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e microstructure and the texture of extruded 6061 Al alloy processed by powder metallurgy (PM), using three different initial powder particle 
 been studied after torsion deformation at 300 ◦C at strain rate of 6 s−1. The initial extruded microstructure of the three alloys consisted of 

 grains confining substructure with a typical 〈1 1 1〉+〈1 0 0〉 fiber texture. After torsion deformation, the torque (� ) as a function of the 
 strain (εeq) showed softening and the microstructure exhibited a gradient across the section so that the inner and outer zones contained 

longated and small-equiaxed subgrains, respectively. It was observed that the equivalent strain to failure for the material processed using 
rticles size of less than 45 �m was of about εeq ∼ 12, compared to εeq ∼ 1 for material processed using powder particles size of less than 25 �m. 

structural changes during hot torsion deformation of PM 6061 Al alloy should involve continuous dynamic processes.
luminum alloy Powder metallurgy Torsion deformation Microstructure Recrystallization
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orking at elevated temperature of aluminum (Al) and
is of great importance in understanding the materi-als 

 to deformation conditions and for predicting the 
ctural evolution during industrial manufacturing process 
 torsion deformation is used in hot working processes to 
ossible to achieve large deformations and grain refine-

ough the accumulation of strain without the occurrence 
 instabilities [3]. A complex combination of both restora-
strengthening processes were proposed to explain the 
ctural changes at high temperature deformation of Al 

. It has been reported that Al alloys exhibit very high rates 
ic recovery rather than dynamic recrystallization, how-
ormation of new grains during hot deformation has been 
y observed [5]. Different types of dynamic recrystalliza-
 as discontinuous dynamic recrystallization, continuous 

recrystallization, and geometric dynamic 
ization have been found to occur in Al alloys. In general, 
isoriented subgrains are formed and the misorientation 
 increases during deformation [6].
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xxx Al alloys series are being widely used as structural
as they show high strength, excellent corrosion resis-
trudability, and weldability. Specifically, the 6061 Al
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2. Exper

The m
Al alloy
97.74Al–
was sieve
cessed via powder metallurgy (PM) exhibits fine-grained 
cture and better combination of mechanical properties 

d to their ingot counterpart. The stability of the final 
cture after hot deformation, i.e. grain size, second phase 

 precipitates and texture, plays a dominant role in control-
aterials properties. The creep behavior and deformation 

ms of these Al alloys have been extensively studied over 
ange of temperatures at moderate and low strain rates 

ever, the deformation behavior at high temperature and 
in rate has received very limited attention [9,10]. Par-
 in the PM processing, few studies have been concerned 
influence of initial powder particle size on the gradient of 
cture and the properties of processed material by hot 
deformation [11]. Furthermore, the mechanisms 

g the changes in the microstructure after large plastic 
ion require further research which would lead to a better 
nd-ing of the microstructure–properties relationship.
 study, the changes in the grain structure and texture of 
 6061 Al alloys processed via PM and subsequent torsion 
ion at 300 ◦C are discussed in the frame of the 
ion mechanisms reported for Al alloys [12,13].

imental procedure
aterials used in this study were prepared from 6061
 powder with the following composition in wt%: 
0.96Mg–0.45Si–0.15Fe–0.27Cu [14]. The initial powder 
d to obtain three different powder particle sizes. Type A
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g particles size less than 45 �m (not sieved material), type 
wder particles size between 25 and 45 �m (+500 mesh) 

 C with powder particles size of less than 25 �m (−500 
easurements of particle size distribution for each type 
r were performed using powder suspension in ethanol 
astersizer 2000 applying an impeller speed of 3000 rpm. 

surements were carried out for each type of powder and 
sponding particle size distributions are shown in Fig. 1(a). 
article size distributions were derived from the conven-
tallographic method. In this case fifteen images for each 
owder were used. A stereographic method was used to 
three dimensional particle size distributions from the 
icrographs [15].
ing spherical particles of diameter D and an alumina film 

ess ro = 4 × 10−3 �m covering the particles [6], the ratio of 

V
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F
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cles could
the expe
reveals th
18% less c
tly, the smaller the powder particle the greater the vol-
tion of alumina present as shown in Fig. 1(b).
aterials were processed via a PM procedure in the same
hat described in [16]. All the materials were uniaxially
t 400 MPa at a temperature of 100 ◦C and degassed at
0 ◦C for 24 h. The resulting compacts A, B, and C were
uded at 500 ◦C at 27:1 reduction, leading to bars of 8 mm
ter and 1000 mm in length. The same nomenclature as
eved powders was kept for the extruded bars. To avoid
nt precipitation during torsion testing, all materials were
d at 300 ◦C during 24 h.
les for torsion tests were machined using a gauge length 
 and a diameter of 5 mm. The torsion tests were carried 
0 ◦C at a strain rate of 6 s−1. The samples were heated 
 frequency induction furnace in a silica tube in an argon 
ere. Two-color pyrometers were employed to measure the 
ure during the torsion test. At the end of each test the 
as immediately water quenched to retain the deforma-

ostructure. The torsion test provides the torque (� ) versus 
er of turns (Nt) curves. Then, the equivalent strain (εeq) 

train rate ( ˙ε) were calculated by means of the following 
hips [17]:

RNt

3
(2)

˙ t (3)

s the sample radius, Ṅt is the number of turns per second
he gauge length.
re measurements were carried out by means of the Schulz 
 method using a Siemens X-ray diffractometer equipped 

5000 goniometer. Quantitative three-dimensional orien-
tribution functions (ODFs) were obtained using the series 
n method following the Bunge’s criterion [18,19]. ODFs 
resented with iso-intensity lines at equidistant sections 
of the Euler’s space defined by ϕ1, ˚ and ϕ2 angles.
etallographical studies, specimens cut from the processed
and deformed samples were successively grounded and
and then examined by optical and scanning electron

py on a plane parallel to the extrusion axis direction (ED)
n axis). Barker’s, Keller’s and Poulton’s reagents were used
ne the microstructure.
s microhardness measurements were conducted on the
nal section of deformed samples to investigate the hard-
ient resulting after torsion deformation. A microhardness
ment Future-Tech-Corp-Model FM-100e applying a load

during 25 s was employed for these measurements. The
of the original powder was determined by applying a load

ts and discussion

l microstructure

shows metallographic sections of types A, B, and C pow-
e A powder (no sieved powder) contains the whole range 
e sizes as observed in Fig. 2(a) and (b). The particles are 
pherical, although some of them show irregular shape. 
owder (+500 mesh) is shown in Fig. 2(c) and (d). It is 
 the presence of particles smaller than 25 �m that have 
completely removed after the sieving process. These parti-

 have been stuck to other particles that prevent obtaining 

cted powder size range. However, the statistical analysis 
at the amount of particles smaller than 25 �m is about 
ompared to type A powder. In turn, type C powder (−500
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ntains fine particles as shown in Fig. 2(e) and (f). Fig. 3(a) 
hows a dendritic structure inside the powder particles, 
pears finer in the small ones. The microhardness inden-
rformed on a large number of particles (Fig. 3(c) and (d)) 

 hardness of about ∼71 Hv, somewhat higher than the 
 of pure Al (99.6%), ∼23 Hv.
eral view of the microstructure of the extruded PM 6061 
s shown in Fig. 4. It is important to emphasize that the 
cture of the three materials shows similar characteris-
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T
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gh the initial particle sizes are different. Fig. 4(a) is a low 
tion picture of the microstructure of material A. The orig-

der particles have undergone plastic deformation during 
 leading to elongated grains with the long axis parallel

addition 
should b
alumina c
mina is s
) Type B powder (+500 mesh), (d) high magnification of (c), (e) Type C

 [20]. A uniform banded structure is developed during 
, showing a substructure formed at the expenses of a 
 structure developed inside the elongated grains. Details 
bstructure within the elongated grains are visible, as 
 by arrows in Fig. 4(b). Similar observations are made 
rial B in Fig. 4(c) and (d) and for material C in Fig. 4(e) 

cond phase particles and the precipitates are found inside 
s and at the grain boundaries aligned with the ED [21]. In 

to these particles, a fine dispersion of alumina parti-cles 
e present in all materials. These particles result from 
overing the original powder particles. The amount of alu-
ignificant in small powder particles, in accordance with
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hus, it is expected that material C contains higher amount 
a particles than materials A and B.
xture for all materials is described by 〈1 1 1〉+〈1 0 0〉 fibers,
fiber axis parallel to ED. The initial deformation texture is
ctively retained in materials A and B than in material C,

terial C presents a lower texture intensity (I = 17.5) than
aterials A (I = 29) and B (I = 32).

on tests

sults of the torsion tests for all materials are summarized 
t of Fig. 5. In this figure, the torque (� ) is represented as 
of the equivalent strain (εeq). As is shown, the � vs. εeq 
r materials A and B have a similar peak torque (� p), but the 
t strain to failure of material A is twice that of material B, 
hich corresponds to number of turns of Nt ∼ 5.8) against 

Nt ∼ 11.3). The � p for material C is slightly higher whereas 
alent strain is lower εeq ∼ 1 (Nt ∼ 1). Two important con-
can be drawn from Fig. 5, one concerns the softening 
 in the � vs. εeq curves and the other is that the εeq at 
aterial C is 3.4 times smaller than the observed value for 
 A or B.
ight increase of � p in material C should be related to the 
table presence of alumina introduced during PM process 
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ted in Fig. 1(b). The interaction of the substructure with 
itates and oxides can boost strengthening of the material. 

rtunately, such interaction could also trigger stress con-
n, leading to premature failure [22,23]. Similarly, material

in materi
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ture regio
seems to
ntain enough coarse subgrains (developed from powder 
een 25 and 45 �m) whereas material A may contain both 
d fine subgrains, associated with the whole range of par-

s of this material (see Fig. 2(a) and (b)). This suggests that 
nce of a type C substructure (−500 mesh) in material A 
ove the plastic compatibility leading to the observed large 
w stability and, therefore, to a high εeq. In summary, the 
bstructure should play a crucial role in accommodating 
mentation which is the final microstructural feature for 
g the mechanical characteristics of this material.

n structure after torsion deformation

icrostructures of the torsioned materials are shown in 
(c) for materials A, B and C, respectively. In all three cases, 
tructural gradient is developed with two distinguishable 
arked as zone 1 and zone 2, which correspond to the outer 

 and the inner region (centre), respectively. In zone 1, a 
eous distribution of small equiaxed subgrains less than 
ize is visible. The subgrain at the upper side of the micro-
lose to the grip region, is somewhat coarser than the one 
gion near the fracture (bottom side). In zone 2 recrys-
n does not take place. The grains are only twisted and 
hinner. It is worth noting that the unrecrystallized zone 

al C extends from the grip to the fracture region, Fig. 6(c), 
in material A it becomes less apparent toward the frac-
n, Fig. 6(a). Furthermore, shearing in zone 2 of material A 

 be progressive, according to the angle between the long
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formed grains and the torsion axis. This angle is low at the 
 of the grip region but it increases along the gauge, reach-
aximum value at the fracture region. This indicates the 

gly deformed microstructure and shearing change with 
entation process through zone 2. This results in a more 

refinement of the microstructure. These effects are clearly 
in material A where the angle in the grip region is of 

◦ and increases to 90◦ near the fracture. The microstruc-

T
from
show
part
regio
7(a) 
align
the s
ient developed in PM 6061 Al alloy is commonly observed 
als deformed in torsion, which is associated with inhomo-
deformation or strain rate through the radius, maximum 
face and minimum at the centre [24].

contrast, 
deformat
the matr
particles 
magnification of (a). Similar banded microstructure is also apparent for
n and (f) high magnification of (e). The arrows indicate the substructure

olution of the deformed grain structure is also observed 
 change in the alignment of the second phase particles as 

 Fig. 7. This figure illustrates the alignment of these 
on a longitudinal plane of materials B and C. In the grip 
he particles are aligned with the ED, as observed in Fig. 
 (d). However, in the deformed regions the particles 
t changes dramatically from zone 2 to zone 1. In zone 2, 
d phase particles reorient as shown in Fig. 7(b) and (e). In 

such alignment is broken up in zone 1 by shear 

ion, and the particles become uniformly distributed in 
ix, Fig. 7(c) and (f). Similar changes in the alignment of 
in zone 1 and 2 are also found in material A.
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 shows the hardness along ED in zone 2 of deformed 
s. It can be seen that the hardness along the torsion axis 
 from the grip to the fracture region. This is consistent 

 deformation gradient observed along this direction. The 
 along the diameters d1, d2 and d3 of deformed samples 
n in Fig. 9(a)–(c) for materials A, B and C, respectively. For 
son, the hardness at the grip regions and the hardness of 
 Al powder particles are also included. As observed, the 
as higher hardness than any of the three materials. This is 
e high amount of atoms in solid solution in the dendritic 
. Furthermore, it is remarkable that the material C reveals 
rd-ness in spite of its high content of alumina particles 
1(b)). This material, however, has the lowest texture 

 of all three materials [25]. Then, their difference in 
 should be due to the texture rather than to the presence 
ides. However, under torsion deformation at 300 ◦C the 
 activated pro-cesses become more important and, thus, 

gthening due to oxide-dislocation interactions should be 
nounced in material C than in materials A and B, as 

by the increase of � p in the � vs. εeq curves.
portant consideration arising from Fig. 9 is the hardness 
 from the outer region towards the inner region of the 
 samples. This variation in hardness across the radius is 
y more marked for material C (Nt ∼ 1) than for material A 
), compare Fig. 9(a) and (c). It is related to the gradient of

: (a) material A, (b) material B, and (c) material C.
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structure shown in Figs. 6 and 7; i.e. the grain refinement 
 from grip towards the fracture region and decreases 
 surface towards the centre of the strained samples. 
anges in hardness across the radius of deformed sample 

erved in a series of Al alloys processed by high pressure 
HPT), as for example pure Al, 6061 Al alloy, and 
ned Al–Mg alloy [26–29]. Then, there is clear evidence for 
 towards a more homogeneous microstructure with 
g equivalent strain (or Nt).
average hardness at di (1 ≤ i ≤ 3) of materials A, B and C is 
 a function of the corresponding equivalent strain (or as a 
f the number of turns Nt) then the data will lie on a single 
ich should be described by three main stages, I, II and III, 

 in Fig. 10. In stage I the hardness increases until reaching 
m located at εeq between ∼1 and ∼6 (extrapolated point) 
decreases in stage II with a further strain up to 12. A very 
in is expected in stage III, where the hardness should be 
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 This hardness variation with εeq at room temperature of 
Al alloy is in good agreement with the softening observed 
eq curves in Fig. 5. On the basis of this representation, it is 
le accepting that the hardness of sample C belongs to stage

ing proce
this stud
stacking 
softening
correspond to: grip region, zone 2, and zone 1, respectively, of material

hening), where the recrystallized microstructure is low
d to materials A and B, which belong to stage II (softening).
ostructure in stages II and III should be characterized by a
ve increase in the recrystallized microstructure and then
brium grain structure should be achieved. It is proposed
strengthening and softening of PM 6061 Al alloy during
eformation is controlled by the fragmentation process,
g on the change in the recrystallized volume.
olution of hardness with the number of turns during HPT 

 studied in numerous materials, and different views have 
posed to determine the softening mechanism [30–32]. It 
ested that the average size of grains with highly mis-
boundaries is the important parameter influencing the 
 and strengthening during the HPT process [32]. Also, the 
e homologous temperature, TH (TH = T/Tm where T is the 
ure test and Tm is the melting temperature), and/or the 
fault energy, the more predominant the dynamic soften-

sses. On the contrary, the PM 6061 Al alloy treated in 

y exhibits softening even though it was reported that the 
fault energy is lower than that of pure Al [34]. However, 
 and hardening have been observed in 6061 Al alloy under
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tensity of the global texture after torsion deformation
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for the equivalent strain to failure. For example, the tex-

nsity in sample C decreases dramatically, from I ∼ 17 to
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