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1. INTRODUCTION: DISCRIMINANT RULES AND

TRANSFORMATIONS

Consider a discriminant problem where the goal is to assign an individual to one

of a finite number of classes or groups g1, ..., gk on the basis of p observed features

x = (x1, ..., xp)
0. Although the specific form of the assignment rule that gives the

optimal solution to this problem is well known (see e.g. Anderson, 1984 chap. 6), its

structure depends typically on unknown parameters that must be estimated from an

appropriate database. However, as explained for example in McLachlan (1992 chap.

12), the practical performance of a sample discriminant rule tends to deteriorate

when the number of dimensions p increases. This phenomenon motivates then, when

p is large, the construction of dimension reduction methods for optimal classification

using a lower number of coordinates. The aim of this paper is to propose a general

framework for dimension reduction in discriminant analysis by introducing the class of

dimension reduction transformations. This section establishes notation and presents

some preliminary results.

Consider the pair (x,g), where g is the discrete random variable, often called

class index or group label, that describes the unknown true class membership of

the individual corresponding to the feature vector x = (x1, ..., xp)0. The class index

can be conveniently represented as taking values g = i with class prior probabilities

πi = P [g = i] > 0, i = 1, ..., k. The joint distribution of (x,g) can be obtained

as the product P [x ∈ C;g = i] = P [g = i]P [x ∈ C| g = i], for each C ∈ Bp and
i = 1, ..., k, where Bp is the σ−field of Borel sets in Rp. On the other hand, if µ is
the marginal distribution of x, by standard properties of conditional probability (see

e.g., Billingsley, 1995 chap. 6), the joint of (x,g) can be alternatively expressed as

a function of µ and the class posterior probabilities πi(x) = P [g = i| x] that satisfy,
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for each C ∈ Bp and i = 1, ..., k, the identity

P [x ∈ C;g = i] =
Z
C

P [g = i | x]µ (dx) =
Z
C

πi(x)µ (dx) . (1)

Once the probabilistic structure of a given classification problem has been formu-

lated in terms of the elements that determine the joint distribution of (x,g), the

space Rp is partitioned into a collection of Borel sets R1, ..., Rk, and the individual

corresponding to x assigned to the ith group whenever x ∈ Ri. This generates a
discriminant rule as a mapping r : Rp → {1, ..., k} from Rp, the sample space of x,

onto {1, ..., k}, the sample space of g, such that r(x) = i for x ∈ Ri or, equivalently,
such that r(x) =

Pk
i=1 iIRi(x), where IA(.) is the indicator function of the subset

A ∈ Bp. For fixed (x,g), there is an error when r(x) 6= g. From (1), the probability

of error or misclassification of rule r(x) is

L[r(x)] = P [r(x) 6= g] = 1− P [r(x) = g] = 1−
kX
i=1

P [r(x) = i;g = i] =

= 1−
kX
i=1

P [x ∈ Ri;g = i] = 1−
kX
i=1

Z
Ri

πi(x)µ (dx) . (2)

A natural criterion for optimal classification is to select those rules that minimize

this probability of error. Any rule r∗(x) that minimizes the functional L[r(x)] is

called a Bayes rule and the corresponding minimum probability of misclassification

L∗ = L[r∗(x)] is the Bayes error. The following auxiliary result establishes existence

and uniqueness of Bayes rules.

Proposition 1

i) The probability of misclassification is minimized by any rule r∗(x) =
Pk

i=1 iIR∗i (x),

where the subsets R∗1, ..., R
∗
k form a measurable partition of Rp such that

R∗i ⊆ {x ∈ Rp : πi(x) = max
j

πj(x)}, i = 1, ..., k . (3)

ii) Under condition (C1): P [πi(x) = πj(x)] = 0, i 6= j, if s∗(x) is any other rule
such that L[s∗(x)] = L∗, then P [r∗(x) = s∗(x)] = 1.
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Proof. See appendix 6.1.

If the binary relation between rules is defined as: s ∼ r if, and only if, P [r(x) =
s(x)] = 1, is easy to see that 0 ∼ 0 is an equivalence relation. By (2), if rules

r(x) and s(x) are equivalent, L[r(x)] = L[s(x)]. Part i) of proposition 1 above

assures that the equivalence class generated by any rule r∗(x) given by subsets R∗i

satisfying condition (3), is a class of optimal rules. Under condition (C1) of part ii),

the equivalence class of optimal rules is unique. A representative in this class could

be the rule associated to taking R∗i = {x ∈ Rp : i is the smallest integer such that
πi(x) = maxj πj(x)}, i = 1, ..., k. However, to simplify notation, it is convenient

to write R∗i = {x ∈ Rp : πi(x) = maxj πj(x)}. The intuitive meaning of (C1) is
that with probability one, once the vector x is observed, there is a perfect ordering

πi1(x) > πi2(x) > ... > πik(x) of the posterior class probabilities. By (3), the natural

assignment to the class with the largest posterior probability is also optimal. Other

results of existence and uniqueness of Bayes rules are available in the literature but

the format of Proposition 1 is convenient for the purposes of this paper.

To analyze the effect of transforming the feature vector x on a given classification

problem, consider an invertible Borel measurable transformation t : Rp → Rp and put

y = t(x). Given the posterior class probabilities qi(y) = P [g = i | y], by proposition
1 an optimal rule in the transformed space y = t(x) is s∗(y) =

Pk
i=1 iIS∗i (y) where,

using the convention of the previous paragraph, S∗i = {y ∈ Rp : qi(y) = maxj qj(y)},
i = 1, ..., k. Under condition (C2): P [qi(y) = qj(y)] = 0, i 6= j, this rule is also

unique. Given a discriminant rule r(x) =
Pk

i=1 iIRi(x) in the original space x, the

pair (r, t) induces in the new space y = t(x) the rule

rt(y) = r[t
−1(y)] =

kX
i=1

iIRi [t
−1(y)] =

kX
i=1

iIt(Ri)(y) , (4)

where x = t−1(y) is the inverse transformation of y = t(x) and, for i = 1, ...,

k, t (Ri) = {y = t(x) ∈ Rp : x ∈ Ri}. Since P [y = t(x) ∈ t(Ri);g = i] =
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P [x ∈ Ri;g = i], using (2) one has

L[rt(y)] = 1−
kX
i=1

P [y = t(x) ∈ t(Ri);g = i] = 1−
kX
i=1

P [x ∈ Ri;g = i] = L[r(x)] ,
(5)

so the probabilities of misclassification of rules rt(y) and r(x) are the same. In a

dual fashion, given a rule s(y) =
Pk

i=1 iISi(y) in the space y, construction (4) can be

applied to the pair (s, t−1) to obtain the induced discriminant rule st−1(x) = s[t(x)] =Pk
i=1 iISi [t(x)] =

Pk
i=1 iIt−1(Si)(x) where, for i = 1, ..., k, t

−1 (Si) = {x = t−1(y) ∈
Rp : y ∈ Si}. The result below follows.

Lemma 2 Given an invertible and measurable transformation y = t(x), the optimal

probabilities of misclassification or Bayes errors are the same in both the original

and transformed spaces. Moreover, the rules induced by Bayes rules in a given space,

either x or y, are also Bayes rules in the corresponding transformed space.

Proof. If r∗(x) and s∗(y) are Bayes rules in the spaces x and y = t (x) respectively,

by (5) one has L∗ = L[r∗(x)] = L[r∗t (y)] ≥ L[s∗(y)] and L[s∗(y)] = L[s∗t−1(x)] ≥
L[r∗(x)] = L∗. As a conclusion, L[r∗(x)] = L[s∗(y)] = L∗ = L[r∗t (y)] = L[s

∗
t−1(x)].

2. DIMENSION REDUCTION TRANSFORMATIONS

Let y = t(x) = (y1, ..., yp)
0 be an invertible measurable transformation and consider,

for r ≤ p, the r−dimensional random vector yr = (y1, ..., yr)
0. This generates the

partition y = (y
0
r,y

0
(r))

0, where y(r) = (yr+1, ..., yp)
0 is the (p− r)× 1 vector formed by

the coordinates not in yr. This notation can be easily adapted to the case in which

yr is formed by any subset of r components from y = (y1, ..., yp)
0.

By proposition 1, if the posterior class probabilities ηi(yr) = P [g = i | yr] satisfy
condition (C3): P [ηi(yr) = ηj(yr)] = 0, i 6= j, the unique Bayes rule for classification
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into g1, ..., gk with the information provided by yr = (y1, ..., yr)
0, is

d∗(yr) =
kX
i=1

iIU∗i (yr) , (6)

where, under the usual convention, U∗i = {yr ∈ Rr : ηi(yr) = maxj ηj(yr)} ⊆ Rr,
i = 1, ..., k. The following result proves that the Bayes error L∗ is a lower bound for

the probability of misclassification L[d∗(yr)].

Proposition 3 If r∗(x) and s∗(y) are Bayes rules in the spaces x and y respectively,

the discriminant rule d∗(yr) of (6) satisfies the inequality

L[d∗(yr)] ≥ L[s∗(y)] = L[r∗(x)] = L∗ . (7)

Proof. Let µy and µyr be the probability distributions of y = t(x) = (y1, ..., yp)
0

and yr = (y1, ..., yr)
0 respectively. Using the subsets U∗i construct, in the space

y = (y
0
r,y

0
(r))

0 ∈ Rp, the discriminant rule u∗(y) = Pk
i=1 iIU∗i ×Rp−r(y). Taking into

account that, for each C ∈ Br,Z
C

ηi(yr)µyr(dyr) = P [yr ∈ C;g = i]

= P [y ∈ C × Rp−r;g = i] =
Z
C×Rp−r

qi(y)µy(dy) , (8)

one has, by (2) and (8),

L[d∗(yr)] = 1−
kX
i=1

Z
U∗i

ηi(yr)µyr(dyr)

= 1−
kX
i=1

Z
U∗i ×Rp−r

qi(y)µy(dy)

= L[u∗(y)] ≥ L[s∗(y)] = L[r∗(x)] = L∗.

Inequality (7) will be, in general, strict. When equality holds, there is a dimension

reduction in the classification problem from p to r dimensions.
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Definition 4 In the notation of proposition 3, the invertible measurable transforma-

tion y = t(x) is said to be a dimension reduction transformation (d.r.t.) when, for

some r < p,

L[d∗(yr)] = L[s∗(y)] = L[r∗(x)] = L∗ .

The following result gives a sufficient condition for y = t(x) to be a d.r.t.

Theorem 5 Consider an invertible measurable transformation y = t(x) and any op-

timal rule s∗(y) =
Pk

i=1 iIS∗i (y) in the space y. Transformation y = t(x) is a d.r.t. if

the subsets S∗1 , ..., S
∗
k do not depend on the coordinates y(r) = (yr+1, ..., yp)

0, i.e., there

exists a measurable partition T1, ..., Tk of Rr such that
Pk

i=1 P [y ∈ S∗i M (Ti × Rp−r)] =
0, where M is the operator symmetric difference of subsets.

Proof. Consider the rules v(yr) =
Pk

i=1 iITi(yr) and T (y) =
Pk

i=1 iITi×Rp−r(y)

in the spaces yr = (y1, ..., yr)
0 and y = (y

0
r,y

0
(r))

0 respectively. By assumption,

P [s∗(y) 6= T (y)] ≤ Pk
i=1 P [y ∈ S∗i M (Ti ×Rp−r)] = 0 so, using (2), T (y) has the

same probability of misclassification than rule s∗(y). Also, by (8), L[v(yr)] = L[T (y)]

and, as a consequence, L∗ ≤ L[d∗(yr)] ≤ L[v(yr)] = L[T (y)] = L[s∗(y)] = L∗. This
leads to L[d∗(yr)] = L∗.

An alternative sufficient condition is also of interest.

Theorem 6 The invertible measurable transformation y = t(x) is a d.r.t. if the class

posterior probabilities qi(y) = P [g = i | y] depend only on yr = (y1, ..., yr)0, that is, if
for i = 1, ..., k there exist functions hi(yr) such that

qi(y) = hi(yr), a.e. (µy) . (9)

Proof. The first step is to verify that, under (9), qi(y) = ηi(yr), a.e. (µy) for i = 1,

.., k. By construction of ηi(yr) = P [g = i | yr] one has, for all C1 ∈ Br,

P [yr ∈ C1;g = i] =
Z
C1

ηi(yr)µyr(dyr) . (10)
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On the other hand, using y = (y
0
r,y

0
(r))

0, the left hand side of (10) coincides by

assumption with

P
£
y ∈ C1 × Rp−r;g = i

¤
=

Z
C1×Rp−r

qi(y)µy(dy) =

Z
Rp
hi(yr)IC1×Rp−r (y)µy(dy)

= E[hi(yr)IC1×Rp−r (y)] = E[hi(yr)IC1(yr)]

=

Z
C1

hi(yr)µyr(dyr) . (11)

Comparing (10) and (11),
R
C1
hi(yr)µyr(dyr) =

R
C1

ηi(yr)µyr(dyr) for all C1 ∈ Br
and this implies hi(yr) = ηi(yr), a.e. (µyr). Since hi(yr) and ηi(yr) depend only

on yr = (y1, ..., yr)
0 this also implies hi(yr) = ηi(yr), a.e. (µy). As a conclusion,

qi(y) = ηi(yr), a.e.(µy) for all i = 1, ..., k, and the subsets S
∗
i = {y ∈ Rp : qi(y) =

maxj qj(y)} ⊆ Rp and U∗i = {yr ∈ Rr : ηi(yr) = maxj ηj(yr)} ⊆ Rr are such thatPk
i=1 P [y ∈ S∗i M (U∗i × Rp−r)] = 0 so, by theorem 5, y = t(x) is d.r.t.

Condition of theorem 6 is stronger than condition of theorem 5 as it will be il-

lustrated by example in subsection 3.2 below. The next result gives an equivalent

formulation for sufficient condition (9).

Theorem 7 Condition (9) holds if, and only if, the class label g and the random

vector y(r) = (yr+1, ..., yp)
0 are conditionally independent given yr = (y1, ..., yr)

0, that

is, if for all C2 ∈ Bp−r and i = 1, ..., k

P [y(r) ∈ C2;g = i | yr] = P [y(r) ∈ C2 | yr]P [g = i | yr], a.e. (µyr) . (12)

Proof. Since y = (y
0
r,y

0
(r))

0, if qi(y) = ηi(yr), a.e. (µy) one has, for all C1 ∈ Br,
C2 ∈ Bp−r and i = 1, ..., k,

P [y ∈ C1 × C2;g = i] =
Z
C1×C2

qi(y)µy(dy) = E[qi(y)IC1×C2(y)]

= E[ηi(yr)IC1×C2(y)] = E[ηi(yr)IC1(yr)IC2(y(r))]

= E{ηi(yr)IC1(yr)E[IC2(y(r)) | yr]}
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= E{ηi(yr)IC1(yr)P [y(r) ∈ C2 | yr]}
=

Z
C1

ηi(yr)P [y(r) ∈ C2 | yr]µyr(dyr) . (13)

On the other hand,

P [y ∈ C1 × C2;g = i] =
Z
C1

P [y(r) ∈ C2;g = i | yr]µyr(dyr) , (14)

and (12) follows after comparing (13) and (14). Conversely, under the assumption of

conditional independence between g and y(r) = (yr+1, ..., yp)
0 given yr = (y1, ..., yr)

0,

one has, using similar arguments as above,

P [y ∈ C1 × C2;g = i] =
Z
C1

P [y(r) ∈ C2;g = i | yr]µyr(dyr)

=

Z
C1

ηi(yr)P [y(r) ∈ C2 | yr]µyr(dyr)
= E{ηi(yr)IC1(yr)P [y(r) ∈ C2 | yr]}
= E{ηi(yr)IC1(yr)E[IC2(y(r)) | yr]}
= E[ηi(yr)IC1(yr)IC2(y(r))] = E[ηi(yr)IC1×C2(y)]

=

Z
C1×C2

ηi(yr)µy(dy) . (15)

Also, by construction of qi(y),

P [y ∈ C1 × C2;g = i] =
Z
C1×C2

qi(y)µy(dy) . (16)

Comparing now (15) and (16), and using the extension theorem for finite measures,

one has P [y ∈ C;g = i] = R
C
ηi(yr)µy(dy) =

R
C
qi(y)µy(dy), for all C ∈ Bp and

i = 1, ..., k. Hence qi(y) = ηi(yr), a.e. (µy), i = 1, ..., k.

Condition (12) relative to conditional independence between the class label g and

y(r) = (yr+1, ..., yp)
0 once yr = (y1, ..., yr)

0 is given, formalizes an intuitive aspect of

dimension reduction transformations: if the r components yr = (y1, ..., yr)
0 of y are

known, the remaining p − r components y(r) = (yr+1, ..., yp)
0 do not carry relevant

information on the particular class membership of the individual under study.
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3. CONTINUOUS CASE

This section considers specialization of the previous results to the case in which

the class conditional probability distributions x | g = i are absolutely continuous

with respect to Lebesgue measure in Rp, that is, when for i = 1, ..., k there exist

density functions fi(x) such that, for all C ∈ Bp, P [x ∈C | g = i] =
R
C
fi(x)dx. Let

f(x) =
Pk

i=1 πifi(x) be the marginal density of x. In the continuous case, a regular

version of the class posterior probabilities πi(x) is obtained by defining

πi(x) = P [g = i | x] = πifi(x)

f(x)
, (17)

if f(x) > 0 and, for example, πi(x) = πi if f(x) = 0. The joint probability distribution

of the pair (x,g) is then given by

P [x ∈C;g = i] = P [g = i]P [x ∈C | g = i] =
Z
C

πi(x)f(x)dx = πi

Z
C

fi(x)dx .

(18)

Using (18), the probability of misclassification of a rule r(x) =
Pk

i=1 iIRi(x) is

L[r(x)] = 1−
kX
i=1

P [x ∈ Ri;g = i] = 1−
kX
i=1

πi

Z
Ri

fi(x)dx . (19)

Adapting adequately the proof of proposition 1 in section 1, a Bayes rule is determined

by a measurable partition R∗1, ..., R
∗
k where, by the usual convention, R

∗
i = {x ∈ Rp :

πifi(x) = maxj πjfj(x)}, i = 1, ..., k. Under condition (C4): P [πifi(x) = πjfj(x)] =

0, i 6= j, rule r∗(x) =Pk
i=1 iIR∗i (x) is unique.

Consider now a measurable and invertible transformation y = t(x) = (t1(x), ...,

tp(x))
0 = (y1, ..., yp)0 and assume for the rest of this section that the inverse transfor-

mation x = t−1(y) = (t−11 (y), ..., t
−1
p (y))

0 = (x1, ..., xp)0 is continuously differentiable.

By the well-known change of variable formula (see, e.g. Billingsley, 1995 Chap. 4),

for i = 1, ...., k the class conditional distribution y | g = i has a density

fy,i(y) = fi[t
−1(y)] | det[∂t−1(y)/∂y] | , (20)
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where ∂t−1(y)/∂y = (∂t−1i (y)/∂yj : i, j = 1, ..., p) is the p × p Jacobian matrix of
x = t−1(y). If fy(y) =

Pk
i=1 πify,i(y) is the marginal density of the transformed

feature vector y = t(x), the class posterior probabilities in the space y are

qi(y) = P [g = i | y] = πify,i(y)

fy(y)
, (21)

for fy(y) > 0. Also, if the discriminant problem in the space y is restricted to the

first r variables yr = (y1, ..., yr)0, the class posterior probabilities are

ηi(yr) = P [g = i | yr] =
πify,i(yr)

fy(yr)
, (22)

for i = 1, ...., k, where, in (22), fy,i(yr) is the marginal of yr = (y1, ..., yr)0 relative

to the density fy,i(y) of (20), and fy(yr) =
Pk

i=1 πify,i(yr) > 0 is the corresponding

marginal of yr = (y1, ..., yr)0 relative to fy(y) =
Pk

i=1 πify,i(y).

3.1 A sufficient condition in terms of conditional densities

Theorems 6 and 7 in section 2 established that y = t(x) is a d.r.t. if identity qi(y) =

ηi(yr) holds a.e. (µy) for i = 1, ...., k or, equivalently, if g and y(r) = (yr+1, ..., yp)
0

are conditionally independent given yr = (y1, ..., yr)0. In the continuous case, this

sufficient condition can be formulated in terms of the conditional densities

fy,i(y(r) | yr) = fy,i(y)

fy,i(yr)
, (23)

and

fy(y(r) | yr) = fy(y)

fy(yr)
, (24)

that are well defined for yr = (y1, ..., yr)0 ∈ Ai = {yr ∈ Rr : fy,i(yr) > 0} ⊆
A = {yr ∈ Rr : fy(yr) > 0}.

Theorem 8 In the continuous case, qi(y) = ηi(yr) a.e. (µy) for all i = 1, ..., k if,

and only if, there exists a subset B ∈ Br, with B ⊆ A and P [yr ∈ B] = 1, such that,
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for all i = 1, ..., k and yr ∈ Ai ∩ B, the condition below holds

fy,i(y(r) | yr) = fy(y(r) | yr), a.e. (mp−r) , (25)

where mp−r is Lebesgue measure on the σ-field Bp−r of Borel sets in Rp−r.

Proof. For each C2 ∈ Bp−r and i = 1, ..., k, a version of the conditional probability
P [y(r) ∈ C2;g = i | yr] is given by the product

P [y(r) ∈ C2;g = i | yr] = ηi(yr)P [y(r) ∈ C2 | g = i;yr] , (26)

where ηi(yr) = πify,i(yr)/fy(yr) is as in (22) and P [y(r) ∈ C2 | g = i;yr] is the

function defined for yr ∈ Ai as

P [y(r) ∈ C2 | g = i;yr] =
Z
C2

fy,i(y(r) | yr)dy(r) , (27)

where, in (27), dy(r) represents integration with respect to the measure mp−r. To

verify this statement, recall that y = (y
0
r,y

0
(r))

0 and notice that, with definitions (22),

(23) and (27), by Fubini’s theorem one has, for all C1 ∈ Br,Z
C1

ηi(yr)P [y(r) ∈ C2 | g = i;yr]fy(yr)dyr =

=

Z
C1∩Ai

πify,i(yr)

fy(yr)
[

Z
C2

fy,i(y(r) | yr)dy(r)] fy(yr)dyr

= πi

Z
(C1∩Ai)×C2

fy,i(y)dy = P [g = i]P [yr ∈ C1 ∩ Ai;y(r) ∈ C2 | g = i]
= P [yr ∈ C1 ∩Ai;y(r) ∈ C2;g = i] = P [yr ∈ C1;y(r) ∈ C2;g = i] ,

where the last identity above follows from definition of Ai and inequality P [yr ∈
C1 ∩ Aci ;y(r) ∈ C2;g = i] ≤ P [yr ∈ Aci ;g = i] = P [g = i]P [yr ∈ Aci | g = i] = 0.
Suppose now that qi(y) = ηi(yr) a.e.(µy) for all i = 1, ..., k. According to theorem

7, this is equivalent to conditional independence between g and y(r) = (yr+1, ..., yp)0
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once the information in yr = (y1, ..., yr)0 is given. In other words, for each C2 ∈ Bp−r
and i = 1, ..., k,

P [y(r) ∈ C2;g = i | yr] = ηi(yr)P [y(r) ∈ C2 | yr], a.e. (µyr) , (28)

where, in the continuous case,

P [y(r) ∈ C2 | yr] =
Z
C2

fy(y(r) | yr)dy(r) . (29)

Comparing (26)-(27) with (28)-(29) it turns out that, for each C2 ∈ Bp−r and i = 1,
..., k, there exists a Borel set B(C2,i) ⊆ Rr that depends on C2 and i, such that

P [yr ∈ B(C2,i)] = 0 and, if yr ∈ [B(C2,i)]c,

ηi(yr)

Z
C2

fy,i(y(r) | yr)dy(r) = ηi(yr)

Z
C2

fy(y(r) | yr)dy(r) . (30)

Define now, for real numbers xr+1, ..., xp, the infinite rectangle C2(xr+1, ..., xp) =

(−∞, xr+1]× ...× (−∞, xp] and put D = ∪
sr+1, ..., sp∈Q ; i≤1≤k

B[C2(sr+1, ..., sp), i] ∪Ac,
where Q is the set of rational numbers. Since the union that defines D is countable,

P [yr ∈ D] ≤
X

sr+1, ..., sp∈Q;1≤i≤k
P{yr ∈ B[C2(sr+1, ..., sp), i]}+ P [yr ∈ Ac] = 0 ,

so taking B = Dc ⊆ A, one has P [yr ∈ B] = 1. Also, if i = 1, ..., k and yr ∈ Ai ∩B,
cancelling ηi(yr) = πify,i(yr)/fy(yr) > 0 in both sides of (30) one has, for all rational

numbers sr+1, ..., sp ∈ Q,Z
C2(sr+1,...,sp)

fy,i(y(r) | yr)dy(r) =
Z
C2(sr+1,...,sp)

fy(y(r) | yr)dy(r) . (31)

Therefore, for each xr+1, ...., xp ∈ R, taking sequences sj → xj and passing to the

limit in (31),Z
C2(xr+1,...,xp)

fy,i(y(r) |yr )dy(r) = lim
sj→xj
r+1≤j≤p

Z
C2(sr+1,...,sp)

fy,i(y(r) | yr)dy(r)
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= lim
sj→xj
r+1≤j≤p

Z
C2(sr+1,...,sp)

fy(y(r) | yr)dy(r) =
Z
C2(xr+1,...,xp)

fy(y(r) |yr )dy(r) . (32)

Identity (32) shows that, when yr ∈ Ai∩B, the two probability distributions
R
C2
fy,i(y(r) |yr )dy(r)

and
R
C2
fy(y(r) |yr )dy(r) are identical for all C2 ∈ Bp−rand, therefore, fy,i(y(r) | yr) =

fy(y(r) | yr), a.e. (mp−r). Conversely, if (25) holds, one has

ηi(yr)

Z
C2

fy,i(y(r) | yr)dy(r) = ηi(yr)

Z
C2

fy(y(r) | yr)dy(r) (33)

for all C2 ∈ Bp−r, i = 1, ..., k and yr ∈ B = (B ∩Ai) ∪ (B ∩ Aci) ⊆ A. Therefore, by
(26)-(27) and (28)-(29), for each C2 ∈ Bp−r and i = 1, ..., k

P [y(r) ∈ C2;g = i | yr] = ηi(yr)P [y(r) ∈ C2 | yr], a.e. (µyr) .

By theorem 7 above, this is equivalent to qi(y) = ηi(yr) a.e. (µy) for i = 1, ..., k.

3.2 Example

Suppose πi = 1/k for i = 1, ..., k, and assume also conditional class densities fi(x)

elliptically symmetric with density

fi(x) = |Σ|−1/2 g[(x− µi)0Σ−1(x− µi)] , (34)

where µi is a p×1 vector, Σ is a p×p positive definite (p.d.) matrix, and g : [0,∞)→
[0,∞) is an strictly decreasing and continuous function such that R +∞

0
tp/2g(t)dt <

+∞. Under (34), E(x |g = i) = µi and, therefore, the p×p between dispersion matrix
is

B = V ar[E(x |g)] = 1

k

kX
i=1

(µi − µ)(µi − µ)
0
, (35)

where µ = E(x) = E[E(x |g )] =Pk
i=1µi/k is the marginal mean of x. Notice that,

since Σ is p.d., the square root Σ−1/2 of Σ−1 is well defined. Let r = rank(B) and

consider the spectral decomposition

Σ−1/2BΣ−1/2 = CDC0 , (36)
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where C = (γ1, ..., γp) is a p×p orthogonal matrix of eigenvectors and D = diag(λ1,

..., λr, 0, ..., 0) is a p × p diagonal matrix of eigenvalues such that λ1 ≥ λ2 ≥ ...

≥ λr > 0. If the linear transformation

y = C0Σ−1/2(x− µ) (37)

is considered, the class conditional distribution y | g = i has, for i = 1, ..., k, a

density

fy,i(y) = g(k y −Mi k2) , (38)

where k.k is the usual euclidean norm and theMi = C
0Σ−1/2(µi −µ) = E(y |g = i)

are p× 1 vectors such that
1

k

kX
i=1

Mi = E[E(y |g)] = E(y) = 0 . (39)

Using (36), (37) and (39), the between dispersion matrix By = V ar[E(y |g)] is

By = V ar[E(y |g )] = 1

k

kX
i=1

MiM
0
i

= V ar[C0Σ−1/2E(x |g)] = C0Σ−1/2BΣ−1/2C = D , (40)

so, since D = diag(λ1, ..., λr, 0, ..., 0), from (40) all vectors Mi are of the form

Mi = (m
0
i, 0,

p−r)..., 0)0 where mi is of r × 1. Writing y = (y0r,y0(r))0, the identity

k y −Mi k2=k yr −mi k2 + k y(r) k2 , (41)

holds for all i = 1, ..., k.

Given the Bayes rule s∗(y) =
Pk

i=1 iIS∗i (y) in the y = C
0Σ−1/2(x − µ) space, the

subset S∗i is formed by all transformed feature vectors such that fy,i(y) = max1≤j≤k fy,j(y).

Since the function g(.) is strictly decreasing, from (38) and (41) maximizing fy,i(y) =

g(k y−Mi k2) in i is equivalent to minimizing expression k yr−mi k2 across groups,
operation that clearly does not depend on the coordinates y(r) = (yr+1, ..., yp)

0. By

the sufficient condition of theorem 5, the linear transformation of (37) is a d.r.t.
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If g(t) = (2π)−p/2 exp(−t/2), that is, when the conditional class densities fi(x) are
multivariate normal Np(µi,Σ), the sufficient condition of theorem 8 also holds. To

see this notice that, since y | g = i ∼ Np(Mi,Ip) andMi = (m
0
i, 0

0)0, fy,i(y(r) | yr) ∼
Np−r(0;Ip−r) for i = 1, ..., k, and all the conditional densities fy,i(y(r) | yr) are then
identical. However, condition of theorem 8 does not hold in general for an arbitrary

function g(.). As it can be seen for example in Johnson (1987, p. 109), if fy,i(y) is as

in (38), the conditional density fy,i(y(r) | yr) corresponds to an elliptically symmetric
distribution with mean 0 and dispersion matrix of the form w(k yr − mi k2)Ip−r,
where w(.) is some nonnegative real function. As remarked by Muirhead (1982, p.

36), by results in Kelker (1970) w(k yr −mi k2) is constant if, and only if, y | g = i
is Np(Mi,Ip). As a consequence, unless y | g = i is normal, densities fy,i(y(r) | yr)
cannot be identical because the conditional covariance matrix w(k yr −mi k2)Ip−r
depends on the group index i through vector mi.

4. AN EFFECTIVE DIMENSION REDUCTION ALGORITHM

Suppose that, after application of some of the conditions presented, it has been

determined that transformation y = t(x) = (t1(x), ..., tp(x))0 = (y1, ..., yp)0 is a d.r.t.

from the original value p to the number r < p of coordinates in yr = (y1, ..., yr)0.

Typically, this transformation will depend on some of the unknown elements that

determine the joint probability distribution of the pair (x,g). On the other hand,

the posterior class probabilities ηi(yr) = P [g = i | yr] are unknown as well, so the
subsets U∗i of the optimal rule d

∗(yr) =
Pk

i=1 iIU∗i (yr) of definition 4 in section 2

are not feasible. This type of problems motivate the need of considering data based

effective dimension reduction procedures.

Let

Dn = {(xj,gj) : j = 1, ..., n} (42)
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be a set of i.i.d. observations from (x,g) that can be interpreted as a database of

individuals previously classified. Consider, for i = 1, ..., k, an estimator bηi(yr) of
ηi(yr) computed from Dn and put byr = (by1, ..., byr)0 = (bt1(x), ..., btr(x))0 where, for
j = 1, ..., r, byj = btj(x) is an estimator of tj(x). In applications, it is natural to replace
d∗(yr) =

Pk
i=1 iIU∗i (yr) by the sample rule

bd∗n(x) =Pk
i=1 iIbU∗i (x) where, for i = 1, ...,

k, the subsets bU∗i = {x ∈Rp : bηi(byr) = max
j

ηj(byr)} (43)

are plug-in versions of the subsets U∗i . Optimality of d
∗(yr) in the yr = (y1, .., yr)0

space can be replaced by consistency of rule bd∗n(x), that is, by convergence of the
conditional probability of error

Ln = L[bd∗n(x)] = P [bd∗n(x) 6= g |Dn ] = 1− kX
i=1

Z
bU∗i πi(x)µ(dx) , (44)

where the pair (x,g) is independent of the database Dn, to the Bayes error L∗, either

weakly or in probability or strongly or with probability one (see e.g., Devroye, Györfi

and Lugosi, 1996 chap. 6). These ideas can be summarized in a three step effective

dimension reduction algorithm: i) determine the theoretical expression of the d.r.t.

y = t(x); ii) choose estimators bηi(yr) and sample coordinates byj = btj(x); and iii) form
rule bd∗n(x) = Pk

i=1 iIbU∗i (x) and study its consistency properties. As an illustration,
this algorithm is applied to perform data based dimension reduction in a classification

problem with heteroscedastic normal class conditional densities.

4.1 Heteroscedastic normal models

Suppose that, for i = 1, ..., k, the conditional class densities fi(x) are Np(µi,Σi)

where the µi are p× 1 vectors and the Σi p× p p.d. matrices. Given the class prior
probabilities πi > 0, the marginal mean of x is µ = E(x) = E[E(x |g )] =

Pk
i=1 πiµi
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and the marginal dispersion matrix is

V ar(x) = V ar[E(x |g)] + E[V ar(x |g )] = B+Σ , (45)

where the between dispersion matrix is of the form

B = V ar[E(x |g)] =
kX
i=1

πi(µi − µ)(µi − µ)0 , (46)

and the within dispersion matrix is

Σ = E[V ar(x |g )] =
kX
i=1

πiΣi . (47)

Taking into account that if all Σi are p.d. Σ is also p.d., Schott (1993), based on

previous ideas of Decell, Odell and Coberly (1981), proposes taking

D =
kX
i=1

πiΣ
−1/2(µi − µ)(µi − µ)0Σ−1/2 +

kX
i=1

πi[Σ
−1/2(Σi −Σ)Σ−1/2]2 , (48)

as the dimension matrix of the discriminant problem. Notice that the matrix above

reflects differences in both the conditional means and dispersion matrices of the stan-

dardized feature vector Σ−1/2(x−µ). If s = rank(D), the spectral representation of
the matrix of (48) is

D = U∆U0 , (49)

where U = (u1, ..., up) is an orthogonal p× p matrix of normalized eigenvectors and
∆ = diag(δ1, ..., δs, 0, ..., 0) is a diagonal matrix of eigenvalues δ1 ≥ ... ≥ δs > 0.

4.2 Application of the algorithm

The effective dimension reduction algorithm is now applied in an stepwise fashion.

• Step i) Consider the linear transformation

y = U0Σ−1/2(x− µ) . (50)
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To verify that (50) is a d.r.t., write U = (U1 |U2 ), where U1 = (u1, ..., us) is of p× s
and U2 = (us+1, ..., up) of p× (p− s). From (48) and (49), one has

U0DU =
kX
i=1

πiU
0Σ−1/2(µi − µ)(µi − µ)0Σ−1/2U

+
kX
i=1

πi[U
0(Σ−1/2ΣiΣ

−1/2 − Ip)U][U0(Σ−1/2ΣiΣ
−1/2 − Ip)U]0

=
kX
i=1

πiaia
0
i +

kX
i=1

πi

 EiE
0
i EiF

0
i

FiE
0
i FiF

0
i

 =

 ∆s 0

0 0

 , (51)

where ∆s = diag(δ1, ..., δs) and, for i = 1, ..., k, the ai = U0Σ−1/2(µi − µ) are
p × 1 vectors, the Ei = U0

1(Σ
−1/2ΣiΣ

−1/2 − Ip)U s × p matrices and the Fi =
U0
2(Σ

−1/2ΣiΣ
−1/2 − Ip)U (p − s) × p matrices. Using (51), it can be seen that, for

i = 1, ..., k, ai = (m
0
i,0

0)0, where mi = U
0
1Σ

−1/2(µi − µ) is of s× 1, and Fi = 0. As
a conclusion, under (50), the conditional class distributions are

y | g = i∼Np[
 mi

0

 ,
 Qi 0

0 Ip−s

] , (52)

where Qi = U
0
1Σ

−1/2ΣiΣ
−1/2U1 is an s × s p.d. matrix. From (52) the conditional

densities fy,i(y(s) | ys) are Np−s(0,Ip−s) and, hence, they are all identical. By the
sufficient condition of theorem 8, the linear transformation (50) is a d.r.t. from p to

s = rank(D) coordinates. For further use, it is useful to retain the identity

V ar(y |g = i) = U0Σ−1/2ΣiΣ
−1/2U =

 Qi 0

0 Ip−s

 ; (53)

• Step ii) For the estimation phase of the algorithm, write the database of (42)
in the more standard notation Dn = {xij : i = 1, ..., k, j = 1, ..., ni} where, for
i = 1, ..., k, ni is the number of cases in Dn that belong to class gi. Consider also the
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sample version of the dimension matrix of (48), namely

bD = kX
i=1

bπi bΣ−1/2 (xi − x) (xi − x)0 bΣ−1/2 + kX
i=1

bπi[bΣ−1/2(bΣi − bΣ)bΣ−1/2]2 , (54)

where bπi = ni/n, xi = Pni
j=1 xij/ni, x =

Pk
i=1(ni/n)xi, bΣi =

Pni
j=1(xij − xi)(xij −

xi)
0/ni and bΣ =

Pk
i=1(ni/n)

bΣi. Notice that bD is constructed replacing the unknown
elements in D by their natural estimators computed from the database Dn. Once an

specific value for s = rank(D) has been accepted, compute the spectral representation

bD = bU b∆bU0 , (55)

where bU = (bU1 | bU2) is a p×p matrix of eigenvectors, being bU1 of p×s and bU2 of p×
(p−s), and b∆ = diag(bδ1, ..., bδp) is a p×p diagonal matrix of nonnegative eigenvalues.
From (52), the marginal density fy,i(ys) is Ns(mi,Qi), so a natural estimator of the

posterior class probability ηi(ys) = P [g = i | ys] = πify,i(ys)/
Pk

j=1 πjfy,j(ys) is

bηi(ys) = bπi bfy,i(ys)Pk
j=1 bπj bfy,j(ys) , (56)

where bfy,i(ys) is the estimator of fy,i(ys) given by a Ns( bmi,bQi), where bmi = bU0
1
bΣ−1/2

(xi − x) and bQi = bU0
1
bΣ−1/2bΣi

bΣ−1/2 bU1. Estimator (56) is complemented with the

sample coordinates

bys =

by1
...bys

 = bU0
1
bΣ−1/2(x− x) . (57)

• Step iii) Given the choices (56) and (57), it is straightforward to verify that the
subset bU∗i of (43) is formed by those points x ∈Rp such that

−2 log bπi + log | bQi | +(x−xi)0 bΣ−1/2 bU1
bQ−1i bU0

1
bΣ−1/2(x−xi)

= min
j
[−2 log bπj + log | bQj | +(x−xj)0 bΣ−1/2 bU1

bQ−1j bU0
1
bΣ−1/2(x−xj)] , (58)
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or, equivalently, such that

bπibgi(x) = max
j
bπjbgj(x) , (59)

where, for i = 1, ..., k,

bgi(x) = (2π)−p/2 (| bΣ || bQi |)−1/2 exp[−1
2
cWi(x)] , (60)

and

cWi(x) = (x−xi)0 bΣ−1/2 bU1
bQ−1i bU0

1
bΣ−1/2(x−xi) + (x− µi)0Σ−1/2U2U

0
2Σ

−1/2(x− µi) .
(61)

Recall that, using (51), U0
2Σ

−1/2(µi−µ) = 0 for i = 1, ..., k, so the second summand
in the quadratic form of (61) does not depend on the group index i. Equivalence

between (58) and (59) is finally justified by monotonicity of the function −2 log(.).
To establish strong consistency of the sample rule defined by criterion (59), notice

first that the optimal rule in this context is defined by criterion

πifi(x) = max
j

πjfj(x) , (62)

where, for i = 1, ..., k,

fi(x) = (2π)
−p/2 |Σi|−1/2 exp[−1

2
Wi(x)] , (63)

is the ith class conditional density of a Np(µi,Σi), where using identity (53), the

quadratic form of the exponent can be written in the form

Wi(x) = (x− µi)0Σ−1i (x− µi) =

= (x− µi)0Σ−1/2U1Q
−1
i U

0
1Σ

−1/2(x− µi) + (x− µi)0Σ−1/2U2U
0
2Σ

−1/2(x− µi) .
(64)
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By theorem 1 in Devroye and Györfi (1985, p. 254), the relationship between the

conditional probability of error Ln of the pseudo plug-in rule (59) and the Bayes error

L∗ of rule (62) is such that

0 ≤ Ln − L∗ ≤
kX
i=1

Z
Rp
|bπibgi(x)− πifi(x)| dx . (65)

Therefore, to establish Ln → L∗ a.e. it is enough to verify that, for i = 1, ...,

k,
R
Rp |bπibgi(x)− πifi(x)| dx → 0, a.e. To do this, fix an integer i and put bai =R

Rp bgi(x)dx. Considering the integrals of the positive and negative parts of the differ-
ence fi(x)− bgi(x), the inequality below follows:Z

Rp
|bπibgi(x)− πifi(x)| dx ≤ |bπi − πi|bai + πi

Z
Rp
|bgi(x)− fi(x)| dx

≤ |bπi − πi|bai + πi(bai − 1) + 2πi Z
Rp
[fi(x)− bgi(x)]+dx , (66)

so it suffices to check that all the summands of the upper bound of (66) tend to

zero a.e. as n → ∞. By the auxiliary results of appendix 6.2, as n → ∞, bπi → πi

and bai → 1 a.e. so the first two summands tend to zero. On the other hand, as

it can also be seen in the appendix, {bgi(x)} is, for n large enough, a sequence of
nonnegative integrable functions that, for all x ∈ Rp, converges a.e. to fi(x). Also,
0 ≤ [fi(x)− bgi(x)]+ ≤ fi(x) so the third summand converges to zero by lemma 3.1.3
in Glick (1974) (see also Prakasa Rao 1983, p. 191). Notice finally that, to facilitate

matters, the previous convergence is obtained treating s = rank(D) as a fixed known
constant. Schott (1993) develops a formal test for the true value of rank(D).

5. FINAL COMMENTS

This paper presents a proposal for dimension reduction in discriminant analysis.

The problem of dimension reduction in classification problems is not trivial as the

following remarks illustrate. Consider the subset

S = {1 ≤ r ≤ p : ∃y = t(x) with L[d∗t (yr)] = L[r∗(x)]} ,
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where, as in section 2, d∗t (yr) is the optimal rule in the space yr = (y1, ..., yr)
0 =

(t1(x), ..., tr(x))
0. This set is not empty because at least p ∈ S. If R = minS, the di-

mension is optimally reduced when a transformation y = t(x) can be found such that

L[d∗t (yR)] = L[r
∗(x)]. That is, R is the minimum number of coordinates needed to

attain the Bayes error L∗ = L[r∗(x)]. Borrowing terminology from Fukunaga (1990),

R can be interpreted as the intrinsic dimension of the discriminant problem. To

determine the pair (t,R) is generally a complex and infeasible problem and, as in the

examples considered in this paper, it may be convenient to restrict attention to the

class of linear transformations y = t(x) = A0 (x− b). Methods for dimension re-
duction in classification using linear transformations have been considered previously

by several authors, among others, Decell, Odell and Coberly (1981) and McCulloch

(1986). The general framework presented in this paper, based in the concept of di-

mension reduction transformation and the accompanying data based algorithm of

section 4, can be a useful tool for dimension reduction in discriminant analysis.

6. APPENDIX

6.1 Proof of Proposition 1

From (2), the probability of misclassification can be written as

L[r(x)] = 1−
kX
i=1

Z
Ri

πi(x)µ (dx)

= 1−
kX
i=1

Z
Rp

πi(x)IRi(x)µ (dx) = 1−
Z
Rp

hr(x)µ (dx) , (67)

where hr(x) =
Pk

i=1 πi(x)IRi(x). To see part i), notice that for any rule r
∗(x) =Pk

i=1 iIR∗i (x) such that the R
∗
i satisfy condition (3), if hr∗(x) =

Pk
i=1 πi(x)IR∗i (x), for
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all x ∈ Rp one has the inequality

hr(x) =
kX
i=1

πi(x)IRi(x) =
kX
i=1

πi(x)[
kX
j=1

IRi∩R∗j (x)] =
kX
j=1

[
kX
i=1

πi(x)IRi∩R∗j (x)]

≤
kX
j=1

[
kX
i=1

πj(x)IRi∩R∗j (x)] =
kX
j=1

πj(x)[
kX
i=1

IRi∩R∗j (x)]

=
kX
j=1

πj(x)IR∗j (x) = hr∗(x) . (68)

Therefore,
R
Rp
hr(x)µ (dx) ≤

R
Rp
hr∗(x)µ (dx) and, according to (67), L[r∗(x)] ≤

L[r(x)]. To see part ii), let s∗(x) be another Bayes rule corresponding to a par-

tition S∗1 , ..., S
∗
k and consider the function hs∗(x) =

Pk
i=1 πi(x)IS∗i (x) of represen-

tation (67) for L[s∗(x)]. From (68) hr∗(x) − hs∗(x) ≥ 0 and, since L[r∗(x)] =

L∗ = L[s∗(x)], using (67) one also has
R
Rp
[hr∗(x) − hs∗(x)]µ (dx) = 0. This leads

to hr∗(x)− hs∗(x) = 0, a.e. (µ). By (C1) there exists a set M in Bp with µ(M) = 1
such that, if x ∈M , hr∗(x) = hs∗(x) and πi(x) 6= πj(x) if i 6= j. Therefore, for

i = 1, ..., k, x ∈R∗i ∩ M if, and only if, x ∈S∗i ∩ M , i = 1, ..., k. As a conse-

quence, the symmetric difference R∗i M S∗i = [R∗i ∩ (S∗i )c] ∪ [(R∗i )c ∩ S∗i ] ⊆ M c,

and hence, for i = 1, ..., k, P [x ∈R∗i M S∗i ] = µ (R∗i M S∗i ) ≤ µ(M c) = 0, that is,

P [r∗(x) 6= s∗(x)] ≤Pk
i=1 P [x ∈R∗i M S∗i ] = 0.

6.2 Auxiliary convergences

Let I(i)(.) be the indicator function of class i. By the law of large numbers

bπi = ni
n
=
1

n

nX
j=1

I(i)(gj)→ E[I(i)(g)] =
kX
j=1

πjE[I(i)(g) | g = j] = πi a.e. ,

as n → ∞. Convergence of xi =
Pni

j=1 xij/ni, x =
Pk

i=1(ni/n)xi, bΣi =
Pni

j=1(xij −
xi)(xij−xi)0/ni and bΣ =Pk

i=1(ni/n)
bΣi to, respectively, µi = E(x |g = i), µ = E(x),
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Σi = V ar(x |g = i) and Σ =
Pk

i=1 πiΣi is obtained similarly. For example,

xi =

Pni
j=1 xij

ni
=

Pn
j=1 xjI(i)(gj)/nPn
j=1 I(i)(gj)/n

→ E[xI(i)(g)]

πi

=

Pk
j=1 πjE[xI(i)(g) | g = j]

πi
= E(x |g = i) = µi a.e. .

By lemma 2.1 in Tyler (1981, p.726), when s = rank(D), bU1
bU0
1 → U1U

0
1 a.e., and

then | bQi |= | bU0
1
bΣ−1/2bΣi

bΣ−1/2 bU1 |→ | U0
1Σ

−1/2ΣiΣ
−1/2U1 |= |Qi| and bU1

bQ−1i bU0
1

→ U1
bQ−1i U0

1. Since, from identity (53), |Qi| = |Σ|−1 |Σi|, using expressions (60) and
(63) it turns out that, for all x ∈ Rp, bgi(x) converges a.e. to the density fi(x).
Finally, since both Σ and Qi are positive definite matrices, for n large enough the

following change of variable can be considered

z =

 bQ−1/2i
bU0
1
bΣ−1/2(x−xi)

U0
2Σ

−1/2(x− µi)

 = bAix+ bbi ,
where

bAi =

 bQ−1/2i
bU0
1
bΣ−1/2

U0
2Σ

−1/2

 , bbi = −
 bQ−1/2i

bU0
1
bΣ−1/2xi

U0
2Σ

−1/2µi

 . (69)

Define bVi = bA0
i
bAi = bΣ−1/2 bU1

bQ−1i bU0
1
bΣ−1/2 +Σ−1/2U2U

0
2Σ

−1/2. By (53), as n→∞,bVi → Σ−1/2U1Q
−1
i U

0
1Σ

−1/2 + Σ−1/2U2U
0
2Σ

−1/2 = Σ−1i a.e., so it might also be

assumed that r(bAi) = r(bA0
i
bAi) = r(bVi) = p. Since |∂x/∂z| = |∂z/∂x|−1 = | bVi |−1/2,

bai =

Z
Rp
bgi(x)dx = (| bΣ || bQi || bVi |)−1/2 (2π)−p/2

Z
Rp
exp(− kzk2 /2)dz

= (| bΣ || bQi || bVi |)−1/2 → 1 .
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