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Dependence for functional data
Ph.D. Dissertation
Abstract
Dalia Jazmin Valencia Garcia

Department of Statistics
Universidad Carlos IIT de Madrid

Measuring dependence is a basic question when dealing with functional observations. It is of
great interest to know the effect that one or more functional variables can have on other ones,
and even predict values of one variable from another. Although, in the functional context,
this theory has not been as extensively studied, some techniques to measure dependence in
functional data have already been implemented, providing a single value which represents the
degree of relation between the sets of curves. However, these measures are usually not robust,
which makes them less stable in the presence of outliers. Therefore, it is interesting to develop
robust techniques that ensure high stability of the statistics. This thesis is motivated by the
above issues and aims to provide measures of dependence for sets of curves that are more
robust than those used so far. Hence, we extend non-parametric bivariate coefficients, such
as Kendall’s 7 and Spearman’s coeflicient, to functions, i.e. to situations where the observed
data are curves generated by a stochastic process. These coefficients are based on the natural
data ordering, but when we work in the context of functional data, there is no such thing
as a natural order between functions, meaning that we need to provide for an ordering of
curves. Thus, our first task is to consider suitable ways to sort the observations. For this, we
use different functional preorders, which allow us to define the coeflicients in a way similar
to the bivariate case. The aforementioned coefficients provide an univariate measure of the
dependence between two sets of curves, which leads us to propose in the final chapter a new
functional correlation coefficient that yields a representative curve of dependence between two
sets of functional data. This coefficient is based on the cross-correlation function studied in
the literature of functional data, which is the classic Pearson coefficient between the values of
the curves in different time instants. We adapt the concept of M AD and comedian to measure
dependence between two sets of functions and, through them, introduce a robust alternative

to the cross-correlation function, which we will call correlation median for functions.

The thesis is organized as follows. In Chapter 1 we start defining what is understood as
complex data in this work and show several examples. These data will be treated as functional
data. Then, a review of the different approaches to analyze functional data is provided. We
also offer a brief review of some of the most common measures of dependence between random
variables, focusing on those where we make our contribution. This chapter also analyzes some
techniques that have been extended to the functional context for calculating the dependence

between two sets of curves in order to compare our results. Finally, we study the principal

XV



ordering measures for functional data which are necessary to sort the curves, and thus define
the coefficients in the functional setting.

In Chapter 2 we define the Kendall 7 coeflicient for functional observations based on the
concept of functional concordance, also new in this dissertation. We study its statistical
properties and provide some applications to real data, including asset portfolios in finance

and microarray time series in genetics.

In Chapter 3 we present a notion of Spearman’s coeflicient for functional data that extends
the classic bivariate concept to situations where the observed data are points belonging to
curves generated by a stochastic process. Since Spearman’s coefficient for bivariate samples is
based on the natural data ordering in dimension one, we need to consider a data order in the
functional context. The development uses a pre-order inspired in the depth definition, but
considering a down-up ordering instead of a center-outward ordering of the sample, allowing
us to introduce the notion of grade for functions to properly define the Spearman coefficient.
We show some of the main characteristics of Spearman’s coefficient for functions and propose
an independence test with a bootstrap methodology. We illustrate the performance of the

new coeflicient with both simulated and real data.

The results of Chapter 4 concern a mew functional correlation coefficient that is more
robust than the cross-correlation function. The pair (median, M AD) is known to be a robust
alternative to the pair (mean, standard deviation). Using the idea underlying the calculation
of the M AD, Falk [19] defined a robust estimator for the covariance called comedian. In this
chapter we adapt these concepts, the M AD and the comedian, to functional data. These
measures allow us to define a robust alternative to the cross-correlation function studied in
the literature of functional data, which we will call the correlation median for functions. Since
the most natural extension of median in the functional context has been performed through
depth measurements, the functional M AD and comedian will also be constructed via depth.

These concepts are illustrated with simulated and real data.

Finally, in Chapter 5, we present some general conclusions and summarize the main con-

tributions of the dissertation.
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Dependencia para Datos Funcionales
Tesis Doctoral
Resumen
Dalia Jazmin Valencia Garcia

Departamento de Estadistica

Universidad Carlos IIT de Madrid

Medir la dependencia es un aspecto muy importante cuando tratamos con observaciones
funcionales. Es de gran interés conocer el efecto que una o mas variables funcionales pueden
tener sobre otras, e incluso predecir valores de una por medio de los valores de otra. Aunque
en el contexto funcional esta teoria no ha sido tan ampliamente estudiada, existen algunas
técnicas para medir la dependencia en datos funcionales que va han sido implementadas,
proporcionando un solo valor, que representa el grado de relacién entre los conjuntos de curvas.
Sin embargo, estas medidas introducidas en la literatura no son generalmente robustas ante
la presencia de observaciones atipicas. Por lo tanto, es de interés desarrollar técnicas robustas
que nos garanticen una alta estabilidad de los estadisticos. Esta tesis estda motivada por las
cuestiones antes mencionadas y su principal objetivo es proporcionar medidas de dependencia
para conjuntos de curvas que sean mas robustas que las usadas hasta ahora. Basicamente el
trabajo se enfoca en extender algunos coeficientes bivariantes no paramétricos, tales como el
coeficiente 7 de Kendall y el coeficiente de Spearman al campo funcional, es decir, a situaciones
donde los datos observados son puntos pertenecientes a curvas generadas por algun proceso
estocastico subyacente. Estos coeficientes se basan en el orden natural de los datos, pero
cuando se trabaja en el contexto funcional hay una dificultad mayor y es que alli no hay
un orden natural entre funciones. Esto motiva la busqueda de metodologias para comparar
funciones, algunas de ellas ya han sido estudiadas por diversos autores, pero en algunos casos
concretos se propone en la tesis nuevas ordenaciones que son mas adecuadas para extender
los coeficientes de dependencia al escenario de funciones. Por lo tanto, el primer objetivo
es investigar las formas adecuadas para ordenar las observaciones. Para ello, se utilizan
diferentes predrdenes funcionales que permitiran definir los nuevos coeficientes de una forma
similar al caso bivariante. Los coeficientes que se han mencionado definen una medida de
respuesta escalar de dependencia entre dos conjuntos de curvas. Ademas, en la tesis también
se propone en el iltimo capitulo un nuevo coeficiente de correlacién que proporciona una curva
representativa de la dependencia entre dos conjuntos de datos funcionales. Este coeficiente
esta basado en la funcién de correlacion cruzada estudiada en la literatura de datos funcionales
cuya definicién no es mas que el clasico coeficiente de correlacion de Pearson entre los valores
de las curvas en diferentes instantes de tiempo. En este trabajo tambien se extienden los
conceptos de desviacién absoluta de la mediana M AD y la comedian, para medir dependencia

entre dos conjuntos de funciones y a través de estos dos conceptos en sus versiones funcionales

xvil



se introduce una alternativa robusta de la funcién de correlacién cruzada, que se se llamara

correlacién mediana para funciones.

La tesis estd desarrollada con la siguiente estructura: En el Capitulo 1 se introduce lo que
se ententera, en este trabajo, como un dato complejo y se ilustran algunos ejemplos de ellos
en diferentes contextos. Estos datos seran tratados como datos funcionales. Por lo tanto, en
este capitulo se hace una breve revisién de algunos enfoques para analizar este tipo de datos.
Se describen, ademas, algunas de las medidas mas comunes de dependencia entre variables
aleatorias, haciendo énfasis en aquellas en las que esta tesis contribuye a la literatura por su
extension a variables funcionales. En este capitulo también se hace una revision de algunas
técnicas de mediciéon de la dependencia que yva han sido extendidas al contexto funcional,
con el objetivo de comparar los resultados obtenidos. Finalmente, se analizan las principales
metodologias de ordenacién para datos funcionales que son necesarias para ordenar las curvas

v definir los coeficientes en el ambiente funcional.

En el Capitulo 2 se introduce una versién novedosa del coeficiente 7 de Kendall para
observaciones funcionales. Este coeficiente se construye a través de un concepto llamado
cocncordancia, cuya version para funciones se desarrolla en el capitulo. Se estudian sus
propiedades estadisticas y se proporcionan algunas aplicaciones a datos reales, incluyendo

carteras de activos en finanzas y microarray de series de tiempo en genética.

En el Capitulo 3 se presenta la nocién del coeficiente de Spearman para datos funcionales
que extiende el concepto clasico bivariante a situaciones donde los datos observados son puntos
pertenecientes a curvas generadas por un proceso estocastico. Como el coeficiente de Spear-
man para muestras bivariantes esta basado en la ordenacion natural de los datos en dimension
uno, es necesario un orden para los datos en el contexto funcional. Este desarrollo utiliza un
pre-orden inspirado en la definiciéon de profundidad, pero considerando una ordenacién de
abajo hacia arriba en lugar del orden del centro hacia a fuera de la muestra. El orden de
funciones induce la nocién de grados para curvas que permiten definir naturalmente el coe-
ficiente de Spearman. Se presentan algunas de las principales caracteristicas del coeficiente
de Spearman para funciones y se propone un test de independencia con una metodologia

bootstrap y se ilustra su buen funcionamiento con datos simulados y reales.

Los resultados del Capitulo 4 se refieren a un nuevo coeficiente de correlacién funcional mas
robusto que la funcién de correlacién cruzada. La pareja (mediana, M AD) es bien conocida
como una alternativa robusta a la pareja (media, desviacién estandar). Utilizando la idea
subyacente al célculo de la M AD, Falk [19] definié un estimador robusto para la covarianza
llamado comedian. En este capitulo se adaptan estos conceptos, M AD y comedian, a datos
funcionales. Estas medidas permiten definir una alternativa robusta a la funcién de correlacion
cruzada estudiada en la literatura de datos funcionales, que se llamara correlacion mediana

para funciones. Como la extensiéon mas natural para la mediana en el contexto funcional

se ha realizado a través de las medidas de profundidad, la M AD y la comedian funcional
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se construiran también a través de la nocién de profundidad. Estos conceptos también se

ilustran con datos simulados y reales.

Finalmente, en el Capitulo 5, se presentan algunas conclusiones generales y se resumen las

principales contribuciones de la tesis.

Xix






CHAPTER 1

Introduction and background

Nowadays, the statistical analysis of large size databases in high dimensions is experiencing
a notable growth for application in different fields of science such as medicine, finance, me-
teorology, criminology, quality control, to name a few. Statistical surveys, over all, in high
dimensionality data, lead to rethinking that the classic statistical methodologies commonly
implemented until now for this purpose are increasingly limited and inefficient, and they sim-
ply cannot be used for this kind of data. For example, if each variable is observed at many
different points through time, a multivariate analysis would not be valid, even if the data are
observed at the same time points. In these cases, a standard multivariate analysis could not
be computationally feasible due to the curse of dimensionality, since there are data where
the dimension is often significantly higher than the number of variables observed, leading to
possibly having ill-posed problems. Therefore, different alternatives have been introduced in
recent years to analyze and study these large masses of data, such as interpolation or smooth-
ing techniques that allow us to build functions to represent the data that facilitate the analysis
and also its interpretation. However, many of the technological and industrial processes usu-
ally deliver observations that may already be considered directly as functions, avoiding the
smoothing processes. The arrays, or high-dimensional vectors, are other data examples of
how large information could be gathered. This kind of data, which by their nature require

special statistical treatment, are those referred to in this context as “complex data”.

Now we will illustrate some situations where data of a complex profile arise in terms of

high dimensionality and large size:

e The analysis of the growth of a large number of children at different times, where the

growth curve for each child is taken as an observation.



Chapter 1

e The study of the evolution of the temperature of a city over a long period of time taken
in different places. Each observatory has a temperature curve which is taken as a single

datum.

e Functions that represent the price of different assets over time in the continuous stock

market.

e A color image can be decomposed into the various matrices that form the image itself,

and each matrix can be analyzed independently as a complex observation.

e In the field of genetics, micro-arrays are used to perform various analysis, these vectors

are large-scale complex data.

A graphic representation of a set of complex data can be seen in Figure 1.1 and Figure 1.2.
The former illustrates an example of curves that represent the daily prices of assets of two
companies during 108 days; these prices are measured every 5 minutes, whereas the latter

refers to the monthly temperature in two cities of Canada during 20 years.

Antena 3

22

20

18 4 18-

16 4 161

20 40 &0 B0 100

Figure 1.1: Daily prices of assets during a period of 108 days.

Observe that the data in Figure 1.1 are represented without any kind of statistical treat-
ment; they are simply the graphs of points observed, while the data in Figure 1.2 have already
had a statistical treatment because the temperatures in each year have been smoothed. There-
fore, each year is represented by a function and this is where the function set can be considered
as a set of functional data which are the type of data for which this dissertation offers its
main contributions. Thus, we follow this introductory exposition, presenting two well-known
approaches for performing statistical treatment of functional data. The first one of them is
the set up of Ramsay and Silverman [45], which is based on representing the functions through
a finite number of basis elements. The second one is the non-parametic vision of Ferraty and

View [23] where a discretized representation of the functions is made.

2



Introduction and background

Fort St John

Figure 1.2: Temperatures in two cities of Canada.

We can see that by its nature the functional data have infinite dimension. This sometimes
hinders its representation and especially the application of statistical methods for its analysis.
In practice, so far, it has been necessary to represent the data in finite dimension, trying
to lose the least amount of information possible. To carry out the transition from infinite

dimension to that of a finite one, two procedures are considered:

e The choice of basis functions. This procedure consists of obtaining the coordi-
nates of the projection of the function in some functional sub-space of finite dimension.
Generally speaking, fixed basis functions are considered, for example, the Fourier ba-
sis, the B-splines basis, wavelets and so on. To obtain a finite number of terms it
is necessary to truncate the development in a number K of basis elements. That is,
z(t) = ch{:l cr@r(t), where {¢k }ren are basis functions, and ¢; are the coefficients in
the new basis. To implement this methodology, one must be careful in the choice of
the number of basis functions K, as well as the basis functions in each case, since the
representation of the data in the new finite dimensional space will be influenced by se-
lected the basis functions. In addition, the degree of smoothing of the function will also
depend on the parameter K.

e The discretization. This procedure consists of taking a partition of the interval where
the functions are defined. Let z(t) be a function in t € I = [a,b]. The simplest partition
on time will be, a < t5 <t < --- < t, < b, where for all 7, t; — t;_, have the same value.
However, there are other types of partition that can also be useful, such as a random
selection of the points ¢;, or also considering non-regular partitions, where the length
t; — t;_1 must be smaller in those points #; with relevant information. The discretization

of a function z(¢) will be the sequence given by {z(t;)}1,-

As we have said before, these two important approaches have been analyzed by Ramsay

and Silverman [45] and Ferraty and View [23], respectively. In order to be clearer in both
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aspects, we will give a more detailed introduction of both methods, but omitting some formal

aspects which can be found in the respective references.

The first one is the approach of Ramsay and Silverman [45], who work under a perspective
in which the functional data are represented through smooth functions. Their approach takes
into account different methodologies for the smoothing and interpolating of functions. We

present the representations most used by them: the Fourier and the B-splines basis.

e Fourier basis
This basis is periodic, therefore, it is useful for stable functions, without large changes
and which show a certain periodicity. The basis expansion is provided by the Fourier

series:

& = coPo + Xr(cor—102r—1(t) + cordor(t)),

where
sin(rwt) cos(rwt)

1
o = I dor—1(t) = f? dar(t) = Ta

form a periodic basis with period T = %r This basis will be orthogonal if the {t;} are
equally spaced in [0,7"]. An important feature of this type of basis is its easy differen-
tiability.

¢ B-splines basis
The B-splines basis is the most widely used approximation in the case of non periodic
data. Its success lies in the fact that it combines the computational efficiency of polyno-
mials with greater flexibility. For constructing a B-splines basis ¢ (t), it is necessary to
divide the interval over which a function is going to be approximated into L subinterval
separated by values ¢, called breakpoints or knots. On each interval a spline is defined

(polynomial of specified order m). Thus, the basis will have the following properties.

1. Each element of the basis ¢ (t) will be a spline function, as defined by a order m

and a knots sequence ¢.
2. The linear combination of these basis functions is also a spline function.

3. Any spline functions defined by m and ¢ can be expressed as a linear combination

of these basis functions.

If we take the notation Bg(t,s) representing the k-th basis element over the ¢ partition
in the instant ¢, the spline function S(t) is defined as:

m+L—1

S(t)z Z CkBk(t,(;),

k=1

where ¢j, are the coefficients in the basis. In Figure 1.3 we can see the representation of

thirteen B-splines of order four, with eleven knots.
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0.9

Figure 1.3: B-spline basis.

In the representation of the functional data as smoothed functions, there are a set of statis-
tical techniques and methodologies in the literature that have been developed for its analysis.
These techniques are therefore based on the basis functions chosen for the representation, so

that they take into account the estimation of the parameters necessary for the smoothing.

The second approach for carrying out a representation of functions in a finite dimensional
space is the point of view of Ferraty and View [23], which is based on the study of func-
tional data in a nonparametric way, i.e., the proposed statistical theory where there is free-
distribution, free-parameters, free-linearity, and free-discretization and it is focussed on non-
parametric models which are very general. In this approach, the functional data are observed
over a grid, which can be as fine as desired. Therefore, it is not necessary to use the basis func-
tions for the representation and analysis of the curves. Accordingly, the approach develops a
mathematical background and asymptotic properties that are independent of the number of
points taken for the discretization of functions. The results of this dissertation are based on

the representation of the data through the discretization approach.

The statistical analysis of functional data, in both cases of representation (basis or dis-
cretization), requires mathematical analysis tools, since it is necessary to take into account
some specific features of this type of data, as for instance, the dimensionality that in theory
is infinite and the space where the functions belong. Therefore, the functional data analy-
sis is characterized by having a strong theoretical support, so that many methodologies and
techniques of multivariate analysis have been extended to the functional context based on the
two main approaches described previously. We present several works that have had a high
impact on the development of new statistical methodologies for functional data. For example,
a regression functional version can be seen in (Cardot et al. [2], He et al. [27]), analysis of
variance in (Cuevas et al. [6], Delicado [10]), principal components in (Pezulli and Silver-

man [44]), generalized linear model in (Escabias et al. [17]) and depth for functional data in
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(Fraiman and Muniz [24], Lépez-Pintado and Romo [37], [38]). Other useful methodologies
can also be found in Ramsay and Silverman [45] and Ferraty and View [23]. However, it
is worth pointing out that there are still some statistical concepts that have not been fully
explored for functional data, among them measures of association and dependence structures

between set of curves.

Hence, this thesis will focus on dealing with the problem of measuring the dependence
between sets of curves. We extend the classical bivariate concepts to situations where the
observed data are curves generated by a stochastic process. The principal coefficients that
we consider are Kendall’s 7 and Spearman’s coefficient, which are based on the natural data
ordering. These coefficients provide an univariate measure of the dependence between two
sets of data, and our proposal here is basically the functional version of them. We also
propose, in the last chapter, a new functional correlation coefficient that yields a representative
curve of dependence between two sets of functional data. This coefficient is based on the
cross-correlation function studied in Ramsay and Silverman [45], which is the classic Pearson

coefficient between the values of the curves in different time instants.

We follow this introduction by gathering in Section 1.1 a brief historical review of the
main definitions and measures of dependence that are applied to bivariate data set. We will
especially focus on those that this dissertation will extend to the functional field. Later on, in
Section 1.2 we analyze some techniques from the literature that have already been extended
to the functional context for calculating the dependence between two sets of curves. Finally,
in Section 1.3 we present some procedures for ordering curves, highlighting the kind of orders

that will be used for constructing the new measures of dependence proposed in this work.

1.1 Dependence measures

In this section, we recall the concept of dependence between random variables and show
the measures commonly used in order to capture this dependence. We also present a brief

historical review of the measures that we aim to generalize to the functional context.

The dependence is the relationship between two or more random variables. The measures
of dependence provide a value that summarizes the size of the association between two vari-
ables, and in some cases these relations or associations may be very limited or weak, while in
other cases they may be strong associations. Such relations can occur in three ways: (i) when
the values of one variable increase, so do the other’s -positive association; (ii) when the values
of one variable increase, the values of the other one decreases -negative association, and (iii)
there is not consistent behavior of one variable with respect to the another -independence.
Most measures of association are scaled in the same way so that they reach a maximum nu-
merical value of 1 when the two variables have a perfect relationship with each other. They are

also scaled so that they have a value of 0 when there is no relationship between two variables.

6
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Other measures have a range from -1 to +1, which provide a means of determining whether
the two variables have a positive or negative association with each other. To determine the
significance of the value given by some association measure, tests of significance are provided
for many of the measures of association. These tests begin by hypothesizing that there is no
relationship between the two variables, and that the measure of association is equal to 0. The
researcher calculates the observed value of the measure of association, and if the measure is
different enough from 0, the test shows that there is a significant relationship between the
two variables. Although two of the measures of association introduced in this thesis are de-
fined for a bivariate sample of curves, they are also scaled in the interval [—1,1] and whose
interpretation of the value is the same as that previously noted. A test of significance based
on a bootstrap methodology for one of them is also introduced. Another contribution of the
dissertation is a dependence measure between groups of functions whose response is a function

instead of a single value.

There are several ways to determine the association between random variables; for this
reason, it is essential to start any analysis taking into account the nature of the data, the scale
of measurement of the variables and a logical reason that gives meaning to the association.
The variables can be: qualitative, where nominal scales are used (a natural order between
categories cannot be defined), and/or ordinal scales (an order or hierarchy of categories can be
set); for such variables there are some measures that capture dependence such as: Cramer’s
V' coefticient, A coefficient, Pearson’s C coefficient, Kendall’'s T — B coefficient, Somers’s d
coefticient, and so on. The variables can be also quantitative, discrete or continuous, used in
interval scales and ratio scales (ordinal scales can also be used); for these variables, measures
such as Pearson’s coefficient, Spearman’s coefficient, Kendall’s T coefficient, and Quadrant
dependence, can be used to find dependence. This section will analyze in depth measures of

dependence for quantitative random variables.

When there are quantitative variables, what is usually done to interpret dependence is to
determine a coefficient of correlation between variables. The decision of what coefficient to
use depends on several factors, such as the type of measurement scale in which each variable is
expressed, the nature of the distribution (continuous or discrete) and if the dependence sought
is linear or nonlinear. The Pearson coefficient can be used whether the random variables are
continuous or discrete, and whether they are measured in intervals or ratios. Although the
Pearson coefficient is widely employed, it is not completely satisfactory to measure the depen-
dence between random variables, as it provides limited information about their dependence
structure overall in presence of non-linear dependence. The absence of correlation is equiv-
alent to independence in very rare cases, such as when the random variables are Gaussian
distributed. The Spearman and Kendall’s 7 coefficients are used when the data are sorted
according to their rank. They are able to measure dependence when a nonlinear structure
exists between the random variables, while the correlation coefficient only measures linear

dependence between random variables. Inspired in these three coeflicients, we have developed
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each one of their versions as a initial alternative to explore the dependence in a bivariate
sample of functional data. Accordingly, we will present a brief historical review of association
measures to be discussed in this thesis: the Pearson correlation coefficient, the Kendall 7 and

the Spearman coefficients.

As we already pointed out, measuring the dependency between two random variables has
been an important issue in statistical analysis. It is of great interest to know the effect that
one or more variables can have on the other, and even predict values of one variable from
another. To measure these relationships or associations among variables, various procedures
have been implemented, most of them having their beginnings in the latter part of the 19th
century. The first notions of the concept of correlation were derived from studies in biology,
biometrics and eugenics. Authors such as Adolphe Quetelet (1796-1874) and Augusto Bravais
(1811-1863) contributed to the development of this theory from two different fields. Quetelet
performed some association analysis through the study of anthropometric measures, while
Bravais also studied dependence, but through the analysis of spatial measures. Moreover, Sir
Francis Galton, developed important statistical concepts through the study of the variability
of human characteristics. He was a pioneer in explaining the meaning and usefulness of
correlation and regression, not only in the context of inheritance, but also in general terms,

giving rise to a wide range of applications which fall under the laws of correlation.

Many of the most brilliant ideas of Galton were collected by prestigious authors, among
them, Edgeworth, Pearson, Yule, and Sheppard, who developed these ideas to construct many
of the statistical concepts that are still widely applied in several disciplines. For example,
Pearson continues the work of Galton and develops the well-known correlation coefficient

that carries his name, which is given by

pp = Cov(X,Y) (1.1.1)

O'_To'y

where o, 0y are standard deviations of X and Y, respectively.

This definition was formally introduced in Pearson [43], where a general theory of corre-
lation for n variables and “the best value” of the correlation coefficient was presented. This
work inspired other authors, who together with Pearson, developed other theories also refer-
ring to correlation, such as the concepts of partial and spurious correlation and correlation
ratio. Although Pearson, Gosset and Fisher, jointly attempted to deal with the problem
of finding the distribution of the sample correlation coefficient as an estimator for the true
population correlation pp, the problem being solved solely by Fisher, with the transformation

r = tanh(Z), where Z is a random variable approximately normally distributed.

It is clear that from its beginning, that the correlation coefficient has been a powerful tool
for multivariate statistical analysis. However, we must be cautious because there are some

limitations to be applied. For instance:
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e Galton and Pearson assumed that the sample comes from a bivariate normal distribu-

tion.
e The correlation coeflicient measures only linear relationships.
e The correlation is not an invariant measure under strictly monotone transformations.
e Weak correlations do not necessarily imply low dependence.

e Independence always implies zero correlation, but the converse is only true in the mul-

tivariate Gaussian case.

* o2, 05 have to be finite.

Due to these drawbacks, the ordinal measures of association were introduced only a few
years after Galton and Pearson had implemented the correlation coefficient as a statistical
tool. Galton, for example, was the first to attempt the correlation of ranks or grades, but
he discarded that approach by working in favor of what later became the standard bivariate

normal correlation theory.

Most of the first papers on ordinal measures of association were developed to be applied
to sample values. It is only in relatively recent years that much attention has been paid
to the population meaning of these kinds of measures. The Kendall 7 coefficient is one of
the most well-known ordinal measures. The essential idea behind Kendall’s T coefficient was
suggested by Fechner in 1897, although it was mainly concerned with association between two
time-series. The educational psychologist, G. Deuchler, carried out studies on T coefficient
and considered the exact distribution of the estimator under the hypothesis of independence,
obtaining virtually the same recursion formula that Kendall developed later. In 1924, Esscher
suggested 7 as measure of association and gave a clear statement of its population meaning.
Finally, Kendall in 1938 (see Kendall [30]) began a series of papers dealing extensively with

ordinal measures of correlation.

On the other hand, in France, Binet proposed measuring the association by a function
of the ranks, basically the same function that was later called Spearman’s foot-rule. A few
years later in 1904, Spearman introduced an estimator as the sample correlation coefficient
between the ranks (see Spearman [49]). The asymptotic distribution theory of the estimators
for both Kendall and Spearman coefficients was studied in Hoeffding [28]. !

Now, we give a brief formal description of those association measures which we will try to
extend to the functional field. We begin by stating that the ordinal measures association are
based mainly on a fundamental concept called concordance; that is, two random variables are
concordant if large values of a variable are associated with large values of the other, and the

same is true for small values. They are discordant otherwise. If we consider, for example, two

!Brief historical overview of Kruskal [31], Estepa et al [18]
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realizations of those random variables, then the concordance between them can be defined as

follows:

Definition 1.1.1 Let (z,y) and (2',y’) be two observations of a continuous random vector
(X,Y). Then, (z,y) and (2',y') are concordant if (x — z')(y — y') > 0 and discordant if
(z —2")(y—y') <0.

Observe that concordance and discordance between observations can be compared with the
sign of the line slope defined by the same observations. Therefore, if we consider some mea-
sure that quantifies the proportion of concordant pairs, we will have a good non-parametric
indicator of the sign of dependence between the random variables where the sample comes
from, even in the cases when the dependence is of a non-linear kind. The sample version
of Kendall’s coefficient is based mainly on that concept of concordance. It is defined as the
number of concordant pairs minus those discordant pairs over the total of pairs of the sample.
Although the Spearman coefficient is also an association measure, it works differently because
its sample version is defined basically as the Pearson coefficient between the ranges of the
observations, where each range refers to the position occupied by the observation when they

are organized in an increasing way.

Both measures can be considered as the most common ordinal measures association. These
coefficients are non-parametric measures of association between two random variables, being
useful when the data are distribution free, so it is not necessary to assume normality (Pearson
[43], Hauke and Kossowski [26]). It is well known that these coefficients present significant
advantages over the Pearson coefficient: (1) These are more robust coefficients (less sensitive
to outliers) and (2) Kendall and Spearman coefficients are better indicators than the Pearson
correlation for determining whether a relationship exists between two variables when the
relationship is nonlinear. We have previously given a small definition of the sample version

of both coefficients. We now introduce the formal definition of their population version.

Definition 1.1.2 (Kendall’s 7 coefficient.) Let (X,Y) be a bivariate random wvector.
Kendall’s T coefficient is the difference of the probabilities of concordance and discordance
between two different realizations of a random vector (X,Y):

7= [P(X1 — X5)(Y1 — Y3) > 0] — [P(X; — X3)(Y; — ¥3) < 0], (1.1.2)

where (X1,Y1) and (X2,Y2) are independent and identically distributed copies of (X,Y).

Definition 1.1.3 (Spearman’s coefficient.) Let (X1,Y1),(X2,Y2) and (X3,Y3) be inde-
pendent and identically distributed copies of (X,Y). Then Spearman’s coefficient ps associated
to (X,Y) is defined by:

ps = 3[P{(X1 — X2)(Y1 — Y3) > 0} — P{(X1 — X2)(Y1 — Y3) < 0}].

As we can see, Spearman’s coefficient is proportional to the difference between the probability

of concordance and the probability of discordance for two vectors (X1,Y;) and (X5,Y3).
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An alternative definition of p; is given by calculating the Pearson coefficient between the

uniform random variables U = Fx (X) and V = Fy (Y), that is,
_ E(UV)-EU)E(V)
VVar(0)\/Var(V)’

where p, denotes the Pearson coeflicient. The random variables U and V are called the

(1.1.3)

Ps = Pp[Ua V]

“grades” of X and Y. For this reason Spearman’s coefficient is also called the grade corre-
lation coefficient. Observe that the grades are values always in [0, 1] and they are bounded

independently of the support of the random variables from which the observations came from.

Scarsini [47] studied the measures of concordance in terms of an special function that
characterizes the structure of dependence between random variables which are called copula.
He proposes a set of axioms that a concordance measure for ordered pairs of continuous
random variables should fulfill. The extension of these axioms to the multivariate case was
studied in Taylor [[50], [51]]. These properties are gathered in Xu et al. [55] and are set out

below. Let v be any dependence measure and let (X,Y) be a bivariate random vector. Then,
e —1<y<1.
e If X and Y are concordant then v = 1.
e If X and Y are discordant then vy = —1.

e If X and Y are independent then v = 0, but if v+ = 0 the variables X and Y are not

necessarily independent.

o If o and S are strictly increasing functions then v[a(X), 8(Y)] = v[X,Y].

In this dissertation, we take into account the previous set of properties when introducing the
functional versions of the Kendall and Spearman coefficients. We emphasize the population
version as well as the sample version and prove some desirable properties that these two
coefficient must fulfil, some of them coming from those introduced by Scarsini [47]. Other

interesting measures of association and dependence that satisfy this set of properties can be
seen in Kruskal [31], Fernandez [22] and Lehmann [32].

From the beginning of this introduction, we have focused on the advantages that the
Kendall and Spearman coefficients have over the Pearson coefficient. Now, in terms of the
robustness, we can affirm that another disadvantage of the Pearson correlation coefficient is
that it is very sensitive to the presence of outliers, since the definition of its sample version
depends on calculating sums of transformations of the data; we know that the value of a sum
is sensitive to extreme data and as a consequence the mean will be also sensitive. However,
observe that if for defining the Pearson coefficient we take the median instead of the mean, we
will have a robust version of this same coefficient. This idea of obtaining a robust alternative

to the Pearson coefficient was developed by Falk [19], and we briefly present it here.
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The median of a random variable X, from now on med(X), is a location measure that
have advantages over the mean since it is more robust. It is well known that med(X) is the
value or values on the support of the random variable that separate the higher half of the

probability distribution from the lower half. Therefore, it must satisfy the inequalities

P (X < med(X)) > % and P (X > med(X)) > %

A widely accepted definition of med(X) can be made through the generalized inverse of the
distribution function Fx(z),

med(X) = inf {t eR : Fx(t) > %}

The median also allows a robust alternative to standard deviation which is called median
absolute deviation from the median (MAD), this is,

MAD(X) = med(| X — med(X) |). (1.1.4)

Based on the concept of M AD, Falk [19] proposed a robust alternative to the covariance be-
tween random variables that he called comedian of X and Y, and it is denoted by COM (X,Y).

The comedian between two random variables is defined as
COM(X,Y) = med(X —med(X))(Y —med(Y)). (1.1.5)

Observe from (1.1.5) that a robust version for the COV (X,Y) is given just by always im-
posing the operator med(-) instead of the expectation E(-). A very important advantage of
the comedian over the covariance is that it always exists, while the covariance requires the
existence of the first two moments of the random variables X and Y. Falk [19] stated that

its robust version of the covariance also satisfies some desired properties such as:

e If X and Y are independent then COM(X,Y) = 0.
e COM(X,Y)=aMAD(X)? if Y = aX + b, for some a,b € R.
e COM(X,aY +b) =aCOM(X,Y).

e COM(X,Y)=COM(Y,X).

The covariance is a relevant issue when we talk about correlation. Therefore, it is natural
to define a correlation coefficient based on the comedian and the M AD which Falk [19] has
called correlation median and is defined as
COM(X,Y)
6(X,)Y)= : .
(X,Y) MADX)MAD(Y)
Note that as COM as MAD are more robust than COV and the standard deviation,

respectively. Then clearly the correlation median will also be a more robust alternative than

the correlation coefficient. §(X,Y’) fulfils two important properties:

12
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e §(X,Y)=0,if X and Y are independent.

o 5(X,Y)e{-1,1},if Y =aX +b.

It is important to note that ¢ in general does not belong to the interval [—1,1]; it only falls
into such an interval when the random variables follow bivariate elliptical distributions (see
Falk [20]). In other cases, when |6| > 1, the interpretation of this value can be difficult as is
stated in Falk [19]. In last chapter of the thesis, we will adapt this measure introduced by
Falk [19] to characterize robust version of the Pearson coefficient for two groups of curves. To
do that, we will use a definition of functional depth to obtain the deepest curve, which in our

context of functions, will be the functional median.

Measuring dependence between two groups of functions has been not much explored in
the literature. However, some statistical techniques have already been implemented to try
to calculate the dependence between two sets of curves. In the next section we gather some
of the most relevant ones which we will use as benchmark to compare its values with those

introduced in this work.

1.2 Dependence measures for functional data

In the literature there are few references addressing the problem of dependence on this kind
of data. Some authors have tried to extend it from multivariate analysis to the domain of
functional data analysis; however, this is not a trivial task as it requires functional analysis
tools. Leurgans et al. [33] considered the canonical correlation between two sets of curves.
This technique provides a pair of functions called canonical variates and the sample correlation
among these variates leads to the canonical correlation between the two sets of curves. He et al.
[27] proposed an alternative way of finding the canonical correlation through the extension
of multivariate analysis ideas. Opgen-Rhein and Strimmer [42] proposed an estimator of
the dynamical correlation that provides a measure of similarity between pairs of functional
observations. It is based on the concept of dynamical correlation introduced by Dubin and
Muller [11] to analyze a nonparametric method to quantify the covariation of components
of multivariate longitudinal observations. Li and Chow [35] provided a generalization of
Pearson’s correlation coefficient for functional data that allows a measure of agreement to be
introduced. This measure is called the concordance correlation coefficient and was used to

evaluate the reproducibility of repeated-paired curve data.

Next, we briefly summarize some dependence measures studied previously in the literature

in order to have a benchmark for comparison later on.
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¢ Canonical correlation

An extension of canonical correlation to functional data has been proposed in Leur-
gans et al. [33], who pointed out the need for regularization in order to provide more
interpretability of the results and useful information from the data. As Ramsay and
Silverman [45] argue, canonical correlation analysis seeks to investigate which modes of
variability in two sets of curves are most associated with one another. As usual, assume
that n observed pairs of data curves (z;,y;) are available for argument ¢ in some finite
interval I, and all integrals are taken over I. The problem is finding a pair of functions
(&,m), called canonical variates weight (see Figure 1.4), which maximizes the following

penalized squared sample correlation, defined as

{cov (f &xi, [ nyi) )

P = Toar (T €) + NIDPEP] fvar (J ) + NIDPPY

where A is a positive smoothing parameter and ||D?f||> = [ (D2 f )2, that is, the in-
tegrated squared curvature of f that quantifies its roughness. The functions £ and 7,
may be the components of variation in the two curves that most account for the interac-
tion between the two groups of curves. Having a pair of canonical variables with fairly
smooth weight functions and correlations that are not excessively low can be achieved
by selecting the appropriate smoothing parameter. This parameter can be chosen either
subjectively or through a cross-validation score if an automatic procedure is required.
This technique is carried out using basis functions for the functions (z;,y;) and for the
weight functions &, n. Figure 1.4 shows the canonical variate weight functions of two
functional data sets.

Canomical weight fumction data 1

Canonical weight function data 2
o4 T T T T T T T T T

Figure 1.4: Canonical variate weight functions for two sets of curves, p, = 0.5449.
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¢ Dynamical correlation

A technique used to find the correlation between groups of functions is the dynamical
correlation, which is a measure of similarity between two curves, introduced by Dubin
and Muller [11] as a simple and efficient non-parametric correlation measure for mul-
tivariate longitudinal data. They interpret dynamical correlation as a measure of the
average concordant or discordant behavior of pairs of random trajectories, in the sense
that “if both trajectories tend to be mostly on the same side of their time average (a
constant), then the dynamical correlation is positive; if the opposite occurs, then the dy-
namical correlation is negative”. Opgen-Rhein and Strimmer [42] study the dynamical
correlation under a functional perspective. This approach provides a similarity score for
pairs of groups of randomly sampled curves. Hence, the dynamical correlation between

two exactly known curves will be <:t:S (t),y° (1))

Thus, the dynamical correlation between two functional variables X and Y is given by

Pd = E<Xs(t):YS(t}> ’

S _ X Sy _ Y o) B
where X5(t) = 22—, V5(t) = -l X<(1) = X() - (EX(0),1),

Ye(t) = Y(t) — (EY(t),1) and (-) means the usual inner product for functions
(X(t),Y (t)) = J; X(+)Y (t)dt, which can been viewed as an average of individual corre-

lations.

We will use in this dissertation the following estimator of the dynamical correlation
proposed in Opgen-Rhein and Strimmer [42], which is a slightly revised version of the
dynamical correlation introduced in Dubin and Muller[11], but for functional data,

13

> (), v (1)),

i=1

1
Pa =

n—1

z°(t)
T L (0,25(1)
time simultaneously, i.e.,

where z*(t) = and where z°(t) are functions centered in space and

n

z°(t) = z(t) — (T(t),1), where Z(t) = %Z z;(t).

i=1
As we can see, pq is a estimator of the population dynamical correlation pg.
Opgen-Rhein and Strimmer [42] used this estimator to find the correlation between pairs
of genes. It allows us to compute the partial dynamical correlations, which will represent

the edges of a gene association network. The strength of these coefficients indicates the

presence or absence of a direct association between each pair of genes.

Figure 1.5 illustrates two negatively dependent variables (genes). For each variable

there are two measured curves, and there are three slightly different ways in which the
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sampled curves relate to each other. The dynamical correlations for the three cases are
—0.946, —0.982 and —0.947, respectively. This example is taken from Opgen-Rhein and
Strimmer [42].

euprassion
exprassion
2
|

Figure 1.5: Example to illustrate the concept of dynamical correlation

between two variables (genes).

e Pearson’s coefficient for functions

Li and Chow [35] provided a generalization of Pearson’s correlation coefficient for func-
tional data that allows to be introduced a measure of agreement. This measure is called
the concordance correlation coefficient and was used to evaluate the reproducibility of

repeated-paired curve data.

Let X (t) and Y (t) be two stochastic processes. The Pearson’s correlation coefficient for

X(t) and Y (¢) is

(X (1) — B(X(2)),Y(t) - E(Y(1)))
(X0 Y 0) = %0 —BXR @)Y () —EX @)

(1.2.1)

where the inner product is defined as
XO.Y(0) = E [ XO @0

and the norm is induced by the inner product. The weight function w(t) allows us to
assign importance to different parts of t. A subjective approach to calculate a weight
function is used when some prior information on the importance of different time inter-
vals is available. When there is no prior information, an objective approach is necessary.

Therefore, t should be regarded as a random variable defined on the interval I and the
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density function of ¢ chosen based on the data ty,...,%ty, as the weight function. This

density function can be estimated via a kernel estimator,

B(t) — hZK{ _t}}

where K (-) is a kernel density function, such as the Gaussian density function, and h
is a bandwidth to be chosen. A rule of thumb suggests taking h = 1.06s; N ~% for the

Gaussian kernel, where s; is the sample standard deviation of ¢1,...,ty. In our study,

we set w(t) = 1, assigning the same weight for each t.

The estimator for calculating the Pearson correlation coefficient when we have n ob-

served pairs of data curves (z;,y;) is given by

1yn N {walty) — 7)) Huaty) — () Jw(t;) A,
(150 SN (@ilty) — B(8)2w(t) A2 {E T SN (wilty) — B(5)2w(ty)Ag} 3

where A; = t;,4-t;, the gap size between t; 1, and t;, T(t;) = %ZLI z;(t;) and g(t;) =

Pp =

%ZLI yi(t;) are the sample means of ;(t;) and y;(t;), respectively.

Cross-correlation function

In functional data analysis, it is possible to measure the dependence between two sets
of curves through the cross-correlation functions, discussed in Ramsay and Silverman
[45] (p.24). Assume n pairs of curves (z;,y;), for ¢ = 1,...,n, from a bivariate random
process (X (t),Y (t)) which are defined on the same interval I = [a,b]. Then the cross-

covariance function is given by

COVxy (t1,12) = E[{X (t1) — E(X(t1)) H{Y (22) — E(Y (2))}],

and the cross-correlation function is

E{X(t1) — BE(X(t1)) {Y (t2) — E(Y (£2))}]

CORTbxr (0, 82) = i)~ BX)PELY (@)~ B i)

Therefore, the samples version are given by:
COVxy (t1,t2) = (n— 1) Z{mg(tl) —3(t1) Hui(t2) — T(t2)}, (1.2.2)

where 7 =n"13"" | 2;(t) and T =n"' 3., i(t). And the cross-correlation function is

naturally defined as:

(f'C-)ﬁI-{'P,Xy(tth) _ _ COVxy(t1,t2)

~ V/VARx (t1)VARy (t2)’ (1.2.3)

where VAR (£) = (n— 1)1 27 (z:(t) — Z(t))2.
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The procedure for calculating the cross-correlation consists basically of calculating Pear-
son’s coefficient between the values of the functions for each t € I, i.e., we are analyzing
the way that one function depends on another in each instant of time. Note that this
coefficient works with the mean of the data as a location measure, which can lead to
a more sensitive procedure under the presence of outliers, as in the case of Pearson’s

coeflicients for bivariate data.

This methodology is basically graphic. If we compute the Pearson coefficient between the
values obtained from evaluating the two groups of functions in each ¢1,t2 € I, then we
obtain a surface. Figure 1.6 shows the surface and contour plot for the cross-correlation

of two sets of curves.

Contour cross—-correlation

as

3o

25

20

is

n

3E a0

Figure 1.6: Surface and contour plot for the cross-correlation.

We only consider the case where t; = t5; hence in the remainder of this dissertation, we
will call the cross-correlation function in ¢; = t3 correlation function, which represents

a curve and can be easier to interpret than the whole surface. (see Figure 1.7).

CROSS-CORRELATION (tl=t2)

Figure 1.7: Cross-correlation for t; = t5.
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1.3 Ordering functions

The main purpose of this dissertation is to extend to functional data some of the measures
of dependence introduced previously. In particular, we will focus on measures that are based
on some order of the data, such as Kendall and Spearman coeflicients. The major problem
that we have found in giving a generalization of these dependence measures has been the
difficulty of defining an order among functions that performs well. It is worth pointing out
that the classic order among functions, which compares the functions pointwise, does not work
here because if two curves cross then they are not comparable. Hence, we face the problem
of ordering functions with different approaches that have been chosen under an exhaustive
study of simulation, which allows us to identify the kind of function ordering that presents
a good performance in aspects such as interpretation, practical sense and computational
implementation for each one of the dependence measures introduced in this thesis. We will
now give a brief description of the orders for functions that will be used to develop our
contributions. One first idea of ordering functions is through data segmentation methodologies
that have their origins in the multivariate analysis and that recently have also been extended
to the functional data analysis. We give the basic notions to some depth functions in the
multivariate setting as well as the notions of the same concept for functions. A second idea
that we use to sort functions is observing the proportion of time that one curve is above
another. This methodology leads to a down-up order instead of a center-outwards order

induced by a depth order. The way these orders work is commented on briefly below.

1. Center-outwards order

A multivariate depth notion allows us to measure the centrality or outlyingness of a
point from the sample with respect to the multivariate sample or to its underlying
distribution. It provides a natural center-outward order for the sample data, which
allows us to extend a wide range of statistical univariate techniques to the multivariate
setting such as multivariate goodness of fit, location measure, scatter estimates and risk
measurement. A recent review on the depth function and its several applications can

be found in Cascos [3].

A depth function is defined by a mapping D : R™ — [0, 1], which satisfies the properties
of affine invariance, vanishing at infinity, monotonicity with respect to the deepest point
and mazimality at center. Here, we describe briefly two classic depth functions called
halfspace depth and simplicial depth. The first one was proposed by Tukey [52] in a data
analysis contest. Given a multivariate sample, the halfspace depth of a point x € R?
is the smallest fraction of data points in a closed halfspace containing x, or also the
smallest fraction of data points that should be deleted so that x lies outside the convex

hull of the remaining data points. The sample version of the halfspace depth for a point
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z € R? with respect to a sample X1, Xo, ..., X, in R is defined by
HDy(x) =n"" inf #{i : (X;,u) > (x,u)},
uckn®

and the population version of the halfspace depth of a point x in R™ with respect to the
probability distribution F' is

HD(x,Pr) =inf {Pr(H) : x € H closed halfspace}.
Note that in the univariate case, the halfspace depth can be expressed as
HD(z,P) =min{P(X <=z),1 - P(X <z)},

which is maximized by the well-known univariate median.

The second one is the simplicial depth, which was introduced by Liu [36], based on
random simplices. The simplicial depth of a point x € R is given by the probability that
the point x is contained inside a random simplex whose vertices are p + 1 independent

observations. For the sample case it can be defined by

-1

n

SDn(x) = ( ) > I(x € cofXiy, Xig, -5 Xy, ),
pt+1 1<iy <ig<--<in

where I and co mean the indicator function and the convex hull, respectively. The

population definition of the simplicial depth is
SD(X, PF) = PF{X S CO{X],XQ, . 1Xp+1}-

Observe that in the univariate case for continuous absolutely distribution, the simplicial

depth can be expressed as
SD(z, Pp) =2F(z)(1 — F(z)),

where I' is the distribution function of the random variables X.

The center-outward order for the sample data induced by the empirical versions of the
depth functions leads to the introduction of multivariate generalizations of the univari-
ate sample median and also L-statistics. However, it is well known that they have the
drawback of not being feasible computationally in high dimension, hence the multi-
variate order induced through depth functions is quite limited for dimensions greater
than three. However, Lépez-Pintado and Romo [38] introduced a depth notion for func-
tional data and a finite-dimensional version of this concept of depth that can also be
considered as a new notion of depth for multivariate data that verifies essentially all the
properties established in Zuo and Serfling [56] (e.g. monotonicity with respect to the

deepest observation, maximization at the center of symmetry, etc). In addition, it has
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the advantage of being computationally less intensive than other multivariate depths,

which makes it adequate for analyzing high-dimensional data.

The depth notion for functions has an important role in the analysis of functional data
since the concept allows us to define functional versions of robust statistics such as the
median curve or trimmed mean as well as provide a natural ordering within a sample
of curves, thus making the definition of order statistics and the assignment of ranks to
each one of the curves of the sample possible. To our knowledge, the first idea of depth
concept for functional observations was introduced by Fraiman and Muniz [24] where
they consider a set of n curves {z1(t),z2(t),...,zn(t)} defined on an interval [T, T3].
Then the value of the depth for any curve z;(¢) is given by

1>

Dlz;(t)] = D [z;(t)]dt,

1
where D1 [z;i(t')] is the univariate depth of the point defined by the curve z; in ¢’ respect
to other n— 1 points defined by the curves {z1,...,%i—1,Zit1,...,Zn}, also evaluated in
. The depth studied by Fraiman and Muniz is a useful tool to define robust estimators
in the functional case and it is easily adaptable to the multivariate analysis by using a

appropriate summation instead of the integral.

Another notion of functional depth was defined in Cuevas et al[T7]. Let
{z1(t),z2(t),...,zn(t)} be a set of n curves; according to this method, the h-modal
depth of the function z;(t) is given by the expression:

" K (o — zl)

hDy(zi, h) =
n(mh h’) Z A
k=1
Where h should be interpreted as a bandwidth, K is a kernel function defined on the

real positive numbers and ||.|| is the norm L.

These same authors define in Cuevas et al.[8], two more measures of depth based on
some ideas of Cuesta-Albertos et al.[4], [5], which combine random projections of the
functions in different directions with a bivariate data depth that is used to order the
corresponding results. More precisely, given {z(t),...,z,(t)} and a random direction
a, the sample depth of x; is defined as the univariate depth of the corresponding one-
dimensional projection. When the sample is made of functional data, the x; belongs to
the Hilbert space L2[0,1] so that the projection of a datum z is given by the standard
inner product (a,z) = fol a(t)z(t)dt. It is clear that this definition leads to a random
measure of depth, as it is based on the rank of the projections along a random direction;
this method is called random projection (RP). The second idea is to use the method
of random projections simultaneously for the functions and their derivatives, thus in-
corporating the information on the function smoothness provided, which is relevant in

some practical applications. The sample of functions {z;(t),...,z,(t)} is reduced to
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a sample in R? defined by ((a,z1), {a,=})),...,({a,zn), (a,x,)) where a is a randomly
chosen direction. Now, depending on the treatment of this bi-dimensional sample, there
are several alternative possibilities. The random projection method could be used again
for the bi-dimensional projections ({(a,z1), (a,z})),..., ({a,z,), (a,z])). This method is
denoted by RP2.

Finally, we consider the notion of functional depth introduced in Lépez-Pintado and
Romo [38], which is based on the graphic representation of the curves and the bands
that they determine in the plane. We pay special attention to this measure depth since
one of the contributions of the dissertation is based on this measure. This proposal
of depth follows a graph-based approach and although it is widely explained in Lépez-
Pintado and Romo [38], for the reader’s convenience, we repeat some relevant definitions
from there, thus making our exposition self-contained. Let z(%),...,z,(t) be a sample
of curves belonging to C(I). The graph of a function z is the subset of the plane
G(z) = {(t,z(t)),t € I'}. The band in R? defined by the curves z;1, ..., Zin is

B(xi, Tig, . ., T4,,) = {(t,y) :tel, min z; (t) <y < max a:t;r(t)}.
r=1,....k r=1,....k

geeny

In Figure 1.8 we show a band region for two and three curves, Lopez-Pintado and Romo
[38].

Figure 1.8: The band defined by two curves x,z9 and a third curve x

belonging to the band. Right: the band determined by three curves x1, 9 and z3.

The proportion of bands B(zi,,Zi,, ..., i;) given by j different curves z;,, iy, ...,z

containing the graph of z is

-1
Sfﬁf(a‘;) = ( j ) Z I{G(ﬂ'}) C B($§”$i2,... ?:1?1;:’.)}, j > 2,

1<iy <ip<...ij<n

22



Introduction and background

Therefore, the band depth of x is given by
J -
Sna(@) =Y S (x), j>2.
2

Lépez-Pintado and Romo [38] also have given another more flexible definition, called
generalized band depth. Band depth depends strongly on the curves’s shape, whereas
generalized band depth is more convenient for irregular functions. For any function x
in z1,z9,...,2, let

AW@ZA@Wm%m~w%Q={HH¥ min_ a,(t) < a(t) < mw,m@@,jzz

r=iy,...i; r=iy,...i;

be the set of points in the interval I where the function x is inside the band given by

the observations z;;, z;,, . .., Z;;, then

—1
GSU(z) = ( " ) > M(A(m; 240, @i,y 245)), G = 2,

J 1<i1<ig<...i;<n
is a generalized version of Sw(f (z). If A is Lebesgue measure in R, then
Ar = AAy(@)/MT)

will be the proportion of time that x is inside the band. Therefore, the generalized band
depth (GBD) of z is given by

J
GSni(z) =) GSY(z), j>2. (1.3.1)
=2
If X1, X5,..., X, are independent copies of the stochastic process X(t), the population
version of GSY (z) and GS,, j(x) are given by

GSY(z) = EM(A(z; X1, Xo, ..., X;)), j>2. and

J J
GSj(z) = ZGSU(:B) = ZE/\T(A(.’B; X1,Xa,...,Xj)), 7> 2, respectively.
j=2 j=2
(1.3.2)

Note that a functional median can be seen as that curve from the sample that maximizes
(1.3.1).

Ty, = arg max GSp ()
re{r1,22,....Tn

With this functional median definition, we therefore have a tool to develop one of the
contributions of the thesis that refers to a robust alternative to the cross-correlation
function. The results are detailed in Chapter 4.
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2. Down-up order for funtions

Recall that the classic order between two functions, z,(t), and x5 (t) defined on the same
interval T' is given by z; < 2y = z1(t) < x5(¢) for all ¢ € T'. This definition induces
an down-up order instead of a center-outwards order induced by a functional depth.
However, this method has the disadvantage of not allowing the sample of functions to
be sorted if any two of them are crossed in a finite number of points. A flexible version
of the classic order (point-to-point) for functions which is also based on an down-up
order was introduced in Martin-Barragan et al. [40] where the concept of epigraph
and hypograph of a function is applied to characterize some indexes that are useful for
sorting curves in a down-up direction, even when the curves are crossed. Basically, it
states that z; is smaller than z5 if, and only if, the proportion of functions under the
curve of x; is smaller than the proportion of functions under the curve of xs. Observe
that if the curves do not cross, then this order will be the classic order between the
two functions mentioned previously. However, there still are some situations where this
flexible version of order can also fail, for instance, when in the sample all the curves
cross each other. An alternative for dealing with these types of situations is introduced
in Lépez-Pintado and Romo [39], through two concepts called the Inferior Length and

the Superior Length of a curve z, which are respectively defined as

ILn(z) = ﬁ;x{t T :a(t) > m(t)),

SLn(x) = #I)Z}"“ e I:a(t) < m(t)},

where A stands for the Lebesgue measure on R. Thus, the inferior [superior] length
IL,(z), [SLy(z)] can be interpreted as the “proportion of time” that the curve z is

above [below| any another curve of the sample.

We want to highlight that the order for functions induced by the previous expression
allows ranges to be assigned each of the curves of the sample, and its population version
will be useful for assigning the grade of a stochastic process. Thus, both IL,(z) and
S Ly (z) will allow us to give one of main contribution of this thesis, developed in Chapter

3, which refers to the extension of the Spearman coefficient for functions.

Finally, we note that for developing the functional version of Kendall’s tau studied in
Chapter 2, we have considered two orders for functions that have not been used so
far. These orders will sort the curves by area under the graph of the function and the
maximum value of the function, both orders on the full interval where the group of the

functions are defined. That is:
J7 [z2(t) — 1 (8)] dt > 0, order of the integral.

max¢er £1(t) < maxser x2(t), order of maximun.

z1(t) < z2(t) = {
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The details and some properties of these orders will be developed in Chapter 2.

After introducing almost all of the tools and basic concepts that will be used, for per-
forming the main contributions of this work, in the next section we will present the

structure and outline of this dissertation.

1.4 Structure of the dissertation

This thesis contains five chapters. The current Chapter 1 presents a brief historical review
of the development of dependence measures through time, and some classic dependence mea-
sures for bivariate data showing their principal characteristics and properties. We also study
some measures that have already been analyzed in the functional context and with which we
compare our results. Finally, we present some ordering in the multivariate context as well as

in functional setting to define an order among curves that performs well for our goals.

The contributions of this dissertation are developed in Chapters 2, 3 and 4. In the first
part of Chapter 2, the functional 7 is defined using two functional pre-orders to sort the
observations and extend the concept of concordance for bivariate random variables to the
functional setting. In Section 2.3, the main properties, as well as the asymptotic results, are
discussed. A simulation study and sensitivity analysis are given in Section 2.4. In the second
part of this chapter, we present two examples with real data. The first data set consists of
the prices of the assets in companies belonging to the IBEX35. The functional 7 informs
about companies having similar behavior over time. The second data set corresponds to a
microarray time series, from a human T-cell experiment with 58 genes, 10 time points and 44
replications. We obtain the functional T for each pair of genes and construct a gene network.
Finally, we present a robust empirical study and outline the main conclusions of this chapter

in Section 2.8.

In Chapter 3, firstly we recall some concepts about Spearman’s coefficient for bivariate
samples necessary to understand the extension to the functional context. We introduce the
notion of grade for functions that it is useful to develop the theoretical background necessary
to properly define the Spearman coefficient. Then, we go on to discuss the main properties,
as well as the asymptotic results. A simulation study and a robustness analysis are carried
out in Section 3.5, while Section 3.6 provides our independence test and a simulation study.
Several examples with real data are shown in Section 3.7. Finally, the main conclusions of

this chapter are listed.

In Chapter 4, we develop a more robust alternative measure of dependence than the cross-
correlation function studied in Ramsay and Silverman [45]. In the first sections, we consider
the principal aspects that we will take into account for the definition of our coefficient, and
present the definitions of M AD and comedian for functional data. The new coefficient, called

the correlation median for functions, and its properties are defined in Section 4.4. A simulation
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study is carried out in Section 4.5, where we also present a sensitivity study of the coefficient.
We analyze the robustness of the coefficient and offer several examples with real data showing

how the correlation median for functions works. Finally, we summarize the main conclusions
of this chapter.
In Chapter 5, we present some general conclusions and summarize the main contributions

of the thesis.
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A Kendall correlation coefficient for functional dependence

2.1 Introduction

After introducing the preliminaries concepts, notation and references in the topic of the thesis,
we develop our proposal and make our contribution to the literature, providing coefficients

that capture relations between functional random variables.

In this chapter, we extend a Kendall 7 correlation coefficient [30] to the functional frame-
work. Kendall’s 7 allows us to measure dependence in the bivariate case through the definition
of concordance, which is based on the idea of order. Since there is not total order among func-
tions, we will use preorders that allow us to sort the functional observations and count the
concordant and discordant pairs of a bivariate sample of curves. Once a preorder is introduced,
the functional 7 coefficient can be defined in a way similar to the bivariate T coeflicient. We
will show that it fulfils natural properties for a dependence measure and we will also establish
the consistency of the sample version. Finally, we will illustrate with simulated and real data
the performance of this new dependence measure as well as its robustness, which is a principal

characteristic of the Kendall 7 in its bivariate version.

We will analyze two data sets. The first one corresponds to 33 companies belonging to
the IBEX35 and we calculate the functional 7 for all possible pairs of the companies. This
coefficient informs about companies having similar behavior over time. In finance, assets with
similar dependence behavior in the same portfolio increase the portfolio’s risk. Therefore,
our coefficient allows us to classify the assets to build portfolios with different behavior. The
second data set corresponds to a microarray time series, from a human T-cell experiment
with 58 genes, 10 time points and 44 replications. We obtain the functional T for each pair

of genes and construct the partial correlation matrix to compare the gene network resulting
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from functional 7 with those from dynamical correlation.

This chapter is organized as follows. In Section 2.2, the functional 7 is defined extending
the concept of concordance for bivariate random variables. Section 2.3 is devoted to proving
some properties of this correlation coefficient and to studying convergence results. A simula-
tion study and sensitivity analysis are given in Section 2.4. In Section 2.5 we analyze with
our methodology the prices of the assets in companies belonging to the IBEX35. Section 2.6
contains a study of dependence between genes using the genes data set. In Section 2.7, we
present a robustness empirical study. Finally, in section 2.8, we outline the main conclusions

of this chapter.

2.2 Functional Kendall correlation coefficient

Kendall [30] introduced a correlation coefficient based on the ranks of the observations. It
makes use of the idea of concordance. Two random variables are concordant if large (small)
values of one are related to large (small) values of the other. When large (small) values of one
are related to small (large) values of the other, the random variables are discordant. More
formally, let (z1,y;) and (29, ys) be two observations of a random vector (X,Y). We say that
(z1,y1) and (z2, y2) are concordant if (z1—z2)(y; —y2) > 0 and discordant if (z1—z2)(y1—y2) <
0. This means that they are concordant if either 1 < x9 and y1 < y2 or 2 < x7 and Yy < ¥y1;
in other cases with strict inequality, the observations are discordant. Kendall’s correlation
coefficient is defined as the difference between the probabilities of concordance and discordance

in two different realizations (Xi,Y1), (X2,Y2) of (X,Y),
T = P{(X] — XQ}(Y]_ — YQ) > 0} — P{(Xl — XQ)(Yl — Y2) < 0}.
The above expression can be also written as

T = 2[P{X1 <X2,Y1 < YQ} + P{XQ <X1,Ya< Y]}] — 1. (2.2.1)

If (z1,y1), (x2,¥2) ... (xn,yn) is a sample from (X,Y"), the sample coefficient is

where S = cp — dp is the difference between the number of concordant pairs (cp) and the

number of discordant pairs (dp).

The aim of this chapter is to present a functional version of this correlation coefficient. For
this purpose, we follow the same construction as that used for the classic Kendall coefficient.

Let f and g belong to the space C(I) of real continuous functions on the compact interval I.
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First, we need to introduce relationships allowing the comparison between curves. A natural
choice is the usual order, i. e., f < g & f(t) < g(t), for all t € I. It fulfills the partial
order conditions; however, most functions are not comparable with this order. To avoid this

difficulty, we waive the antisymmetry condition and use preorders instead of orders.

Definition 2.2.1 Let f and g be in C(I). Then, we consider two alternatives.

F(#) Zm g(t) = max f(t) < maxg(t). (2.2.2)
b
F(t) =i g(t) = / (g(t) — £(£))dt > 0. (2.2.3)

It follows easily that for constant functions defined in the same compact interval I, both
preorders are equivalent to the usual ordering on the real line. Given any preorder definition

among functions, we may define the concordance concept between functions.

Definition 2.2.2 (Functional Concordance.) Let < be a preorder between functions, and
let < address the case without considering ties. Two pairs of functions (f1,q1) and (f2,g92)
are concordant if either f1 < fo and g1 < g2 or fo < f1 and g2 < g1; in the other case, they
are discordant.

Definition 2.2.2 allows us to extend Kendall’s correlation coefficient to the functional case,

as described in the next Definition.

Definition 2.2.3 Let (z1,y1),...,(Zn,Yn) be a bivariate sample of functions in the space
C(I) of real continuous functions on the compact interval I. Then the functional T is:

-1 n

~ n

T = ( 5 ) Zﬂ(mg%xj and y; <y;) + 2[(zj <z and y; <y;)— L.
i<j

(2.2.4)

If (X1,Y7), (X2,Y3) are copies of a bivariate stochastic process {(X (¢),Y (t)) : t € I'}, the

population version of this dependence measure is
T = 2[P{X1 <X, Y1 < YQ} + P{X2 <X1,Y2 < Y]}] — 1. (2.2.5)

Some of the asymptotical properties of the traditional Kendall T coeflicient arise from the fact
that it can be expressed as a U-statistic. To obtain an asymptotical result in the functional
fields, which will be stated in Theorem 2.3.2, we need the definition of U B-statistics which
are U-statistics taking values in a Banach space. We also need some results of convergence

for this kind of statistics. These concepts can be defined as follows:
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Definition 2.2.4 (UB-Statistics. Borovskikh [1], page 5.) Let B be a real separable
Banach space with a norm || - || and let B* be the dual to space B. Denote by x*(x) the
value of functional * € B* at x € B. Let X1,..., Xy be independent random variables taking
values in the measurable space (X, X), where X is a o-algebra, and all with identical distribu-
tion P. Consider a Bochner integrable symmetric function ® : X™ — B of m variables given
on X™ and taking values in B. Then, a U-statistic is

Un:( " )_1 > e {(Xa, . Xim)})- (2.2.6)

1<iy < <im<n

It is clear that U, € B. Hence, the U-statistic (2.2.6) with a B-values kernel ® is called a
U B-statistic. In particular, if B = R it is called a UR-statistic and if B = H, where H is a
real separable Hilbert space, it is called a U H -statistic.

The following theorem provides an asymptotical result, which will be very useful in what

follows.

Theorem 2.2.5 (Borovskikh [1], page 73.) Assume that the B-value kernel ® is such that
E||®| < co. Then,
U,—8 as n— oo,

and

E||U, — 6] — 0.

Now, consider (X;,Y7),...,(X5,Ys) to be independent copies of the bivariate stochastic
process (X(t),Y (t)) with identical distribution P and whose realizations or paths are pairs of
functions that take values in the measurable space (Cla,b] x C[a,b|,X). Then, the functional

7 given in Definition (2.2.3) can be expressed as a U B-statistic,

-1
Un= ( " ) Z 'I’{(Xt‘nyil):(ximyh)}a (2'2-7)

2 1<ii<ig<n

where @ : C?[a,b] x C?[a,b] — R is a Bochner integrable symmetric function according to
Definition 1.3.11 in Schwabik and Guoju [48] and given by

O(z4, 1), (x,y5)] =21 (z; < x5, yi < y;) +2(x; < z,y; < yi) — 1,

where I denotes the indicator function.

2.3 Properties of functional 7

We analyze in this section some desirable properties of 7 as a dependence measure. Scarsini
[47] proposed a set of properties that a concordance measure for ordered pairs of continuous
random variables should fulfill. (See Chapter 1, Section 1.1 for more detail). The following
proposition gives the properties of the functional 7. Some of them come from the axioms
proposed by Scarsini [47]. Other properties of Proposition 2.3.1 are a natural extension of the
well known properties of the bivariate 7 itself (Kendall [30]).
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Proposition 2.3.1 Let (X(t),Y (t)) be a bivariate stochastic process. Then,

1. 7(X(2),Y(t)) = 7(Y (t), X(t)). (Symmetry).

1< 7(X(2),Y(t) < 1.

(=X (1), Y (t) = —7(X(2),Y(2)).

7(X(t),g(X(t))) = 1, for any monotone increasing function g.
7(X(t),9(X (t))) = —1, for any monotone decreasing g.

If X(t) and Y (t) are stochastically independent, then (X (t),Y (t)) = 0.

I U R T

The correlation coefficient functional is invariant under strictly increasing and contin-
uous transformations of the functional variables,

T[a(X(2)), B(Y ()] = 7(X(2),Y (¢)),

where a and B are strictly increasing functions.

Note that 7 with the preorder of the maximum verifies 1, 2, 4, 6 and 7, and 7 with the integral
preorder 1, 2, 3, 6 but 4, 5 and 7 just for affine transformations.

Proof Proposition 2.3.1
The properties 1 and 2 are immediate from the expression (2.2.5) of functional 7.

Property 3.

Proof.
Let (X1,Y7) (X5,Y3) be identically distributed copies of a bivariate stochastic process
(X(t),Y (t)), and let =; be the preorder from equation (2.2.3).
Denote X; = fab X;(t)dt and Y; = fang-(t)dt.

(=X (1),Y () = 2[P(—X; < =X, , V1 < Yo)+ P(—X, < —X; , Y, < Y;)]| -1
P(-Xi < Xz, Vi <Yp) + P(-X3 < X1, Y <¥})] - 1
P(Xg <X1.,Y; <172)—|-P(X1 < X, 172<171}]—1
1-{P(X1 <Xy, Y1 <Ya)+ P(X2< X1, Ya< Y1)} -1
= {2[P(X1 <Xz, Vi1 <Yo) + P(X2 < X1, Y2 < V1)] - 1}
—{2[P(X1 < X2, Y1 < Y2) + P(X3 < X1, Y2 < Y1)] — 1}.
= (X (1), Y (1))

2]
2]
2]
2]

Property 4.
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Proof.

Let <, be the preorder from equation (2.2.2) and let g be a monotone increasing function.

Then,
n(X(t),9(X(t))) = Z[P{;g[g] X, (t) < max Xo(t)}, {321[2‘,’5] (X, (1) < mmax g(Xa(t)}]

—|—2[P{t1él[2:§] Xo(t) < max Xi(t)}, {tlél[gfé] a(Xa(t)) < Dax g(Xa(t))}] — 1.

Since g is a monotone increasing function,
(X (¢),9(X (%)) = 2[P{max X1(t) < max X5(t)} , {max X1(f) < max Xa(t)}]
te(a,b] tela,b] tela,b] tela,b]

+ 2[P{max X»(t) < max X;(t)}, {max X5(t) < max X;(t)}] —1

te(a,b] te(a,b] tela,b] tela,b]

= 1.

O

The functional preorder <; from equation (2.2.3) in general, is not invariant to increasing
transformations. For example: Let f(t) =¢+ 1 and g¢(t) = 2¢ be continuous functions in the
compact interval [0, 2]. Then g(t) < f(t) since

3

3
b b)
/ g(t)dt =2.25 and / f(t)dt = 2.625.
0

0
Now, let a(t) = exp(t) be an increasing function, then a(f(t)) = exp(t + 1) and a(g(t)) =
exp(2t)

3 3

7 b
/ exp(t + 1)dt = 9.454 and / exp(2t)dt = 9.54 then,
0 0

g9(t) <; f(t) but a(f(t)) <: alg(t)).

Thus, the ordering is not preserved. However, for increasing affine transformations the pre-

order is invariant. Suppose that a(t) = ¢t + d being ¢ > 0 and
b b
fi(t) < fj(t) = / fi(t)dt < / fj(t)dt
a a

b

b b b
—>/ cfi(t)dt < / cfj(t)dt — / cfi(t)dt +d(b—a) < / cfj(t)dt + d(b— a)

a

b b b b
o f (cfi(t) + dydt < / (cf;(t) + dydt — / a(fi(t))dt < / ol f;(t))dt.

a
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Property 6.

Proof.
Let (X1,Y7) and (X5,Y3) be identically distributed copies of a bivariate stochastic process
(X(t),Y(t)), X(t) and Y (¢) independent stochastic processes and

T=2P(X;1 < X5,Y1 <Y3) + P(Xo<X;,Y,<Yy)] -1

Then,
=2[P(X1 < X2) x P(Y1 <Y2)] + 2[P(X2 < X1)x P(Y2<Yy)| -1
[P( max X (t) < max Xs(t)) x P( max Y7(t) < max Ya(t))]
te[a,b] te(a,b] tela,b] t€la,b]
+ 2[P(max X5(t) < max X;(t)) x P(max Y5(t) < max Y;(t))] — 1.
t<[a,b] te(a,b] t€[a,b] tela,b]
Also

P X Xs5(t)=1-P X1(t) Xs(t
(53[2"5] 1()>£121[83§] 2(1)) (m‘i’;] 1(t) <111[33§] 2(1)),

P Yi(t Yo(t))=1—-P Yi(t Ys(t)
(;1.2[23;] 1(}>§é}a"‘] 2(t)) (malg] 1(}<;Iél[a?§] 2(1))

d P(max X1(t) Xa(t)) = P(max Yi(t Ya(t)
- (tm[gxl 1(6) <3§1[a"§] 2(0)) = Pl 1i(t) < g Ya(t)) =

1
Analogously for the preorder =<;, from equation (2.2.3).

= 2[P(X1 = Xg} X P(Yl = Yg)] + 2[P(X2 < X]) X P(Y2 = Yl)] —1

=2 [P (/: X, (t)dt < /: Xg(t)dt) x P (/b Yi(t)dt < f Yg(t)dt)}
2 [P (/:Xg(t}dt < /: Xl(t)dt) x P (/:Yg(t)dt < /:Yg(t}dt)] -
Finally,

P (E X, (¢)dt > f Xg(t}dt) —1-P (/:Xl(t)dt < Exg(t}dt) ,
P (E Yi(t)dt > Eyg(t)dt) =1-P (fb Yi(t)dt < Eyg(t)dt)
and P (/:Xl(t}dt < /:Xg(t)dt) =P (/:Yl(t}dt < /:Yg(t)dt) ==

r =202 x 2] 421~ 2) x (1 )]~ 1=0.
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Property 7.
Proof.

Let a and S be strictly increasing and continuous functions. For the functional preorder <,

from equation (2.2.2), we have:
max a(z;(t)) = a(max(z;(t))) and maxa(z;(t)) = a(max(z;(t)))
- max a(ai(1)) < max o(z;(1)) - a(z(0) < ale; (1),

The same idea can be used for 8 and Y (). According to Definition 2.2.2 the number of

concordant pairs is the same, therefore

(X (2)), BY ()] = 7[X(2), Y (2)].

The consistency of functional 7 is established in the next theorem.

Theorem 2.3.2 Let (z1,¥1),...,(Tn,yn) be a sample of independent and identical functional
observations from (X(t),Y (t)). Then,

Th — T a.8s. as m — 0o,

for the two preorders considered in Definition 2.2.1.

Proof.
It is easy to check that the function

D(z4, 1), (x,y5)] =21 (z < x5, yi < y;) +2[(z; < z,y; < y;) — L.

belongs to the interval [—1,3]. Then, the functional 7, given in Definition (2.2.3) and
expressed as the UB-statistic (2.2.7), has associated a kernel ® such that E||®| is finite.
Therefore, from Theorem 2.2.5, we have that, if ® is such that E|/®| < oo, then the

U B-statistic will converge almost surely to the parameter 7. [l

Observe that Theorem 2.3.2 is valid in general for any well-defined preorder (<).

To illustrate how the functional 7 works in simulated functional samples with different
kinds of dependence, we provide some examples. From now on, 7;, 7> denote the functional
7 when the maximum and integral preorders are considered, respectively. Consider five
joint realizations of the processes X (t) = t* + Z; and Y (t) = —(t + Z2)* — 8t + Za, where
(Z1,Z3) follows a bivariate standard normal distribution with correlation o5 representing
the random part of the processes. Each pair of curves is represented by the same color. The
bivariate functional sample shown in Figure 2.1 was generated with a high positive value of

012 close to 1. In this first case, the ordering for the maximum preorder in the first group is
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(red > cyan > green > blue > magenta), and for the second group it is (cyan > green >
red > blue > magenta). In both panels, the cyan and green curves are in the same relative
position with respect to the other curves. The blue and magenta curves are also in the same
position in both groups. In this case 73 = 0.6. For the ordering to the integral preorder, in
the first group are (red > cyan > green > blue > magenta), and for the second group it is
(green > cyan > red > blue > magenta). In both panels, blue and magenta curves are in the
same position in the two groups. At the same time the remainder of the curves are almost

completely ordered in the opposite way. Therefore 7, = 0.4, whose value is smaller than for 7.

On the other hand, Figure 2.2 shows five pairs generated from processes X (t) = (t + Z;)?
and Y (t) = (t + Z3)® with 015 close to —1. The curves are almost completely ordered in
the opposite way between groups, except for the blue and black curves, which yields a strong

negative dependence. In this case, our functionals 7; and 7> take the value of —0.8.

Figure 2.2: 7; = —0.8 75 = —0.8.
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2.4 Empirical results and comparisons

In this Section, we illustrate the performance of the functional 7 introduced in this work, as
well as its behavior with respect to other dependence measures introduced in the literature.
Specifically, we are going to compare 7 with dynamical correlation and canonical correlation.
Recall that the dynamical correlation is a measure of similarity between two groups of curves,
which is calculated through the estimator,

n

Pa = —— 3 (@i (t), 53 (1))-

n—1

i=1
And the canonical correlation seeks to investigate which modes of variability in the two sets of
curves are most associated with one another, this is, the sample squared correlation of [ cz;

and [1ny;, ie.,
{cov([ Emg,f?}'yi)}Q
(Uarfsmi)(vm"f'f}'yi}.

These two measures were introduced in Chapter 1, Section 1.2 for more details.

ccorsa(e,n) =

Through a simulation exercise, we show the behavior of the measure introduced in this
chapter and those chosen to compare it. The data are simulated in the following way. Consider
the bivariate stochastic process (X (t),Y (t)) = [f1(¢, Z1), f2(t, Z2)] where (Z1, Z2), represents
the random part of the process, a bivariate standard normal distribution with correlation oys.
We consider a different structure for the functions f;, 2 = 1,2 as well as different values for
o12. In each case, 50 realizations of the process (X(t),Y (t)) are generated where the paths
are discretized taking d = 50 points over the interval [0,1] and calculating the measures of
dependence previously mentioned. This procedure is carried out 100 times and the results

reported refer to the average and deviation over the 100 setups.

As one can see, we calculate the dependence coefficient when the curves are discretized in
a finite number of points. Therefore, it is necessary to define a finite dimensional version for
the preorders given in Definition (2.2.1). Consider t,ts,...,tq to be the values of ¢ in which

the functional sample zq, x5, ..., z, is observed. Then,

o zy(t) =2 22(t) & max(z(ty),...,z1(tg)) < max(zy(ty),...,z2(tq))-

o 2i(t) =i @o(t) & Mt (ty) + @1(ta) + 220 mi(t)] < Mpftlwa(ty) + @a(ta) +

-1
2355 w2 (ty)]-
The last expression corresponds to the composite trapezoidal rule of numerical integration,

which we have used for calculating the values of the integrals.

Table 2.1 presents the average of the measures 7, and 75 as well as p. and pg, which
denote the canonical correlation and dynamical correlation, respectively. The value in brackets

reports the standard deviation of the measures considered. We also include, in each case, the
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value of the correlation o12. We can see that the coefficients 73 and 75 in some cases take
different values between them, which is a consequence of the preorders not sorting the data in
the same way. In the case of processes in which one of them is an increasing transformation of
the other, both coefficients take value 1, which confirms the perfect dependence between the
processes considered. However, this fact does not occur in the measures used for comparison,
see for example rows 3 and 4 in Table 2.1. Indeed the value of pg in row 4 does not reflect
the true dependence between those processes, which is positive and perfect. Observe that a
similar conclusion can be drawn when the dependence is perfect but negative as may be seen
in row 5. There, only our coefficients were able to capture the negative perfect dependence.
Note also that in the independent case (row 11), our coefficients reflect this fact better than
the other measures. Finally, the standard deviation of 75 in most cases is the smallest among

the other measures.
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Tables 2.1: Dependence measures in simulated data

1

1

5

X(t)=FH(t.2Z1) Y(t) = fa(t, Za) o132 1 2 Pd

1 (t4+ 2% +(t+2,)2 +30t+27) (t+ Z2)% + Z(t + Z2) — 10 0.8 0.4861 0.4874 0.7448 0.7008
(0.0857) | (0.0711) | (0.0898) | (0.1130)

2 sin(t + Z1) cos(t + Z2) —0.7 0.3084 0.2774 0.5367 0.3605
(0.0023) | (0.0835) | (0.1004) (0.11)

3 (t+ Z1)? (t+ Z1)4 1 1 1 0.9566 0.922
(0) (0) (0.0118) | (0.0125)

4 (t+Z1)°2 +7(t+2Z1)+2 ((t+ Z2)2 +7(t + Z2) +2)° 1 1 1 0.0089 0.7779
(0) (0) (0) (0.0347)

5 (t4+21)2+7(t+21)+2 1—((t+2Z2)2 +7(t + Z2) +2)° 1 -1 -1 0.999 —0.78
(0) (0) (0.0009) | (0.0275)

6 exp(t + Z1) (t+Z2)% + (t 4+ Z2)% + 3(t + Z2) 0.6 0.4047 0.4138 0.5008 0.5682
(0.0811) | (0.0751) | (0.1431) | (0.1301)

T exp(t + Z1)2 cos(t + Z3) —0.8 0.3007 0.2082 0.3101 0.0408
(0.0022) | (0.1035) (0.07) (0.1458)

8 sin(t + Z1) (t + Z2)? 0.4 0.1080 0.1059 0.3382 0.1647
(0.1035) | (0.1021) | (0.1132) | (0.0016)
9 (t+2Z1)2+9(t+ Z1) -5 cos(3t + Z3) 1 —0.7198 | —0.9476 0.0334 —0.7244
(0.0853) | (0.0358) | (0.0458) | (0.0562)

10 exp(t? + Z7) (t+ Z3)% — 8t + Z5 0.9 0.3621 0.5991 0.8544 0.4620
(0.1078) | (0.0706) | (0.0485) | (0.1215)

11 exp(t + Z1) sin(t 4+ Z32) 0 —0.0076 0.0087 0.1438 0.0560
(0.1004) | (0.0883) | (0.0861) | (0.1275)
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We can see that the canonical correlation p. is always positive, which means that it
does not capture the direction of the dependence. This is because it seeks variability in
the two sets of curves that maximize the sample correlation between the pairs of canonical
variates. Dynamical correlation py just reflects the mean of individual similarities rather than
considering the set of curves as a whole. This makes the dynamical correlation to capture
changes only at an individual performance level, while Kendall’s coeflicient detects changes

at a more general level, which is one of the advantages of this coefficient.

Thus, the functional T is appropriate to indicate how related two functional variables are,
regardless of the shape of their realizations. This coefficient measures the joint tendency of

the variables to have increasing or decreasing behavior.

As we can see, T depends on the sample size n and on the number of points to discretize
the functions d. In order to assess the stability of the functional 7, with respect to (n,d) we

perform two sensitivity analysis, using the following two pairs of stochastic processes.

e Model 1: X(t) = exp(t+2Z1), and Y (t) = (t+ Z2)3+ (t + Z2)? + 3(t + Z2) with 012 = 0.6.

e Model 2: X (t) =sin(t+ Z;) and Y (t) = cos(t + Z3) with 015 = —0.7.

The first analysis is with respect to the sample size n. In this case, we move n =
25, 50,100,150 and 1000 without changing the number of points to discretize the functions,
which is set as d = 50. This procedure is repeated 100 times and we reported their average.
Table 2.2 shows that the changes in 77, T» are negligible and quite stable with respect to the

sample size.

Now, the same scheme is made for d, the number of points in the discretization. Fix
n = 50, and move d = 25,50,100,150 and 1000 points. Table 2.3 illustrates the sensitivity
with respect to d. It is noteworthy that the coefficients present good stability with respect
to the number of points taken to discretize the functions. We also carry out the sensitivity
analysis for other models, but we do not report them in this chapter, since we obtain the same

conclusions as before.

It is remarkable that this study of simulation were also made with smoothed data using
B-spline with 13 basis functions and a smoothing parameter A = 0.01 in the calculation of

71,2 and the results have many similarities with those reported in this section.

2.5 Ibex data

The first real data set that we use in this work corresponds to 33 companies belonging to
the IBEX35. For each company we have taken a set of 108 functional observations, each one
of them representing one day (108 days) in which the price of the asset has been measured

every 5 minutes from 9:05 until 17:40 (104 measurements). Table 2.4 shows the functional
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Tables 2.2: Sensitivity to sample size

sample size | Model 1 | Model 1 | Model 2 | Model 2
1 T 1 T

25 0.4035 0.4017 0.2809 0.3014

(0.1285) | (0.1129) | (0.1475) | (0.1429)

50 0.4044 0.4190 0.3084 0.2774

(0.0719) | (0.0724) | (0.0923) | (0.0835)

100 0.4130 0.4047 0.2882 0.2945

(0.0575) | (0.0495) | (0.0600) | (0.0636)

150 0.4093 0.4094 0.2999 0.2880

(0.0394) | (0.0485) | (0.0517) | (0.0489)

1000 0.4077 0.4096 0.2903 0.2945

(0.0162) | (0.0185) | (0.0219) | (0.0196)

Tables 2.3: Sensitivity to the number of points in the discretization

number of points | Model 1 | Model 1 | Model 2 | Model 2
1 T 1 T
25 0.3992 0.4168 0.2979 0.2897
50 0.4044 0.4190 0.3084 0.2774
100 0.4054 0.4135 0.2846 0.2802
150 0.4153 0.4065 0.2912 0.2801
1000 0.4089 0.4128 0.2845 0.2989

T coefficients, canonical correlation and dynamical correlation for some pairs of assets. Data
were smoothed using cubic B-spline with 13 basis functions and a smoothing parameter A =
0.01; recall that A is especially used to calculate the canonical correlation. As one can see,
some companies present high dependence, which can be interpreted as similar behavior of
their prices in the course of time. Other companies have low dependence, whereby the prices
fluctuate differently. This information given by correlation coefficients allows us to propose
an alternative for organizing a portfolio of assets, which presents low risk to the investor. To

carry out this methodology we will focus on the correlation coefficient 75 and will use the

IBEX DATA.

We construct a matrix C of size 33 x 33, whose inputs are 75, in such a way that each
column contains the values of the coefficient 75 for a company with the other companies. In
order to compare the columns of the matrix, the first component in each column will be the
correlation of the company itself, i.e, the first row of the matrix will take the value 1. To
classify the companies into groups depending on 7o, we performed a cluster analysis using
the nearest neighbor technique with five groups. As results we obtain five clusters or groups
where the companies are that have similar behavior in terms of the coefficient functional 75.
Figures 2.3 to 2.7 show the 5 groups. In each one of the groups, we plot the paths determined

by the most similar columns of matrix C.
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Tables 2.4: Ibex data

company 1 company 2 T
Antena 3 T.V. Abertis —0.3128
A.C.5. Acerinox —0.2606
Altadis Acciona 0.3860
B.BV.A. Bankinter 0.4363
Cintra Endesa —0.1870
Enagas F.C.C. —0.2464
Ferrovial Gamesa —0.0702
Gas Natural Iberdrola 0.3478
Iberia Indra A —0.0187
Inditex Mapfre —0.1512
Metrovacesa Fopular —0.3053
NH Hoteles R.E.E. —0.1193
Repsol Y.P.F. Sabadell 0.4846
Santander Sogecable 0.1199
Sacyr Valle Telefénica —0.2767
A.G.5. Barcelona Telecinco —0.1431
Unién Fenosa Antena 3 T.V. —0.4489
Antena 3 T.V. Altadis —0.6249
Antena 3 T.V. F.C.C. 0.5670
Antena 3 T.V. Fopular 0.6663
Antena 3 T.V. Telefénica —0.6967
Antena 3 T.V. Telecinco 0.5892
Abertis Acciona 0.6296
Abertis Enagas 0.5686
Abertis Inditex 0.5953
Abertis R.E.E. 0.6147
Abertis A.G.S. Barcelona 0.6969
A.C.5. Sacyr Valle 0.7132
Acciona Endesa —0.6592
Acciona Iberdrola 0.7550
Acciona Santander 0.7587
Acciona Unién Fenosa 0.7587
Bankinter Sabadell 0.7941
F.C.C. Fopular 0.6262
Iberdrola Unién Fenosa 0.8229
Mapfre NH Hoteles 0.6045
NH Hoteles Repszol Y.P.F. 0.7221

T2 Pe Bd
—0.3058 0.4464 —0.4338
—0.2511 0.3874 —0.3664
0.3918 0.4926 0.4396
0.4635 0.6759 0.6662
—0.1823 0.0808 —0.0522
—0.2464 0.4142 —0.39
—0.0562 0.3158 —0.2056
0.3511 0.4261 0.4238
0.0177 0.0668 —0.0382
—0.1201 0.3071 —0.2027
—0.3406 0.4619 —0.4494
—0.1125 0.3313 —0.3179
0.4872 0.7633 0.7614
0.1131 0.1845 0.1511
—0.2687 0.3669 —0.3553
—0.1142 0.2172 —0.2037
—0.4502 0.7756 —0.7697
—0.6690 0.7807 —0.7745
0.5827 0.7718 0.7641
0.6677 0.8307 0.8354
-0.7011 0.8655 —0.8628
0.5916 0.8032 0.7983
0.6126 0.8264 0.8179
0.5586 0.7699 0.7618
0.5994 0.8232 0.8107
0.6052 0.8125 0.800
0.7068 0.9041 0.8934
0.7268 0.8969 0.8870
—0.6694 0.8243 —0.8130
0.7615 0.8953 0.8908
0.7720 0.9273 0.9154
0.7581 0.8861 0.8766
0.8033 0.9511 0.9482
0.6310 0.8439 0.8375
0.8195 0.9681 0.9655
0.7125 0.9065 0.9008
0.7377 0.9021 0.8982
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Nearest neighbors with five groups (Group 1)
T T T T

Figure 2.3: First group of companies.

Nearest mneighborse with five groups (Group 2)
T T T T

Figure 2.4: Second group of companies.

Nearest neighbors with five groups (Grocup 3)
T T T T

Figure 2.5: Third group of companies.
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Nearest neighbors with five groups (Group 4)
T T T T T T

Figure 2.6: Fourth group of companies.

Nearest neighbors with five groups (Grocup 5)
T T T T T T
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Figure 2.7: Fifth group of companies.

Averages of nearest neighbors with five groups
T T T T T
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Figure 2.8: Average of each group.
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Figure 2.8 shows the average correlation vectors for each group. The fact that the curves
are so different could indicate that each group has a different dependence structure. The
above procedure provides a good alternative for organizing a portfolio. Assets of different
groups have different behavior, which can be a useful tool to avoid composing a portfolio with

parallel assets, since it is well known that a portfolio with parallel assets has a very high risk.

The functional coefficient has the advantage of taking into account the temporal part of
the data, i.e., the evolution of the asset over time that in this case is every five minutes.
Therefore, this option works with more information for the asset. This is more meaningful
and realistic than considering just the dependence between the data at the end of the day, as

it is made when the dependence is measured by the usual covariance matrix.

2.6 Gene data

Existing relations among genes contain broad information on the structure and functioning
of living beings. Therefore, the interaction between genes allows us to understand many life
phenomena. These interactions give rise to the construction of genetic networks. By studying
the structural properties of such networks, much more information may be extracted in order
to understand the complex functioning of living organisms. Different statistical methodolo-
gies have been used to estimate genetic networks, such as graphical models which represent
stochastic conditional dependence between the investigated variables. Graphical Gaussian
models and the Bayesian network are examples of simple graphical models (see, e.g. Whit-
taker [53]) but their drawback is that these methods are based on the assumption of identically
and independently distributed variables. Opgen-Rhein and Strimmer [42] studied the graph-
ical Gaussian models from the perspective of functional data, where these two assumptions

are not necess ary.

Opgen-Rhein and Strimmer [42] considered the gene expression as a functional observation,
rather than describing the individual time points separately. They built the networks in the
following way: the network nodes are the genes and the correlations are the connectivity
strengths assigned to the edges of the network. They use the dynamical correlation introduced
in Chapter 1. However, they do not use the dynamical correlation itself because it represents
only marginal dependencies, besides including indirect interactions between two variables,
since it contains information on the relations of each variable with the rest. They use the
concept of partial correlation, which describes the correlation between any two variables 7 and
7, conditioned on all the other variables, which is the correlation between two variables when
the effect of the other is eliminated. Therefore, if the variables are linearly and conditionally

associated, the partial correlation coefficient is different from zero.

The partial correlation matrix is constructed as follows: Let P = (pg;) be the correlation
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coefficients, and let {2 be the inverse relationships

Q=P = (wy),

then the partial correlations are given by

- Wi =
Phl = e = P = (pki).

To test the significance of these correlations and decide which are significant edges, they
employ a large-scale simultaneous hypothesis testing, the “local fdr” which is an empirical
Bayes estimator of the false discovery rate proposed by Efron [13],[14]. This method computes
the posterior probability for an edge to be present or absent in the gene network. An important
question in the use of this method is whether we can identify a small percentage of interesting
cases that deserve further investigation. In this study, these cases will be the edges present

in the network.

We propose a new form of finding connectivity strengths (edges) using the functional 7,
and applying the “local fdr” to investigate valid relations. In order to illustrate our proce-
dure, we use a microarray time series data set. These data were used in Opgen-Rhein and
Strimmer [42]. The data set characterizes the response of a human T-cell line (Jirkat) to a
treatment with PMA and ioconomin. After preprocessing the time course data, we obtain 58
genes measured across 10 time points with 44 replications. Table 2.5 shows the correlation
coefficients including the canonical correlation p,. and dynamical correlation p; for some pairs
of genes. Data were smoothed with lineal B-spline, taking four basis functions and a smooth-
ing parameter A = 0.00001. Note how the correlations vary depending on the coefficient used,

which was considered when we analyze simulated data in Section 2.4.

In order to compare our results with those obtained by Opgen-Rhein and Strimmer, we
calculate the partial correlation matrix from the correlations matrix found with the functional
7> and we use the “local fdr” algorithm in GeneNet packages, available in library R-software,
to find whether significant edges are present or absent in our network, with the same cut-off

= 0.2 used for calculating the network with dynamical correlation.

Figures 2.9 and 2.10 show the network proposed by Opgen-Rhein and Strimmer [42] and
our proposed network, respectively. The network calculated with partial dynamical correlation
contains 15 nodes and 9 edges, whereas the network calculated with partial functional 7
contains 22 nodes and 12 edges. In both figures, the edges in red represent negative correlation
and the nodes in red represent the common nodes in both networks (CASP8, SOD1, MAPKO9,
CDC2, CCNA).
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Tables 2.5: Gene data

GEN 1 GEN 2 T To Pe Pd
RE1 CCNG1 —0.3425 —0.3006 0.8206 || —0.3266 |
TRAFS CLU —0.3975 —0.3383 0.7322 —0.2461
MAPK9 SIVA 0.3208 0.3890 0.9031 0.4665
EDG9 ZNFN1A1 —0.1839 —0.3858 0.9081 —0.011
IL4R MAP2K4 0.2656 0.2706 0.9063 0.4193
JUND LCK —0.2146 —0.2114 0.9311 —0.4443
SCYA2 PPSGKA1 —0.1522 —0.2622 0.6055 —0.1518
ITGAM CTNNB1 0.0962 0.0317 0.8491 0.2373
SMN1 CASP8 —0.0338 —0.1755 0.9311 —0.7743
E2F4 PCNA 0.3869 0.4089 0.0304 0.6312
CCNC PDE4B —0.3087 —0.5687 0.8562 —0.5738
IL16 APC —0.2474 —0.3192 0.7916 —0.1763
1D3 SLA —0.4027 —0.4334 0.8905 —0.7363
CDK4 EGR1 0.1734 —0.2421 0.9605 0.2001
TCF12 MCL1 0.3467 0.2060 0.9610 0.8361
CDC2 SOD1 0.0486 0.4080 0.9749 0.4871
CCNA2 PIG3 —0.4017 —0.4820 0.9361 —0.3304
IRAK1 SKIIP —0.0560 —0.1871 0.5658 0.1197
MYDS88 CASP4 0.4778 0.4376 0.0266 0.2225
TCF8 API2 —0.0063 —0.1966 0.9202 0.5261
GATA3 REL2 0.3467 0.4038 0.0352 0.5604
C3x1 IFNAR1 0.2653 0.3805 0.8923 0.6694
FYB IL2R6 —0.0782 0.5254 0.9301 0.3324
CSF2RA MPO —0.4588 —0.4778 0.9048 0.0831
API1 CYP19 —0.3245 0.1036 0.0116 0.1227
CIR CASPT —0.2220 —0.3827 0.8003 —0.2234
MAP3KS8 JUNB —0.3044 —0.4630 0.8013 —0.6764
IL3RA NFKBIA —0.4165 —0.3848 0.7861 —0.1457
LAT AKT1 —0.3404 —0.1649 0.8210 —0.0764
RB1 MAPK9 0.5328 0.6064 0.9767 0.7740
RB1 CASP4 —0.4567 —0.4207 0.9672 —0.4748
TRAFS LCK 0.3647 0.5856 0.8970 0.4583
TRAFS ITGAM —0.4820 —0.5041 0.9494 —0.6519
TRAFS CTNNB1 0.4397 0.5020 0.8145 0.2573
TRAFS CSF2RA —0.5116 —0.6342 0.0318 —0.6458
EDG9 C3x1 0.5370 0.7030 0.9626 0.6056
ZNFN1A1 CASP8 —0.2611 —0.63 0.0467 —0.4740
IL4R ITGAM 0.4926 0.5856 0.9611 0.8036
MAP2K4 IL16 0.1078 0.1015 0.6217 0.0634
JUND SMN1 —0.5846 —0.4419 0.9528 —0.6019
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GEN 1 GEN 2 T To Pe Pd

[ JUND || RBLZ || —0.5032 || —0.5370 || 0.0556 —0.8000
LCK CCNC 0.3409 0.6660 0.9499 0.8214
PPSGKA1 FYB —0.0159 —0.8161 0.9582 —0.6983
CASP8 PIG3 0.6755 0.6321 0.9420 0.7787
CASP8 CSF2RA 0.50 0.6660 0.9868 0.8401
CASP8 IFNAR1 0.2886 0.3848 0.9602 0.7518
PDE4B JUNB 0.5081 0.5370 0.8008 0.7173
IL16 EGR1 0.3319 0.0751 0.6167 0.6823
IL16 SOD1 —0.1290 —0.0106 0.7217 0.0573
APC FYB 0.1332 0.6820 0.9736 0.2170
TCF12 CSF2RA —0.3552 —0.6469 0.9837 —0.7988
PIG3 NFKBIA 0.5328 0.5476 0.8739 0.4362
CASP4 RBL2 —0.4440 —0.4355 0.0438 —0.7186
CSF2RA NFKBIA 0.6047 0.6448 0.0417 0.5810

Figure 2.9: Gene dependence network using dynamical correlation.
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Figure 2.10: Gene dependence network using functional 7.

The advantage of using functional 75 instead of the dynamical correlation studied in Opgen-
Rhein and Strimmer [42] is that our coefficient identifies relationships between the variables
based on the relative ordering among realizations in each group. And it is not only based
on the shape of individual realizations; our coefficient also takes into account the temporal
evolution of each gene, so it is able to identify additional and different relationships than those

given by the dynamical correlation.

Tables 2.6 and 2.7 show the results of partial correlation with dynamical correlation and
partial correlation with functional 75 respectively, which were found through the “local fdr”
algorithm. Also, we can see the p-value for each of the correlations as well as the nodes

included in the networks.

Tables 2.6: Partial correlation with dynamical correlation

| Correlation nodel noded pval prob

[ 05106230 || JUND |J| EGRI || 4.540748c — 00 || 0.0821273 |
0.3071803 CcDC2 CCNA2 1.490676e — 05 0.9821273
0.3888355 API2 NFKBIA 2.325541e — 05 0.9821273
0.3817253 CASPRB IFNAR1 3.365286e — 05 0.9778470
0.3740201 IL16 EGRI 4.755512e — 05 0.9317983
—0.3543562 MAPKY SLA 1201719 — 04 0.9317983
0.3503031 IL16 50D1 1.560555e — 04 0.9317983
0.3477015 IL2RG API1 1.750564e — 04 0.9079010
0.3414533 MCL1 API2 2.337537e — 04 0.8700107
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Finally, to explore the relationship between the dynamical correlation and the functional
T2, we make a regression analysis between the partial dynamical correlation and partial func-
tional T, for T-cell data. We obtain a R? = 0.0634, which is low and indicates a low relation-

ship.

Tables 2.7: Partial correlation with functional T

| Correlation nodel nodeld pval prob

[ —0.3235028 || PPS6KAL FYB [ 2.286047e — 05 || 0.9500103 |
0.3020697 IRAK1 MPO 7.744064e — 05 0.9500103
0.3019622 SMN1 CCNC 8.202042e — 05 0.9500103
0.2000471 RE1 MAP3KS 0.678107e — 05 0.9400666
0.2032716 RE1 MAPKO 1.336132e — 04 0.9287469
—0.2842216 ITGAM S0D1 2.184800e — 04 0.9287469
—0.2830007 CcDC2 CYP19 2.211905e — 04 0.8543381
—0.2687344 IL4R C3X1 4.880864e — 04 0.8543381
—0.2680201 GATA3R C3X1 5.050401e — 04 0.8543381
0.2628164 CASPS8 PIG3 6.554510e — 04 0.8543381
0.2627168 CTNNE1 SKIIP 6.586726e — 04 0.8543381
0.2600064 TCF12 CCNA2 T.488866e — 04 0.8543381

2.7 Robustness

As commented in the Introduction, we analyze the robustness of our coefficients 7; and 75
and compare them with the results obtained with the dynamical and canonical correlation (py
and p,., respectively). We contaminate the dataset with outliers, defining a functional outlier
as in Febrero et al. [21]: a “curve [that] has been generated by a stochastic process with a
different distribution than the rest of curves, which are assumed to be identically distributed”.
Given this definition, we use three types of outliers: shape outliers, magnitude outliers and

shape-magnitude outliers.

We generate 50 curves for the previously studied processes. (Recall that o5 is the corre-

lation between the normal random variables Z; and Z5.)
X(t) =exp(t+Z;), and Y (t) = (t + Z2)* + (t + Z3)* + 3(t + Z3), 012 =06

and the types of outliers to be considered are:

e Shape outliers. Changing the argument, ¢ to (1 — ¢).

e Magnitude outliers. Adding a constant to the original process, X (¢) to X (¢) + k. In our

case we will use k = 60.
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e Shape-magnitude outliers. Changing the argument and adding a constant to the original
function, X(t) to X (1 —t) + k.

We use different ways to contaminate the data:

1. Contaminating a group.
2. Contaminating two groups in the same position.

3. Contaminating two groups in different positions.

Each measure is calculated before contaminating the data (row 1). Once data have been
contaminated with outliers from different types, we report the relative variation of the as-
sociation measure with respect to its value in the uncontaminated data set. We compare
our results with those obtained by the dynamical correlation and canonical correlation. We
can see that functional 71 and 7 coefficients are invariant to the presence of shape outliers,
while the dynamical correlation and canonical correlation coefficients are sensitive to them.
For magnitude outliers and shape-magnitude outliers our coefficients present small variations
unlike the other coefficients which present variations up to 40 percent of the original value.
The results are given in Tables 2.8, 2.9 and 2.10, where the values in red are those that
present the largest variation in each of the cases. We can see that the functional 7, as well
as the functional 75 do not present a significant variation, while p; and p, present the largest

variations in almost all cases.

50



A Kendall correlation coefficient for functional dependence

Tables 2.8: Contamination with shape outliers

N2 outl

Contaminated Groups Type of Outliers T1 T Pd Pe
none none 0 0.454 | 0.454 | 0.549 0.544
X(t) Shape 1 0 0 0.0231 | 0.0007
X(t) Shape 2 0 0 0.0242 | 0.0669
X(t) Shape 3 0 0 0.0244 | 0.1292
X(t) Shape 4 0 0 0.0245 | 0.1284
X(t), Y(t) same position Shape 1 0 0 0 0.2122
X(t), Y(t) same position Shape 2 0 0 0 0.4137
X(t), Y(t) same position Shape 3 0 0 0 0.2707
X(t), Y(t) same position Shape 4 0 0 0 0.27
X(t), Y(t) different position Shape 1 0 0 0.0296 0
X(t), Y (t) different position Shape 2 0 0 0.0301 | 0.0698
X(t), Y (t) different position Shape 3 0 0 0.0303 | 0.1446
X(t), Y (t) different position Shape 4 0 0 0.0305 | 0.1393
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Tables 2.9: Contamination with magnitude outliers

N2 outl

Contaminated Groups Type of Outliers 1 T Pd Pe

none none 0 0.454 | 0.454 0.549 0.544

X(t) Magnitude 1 0.0033 | 0.0033 | 0.096 | 0.002

X(t) Magnitude 2 0.0016 0 0.009 | 0.043

X(t) Magnitude 3 0.008 | 0.008 0.17 0.18

X(t) Magnitude 4 0.026 | 0.026 | 0.095 | 0.126

X(t), Y (t) same position Magnitude 1 0.008 | 0.009 0.16 0.34
X(t), Y (t) same position Magnitude 2 0.0131 | 0.0147 | 0.2757 | 0.4022
X(t), Y (t) same position Magnitude 3 0.0163 | 0.0196 | 0.3346 | 0.4239
X(t), Y (t) same position Magnitude 4 0.0343 | 0.0375 | 0.3419 | 0.4292
X(t), Y(t) different position Magnitude 1 0.0196 | 0.0245 | 0.1786 | 0.0079
X(t), Y (t) different position Magnitude 2 0.0212 | 0.0261 | 0.1766 | 0.0384
X(t), Y (t) different position Magnitude 3 0.0131 | 0.0196 | 0.1135 | 0.1652
X(t), Y (t) different position Magnitude 4 0.1192 | 0.1274 | 0.2091 | 0.1076
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Tables 2.10: Contamination with shape-magnitude outliers

N2 outl

Contaminated Groups Type of Outliers T1 T Pd Pe
none none 0 0.454 | 0.454 | 0.549 | 0.544
X(t) Shape-magnit 1 0.003 | 0.004 | 0.09 | 0.0008
X (1) Shape-magnit 2 0.001 0 0.006 | 0.028
X(t) Shape-magnit 3 0.008 | 0.008 | 0.15 | 0.18
X (1) Shape-magnit 4 0.02 | 0.02 | 0079 | 0.11
X(t), Y (t) same position Shape-magnit 1 0.008 | 0.009 | 0.16 | 0.41
X(t), Y (t) same position Shape-magnit 2 0.013 | 0.014 | 0.27 | 0.43
X(t), Y (t) same position Shape-magnit 3 0.016 | 0.019 | 0.33 | 0.41
X(t), Y (t) same position Shape-magnit 4 0.034 | 0.037 | 0.34 | 0.41
X(t), Y(t) different position | Shape-magnit 1 0.019 | 0.024 | 0.18 | 0.002
X(t), Y(t) different position | Shape-magnit 2 0.021 | 0.026 | 0.18 | 0.04
X(t), Y(t) different position | Shape-magnit 3 0.013 | 0.019 | 0.12 | 0.19
X (t), Y(t) different position | Shape-magnit 4 0.119 | 0.127 | 0.22 | 0.11
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2.8 Conclusions

We have introduced a new numerical dependence measure between two sets of functional data.
Our technique is a natural extension of the Kendall 7 coefficient when the data are curves. In
order to build this new coefficient, we also have introduced the concordance concept between
pairs of functional data. We have presented examples of applications showing the usefulness

of the new coeflicients introduced for both simulated and real data.

We have compared the performance of our measure with other coefficients, such as the
dynamical correlation and the canonical correlation. The coefficients presented here allow
us to identify the global dependence between two groups of functional data regardless of the

shape of their realizations. Also, this coefficient’s implementation is straightforward.

Two interesting examples with real data are studied. The first one corresponding to
33 companies belonging to the IBEX35 coeflicient informs about companies having similar
behavior over time. In finance, assets with similar dependence behavior in the same portfolio
increase its risk. Therefore, our coefficient allows us to classify the assets to build portfolios
with different behavior. The second data set corresponds to a microarray time series from
a human T-cell experiment. We obtain the partial functional 7 for each pair of genes and

construct a gene network.

We also study the sensitivity of our coefficients and conclude that these coefficients present
good stability with respect to sample size and to the number of points taken to discretize
the functions. In terms of robustness, our coefficients can be considered quite stable in the

presence of functional outliers in comparison with the measures used as a benchmark.
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Spearman dependence coefficient for functions

3.1 Introduction

In this Chapter, we focus on another numeric dependence measure, the Spearman coefficient.
The first contribution will be the definition of a Spearman coefficient for functional data that
extends the classical bivariate concept, based on the ranks of the observations of the sample.
Therefore, our first task is to consider a suitable way to sort the observations depending on
the relative position of the curve within the sample. There are some alternatives for sorting
the curves; one of them is based on the notion of depth that measures the centrality of a
curve with respect to the group to which it belongs, so depth provides a way of ordering data
from the center outwards. Different notions of depth have been studied for functional data
(see for example, Fraiman and Muniz [24], Cuevas et al. [8], Lépez-Pintado and Romo [38],)
and each definition gives rise to different ways of ordering the curves. However, alternative
definitions of ordering can also be interesting; for example, in Chapter 2 the functions are
compared depending on their maximum values or on their total area below the curves. In
this chapter, we have used the pre-order introduced in Lépez-Pintado and Romo [39] and
the way of sorting the functions used in Martin-Barragan et al. [40], who provided a way of
sorting the data in a down-up direction based on the concepts of hypograph and epigraph of
a function. This pre-order takes into consideration more the particular structure of the data.
We also introduce the notion of grade for functions that it is useful to develop the theoretical
background necessary to properly define the Spearman coefficient. The main properties of
this coefficient as a well-defined dependence measure are also derived. To our knowledge, an
independence test for functional data has not been proposed in the literature. Here, we try
to fill this gap and present an independence test based on a bootstrap methodology suitable

to be applied with some of the numeric dependence coeflicients previously introduced in the
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literature.

This Chapter is organized as follows. In Section 3.2, we recall some concepts about
Spearman’s coefficient for bivariate samples necessary to understand the extension to the
functional context. Section 3.3 presents the main definitions that allow functions to be sorted.
In Section 3.4, we introduce Spearman’s coeflicient for functions and study its properties. A
simulation study and a robustness analysis is carried out in Section 3.5. In Section 3.6 the
independence test is provided as well as a simulation study. Several examples with real data

are shown in Section 3.7. Finally, Section 3.8 gathers the main conclusions.

3.2 Preliminaries

Spearman’s coefficient is a non-parametric measure of association between two random vari-
ables. It is defined as the Pearson correlation coefficient between the ranks of the sample,
being useful when the data are distribution free, so it is not necessary to assume the as-
sumption of normality (Pearson [43], Hauke and Kossowski [26]). It is well known that it
presents significant advantages over the Pearson coefficient: (1) It is a more robust coefficient
(less sensitive to outliers) and (2) Spearman’s coefficient is a better indicator than the Pear-
son correlation for determining whether a relationship exists between two variables when the

relationship is nonlinear.

One of the definitions of the Spearman coefficient between two random variables is given
by Definition 1.1.3 in the Chapter 1. Therefore, Spearman’s coefficient is proportional to the
difference between the probability of concordance and the probability of discordance for two
vectors (X1,Y7) and (X5,Y3). The Kendall 7 is also based on the concordance probability and
it is well known that both coefficients measure non linear dependence from a non-parametric
point of view. (For further details see Nelsen [41]).

However, we are interested in the equivalent definition of pg given by calculating the
Pearson coefficient between the uniform random variables U = Fx (X ) and V = Fy (Y'); that
is,

_ E(UV)—-E{U)E(V)

VVar(U)y/Var(V) ’

where p, denotes the Pearson coefficient. The random variables U and V are called the

ps = pp[U,V] (3.2.1)

“grades” of X and Y and the realizations u of U and v of V' can be obtained evaluating the
realizations z of X and y of Y in the distribution functions F'x and Fy, respectively. Therefore,
u = Fx(z) and v = Fy(y) can also be called the grades of = and y. These grades can be seen
as the population definition analogs of ranks (see Nelsen [41], page 169). If the distribution
functions are unknown, then the grades of x and y can be estimated through the empirical
distribution, i.e., & = I:_’X(::c} similar to © and hence we can calculate the sample version of this

coefficient by calculating the sample version of the Pearson coefficient between the estimated
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grades. For this reason, Spearman’s coefficient is also called the grade correlation coefficient.
Observe that the grades are values that are always in [0, 1] and they are bounded independently
of the support of the random variables. Therefore, an estimation of the Spearman coefficient
is less sensitive in the presence of outliers than an estimation of the Pearson coefficient and,
most importantly, ps is well defined for all pairs of random variables, whereas p, needs the

random variables to have a finite second moment.

The definition of p; based on grades inspires the development provided in this chapter:
defining a Spearman coefficient for functions extending the definition of grades for functions.

This is done in the following section.

Spearman’s coefficient satisfies some general and intuitive properties required for any rea-
sonable dependence measure. For example, the sign of p, indicates the direction of association
between X and Y, so that if Y increases when X increases, Spearman’s coefficient will be
positive. Now, if Y tends to decrease when X increases, Spearman’s coefficient is negative.
A Spearman’s coefficient with value zero indicates that there is not a clear tendency for Y
to either increase or decrease when X increases and its value is zero if the variables are
independent. Spearman’s coeflicient increases in magnitude as X and Y become closer to
being perfect monotone functions of each other. When X and Y are perfectly monoton-
ically related (positive perfect dependence), Spearman’s coefficient becomes 1. Therefore,
Spearman’s coefficient informs about the dependence, either positive or negative, between the

random variables.

3.3 Grades for functional data

The possible concept of grade for functions may be linked to the relative position of a curve
in the sample which implicitly implies defining an ordering among functions. There are some
alternatives to sorting curves, we analyze some of them in Chapter 1. Recall that some of
the most used are based on the notion of depth that measures the centrality of a curve with
respect to the group to which it belongs; thus, depth provides a way of ordering data from
center outwards. Different notions of depth have been studied for functional data (see for
example, Fraiman and Muniz [24], Cuevas et al.[8], Lépez-Pintado and Romo [38],) and each
definition leads to different ways of ordering the curves. However, alternative definitions of
ordering can also be interesting; for example, in Chapter 2 of this thesis the curves are ordered
depending respectively on values of their maximum or their area below the curves in order to
define a Kendall tau coefficient for functions. Martin-Barragan et al. [40] apply the concept
of epigraphs and hypographs of a function to define some indexes that are useful for sorting

curves in a down-up direction, even when the curves cross.

To define the grades of the curves, we will follow some concepts introduced in Lépez-

Pintado and Romo [39] and the idea of ordering implemented in Martin-Barragan et al.[40].
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In Lépez-Pintado and Romo [39], two concepts called the Inferior Length and the Superior
Length of a curve, are defined as the foundation of a depth definition and these concepts are
used to introduce a new boxplot for functional data in Martin-Barragan et al. [40]. In order

to make the chapter self contained, we briefly define the previous concepts.

Let C(I) be the space of the continuous functions defined in a compact interval I. Consider
a stochastic process X (t) with distribution P and whose sample paths are in C(I). Let
z1(t),...,zn(t) be a sample of curves from P. The graph of a function z is the subset of the
plane G(z) = {(t,z(t)),t € I'}. The hypograph, written as hyp, and the epygraph, written as

ept, of a function z in C(I) are given respectively by

hyp(x) = {(t,y) € I xR :y < z(t)},
epi(z) = {(t,y) e I xR :y > z(t)}.

A natural form of ordering curves is pointwise, which means that a curve z is greater than
another curve y if, and only if, hyp(y) C hyp(x) or epi(z) C epi(y), for all t € I. However, in
practical situations the curves in a sample can be crossed and hence the natural ordering in
these cases does not work. An alternative for ordering curves can be developed by using two
concepts, the Inferior Length and the Superior Length of a curve with respect to a stochastic
process X (t):

IL(z) = ﬁE[)‘{t e I:a(t) > X(0)}],

SL(z) = ﬁE[)‘{t eT:a(t) < X1,

where )\ stands for the Lebesgue measure on R. The inferior length I L(z) can be interpreted
as the “proportion of time” that the stochastic process X (¢) is smaller than z and the superior
length SL(z) is the “proportion of time” that the stochastic process X (t) is greater than z.

These notions are behind the definitions of the grades of a stochastic process X (t) with

respect to another process X (t), which we define as follows:

Definition 3.3.1 Let X (t) and X(t) be two stochastic processes. Then,

IL-grade(X (1)) g ) = Mt e:X(t)>X@®)}],

1
A(I)Ef(t)

SL-grade(X () ) = Mt el: X(t)<X(t)}].

1
1) Ex

Observe that IL-grade or SL-grade assigns a value between [0,1] to each process. We
note that if the X (¢) and X (t) have the same distribution, we then eliminate X (t) from the
definitions of IL-grade and SL-grade to avoid hard notation.
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If we consider a sample of functional data, z1(t),...,zx(t) and fix any curve z = z(t) of
the data set, the sample version of both IL-grade and SL-grade can be easily obtained by

substituting the expectation by the sample mean, respectively

ILy-grade(z) = #{I) Z Mtel:z(t) > zi(t)},
i=1

SLy-grade(z) = ﬁ(f) Z Mtel:z(t) <z(t)}.
i=1

It is noteworthy that IL,-grade(z) or SLp-grade(xz) has been viewed as the relative
position of a curve with respect to the sample. Also, note that the curves can be ordered by

sorting the values of I Ly-grade or SLyn-grade for each one of them. That is,

Definition 3.3.2 Consider functional observations z1(t),...,zn(t) of a stochastic process
X(t). Then,
zi(t) 2 x(t) = I L,-grade(x;) < IL,-grade(z;).

A similar definition can be obtained by replacing the I L,-grade with SLy-grade.

The relation given in Definition 3.3.2 meets important properties such as reflectivity and
transitivity, but, unfortunately, it does not satisfy the antisymmetry property. Therefore, the
relation is a pre-order, which is less restrictive than a partial order and allows us to compare
any pair of functions in the sample. Observe that if the curves do not cross each other,

Definition 3.3.2 corresponds to the pointwise order.

To illustrate this pre-order, observe the example in Figure 3.1 that shows the IL,-grade
assigned to each function in a sample of four functions. The blue curve has the smallest
IL,-grade because the proportion of time that it is above any other curve is smaller than
the value assigned to any curve in the same sample. The black curve has the largest IL,,-
grade value assigned, since in this case the time proportion is greater than any other. The
proportions assigned to each curve are what we call the grade of the curve regarding the
sample. Note that the largest functional grade in the sample may not be one unless the curve
with the highest functional grade does not cross with any other, which means that it will be
largest point-to-point than them. Once the grades are introduced, we can define Spearman’s

coefficient for functions in a parallel way to (3.2.1).

3.4 Spearman’s coeflicient for functional data

In this section, we define the concept of Spearman’s coefficient in the functional context in
order to quantify the dependence in a bivariate data set of functions. Taking into account
Definition (3.2.1), we define a Spearman coefficient for two stochastic processes as the Pearson
coefficient between the random variables IL-grade(X (t)) and IL-grade(Y (t)); that is,
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Figure 3.1: Grades for functions.

Definition 3.4.1 (Spearman coefficient for stochastic processes.) Let (X(t),Y (t)) be
bivariate stochastic process whose paths are continuous functions on an interval I C R. Then,

Spearman’s coefficient of (X (t),Y (t)) is:
pe(X(0),¥ (1)) = pp(IL-grade(X (1)), IL-grade(¥ (1)) (3.4.1)

where p, denotes the Pearson correlation coefficient and IL-grade(-) is the grade associated to
a stochastic process given in Definition 3.3.1.

In the same way, the sample version of p; is the following:

Definition 3.4.2 (Spearman’s coeflicient for functions.) Let

(%,¥) = {(21(8), v1.(8)) ;- - -, (2n(t), yn(2)) }

be a bivariate functional sample from (X(t),Y (t)). Then, the Spearman coefficient related to
the data set and denoted by p, is defined by

Ps = pp(I Ln-grade(x), I Ly-grade(y)), (3.4.2)
where,
IL,-grade(x) = {IL,-grade(x),IL,-grade(xs),...,IL,-grade(z,)}
IL,-grade(y) = {IL,-grade(y;),IL,-grade(ys),...,IL,-grade(y,)} .

Another definition of Spearman’s coefficient for functions can be obtained by replacing
IL,-grade by SL,-grade. In order to illustrate how the Spearman coefficient works, we
have taken a small bivariate set of four curves and calculated the corresponding coefficient.

Figure 3.2 shows the pairs of curves, each pair represented by its own color. We can see that
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the curves in a group are organized in a different way than their respective partner in the
other group. Observe that the order of the curves in first group seems to have a more or
less opposite direction with respect to the other group. Therefore, Spearman’s coeflicient for
functional data is small, indicating to us that the association between the groups of curves is

weak and negative.

Figure 3.2: Spearman’s coefficient for functional data, p, = —0.2994.

3.4.1 Properties of Spearman’s coefficient for functional data

As commented in Section 3.2, Spearman’s coefficient for bivariate data satisfies certain desir-
able properties required for a dependence measure (see Xu et al. [55]). In this section, we
prove that Spearman’s coefficient for stochastic processes also possesses such properties. Let
(X(t),Y (t)) be a bivariate stochastic process and ps be Spearman’s coefficient as in Definition

3.4.1. Then p; satisfies the following properties:

L pu(X(2),Y (8)) = pa(¥ (), X(¢)). (Symmetry).

2 —1< py(X(1),Y(0) < 1.

3. ps(X(t),9(X(t))) =1, for any monotone increasing function g.
4. ps(X(t),9(X(t))) = —1, for any monotone decreasing function g.

5. Spearman’s coefficient for functions is invariant under strictly increasing transformations
of the functional variables; that is,

ps(a(X (1)), B(Y (2)) = ps(X(2), Y (2))-
For any a and S being strictly increasing functions.
6. If X(¢) and Y (¢) are stochastically independent then p¢(X(¢),Y (t)) = 0.
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7. The sample Spearman’s coefficient is a consistent estimator of the population coefficient.

The proofs of properties 1 and 2 are trivial from the definition of ps. The proof of properties
3, 4 and 5 are based on the following:

1

XD X
1

= TI)Ef(t)[

— IL-grade(X (8) g,

IL-grade(a(X (1)) 7 ) = oMt € I g(X(1) > o(X(2))]

MtelI:X(t)>X ()}

for any monotone increasing function g. The proof of property 6 is based on that, if X (¢) and
Y (t) are independent then IL-grade(X (t)) and IL-grade(Y (t)) are also independent. There-
fore, ps(X(t),Y (t)) = pp(IL-grade(X (t)),IL-grade(Y (¢))) = 0 by the well known property of

the Pearson coefficient. The last property holds since, as n goes to infinity,

S0, ILn-grade(x:)

mn

as, E[IL-grade(X (t))],

where z1,...,z, is a sample from X (¢). Finally, since p), is a consistent estimator, also p; is.

3.5 Simulation study

In this section we show how Spearman’s coeflicient works in several simulated data sets and
we establish comparisons with other dependence measures introduced previously in the litera-
ture. Specifically, we consider the canonical correlation, the dynamical correlation, Pearson’s
coefficient for functional data studied in Chapter 1, Section 1.2 and Kendall’s 7 for functions
defined in Chapter 2 of this thesis.

To illustrate the different dependence measures, we have calculated them for the data

given in Figure 3.2.
71=0, T,=-033, p.=083, p;=-013, p,=—0.2374

Note that Kendall’s tau built with the pre-order of maximum and denoted as 7; is zero since
there are as many concordant pairs as discordant pairs. The canonical correlation p. has a
very large and positive value since it is always positive and does not allow the direction of
the dependency to be identified. The dynamical correlation pg, Kendall’s tau built with the
pre-order of the integral 7, and Pearson’s correlation coefficient for functional data p, have
negative values that reflect the direction of weak dependence shown in the data set as well as

Spearman’s coefficient (py = —0.2994).

We have simulated 50 realizations from different processes X (t) = f1(¢,Z;) and Y (t) =
fa(t, Z5), where (Z1, Zs) represents the random part of the processes, which was defined in
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Chapter 2, and we have taken d = 50 points to discretize the functions. For each pair (fi,

f2), we use a different correlation o1s.

Table 3.1 shows the sample means of different association measures for the simulated
samples with n = d = 50 and 100 replications. We have also included the standard deviation
(between parenthesis). We can see that both coefficients, the Spearman and Kendall, properly
reflect the cases where the pairs of functions present perfect co-monotonicity or counter-
monotonicity, (see rows 3, 4 and 5 in Table 3.1). As we know, the canonical correlation
is always positive, i.e., it does not capture the direction of the dependence. Note from the
definition of the dynamical correlation that, it just reflects individual changes between the
pairs of functions rather than among groups. On the other hand, Pearson’s coefficient does

not work well when the dependence relations are not lineal, as in cases 4 and 5.

We have also analyze the sensitivity of p; with respect to the size n. We will use the
following two pairs of stochastic processes that correspond with row 1 in Table 3.1 with

o012 = 0.8 and o195 = 0.1:
7
X(t)=(t+2Z1°+ (t+21)* +3(t+ Z1), Y(t)=(t+22)°+ g(t +2Z5)—10

We have considered n = 25, 50, 100, 150 and 1000 with d = 50. Table 3.2 shows that
the changes in p; are negligible and it is stable with respect to the sample size. Table 3.3
illustrates the sensitivity with respect to d. Now, fix n = 50, and move d = 25, 50, 100, 150
and 1000 points. It is noteworthy that the coefficients present good stability with respect
to the number of points taken to discretize the functions. We point out that we have made
the sensitivity analysis with other models, but the conclusions are the same for the models

reported.

3.5.1 Robustness

Spearman’s coefficient is a more appropriate association measure than Pearson’s correlation
when the data are ordinal or non-normally distributed or a tiny fraction of outliers exists.
In this section, we analyze this last point. That is, we check if Spearman’s coefficient for
functions fulfills the robustness property by contaminating a sample with the three different
types of outliers commonly used in the functional context: shape outliers, magnitude outliers
and shape-magnitude outliers. The method to contaminate data is the same implemented in
Chapter 2 where the objective was to show the robustness of Kendall’s 7 for functions. We

have simulated fifty paths of the stochastic processes,
X(t) =exp(t+ Zy), Y(t) = (t+ Z3)* 4+ (t + Z3)® + 3(t + Z3), 012 = 0.6, (3.5.1)
and the types of outliers to be considered are:

e Shape outliers.
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Tables 3.1: Dependence measures in simulated data

B IL

7. 5L

1
o

=)
(]

>

X(t) = f1(t, Z1) Y(t) = fa(t, Z2) o12 Pd Pp

1| G+212 4+ +21)2 +3(t+ Z1) (t+Z2)2 + Z(t+ Z2) — 10 0.8 0.667 0.6596 0.4861 0.4874 0.7448 0.7008 0.6943
(0.0811) | (0.0882) | (0.0657) | (0.0711) | (0.0898) | (0.1139) | (0.1055)

2 sin(t + Z;) cos(t + Z4) —0.7 0.4354 0.445 0.3084 0.2774 0.5367 0.3605 0.4022
(0.1244) | (0.1407) | (0.0023) | (0.0835) | (0.1004) (0.11) (0.1189)

3 (t+ 2Z1)? (t+2Z1)* 1 1 1 1 1 0.9566 0.022 0.9179
(0) (0) (0) (0) (0.0118) | (0.0125) | (0.0127)

4 (t+Z1)2+7(t+2Z;) +2 ((t+ Z2)2 + 7(t + Z3) +2)? 1 0.9997 1 1 1 0.9980 0.7779 0.7688
(0.0029) (0) (0) (0) (0) (0.0347) | (0.0278)

5 (t+Z1)24+7T(t+2,)+2 1—((t+ Z2)2 +7(t + 2Z5) +2)° 1 -1 -1 -1 -1 0.999 —0.78 —0.7644
(0) (0) (0) (0) (0.0009) | (0.0275) | (0.0285)

6 exp(t + Z1) (t+Z2)* 4+ (t+ Z2)2 + 30t + Z2) 0.6 0.5802 0.5546 0.4047 0.4138 0.5008 0.5682 0.5103
(0.0067) | (0.1072) | (0.0811) | (0.0751) | (0.1431) | (0.1301) | (0.1559)

T exp(t 4+ Z1)2 cos(t + Z2) —0.8 0.4417 0.4430 0.3007 0.2082 0.3101 0.0408 0.0846
(0.1105) | (0.1198) | (0.0022) | (0.1035) (0.07) (0.1458) | (0.1697)

8 sin(t 4+ Z;) (t + Z3)? 0.4 0.1706 0.1458 0.1080 0.1059 0.3382 0.1647 0.1173
(0.1331) | (0.1307) | (0.1035) | (0.1021) | (0.1132) | (0.0016) | (0.1175)

9 (t+Z1)2+9(t+Z;) -5 cos(3t + Z3) 1 —0.935 | —0.0327 | —0.7108 | —0.9476 0.0334 —0.7244 | —0.6976
(0.0176) | (0.0199) | (0.0853) | (0.0358) | (0.0458) | (0.0562) | (0.0708)

10 exp(t? 4+ Z1) (t+ Z2)% — 8t + Z2 0.9 0.7743 0.7802 0.3621 0.5991 0.8544 0.4620 0.8309
(0.0634) | (0.0608) | (0.1078) | (0.0706) | (0.0485) | (0.1215) | (0.0616)

11 exp(t+ Z1) sin(t + Z3) 0 0.05 0.0051 —0.0076 0.0087 0.1438 0.0560 —0.0209
(0.1467) | (0.1508) | (0.1004) | (0.0883) | (0.0861) | (0.1275) | (0.1221)
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Tables 3.2: Sensitivity to sample size

sample size | Model 1 | Model 1 | Model 2 | Model 2

AL | 2SL | IL | BSL

25 0.6492 0.6612 0.077 0.0781
(0.1270) | (0.1301) | (0.2030) | (0.2137)

50 0.6697 0.6748 0.0732 0.0993
(0.0881) | (0.0686) | (0.1426) | (0.1369)

100 0.6709 0.6534 0.0883 0.0754
(0.0559) | (0.0617) | (0.0945) | (0.0998)

150 0.6598 0.6668 0.0626 0.0685
(0.0448) | (0.0495) | (0.0847) | (0.0789)

1000 0.6699 0.6724 0.0767 0.0807
(0.0177) | (0.0204) | (0.0341) | (0.0348)

Tables 3.3: Sensitivity to the number of points in the discretization

numbers of points | Model 1 | Model 1 | Model 2 | Model 2
Il | pSL | L | psL

25 0.6542 0.6542 0.0647 0.0647

50 0.6542 0.6542 0.0648 0.0648

100 0.6546 0.6546 0.0648 0.0648

150 0.6548 0.6548 0.0646 0.0646

1000 0.6548 0.6548 0.0648 0.0648

e Magnitude outliers, with k& = 60.

e Shape-magnitude outliers.

Figure 3.3 shows a data set generated from stochastic process X (t) = exp(t + Z1) and the
same data set but contaminated with different types of outliers, which is represented with a

black curve.

Contaminated data are considered in processes (3.5.1), but introducing outliers in the

following way:

1. Contaminating just the group of curves that comes from X (¢).
2. Contaminating both groups of curves (X(¢),Y (¢)) in the same position.

3. Contaminating both groups of curves that come from X (¢) and Y (t) but in different

positions.

Table 3.4 shows the variation of the coefficients when the outliers are introduced. Each
measure is calculated before contaminating the data (row 1). Once the data are contaminated,
we report the relative variation of the association measure with respect to its value in the
uncontaminated data set. We can see that Kendall’s 7 is the most robust coefficient in most

cases. However, Spearman’s coefficient also exhibits a good degree of robustness, even being
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Figure 3.3: Original data, a magnitude outlier, a shape outlier,

a shape-magnitude outlier.

Tables 3.4: Variation of the coefficients in presence of a different number of outliers

| Contaminated Groups Il Type of Outliers || N outlyers | prr. | pse | 71 | | By | i
| none ” none " [} | 0.6213 | 0.6213 | 0.4547 | 0.4547 | 0.5401 | 0.5440 | 0.5367
X(t) Shape 1 0.0067 0.0067 0 1] 0.00036 0.0027 0.0007
X(t) Shape 2 0.0069 0.0069 0 0 0.042 0.1213 0.0007
X(t), Y(t) same position Shape 1 0.010 0.010 0 0 0 0.006 0.0015
X(t), Y(t) same position Shape 2 0.0094 0.0094 0 0 0 0.7511 0.0018
X(t), Y(t) different position Shape 1 0.0086 0.0086 0 0 0.0009 0.0011 0.00037
X(t), Y(t) different position Shape 2 0.0072 0.0072 0 0 0.046 0.1477 0.0005
X(t) Magnitude 1 0.045 0.045 0.035 0.039 0.28 0 0.313
X(t) Magnitude 2 0.039 0.039 0.025 0.028 0.066 0.035 0.5446
X(t), Y(t) same position Magnitude 1 0.053 0.053 0.0646 0.075 0.227 0.6505 0.2457
X(t), Y(t) same position Magnitude 2 0.055 0.055 0.078 0.086 0.47 0.7414 0.3547
X(t), Y(t) different position Magnitude 1 0.074 0.074 0.072 0.082 0.418 0.008 0.436
X(t), Y(t) different position Magnitude 2 0.079 0.079 0.075 0.086 0.383 0.017 0.7315
X(t) Shape-magnitude 1 0.045 0.045 0.035 0.039 0.2811 0.001 0.312
X(t) Shape-magnitude 2 0.039 0.039 0.025 0.028 0.092 0.043 0.5438
X(t), Y (t) same position Shape-magnitude 1 0.053 0.053 0.064 0.075 0.227 0.689 0.2467
X(t), Y (t) same position Shape-magnitude 2 0.055 0.055 0.086 0.086 0.4775 0.7973 0.3551
X(t), Y(t) different position Shape-magnitude 1 0.074 0.074 0.072 0.082 0.419 0.0014 0.4373
X(t), Y(t) different position Shape-magnitude 2 0.079 0.079 0.075 0.086 0.404 0.034 0.730

more robust in general than the canonical correlation, dynamical correlation and the Pearson

correlation coefficient for functions. We highlight that the robustness analysis has been made

with other models (X (¢), Y (¢)) and the same conclusions can be drawn.
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3.6 Independence test for functional data

In the literature on association measures, it is usual to provide an independence test to check
if the corresponding coefficient used to measure dependence can be considered zero or not
(see for example Gibbons [25] and Wilcox [54] for more details). This section deals with the

design of a test when data are curves and the hypotheses are:

Hy: ps=0.
Hy: ps #0.

Since the asymptotic distribution for p; is not known when the data set are functions, an
alternative methodology is necessary to find the critical region associated with the statistics
ps- We will use a bootstrap approach to estimate the statistics distribution, (see Efron [12],

Efron and Tibshirani [15]|, Davison and Hinkley[9], for more information).

Given a sample of functions (x,y) of size n, B bootstrap samples of size n are obtained
by resampling from (x,y) under the null hypothesis; that is, there is no association between
the components of the stochastic process (X (¢),Y (t)) that generated the data set (x,y). The
steps necessary to obtain the p-value of the test are summarized in Table 3.5, where pg(x,y)
is the sampled value of p; and ps(x*,y*) is its corresponding value for the bootstrap sample.
The decision rule is to reject Hy if p-value < a, where « is the significance level. We fix

a = 0.05 in the following.

Tables 3.5: Bootstrap test

1. Input: a sample of functions (x,y) from a stochastic process (X,Y) and a-level.
2. Find p; (x,y) -
3. Obtain under Hy a bootstrap sample (x*,y") of size n from (x,y).
4. Calculate pg (x*,y%).
5. Repeat 3 and 4 a sufficient number of times (B).

- Y2 1Ps (X} ,¥7) >Ps (,¥)]
6. Find p-value = L ye; .

7. Output: Reject Hy, if p-value < a-level.

To illustrate the results of the bootstrap test, we come back with the simulated data of
in Table 3.1. We fix a sample of size n = 50 and apply the previous test with B = 2500.
For each case, both p,IL and the p-value are displayed in Table 3.6. Note how the test is
consistent when the simulated models are curves generated from stochastic processes with
positive or negative perfect dependence. In these cases, the test produces p-values equal to
zero. We can also observe that when the groups of curves have a high correlation coefficient
the p-value is smaller than 0.05 so that the null hypothesis is rejected. Likewise, when the
groups of curves have a low correlation coefficient, the p-value is larger than 0.05 and then

the null hypothesis is not rejected.
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Tables 3.6: Hypothesis test

X (1) Y(¢) o12 pIL | p-value T1 p-value T2 p-value
(t+ Z1)? (t+ Z1)* 1 1 0 1 0 1 0
(t+Z1)2+7(t+ Z1) +2 (t+Z)2+7(t+ Z1) +2)3 1 0.9996 0 0.9967 0 0.9967 0
(t+2Z1)* + (t+Z1)° +3(t+ Z1) (t+ Z2) + L(t + Z2) — 10 0.8 | 0.7197 0 0.4645 0 0.4645 0
exp(t + Z1) (t+Z2)3 + (t+Z2)2 +3(t+Z2) | 06 | 0.6213 0 0.4547 0 0.4547 0

sin(t + Z1) cos(t + Za) —0.7 | 0.4840 | 0.0002 | 0.3763 | 0.0002 | 0.3127 | 0.0012

sin(t + Z1) (t + Z5)2 0.4 | 0.3178 | 0.0241 | 0.2212 | 0.0230 | 0.2180 | 0.0244

cos(t + Z1) (t+ Z3)% —9(t + Z3) 0.2 | 0.0583 | 0.6813 | 0.0351 | 0.7244 | 0.0351 | 0.7122

exp(t + Z1)? 5(t — Z2)® —3(t + Z2) +9 —0.2 | 0.0442 | 0.7587 | 0.0155 | 0.8812 | 0.0155 | 0.8826
(t+ Z1)3 (t+ Zo2)2 +4(t+Z2) — T —0.5 | —0.6804 0 —0.4906 0 —0.4906 0
(t+Z1)% + (t+ Z1)? (t+ Z)% — 2(t + Z3) —0.9 | —0.8815 0 —0.5527 0 —0.7012 0
(t+Z1)2+7(t+ Z1) +2 1= ((t+Z1)?*+7(t+ Z1) + 2)° 1 | —0.9938 0 —0.9837 0 —0.9755 0
(5/9)(t + Z1)* 48 — (5/9)(t + Z1)? 0 -1 0 -1 0 ~1 0
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In order to make comparisons, Table 3.6 also shows the results of applying the same
hypothesis test but considering the statistics 71 and 75, defined previously. The canonical
correlation, dynamical correlation and Pearson correlation coefficient for functions are not
considered because these coeflicients show a very wide casuistry for which they equal zero.
Hence, simulating bootstrap samples under the null hypothesis (independence) is not a good

strategy for these coefficients where many anomalies are observed.
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Figure 3.4: Power test.

Tables 3.7: Relationships between the coefficients, frequency of rejection (fr) and o9

012 1 -09 -08 -07 -06 -05 -04 -03 -02 -0,1 0
p. -092 -08 -07 -061 -051 -042 -034 -024 -0,16 -0,08 0
fr 1 1 1 1 09 086 069 035 021 012 0,07
o1z 01 02 03 04 05 06 07 08 09 1
p. 0077 016 025 032 041 052 061 069 08 0,92
fr 014 024 029 071 081 0,98 1 1 1 1

We now analyze the power of the test with a simulation study. First, we consider a
bivariate sample of 50 curves generated from the process [exp(t + Z1),sin(t + Z3)], being
(Z1,Z3) a normal bivariate with zero mean and correlation o12. Given that there exists a
certain relationship between 012 and p., we consider different values of o12) in the interval
[—1,1] in order to obtain values of p; over all the interval too. For a given o1, we generate 100
times a sample of [exp(t + Z;),sin(t + Z5)], calculate pg;, ¢ = 1,...,100 and its corresponding
mean 53. Finally, we show in Figure 3.4 the frequency of rejection of the null hypothesis
versus ES. The bootstrap part of each iteration is made with B = 2500. Table 3.7 shows the
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relationship between the coefficient f_is, o12 and the frequency of rejection for the test. As we
can see, as |f53| increases, the frequency of rejection also increases which ensures the reliability
of the test.

To end this section, we have carried out a sensitivity analysis of the test with respect to
the bootstrap sample size B and the number of points used to discretize the functions. Table
3.8 shows the rejection frequency of the null hypothesis for different values of the f_is. We can
conclude that the size of bootstrap samples does not significatively affect the frequency of
rejection, whereas the power test improves as d increases, which is due to more information

being available about the original process.

Tables 3.8: Sensitivity analysis with respect to B and d

Ps size of the bootstrap sample number of  points

500 1000 1500 2000 2500 25 50 100 150

0.5989 1 0.99 1 1 1 0.99 0.97 1 1
-0.2447 |1 0.43  0.33 0.35 0.36 0.51 0.12 0.51 0.63 0.89
0.012 | 0.05 0.06 0.04 0.03 0.02 0 0.02 0.23 0.3
0.2516 | 0.47 0.5 0.38 0.42 0.36 0.13 0.36 0.69 0.73

0.6968 1 1 1 1 1 1 1 1 1

0.7969 1 1 1 1 1 1 1 1 1

Finally, In Table 3.9 we present the coefficients proposed in Chapter 2, and 3 for the
simulated data of the Section 3.5. We also include the functional 7 with the pre-order I L and

SL which were used in the definition of the Spearman coefficient.

Note that the results obtained with functional 7 for IL and SL are similar to those
obtained with pre-orders of Definition 2.2.1. This indicates that the order of the curves are
similar for the different pre-orders. We conclude that the choice of pre-order is an important

issue to calculate the coefficients however, the results will be very close.

3.7 Application to real data sets

We consider three real data sets. The first one is composed of daily temperature and pre-
cipitation per year in 35 Canadian weather stations (see Ramsay and Silverman[45]). We
also have the same data set by months. The sample size is 35. The objective in this first
example is to measure the association between temperature and precipitation. The second
data set corresponds to monthly temperatures in four cities of Canada from 1985 until 2004
(taken from the web page http://www.tutiempo.net/clima/Canada/CA.html). The data con-
sist of 20 curves (one per year/city) with 12 observation points per curve where we are in-
terested in analyzing the possible pattern of spatial correlation among cities in relation to
their temperatures. Finally, the third data set is part of the original data from the web page
http://www-stat.stanford.edu/ tibs/ElemStatLearn/. It consists of five groups of phonemes
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Tables 3.9: Our dependence measures

X(t) = f(t. Z1) Y(t) = fa(t, Z3) o132 psIL B, SL 71 72 TIL TsL
1 t+21)3+(t+21)2 4+3(t+ 2Z71) (t+ Z2)® + £(t+ Z2) — 10 0.8 0.667 0.6506 0.4861 0.4874 0.4844 0.4825
(0.0811) | (0.0882) | (0.0657) | (0.0711) | (0.0690) | (0.0714)
2 sin(t + Z1) cos(t + Z3) —0.7 0.4354 0.445 0.3084 0.2774 0.2906 0.2941
(0.1244) | (0.1407) | (0.0023) | (0.0835) | (0.0774) | (0.0776)
3 (t+ 21)? (t+ 21t 1 1 1 1 1 1 1
(0) (0) (0) (0) (0) (0)
4 (t+Z21)2+T(t+ 21)+2 ((t4+ 2202 +7(t+ Z2) +2)3 1 0.9997 1 1 1 1 0.9995
(0.0029) (0) (0) (0) (0) (0.0049)
5 (t+Z1)% +7(t+ Z1) + 2 1—((t+Z2)% + 7(t + Z2) +2)° 1 -1 -1 -1 -1 -1 -1
(0) (0) (0) (0) (0) (0)
6 exp(t + Z1) (t+ Z2)% + (t+ Z2)% + 3(t + Z2) 0.6 0.5802 0.5546 0.4047 0.4138 0.4044 0.4138
(0.0067) | (0.1072) | (0.0811) | (0.0751) | (0.0803) | (D.0824)
T exp(t + Z1)2 cos(t + Zz) —0.8 0.4417 0.4430 0.3007 0.2982 0.2024 0.2963
(0.1195) | (0.1198) | (0.0022) | (0.1035) | (0.0860) | (0.1057)
8 sin(t + Z1) (t+ Z3)2 0.4 0.1706 0.1458 0.1080 0.1059 0.0808 0.0966
(0.1331) | (0.1307) | (0.1035) | (0.1021) | (0.0002) | (D.0852)
9 t+ 212 +9(t+21)—5 cos(3t + Z3) 1 —0.035 | —0.9327 | —0.7198 | —0.9476 | —0.8007 | —0.8142
(0.0176) | (0.0199) | (0.0853) | (0.0358) | (0.0365) | (0.0368)
10 exp(t? + Z1) (t+ Z2)% — 8t + Za 0.9 0.7743 0.7802 0.3621 0.5991 0.5866 0.5804
(0.0634) | (0.0608) | (0.1078) | (0.0706) | (0.0581) | (D.0627)
11 exp(t + Z1) sin(t 4+ Z3) 0 0.05 0.0051 —0.0076 0.0087 —0.0060 0.0052
(0.1467) | (0.1508) | (0.1004) | (0.0883) | (0.0050) | (0.1082)
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Chapter 3

SH, IY, DCL, AA, and AO; each group contains 400 log-periodograms (functions) discretized

in 150 frequencies (points). Each of the log-periodograms corresponds to a different speaker.

In this example, we look for possible associated phonemes. These three data sets have been

extensively used in the literature in functional data analysis (Epifanio-Lépez [16], Jacques and
Preda [29], Li and Yu [34], Lépez-Pintado and Romo [38], and in particular, Epifanio-Lépez

[16], Li and Yu [34], for other purposes such as classification.

Montly Canadian Temperature
T T T T

Montly canadian Precipitation
T T T

Figure 3.5: Monthly and daily temperature and precipitation of Canada.

Tables 3.10: Association test for temperature and precipitation data

Data 1 Data 2 palL p-value Decizion 71 p-value Ta p-value
Daily temperature Daily precipitation 0.6043 0.0002 reject Hp 0.0807 0.5050 0.4958 0

Monthly temperature Monthly precipitation 0.5764 0.0004 reject Hy 0.1378 0.2438 0.4622 0.0002
Montreal Resolute 0.8041 0.0050 reject Hy 0.2368 0.1468 0.3316 0.0384
Montreal Prince Rupert —0.0612 0.7940 accept Hp 0.0632 0.6014 —0.026 0.883
Montreal Fort San John 0.1160 0.6220 accept Hp —0.0579 0.7308 0.0684 0.6002
Resolute Prince Rupert —0.1836 0.4322 accept Hp —0.2316 0.1620 —0.1158 0.4850
Resolute Fort San John 0.0168 0.9516 accept Hp 0.0895 0.59 0.0316 0.8668
Prince Rupert Fort San John 0.3280 0.1474 accept Hy 0.0842 0.6092 0.1789 0.2780

Figure 3.5 shows monthly and daily data of temperature and precipitation in Canada.

Green curves are the highest and the blue curves are the smallest in the sense of the I L,,-grade

ordering. Table 3.10 shows the values of the Spearman coefficient p I L, the p-value related

to the association test with 10000 bootstrap samples and the corresponding decision with

a = 0.05. The association test for the other coeflicients is also shown in Table 3.10. As
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Montreal Prince Ruper

T T T T T T T T T T Fort St John

Figure 3.6: Temperatures of 4 cities in Canada.

we can see, the null hypothesis is rejected for all cases except when using 7;. Remember
that 7, is based on the pre-order induced by the maximum of the curves, which is more
sensitive to outliers and reflects worse than the other pre-order a summary of the curves
shapes. Therefore, we can say that the temperature and the precipitation in Canada have a
significant association, which was expected because they are strongly linked to climatological

phenomena.

In relation to the data sets of Canadian cities, only Montreal and Resolute present sig-
nificant dependence for both Spearman’s and Kendall’s 7 (with pre-order of the integral)
coefficients. We have tried to find a physical explanation for this fact but these two cities
do not share the same kind of weather, nor do they have a similar latitude or other factors
that directly relate them, so the significant dependence may be due to the similarity with
respect to shape and position of the curves per year (see Figure 3.6). However, the positive
association between Montreal and Resolute does not hold when we pass the same test with

71. Hence, spatial correlation is not observed for these four cities.

Table 3.11 shows the results of the association tests for the phoneme data. We include
also the p-value for each test. Note that, in general, the dependence between the phonemes
is very small for all measures, being only statistically significative for the phonemes AA and

SH with the coefficients p,IL, 71, and T5. This may be due to the position and shape of the
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curves. We can see that the shape of the curves of the phoneme SH is in general different
when compared to other phonemes. Indeed, it can be easily observed that a certain negative
dependence could exist (see Figure 3.7). This fact is reflected in the sign of the coefficients
since they are negative in most cases where the phoneme SH is evaluated. It can be seen that

in this case, the shape of the two groups of curves exhibits opposite behavior.

Tables 3.11: Phoneme data

Phoneme 1 Phoneme 2 paIL p-value Decizion T p-value T2 p-value
AA AO 0.078 0.1144 accept Hp 0.0257 0.4536 0.0604 0.0602
AA SH —0.100 0.0484 reject Hp —0.0875 0.048 —0.0783 0.0192
AA Iy 0.058 0.2664 accept Hp 0.0004 0.9624 0.0459 0.1504
AA DCL 0.010 0.791 accept Hp —0.0186 0.6056 0.003 0.9174
AO SH —0.040 0.422 accept Hp 0.0079 0.B088 —0.0245 0.4744
AO Iy 0.010 0.845 accept Hp 0.0386 0.2336 0.0086 0.7944
AO DCL —0.020 0.606 accept Hp —0.0053 0.8020 0.00045 0.9840
SH Iy —0.025 0.64 accept Hp —0.0479 0.1592 —0.0179 0.5832
SH DCL 0.027 0.547 accept Hp 0.0188 0.5832 0.0109 0.7616
1Y DCL —0.019 0.601 accept Hp 0.0271 0.4256 —0.0079 0.8320
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10 log-periodograms of phoneme AA 10 Log-periodograms of phoneme A0

Figure 3.7: Log-periodograms of phonemes AA, AO, SH, IY and DCL.
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3.8 Conclusions

We have introduced a new association coefficient to measure dependence between functions
when a bivariate sample of functional data is considered. Specifically, a natural extension of
the usual Spearman coefficient is provided by ranking the functions using two kinds of ordering
for the curves: the Inferior Length and the Superior Length. These orderings among curves
allowed us to adapt the definition of grade examined in Nelsen [41] but for the functional
context and so, Spearman’s coefficient can be defined as usual is, the Pearson correlation
among grades. We have also proved that Spearman’s coefficient has a good theoretical and
practical properties. The simulation study and real examples provided in the chapter show

the good performance of the Spearman coefficient as well as its robustness.

We have also introduced a bootstrap independence test to assess the significance of the
association between two groups of curves. Tests of this type also allow us to quantify the
statistical significance of some conjectures made on the basis of exploratory analysis. We

have illustrated with simulated data the power of this test.

We focused in this chapter on an univariate dependence measure, but it could be of interest
to explore other possible options such as a functional dependence measure as an alternative to
the functional correlation introduced in Ramsay and Silverman [45]. In addition, note how all
the univariate dependence measures are linked to a curves ordering. Thus, other pre-orders
for curves can provide alternative dependence measures that can be useful for visualizing

association in data sets.
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Correlation median for functions

4.1 Introduction

Coeflicients already studied in this dissertation refer to a univariate measure that reflects the
degree of dependence between two sets of curves in terms of a unique number. In this chapter
we introduce a new functional correlation coefficient that yields a representative curve of
dependence between two sets of functional data. This functional coefficient is analogous the
cross-correlation studied in Ramsay and Silverman [45], which consists basically of calculating
Pearson’s coefficient between the values of the functions in the two groups for each ¢t € I.
Accordingly, the cross-correlation does not consider the functional essence of the observations,
since the method relies on the calculation of the classic Pearson coefficient for bivariate data.
Furthermore, the cross-correlation is defined through the mean and variance of the data,
which leads to a procedure more sensitive to the presence of outliers, as in the bivariate
case. To avoid this drawback, we extend the concepts of median absolute deviation from the
median (M AD) and comedian to the functional context using the idea of depth. These two
alternatives, studied in Falk [19], are more robust than standard deviation and covariance.
In terms of M AD and comedian, we define the correlation median for functions, which is a

functional correlation coefficient that is more robust than the cross-correlation function.

The comedian and MAD are constructed using the median of the data instead of the
mean of the data. In functional data we have some alternatives for calculating the median of
a set of curves; most of them are based on the concept of depth (see Fraiman and Muniz [24],
Cuevas et al.[8], Lépez-Pintado and Romo [38]). Depth provides center-outward ordering of
the data, where the median is considered as the deepest curve. To define the comedian and
MAD for functions, we use the concept of depth studied in Lépez-Pintado and Romo [38],
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who consider that a function is deep if it is contained in many bands among all the bands
that can be formed with functions of the sample; therefore, the median is the curve from
the sample with highest depth value, i.e, the curve contained in the largest number of bands.
Nevertheless, any other measure of depth can be used to define the functional median. The

definitions provided in this chapter can be used with any functional depth measure. (Fraiman
and Muniz [24], Cuevas et al.[8]).

This chapter is organized as follows. In Section 4.2, we consider the background and
preliminary aspects necessary to introduce our coefficient. Section 4.3 presents the definitions
of M AD and comedian for functional data. Correlation median for functions and its properties
are defined in Section 4.4. A simulation study is carried out in Section 4.5 where we also carry
out a sensitivity study of the coefficient. The robustness of the coefficient is analyzed in Section
4.6. In Section 4.7, real data examples are discussed, showing how the correlation median for

functions performs. Finally, in Section 4.8 we summarize the main conclusions of this chapter.

4.2 Preliminaries

In functional data analysis it is possible to measure the dependence between two sets of
curves through the cross-covariance and cross-correlation functions, discussed in Ramsay and
Silverman [45] (p.24). This methodology has already been introduced in Chapter 1, but we
will recall the principal definitions.

Assume n pairs of curves (z;,y;), for ¢ = 1,...,n which are defined on the same interval

I = [a,b]. Then the cross-covariance function is given by
mn
COVxy(t1,t2) = (n— 1)™1 > {mi(t1) — F(t1) Hui(t2) — T(t2)} (4.2.1)
i=1
where T = n~ 1Y " | z;(t) and ¥ = n~ 1Y " | y;(t). Therefore, the cross-correlation function
is:
COVxy (tl, tg)
\/ VAR (t1) VARy (t2)

CORRyy (t1, 1) = (4.2.2)

where VARx () = (n — 1)"1 2™, (2:(2) — Z(t))2.

The aim of this chapter is to introduce a more robust technique which is more related
to functional data to measure the dependence between two sets of curves by extending the
concepts of median absolute deviation (M AD) and comedian, discussed in Falk [19], to the
functional setting. Recall that (M AD) is defined as

MAD(X) = med(| X — med(X) |), (4.2.3)

where med(-) is the median of the data and is a robust alternative to standard deviation.

The M AD exhibits interesting advantages over other scale measures, such as, for example,
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a breakdown point of 50% and an bounded influence function. Rousseeuw and Croux [46],
proposed two scale estimators, which may be competitive with the M AD since they present

similar properties. The first one is defined by
Sp = c med;{med; | z; — z; |}, (4.2.4)

where ¢ is a constant of consistency. The estimator S, can be seen as an analog of Gini’s

average difference when replacing averages by medians. The second estimator is

Qn=2d{| zi —z; |1 i < j}w), (4.2.5)

where d is a constant factor and k = ( 5 ) ~ ( 3 )/4, where h = [n/2] + 1 and n is the sample
size. The estimator @), takes the kth order statistic of the ( 5 ) interpoint distances.

Both estimators possess a breakdown point of 50%, but unlike M AD and S,,, the estimator
Q. possesses a smooth influence function. In addition, S,, and @, do not presuppose a
symmetric model distribution as does M AD. The biggest difference among these concepts
consists in their Gaussian efficiency, which is 37% for M AD, 58% for S, and 82% for Q. In
this work, we extend these concepts to the functional case. However, we focus on the MAD
in order to define a correlation coefficient between two sets of curves. A similar analysis can

be carried out considering the functional version of S, and Q).

Based on the concept of M AD, Falk [19] proposed the comedian COM (X,Y') as a robust

alternative to the covariance between random variables. That is,
COM(X,Y) = med((X — med(X))(Y — med(Y))). (4.2.6)

Some features and properties of the comedian can be seen in Chapter 1, Section 1.1. Thus,
considering these two concepts, M AD and comedian, Falk [19] introduced the correlation
median as:

COM(X,Y)

§(X,Y) = MADX)MADT)' (4.2.7)

We will adapt this measure to introduce a robust version of the Pearson coefficient for two
groups of curves. In order to do this, in the next section we extend the concepts of M AD and
comedian to functions. Note that both MAD(X) and COM(X,Y’) from expressions (4.2.3)
and (4.2.6), need the median of the data. Hence, to introduce these concepts for a bivariate
functional sample, we need a definition of median for functions. For this purpose, we use the
definition of median for functional data based on the depth function studied in Lopez-Pintado
and Romo [38], (see Chapter 1, Section 1.3).

4.3 MAD and comedian for functions

In this section we define the concepts of M AD and comedian for sets of curves in order to

introduce a measure of dependence between two sets of functions. In the next section, we
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start by defining the functional version for the M AD and the two alternatives proposed in
Rousseeuw and Croux [46] for the M AD, S,, and @, to compare its performance. We will also
define the comedian for functional data analyzing its properties and present some comparative

examples with the cross-covariance function.

4.3.1 Functional MAD

The first step to extend this concept to functional data is to calculate the median of a set
of curves. There are several ways to calculate the median in a set curves in the literature.
The majority of these procedures are based on depth concept. The depth notion comes from
the multivariate analysis aforementioned in Chapter 1, Section 1.3. For example, Fraiman
and Muniz [24] have obtained the functional median as the curve that maximizes the average
of the one-dimensional depths in each point of the interval I where the curves are defined.
The functional depth allows us to rank the functions from the deepest (functional median)
to the farthest (outer surface). To calculate the functional median in this chapter, we use
the concept of generalized band depth studied in Lépez-Pintado and Romo [38] which we

summarize briefly.

For any function z in z, 22, ..., 2z, let

4j(z) = Az 21,) = {te I: min 2n(t) <o(t) < max mr(t}}, i,

r=iy,...i; r=iy,...1;

be the set of points in the interval I where the function z is inside the band given by the

observations i, i, . . . , i;, then

-1
GS'E(&?) = ( n ) Z /\T(A(m;milaméza-"1$€j))1 .:"2 21
J

1<i1<ig<..i;<n
where ) is the Lebesgue measure in R, and A, = A(4;(z))/A(I) will be the proportion of time
that x is inside the band. Therefore, the generalized band depth (GBD) of z is given by

J
GSni(@) =)  GSY(a), j>2.
j=2
If X1,Xs,...,Xn are independent copies of the stochastic process X (t), the population
version of GL‘S}&;I (z) and GSp, j(x) are given by

GSY(z) = EA(A(z; X1, Xo,...,X;)), j>2, and
J J
GSj(z) = ZGSU(;B) = ZE/\T(A(:B; X1,Xs,...,X5)), 7>2, respectively. (4.3.1)
j=2

j=2
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We will use the equation 4.3.1 with J = 2 to calculate the deepest function, which will be
the functional median.

X(t) = med(X(t)) = arg max GSj(z; X1, Xs,...,Xp). (4.3.2)
zeC(I)

Once the functional median is defined, we can extend the concept of M AD to functions.

Definition 4.3.1 (Functional MAD.) Let X1,..., Xy, be independent copies of the stochas-
tic process X (t), then

MAD(X(t)) = med|X; — X (t)|.

Where X (t) is as in (4.3.2).

As in the univariate case, the functional M AD is less sensitive than the standard deviation
function to extreme functional observations, since functional M AD is defined through the
median of the data and does not depend on calculating sums of transformations of the data,

as in the case of standard deviation function.

Now, we also extend the concepts of S, and @y proposed by Rousseeuw and Croux [46]
to the functional field. This is of interest since these concepts are two alternatives to M AD
that possess important properties, already mentioned in the Section 4.2, especially regarding

Gaussian efficiency.

Definition 4.3.2 (S, and @y, for functions.) Let Xi,..., X, be independent copies of the
stochastic process X (t). Then Sp(X(t)) and Qn(X(t)) are:
Sn = medi{med; | X; — X |}.
Qnﬂ X; — Xj |: 1< j}(k)

Where k = ( 5 ) = ( 3 )/4, with h = [n/2]+ 1. Observe that we do not include the constants

of consistency since we do not define them as estimators of the standard deviation.

Figure 4.1 shows the curves that represent the M AD, Sy, Qn and the standard deviation
for four different groups of curves. In this thesis we will use the functional M AD as the scale

measure for defining a new correlation coefficient for functions.

4.3.2 Functional comedian.

Following Falk [19], we define the comedian for functions based on the functional MAD, to

measure dependence between two groups of curves.
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Figure 4.1: S,,, Qn, M AD and standard deviation for functional data.

Definition 4.3.3 (Functional comedian.) Let (X1,Y1),...,(Xn,Yn) be independent
copies of the bivariate stochastic process (X (t),Y (t)). The functional comedian is:

COM(X(t),Y (1)) = med{(X; — X(t))(Y; — Y (£))}.

where X (t) and Y (t) are the functional medians of X (t) and Y (t), respectively.

Recall that the functional median can be calculated in different ways depending on the defi-
nition of depth used; for our purposes, we use the generalized band depth. Figure 4.2 shows
the curves of covariance and comedian for three different bivariate samples. They come from
processes that are generated from X (t) = f1(¢,Z1) and Y (t) = fa(t, Z2), where (Z1, Z3) rep-
resents the random part of the processes. In this chapter the data will be simulated in the

same way as in Chapters 2 and 3.

e The first sample has been generated from processes X () = (t+21)>+ (t+21)2+3(t+2,),
Y(t) = (t + Z3)? + (7/8)(t + Z3) — 10 and o015 = 0.8.

e The second from processes X (t) = sin(t + Z,), Y (t) = cos(t + Z3) and 015 = —0.7.

e The last one from X (t) = exp(t? + Z1), Y (t) = (t + Z2)? — 8t + Z3 and 712 = 0.9.

We can see that the curves are similar. However, the scale of the covariance curve is larger
than the scale of the comedian curve. This is due to the fact that the functional comedian
is defined through the median, which comes from the groups of curves, while the covariance

function is defined through the mean, and therefore it is an average of the curves.

The functional comedian meets some important properties:
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Figure 4.2: Functional covariance and functional comedian.

runctional covarimncs
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1. if Y(t) 2= aX(t) + b then COM (X (t),Y (t)) = aM AD(X(t))?, for some a,b € R.
2. COM(X(t),aY (t) + b) = aCOM (X (t),Y (¢)).

3. COM(X(t),Y (t)) = COM(Y (t), X (t)).

Property 1.
Proof.

COM(X(t),Y (t)) = COM(X (t),aX(t) +b)
= med[(X (t) — med(X (t)))(aX(t) + b — med(aX (t) + b))]
= med[(X (t) — med(X (t)))(aX(t) + b — amed(X(t)) — b)]
— med|(X () — med(X (£))(a(X (£) — med(X(6))))]
= amed| X (t) — med(X (t))|?

— aM AD(X (t))%.
O
Property 2.
Proof.
COM (X (t),aY (t) + b) = med[(X (t) — med(X(t)))(aY (t) + b — med(aY (t) + b))]
= med[(X (t) — med(X(t)))(aY (t) + b — amed(Y (t)) — b)]
— med|(X (£) — med(X(£)))(a(Y (£) — med(Y ())))
— amed|(X(t) — med(X())(Y (t) — med(Y ()]
=aCOM (X (t),Y (t)).
O

Property 3 it is straightforward.

We have already defined the M AD and comedian for functions as two alternatives to
the standard deviation function and the cross-covariance function. Now, we will define a

correlation coeflicient for functions based on these new measures.

4.4 Correlation median for functions

The aim of this chapter is to provide a more robust alternative to the cross-correlation function
studied in Ramsay and Silverman [45]. We focus from now on ¢; = t» and, we will call the

cross-correlation function in ¢; = t3 as the correlation function. In the previous section,

we extended the concepts of comedian (COM) and M AD to the functional field. Therefore,
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the correlation median defined in Falk [19] can be also extended to functions using the above

concepts.

Definition 4.4.1 (Correlation median for functions.) Let (X1,Y7),...,(X,,Ys) be in-
dependent copies of the bivariate stochastic process (X (t),Y (t)). We define the correlation
median for functions as follows:

. _ COM(X(1),Y()  med{(X; — X(£))(¥; — Y (£))}
(XY ) = DX )MADY @)~ medX, — X (D)medlY; —Y(0)]

where X (t) and Y (t) are the median of X (t) and Y (t).

Figure 4.3 shows the correlation function and correlation median for functions for three

pairs of groups of curves generated from processes previously defined in Subsection 4.3.2.

Correlation function Functional correlation median
1

1
o.m //__________————
o8 4
0.4

Correlation function Functional correlation median
1

1

a.sf 5. ]

a.s| 0.8 E

a.a| 0.4 E

a.zf 0.2 ]
af ° ]

a.z| -o.2 E

a4 0.4

9.8 &

Correlation function Funtional correlation median
1

Figure 4.3: Correlation function and correlation median for functions

for different pairs of groups of curves.
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In some cases, the absolute value of the correlation median for functions can also be larger
than 1, as in the case of bivariate data. In such cases, it is quite difficult to interpret the
results; therefore we propose an alternative correlation median for functions, obtained by
dividing the coefficient over the maximum between its maximum and minimum values i.e,

S(X(1),Y(®)
max{| maxier §(X(2), Y ()], | miner §(X (2), Y (£)I}

The curve that represents the correlation median for functions will be in the interval [—1,1],

S(X(2),Y (t) = (4.4.1)

which makes it simpler to interpret. This coefficient can be useful when we need a graphic

way of representing the dependence between two sets of curves.

4.4.1 Properties

As was mentioned in Chapter 1, Section 1.1, the correlation median meets two important
properties. We prove these two properties for functions and other that can be inferred from

being a correlation coefficient.
1. 6(X(t),Y(t)) =0(Y(t),X(t)). (Symmetry).
2. —1<6(X(¢),Y(t) <1

5(X(t),Y(t), ac>0;

3. 8(aX(t) +b,cY (t) +d) = { —5(X(8),Y (t), ac<O0.

1, a >0

4. 5(X(t),aX(t)+b):{ —1, a<0.

To prove the above properties, we will need the following two results.

Lemma 4.4.2 Let X1, Xs,..., X, be independent copies of the stochastic process X (t) with
observations x1,%2,...,%n. Then,

GSy(|zfP, [ X1 [P, [Xaf?, ..., [Xn|P) = GS(|z], [ Xal, [ Xal, ..., | Xal); p2>1,
where GSj(x; X1, Xa,...,Xy) be the functional depth of the curve x as in 4.3.1.

Proof.

Observe

Al f?; (X P, [ Xaal?, . [Xy) = St € T min [an(@)f < 2@ < max |:cr(t)|i°}

=11,.00515 =11 500015
=11 4ueny 1aeensly

tel: min lan (0] < o] < max, ()]}

T=11,...,05 =11,5..0515

{

~{eer: [, 1o <P <[ mox, 2017
{
A

(J=], | Xal, | Xazl, .. ., | Xi]).
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Therefore, it can be easily seen that,

J
EXNA(|z], | Xa P, | Xaal?, - . ., | Xis ]
GSy(|zP; | Xa [P, | X2l ..., | XafP) =) [A(=(?, | ﬂl/\[lf] 2| [ X 7)1
=2
J
_ Z EXA(|zl, | Xa |, [ X, . .., [ Xi5])]
= GSJ(|$|1 |X1|1 |X2|1 sy |Xn|)
O
Proposition 4.4.3
[med| X (t)[]P = med| X (t)[P,; p>1.
Proof.
med(X(t)) = argeec(ry max GSy(|z|; | X1|,|X2l,...,|Xn|)
1
= {argprcc(ry max GS;(|zf; | X1, | Xal, ..., [Xn])}?

= {argprec(ry max GSy(|z[?; | Xa P, | XafP, . . ., |Xn|p)};_’ (see Lemma 4.4.2).
which implies that

{argecory max GSy(|z|; [ X1, [ Xz, - - -, [ Xa])}?
= arggreco(r) max|GSy (|zfP; | Xa P, [XalP, ..., | XalP)]
[med| X (¢)|]P = med| X (t)P.

O
Now, we will prove the properties stated previously. The proof of property 1 is straightforward.
Property 2.
Proof.

max{| max §(X (), Y ()], | min §(X (2), Y (£))|} > | min §(X (2),Y (2))]
> —min§(X(t),Y(t)) > —6(X(t),Y (t)) then,
— max{| max §(X (), Y (¢))|, | min §(X (2), Y (£))[} < 6(X(2), Y (1)),

and then

< bY@ |
= max{| maxd(X (), Y (1))], | min d(X (2), Y ()]}
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Observe now that

— max{| max §(X (¢), Y (¢))|, | min (X (), Y (£))|} < | max §(X(t),Y (t))|
< max{| max §(X (), Y (¢))|, | min §(X (t), Y (¢))[}-

Hence,
Xy |
max{| max 6(X (¢),Y (¢))[, | min6(X(2),Y (¢))[}
Property 3.
Proof.

COM (aX (t) + b,cY (t) + d)
MAD(aX(t) + b)) M AD(cY (t) +d)
_ med{[aX(t) +b—med(aX(t) + b)][cY (t) +d — med(cY (?) + d)]}
~ med|aX (t) +b— med(aX(t) + b)|med|cY (t) + d — med(cY (t) +d)|’
med{[aX (t) + b — amed(X (t)) — b][cY (t) + d — cmed(Y (t)) — d|}
med|aX (t) + b — amed(X (t)) — blmed|cY (t) + d — cmed(Y (t)) — d|’
ac med{[X (t) — med(X (t))][Y (t) — med(Y (t))]}
|ac| med| X (t) — med(X (t))|med|Y (t) — med(Y (t))|’
B ac COM (X(t),Y (1))
 |ac| MAD(X(t))MAD(Y (t))

MS@@Jﬁnz{

6(aX (t) 4+ b,cY (t) +d) =

0(X(t),Y (), ac>0,
—§(X(t),Y (t)), ac<DO.

" Jad
Therefore,

5(aX (t) +b,cY (t) + d)

8(aX (t) +b,cY (t) +d) = max{| max §(X (£),Y (¢))|, | min §(X (), Y (t))[}

If ac > 0, obviously d(aX(t) + b,cY (t) + d) = 6(X (), Y (t)). Now, if ac < 0,

_ hxmye)
max{ [ max —3(X(2), Y O)], [ min —5(X (1), Y ()]}
_ —b(X(1), Y ()

d(aX(t) +b,cY (t)+d) =

max{| — mind(X(2), Y (1))], | — max3(X (1), Y ()]}
_ —H(X(2),Y (%))

maxc{| max $(X (¢), Y (1)), | min 3(X (1), Y (1))}
— —5(X(0),Y (1)).

Property 4.
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Proof.
: COM (X (t),aX (t) +b) aM AD(X(t))?
We have 4(X(t),aX(t) +b) :MAD(X(t))MAD(aX(t) ) = [a[MAD2(X (1))
_ aMAD?*(X () .
= GIMAD? (X ()’ from Proposition 4.4.3

_a 1, a>0;
~a] ] —1, a<o.

5(X(t),aX(t) +b)
max{| max;er 6(X (t),aX (t) + b)|, | minger (X (t),aX (t) +b)|}

Therefore,

(X (¢t),aX(t) +b) =

If ac > 0, obviously §(X (t),aX(t) + b) = 1. Now, if ac < 0 then §(X(t),aX () +b) =—1. O

4.5 Simulation study

In this section we carry out a simulation study in order to show how the correlation median
for functions works and compare it with the correlation function previously considered. We
also simulate cases where a process is an affine transformation of another process and the case
where the processes are independent. Specifically, we simulate 50 realizations from different
processes X (t) = fi(t,Z1) and Y (t) = fa(t, Z2), where (Z1,Z3) represents the random part
of the processes. We assume (Z1, Z3) to be a normal bivariate with correlation o5 and for
each pair (fi, f2) we use a different correlation oq5. Also, we have discretized each curve with
50 points, taken 100 replications of each sample, and calculated the correlation median for
functions and correlation function for each of them. Functional data were generated from the

following bivariate processes:

o X(t) = (t+21)3+(t+2))2+3(t+2Zy), Y(t) = (t+Z3)%4(7/8)(t+Z3) —10, 015 = 0.8.
o X(t) =sin(t+ Z1), Y(t) = cos(t + Zs), 012 = —0.7.

o X(t) =exp(t> + Z1), Y(t) = (t + Z2)? — 8t + Z3, 012 = 0.9.

o X(t)=(t+2Z1)2+3, Y(t) = (t+ Z2)%, 012 = 0.5.

o X(t)=25(t+ Z1)%, Y (t) =30t32(1 —t) + Zs, 012 = —0.4.

o X(t)=4(t+2Z,)?% Y(t) = (t+Z3)3 o15=0.1.

o X(t)=4(t+2Z)? Y(t) = (t+Z5)3, o5 =—-08.

Figure 4.4 shows the curves that represent the mean and deviation of the correlation

function and the correlation median for the 100 replications of each process. We can see that
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Figure 4.4: The left panel gives correlation median for functions

and the right panel contains correlation function.
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the difference among the curves is obvious due to the use of the median instead of the mean,
and the use of MAD instead of standard deviation. We think that the correlation median
for functions makes use of more information from the data set than the correlation function,
which is more focused on observing data point to point avoiding the functional structure of
the data.

xf‘F"ZFt*z’;lz and Y(t)=5X(t)+1 X(t)=exp (t+Z1) and Y(t)=(t+Z2)2+5 (£+22)+2
X(£)=3t+Z1 and Y(t)=2X(t)-3 X(t)=3t+Z1l and Y(t)=(t+%2)°>
X (t) =exp (£+Z1) and Y(t)=-3X(t) X(t)=2(t+Z1)? and Y (t)=(t+z2)2-5

P

[

Figure 4.5: Affine transformations. Right: independent processes.

Figure 4.5 shows the correlation median for functions related to processes where one is an
affine transformation of another and when the processes are independent. We can see that for
affine transformations the correlation median for functions is equal to one, and for the case
where the processes are independent, it is equal to zero. Figure 4.6 shows that Property 5

does not hold for other types of transformations.

Now, we analyze the sensitivity of § with respect to the sample size n and with respect to d,
the number of points taken to discretize the functions, in order to determine the steadiness of
our coefficient. We will use the following pair of stochastic processes X (t) = 4(t+2;)2, Y (t) =
(t+ Z5)3, 019 = —0.8. We have used n = 25, 50, 100, 150 with d = 50. Figure 4.7 shows that

the changes in the curves that represent the correlation median for functions are very small and
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X(t)=2(6+21)° and Y(6) ' (t) X(t)=(6432)” and Y(8)<E(t) o K(t)3t11 and YO (1)

Figure 4.6: Other transformations.

5 is stable with respect to the sample size. Now, fix n = 50, and consider d = 25, 50, 100, 150
points. Figure 4.8 illustrates the sensitivity with respect to d. It is noteworthy that the
coefficients present good stability with respect to the number of points taken to discretize the
functions. We point out that we have carried out the sensitivity analysis with other models,

and the conclusions are the same for the model reported.

, BB BB

B b b B

RS

Figure 4.7: Sensitivity to sample size.

\,

In the next section we provide a robustness study to analyze how outliers affect our

coeflicient.

4.6 Robustness

As stated earlier, our aim is to propose a more robust coefficient of correlation than the cross-
correlation function in Ramsay and Silverman [45]. Therefore, in this section we study the

robustness of our coefficient and compare it with that of the correlation function. We have
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Figure 4.8: Sensitivity to the number of points in the discretization.

simulated 100 curves and taken 50 points to discretize each curve of the following processes:

1. X(t) =exp(t+2Zy), Y(t) = (t + Zo)> + (t + Z2)2 + 3(t + Z3), 012 = 0.6

2. X(t) = sin(t+ Z1), Y(t) = cos(t+ Z3), o013 =—-0.7

3. X(t) =exp(t® + Zy1), Y(t) = (t+Z3)? — 8t + Zy, 015 =09

To contaminate the samples, we have used three different types of outliers: shape outliers,
magnitude outliers and shape-magnitude outliers; the structure of these outliers was summa-
rized in Chapters 2, Section 2.4. We introduce the outliers only in the group of curves that

comes from X () in a progressive way starting with one, three and five of each.

Figure 4.9 shows the variation of the coefficients when shape outliers are introduced. Each
measure is calculated before contaminating the data (row 1). The following rows contain the
variation of the curves after being contaminated with one, three and five shape outliers,
respectively. We can observe that neither the representative curve of correlation function
nor the representative curve for correlation median for functions, present significant variation
when different numbers of shape outliers are introduced. Note that in Figure 4.10, the curves
show changes when we introduce magnitude outliers, and these variations are more significant
in the case of the correlation function than in the case of the correlation median for functions.
Finally, when we consider shape-magnitude outliers, the variation for both curves is similar to
the variation for magnitude outliers, since shape-magnitude outliers are a mix between shape

outliers and magnitude outliers, as can be seen in Figure 4.11.
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Figure 4.10: Magnitude outliers 1, 3, 5.
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4.7 Real Data

We consider four real data sets to assess our procedure and compare it with the correlation
function. The first one is composed of monthly temperature and precipitation in 35 Cana-
dian weather stations (see Ramsay and Silverman[45]). We have 12 points per curve i.e., the
temperature and precipitation each month. In this example we calculate the curves (corre-
lation function and correlation median for functions) that represent the dependence between
temperature and precipitation during the year. The second data set, studied in Leurgans et
al.[33], consists of the angular rotations in the sagittal plane of the hip and knee of 39 normal
5-year-old children. The observations are taken over a gait cycle consisting of one double step
taken by each child, and time is measured in terms of the cycle. In all cases the cycle has
been discretized (mathematically) to a regular grid of 20 points. In this case we can study
the change of the dependence between angular rotations of the hip and knee through the gait
cycle. The third data set corresponds to 33 companies belonging to the IBEX35. For each
company we have taken a set of 108 functional observations, each one of them representing
one day (108 days) in which the price of the asset has been measured every 5 minutes, from
9:05 until 17:40 (104 points per curve); these data were used in Chapter 2 to calculate the
Kendall’s 7 coefficient for functions. We analyze some pairs of companies in order to study
the relationship between the prices in that time period. The last data set corresponds to a
micro-array time series. These data characterize the response of a human T-cell line (Jirkat)
to treatment with PMA and ioconomin. The data consist of 58 genes measured across 10 time
points with 44 replications. Opgen-Rhein and Strimmer [42] used this data set to calculate
the dynamical correlation between functional data in order to construct genetic networks. We
calculate the curve of correlation median for functions between some pairs of genes and we

look for possible associated genes.

Correlation function Functional correlation median

T~

Figure 4.12: Correlation function and correlation median for functions

for monthly temperature and precipitation.

Figure 4.12 presents the curves that give the correlation function and correlation median
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for functions for the data of temperature and precipitation. The correlation function shows
high dependence between the temperature and precipitation in the winter and a very low
dependence during the rest of the year. The correlation median for functions identifies addi-
tional relationships, for example, high dependence in midwinter and early fall, and very low
dependence in spring and summer. In the data gait cycle (Figure 4.13), we see that the curve
of correlation median for functions presents peaks around important values of the cycle (5, 10
and 15), while the correlation function is a smoother curve and does not show abrupt changes
in the dependence between the angular rotations of the hip and knee. The curve of correlation
function for the data of the companies (see Figure 4.14) oscillates around the same value in
all cases, while the correlation median for functions presents high variability. This fact shows
us how the relationships between the asset prices vary throughout the day. Finally, in Figure
4.15 we can see the different behavior of the curves that represent the association between

genes.

Correlation function Functional correlation median

Figure 4.13: Correlation function and correlation median

for hip and knee.
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Correlation function Functional correlation median Correlation function Functional correlation madian

Correlation function Functional correlation median functiom modian
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Figure 4.14: Correlation function and correlation median for functions for assets.
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Figure 4.15: Correlation function and correlation median for functions for genes.
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4.8 Conclusions

We have introduced a new correlation coefficient for functions providing a representative curve
of dependence between two sets of curves. This coefficient is based on the cross-correlation
function studied in Ramsay and Silverman [45], which is the classic Pearson coefficient between
the values of the curves in different moments of time. To carry out this task, we extend the
concepts of comedian and M AD analyzed in Falk [19] to the functional field. Since these
concepts are based on the median of the data set, we considered the definition of median
for functional data proposed in Lépez-Pintado and Romo [38]. These new notions satisfy
the usual properties, and appear to be more robust than other standard measures. The
robustness of the new coefficient is illustrated with a simulation study. We present several
simulated and real examples in order to show how the correlation median for functions works
and compare the results obtained with the correlation function. We also study the sensitivity
of our coefficient and conclude that it is stable with respect to sample size and to the number

of points taken to discretize the functions.

A difficulty that we find is that in some cases the absolute value of the correlation median
for functions can be larger than 1. Given that in such cases it is quite difficult to interpret
the results, we propose an alternative by dividing the coefficient over the maximum between
its maximum and minimum values. However, it would be interesting to look for alternatives
that are related to the nature of the data. Another interesting question would be to study
other measures of depth to calculate the functional median, and analyze which of them is

more appropriate in terms of robustness to calculate correlation median for functions.
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CHAPTER D

Conclusions and main contributions

This chapter summarizes the main contributions of the thesis. We have developed new ways
of measuring dependence in a bivariate sample of curves, inspired in some classic measures of
dependence that are commonly used in bivariate data analysis. Basically, we have extended
to the functional field the versions of three well-known coefficients for measuring dependence.
They are Kendall and Spearman coeflicients and a robust version of the Pearson correlation
coefficient. Given a bivariate sample of functional data, the methodology implemented with
the first two coefficients provides a single value that represents the degree of relationship
between the sets of curves, while another provides a curve which will characterize the depen-
dence on the whole interval where the two sets of curves are defined. Each of the contributions
introduced in this dissertation are novel, and below we present the principal aspects developed

in each chapter.

e Firstly, in Chapter 2, a functional version of Kendall’s coefficient has been introduced
which allows us to identify if there is some kind of dependence between two sets of
curves. In the construction of this coefficient we have presented an alternative version
of the concordance concept for two pairs of functions. Also, we define suitable orders

for sorting functions. We highlight some relevant aspects of this new coefficient.

i. The functional 7 developed allows us to identify the global dependency between two
groups of functional data, regardless of the shape of their paths.

ii. We have taken into account some results of the functional analysis that have allowed
us to see this new coefficient as a UB—statistics. Therefore, we have been able
to provide some asymptotical results of the statistics considered for the sample

version. This new way of measuring dependence between sets of functions satisfies
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some classic properties that a dependence measure should fulfil; these properties

have been proved.

iii. We show with simulated data that the functional 7 works well in a set of curves
where they are constructed with known dependence, even in the cases where the
simulated data have been contaminated with different types of outliers. Also,
two interesting examples with real data are studied. The first one corresponds
to 33 companies belonging to the IBEX35; the functional 7 allows us to obtain
information about companies having similar behavior over time. The second data
set corresponds to a micro-array time series from a human T-cell experiment. In
this case, we obtain the partial functional 7 for each pair of genes and a gene

network can be constructed as an alternative to the ones existing in the literature.

e Secondly, in Chapter 3, we have developed a functional version of a rank correlation
coefficient. Basically, this contribution is the extension of Spearman’s coefficient in the
functional context. As is well known, this measure in the bivariate context is defined
by the Pearson coefficient among the rank of the data. Hence, in order to generalize
it to functional data, we have introduced one way of assigning ranks to each one of
the functions, which are based on some orderings for functions already studied in the
literature. However, a main contribution here is the implementation of these orderings
to the population case, allowing the assignation of grades to the stochastic processes
where the curves come from. Therefore, a population version of the Spearman coefficient
for stochastic processes is also introduced. The main results of this chapter are listed

below.

i. We provided a natural extension of the Spearman coefficient, which summarizes in
one single-value the dependence between two sets of functions. It works in a way
similar to the usual bivariate case, i.e., it calculates the Pearson coefficient between
the ranks of the functions, which are obtained through two kinds of ordering for
functions introduced in Lépez-Pintado and Romo [39).

ii. In Nelsen [41] the grades for random variables are defined. In this chapter we adapt
the definition of those grades for stochastic processes. The new grades allowed
us to introduce the population version of the Spearman coefficient for functions.
We also present the asymptotical results of this new coefficient as well as its main

properties.

iii. Another contribution of this chapter is the definition of an independence test which
is based on the bootstrap approach. It allows us to assess the significance of the
association between two groups of curves and to quantify the statistical significance
of some conjectures made on the basis of exploratory analysis. We have evaluated
the power of this new test with simulated and real data and good conclusions can

be drawn.



Conclusions and main contributions

e Both functional versions of Kendall and Spearman provide just a single value for sum-
marizing the dependence in two groups of curves. Although we have proved that they
satisfy good properties, we know that in many cases one single value can be poor for mea-
suring the dependence. Therefore, in Chapter 4, we tried to partially solve this problem
by introducing a new measure of dependence between functions whose response is also
a function. Our idea was inspired in a robust measure introduced in Falk [19] called

comedian. We enumerate the main results of this chapter.

i. We have introduced a correlation coeflicient for functions that provides a representa-
tive curve of dependence between two sets of curves. The aim in this chapter was
to introduce a robust alternative to the cross-correlation studied in Ramsay and
Silverman [45]. Therefore, to do so, we generalized previously to the functional
case some robust measures such as the M AD and the comedian, studied in Falk
[19], which were presented as robust alternatives for the standard deviation and

the covariance, respectively.

ii. Some properties that in Falk [19] are considered relevant for his robust versions also
are proved by us in the functional version introduced. An empirical study with
contaminated functional data showed that the correlation median for functions has

a more robust behavior than the correlation function.

iii. An advantage of using the correlation median for functions instead of the correlation
function is that, as we take the deepest curve of the product of all the curves
centered around the median, the shape of the correlation median for functions

curve represents the relation between the sets of curves better than the correlation

function.
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Future research lines

We now present some of the issues considered as future research lines and extensions of the

work presented in this thesis.

106

e The methodologies implemented in this thesis to measure the dependence between set

of curves were based mainly on some ordering definition for functions. However, those
orders used to give our definitions belong to the set of the pre-orders. In fact, there
are many other ways of sorting functions. Therefore, a research plan could be defining
different pre-orders, for example, taking into account the arc length of each curve as
well as its derivative. This would allow us to define new dependence measures where

the shape of the curve is going to be considered.

A difficulty that we found when introducing the correlation median for functions, was
that in some specific cases its absolute value can be larger than 1. These cases are not
easy to interpret and they are against statistical intuition of dependence. Hence, we
proposed a way of improving those situations. However, it would be interesting to look
for a kind of standardization appropriate for the correlation median for functions related
to the nature of the data.

Another interesting question to be investigated would be the behavior of other measures
of depth for calculating the deepest curve, i.e, the functional median and analyzing which

of them is more appropriate in terms of robustness.

We also consider it of interest in the future to analyze the results obtained with the
correlation median for functions when it is applied to a data set taken from different fields
of science, for example: genetics, medicine, biology, and so on. The curve that represents
the dependence could be a powerful tool to identify strong or weak relationships between
paths of genes, continuous treatment of some diseases and their respective long-term
evolution; or even the dependence through time of returns of firms belonging to different

financial markets.

Also of interest would be investigating more theoretical properties of the distributions of
the coefficients introduced in this thesis; in particular, finding their asymptotical distri-

butions for which a detailed study of U-statistics in Hilbert spaces would be necessary.

We have defined the Spearman coefficient for functions through a functional version of
grades. These grades can be seen as the population definition analogs of ranks. In this
thesis, we introduced a form of assigning the grade to each of curves of the sample,
and from the population point of view, we also gave an alternative for assigning grades
to stochastic processes. We propose using these new versions of grades for functions
in order to define a new measure that extends the Wilcoxon signed-rank test when
functional data are considered, allowing us to evaluate whether their population mean

ranks differ.
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