) and u after saturation to steady state, as
shown by studying G(x, t) as in Eq. (1.47) for long times t0 > tsat. For φ = u, one
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Figure 5.6: Time evolution of the structure factor of solutions of the Burgers equation with
conserved noise (a) and the slopes of the KPZ equation (b), for D = 1, λ = 4, ν = 1, and
L = 256. Black (red) solid lines correspond to the linear (nonlinear) regime, as implied by
the collapse shown in the insets. Time increases following the arrow, t for each line being
twice that of the previous one, starting at t0 = 0.64. All units are arbitrary.

expects [41, 42, 33] C(x, t) ∝ t1/zf(a1x/t
1/z), for t0 > tsat, where f(y) ∼ e−a2y3

with
a1,2 being numerical constants, as approximately obtained in Fig. 5.5.

5.3 Noisy Burgers as the derivative of KPZ

To further assess the relation between Burgers equation with conserved noise Eq.
(5.1) and the Kardar-Parisi-Zhang (KPZ) equation, where the former is the space
derivative of the latter, here we simulate numerically both, Eq. (5.1) and KPZ, taking
the space derivative of the latter for each time and noise realization, compute the
structure factor for both numerical fields, and compare the results. Recall that the
stochastic nonlinear equations which we are discussing are conspicuously prone to
numerical inaccuracies and instabilities [72, 71], which renders nontrivial the present
type of check which we are performing. Results are provided in Fig. 5.6, in which
panel (a) corresponds to Eq. (5.1) [thus repeating the same data shown in Fig.
5.1 (a) of section 5.2.1 for the reader’s convenience] and panel (b) corresponds to
the numerical derivative of the KPZ profile described by Eq. (1.42). As expected,
results are virtually indistinguishable, hence consistent with the behavior discussed
in section 5.2.1 for the Burgers equation with conserved noise, Eq. (5.1), namely,
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Figure 5.7: Fluctuation histogram [using X as defined in Eq. (1.46)] for t0 = 0 (blue) and
t0 = tsat = 300 (red) and ∆t = 150, from numerical simulations of Burgers equation with
conserved noise (squares) and from the derivative (slope field) of numerical simulations of
the KPZ equation (circles), using parameters as in Figs. 5.1(a) and (b). The solid lines
correspond to a Gaussian distribution. Time evolution of the fluctuations skewness (c)
and kurtosis (d) for the same numerical simulations as in panels (a) and (b). All units are
arbitrary.

early-time (linear regime) exponent values zlinear = 1.9, αlinear = −1/2 and late-time
(nonlinear regime) exponent values znonlinear = 3/2, αnonlinear = −1/2.

We proceed similarly to compute the probability distribution function (PDF) of
the field both, for Eq. (5.1) and for the numerical derivative of Eq. (1.42). Results are
provided in Fig. 5.7. The histograms have been computed for the same parameter
conditions as in Fig. 5.2, both for the same t0 and ∆t values for which Tracy-Widom
(TW) and Baik-Rains (BR) distributions are obtained for the h field described by
Eq. (5.1) there. The histograms shown in Figs. 5.7(a) and (b) are Gaussian to a
high precision, compare the simulation results symbols in the figures with the exact
Gaussian forms (solid lines). Also, the skewness and excess kurtosis shown in Figs.
5.2(c) and 5.7(d), respectively, are seen to readily take on their Gaussian (zero) val-
ues. All these results support the interpretation of the noisy Burgers equation as
the derivative of the KPZ equation, as well as the Gaussian behavior of its fluctua-
tions, both prior and after saturation to steady state, as assessed by our numerical
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simulations.

5.4 Exact linear approximation

The Gaussian nature of the field PDF displayed by Eq. (5.1) in its large-scale nonlin-
ear regime allows for an exact Gaussian (asymptotic) approximation of the equation
in terms of a linear model which is in the same universality class, including scal-
ing exponent values and Gaussian statistics. Again, this is akin to the case of the
scalar Burgers equation with non-conserved noise (see Chapter 4), also including
higher-dimensional and strongly anisotropic generalizations [15, 55], like the cele-
brated Hwa-Kardar equation for the height of a running sand pile [56]. In contrast
with these cases, Eq. (5.1) does not support hyperscaling (2α + d = z) [11, 8],
hence noise correlations are required in order to match the full universal behavior.
Specifically, the linear, non-local equation

∂tũ(k, t) = −|k|3/2ũ(k, t) + η̃(k, t), (5.3)

〈η̃(k, t)η̃(k′, t′)〉 = |k|3/2δ(k + k′)δ(t− t′), (5.4)

yields the exact same asymptotic behavior of the nonlinear Eq. (5.1). Note that a
similar exact Gaussian approximation is not possible for systems with non-Gaussian
statistics (like the KPZ equation), not even considering correlations in the noise.

5.5 Symmetry discussion

Our numerical and analytical results indicate that the long-time behavior of Burgers
equation with conserved noise, Eq. (5.1), albeit controlled by the nonlinear term,
displays Gaussian statistics. This is in spite of the fact that it is precisely such a
nonlinear term which breaks the reflection symmetry (u ↔ −u) of the equation.
As noted Chapter 1, this lack of symmetry has been correlated in the KPZ [11]
and nonlinear-MBE equations [30] with a non-zero skewness due to the existence
of a preferred growth direction [8]. Hence, the symmetry of the (Gaussian) PDF is
again an emergent property of the large-scale behavior in Eq. (5.1), much as it is
for Burgers equation with non-conserved noise (see Chapter 4). Akin to the latter,
the symmetric field PDF in the nonlinear regime can be related with the behavior of
the deterministic (viscous) Burgers equation, which is analytically known [95, 96] to
yield sawtooth profiles, symmetric, as Eq. (5.1), under a combined (x, u)↔ (−x,−u)
transformation. This nonlinear behavior can be specifically assessed in the slopes
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Figure 5.8: Histogram for the slope field φ = ∂xu [using X = (φ−φ̄)/std(φ)] from numerical
simulations of Eq. (5.1) for ν = 1, λ = 104, D = 10−3, and L = 256, for times in the linear
(a), nonlinear (b), (c), (d), and saturation (e) regimes [time for each panel is twice that
of the previous one, starting at t0 = 40 (a)]. The X > 0 data (red left triangles) have
been reflected to facilitate comparison with X < 0 data (blue right triangles). All units
are arbitrary.

histogram, again as in Burgers equation with non-conserved noise [108] (see Chapter
4), being enhanced for large λ and small ν and D values.

In order to assess this phenomenon and in analogy with the simulations provided
in Figs. 5.2 and 5.6, we assess the relevance of sawtooth-like features in the long-time
behavior of the noisy Burgers equation, by evaluating the fluctuation histogram for
both (i) the slopes of the u field from the solutions of the Burgers equation with
conserved noise and (ii) the second-order space derivative (curvature field) of the
h field from the solutions of the KPZ equation. As expected, in both cases the
profiles are asymmetric for intermediate times within the nonlinear regime [Figs.
5.8 and 5.9 (b)-(d)], away both from the linear [Figs. 5.8 (a) and 5.9 (a)] and from
the saturation [Figs. 5.8 (e) and 5.9 (e)] regimes, in which the surface is x ↔ −x
symmetric on average.

5.6 Behavior in higher dimensions

It is natural to consider if non-KPZ behavior also occurs for the Burgers equation
with conserved noise in higher dimensions. E.g. in 2D, note that, if the equation
is to be for a scalar field, it can no longer be the derivative of the KPZ equation,
as this is a vector field. Nevertheless, a scalar 2D generalization of Eq. (5.1) can
still be formulated in close analogy with the case of non-conserved noise (generalized
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Figure 5.9: Fluctuation histogram from numerical simulations of the curvature field
(second-order space derivative) from numerical simulations of the KPZ equation, for times
in the linear (a), nonlinear (b-d), and saturation (e) regimes (time for each panel is twice
that of the previous one, starting at t0 = 40). The histogram for X > 0 (red left triangles)
has been reflected to facilitate comparison with the X < 0 (blue right triangles) data.
Parameters as in Fig. 5.1, except for λ = 104 and D = 10−3. All units are arbitrary.

Hwa-Kardar Eq. (4.4), see Chapter 4), which reads

∂tu = ν ∇2u+ λu(∂xu+ ∂yu) + ∂xηx + ∂yηy, (5.5)

〈ηi(r1, t1)ηj(r2, t2)〉 = 2Dδijδ(r1 − r2)δ(t1 − t2), i, j = x, y. (5.6)

Numerical simulations have been carried out of Eq. (5.5). Our numerical simu-
lations employ the same pseudospectral numerical scheme which has been employed
for Eq. (5.1). The evolution of the structure factor S(k, t) = S(kx, 0, t) = S(0, ky, t)
[55] is shown in Fig. 5.10. For increasing time and as in 1D, S(k, t) again converges
towards k-independent (i.e., white noise) behavior except for the largest values of k,
due to the limited accuracy of the numerical scheme at small scales. Note the small
range of values that actually occur for S(k, t), leading to large relative numerical
errors, which are specially large at such small scales. Data collapse is achieved for
α = −1/2 and z = 3/2, notably the same numerical values as in 1D, i.e., for Eq.
(5.1).

The one-point statistics of the u field has been also numerically characterized
for Eq. (5.5). The time evolution of the skewness and excess kurtosis, as well as the
histograms for X as defined in Eq. (1.46), are plotted in Fig. 5.11, both in the growth
regime and after saturation to steady state. The large impact of numerical errors
for these data, related with the limited range of values of the structure factor (see
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Figure 5.10: Time evolution of the structure factor S(k) = S(kx, 0) = S(0, ky) for the
gHK equation with conserved noise, Eq. (5.5). Time increases in the direction of the
arrow, doubling for each consecutive live starting at t0 = 1. The inset shows collapsed
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also Fig. 5.10), seems to induce a slightly negative excess kurtosis. Nevertheless, the
variations in u show a symmetric PDF and behave not far from a Gaussian random
variable, thus again a non-KPZ universality class in 2D [18, 33].

5.7 Conclusions

In summary, we have obtained that the field statistics of the Burgers equation with
conserved noise are Gaussian, in spite of the facts that its asymptotic behavior is con-
trolled by a nonlinear term which explicitly breaks the up-down symmetry and that
the equation is related to KPZ through a mere space derivative. Such non-symmetric
statistics indeed occurs both, for the integral and the slope fields related with the
u field described by Eq. (5.1). In particular, all this behavior provides a nontrivial
example in which the KPZ sum, h(x, t) =

∫ x
0
u(x′, t) dx′, of (correlated) Gaussian

Burgers variables u yields non-Gaussian KPZ variables h. Albeit counterintuitive,
this effect is not unknown; there are known cases of sums of (even uncorrelated)
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Gaussian variables which turn out not to be Gaussian themselves. For instance
[109], if we consider a 2D random vector X = (X1, X2) = (Z1, sign(Z1)|Z2|), where
Z1 and Z2 are independent Gaussian random variables, by construction both X1 and
X2 are normally distributed but their realizations are always either both negative or
both non-negative, hence the random variable Y = X1 +X2 is not Gaussian.

We have also provided novel data for the correct identification of the universality
class (including scaling exponent values and field PDF) of the stochastic Burgers
equation, which plays a relevant role as a physical model in the many contexts of
spatially-extended systems, from fluid turbulence to driven diffusive systems.
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Chapter 6

Transition between chaotic and
stochastic universality subclasses

6.1 Introduction

6.1.1 Universality subclasses in the stochastic KS equation

As described in Chapter 1, while keeping the same values of the scaling exponents,
universality subclasses exist in the 1D KPZ class, which differ by the flavor of the
precise TW PDF which occurs: indeed, finite systems whose size (does not) increase
linearly with time display largest-eigenvalue distribution of random matrices in the
Gaussian Unitary Ensemble GUE (Gaussian Orthogonal Ensemble GOE) statistics
[110, 111, 112]. Transitions between different subclasses have been also assessed for
changes in the background topology [113] or in the rate of system-size change [114].
Furthermore, the existence of universality subclasses induced by similar changes in
geometrical constraints carries over to the main linear [115] and nonlinear [30] univer-
sality classes of kinetic roughening other than KPZ. In all these cases, the universality
subclasses sharing scaling exponent values differ by some global geometrical or topo-
logical condition on the system size or background metric; hence the existence of
alternative mechanisms which may likewise control the field PDF remains uncertain.
In this Chapter, we will provide an example of a novel mechanism inducing tran-
sitions between universality subclasses in the context of the Kuramoto-Sivashinsky
(KS) equation.

Specifically, we begin by showing below that the kinetic roughening behavior of
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the stochastic Kuramoto-Sivashinsky equation with conserved noise

∂tu = −ν0∂
2
xu− κ0∂

4
xu+ λ0u∂xu+ D̃0∂xη, (6.1)

is characterized by critical exponent values which are shared by its deterministic
limit D̃ = 0. The large-scale behavior of the deterministic KS equation is known to
remarkably coincide [51, 116] in terms of scaling exponents with that of the stochastic
Burgers equation, whose kinetic roughening exponents and field PDF have been
studied in Chapter 5. However, we will show that the field PDF for the KS equation
is non-Gaussian (Gaussian) for low (large) noise values, corresponding to dynamics
dominated by chaotic (stochastic) fluctuations. This transition in the universality
class occurs at a non-zero noise amplitude D̃0 and might be observable in suitable
experimental contexts.

On the other hand, the deterministic (D0 = 0) [117, 118], as well as the stochastic
(D0 6= 0) KS equations for h =

∫ x
0
u dx′ [119, 105]

∂th = −ν0∂
2
xh− κ0∂

4
xh+

λ0

2
(∂xh)2 +D0η, (6.2)

namely the KS-KPZ equations, are both in the KPZ universality class. However,
how and if the nature of the fluctuations, whether deterministic chaos or stochastic
noise, reflects into the kinetic roughening behavior, has remained overlooked thus
far. We will show for Eq. (6.2) that the field PDF follows the same TW-GOE distri-
bution in both cases, in spite of the fact that a similar chaotic-stochastic dominated
fluctuations transition occurs analogous to that in Eq. (6.1).

6.1.2 KS equation with conserved noise as a physical model

While the Kuramoto-Sivashinsy equation, Eq. (6.1), has been derived as a physical
model in many different contexts, either in the deterministic case (see the full deriva-
tion as an interface equation for a thin fluid film falling down a slope in Chapter 2) or
subject to non-conserved noise [49], there does not seem to be an analogous explicit
derivation in which the equation comes out perturbed by conserved noise as in Eq.
(6.1). In this section we provide one such derivation for a liquid film falling down an
inclined plane (see Fig. 2.1 in Chapter 2), which is assumed to be so thin (ultrathin)
that thermal fluctuations and disjoining pressure can no longer be neglected [61, 59].

We implement thermal fluctuations in the stress tensor as done in Chapter 2
following classical stochastic hydrodynamics [59], namely, we write

T = T f + S = T f +

(
Sxx Sxy

Syx Syy

)
, (6.3)
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where T f is the fluidic stress tensor as in (2.7) and Sij are the components of a
symmetric, zero-mean, delta-correlated fluctuation tensor S as in Chapter 2. The
balance of linear momentum takes the form

ρ(ut + u ux + v uy) = µ(uxx + uyy)− px + ρ g sin θ + Sxxx + Sxyy , (6.4)

ρ(vt + u vx + v vy) = µ(vxx + vyy)− py − ρ g cos θ + Syxx + Syyy , (6.5)

where subindices denote partial derivatives.
Now, analogously with the procedure described in Chapter 2 in the derivation of

the deterministic KS equation, we take the average thickness, h0, of the liquid layer
as a typical length scale, w0 = ρgh2

0 sin θ/2µ as a velocity scale, w0/h0 as a time
scale, and µw0/h0 as a representative scale for pressure and stress, and introduce
a small parameter ε and the new variables x′ = εx, t′ = εt, and v′ = v/ε, adapted
to a lubrication approximation [49] within which the cross-stream dimension of the
film will be considered much smaller than its streamwise extent. We consider the
capillary number, Ca = µw0/γ, to be order ε2 and define Ca′ = Ca/ε2. We expand
u = u0 +εu1 +O(ε2), v′ = v′0 +εv′1 +O(ε2), and p = p0 +εp1 +O(ε2), and consider Sxx,
Syy to be O(ε−2) and Sxy, Syx to be O(ε−1) [59]. Last, by defining Sxx′ = Sxx/ε2,
Syy ′ = Syy/ε2, Sxy ′ = Sxy/ε, and Syx′ = Syx/ε, the momentum balance equations
(6.4) and (6.5) and the surface boundary conditions

||~n (T + Π I) ~n|| = γC, ||~n (T + Π I) ~t|| = 0 (6.6)

become, respectively,

Re ε(ut + u ux + v uy) = ε2uxx + uyy − εpx + 2 + ε3Sxxx + εSxyy , (6.7)

Re ε2(vt + u vx + v vy) = ε3vxx + εvyy − py − 2 cot θ + ε2Syxx + ε2Syyy , (6.8)

p+Π = ε
εh2

x(2εux + ε2Sxx)− hx[2(uy + ε2vx] + 2εSxy) + 2vy + εSyy

1 + ε2h2
x

− 1

Ca′
hxx, (6.9)

0 = −ε2h2
x(uy+ε2vx+εSxy)+ε2hx[ε(S

yy−Sxx)+2(vy−ux)]+uy+ε2vx+Syx, (6.10)

where primes have been dropped.
We compute the velocity profile u = u0 +εu1 +O(ε2). At O(1), Eq. (6.7) becomes

u0yy = −2. As u0y = 0 at the fluid surface y = h [leading order of Eq. (6.10)] and
u0 = 0 at the substrate y = 0, we obtain u0 = 2 (hy − y2/2). Considering the
fluid film to be ultrathin, Re � 1 can be neglected, and Eq. (6.8) at O(ε) becomes
u1yy = p0x − Sxyy . Here we have u1y = −Syx [Eq. (6.10) at O(ε)] and u1 = 0 as
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boundary conditions at the fluid surface and the substrate, respectively, which allow
us to obtain the profile for u1 = −p0x (hy − y2/2) −

∫ y
0
Syxdy. The p0 contribution

can be obtained from Eq. (6.7) at O(1), p0y = −2 cot θ, with p0 = −Π− hxx/Ca′ as
boundary condition at the fluid surface, obtaining p0 = 2 cot θ (h−y)−Π−hxx/Ca′.

Finally, mass conservation reads ht+
(∫ h

0
u0 + ε u1dy

)
x

= 0. Using that
∫ h

0
u0 dy =

2h3/3 and ∫ h

0

u1 dy = −h
3

3
p0x =

= −h
3

3

(
2 cot θ hx − Πx −

1

Ca′
hxxx

)
+

∫ y

0

∫ y′

0

Syx dy′ dy, (6.11)

the evolution equation becomes

ht +

(
2

3
h3 + ε

h3

3

(
−2 cot θ hx + Πx +

hxxx
Ca′

)
+ ε

∫ y

0

∫ y′

0

Syx dy′ dy

)
x′

= 0. (6.12)

Substituting
∫ y

0

∫ y′
0
Syx dy′ dy by (µkBTh

3/3)1/2η, where kB is the Boltzman con-
stant, T is the temperature and η is zero average, Gaussian white noise [59] (see
Chapter 2 for additional details) and Π = −φy, where φ is the interface potential
[58], we finally obtain

ht +

(
2

3
h3 + ε

h3

3

(
−2 cot θ hx − φyx +

1

Ca′
hxxx

)
+ ε

√
µkBTh3

3
η

)
x

= 0. (6.13)

A weakly-nonlinear expansion allows us to obtain the KS equation with con-
served noise from Eq. (6.13). Considering very small fluctuations around the flat
film solution, h = 1 + εh̃, Eq. (6.13) becomes

0 = εh̃t +

(
[1 + 3εh̃+ 3ε2h̃2 +O(ε3)]

(
2

3
+
ε

3
Px

)
+ ε

√
µkBT

1 +O(ε)

3
η

)
x

, (6.14)

where

Px = ε

[
−2 cot θ h̃x +

1

Ca′
h̃xxx − φyy(1 + εh̃)

]
. (6.15)

If we linearize φ′(1 + εh̃) ' φy(1) + φyy(1)εh̃, expand (h̃2)x = 2h̃h̃x, and consider the
change of variable z = x − 2t and τ = εt (thus ∂t = −3∂z + ε∂τ and ∂x = ∂z), Eq.
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(6.14) becomes

h̃τ + 4h̃h̃z −
2

3
cot θ h̃zz +

1

3Ca′
h̃zzzz + φyy(1)h̃zz +

1

ε

√
µkBT

3
ηz = 0. (6.16)

Finally, by defining κ0 = 1/(3Ca′), ν0 = φyy(1)− 2 cot θ/3, and η̃ = η/ε,

h̃τ + ν0h̃zz + κ0h̃zzzz + 4h̃h̃z +

√
µkBT

3
η̃z = 0, (6.17)

which is a particular case of the general stochastic KS equation (6.1) after coordinates

and fields are renamed as (z, τ, h̃, η̃) → (x, t, u, η), with D0 = 0, D̃0 =
√

µkBT
3

, and

λ0 = −4.

6.2 Universality class of the KS equation

In this section we investigate in full detail the universality class of Eq. (6.1) for the
deterministic case, as well as for the stochastic cases with conserved noise, Eq. (6.1),
and also with non-conserved noise, namely,

∂tu = −ν0∂
2
xu− κ0∂

4
xu+ λ0u∂xu+D0η, (6.18)

for which the eventual presence of additional sources of conserved noise, whose
strength is ∝ k2 in Fourier space, are irrelevant at large scales (k � 1).

As similar argument to the seminal one by Yakhot [51] leads one to expect Eqs.
(6.1) and (6.18) to renormalize at large scales into an effective stochastic Burgers
equation,

∂tu = ν∂2
xu+ λu∂xu+ (D + D̃∂x)η, (6.19)

where notably ν > 0, rendering asymptotically irrelevant the biharmonic term in
Eqs. (6.1) and/or (6.18). Moreover, the noise in the effective equation, Eq. (6.19),
respects the conservation law expressed by either Eq. (6.1) or Eq. (6.18). I.e., if the
bare equation is deterministic or has conserved noise, then D = 0, D̃ 6= 0, while if
the bare noise is non-conserved, so is the effective noise, thus D 6= 0, D̃ = 0.

6.2.1 Scaling exponents

We have performed numerical simulations of Eq. (6.1) using the implementation of
the pseudospectral method described in Chapter 3 and periodic boundary conditions
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Figure 6.1: Time evolution of S(k, t) from numerical simulations of Eq. (6.1) for different
noise conditions: (a) deterministic case (D0 = D̃0 = 0; bottom) and conserved-noise
(D0 = 0, D̃0 = 1; top). Top inset: data collapse for αcn = −1/2, zcn = 3/2. Bottom
inset: time evolution of the roughness of h(x, t) =

∫ x
0 u(y, t)dy; the straight line has slope

βnc = (αcn +1)/zcn = 1/3; (b) non-conserved noise (D0 = 1, D̃0 = 0). Inset: time evolution
of S(km, t) for the smallest k-value, km; the straight line has slope 2αnc + 1 = znc = 1.
For all panels, averages are over 100 realizations, time increases from blue to red, and the
slope of the red solid line for small k is −(2α + 1) for α = αcn = −1/2 [αnc = 0] on (a)
[(b)].
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for system size L = 2048. Initial conditions are random (with 10−5 amplitude) for the
deterministic case and zero otherwise. Parameters are fixed to ν0 = κ0 = 1, λ0 = 10,
and space-time discretization steps are taken as δx = 1, and δt ∈ [0.01, 0.05].

The scaling exponents characterizing the universality class can be readily identi-
fied in the evolution of the field roughness W and the structure factor S(k, t). The
numerical time evolution of S(k, t) is shown in Fig. 6.1 for Eq. (6.1) (left panel),
both with and without noise (D̃0 6= 0 and D̃0 = 0), and for Eq. (6.18) (right panel).
The scaling exponents predicted by Yakhot’s argument [51] are indeed obtained:

• On the one hand, Eq. (6.1) renormalizes into Burgers equation, Eq. (6.19), with
conserved noise D = 0, D̃ 6= 0, for which αcn = −1/2 and zcn = 3/2 [2] (see
Chapter 5). The roughness exponent αcn = −1/2 is observed in the behavior
of S(k, t) ∼ k−(2αcn+1) = k0 for large t in both cases, while the exponent zcn

is observed by collapsing the structure factor S = k2αcn+1f(kt1/z) (as done
in the top part of the panel for the stochastic case), or in the behavior of
the roughness of the field h(x, t) =

∫ x
0
u(y, t)dy, trivially expected to scale as

h ∼ xα+1 [17, 2], hence W ∼ tβnc , with βnc = (αcn + 1)/zcn = 1/3 (as seen in
the bottom part of the panel for the deterministic case).

• On the other hand, Eq. (6.18) renormalizes into Burgers equation, Eq. (6.19),
with non conserved noise D 6= 0, for which αnc = 0 and znc = 1 [1] (see Chapter
4), as observed in the behavior of S(k, t) ∼ k−(2αnc+1) = k−1 for large t and
S(k, t) ∼ t(2αnc+1)/αnc = t for very low values of k.

The scaling exponent values already imply that the KS equation with non-
conserved noise belongs to a different universality class than that of the deterministic
and conserved-noise equations, while the latter two share the same asymptotic values
of the scaling exponents α and z.

6.2.2 Fluctuation statistics

One-point statistics: skewness and kurtosis

In order to assess in detail the fluctuation statistics for the different forms of the
Kuramoto-Sivashinsky equation, we start by addressing the time evolution of both,
the skewness and the excess kurtosis of the fluctuations of the u [Eqs. (6.1) and (6.18)]
or h [Eq. (6.2)] fields, see Fig. 6.2. This figure presents results for: the deterministic
KS equation, Eq. (6.1) with D̃0 = 0 [panel (a)], the KS equation with conserved noise,
Eq. (6.1) with D̃0 6= 0 [panel (b)], the KS equation with non-conserved noise, Eq.
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Figure 6.2: Time evolution of the fluctuation skewness S (triangles) and excess kurtosis Ke = K−3
(squares) for the Kuramoto-Sivashinsky equation, Eq. (6.1), with (a) D̃0 = 0, (b) D̃0 = 1, Eq. (6.18)
with (c) D0 = 0.1, and for the Kuramoto-Sivashinsky equation with KPZ-like nonlinearity, Eq. (6.2)
with D0 = 1 (d). In all cases, ν0 = κ0 = 1 and λ0 = 10. Red solid (dashed) lines correspond to
the exact skewness (excess kurtosis) value of the Gaussian (a,b,c) and GOE-Tracy-Widom (d)
distributions.

(6.18) with D0 6= 0 [panel (c)], and the KS equation for the h field with non-conserved
noise, Eq. (6.2) with D0 6= 0 [panel (d)], whose fluctuation statistics had not been
previously reported in the literature. In all cases, times are prior to saturation to
steady state.

In general, we can observe that the fluctuation distributions remain largely un-
changed over time. Panels (a-c) actually show that, in the corresponding systems
(and at variance with the behavior of the 1D KPZ equation), the PDF within the
nonlinear time evolution actually coincides with the corresponding PDF at satura-
tion. Such a saturation PDF is reported in [116] for the deterministic KS equation
[panel (a)], while in the cases of the stochastic KS equation with conserved [panel
(b)] and non-conserved [panel (c)] noise results are only available for the correspond-
ing stochastic Burgers equation with which they share asymptotic scaling behavior
(in terms of scaling exponents and, presumably, of fluctuation PDF), reported in [2]
(see Chapter 5) and [1] (see Chapter 4), respectively.

More specifically, the time evolution of the skewness and excess kurtosis shown
in Fig. 6.2 implies a PDF which exhibits a symmetric, notably platykurtic, non
Gaussian behavior for the deterministic KS equation [panel (a)], and almost Gaussian
behavior in the KS equation with conserved [panel (b)] or non-conserved noise [panel
(c)]. The emergence of this symmetry in panels (a-c) can be interpreted in the same
way as has been done for Burgers equations in Chapters 4 and 5, due to the combined
(u, x) ↔ (−u,−x) symmetry which also holds for Eqs. (6.1) and (6.18). Finite-size
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Figure 6.3: Fluctuation PDF for the Kuramoto-Sivashinsky equation with non-conserved noise,

Eq. (6.18) (using ν0 = κ0 = 1, λ0 = 10 and D0 = 0.1), in the nonlinear regime prior to saturation.

The solid line provides the exact Gaussian form. The right panel is a linear-log representation of

the same data shown on the left panel.

deviations of the excess kurtosis from its exact zero value seen in panels (b,c) are
comparable to similar deviations in the corresponding cases of the stochastic Burgers
equation with conserved or non-conserved noise (Chapters 5 and 4), respectively
[2, 1]. Finally, panel (d) reproduces closely the expected GOE-TW behavior for the
KS-KPZ equation with non-conserved noise. However, this case is well-known to
feature quite different PDF behavior at steady state (Gaussian), as is the case in the
1D KPZ universality class [33].

One-point statistics: full PDFs

We also investigate the full PDFs for the fluctuation statistics of the u field in Eqs.
(6.1) and (6.18) within the nonlinear regime prior to saturation to steady state. The
case for the KS equation with non-conserved noise [panel (c) if Fig. 6.2] is presented
in Fig. 6.3. It is Gaussian to a high precision, as expected.

For Eq. (6.1), we found a more complex behavior. We assess the full PDF for
different values of the conserved-noise amplitude D̃0; results are shown in Fig. 6.4. In
the deterministic D̃0 = 0 case, the rescaled fluctuations of u around its space average
ū, defined as χ = (u − ū)/std(u), exhibit a symmetric probability density function
(PDF) whose tails decay much faster than those of a Gaussian distribution. Hence,
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Figure 6.4: Top panel: Kurtosis of u-fluctuations within the nonlinear regime prior to
saturation for Eq. (6.1) with D0 = 0, and different values of D̃0. The line is a guide to the
eye. The bottom panels show the PDF of standardised u-fluctuations (χ) for increasing
values of D̃0 left to right, which correspond to the filled squares in the top panel. Red solid
lines show an exact Gaussian PDF; the black solid line is for P [χ] ∼ exp(−χ4.5). Insets
in top panel show representative u(x) profiles for D̃0 = 0 (deterministic case; left) and
D̃0 = 1 (conserved-noise case; right). Averages are over 10 realizations.

the kurtosis is much smaller than 3, see Fig. 6.4. This PDF features two symmetric
shoulders implying a relatively high frequency for two characteristic fluctuations in
u-values, which can be approximately identified by inspection of the u(x) profile
shown in the figure. Similar distributions had been earlier reported at steady state
[116]. The assessment of the full time evolution of the skewness and the excess
kurtosis of the u fluctuations in Fig. 6.2 showed them to remain virtually unchanged
along the nonlinear time regime.

The main qualitative features of the PDF are preserved for increasing values of
the conserved-noise amplitude D̃0, up to a certain value. For larger values of D̃0, the
fluctuation PDF starts to approach the Gaussian form, with a kurtosis which ap-
proaches the exact Gaussian value, see Fig. 6.4. Inspection of the representative u(x)
profile shown for D̃0 = 1 indeed suggests the smaller predominance of characteristic
fluctuations around the mean than in the deterministic case.

Covariance

As a complement of the reciprocal-space discussion and the one-point statistics, we
provide details on the behavior of the covariance function in real space C(x, t) as
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Figure 6.5: Data collapse of the covariance function C(x, t) at different times in the growth regime

(increasing from blue to red), from numerical simulations of Eq. (6.1), for φ = u (left panel) and

φ = h =
∫ x

0
u(x′, t) dx′ (right panel), for L = 2048, δt = 10−2, ν0 = κ0 = 1, λ0 = 10, D̃0 = 1. The

scaling exponents employed are those determined in the previous section for each case. In each

panel the inset shows the uncollapsed data. The black solid line in the right panel shows the exact

covariance of the Airy1 process [33]. All units are arbitrary.

defined in Eq. 1.44, which corresponds to the KS equation, for φ(x, t) = u(x, t),
and to the KS-KPZ equation, if we integrate numerically Eq. (6.1) while taking
φ(x, t) = h(x, t) =

∫ x
0
u(x′, t) dx′. Results are shown in Fig 6.5. As can be seen, the

data collapse in both cases to the expected scaling form, C(x, t) = t2βc(x/t1/z), with
c(y) ∼ cst.− y2α for y � 1 and 0 for y � 1 [8, 11], using the corresponding values of
the scaling exponents as determined in previous subsection. For the h field, collapse
is to the exact covariance of the Airy1 process, as expected in the growth regime for
1D KPZ scaling with periodic boundary conditions, see e.g. [33].

6.3 Chaotic-stochastic transition

In this section, we analyze the transition between large and low values of the noise
strength both in Eq. (6.1) and in Eq. (6.2) and assess the relation between the
changes in the fluctuation PDF and the eventual chaotic-stochastic transition in
the predominant nature of the fluctuations. In order to assess the nature of the
fluctuations, we measure the so-called scale-dependent Lyapunov exponent Λ(ε) dis-
cussed in Chapter 3 [75, 76], with ε being a distance between trajectories {Ti(x0) =
[φ(x0, (i + 1)∆t), u(x0, (i + 2)∆t), ..., φ(x0, (i + m)∆t)]}Ii=1 extracted from the time
series φ(x0, t) with φ = u for Eq. (6.1), φ = h for Eq. (6.2), x0 is any fixed value of
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x, and ∆t is a sampling time. The full details about the computation of Λ(ε) from
numerical data contained in time series are provided in Chapter 3.

6.3.1 Conserved KS equation

While the PDFs of the deterministic and the (large) conserved-noise cases of Eq.
(6.1) are both even in χ, they are obviously different, specially with respect to the
occurrence of “typical” fluctuation values. One could speak of two different sub-
classes of a single universality class which additionally features αcn = −1/2 (white
noise) and zcn = 3/2 (superdiffusive spread of correlations, as in the 1D KPZ equa-
tion). Further dynamical properties suggest that we could even speak of a change
in the universality class, with a transition at a well-defined value of D̃0 separating
the predominance of chaotic or of stochastic fluctuations. This interpretation is sup-
ported by a study of the behavior of the finite-size Lyapunov exponents of the system
[77, 76] as a function of the conserved-noise amplitude.

We have studied numerically the behavior of Λ(ε) for Eq. (6.1) and different values
of D̃0, setting m = 4, I = 4997, and ∆t = δt; results are shown in Fig. 6.6. Indeed, in
the (D̃0 = 0) deterministic case, Λ(ε) displays a well-defined plateau for small ε, and
decays monotonously for ε & 3 ·10−3. The plateau width decreases for increasing D̃0.
In contrast, for “large” D̃0 = 1, Λ(ε) decays monotonically with ε. We consider that
a transition takes place when the plateau first vanishes, for D̃0 ' D̃0,c = 1.6 · 10−3.
Actually, starting at this value the kurtosis K(D̃0) departs from its deterministic
value, approaching Gaussian behavior. Moreover, the L-dependence of the threshold
value D̃0,c seems weak, see Fig. 6.6.

Finally, Fig. 6.7 provide a more detailed view than that provided by Fig. 6.4 on the
transition between the deterministic and the stochastic PDF. We have identified the
threshold value D̃0,c ' 0.0016 as that value of D̃0 above which not only the kurtosis
departs from its deterministic (D̃0 = 0) value but also for which the scale-dependent
Lyapunov exponent Λ(ε) changes qualitative behavior from chaos- to stochastic-
dominated fluctuations, see Fig. 6.6. Figure 6.7 illustrates how this change is more
difficult to see by naked-eye inspection of the form of the field PDF. Note that for
all cases considered in this figure, D̃0 > D̃0,c. The two leftmost panels display PDFs
with inflection points which are akin to those characteristic of the PDF for purely
chaotic fluctuations (D̃0 = 0). Nevertheless, such inflection points disappear once
the stochastic-noise amplitude increases even further above D̃0,c, beyond which the
fluctuation PDF eventually reaches fully-Gaussian form, as previously shown in Fig.
6.4.
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Figure 6.6: (a) Scale-dependent Lyapunov exponent vs ε from numerical solutions of Eq.
(6.1) within the nonlinear regime prior to saturation, for D0 = 0 and conserved-noise am-
plitudes D̃0 as in the legend. (b) Kurtosis of u fluctuations vs D̃0 for L = 1024 (squares)
and L = 4096 (circles). Inset: Distance bewteen K(D̃0) and the kurtosis of the determin-
istic system, Kdet, vs D̃0. For each L, the difference grows (blue data) to the right of the
corresponding red point. All lines are guides to the eye. Averages are over 10 realizations.
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the deterministic D̃0 = 0 case; black solid lines guide the eye for the numerical values shown as

squares; the blue dotted-dashed line in the rightmost panel shows the exact Gaussian PDF. All

vertical axes are in logarithmic scale. Averages are made over 10 noise realizations.

6.3.2 KS-KPZ equation

We have additionally assessed the transition between chaotic and stochastic kinetic
roughening behavior in the KS equation with KPZ nonlinearity and non-conserved
noise, Eq. (6.2), which describes the integral field h(x, t) =

∫ x
0
u(x′, t) dx′ for Eq.

(6.1). In Fig. 6.8 we confirm that, for an increasing noise amplitude D0, Λ(ε) behaves
similarly to what has been obtained for Eq. (6.1): the (D0 = 0) deterministic system
shows a plateau of ε-independent behavior which disappears for D0 & 0.01, beyond
which stochastic behavior ensues. However, now the transition does not reflect into a
change between two different fluctuation PDFs. Indeed, in the chaotic case (D0 = 0)
fluctuations of Eq. (6.2) are known to be Tracy-Widom distributed in the nonlinear
regime prior to saturation [118], while Fig. 6.8 indicates that so do fluctuations for a
“large” value of stochastic noise, for which fluctuation PDF had not been reported in
the literature yet, to our knowledge. Asymptotic scaling exponent values are known
to be 1D KPZ, irrespective of the value of D0 [120, 118].

6.4 Conclusions

In summary, we have seen that Yakhot’s classic argument on the asymptotic equiv-
alence between spatiotemporal chaos and kinetic roughening holds only partly for
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Figure 6.8: (a) Scale-dependent Lyapunov exponent for solutions of the KS Eq. (6.2) within
nonlinear regime prior to saturation, for noise amplitudes D0 as in the legend. Remaining
parameters as in previous figures. (b) PDF of h-fluctuations within nonlinear regime for
D0 = 1. Red solid line shows the exact GOE-TW PDF [31, 18, 33]. Inset: same data in a
linear plot. Averages are over 10 realizations.

99



Chapter 6 Fluctuations and patterns in ultrathin fluid films

Eqs. (6.1) and (6.2); specifically, for Eq. (6.1), different universality classes occur
with different field PDF, albeit with the same scaling exponent values. This fact
is not captured by Yakhot’s argument which, while incorporating the basic system
symmetries (conserved vs non-conserved dynamics, etc.), misses key differences be-
tween PDFs which are otherwise consistent with the former. The dynamical role
of symmetries can be subtle indeed in the present class of nonequilibrium critical
systems [87, 121, 1], as described in Chapters 4 and 5 for the Burgers case.

Crucially, each one of the kinetic roughening universality classes occurring in Eq.
(6.1) correlates with the nature (chaotic or stochastic) of the mechanism controlling
fluctuations in the system, the transition between them nontrivially occurring at a
nonzero stochastic noise amplitude. This transition could be experimentally verified,
for instance in epitaxial growth of vicinal surfaces [122], where the KS equation de-
scribes the dynamics of atomic steps separating terraces under non-negligible adatom
desorption [123]. In such a case the equation for the step slope is Eq. (6.1), where
D̃0 scales as an inverse power of the characteristic desorption time. For the KS-KPZ
equation, Eq. (6.2), although an analogous transition takes place in the dominance of
chaotic or stochastic fluctuations, on both sides of the transition the field PDF and
the scaling exponents are those of the 1D KPZ universality class. Indeed, the TW
distribution is not only relevant to the stochastic 1D KPZ class, but also describes
the fluctuations of deterministic chaotic systems [124]. This coincidence might well
be accidental and limited to 1D systems. Its exploration in 2D might provide some
clue on the relation between the deterministic KS and the stochastic KPZ equations
in higher dimensions [125], an open challenge in the fundamental understanding of
spatiotemporal chaos [126].

The results reported in this Chapter on the transition between chaotic and
stochastic universality classes for Eqs. (6.1) and (6.2) are summarized graphically
in Fig. 6.9. Note that, possibly, the most frequent (albeit non-exclusive) interpreta-
tion for the noise intensity in physical models in which noisy Kuramoto-Sivashinsky
equations have been derived as physical models, is as temperature, although addi-
tional ones are also possible and have been proposed, such as an an external particle
flux.

With respect to the specifics of the present transition, it would be interesting to
obtain analytical estimates on the threshold noise amplitude and to assess nontrivial
consequences on physical quantities beyond the field PDF. The behavior discussed
above for S(k, t) already indicates differences in the equal-time two-point statistics,
but two-time statistics may introduce additional novelties. In this process, it would
be interesting to find analogous transitions, but in which the chaotic and stochastic
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Figure 6.9: Graphical summary of results reported in this Chapter for Eqs. (6.1) and (6.2).

“phases” might also differ by the values of the scaling exponents.
Finally, the correlation between the field PDF and the nature of the fluctuations

underscores the importance of assessing the PDF explicitly, to correctly identify
the kinetic roughening universality class. This is particularly critical in view of the
plethora of experimental complex systems that can be described by a paradigmatic
model like the KS equation, in its different (conserved or non-conserved; deterministic
or stochastic) forms, especially when both, chaotic and stochastic fluctuations may
be operative at comparable space-time scales.
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Chapter 7

Inviscid KPZ and Burgers
equations: novel universality
classes

7.1 Introduction

In this Chapter, self-organization processes are studied in the context of some pe-
culiar limits for thin fluid films. First, consider the addition of a dispersion term
to the Kuramoto-Sivashinsky (KS) equation leading to the generalized Kuramoto-
Sivashinsky (gKS) equation mentioned in section 2.2.2. This equation has been
derived in the modelling of thin fluid films, e.g. for a film falling down an uniformly
heated wall [127], a film falling down a vertical fiber [128], or liquid films sheared by
a turbulent gas [129]. It reads [149]

∂tu = −∂2
xu− ∂4

xu+ u∂xu+ c∂3
xu, (7.1)

where c is the parameter that governs the dispersion term. It is known [57, 149]
that the gKS equation is a paradigmatic model for a peculiar transition between
chaotic behavior and regular behavior in spatially extended systems; specifically, for
small values of c the dynamics of the gKS equation exhibits the same spatiotemporal
chaotic behavior discussed in Chapter 6 for the KS equation, but for large enough
values of c the dynamics of the gKS equation exhibits travelling wave-like solutions
[130]. In the limit of large dispersion c � 1, the travelling waves in the solutions
are analogous to those present in the solutions of the celebrated Korteweg-de Vries
(KdV) equation,

∂tu = c∂3
xu+ u∂xu, (7.2)
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which has also been proposed in the modelling of thin fluid films, like superfluid
Helium films [131].

Our first goal in this Chapter is to assess the behavior of the stochastic KdV
equation

∂tu = c∂3
xu+ u∂xu+ ∂xη. (7.3)

obtained by adding a conserved noise term to Eq. (7.2) analogous to the additive
noise term obtained for the KS equation in Chapter 6, due to thermal fluctuations.
Equation (7.3) will be shown below to exhibit an unprecedented kinetic roughening
behavior which is similar to a random deposition process (see Chapter 1) but with
saturation to steady state. Moreover, under the change of variable u = ∂xh in
analogy with the relation between Burgers and KPZ equations assessed in Chapter
5, Eq. (7.3) becomes

∂th = c∂3
xh+ (∂xh)2 + η. (7.4)

As a result of our numerical work, intrinsic anomalous scaling behavior is found for
Eq. (7.4), concurrent with symmetry emergence for the field fluctuations.

We will also assess in this Chapter the inviscid c→ 0 limit for both Eqs. (7.3) and
(7.4). This limit corresponds to the ultra-low viscous and ultra-low surface tension
limit in the equation derived in Chapter 6 for an ultrathin fluid film falling down a
slope. We find the same kinetic roughening behavior as for Eqs. (7.3) and (7.4) for
c > 0, hence we conclude that the dispersion term does not affect these properties.

Notice that neither Eq. (7.3) nor Eq. (7.4) had been previously integrated success-
fully in the literature up to our knowledge for the type of noise we are considering;
the addition of such noise makes the solutions numerically unstable unless a proper
numerical method is employed.

On the other hand, the relation between continuum equations and discrete models
in which similar kinetic roughening processes occur of the same universality class [like
the totally asymmetric simple exclusion process (TASEP) [33, 18, 31, 132] and the
reaction-diffusion fronts [133] being in the KPZ universality class] is adressed in
this Chapter through the study of a surface growth process in the context of the
celebrated Ising model, based on the proposal of [134], and in which the scaling
exponent values suggest a relation to the inviscid KPZ equation.
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Figure 7.1: Spatiotemporal evolution of Eqs. (7.2) (bottom) and (7.3) (top), namely the
deterministic and the stochastic KdV-Burgers equations, respectively. Insets represent the
corresponding surface morphology along the black solid line for each case. Here x and t
increase bottom to top (1 to 128) and left to right (0 to 64), respectively.

7.2 Kinetic roughening

7.2.1 Kinetic roughening of the KdV equation

The two versions of the stochastic KdV equation, namely, with Burgers and KPZ
nonlinearities, equations (7.3) and (7.4) respectively, have been successfully inte-
grated numerically using the pseudo-spectral method developed in [69] (see Chapter
3 for more details). Although there are examples in the literature of successful inte-
gration of the KdV equation with temporal noise η(t) [135], there are no precedents
of numerical integration of the KdV equation under the addition of spatiotemporal
noise up to our knowledge. In all cases we have studied, the dispersion parame-
ter c has been set to 1. We begin with a comparison of the field morphologies for
the stochastic and the deterministic KdV-Burgers equations with a random initial
condition [Eq. (7.3) with η = 0 and η 6= 0, respectively] that is shown in Fig. 7.1.
Travelling wave-like structures are appreciated in the deterministic case, while a
much more disordered pattern appears in the stochastic case, in which fluctuations
grow substantially with time. We wonder at this point if a kinetic roughening pro-
cess is happening in the stochastic case, in which the magnitude of the fluctuations

105



Chapter 7 Fluctuations and patterns in ultrathin fluid films

10
-1

10
1

10
3

10
0

10
1

10
-1

10
0

10
-2

10
0

10
2

10
-4

10
-1

10
2

10
-2

10
0

L=64

L=128

L=256

L=512

10
1

10
2

10
-2

10
0

10
2

G.R. Sat.

Figure 7.2: Time evolution for the roughness, W (t, L), height difference correlation func-
tion, G(r, t), and structure factor, S(k, t), of the field u(x, t) in Eq. (7.3). The data collapse
for the roughness as in Eq. (1.12) is also shown for α = 1/3 and z = 2/3. Morphologies
u(x) for growth regime (G.R.) and saturation (Sat.) are also depicted. Insets represent
the evolution in time for the average values of G(r, t) over r and S(k, t) over k (denoted
by overbars), where solid red lines have unit slope.

grows with time. The time evolution of the field roughness W (t) and the structure
factor S(k, t) of the stochastic KdV equation in both Burgers-like and KPZ-like [Eqs.
(7.3) and (7.4), respectively] versions have been measured. The evolution of W (t)
is shown in the left panels of Figs. 7.2 and 7.4. In both cases, the field roughness
follows a Family-Vicsek scaling as in Eq. (1.12), leading to the data collapse shown
in the left bottom panels of both figures with exponents α = 1/3, β = 1/2, and
z = 2/3 for KdV-Burgers, and α = 1, β = 1, and z = 1 for KdV-KPZ. Notice that
these values are in agreement with the Galilean scaling relations (which holds if there
is not renormalization of the nonlinear terms of the equation), α + z = 1, 2 for Eqs.
(7.3) and (7.4), respectively.

The structure factor for KdV-Burgers, Eq. (7.3), exhibits a trivial scaling behavior
as it does not depend on k, while it increases with time as S(t) ∼ t2β for times prior
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Figure 7.3: Partial collapses of the structure factor S(k, t) of the field h(x, t) in Eq. (7.3)
according to Eq. (7.5) for α = 1/3 and β = 1/2. Blue to red colors correspond to increasing
times (prior to saturation tsat) in the right panel.

to saturation (t < tsat); finally, the structure factor scales with the system size as
S(tsat) ∼ L2α at saturation. This behavior is induced by the independence of S with
k and Eq. (1.5), and is also explicitly shown in Fig. 7.3. In summary, the scaling
of S(k, t) follows a scaling form which is analogous to the one of the roughness W ,
namely,

S(k, t) ∼ L2αk−(2αs+d)fS(t/Lz), fS(u) ∼
{
u2β, u� 1
Cnst, u� 1

, (7.5)

which is not conventional anomalous scaling in the sense described in Chapter 1. Its
steady state behavior is however similar to that obtained in [136] for a stochastic
model of independent pulses. Note that the k-independence S ∼ k0 leads to an
effective spectral exponent αs = −1/2 in Fourier space, S(k) ∼ k−(2αs+1), which is
closely related with the local roughness exponent αloc, as discussed in Chapter 1. As
αloc can be measured from the behavior of the height-difference correlation function
G(r, t) ∼ r2αloc , the dependence G ∼ r0 shown in Fig. 7.2 leads to αloc = 0. It
is unclear if a negative value αloc < 0 could be distinguished from αloc = 0 in the
correlation function.

In contrast, the structure factor for the KdV-KPZ equation, Eq. (7.4), does
exhibit an intrinsic anomalous scaling behavior consistent with Eq. (1.17), where
αs = 1/2 is the spectral roughness exponent. Both S(k, t) and its collapse are shown
on the right panels of Fig. 7.4.
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Figure 7.4: Time evolution for the roughness, W (t, L) and the structure factor S(k, t) of
the field h(x, t) in Eq. (7.4). The data collapses for the roughness and structure factor
(times correspond to the same ones as in W ) are also shown using α = 1, z = 1, and
αs = 1/2. Morphologies h(x) for the random deposition (R.D.), nonlinear (N.L.), and
saturation (Sat.) regimes are also depicted.
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7.2.2 Kinetic roughening of the inviscid Burgers and KPZ
equations

In this section we drop the dispersive term in Eqs. (7.3) and (7.4) and study the
ensuing equations, namely

∂tu = u∂xu+ ∂xη, (7.6)

and

∂th = (∂xh)2 + η, (7.7)

respectively. Note that Eqs. (7.6) and (7.7) correspond directly to the inviscid Burg-
ers and KPZ equations, in which the surface tension/viscosity term is set to zero.
Quite importantly, in such a case none of the exact results (exponents, PDF) known
for the 1D KPZ equation hold, as they use as starting point the so-called Cole-Hopf
transformation which requires ν 6= 0 e.g. in Eq. (1.42) [34, 18, 33].

We integrate Eqs. (7.6) and (7.7) numerically. The same observables as those
depicted in Figs. 7.2 and 7.4 for Eqs. (7.3) and (7.4), respectively, are shown in
Figs. 7.5 and 7.6. They exhibit the same behavior. Hence, this result suggests that
the dispersive term has a null effect in the kinetic roughening behavior of these
equations. That could be considered to be natural, as the dispersive ik3 term in
Fourier space from the third derivative, being purely imaginary, makes perturbations
travel along space at different velocities for different length scales, but does not affect
their magnitude.

In order to study the full relation with the KPZ and the Burgers universality
classes, which had a conspicuous role in previous chapters of this thesis, the fluctu-
ation statistics for the inviscid Eqs. (7.6) and (7.7) have been studied. In Fig. 7.7,
the time evolution of the skewness S and kurtosis K is shown and compared with
those for a Gaussian PDF. In the evolution of the KdV-Burgers equation, Gaussian
fluctuations hold throughout the whole temporal evolution. In the KdV-KPZ case,
the fluctuations exhibit a symmetric non-Gaussian behavior. This behavior, how-
ever, corresponds to a PDF whose tails can be fitted as P ∼ exp (−χ2) but that
is much flatter than Gaussian near the origin. Hence, symmetry of the fluctuation
PDF emerges for the inviscid Burgers equation in a similar way as it was described
in Chapters 4 and 5 for Burgers equation, despite the lack of up-down u↔ −u sym-
metry, which could also be associated to the (x, u) ↔ (−x,−u) invariance. On the
other hand, Eq. (7.7) is also not up-down (h ↔ −h) symmetric, but it is x ↔ −x
symmetric, hence there is not a combined symmetry that allows us to understand
the symmetry emergence on its fluctuations. Unfortunately, the absence of the linear
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Figure 7.5: Time evolution for the roughness, W (t, L), the height-difference correlation
function, G(r, t), and the structure factor, S(k, t) (times correspond to the same ones as
in W ), of the field u(x, t) in Eq. (7.6). The data collapse for the roughness as in Eq. (1.12)
is also shown for α = 1/3 and z = 2/3. Morphologies u(x) for growth regime (G.R.) and
saturation (Sat.) are also depicted. Insets represent the evolution in time for the average
values of G(r, t) over r and S(k, t) over k, where solid red lines have unit slope.
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Figure 7.6: Time evolution for the roughness, W (t, L) and the structure factor S(k, t)
of the field h(x, t) in Eq. (7.7) (times correspond to the same ones as in W ). The data
collapses for the roughness and structure factor are also shown using α = 1, z = 1, and
αs = 1/2. Morphologies h(x) for the random deposition (R.D.), nonlinear growth (N.L.),
and saturation (Sat.) regimes are also depicted.
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Figure 7.7: Time series for the skewness S and kurtosis K (blue and red, respectively, in
the left panels) and probability density function (PDF, solid blue lines in right panels) of
the normalized field fluctuations [χ = (φ−φ)/std(φ)] for the inviscid Burgers equation [Eq.
(7.6), here φ = u] (top) and the inviscid KPZ equation [Eq. (7.7), here φ = h] (bottom).
Red dashed lines correspond to the Gaussian PDF. The black dashed line corresponds to
P (χ) = 0.6 exp (−0.7χ2).

term in these equations prevents the use of e.g. dynamic renormalization group for
further analysis in these cases.

The scaling exponents and fluctuation statistics found for the inviscid Burgers
and KPZ equations lead to the identification of new universality classes. In Table
7.1 we summarize these results and contrast them with the analogous ones for the
full stochastic Burgers and KPZ equations, which differ from their inviscid counter-
parts at least with respect to exponent values. Also, note that the inviscid Burgers
equation, while being the space derivative of the inviscid KPZ equation, has expo-
nent values which do not follow trivially from those of the latter, in contrast to the
relation studied in Chapter 5 for the ν 6= 0 case.

For the inviscid KPZ equation, its generalization to higher-dimensional substrates
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Universality class Reference equation α αs z P [φ]

Burgers ∂tφ = ∂2
xφ+ φ ∂xφ+ ∂xη −1/2 −1/2 3/2 Gaussian

Inviscid Burgers ∂tφ = φ ∂xφ+ ∂xη 1/3 1/3 2/3 Gaussian

KPZ ∂tφ = ∂2
xφ+ (∂xφ)2 + η 1/2 1/2 3/2 Tracy-Widom

Inviscid KPZ ∂tφ = (∂xφ)2 + η 1 1/2 1 Pseudo-Gaussian

Table 7.1: Scaling exponents and fluctuation statistics in the Burgers and KPZ (in both
their viscid and inviscid forms) universality classes for d = 1.

is straightforward, namely,
∂th+ (∇h)2 + η = 0. (7.8)

Such is not the case for equations with Burgers-like nonlinearities. Hence, in princi-
ple, the definition of an inviscid KPZ universality class seems a natural one. How-
ever, simulations of the inviscid KPZ equation present numerical stability problems
e.g. for d = 2. In Fig. 7.8 the numercial h(x, y, t) profiles are shown to exhibit
blow-up. This coincides with some expectations from previous results reported in
the literature [137], in which a surface described by the 2D KPZ equation is argued
to become multivalued in the ν = 0 limit. In the next section, we will assess an al-
ternative approach for the inviscid KPZ equation in higher dimensions, which differs
from direct numerical integration; namely, the study of a discrete model, hopefully
free from finite-time blow-up, which may potentially belong to the same universality
class.
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Figure 7.8: Evolution of the field h(x, y) of solutions of the inviscid KPZ equation [Eq.
(7.8)] for a two-dimensional substrate at different times close to the numerical blow-up.
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7.3 Ising model and the inviscid KPZ universality

class

In this section we will discuss how a surface growth model derived from an Ising
system could be classified as a member of this thus-far unreported inviscid KPZ uni-
versality class. The scaling behavior of a 1D interface associated with an equilibrium
2D Ising system at the critical temperature T = Tc has been studied in [134], see
below for precise definitions. They observe anomalous scaling with α = 1 (Wsat ∼ L)
and αs = 1/2 [S(k) ∼ k−2], the same exponents as those we have found to describe
the spatial scaling of the fluctuations in the inviscid KPZ equation, as seen in the
previous section. However, no time-related exponents are measured in [134]. That
is the reason why we proceed to study the full dynamics of this process, in order
to determine if not only at steady state, but also in the growth regime, the scaling
is the same as that found for the inviscid KPZ equation. We will study below the
full dynamic scaling, including the temporal behavior, of this system by simulat-
ing the temporal evolution of Ising spin domains in 2D and 3D, with the boundary
conditions described in Fig. 7.9. For that purpose, two different approaches are
considered: assessing the evolution of the spin field from the point of view of the
continuous Ginzburg-Landau equation and, alternatively, via a discrete Monte Carlo
Metropolis algorithm.

7.3.1 System description

We define a 1D (2D) spatially extended surface h(x, (y)) from a 2D (3D) spin domain
{si,j,(k)}, si,j,(k) = ±1, i, j, k = 1, 2, ..., N , as proposed in [134]. Dirichlet (fixed) and
Neumann (free) boundary conditions are fixed on each boundary in one of the system
dimensions; specifically, s0,j,(k) = +1 and sN+1,j,(k) = sN,j,(k), respectively. Periodic
boundary conditions are considered in the other dimensions, i.e., si,0,(k) = si,N,(k),
si,N+1,(k) = si,1,(k), si,j,(0) = si,j,(N), and si,j,(N+1) = si,j,(0). We will refer to these
boundary conditions as magnet. Then, the set Ci,j,(k) is defined, such that Ci,j,(k) = 1
for all the spins aligned with the +1 spins fixed at the Dirichlet boundary and
connected to each other by nearest-neighbor paths, and Ci,j,(k) = 0 otherwise. The
height of the surface is finally defined as

h(x, (y)) =
N∑
i=1

Ci,x,(y). (7.9)

115



Chapter 7 Fluctuations and patterns in ultrathin fluid films

Figure 7.9: Definition of a height profile (red solid line) from a certain 6× 6 spin domain
(yellow and blue colors correspond to +1 and −1 spin values, respectively). The spin rows
below and above the botton and top black solid lines illustrate the Dirichlet and Neumann
boundary conditions, respectively.

An illustrative 2D spin domain with N = 6 under these boundary conditions, as well
as its corresponding h(x) surface profile, is depicted in Fig. 7.9.

7.3.2 Ginzburg-Landau approach

The Ginzburg-Landau (GL) equation [138]

∂tm =
1

2

(
∂2
xm+m−m3

)
+Dη, (7.10)

where m denotes a local magnetization field and η a white additive noise of unit
variance, is an effective coarse-grained model that can be used to describe the evolu-
tion of the scalar magnetization of a ferromagnet around thermal equilibrium [139].
We use this model in order to simulate the full dynamic evolution of a ferromag-
netic system to equilibrium. We also define here a spin lattice si,j,(k) by discretizing
si,j,(k) = +1 if mi,j,(k) > 0 and si,j,(k) = −1 otherwise, from which we will define the
field h(x) using Eq. (7.9). The same boundary conditions as those proposed in [134]
have been considered, see Fig. 7.9.
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Identification of the critical temperature

First, we assess the behavior of this system at different values of the noise strength D
in order to determine the noise amplitude corresponding to the critical temperature
Tc. A simple finite-difference scheme is used for the integration of Eq. (7.10). In Fig.
7.10 we show how the relative fluctuation of the magnetization field,

M =
〈m2(x)〉 − 〈m(x)〉2

LdD
, (7.11)

at steady state t � 1 exhibits a divergence as M ∼ Lγ/ν for the critical value
D = Dc ' 0.9 corresponding to the critical temperature T = Tc. Here, γ = 7/4
and ν = 1 are the Ising critical exponents in two dimensions [138]. This divergence
is more clear if we consider a spin system in which all the boundary conditions are
periodic, as shown in the bottom panels of Fig. 7.10.
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Figure 7.10: Determination of the noise strength Dc corresponding to the critical tem-
perature Tc for the GL equation in a 2-dimensional spatial domain. Left panels show the
magnetization fluctuation M at steady state for different values of D and lateral system
size L [magnet boundary conditions (top) and periodic boundary conditions (bottom)]. At
D = Dc, corresponding to T = Tc, M diverges with L as a M ∼ L7/4 (red solid line) as
expected from the 2D Ising critical exponents γ = 7/4 and ν = 1 [140].

Dynamics at T = Tc

Once the noise amplitude corresponding to the critical temperature is determined,
the full critical dynamics of the field h(x)(t) is evaluated at D = Dc. Numerical
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simulations of Eq. (7.10) have been carried out and the evolution of the roughness
W (t) and the structure factor S(k, t) have been studied. A homogeneous initial
condition mi,j = −1 for all i, j = 1, 2, ..., L has been considered, while the opposite
spin value has been considered at the Dirichlet boundary corresponding to i = 0.
In Fig. 7.11, the evolution of both the surface roughness W (t) and the structure
factor S(k, t) are depicted, as well as the data collapse corresponding to the scaling
exponents α = 1 (W ∼ L), αs = 1/2 [S(k, tsat) ∼ k−2] and z = 1, hence β = 1.
A random deposition regime [with β = 1/2 and an almost flat S(k)] is observed at
short times, as for the inviscid KPZ equation. Morphologies for h(x) profiles in the
random deposition, nonlinear growth, and steady state regime are also depicted.
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Figure 7.11: Time evolution for the roughness W (t, L) and the structure factor S(k, t)
of the field h(x, t) defined from the solutions of Eq. (7.10) for a 2-dimensional do-
main. The data collapse for the roughness W (t, L) = Lαf(t/Lz) and structure factor
S(k, t) = k−(2α+1)g(kt1/z), are also shown. Morphologies h(x) for random deposition
(R.D.), nonlinear growth (N.L.) and saturation (Sat.) regimes are depicted.

In order to assess the full equivalence between this model and the inviscid KPZ
equation in terms of universality classes of kinetic roughening, i.e. scaling exponents
and fluctuations statistics, the height fluctuations of h(x) have been measured at
different times; results are shown in Fig. 7.12. The fluctuations distribution is dis-
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Figure 7.12: Probability density function (PDF) for the height fluctuations χ = (h −
h̄)/std(h) over 5000 realizations from GL equation in 2D at critical noise D = 0.9 ' Dc

and L = 128 for t = 1600 (left) and t = 200 (right).

torted by the Dirichlet and Neumann boundary conditions (at the bottom and the
top, respectively, in Fig. 7.9). At short times, when some parts of the height pro-
file are close to the bottom (Dirichlet) boundary, the negative range of fluctuations
become over-represented. At longer times, the approach to the upper (Neumann)
boundary appears to induce a second over-representation, now for a positive range
of fluctuations. To avoid this effect as much as possible, for the construction of the
fluctuation histograms we have discarded morphologies in which the upper part of
the h(x) field touches the upper boundary of the domain. This makes us reject noise
realizations very easily, requiring a large number of runs to assess the system behav-
ior at moderate and long times. In spite of these rejections, this effect still seems to
play an important role in the shape of the fluctuation PDF for this system size, as
seen in Fig. 7.12. We expect much larger system sizes to permit avoidance of these
boundary effects; however, this would be very intensive in computational resources,
both in terms of memory and processing.

In order to further illustrate the interplay of the morphology with both boundary
conditions, we show in Fig. 7.13 the time evolution of the mean value of h, as well
as some morphologies h(x) at different times, both in the growth regime and at
saturation to steady state. We identify only a narrow interval of t (from t2 to t3,
approximately) for which h ± std(h) is close to no system boundary. However, as
seen in the depicted morphologies h(x, t2) and h(x, t3), there are still realizations for
which some parts of the surface h(x) are close to the top and/or bottom boundaries,
influencing the shape of the fluctuation PDF.
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Figure 7.13: Time evolution of the average height profile h over 100 realizations from nu-
merical solutions of the GL equation (left bottom panel) compared to the maximum height
achievable (domain lateral size, red solid line). Error bars correspond to the roughness of
the front for each time. Left top panel shows the corresponding evolution of the height
roughness W (t). One realization of the h(x, t) morphology for each one of the highlighted
times, t1 to t4, in the left panels is shown in the right panels.

Multiscaling behavior

In spite of having the same scaling exponents, morphologies in the nonlinear growth
regime from the inviscid KPZ (see Fig. 7.6) and from the GL model in 2D (see Fig.
7.11) exhibit quite different shapes to the naked eye, due in particular to the abun-
dance of prominent slopes in the latter. We next assess the PDF of the corresponding
slope field u = ∂xh in Fig. 7.14, where the tails of the PDF decay as a power law
P (χ) ∼ χ−2. In [141], this type of slope statistics is shown to imply multiscaling
behavior (see a brief description in Chapter 1). Hence, different moments q of the
height-difference correlation function, Eq. (1.25), exhibit values of roughness expo-
nent αq which depend nontrivially on q. In the system studied in [141] (a surface
growth model related with isotropic percolation), the slope statistics P (χ) ∼ χ−2

implies αq = 1/q. This seems to be also the case in our numerical simulations,
quite accurately for q > 1, as shown in Fig. 7.15. This multi-fractal property of the
morphologies defined in our GL model is a remarkable qualitative difference between
them and the morphologies described by the inviscid KPZ equation, in which the
fast decay of the fluctuations in h hinders multi-fractality [141].
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Figure 7.14: Histogram of slope values [χ = (u − ū)/std(u), where for u = ∂xh] from
morphologies of the GL growth model within the nonlinear regime identified in Fig. 7.11.
Red and blue lines correspond to L = 128 and L = 256, respectively, while the black solid
line is a guide to the eye with slope −2.
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Figure 7.15: First, second, third and fourth moments (bottom to top) of the height-
height correlation function Gq(x) of the surface h from numerical simulations of GL in the
nonlinear growth regime identified in Fig. 7.11. Dashed straight lines correspond to the
exact value of the slope 1/q as predicted in [141].
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Dynamics at T = Tc for a two-dimensional surface

The study of the behavior of the inviscid KPZ equation for 2D substrates was not
possible by numerically integrating the inviscid KPZ, Eq. (7.7), directly due to finite-
time blow-up behavior, recall Fig. 7.8. We consider here an alternative approach
by studying the dynamic behavior of spin configurations in three spatial dimensions
which lead to two-dimensional surfaces h(x, y). The noise amplitude that corresponds
to the critical temperature in a 3D system is assessed again in analogy to our work
for 2D spin domains. From Fig. 7.16, we estimate the critical D to take the value
Dc ' 1.25. Note that the divergence of M at the critical temperature is again in
good agreement with the 3D Ising exponents.
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Figure 7.16: Determination of the noise strength Dc corresponding to the critical tempera-
ture Tc for the GL equation in a 3-dimensional domain. Left panels show the magnetization
fluctuation M at steady state for different values of D and system lateral size L [magnet
boundary conditions (top) and periodic boundary conditions (bottom)]. At D = Dc, cor-
responding to T = Tc, M diverges with L as a power law M ∼ L1.97 (red solid line) as
expected from the Ising critical exponents γ ' 1.23 and ν ' 0.63 in 3D [140].

In principle, we can now assess the behavior of the corresponding h(x, y) profiles
in terms of their kinetic roughening universality class. The evolution of the field
roughness W is depicted for different system lateral sizes in Fig. 7.17. The growth
of the roughness is suddenly interrupted and W starts to decay for t & 20. This
behavior is induced by the upper boundary as we can appreciate in Fig. 7.18. The
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Figure 7.17: Time evolution of the roughness W for the height profiles obtained from nu-
merical solutions of the GL equation Eq. (7.10) in three-dimensional domains with bound-
ary conditions as described in Fig. 7.9, and for different values of the lateral system size
L.

mean height h suddenly approaches the upper boundary at the same time in which
the growth of the roughness is interrupted. For longer times the surface becomes
pinned to this boundary, leading to the decrease in the roughness from that time on.
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Figure 7.18: Time evolution of the average height profile h over 10 realizations from nu-
merical solutions of the GL equation Eq. (7.10) (left bottom) compared to the maximum
achievable height (domain lateral size, red solid line). Left top panel show the correspond-
ing evolution of the height roughness W (t). One realization of a longitudinal cut h(x, 1, t)
for each one of the highlighted times, t1 to t4, in the left panels is shown in the right panels.
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Figure 7.19: Time evolution of the roughness W for the height profiles obtained in the
Metropolis evolution of an Ising system in both, two and three-dimensional domains (left
and right panels, respectively) with boundary conditions as described in Fig. 7.9 and for
different values of the system lateral size L.

7.3.3 Metropolis algorithm

We can alternatively study the dynamical evolution of the spin configurations of a
ferromagnetic system using Monte Carlo simulations [142]. A Metropolis algorithm is
used here in order to simulate the full evolution of the spin field, while the stationary
state was studied in [134] using the Wolff’s algorithm. For each Monte Carlo step,
one random spin in a position i, j, (k) is chosen and flipped with probability Pi,j,(k),
such that

Pi,j,(k) =


e−∆Ei,j,(k)/T if ∆Ei,j,(k) > 0,

1/2 if ∆Ei,j,(k) = 0,

1 if ∆Ei,j,(k) < 0,

(7.12)

where H[{si,j,(k)}] = J
∑

i′,j′,(k′)∈N (i,j,(k)) si′,j′,(k′) is the Hamiltonian [N (i, j, (k)) is

the set of all the nearest-neighbours from the position i, j, (k) in the square lattice].

Hence, ∆Ei,j,(k) = 2Jsi,j,(k)

(∑
i′,j′,(k′)∈N (i,j,(k)) si′,j′,(k′)

)
is the energy change due to

the spin flip in the position i, j, (k). The evolution of the field h defined in the same
way as in the Ginzburg-Landau approach, i.e. using Eq. (7.9) for both, 2D and 3D
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spin lattices, has been measured at T = Tc, where Tc = 2/ ln (1 +
√

2) ' 0.44 is the
exact value for the 2D square lattice and Tc ' 0.22 for the 3D cubic lattice [134].
The time scale has been set to t = N/Ld, where N is the number of Monte Carlo
steps.

We find very fast growth of the roughness W with time, as shown in Fig. 7.19 for
different lateral sizes L for both 2D and 3D spin domains, hence 1D and 2D surfaces.
Such a fast growth process is interrupted when the height approaches the boundary
of the system, leading to an abrupt decrease in the roughness from that time on.
This behavior is very similar to that found in our Ginzburg-Landau approach to
3D domains. As the GL equation provides a coarse-grained description involving
continuum instead of discrete values of the local degrees of freedom, it might be
describing effectively larger system sizes with a comparable computational cost.

7.4 Conclusions

In this Chapter we have elucidated novel kinetic roughening behaviors in the stochas-
tic KdV equation, both for KPZ and Burgers nonlinearities. A previously unseen
random deposition process with saturation, with effective α = 1/3, z = 2/3 expo-
nents, occurs in the Burgers-like equation, while intrinsic anomaluos scaling takes
place in the KPZ-like case. We show both these behaviors also to occur in the invis-
cid Burgers and KPZ equations themselves; hence, the third-derivative term in the
stochastic KdV equation is irrelevant to the kinetic roughening behavior, as it does
not interact with the amplitude of the fluctuations at any scale.

The intrinsic anomalous scaling found in the inviscid KPZ equation can be in-
terpreted as a counterexample for the conclusion reached in [143] where intrinsic
anomalous roughening was argued, via perturbative dynamic renormalization group
arguments, not to be compatible with the asymptotic scaling of growth systems with
local dynamics, subject to time-dependent noise. These arguments do not apply to
the particular case of the inviscid KPZ equation, since the ν = 0 coefficient of the
linear term leads to an ill-defined KPZ coupling, g ∝ λ2D/ν3. As already noted,
the inviscid KPZ equation also evades direct conclusions from exact solutions of the
KPZ equation, which require a Hopf-Cole transformation involving 1/ν factors. Our
numerical work is in this sense a novel approach to this equation for which stable
solutions have thus far remained unknown, up to our knowledge.

We also propose potential inviscid Burgers and KPZ universality classes. The
fluctuation statistics of both processes exhibit symmetric fluctuations, with an emer-
gent symmetry in the case of Burgers resulting from the (u, x) ↔ (−u,−x) invari-
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ance, as it occurred in the viscous stochastic Burgers equations studied in Chapters 4
and 5. However, the symmetric (even if non Gaussian) fluctuations exhibited by the
inviscid KPZ equation are due to an even more unexpected symmetry emergence,
which can not be explained in terms of a (h, x)↔ (−h,−x) invariance.

We have also tried to assess the inviscid KPZ universality class for two-dimensional
substrates. To circumvent the finite-time blow-up occurring in the numerical inte-
gration of the 2D inviscid KPZ equation, the connection with a surface growth
system related with an Ising model has been pursued. An approach via the GL
equation seems feasible in the one-dimensional case and has been extended to two-
dimensional interfaces. However, the interaction of the effective surface in the spin
system with the free boundary does not allow us to follow the long-time evolution in
two-dimensional substrates, both for (continuous) GL or (discrete) Metropolis dy-
namics. Either much larger systems (involving a huge computational cost) or some
alternative approach would be necessary in order to determine the behavior of the
inviscid KPZ universality class for dimensions higher than one, if at all possible.
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Chapter 8

Ordered pattern formation in
untrathin ferrofluid films

8.1 Introduction

Recent advances in thin film production have considered the manipulation of thin
fluid films by means of external magnetic or electric fields in order to produce ordered
patterns. Such type of morphologies are very well known to form in ferrofluids, which
are colloidal suspensions of magnetic nanoparticles that react to magnetic forces,
both at macroscopic and microscopic scales, when a magnetic field is applied which
is intense enough, as depicted in Figure 8.1. However, there are no experimental
evidences of this type of ordered patterns at the nanoscale in the literature.

Figure 8.1: Pattern formation in both macro [144] and microscopic [47] ferrofluid films.
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The morphological instability that leads to the formation of patterns in ferrofluid
films under a magnetic field was described by Rosensweig [48, 5] and is known as
Rosensweig instability (see Chapter 2 for further details). Linear stability analysis of
the hydrodynamic problem considering a thick and inertial (Re � 1) film lead to a
dispersion relation which presents a narrow band of unstable modes for large enough
magnetic field intensity (type-I instability, see [145]) that predicted the formation of
a highly-ordered hexagonal pattern. Based on Rosensweig’s work, Abou et al [64]
carried out a linear stability analysis of the full Navier-Stokes and Maxwell equation
system in four different asymptotic regimes, combining the prevalence of viscous vs
inertial forces (Re � 1 vs Re � 1) and the thin vs thick limits for the film depth.
For a thin and viscous film (the case of interest for our work), the dispersion relation
does also exhibit a narrow band of unstable modes, hence an ordered pattern was
also expected.

Some interfacial effective evolution equations describing the dynamics of the sur-
face of thin/ultrathin ferrofluid films under a magnetic field, which provide a useful
tool in the assessment of the pattern formation processes beyond the linear regime,
were published several years later [146, 147]. Despite the preliminar prediction of the
presence of a narrow band of unstable modes in ferrofluid thin viscous films assessed
in [64], the effective equations derived in these works do not predict a narrow band
of unstable modes in the ultrathin limit. In this Chapter, we deepen the study of
ferrofluids as a paradigmatic case of ordered pattern formation in thin fluid films,
by deriving an effective evolution equation and assessing the conditions under which
ordered and disordered patterns of drops can be obtained at the nanoscale, i.e. when
the fluid film is ultrathin. This study is a proof of concept about the theoretical vi-
ability of ordered patterns of ferrofluid drops at the nanoscale achieved by selecting
materials (ferrofluid and substrate) with suitable physical properties and tuning the
external magnetic field. The level of order achieved in the drop formation induced
by an external magnetic field is assessed under different scenarios involving several
types of interactions between the ferrofluid and the substrate (i.e. different types of
disjoining pressure or interface potentials). The scenarios for which a high level of
spatial order is predicted by the linear dispersion relation of the evolution equation
exhibit appreciably better ordered drops at steady state than those for which the
dispersion relation has a wide band of unstable Fourier modes.
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8.2 Interfacial equations for thin ferrofluid films:

state of the art

The most conspicuous interfacial equations derived for thin ferrofluid films proposed
in the literature are described in this section. We next consider the reasons why
they are, however, not suitable for the prediction of ordered patterns in ultrathin
ferrofluid films.

8.2.1 SAK model

The thin film model proposed by Seric, Afkhami, and Kondic (SAK) in [146] is consis-
tent with an ultrathin film as a disjoining pressure (specifically, a spinodal dewetting
potential) is explicitly considered, together with the magnetic field interaction with
the ferrofluid, and surface tension. The Re = 0 approximation, congruent with the
ultrathin condition, is also made in [146], leading to negligible gravity effects. The
evolution equation obtained has the form

∂th = −∂x
(
h3

3
∂x(AΠ(h) +Bh+ C∂2

xh)

)
, (8.1)

where A, B, and C are physical constants related to the disjoining pressure, magnetic
field, and surface tension interactions, respectively. Linear stability analysis gives a
dispersion relation of the form

ω =
h3

0

3

(
A(Π′(h0) +B)k2 − Ck4

)
, (8.2)

where a destabilizing ∼ k2 term is obtained due to both the disjoining pressure
and to the magnetic field, and the stabilizing ∼ −k4 term is generated by surface
tension. Notice that, according to this linear dispersion relation, a disordered pattern
is expected (perturbations with very large wavelengths are unstable [43]), hence this
model is not compatible with the formation of an ordered drop pattern.

8.2.2 Conroy-Matar model

The second case found in the literature [147] describes a thin ferrofluid film falling
down an inclined plane under the action of an external magnetic field. Being pro-
posed for macroscopically thin films, it (i) does not take into account the effect of the
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disjoining pressure and (ii) does not consider the Reynolds number to be negligible,
in contrast to the model by Seric et al. The following evolution equation is derived,

∂th = −∂x
(
h3

3

(
G+ ∂x[BΩ + C∂2

xh−G′h]
))

, (8.3)

where B, C, G, and G′ are physical constants related to the magnetic field, surface
tension, and inertial (G, G′) contributions, respectively, and Ω is an effective mag-
netic pressure; we will provide additional details in the derivation of the ferrofluid
film equation discussed in the next section. The linear dispersion relation reads

ω =
h3

0

3

(
−G′k2 +B

(
1− 1

2 + βξ|k|/3

)
|k|3 − Ck4

)
, (8.4)

where β and ξ describe magnetic properties of the ferrofluid (see also more details
in the full derivation assessed in the next section).

In the particular case of a ferrofluid with a very large magnetic permeability,
Conroy and Matar [147] derive a simplified interface equation, which is virtually
identical to a previously-known model of an electrically perfectly conducting fluid
film under an external electric field [148]. It reads

∂th = −∂x
(
h3

3

[
G+ ∂x(BH[∂xh] + C∂2

xh−G′h)
])

, (8.5)

where H[·] is the Hilbert transform. A very similar evolution equation is also derived
[150] in the modeling of the formation and coarsening dynamics of islands in a
strained epitaxial semiconductor film. In the present case, the linear stability analysis
yields a dispersion relation of the form

ω =
h3

0

3
(−G′k2 +B|k|3 − Ck4), (8.6)

where the destabilizing ∼ |k|3 term comes from the magnetic field contribution, the
stabilizing ∼ −k4 term comes again from surface tension, and the stabilizing ∼ −k2

term comes from gravity. According to this linear dispersion relation, a narrow
band of unstable modes can occur, hence ordered patterns could form. However,
as the disjoining pressure is not taken into account, this evolution equation could
be questioned for ultrathin films for which the interaction with gravity is negligible,
while the interaction with the substrate becomes relevant and should be considered
in the physical derivation.
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Numerical solutions of the full Eq. (8.3) are provided in [147], while they are not
reported for the reduced Eq. (8.5). However, the latter equation has been demon-
strated to exhibit numerical blow-up [148], hence the full magnetic term in Eq. (8.3)
must be considered in the derivation of physical models to assess the dynamics be-
yond the linear approximation.

The different boundary conditions considered for the Maxwell equations for the
magnetic field explain the difference between the magnetic field contribution terms
in the effective equations (8.1) and (8.3) (which lead to contributions for the linear
dispersion relation of orders k2 and |k|3 in equations (8.2) and (8.4), (8.6), respec-
tively). In [146], the magnetic potential value is fixed both at the substrate-fluid
interface and at a parallel upper plane. In [147], the derivative of the magnetic po-
tential (vertical component of the magnetic field) at y = ±∞ is fixed to have the
value of the external magnetic field. We consider this second condition, namely, a
constant value for the magnetic field far from the ferrofluid film, more realistic for
an actual physical experiment. Furthermore, in an ultrathin fluid film, the cancella-
tion of the inertial terms (G′ = 0) and the consideration of the disjoining pressure
(∼ k2 in the dispersion relation) make a destabilizing ∼ |k|3 term capable to induce
a narrow band of unstable modes in the dispersion relation, while a destabilizing
∼ k2 term could not induce it. For the purpose of this Chapter, we derive a thin
film model for a ferrofluid ultrathin film based on the physical model in [147], Eq.
(8.3), but considering (i) a horizontal substrate, (ii) a negligible Re = 0, and (iii) a
disjoining pressure contribution to the film dynamics.

8.3 Ultrathin ferrofluid film equation

A viscous ultrathin (Re = 0) ferrofluid film over a flat (θ = 0) solid substrate, with
which the fluid interacts by means of a disjoining pressure, is considered next, as
sketched in Figure 8.2. In this Chapter, we present the physical laws that govern
this system, as well as the mathematical derivation and approximations required in
order to obtain a novel evolution equation for the thickness of the film.

Hydrodinamic equations

The evolution equation for the ferrofluid film interface is derived from the same set
of hydrodinamic equations (mass balance and Navier-Stokes equations) as in Chap-
ter 2. Here the stress tensor, which includes the disjoining pressure and magnetic
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Figure 8.2: The thin ferrofluid film.

contributions, takes the form

T = T f + T m, T m =

(
BxHx − µ0

2
| ~H|2 BxHy

ByHx ByHy − µ0

2
| ~H|2

)
, (8.7)

where T f is the hydrodynamic contribution to the stress tensor as in Eq. (2.7), and
~H = (Hx, Hy) and ~B = (Bx, By) are the magnetic field and induction, respectively,

such that ~B = µ0( ~H + ~M). Here the magnetization ~M is null for both the air and
substrate, and we consider a Langevin form

~M( ~H) = Ms

(
coth(ξ| ~H|)− 1

ξ| ~H|

)
~H

| ~H|
. (8.8)

Here, ξ = 3χ0/Ms, with Ms being the saturation magnetization value and χ0 being
the initial magnetic susceptibility for the ferrofluid.

As there are no electric currents, Ampere’s law ∇ × ~H = 0 holds, hence the
magnetic field is irrotational and scalar magnetic potentials ψi can be defined for
each medium (air, ferrofluid, and substrate) such that ~H i = −∇ψi for i = a, f, s
respectively. Furthermore, the continuity of both the magnetic field and the magnetic
induction fields require the || ~B · ~n|| = 0 and || ~H · ~t|| = 0 jump boundary conditions
at both interfaces [147].

The effective pressure peff for the Navier-Stockes equation is a combination of
the hydrostatic p and the magnetic Ω pressures, which takes the form

peff = p+ Ω, Ω = µ0

∫ ~H

0

M(| ~H|′) d| ~H|′ = −Ms

ξ
ln

(
ξ| ~H|

sinh(ξ| ~H|)

)
, (8.9)
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as the fluid is considered to be incompressible.
Consider the average thickness of the liquid layer h0 as a typical length scale,

w0 = ρgh2
0/2µ as a velocity scale, w0/h0 as a time scale, µw0/h0 as a representative

scale for pressure and stress, the magnitude of the external magnetic field | ~Hext| as
a magnetic field scale, and we introduce a small parameter ε = h0/L and the new
variables x′ = εx, t′ = εt, and v′ = v/ε. In such rescaled variables, the momentum
balance equations and the surface boundary conditions ||~n T ~n|| = γC and ||~n T ~t|| =
0 become, respectively,

0 = ε2ux′x′ + uyy − ε(p+ Ω)x′ , (8.10)

0 = ε3v′x′x′ + εv′yy − (p+ Ω)y − 2, (8.11)

p+ Π +
2H2

ext

ρgh0

(∂yψ
a|h)2 +O(ε2) =

=
ε2h2

x′(2εux′)− εhx′ [2(uy + ε2v′x′)] + 2εv′y
1 + ε2h2

x′
− 1

εCa′′
hx′x′ , (8.12)

0 = −ε2h2
x′(uy + ε2v′x′) + ε2hx′ [2(v′y − ux′)] + uy + ε2v′x′ . (8.13)

We consider for convenience that the capillarity number Ca = µw0/γ is O(ε3) [147]
and define Ca′′ = Ca/ε3, which is O(1). We also expand again u = u0 + εu1 +O(ε2),
v′ = v′0 + εv′1 + O(ε2) and p = p0 + εp1 + O(ε2), and consider a flat surface, hence

u0 = 2 sin θ
(
hy − y2

2

)
= 0. The u contribution at O(ε) becomes

u1 = −p0x′

(
hy − y2

2

)
. (8.14)

The p0 contribution can be obtained from Eq. 8.11 at O(1), (p0 + Ω)y = −2,

with p0 = −hx′x′/εCa′′ − Π− 2H2
ext

ρgh0
(∂yψ

a|h)2 as the boundary condition at the fluid

surface. We consider both the disjoining pressure Π and the quotient 2H2
ext/ρgh0 to

be O(ε−1) and define Π′ = εΠ and Q = ε2H2
ext/ρgh0 to be O(1). Hence, we obtain

p0 = 2(h− y)− hx′x′/εCa′′ − Π′/ε−Q (∂yψ
a|h)2 /ε−QΩ/ε.

Magnetic contributions to the surface boundary condition

The contribution of the magnetic tensor to the ||~n T ~n|| product, taking into account

that ~Ba · ~n = ~Bf · ~n, is

||~nT m~n|| = ~nT am~n− ~nT fm~n = ~n(BaHat −BfHf t)~n+
µ0

2
(Hf 2 −Ha2) =
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= ~n ~Ba(Hat −Hf t)~n+
µ0

2
(Hf 2 −Ha2) = (8.15)

(considering that ~Ha ·~t = ~Hf ·~t, one has that Hf 2−Ha2 = ( ~Ha ·~n)2− ( ~Hf ·~n)2 and
Ba = µ0H

a)

= µ0

[
( ~Ha · ~n)2 − (~n · ~Ha)( ~Hf · ~n) +

1

2
( ~Hf · ~n)2

]
− 1

2
( ~Ha · ~n)2 =

=
µ0

2
( ~Ha · ~n− ~Hf · ~n)2 =

µ0

2
( ~Ha · ~n)2. (8.16)

In terms of the magnetic scalar potential,

µ0

2
( ~Ha · ~n)2 =

µ0

2

((
ε∂xψ

a, ∂yψ
a
)( −ε∂xh

1

))2

= (∂yψ
a)2 +O(ε2). (8.17)

Magnetic equations

Here we take L as the x scale, h0 as the y scale for the fluid, but L also as the y scale
for air and substrate. We consider ε = h0/L� 1 to be very small.

The magnetic Gauss’ law ∇· ~B = 0 holds. The magnetic induction ~B is given by
~B = µ0( ~H + ~M), with ~M = 0 for the air and substrate, and ~M = βF (| ~H|) ~H for the
ferrofluid [F is as in Eq. (8.8) and it is considered to be O(ε−1) so we define F ′ = εF
to be O(1)], hence Gauss’ law in air (a), substrate (s) and fluid (f) can be rewritten,
respectively, as

µ0

(
∂2
xψ

a + ∂2
yψ

a
)

= 0, µ0

(
∂2
xψ

s + ∂2
yψ

s
)

= 0,

µ0

(
∂y((1 + ε−1βF ′)∂yψ

f ) + ε2∂x((1 + ε−1βF ′)∂xψ
f )
)

= 0. (8.18)

Furthermore, the || ~B·~n|| = 0 and || ~H ·~t|| = 0 jump boundary conditions are requested
at both interfaces for the magnetic induction and the magnetic field, respectively
[147], leading to

(1 + ε−1βF )(∂yψ
f − ε2∂xh ∂xψf ) = ε∂yψ

a − ε2∂xh ∂xψa,

∂xh ∂yψ
f + ∂xψ

f = ε∂xh ∂yψ
a + ∂xψ

a, (8.19)

for the fluid-air interface (y = h) and

(1 + ε−1βF )∂yψ
f = ε∂yψ

s, ψf = ψs, (8.20)

for the fluid-substrate interface (y = 0).
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For the computation of ψa, we define Ψa such that ∂yψ
a = ∂yΨ

a +Hext, hence

∂2
xΨ

a + ∂2
yΨ

a = 0, lim
y→∞

∂yΨ
a = 0. (8.21)

After Fourier transforming in the x-coordinate, the solutions of ∂2
yΨ̂

a = k2Ψ̂a take

the form Ψ̂a = C1e
−|k|y + C2e

|k|y. As ∂yΨ̂a → 0 when y → ∞, then C2 must be 0.
The constant C1 is evaluated to assure the continuity of the magnetic potential. If
we fix arbitrarily the potential Ψa to be 0 for y = 0,

ψf = ψa(h) = Ψa(h) +Hexth ⇒ Ψ̂a = (ψ̂f −Hextĥ)e−|k|y. (8.22)

Finally, considering h to be O(ε), we can evaluate ∂yΨ
a(h) as

∂yΨ
a(h) = F−1

(
−|k|(ψ̂f −Hextĥ)e−|k|h

)
' 1

2π

∫ ∞
−∞
−|k|(ψ̂f−Hextĥ)eikxdk. (8.23)

Analogously, we compute ψs by defining Ψs such that ∂yψ
s = ∂yΨ

s +Hext, hence

∂2
xΨ

s + ∂2
yΨ

s = 0, lim
y→−∞

∂yΨ
s = 0. (8.24)

Here, Ψ̂s = (ψf +Hext)e
|k|y and

∂yΨ
s(0) =

1

2π

∫ ∞
−∞
|k|(ψ̂f +Hext)e

ikxdk. (8.25)

For the computation of ψf , we expand ψf = ψf0 + ε2ψf1 + O(ε4) and solve Gauss’
equation at leading order O(ε−1),

∂y(βF
′∂yψ

f
0 ) = 0, (8.26)

hence βF ′∂yψ
f
0 = f(x) where f(x) = 0 from the boundary conditions. Integrating

again ψf0 = ψf0 (x) (hence F ′ does only depend on x at leading order), which is
computed from Gauss’ equation at next order in ε, i.e.,

F ′∂2
yψ

f
1 + ∂x(F

′∂xψ
f
0 ) = 0 ⇒ ∂2

yψ
f
1 = − 1

F ′
∂x(F

′∂xψ
f
0 ), (8.27)

subject to

βF ′(∂yψ
f
1 (h)− ∂xh ∂xψf0 ) = ∂yψ

a(h), βF ′∂yψ
f
1 (0) = ∂yψ

s(0). (8.28)
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Integrating Eq. (8.27) once with respect to y between y = 0 and y = h, we get

∂yψ
f
1 (h)− ∂yψf1 (0) = ∂xh ∂xψ

f
0 +

∂yψ
a(h)

βF ′
− ∂yψ

s(0)

βF ′
= − 1

F ′
∂x(F

′∂xψ
f
0 )h. (8.29)

In Fourier space, using Eqs. (8.23) and (8.25), we finally obtain an integral equation
for the computation of ψf0 (x),

1

2π

∫ ∞
−∞
|k|(Hextĥ− 2

ˆ
ψf0 )e−ikxdk = −βF ′

(
1

F ′
∂x(F

′∂xψ
f
0 )h+ ∂xh ∂xψ

f
0

)
. (8.30)

Interface equation

Finally, mass balance reads ht +
(∫ h

0
εu1 dy

)
x

= 0, hence

∂th = ∂x

[
h3

3
∂x

(
−∂

2
xh

Ca′′
− Π′ −Q (∂yψ

a|h)2 −QΩ

)]
+O(ε). (8.31)

The (∂yψ
a|h)2 term appearing in this equation can be evaluated from

(∂yΨ
a +Hext|h)2 ' H2

ext + 2Hext∂yΨ
a|h (8.32)

if we consider that the magnitude of the external field Hext is much larger than the
induced ∂yΨ

a|h. Finally, the interface evolution equation for the ferrofluid thin film
at leading order takes the form

∂th = ∂x

{
h3

3
∂x

[
Q

(
Hext

π

∫ ∞
−∞
|k|(ψ̂f −Hextĥ)eikxdk − Ω

)
− ∂2

xh

Ca′′
− Π′

]}
, (8.33)

where ψ̂f , at leading order in ε, is computed from

1

2π

∫ ∞
−∞
|k|(Hextĥ− 2

ˆ
ψf0 )e−ikxdk = −βF ′

(
1

F ′
∂x(F

′∂xψ
f
0 )h+ ∂xh ∂xψ

f
0

)
. (8.34)

Equations (8.33) and (8.34) coincide with the model obtained in [147] [see Eq.
(8.3)] if the inertial contributions are neglected and a new contribution for the dis-
joining pressure is allowed for. The behavior of equations (8.33) and (8.34) in terms
of pattern formation is expected to depend on the form of the disjoining pressure po-
tential (unstable, stable, or metastable, see Chapter 2). We assess that dependence
via a linear stability analysis.
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Linear stability analysis

Next, we consider small variations of, both, h = h0 + h̃eωt+ikx and ψf = ψfb + ψ̃feikx,
in order to assess the linear behavior of Eq. (8.33). For a single mode (omitting
tildes), Eq. (8.34) reduces to

|k|(Hexth− 2ψf ) = −β
(
∂x(F

′∂xψ
f )h+ ∂xh

′∂xψ
f
)
, (8.35)

which at leading order in small variations, and Taylor expanding F ′ at leading order,
reduces to

|k|(Hexth− 2ψf ) =
βξψfk2h0

3
⇒ ψf =

Hext

2 + βξh0|k|/3
h. (8.36)

Hence, the linear dispersion relation takes the form

ω(k) =
h3

0

3

[
Π′(h0)k2 − 1

Ca′′
k4 + 2QHext

(
1− Hext

2 + βξh0|k|/3

)
|k|3
]
. (8.37)

The contributions of this dispersion relation allow for a narrow band of unstable
modes when Π′(h0) < 0 (see e.g. the metastable scenario in Fig. 8.3, in which a
narrow band of unstable modes are obtained under proper parameter conditions)
as the equivalent dispersion relation for the full model in [147] did; however, in the
latter it was due to the gravity ∼ −k2 contribution, which is neglected if the film is
considered to be ultrathin (Re = 0).

The behavior beyond the linear approximation will be numerically assessed in
the next section, focusing on the level of order of the drop patterns formed at steady
state.

8.4 Simulation results

Numerical simulations of Eq. (8.33) have been carried out in order to study its non-
linear behavior, by means of the numerical scheme described in Chapter 3, namely,
a mixed implicit-explicit method, in which the term with the highest-order deriva-
tive is treated implicitly and the remaining terms are treated explicitly. In the case
of the magnetic field term, the numerical treatment is implemented by means of a
pseudospectral method, while ψf is computed by an iterative fixed point method
from Eq. (8.34).

In order to determine if narrow or wide bands of unstable Fourier modes in the
dispersion relation lead to more or less ordered patterns of drops, respectively, we

139



Chapter 8 Fluctuations and patterns in ultrathin fluid films

will consider stable, metastable, and null disjoining pressure potentials based on the
models proposed in [61] (see Chapter 2 for more details). The functional dependence
of Π with the field height h has been considered of the form

Πu(h) = A
( c1

h2
− c2

h3

)
, (8.38)

Πm(h) = A

(
− c3

(h+ c4)2
+
c5

h2
− c6

h3

)
, (8.39)

as unstable and metastable scenarios, respectively. Here the parameter values are
c1 = c5 = 1, c2 = 0.15, c3 = 15, c4 = 0.5, and c6 = 0.05.
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Figure 8.3: Linear dispersion relation ω(k) (top panels) of equation (8.37) for the selected
parameters in numerical simulations considering the different types of disjoining pressure
potentials [as in Eqs. (8.38)-(8.39)] depicted in the bottom panels (unstable, null, and
metastable disjoining pressure, respectively, from left to right).

Periodic boundary conditions have been considered and averages over random
initial conditions h(x, 0) = 1+η, where 〈η(x)〉 = 0 and 〈η(x1)η(x2)〉 = 0.05δ(x1−x2),
have been carried out. In all simulations, β = ξ = 1. A system size value L = 1024
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is considered, where the discretization steps are δx = 1 and δt = 0.5. Parameters
governing the disjoining pressure (A), the magnetic field (B = QHext/π), and the
surface tension (C = 1/Ca′′) have been selected by sweeping the parameter space
looking for values such that the most unstable mode corresponds as close as possible
to 40 drops [k ' 2π/(1024/40)]. A representative example of these drop profiles is
depicted in Fig. 8.4. In the metastable case, parameters have been chosen such that
this mode is the only unstable one. In Figs. 8.5-8.7 we display both the morphology
h(x) and the structure factor S(k) at several times for no disjoining pressure (Fig.
8.5), unstable potential (Fig. 8.6), and metastable potential (Fig. 8.7), respectively.
Drops stabilize into a steady state in all cases. This stabilization becomes evident
in the evolution of the surface roughness W , which is depicted in the top panels of
Figs. 8.5-8.7. Each one of these drops exhibits a similar characteristic form, which
makes the drop pattern a discontinuous periodic geometry, hence the envelope of the
structure factor S(k) at high values of k follows quite closely a power law (in these
cases, S(k) ∼ k−4), as is frequently the case for these type of periodic geometric
patterns [151]. Different levels of order are achieved for different types of disjoining
pressure potentials. This spatial order level is measured by assessing the distribution
of the heights of the drops (height of each drop at its maximum), the distance
between the drops (distance between two consecutive drop maximums), the width
of the drops, and the separation between the drops, as defined in Fig. 8.4.
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Figure 8.4: Visual guide for the definitions of drop height, width, distance, and separation.
Drops correspond to a steady state profile h(x) for the same simulation as depicted in Fig.
8.5, namely, no disjoining pressure (A = 0) and parameter values B = 0.615 and C = 1.
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In Fig. 8.8 histograms are shown for these four observables. As expected from
the linear behavior, the metastable surface (the only one for which the dispersion
relation of Eq. (8.33) presents a narrow band of unstable modes) is the case in which
all the histograms are substantially more concentrated than for the other scenarios,
in which the distribution of drop heights, widths, distances, and separations appear
to be much broader.
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Figure 8.5: Surface morphology and structure factor in numerical simulations of Eq. (8.33)
without disjoining pressure. Here, A = 0, B = 0.615, and C = 1. The red solid line is a
guide to the eye with −4 slope.
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Figure 8.6: Surface morphology and structure factor in numerical simulations of Eq. (8.33)
using the unstable effective interface potential as in Eq. (8.38). Here, A = 0.02, B = 0.45,
and C = 1. The red solid line is a guide to the eye with −4 slope.
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Figure 8.7: Surface morphology and structure factor in numerical simulations of Eq. (8.33)
using the metastable effective interface potential as in Eq. (8.39). Here, A = 0.008, B =
0.92, and C = 1. The red solid line is a guide to the eye with −4 slope.
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Figure 8.8: Histogram for the drops at steady state from simulations of Eq. (8.33) (see Figs.
8.5-8.7). For each type of interface potential, the distribution of drop height (maximum
value), width, distance, and separation (as defined in Fig. 8.4) is depicted. Values of width,
distance, and separation have been normalized such that 1 corresponds to the distance
between drops predicted by the most unstable mode in the corresponding linear dispersion
relation.
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8.5 Conclusions

Although ferrofluid films are well known to form ordered patterns of drops at macro
and microscopic scales [47] and this pattern formation has successfully been mathe-
matically modelled [48, 64], there are no evidences of nanoscopic well-ordered pat-
terns for ferrofluids, either experimental or theoretical, as the available models in
the literature for thin ferrofluid films either do not consider physical effects suitable
for those ultrasmall scales (disjoining pressure potential) [147], or are based on as-
sumptions that lead to expect disordered patterns [146]. In this Chapter we derive
an interfacial equation for an ultrathin ferrofluid film that considers the disjoining
pressure potential and the magnetic field interaction with the fluid under assump-
tions that lead to a nonlinear behavior predicting a highly-ordered pattern under
some specific conditions (specifically, metastable disjoining pressure potential [61]).

Further investigation of this phenomenon based on Eq. (8.33) could elucidate
the formation (or not) of these patterns under further different types of disjoining
pressure potentials, the behavior of these patterns on two dimensional substrates,
and the sensitivity of the order achieved at steady state to different levels of thermal
fluctuations, which could be relevant at these small scales [59]. Moreover, the in-
formation extracted from the conditions and physical parameter values that lead to
the ordered pattern formation could guide the selection of materials and conditions
under which experiments should be carried out, in order to replicate the high degree
of order that has been already observed experimentally at macro and microscales.
At the nanoscale, ferrofluids could have novel practical applications in fields like
electronics and optoelectronics, in which the fabrication of well-ordered micro to
nanometer patterns is one of the current challenges [152].
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Throughout this thesis we have studied different self-organization processes in the
specific context of fluid films when the film thickness is ultrasmall. In this context,
inertial effects can be neglected, as the Reynolds number becomes extremely low,
but two important physical effects become relevant at these small scales: thermal
fluctuations and the interaction between the fluid surface and the substrate, the
so-called disjoining pressure.

Two main physical systems in the context of fluid films have been considered. The
first system we deal with is an ultrathin fluid film falling down an inclined slope. The
surface evolution of this film can be modelled using the classic Kuramoto-Sivashinsky
equation. Although the linearly unstable term of the KS equation induced by the
gravitational effects is negligible here due to the ultra small scale, when the fluid-
substrate interaction is governed by a spinodal (unstable) potential, it induces an
equivalent unstable term. Moreover, thermal fluctuations, expected to be relevant
at ultra small scales, induce a novel conserved noise term in the evolution equation.

The kinetic roughening behavior of the KS equation in the hydrodynamic limit
is expected to be described by Burgers equation. The universality classes of the
stochastic Burgers equation, both with non-conserved and conserved noise, have
been studied, focusing on the role of the fluctuation statistics. In both cases, there is
an emergent up-down symmetry that is not predicted by the bare interactions of the
nonlinear terms. This result allows us to deepen the understanding of the relation
between fluctuation statistics and the symmetries of the corresponding equations.
Further research in this context could involve the assessment of the fluctuation statis-
tics in additional equations in which the (x, h)↔ (−x,−h) is present in spite of not
being up-down symmetric. Moreover, we have proved that the fluctuation statistics
of the Burgers equation with conserved noise, which had been considered almost
equivalent to the KPZ equation —as the former can be obtained as the slopes evo-
lution equation for the latter—, can not be trivially deduced from that of the KPZ
equation. Indeed, the Gaussian fluctuations in the Burgers equation with conserved
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noise constitute a nontrivial example of Gaussian random variables obtained as the
sum of non-Gaussian (in this case, Tracy-Widom distributed) random variables. This
result suggests that there could be a nontrivial relation between the universality class
of other pairs of equations in which one of them is obtained as the slope evolution
equation of the other one, as e.g. for the case of the nonlinear MBE equation. The
Gaussian nature of fluctuations in both versions of the noisy Burgers equation does
also allow for the derivation of simple linear models that are exact approximations
in terms of the universality class.

In the novel context of the KS equation with conserved noise, we have assessed a
transition between universality subclasses controlled by e.g. the system temperature,
the transition occurring at a non-zero value of the critical temperature Tc. This type
of transition is unprecedented and is accompanied by a transition in the dominant
nature of the surface fluctuations (chaotic for T < Tc vs stochastic for T > Tc).
Finding other physical systems in which this kind of universality (sub)class transi-
tion occur due to a change in the dominant type of fluctuations would improve the
understanding of this novel mechanism.

We also assess the ultra-low viscosity and surface tension limits in the KS equa-
tion, leading to the study of the stochastic KdV equation with either Burgers or
KPZ nonlinearities, both of which exhibit anomalous scaling behaviors. In the case
of the Burgers nonlinearity, an unprecedented random-deposition like process with
saturation is observed. In the case of a KPZ nonlinearity, an intrinsic anomalous
scaling is observed, which is also unprecedented in local stochastic equations with
time-dependent noise. The inviscid KPZ equation seems not to be numerically in-
tegrable in two-dimensional substrates. We have also demonstrated that there is a
growth model based on an Ising system in which the same scaling exponents are
achieved, hence it provides an alternative approach to the study of this universality
class. However, interaction between the growing surface with the system boundaries
hinders the study of that model in higher dimensions. Further research involving
much larger systems could be interesting in this context, as well as deepening the
study of the potential relationship between Ising and the inviscid limit of the KPZ
equation beyond the kinetic roughening universality class.

Finally, as an example of an ordered ultrathin film, we have studied the dynamics
of an ultrathin ferrofluid film under an applied magnetic field. We have demonstrated
that, for suitable parameter conditions and a metastable interaction between the
fluid and the substrate, a substantially higher level of order can be achieved for the
stationary drops that form, than under other conditions. The study of the influence of
thermal fluctuations, which can be relevant in the context of ultrathin fluid flows, in
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the level of order achieved, is an interesting possibility for future research. Moreover,
analogous studies for two-dimensional substrates should be performed as a previous
step to the experimental study of these systems.
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A. DRG analysis of field statistics for the 1D noisy

Burgers equation

This section provides additional details on the evaluation of field cumulants for the
noisy Burgers equation with conserved noise, Eq. 5.1 (see Chapter 5), following
the Dynamical Renormalization Group (DRG) approach of [78], previously applied
to the evaluation of field statistics in the cases of the KPZ [80, 81, 83], the non-
linear Molecular Beam Epitaxy [82] equations, and of the Burgers equation with
non-conserved noise (see Chapter 3).

As derived in Chapter 3, the n-th cumulant of u reads

〈un〉c =

∫
R2(n−1)

G(kn, ωn)Ln

n−1∏
j=1

dkjdωj
(2π)2

G(kj, ωj), (8.40)

with G(k, ω) = (−iω + ν<(k)k2)−1, ν<(k) =
√

λ2D
2πν
|k|−1/2 (see [80] for details),

G(k, ω)η̂ = û(k, ω), hat is space-time Fourier transform, k is wave-number, ω is
time frequency, kn = −

∑n−1
j=1 kj, and ωn = −

∑n−1
j=1 ωj. The correction Ln is pertur-

batively computed to one loop order as

Ln = (2D)δn,2 + Ln,1, (8.41)

where Ln,1 = Kλninknln,1
∏n−1

j=1 kj is the lowest-order correction in the Feynman
expansion of the cumulants, withK = (2n−2)!! being a combinatorial factor (number
of different fully-connected diagrams). As we are interested in the (ki, ωi) → (0, 0)
limit,

ln,1 =

∫ ∞
−∞

dΩ

2π

∫ > dq

2π
|G0(q,Ω)|2n(2Dq2)n, (8.42)
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where G0(k, ω) = (−iω + νk2)−1 and the integration domain in
∫ >

is the region
{q ∈ R|Λ(`) = Λ0e

−` < |q| < Λ0}. After integration,

ln,1 =
2n+1Γ(n− 1

2
)

4π3/2(n− 1)!

Dnν1−2n

Λ2n−3(`)

e(3−2n)` − 1

3− 2n
. (8.43)

Taking `→ 0, and considering the dependence of ν and D with Λ, [80], the following
differential equation is obtained,

dln,1
d`

=
2n+1Γ(n− 1

2
)

4π3/2(n− 1)!

(Dν Dλ
2

2πν3 )(1−n)/4

Λ
5
2

(n−1)(`)
, (8.44)

whose solutions for large ` become

ln,1(`) '
2n+1Γ(n− 1

2
)

4π3/2(n− 1)!

(Dν Dλ
2

2πν3 )(1−n)/4

5
2
(n− 1)Λ

5
2

(n−1)(`)
. (8.45)

Due to symmetry among k1, . . . , kn−1, we take [78, 80, 81, 83]

ln,1(k) =
2n+1Γ(n− 1

2
)

4π3/2(n− 1)!

(Dν Dλ
2

2πν3 )(1−n)/4

5
2
(n− 1)

n−1∏
j=1

1

k
5/2
j

. (8.46)

For n > 1, as k5/2f(ω/kz) = k−3/2ν(k)−2|G(k, ω)|−2, where f is a scaling function

[f(u)→ 1 as u→ 0], we substitute k
−5/2
i ' k

3/2
i ν2(ki)|G(ki, ωi)|2. Finally,

〈un〉c = A
∫
R2(n−1) G(kn, ωn)kn×∏n−1

i=1
dkidωi
(2π)2 kiG(ki, ωi)k

3/2
i ν2(ki)|G(ki, ωi)|2, (8.47)

where A = πn−1/2inΓ(n− 1/2)K2D/[n!(n− 1)λn−2].
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