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RESUMEN

El objetivo principal de esta memoria es analizar en detalle tanto la construc-
ción de extensiones autoadjuntas del operador de Laplace-Beltrami definido sobre
una variedad Riemanniana compacta con frontera, como el papel que juegan las
formas cuadráticas a la hora de describirlas. Más aún, queremos enfatizar el papel
que juegan las formas cuadráticas a la hora de describir sistemas cuánticos.

Es bien conocido que −∆min, la extensión minimal del operador de Laplace-
Beltrami, es autoadjunta cuando la variedad Riemanniana no tiene frontera. Sin
embargo, cuando la variedad Riemanniana tiene frontera este operador es simétri-
co pero no autoadjunto. Esta situación es común en el el análisis de sistemas
cuánticos con frontera. Por ejemplo, el operador anterior describe la dinámica de
una partı́cula libre confinada a desplazarse por la variedad. El análisis de sistemas
cuánticos con frontera está recibiendo atención creciente por parte de la comuni-
dad ya que hay un gran número de situaciones fı́sicas en las que la frontera juega
un papel prominente. Por citar algunos ejemplos: el efecto Hall cuántico, los ais-
lantes topológicos, el efecto Casimir, los grafos cuánticos, etc. Otras situaciones
fı́sicas en las que la frontera juega un papel importante es en el diseño de mode-
los efectivos que describen las interacciones con impurezas o con interfases entre
materiales, véase [A+05] y las referencias allı́ citadas. Definir un operador auto-
adjunto en un sistema con frontera requiere que ciertas condiciones de contorno
sean especificadas. Resulta por lo tanto de gran importancia fijar las condiciones
de contorno apropiadas, ya que la dinámica de un sistema cuántico no queda bien
determinada hasta que se haya elegido un operador autoadjunto que la describa. La
importancia de los operadores autoadjuntos en Mecánica Cuántica radica en que,



x RESUMEN

de acuerdo con los postulados de la Mecánica Cuántica, son interpretados como
las magnitudes observables de los sistemas que describen. Su espectro se interpre-
ta como los posibles resultados de un proceso de medida. Más aún, el teorema de
Stone [Sto32] establece una correspondencia unı́voca entre grupos uniparamétri-
cos fuertemente continuos y operadores autoadjuntos. Por ello, los operadores au-
toadjuntos son los principales objetos que caracterizan la evolución unitaria de un
sistema cuántico. Vale la pena mencionar en este punto que aunque el espectro de
los operadores autoadjuntos constituya el conjunto de posibles resultados para un
proceso de medida, es la forma cuadrática asociada a ellos, 〈Φ , TΦ〉, siendo T el
operador autoadjunto, la que describe el valor esperado resultado de una medida
cuando el estado del sistema queda descrito por el vector de estado Φ . Las formas
cuadráticas pueden, por lo tanto, desempeñar el mismo papel que los operadores
autoadjuntos en la descripción de la Mecánica Cuántica.

La primera persona en darse cuenta de la diferencia entre operadores simétri-
cos y autoadjuntos fue J. von Neumann en la década de 1920, quien resolvió com-
pletamente la cuestión en el marco más abstracto posible. Desde entonces ha habi-
do varias revisiones, en distintos contextos, a la teorı́a de extensiones autoadjuntas.
Por ejemplo, G. Grubb [Gru68] en las décadas de 1960 y 1970 obtuvo caracteri-
zaciones en el contexto de las EDP’s. Por otro lado M.G. Krein [Kre47a, Kre47b]
y J.M. Berezanskii [Ber68], entre otros, obtuvieron caracterizaciones utilizando la
teorı́a de escalas de espacios de Hilbert. Más recientemente se ha venido desarro-
llando la teorı́a de “boundary triples”. Una revisión detallada de esta caracteriza-
ción es debida a J. Brüning, V. Geyler y K. Pankrashkin [BGP08], aunque varios
de los resultados son conocidos desde tiempo atrás [Vis63, Koc75, DM91, GG91].

La estrategia que vamos a seguir en esta memoria ocupa, en cierto sentido, el
espacio existente entre la caracterización propuesta por G. Grubb y la caracteriza-
ción en términos de “boundary triples”. En la primera se utiliza la estructura en la
frontera para caracterizar las extensiones autoadjuntas en términos de operadores
pseudo-diferenciales que actúan sobre los espacios de Sobolev de la frontera. Por
el contrario, la teorı́a de “boundary triples” substituye la estructura de la fronte-
ra por otra en términos de un espacio abstracto. Se demuestra entonces que las
extensiones autoadjuntas están en correspondencia unı́voca con el conjunto de
operadores unitarios que actúan sobre este espacio abstracto.

La estrategia presentada en esta memoria preserva la estructura de la fronte-
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ra al mismo tiempo que parametriza el conjunto de extensiones autoadjuntas en
términos de operadores unitarios. Es por lo tanto más cercana a la caracterización
conocida como “quasi-boundary triples” [BL07, BL12]. Sin embargo, la estrategia
aquı́ presentada, sigue un camino totalmente distinto a las caracterizaciones cita-
das anteriormente. En contraste con ellas, incluida la de von Neumann, donde el
operador adjunto se restringe a un conjunto en el que se demuestra con posteriori-
dad que es autoadjunto, nosotros vamos a utilizar las ideas y resultados introduci-
dos por K. Friedrichs [Fri34] y T. Kato [Kat95]. De acuerdo con ellas la extensión
autoadjunta es obtenida gracias a la caracterización de una forma cuadrática semi-
acotada que está asociada al operador simétrico. Más concretamente, las formas
cuadráticas semiacotadas están asociadas de manera unı́voca a un operador auto-
adjunto siempre que sean cerrables. La mayor dificultad radica pues en demostrar
que son cerrables. Al contrario de lo que ocurre con los operadores simétricos, que
siempre son cerrables. Sin embargo, los operadores simétricos tienen en general
infinitas extensiones autoadjuntas posibles. Desafortunadamente no hay ninguna
generalización conocida al caso de formas cuadráticas que no sean semiacotadas.
El ejemplo canónico de esta estrategia es la forma cuadrática Q(Φ) = ‖dΦ‖2 .
Cuando ésta se define sobre H1

0(Ω) , el operador autoadjunto asociado resulta ser
la extensión de Dirichlet del operador −∆min. Si se define sobre H1(Ω) , el ope-
rador autoadjunto asociado es la extensión de Neumann. Para obtener caracteriza-
ciones de las extensiones autoadjuntas del operador de Laplace-Beltrami vamos a
analizar la forma cuadrática

‖dΦ‖2 − 〈ϕ , ϕ̇〉∂Ω .

Esta forma cuadrática puede ser entendida como una perturbación singular de
la forma cuadrática de Neumann citada anteriormente. Sin embargo, los resulta-
dos que aparecen en [Kos99] sobre perturbaciones singulares cerrables de formas
cuadráticas no se pueden aplicar directamente a nuestro caso y otro enfoque es
necesario. Desgraciadamente, las extensiones que vamos a poder caracterizar no
incluyen todas las posibles, pero sı́ una vasta familia.

La caracterización que aquı́ se ha propuesto utiliza como caracterización prin-
cipal la siguiente ecuación de condiciones de contorno en la frontera

ϕ− iϕ̇ = U(ϕ+ iϕ̇) ,
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dondeU ∈ U(L2(Ω)) , y siendo Ω la variedad Riemanniana. Véase la Proposición
3.1.7. Las condiciones de contorno descritas por esta ecuación están en correspon-
dencia unı́voca con las extensiones autoadjuntas del operador de Laplace-Beltrami
sólo si la variedad Ω es de dimensión uno. Sin embargo, el hecho de que esté ı́nti-
mamente relacionada con la estructura de la frontera la convierte en un objeto
muy adecuado para estudiar las extensiones autoadjuntas del operador −∆min .
Los resultados expuestos en el Capı́tulo 3, el Capı́tulo 4 y el Capı́tulo 5 dan buena
cuenta de ello.

En el Capı́tulo 3 hemos demostrado cuáles son las suposiciones necesarias
para que la condición de contorno anterior determine una extensión autoadjunta y
semiacotada del operador de Laplace-Beltrami. Más aún, hemos añadido una se-
rie de ejemplos relevantes que verifican las anteriores condiciones. En particular,
el conjunto de condiciones de contorno de tipo periódico descrito en el Ejemplo
3.3.2 es apropiado para el análisis de cambios de topologı́a en la teorı́a cuántica,
véanse [AIM05, BBMS95, SWX12]. La caracterización de operadores unitarios
con “gap en -1”, véase la Definición 3.1.8, es equivalente a que el operador au-
toadjunto correspondiente sea semiacotado inferiormente. Como se demuestra en
el Ejemplo 3.3.5 y en el Ejemplo 3.3.8 estas extensiones autoadjuntas incluyen
las condiciones de contorno de tipo Robin. Ası́ que, como caso particular, hemos
demostrado que las condiciones de contorno de la forma

ϕ̇ = g · ϕ g ∈ C0(∂Ω) ,

dan lugar a extensiones semiacotadas del operador de Laplace-Beltrami.
Este tipo de condiciones de contorno aparece en el estudio de sistemas cuán-

ticos con frontera como los relacionados con los aislantes topológicos y con el
efecto Hall cuántico. De hecho, estas condiciones de contorno aparecen de ma-
nera natural en la interfase entre dos materiales cuando uno de ellos está en el
régimen superconductor. El hecho de que los operadores que describen la dinámi-
ca correspondiente sean semiacotados inferiormente es de gran importancia para
la consistencia de la teorı́a fı́sica que los describe. Más aún, es conocido que los
estados con las energı́as más bajas se hayan fuertemente localizados en la frontera.
El estado fundamental que se muestra en la parte derecha de la Figura 4.7 es un
ejemplo de esta localización. En investigaciones recientes llevadas a cabo junto
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con M. Asorey y A.P. Balachandran, [ABPP13], se demuestra que la existencia de
estos estados de frontera es un fenómeno común que ocurre no sólo para el Lapla-
ciano sino también para el operador de Dirac o para la generalización del operador
de Laplace a tensores de mayor orden, el operador de Laplace-de Rham, lo que
incluye el campo electromagnético. De hecho, los resultados del Capı́tulo 3 se
pueden extender a la situación general de fibrados Hermı́ticos, donde el operador
de Laplace-Beltrami es generalizado al operador conocido como Laplaciano de
Bochner. La obstrucción más grande para obtener esta generalización es encon-
trar un substituto adecuado para el operador radial R, véase la Definición 3.2.4
y la Proposición 3.2.5. Afortunadamente esta obstrucción puede ser solventada,
pero dejamos esta generalización para futuros trabajos. La estructura particular de
las condiciones de contorno antes mencionadas se usa en los siguientes capı́tulos
para demostrar una serie de resultados adicionales.

En el Capı́tulo 4 se propone un esquema numérico para aproximar el problema
espectral. En particular, se demuestra que la convergencia del esquema propuesto
está asegurada siempre y cuando se dé la condición de gap. Como muestra de la
factibilidad de dicho esquema numérico se propone una realización concreta del
mismo para el caso de dimensión uno. Los experimentos numéricos realizados con
ella muestran, entre otras cosas, que las tasas de convergencia se satisfacen. Vale la
pena mencionar que la convergencia del esquema propuesto se ha demostrado con
independencia de la dimensión. Por lo tanto, esta familia de algoritmos numéricos
se puede usar para aproximar las soluciones de los problemas en dimensión dos y
superiores. En particular, se puede aplicar al estudio de los cambios de topologı́a
y de los estados de frontera antes mencionados. La tarea de programar una versión
en dimensión dos del algoritmo propuesto en esta memoria ya está siendo llevada
a cabo junto a A. López Yela.

El Capı́tulo 5 está dedicado al análisis que juegan las invarianzas por simetrı́a
en la construcción de las diferentes extensiones autoadjuntas. Usando el marco
más abstracto posible, es decir, utilizando la caracterización de von Neumann de
extensiones autoadjuntas, hemos demostrado que el conjunto de extensiones auto-
adjuntas invariantes de un operador simétrico se haya en correspondencia unı́voca
con aquellas isometrı́as entre los espacios de deficiencia que se encuentran en el
conmutante de la representación unitaria del grupo de simetrı́a, véanse el Teorema
2.1.10 y el Teorema 5.1.6. Esto muestra que, aunque un operador simétrico sea in-
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variante bajo un grupo de simetrı́a, puede ocurrir que sus extensiones autoadjuntas
no lo sean. Consideremos un operador que se construye como el producto tensorial
de dos operadores simétricos. Es un error común asumir que todas las extensio-
nes autoadjuntas del operador producto se pueden obtener a través del producto
tensorial de las isometrı́as que definen las extensiones autoadjuntas de los facto-
res. El motivo de esto se entiende más fácilmente utilizando la caracterización en
términos de condiciones de contorno presentada en esta memoria. Consideremos
un operador simétrico definido en una variedad

Ω = Ω1 × Ω2 .

Entonces, las extensiones autoadjuntas vendrán parametrizadas utilizando el es-
pacio de Hilbert de funciones de cuadrado integrable definido sobre la frontera de
la variedad

∂Ω = ∂Ω1 × Ω2 t Ω1 × ∂Ω2 .

El error común consiste en considerar únicamente aquellas condiciones de con-
torno que se pueden definir sobre

∂Ω1 × ∂Ω2 .

Los resultados obtenidos en el Capı́tulo 5, principalmente el Teorema 5.1.6, el
Teorema 5.2.2 y el Teorema 5.2.3, proporcionan herramientas adecuadas para li-
diar con estas consideraciones. En particular, se trata con detalle la familia de
formas cuadráticas asociadas al operador de Laplace-Beltrami introducida en el
Capı́tulo 3 y demostramos que el conjunto de extensiones autoadjuntas compati-
bles con las transformaciones por simetrı́a de la variedad Riemanniana también
está relacionado con el conmutante de la representación unitaria del grupo. La
última sección del Capı́tulo 5 se dedica a la generalización del teorema de repre-
sentación de Kato, Teorema 2.2.4, al caso en el que las formas cuadráticas no son
semiacotadas. Para ello introducimos la noción de sector de la forma cuadráti-
ca, véase la Definición 5.5.4. Esta noción juega un papel análogo al concepto
de subespacios invariantes que aparece en el análisis de operadores autoadjuntos.
Hemos demostrado en el Teorema 5.5.6 que las formas cuadráticas cuyos sectores
sean simultáneamente cerrables y semiacotados son representables en términos
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de operadores autoadjuntos. Por lo tanto, hemos cimentado el camino hacia una
generalización del Teorema de representación de Kato para formas cuadráticas ge-
nuinamente no acotadas, es decir, no semiacotadas. Esta generalización continúa
siendo uno de los mayores problemas abiertos en el campo de formas cuadráticas.
El último paso para obtener dicha generalización serı́a identificar bajo qué cir-
cunstancias, las formas cuadráticas Hermı́ticas, poseen sectores semiacotados y
cerrables. En particular hemos demostrado a través del Ejemplo 5.5.9 que la con-
dición de gap, véase la Definición 3.1.8, no es condición necesaria para que la
clase de formas cuadráticas del Capı́tulo 3 conduzca a extensiones autoadjuntas
del operador de Laplace-Beltrami.





1
INTRODUCTION

The main objective of this dissertation is to analyse thoroughly the construc-
tion of self-adjoint extensions of the Laplace-Beltrami operator defined on a com-
pact Riemannian manifold with boundary and the role that quadratic forms play
to describe them. Moreover, we want to emphasise the role that quadratic forms
can play in the description of quantum systems.

It is well known that −∆η, the Laplace-Beltrami operator associated to the
Riemannian metric η, is essentially self-adjoint, i.e., it possesses a unique self-
adjoint extension, when the Riemannian manifold has void boundary [LM89].
However, when the Riemannian manifold has boundary this operator is symmet-
ric but not self-adjoint. Such situation is common in the analysis of quantum
systems with boundary. For instance, the aforementioned operator describes the
dynamics of a free particle that is constrained to the given manifold. The analysis
of quantum systems with boundary is receiving increasing attention from the com-
munity since there is a number of physical situations where the boundary plays a
prominent role, i.e., quantum Hall effect [Mor88], topological insulators [HK10],
the Casimir effect [PMG86], quantum graphs [Pos12b], . . .
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Other situations in physics where the determination of self-adjoint extensions of
operators is of great importance is in the definition of effective models that de-
scribe interactions with impurities or with interphases of materials, see [A+05]
and references therein. Defining a self-adjoint operator on a system with bound-
ary requests certain boundary conditions to be specified in order to extend the cor-
responding symmetric operator to a self-adjoint one. Selecting the appropriated
boundary conditions is thus of great importance since the dynamics of a quantum
system are not well determined until a self-adjoint operator is selected.

The importance of self-adjoint operators in Quantum Mechanics relies in that
they are interpreted, according to the postulates of Quantum Mechanics, as the
observables of the corresponding quantum systems. Their spectrum is interpreted
as the possible outcomes of a given measurement. Moreover, Stone’s Theo-
rem [Sto32] establishes a one-to-one correspondence between strongly continu-
ous one-parameter unitary groups and self-adjoint operators. Hence, self-adjoint
operators are the main objects characterising the unitary evolution of a quantum
system. It is worth to mention at this point that, even though the spectrum of
self-adjoint operators is considered to be the outcome of possible measurements,
the quadratic forms associated to them, i.e., 〈Φ , TΦ〉, describe the mean values
expected to be measured when the state of the system is described by the state vec-
tor Φ. Thus, quadratic forms may very well play the same role that self-adjoint
operators do in the description of Quantum Mechanics.

It was J. von Neumann who realised the fundamental difference between sym-
metric and self-adjoint operators and then solved the problem of determining all
self-adjoint (and symmetric) extensions of a densely defined symmetric opera-
tor (if any) in the late 1920’s [vN30]. Since then there have been several ap-
proaches in different contexts to treat the theory of self-adjoint extensions. For
instance, G. Grubb [Gru68] in the 1960’s and 1970’s provided characterisations
in the context of PDE’s; M.G. Krein [Kre47a, Kre47b] and J.M. Berezanskii
[Ber68], among others, provided characterisations using the theory of scales of
Hilbert spaces; and more recently the theory of boundary triples has been devel-
oped. J. Brüning, V. Geyler and K. Pankrashkin do a systematic review on this
approach in [BGP08], although some of the results were known earlier, for in-
stance [DM91, GG91, Koc75, Vis63].

The approach that we will follow in this dissertation fills, in certain sense,
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the gap between the characterisation provided by G. Grubb and the characteri-
sation in terms of boundary triples. In the former the structure of the boundary
is used to characterise the self-adjoint extensions in terms of pseudo-differential
operators acting on the Sobolev spaces of the boundary. On the other hand the
theory of boundary triples substitutes the structure of the boundary by other in
an abstract space. The self-adjoint extensions are then proved to be in one-to-one
correspondence with the set of unitary operators acting on this abstract space. The
approach presented in this dissertation preserves the structure of the boundary but
at the same time parameterises the set of self-adjoint extensions in terms of uni-
tary operators. It is therefore closer to the approach called quasi boundary triples
[BL07, BL12].

However we follow a slightly different path than in the previous approaches.
In contrast to the them, including von Neumann’s, where the adjoint operator
is restricted to a set where it is utterly proved to be self-adjoint, we are going
to follow the ideas and results introduced by K. Friedrichs [Fri34] and T. Kato
[Kat95]. According to them, the self-adjoint operator is obtained by the charac-
terisation of an associated semi-bounded quadratic form. More concretely, semi-
bounded quadratic forms are associated to a unique self-adjoint operator if they are
closable. The main difficulty in this approach is to prove that the corresponding
quadratic forms are closable. In contrast, symmetric operators are always closable
but the closure need not be a self-adjoint operator and in general there are infinite
possible self-adjoint extensions. The following table summarises the relationship
between closable forms and operators.

Symmetric Operators

• Always closable.

• The minimal extension does not need to be a self-adjojnt operator.

• It is possible that none of the extensions is self-adjoint

Hermitean Quadratic Forms

• Not always closable.
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• The minimal extensions is always associated to a s.a. operator.

This approach has been applied successfully in [AFHK79, AK97, AM91] to
address the problem of perturbations of self-adjoint operators. The intimate re-
lation between elliptic differential operators and quadratic forms has long been
known, see, for instance, [Gru73]. The canonical example of this situation is the
quadratic form Q(Φ) = ‖dΦ‖2. If this quadratic form is defined over H1

0(Ω) ,
the associated operator is the Dirichlet extension of −∆min; and when defined
on H1(Ω) , the associated operator is the Neumann extension. Also equivariant
and Robin-type Laplacians can be naturally described in terms of closed and semi-
bounded quadratic forms (see, e.g., [Gru11, KL12, LP07, Pos12a]). In this context
the subtle relation between quadratic forms and representing operators manifests
through the fact that the form domain D(Q) always contains the operator do-
main D(T ) of the representing operator. Therefore it is often possible to compare
different form domains while the domains of the representing operators remain
unrelated. This fact allows, e.g., to develop spectral bracketing techniques in very
different mathematical and physical situations using the language of quadratic
forms [LP08a, LP08b].

To obtain the characterisation of the self-adjoint extensions of the Laplace-
Beltrami operator we will analyse the quadratic form

‖dΦ‖2 − 〈ϕ , ϕ̇〉∂Ω .

This quadratic form can be understood as a singular perturbation of the Neu-
mann quadratic form above. In this context, the theory of scales of Hilbert spaces
[Ber68, Chapter I] provides a natural framework to characterise the corresponding
extensions. However, the results appearing in [Kos99] on closable singular pertur-
bations of quadratic forms can not be applied directly in our case and a different
approach is needed.

It was suggested by M. Asorey, A. Ibort and G. Marmo [AIM05] that the
particular structure of the boundary conditions

ϕ− iϕ̇ = U(ϕ+ iϕ̇) , (1.0.1)

can be used to analyse the self-adjoint extensions of the Laplace-Beltrami oper-
ator. There it was pointed out that the identification of the set of possible self-
adjoint extensions with the corresponding unitary group might be used to analyse
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the non-trivial structure of the space of self-adjoint extensions. For instance, this
identification provides the set of self-adjoint extensions with the structure of a
group. They identify that the particular subset of boundary conditions that plays
the relevant role in topology change phenomena, and that they call the Cayley
submanifold, can be characterised in terms of the spectrum of the aforementioned
operator U . This approach serves as inspiration to construct quadratic forms on
domains similar to those provided by (1.0.1). Now the problem is to proof their
closability and, consequently, their semi-boundedness. For this matter, some re-
strictions have to be introduced in the unitary operators. After a careful anal-
ysis of the domains of the self-adjoint operators using the Lions trace theorem
[LM72, Theorem 8.3] we arrive to the spectral gap condition. This is a condition
on the spectrum of the unitary operator U that describes the boundary condition.
We prove that this condition is sufficient to ensure the semi-boundedness of the
quadratic form and is one of the main contributions of this dissertation.

To prove this result a careful analysis of the structure of the underlying Rie-
mannian manifold is needed. The manifold is split into a collar neighbourhood of
the boundary and its complement, that shall be called the bulk. The contribution
in the bulk is always positive whereas the contribution of the collar neighbour-
hood is always semi-bounded below provided that the gap condition holds. In
order to ensure that the splitting procedure does not interfere with the domains of
the different quadratic forms that are involved, we use the remarkable fact that, at
the level of quadratic forms, imposing Neumann boundary conditions amounts to
consider no conditions at all, cf., [Dav95, Theorem 7.2.1].

The previous analysis is useful not just for theoretical purposes but also in
applications. The evaluation of the spectrum of self-adjoint operators is of main
importance since, as stated previously, it consists of the quantities that will be
measured in the laboratories. Thus, to possess tools, either analytical or numeri-
cal, to solve the corresponding eigenvalue problems is of main importance. Un-
fortunately, even in dimension one, to implement boundary conditions that are not
standard can be very hard. This difficulty relies in part in the difficulties associated
to the description of the corresponding domains. The particularly simple form of
the boundary condition (1.0.1) will help us with these purposes. Another impor-
tant contribution of this dissertation is to provide a numerical scheme, based on
the finite element method, that allows for the numerical computation of the eigen-
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value problems of the quadratic forms introduced so far. Again, the gap condition
remains to be crucial. In order for such algorithms to work one needs to introduce
a special family of finite elements, that are delocalised along the boundary, and
that allow for the implementation of the general boundary conditions of the form
(1.0.1). We provide here a particular instance for the case of dimension one that is
capable of computing the spectrum of any self-adjoint extension of the Laplace-
Beltrami operator. This is so because in dimension one all the unitary operators
describing boundary conditions verify the gap condition.

The convergence of this family of numerical schemes is proved independently
of the dimension. Hence, they can be used to compute the spectrum of any self-
adjoint extension of the Laplace-Beltrami operator on any Riemannian manifold
provided that the gap condition holds.

Symmetries of quantum and classical systems play an important role in study-
ing their properties. Symmetries are usually associated with “symmetry groups”,
in the case of continuous variables with the Lie groups, and their study has been
instrumental in the development of Quantum Mechanics, c.f. [CTDL77, Wey50]
or the celebrated paper by E. Wigner on the representations of the Poincarè group
[Wig39]. It was already noticed by Wigner that transformations of quantum sys-
tems preserving the transition probabilities must be implemented by (anti-)unitary
operators [GP90, Chapter 7]. Thus, groups of symmetries of quantum systems
must be realised as (anti-)unitary representations. Finally ifH is a self-adjoint op-
erator describing either an observable of the quantum system or a one-parameter
group of unitary operators, it will be said to be G-invariant, or that the group G
is a symmetry group for H , if there is a unitary representation V : G → U(H) ,
g 7→ V (g) , of the group G, cf., [Tha92, Chapter 2, Chapter 3], such that:

V (g)eitHV (g)† = eitH .

Consider a symmetric operator that is G-invariant. It is a common error to
assume that its self-adjoint extensions will be G-invariant too. In fact, there are
plenty of them that will not be invariant. The preceding considerations makes very
relevant the characterisation of those extensions that will be G-invariant. In the
present dissertation we provide an easy characterisation of those self-adjoint ex-
tensions that will be compatible with the given symmetries, namely those whose
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unitary operator U commutes with the unitary representation of the group G. We
will obtain such characterisation in several ways. First, in the most general context
provided by von Neumann’s theorem. Then, using Kato’s representation theorem.
And finally, using the class of examples of the family of quadratic forms associ-
ated to the Laplace-Beltrami operator. More concretely, we will study the case
when the manifold itself is invariant under the action of the group. Two meaning-
ful examples of this latter case will be discussed.

To conclude the dissertation we will try to step forward into one of the most
important open problems in the field of quadratic forms. As we have been dis-
cussing so far, Kato’s representation theorem is a powerful tool that helps in the
characterisation of self-adjoint extensions of symmetric operators. It is also one
of the main tools, if not the main, in the analysis of perturbations of self-adjoint
operators, cf., [A+05, Kos99, RS78]. However, it does not hold if the correspond-
ing quadratic forms are not semi-bounded. Of course, we restrict ourselves to
the case of Hermitean quadratic forms. It exists a generalisation of the aforemen-
tioned representation theorem for quadratic forms that are not Hermitean, also
proved by T. Kato [Kat95, Theorem 2.1]. In this latter case the assumption of
semi-boundedness is substituted by the assumption of sectoriality. This latter con-
dition requires the range of the quadratic form to be contained in a subset of the
complex plain with the shape of a wedge of angle smaller than π. The spectrum
of the corresponding operator is then proved to be contained in the same wedge.

The assumption of semi-boundedness is used in the proof of Kato’s repre-
sentation theorem as follows. One uses it to define a proper scalar product on
the domain of the quadratic form that promotes it to a Hilbert space (pre-Hilbert
space in the case that the quadratic form is closable but not closed). Subsequent
use of Riesz’s representation theorem provides the desired operator. The latter is
ulteriorly proved to be self-adjoint.

Inspired by the theory of self-adjoint extensions of operators with symme-
try and their corresponding invariant quadratic forms, we will introduce a family
of not necessarily semi-bounded quadratic forms possessing a representation in
terms of a self-adjoint operator. They will be called partially orthogonally addi-
tive quadratic forms and they constitute a generalisation of the so called orthog-
onally additive polynomials in Banach lattices. It is well-known that (continu-
ous) orthogonally additive polynomials on Banach lattices can be represented in
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a precise form by means of multiplication by a measurable function [BLL06]. In
P. Linares’ thesis there were explored some extensions of these ideas to the par-
ticular instance of quadratic polynomials in Hilbert spaces [Lin09, Section 2.4,
Section 2.5]. We will extend here such approach dramatically by showing that an
appropriate generalisation of the notion of orthogonal additivity leads in a natu-
ral way to a representation theorem of (not necessarily semi-bounded) quadratic
forms in terms of self-adjoint operators. Particular instances of such theorem are
provided by quadratic forms invariant under the action of compact Lie groups.

The dissertation is organised as follows. Chapter 2 is devoted to establish
the basic definitions and results on the theory of extensions of symmetric opera-
tors and closable quadratic forms. The basic definitions of the theory of Sobolev
spaces, the Laplace-Beltrami operator and the theory of scales of Hilbert spaces
can be found in this chapter too. In Chapter 3 we introduce the class of quadratic
forms associated to the Laplace-Beltrami operator that will be the main object
of our study. We proof there the main results concerning closability and semi-
boundedness, as well as we introduce the notion of unitary operators with gap and
admissible unitary operators. In Chapter 4 we introduce a numerical scheme that
can be used in any dimension to approximate the spectral problem of the quadratic
forms introduced in Chapter 3. We proof the convergence of this scheme as well as
we introduce an explicit one-dimensional version of it. Chapter 5 is devoted to the
analysis of self-adjoint extensions when there is a group of symmetries present.
The main results of Chapter 2 and Chapter 3 are reviewed in this context and the
corresponding characterisation of the self-adjoint extensions compatible with the
symmetry group, which will be called G-invariant, is introduced. In this chap-
ter we propose a way to generalise Kato’s representation theorem to Hermitean
quadratic forms that are not semi-bounded. This remains to be one of the main
open problems in the field.



2
PRELIMINARIES

This chapter is devoted to the introduction of well established results that we
shall need during the rest of this dissertation as well as to fix our notation. Appro-
priated references are cited at the beginning of the corresponding sections.

2.1. General theory of symmetric operators in Hilbert space

In this section we review standard material concerning the theory of linear
unbounded operators in Hilbert space. The proofs of the main results introduced
in this section can be found at [RS72, Chapter VII, Chapter VIII] and [RS75,
Chapter X].

In what follows we consider that H is a complex Hilbert space with inner
product and norm denoted respectively by 〈· , ·〉 , ‖ · ‖ . Our main object of interest
is the study of self-adjoint extensions of the Laplace-Beltrami operator. It is worth
to point out that the concept of self-adjoint extension of a symmetric operator
arises when considering unbounded operators acting on the Hilbert space. Let us
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introduce briefly the notion of bounded and unbounded operators. As long as it is
not stated otherwise we shall consider that we have a linear operator T with dense
domain D(T ) acting onH.

Definition 2.1.1. An operator T is said to be bounded if it exists a positive con-
stant M such that

‖TΦ‖ ≤M‖Φ‖ Φ ∈ D(T ) .

Bounded operators are continuous onH and sinceD(T ) is assume to be dense,
they can be extended continuously to the whole Hilbert space. Hence, for bounded
operators it is not necessary to select a domain for the operator. On the contrary,
unbounded operators are not defined on the whole Hilbert space but only in a
dense domain. In fact, since they are not bounded, there exist sequences {Φn}n ∈
D(T ) that are convergent inH and such that

lim
n→∞

‖TΦn‖ → ∞ .

Hence, the operator T is not continuous and can not be defined for the limit of
such a sequence. It is possible to define a special class of unbounded operators
that at least are continuous on their domain. These are the closed operators.

Definition 2.1.2. Let T be an operator with dense domain D(T ) and let {Φn}n
be a Cauchy sequence in H such that {TΦn}n is also a Cauchy sequence in H.
The operator T is said to be closed if

lim
n→∞

Φn ∈ D(T ) .

An operator is said to be closable if it has closed extensions, i.e., if it exists an
operator T such that D(T ) ⊃ D(T ) and

T
∣∣∣
D(T )

= T .

This definition is equivalent to claim that D(T ) is a complete Hilbert space
with respect to the norm

|‖ · ‖|T =
√
‖ · ‖2 + ‖T · ‖2 .
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In general it is always possible to complete D(T ) with respect to the norm |‖ · ‖|T .
Unfortunately the extended object need not be a well defined operator and there-
fore not all the unbounded operators are closable. However there is a special class
of operators, the symmetric operators, for which closed extensions always exist.
In fact, given a symmetric operator T one can always consider its extension to

D(T )
|‖·‖|T . This extension is closed and symmetric. Before we define symmetric

operators let us recall first the definition of the adjoint operator.

Definition 2.1.3. Let T be a densely defined operator. Let Ψ ∈ H. Then Ψ is in
the domain of the adjoint operator, D(T †) , if it exists χ ∈ H such that

〈Ψ , TΦ〉 = 〈χ ,Φ〉 ∀Φ ∈ D(T ) .

In such a case
T †Ψ := χ .

Notice that χ is uniquely determined becauseD(T ) is a dense subspace ofH .
It is easy to show that the adjoint operator is always a closed operator.

Definition 2.1.4. An operator T is said to be symmetric if

〈Ψ , TΦ〉 = 〈TΨ ,Φ〉 ∀Ψ,Φ ∈ D(T ) .

From the last two definitions it is easy to conclude that if T is a symmetric
operator then T † is a closed extension of it,

T †
∣∣∣
D(T )

= T .

It is a general fact that the domain of the adjoint operator D(T †) contains the the
domain D(T ).

Definition 2.1.5. An operator T is said to be self-adjoint if it is symmetric and
D(T ) = D(T †).

The difference between symmetric operators and self-adjoint operators is sub-
tle. For instance, if T is a closed, bounded, symmetric operator then it is auto-
matically self-adjoint. In general it is much easier to define symmetric operators
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than self-adjoint operators. This is due to the fact that the adjoint operator is a
derivative object that depends on the definition of the symmetric operator. Unfor-
tunately, the good properties that Hermitean operators do have in finite dimension,
for instance, real spectrum or the spectral resolution of the identity, can be gen-
eralised only for self-adjoint operators. Since we will make use of it later let us
formulate here, without proof, the spectral theorem, cf., [RS72, Section VIII.3],
[AG61, Section VI.66]. We need first the following definition.

Definition 2.1.6. A spectral resolution of the identity is a one-parameter family
of orthogonal projection operators Et, where t runs through a finite or infinite
interval [α, β] ⊂ R , which satisfy the following conditions:

i) Eα = 0 , Eβ = IH .

ii) limt→t−0
Et = Et0 , (α < t0 < β) .

iii) EuEv = Es , (s = min{u, v}) .

In the case that [α, β] is infinite we define E−∞ := s − limt→−∞Et and E∞ :=
s− limt→∞Et .

Theorem 2.1.7 (Spectral theorem). Let T be a self-adjoint operator. Then it exists
a spectral resolution of the identity Eλ such that

D(T ) = {Φ ∈ H
∣∣ ∫

R
λ2d(〈Φ , EλΦ〉) <∞}

and

T =

∫
R
λdEλ .

The last integral has to be understood in the sense of Bochner, cf., [Boc33].
A similar theorem can be formulated for normal operators and in particular for
unitary operators. The main difference between this cases is the support of the
spectral resolution of the identity. A characterisation of the differences between
the spectra of closed symmetric operators and self-adjoint operators is the follow-
ing [RS75, Theorem X.1].
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Theorem 2.1.8. Let T be a closed symmetric operator. Then the spectrum of T is
either:

i) The full complex plain.

ii) The upper complex half-plain.

iii) The lower complex half-plain.

iv) A subset of the real axis.

Case iv) happens iff T is a self-adjoint operator.

A natural question that arises is if given a symmetric operator one is able to
find a closed extension of it that is self-adjoint and wether or not it is unique. John
von Neumann addressed this issue in the late 1920’s and answered the question in
the most abstract setting, cf., [vN30]. Let us state the result that will be of most
interest for us [RS75, Theorem X.2].

Definition 2.1.9. Let T be a closed, symmetric operator. The deficiency spaces
N± are defined to be

N± = {Φ ∈ H
∣∣(T † ∓ i)Φ = 0} .

The deficiency indices are
n± = dimN± .

Theorem 2.1.10 (von Neumann). Let T be a closed symmetric operator. The self-
adjoint extensions of T are in one-to-one correspondence with the set of unitaries
(in the usual inner product) of N+ onto N−. If K is such a unitary then the
corresponding self-adjoint operator TK has domain

D(TK) = {Φ + (I +K)ξ
∣∣Φ ∈ D(T ), ξ ∈ N+} ,

and

TK
(
Φ + (I +K)ξ

)
= T †

(
Φ + (I +K)ξ

)
= TΦ + i(I +K)ξ .
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Remark 2.1.11. From all the possibilities we must point out the following ones

• If n+ = n− = 0 then the operator is self-adjoint.

• If n+ = n− 6= 0 then the operator has infinite self-adjoint extensions.

• If n+ 6= n− then the operator has no self-adjoint extensions.

We end this section with the following definition.

Definition 2.1.12. Let T be a densely defined operator. We say that T is semi-
bounded from below, or equivalently lower semi-bounded, if it exists a constant
a ≥ 0 such that

〈Φ , TΦ〉 ≥ −a‖Φ‖2 ∀Φ ∈ D(T ) .

We say that T is semi-bounded from above, or equivalently upper semi-bounded,
if −T is semi-bounded from below. The operator T is positive if the lower bound
satisfies a = 0 .

Notice that, because of Theorem 2.1.8, closed, symmetric, semi-bounded op-
erators are automatically self-adjoint.

2.2. Closable quadratic forms

In this section we introduce the notion of closed and closable quadratic forms.
Standard references are, e.g., [Kat95, Chapter VI], [RS72, Section VIII.6] or
[Dav95, Section 4.4].

Definition 2.2.1. Let D be a dense subspace of the Hilbert space H and denote
by Q : D × D → C a sesquilinear form (anti-linear in the first entry and linear
in the second entry). The quadratic form associated to Q with domain D is its
evaluation on the diagonal, i.e., Q(Φ) := Q(Φ,Φ) , Φ ∈ D . We say that the
sesquilinear form is Hermitean if

Q(Φ,Ψ) = Q(Ψ,Φ) , Φ,Ψ ∈ D .

The quadratic form is semi-bounded from below if there is an a ≥ 0 such that

Q(Φ) ≥ −a‖Φ‖2 , Φ ∈ D .
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The smallest possible value a satisfying the preceding inequality is called the
lower bound for the quadratic form Q. In particular, if Q(Φ) ≥ 0 for all Φ ∈ D
we say that Q is positive.

Note that if Q is semi-bounded with lower bound a , then Qa(Φ) := Q(Φ) +
a‖Φ‖2 , Φ ∈ D , is positive on the same domain. Moreover, the polarisation
identity holds.

Q(Φ,Ψ) =
1

4
[Q(Φ + Ψ)−Q(Φ−Ψ) + iQ(iΦ + Ψ)− iQ(iΦ−Ψ)] .

(2.2.1)
We need to recall also the notions of closable and closed quadratic forms as
well as the fundamental representation theorems that relate closed, semi-bounded
quadratic forms with self-adjoint, semi-bounded operators.

Definition 2.2.2. Let Q be a semi-bounded quadratic form with lower bound a ≥
0 and dense domain D ⊂ H. The quadratic form Q is closed if D is closed with
respect to the norm

|‖Φ‖|Q :=
√
Q(Φ) + (1 + a)‖Φ‖2 , Φ ∈ D .

If Q is closed and D0 ⊂ D is dense with respect to the norm |‖ · ‖|Q , then D0 is
called a form core for Q.

Conversely, the closed quadratic formQwith domainD is called an extension
of the quadratic form Q with domain D0. A quadratic form is said to be closable
if it has a closed extension.

Remark 2.2.3.

i) The norm |‖ · ‖|Q is induced by the following inner product on the domain:

〈Φ,Ψ〉Q := Q(Φ,Ψ) + (1 + a)〈Φ,Ψ〉 , Φ,Ψ ∈ D .

ii) The quadratic form Q is closable iff whenever a sequence {Φn}n ⊂ D
satisfies ‖Φn‖ → 0 and Q(Φn−Φm)→ 0 , as n,m→∞ , then Q(Φn)→
0.
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iii) In general it is always possible to close D ⊂ H with respect to the norm
|‖ · ‖|Q. The quadratic form is closable iff this closure is a subspace ofH.

Theorem 2.2.4 (Kato’s representation theorem). Let Q be an Hermitean, closed,
semi-bounded quadratic form defined on the dense domain D ⊂ H. Then it exists
a unique self-adjoint, semi-bounded operator T with domain D(T ) and the same
lower bound such that

i) Ψ ∈ D(T ) iff Ψ ∈ D and it exists χ ∈ H such that

Q(Φ,Ψ) = 〈Φ, χ〉 , ∀Φ ∈ D .

In this case we write TΨ = χ.

ii) Q(Φ,Ψ) = 〈Φ, TΨ〉 for any Φ ∈ D , Ψ ∈ D(T ).

iii) D(T ) is a core for Q.

Notice that in the same way as in Definition 2.1.3, the element χ of i) is
uniquely determined because D is dense inH .

Remark 2.2.5. A closed, semi-bounded, quadratic form can be represented using
the spectral resolution of the identity Eλ of the associated self-adjoint operator,
cf., Theorem 2.1.7,

Q(Φ,Ψ) =

∫
R
λd〈Φ , EλΨ〉 ∀Φ,Ψ ∈ D(T ) .

One of the most common uses of the representation theorem is to obtain self-
adjoint extensions of symmetric, semi-bounded operators. Given a semi-bounded,
symmetric operator T one can consider the associated quadratic form

QT (Φ,Ψ) = 〈Φ , TΨ〉 Φ,Ψ ∈ D(T ) .

These quadratic forms are always closable, cf., [RS75, Theorem X.23], and there-
fore their closure is associated to a unique self-adjoint operator. Even if the sym-
metric operator has infinite possible self-adjoint extensions, the representation
theorem allows to select a particular one. This extension is called the Friedrichs
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extension. The approach that we shall take in Chapter 3 is close to this method.

Before we close this section we introduce one important result that is encom-
passed as one of the tools of what is commonly know as the variational methods,
cf., [RS78, Theorem XIII.2].

Theorem 2.2.6 (min-max Principle). Let Q be a closed, semi-bounded quadratic
form with domain D, let T be the associated self-adjoint operator, and let Vn be
the subspace

Vn = {Φ ∈ D
∣∣〈Φ , ξi〉 = 0 , ξi ∈ H0(Ω) , i = 1, . . . , n} .

Define

λ(n) = sup
ξ1,...,ξn−1

[
inf

Φ∈Vn−1

Q(Φ,Φ)

‖Φ‖2

]
.

Then, for each fixed n, either:

a) there are n eigenvalues (counting degenerate eigenvalues a number of times
equal to their multiplicity) below the bottom of the essential spectrum and
λ(n) is the nth eigenvalue counting multiplicity;

or

b) λ(n) is the bottom of the essential spectrum, i.e.,

λ(n) = inf{λ | λ ∈ σess(T )}

and λ(n) = λ(n+1) = λ(n+2) = · · · and there are at most n−1 eigenvalues
(counting multiplicity) below λ(n).

We shall use this result to proof the convergence of the numerical scheme
introduced in Chapter 4.
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2.3. Laplace-Beltrami operator on Riemannian manifolds and Sobolev spaces

Our aim is to describe a class of closable quadratic forms related to the self-
adjoint extensions of the Laplace-Beltrami operator defined on a compact Rie-
mannian manifold. This section is devoted to the definition of such manifold and
of the different spaces of functions that will appear throughout the rest of this dis-
sertation. Any further details can be found at [AMR88, Chapter 3 et seq.], [AF03,
Chapter 3 et seq.], [Dav95, Section 3.7], [LM72, Chapter 1], [Poo81, Chapter 3].

Let (Ω, ∂Ω, η) be a smooth, orientable, compact Riemannian manifold with
metric η and smooth boundary ∂Ω . We will denote as C∞(Ω) the space of smooth
functions of the Riemannian manifold Ω and by C∞c (Ω) the space of smooth func-
tions with compact support in the interior of Ω. The Riemannian volume form is
written as dµη .

Definition 2.3.1. The Laplace-Beltrami Operator associated to the Riemannian
manifold (Ω, ∂Ω, η) is the second order differential operator ∆η : C∞(Ω) →
C∞(Ω) given by

∆ηΦ =
1√
|η|

∂

∂x

√
|η|ηij ∂Φ

∂xj
.

Let (Ω̃, η̃) be a smooth, orientable, boundary-less, compact Riemannian man-
ifold with metric η̃. The Laplace-Beltrami operator −∆η̃ associated to the Rie-
mannian manifold (Ω̃, η̃) defines a positive, essentially self-adjoint, second order
differential operator, cf., [AMR88]. One can use it to define the following norms.

Definition 2.3.2. Let k ∈ R . The Sobolev norm of order k in the boundary-less
Riemannian manifold (Ω̃, η̃) is defined by

||Φ||2k :=

∫
Ω̃

Φ(I −∆η̃)
kΦdµη̃ .

The closure of the smooth functions with respect to this normHk(Ω̃) := C∞(Ω̃)
‖·‖k

is the Sobolev space of class k of the Riemannian manifold (Ω̃, η̃) . The scalar
products associated to these norms are written as 〈· , ·〉k. In the case k = 0 we
will denote theH0(Ω̃) scalar product simply by 〈Φ ,Ψ〉 =

∫
Ω̃ ΦΨdµη̃.
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Note that Definition 2.3.2 holds only for Riemannian manifolds without bound-
ary. In particular, it holds for the Sobolev spaces defined over the boundary ∂Ω ,
Hk(∂Ω) , of the Riemannian manifold Ω . The construction of the Sobolev spaces
of functions over a manifold (Ω, ∂Ω, η) cannot be done directly like in the def-
inition above because the Laplace-Beltrami operator does not define in general
positive differential operators. However, it is possible to construct it as a quotient
of the Sobolev space of functions over a Riemannian manifold (Ω̃, η̃) without
boundary, cf., [Tay96, Section 4.4].

Definition 2.3.3. Let (Ω, ∂Ω, η) be a Riemannian manifold and let (Ω̃, η̃) be any
smooth Riemannian manifold without boundary such that

◦
Ω , i.e., the interior of

Ω , is an open submanifold of Ω̃. Let k ∈ R. The Sobolev space of class k of the
Riemannian manifold (Ω, ∂Ω, η) is the quotient

Hk(Ω) := Hk(Ω̃)/{Φ ∈ Ω̃ | Φ|Ω = 0} .

The norm is denoted again as ‖ · ‖k. When there is ambiguity about the manifold,
the subindex shall denote the full space, i.e.,

‖ · ‖k = ‖ · ‖Hk(Ω) .

Remark 2.3.4. The Sobolev spacesHk(Ω) do not depend on the choice of Ω̃ .

We shall need the following subspaces of the the Sobolev spaces.

Definition 2.3.5. Let (Ω, η) be any smooth Riemannian manifold with or without
boundary. The closure of the set of smooth functions with compact support in
the interior of Ω with respect to the Sobolev norm of order k ∈ R is denoted as
Hk0(Ω) , i.e.,

Hk0(Ω) := C∞c (Ω)
‖·‖k

.

There are many equivalent ways to define the Sobolev norms. In particular,
we shall need the following characterisation.

Proposition 2.3.6. The Sobolev norm of order 1, ‖ · ‖1 , is equivalent to the norm√
‖d · ‖2

Λ1 + ‖ · ‖2 ,
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where d stands for the exterior differential acting on functions and ‖d · ‖Λ1 is the
induced norm from the natural scalar product among 1-forms α ∈ Λ1(Ω), cf.,
[AMR88, Chapter 6].

Proof. It is enough to show it for a boundary-less Riemannian manifold (Ω̃, η̃) .
The Laplace-Beltrami operator can be expressed in terms of the exterior differen-
tial and its formal adjoint,

−∆η̃ = d†d ,

where the formal adjoint is defined to be the unique differential operator d† :
Λ1(Ω̃)→ C∞(Ω̃) that verifies

〈α , dΦ〉Λ1 = 〈d†α ,Φ〉 α ∈ Λ1(Ω̃),Φ ∈ C∞(Ω̃) .

Let Φ ∈ C∞(Ω̃). Then we have that

‖Φ‖21 =

∫
Ω̃

Φ̄(I −∆η̃)Φdµη̃

=

∫
Ω̃

Φ̄Φdµη̃ +

∫
Ω̃

Φ̄d†dΦdµη̃

= ‖Φ‖2 + 〈dΦ ,dΦ〉Λ1 = ‖Φ‖2 + ‖dΦ‖2Λ1 .

The subindex Λ1 will be omitted when it is clear from the context which scalar
products are considered.

The boundary ∂Ω of the Riemannian manifold (Ω, ∂Ω, η) has itself the struc-
ture of a Riemannian manifold without boundary (∂Ω, ∂η). The Riemannian
metric induced at the boundary is just the pull-back of the Riemannian metric
∂η = i?η , where i : ∂Ω → Ω is the inclusion map. The spaces of smooth
functions over the two manifolds verify that C∞(Ω)

∣∣
∂Ω
' C∞(∂Ω).

There is an important relation between the Sobolev spaces defined over the
manifolds Ω and ∂Ω (see Definition 2.3.2 and Definition 2.3.3). This is the well
known Lions trace theorem (cf., [AF03, Theorem 7.39], [LM72, Theorem 9.4 of
Chapter 1]):
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Theorem 2.3.7 (Lions trace theorem). Let Φ ∈ C∞(Ω) and let γ : C∞(Ω) →
C∞(∂Ω) be the trace map γ(Φ) = Φ

∣∣
∂Ω

. There is a unique continuous extension
of the trace map such that

i) γ : Hk(Ω)→ Hk−1/2(∂Ω) , k > 1/2 .

ii) The map is surjective .

Finally we introduce for later use some particular operators associated to the
Laplacian. Consider the symmetric operator ∆0 := ∆η

∣∣
C∞c (Ω)

. Then we have the
following extensions of it.

Definition 2.3.8.

i) The minimal closed extension ∆min is defined to be the closure of ∆0. Its

domain is D(∆min) = H2
0 := C∞c (Ω)

‖·‖2 .

ii) The maximal closed extension ∆max is the closed operator defined in the
domain D(∆max) =

{
Φ ∈ H0(Ω)

∣∣∆ηΦ ∈ H0(Ω)
}

.

The trace map defined in Theorem 2.3.7 can be extended continuously to
D(∆max) , see for instance [Fre05, Gru68, LM72]:

Theorem 2.3.9 (Weak trace theorem for the Laplacian). The Sobolev spaceHk(Ω) ,
with k ≥ 2 , is dense in D(∆max) and there is a unique continuous extension of
the trace map γ such that

γ : D(∆max)→ H−1/2(∂Ω) .

Moreover, ker γ = H2
0 (Ω) .
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2.4. Scales of Hilbert spaces

Later on we will need the theory of scales of Hilbert spaces, also known as
theory of rigged Hilbert spaces. In the following paragraph we state the main
results, (see [Ber68, Chapter I], [Kos99, Chapter 2] for proofs and more results).

LetH be a Hilbert space with scalar product 〈· , ·〉 and induced norm ‖ · ‖. Let
H+ be a dense linear subspace ofHwhich is a complete Hilbert space with respect
to another scalar product that will be denoted by 〈· , ·〉+. The corresponding norm
is ‖ · ‖+ and we assume that

‖Φ‖ ≤ ‖Φ‖+ , Φ ∈ H+ . (2.4.1)

Any vector Φ ∈ H generates a continuous linear functional LΦ : H+ → C as
follows. For Ψ ∈ H+ define

LΦ(Ψ) = 〈Φ ,Ψ〉 . (2.4.2)

Continuity follows by the Cauchy-Schwartz inequality and Eq. (2.4.1).

LΦ(Ψ) ≤ ‖Φ‖ · ‖Ψ‖ ≤ ‖Φ‖ · ‖Ψ‖+ , ∀Φ ∈ H , ∀Ψ ∈ H+ . (2.4.3)

Since LΦ represents a continuous linear functional on H+ it can be represented,
according to Riesz theorem, using the scalar product in H+. Namely, it exists a
vector ξ ∈ H+ such that

∀Ψ ∈ H+ , LΦ(Ψ) = 〈Φ ,Ψ〉 = 〈ξ ,Ψ〉+ , (2.4.4)

and the norm of the functional coincides with the norm in H+ of the element ξ ,
i.e.,

‖LΦ‖ = sup
Ψ∈H+

|LΦ(Ψ)|
‖Ψ‖+

= ‖ξ‖+ .

One can use the above equalities to define an operator

Î : H → H+

ÎΦ = ξ .
(2.4.5)
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This operator is clearly injective since H+ is a dense subset of H and therefore it
can be used to define a new scalar product onH

〈· , ·〉− := 〈Î· , Î·〉+ . (2.4.6)

The completion of H with respect to this scalar product defines a new Hilbert
space, H− , and the corresponding norm will be denoted accordingly by ‖ · ‖− .
It is clear that H+ ⊂ H ⊂ H− , with dense inclusions. Since ‖ξ‖+ = ‖ÎΦ‖+ =
‖Φ‖− , the operator Î can be extended by continuity to an isometric bijection.

Definition 2.4.1. The Hilbert spaces H+ , H and H− introduced above define a
scale of Hilbert spaces. The extension by continuity of the operator Î is called the
canonical isometric bijection. It is denoted by:

I : H− → H+ . (2.4.7)

Proposition 2.4.2. The scalar product in H can be extended continuously to a
pairing

(· , ·) : H− ×H+ → C . (2.4.8)

Proof. Let Φ ∈ H and Ψ ∈ H+. Using the Cauchy-Schwartz inequality we have
the following

|〈Φ ,Ψ〉| = |〈IΦ ,Ψ〉+| ≤ ‖IΦ‖+‖Ψ‖+ = ‖Φ‖−‖Ψ‖+ . (2.4.9)





3
CLOSABLE AND SEMI-BOUNDED QUADRATIC FORMS
ASSOCIATED TO THE LAPLACE-BELTRAMI OPERATOR

In this chapter we construct a wide class of closed, semi-bounded quadratic
forms on the space of square integrable functions over a smooth Riemannian
manifold with smooth boundary. Each of these quadratic forms specifies a semi-
bounded self-adjoint extension of the Laplace-Beltrami operator. These quadratic
forms are based on the Lagrange boundary form on the manifold and a family
of domains parameterised by a suitable class of unitary operators on the Hilbert
space of the boundary that will be called admissible.

There are previous results characterising the lower semi-boundedness of sesqui-
linear forms, see for instance [Gru70]. However, we exploit the particularly simple
form of the boundary condition (1.0.1) in order to provide a direct characterisation
of a class of self-adjoint and semi-bounded extensions of the Laplace-Beltrami op-
erator. This class of semi-bounded extensions, as will be shown in Section 3.3,
covers a number of relevant known examples that can be handled easily in this
manner.
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In Section 3.1 we introduce the aforementioned class of quadratic forms asso-
ciated to the Laplace-Beltrami operator. We give the main definitions and analyse
thoroughly the structure of the boundary equation (1.0.1). In Section 3.2 we prove
the main results of this chapter. Namely, those concerning the semi-boundedness
and closability of the class of quadratic forms. The last section, Section 3.3, is
devoted to introduce a number of meaningful examples.

3.1. A class of closable quadratic forms on a Riemannian manifold

We begin presenting a canonical sesquilinear form that, on smooth functions
over the Riemannian manifold Ω , is associated to the Laplace-Beltrami opera-
tor. Motivated by this quadratic form we will address questions like hermiticity,
closability and semi-boundedness on suitable domains.

Integrating once by parts the expression 〈Φ ,−∆ηΨ〉 we obtain, on smooth
functions, the following sesquilinear form Q : C∞(Ω)× C∞(Ω)→ C ,

Q(Φ,Ψ) = 〈dΦ ,dΨ〉Λ1 − 〈ϕ , ψ̇〉∂Ω . (3.1.1)

From now on the restrictions to the boundary are going to be denoted with
the corresponding small size greek letters, ϕ := γ(Φ) . The doted small size
greek letters denote the restriction to the boundary of the normal derivatives, ϕ̇ :=
γ(dΦ(ν)) , where ν ∈ X(Ω) is any vector field such that iνdµη = dµ∂η . Notice
that in the expression above dΦ ∈ Λ1(Ω) is a 1-form on Ω , thus the inner product
〈·, ·〉Λ1 is defined accordingly by using the induced Hermitean structure on the
cotangent bundle (see, e.g., [Poo81]). We have therefore that

〈dΦ ,dΨ〉Λ1 =

∫
Ω
η−1(dΦ̄, dΨ)dµη .

In the second term at the right hand side of (3.1.1) 〈· , ·〉∂Ω stands for the induced
scalar product at the boundary given explicitly by

〈ϕ ,ψ〉∂Ω =

∫
∂Ω
ϕ̄ ψ dµ∂η, (3.1.2)

where dµ∂η is the Riemannian volume defined by the restricted Riemannian met-
ric ∂η . The subscript Λ1 will be dropped from now on as along as there is no risk
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of confusion.

In general, the sesquilinear form Q defined above is not Hermitean. To study
subspaces where Q is Hermitean it is convenient to isolate the part of Q related to
the boundary data (ϕ, ϕ̇) .

Definition 3.1.1. Let Φ,Ψ ∈ C∞(Ω) and denote by (ϕ, ϕ̇) , (ψ, ψ̇) the corre-
sponding boundary data. The Lagrange boundary form is defined as:

Σ
(
Φ,Ψ

)
= Σ

(
(ϕ, ϕ̇), (ψ, ψ̇)

)
:= 〈ϕ , ψ̇〉∂Ω − 〈ϕ̇ , ψ〉∂Ω. (3.1.3)

Any dense subspace D ⊂ H0(Ω) is said to be isotropic with respect to Σ if
Σ
(
Φ,Ψ

)
= 0 ∀Φ,Ψ ∈ D .

Proposition 3.1.2. The sesquilinear form Q defined in Eq. (3.1.1) on a dense
subspace D ⊂ H0 is Hermitian iff D is isotropic with respect to Σ .

Proof. The sesquilinear formQ : D×D → C is Hermitean ifQ(Φ,Ψ) = Q(Ψ,Φ)
for all Φ,Ψ ∈ D . By definition of Q this is equivalent to Σ

(
Φ,Ψ

)
= 0 , for all

Φ,Ψ ∈ D , hence D is isotropic with respect to Σ . The reverse implication is
obvious.

3.1.1. Isotropic subspaces

The analysis of maximally isotropic subspaces can be handled more easily
using the underlying Hilbert space structure of the Lagrange boundary form and
not considering for the moment any regularity question. The expression (3.1.3)
can be understood as a sesquilinear form on the boundary Hilbert space Hb :=
H0(∂Ω)×H0(∂Ω) ,

Σ
(
Ψ,Φ

)
= 〈ϕ , ψ̇〉∂Ω − 〈ϕ̇ , ψ〉∂Ω .

We will therefore focus now on the study of the sesquilinear form on the Hilbert
spaceHb and, while there is no risk of confusion, we will denote the scalar product
inH0(∂Ω) simply as 〈· , ·〉 ,

Σ ((ϕ1, ϕ2), (ψ1, ψ2)) := 〈ϕ1, ψ2〉 − 〈ϕ2, ψ1〉 , (ϕ1, ϕ2), (ψ1, ψ2) ∈ Hb .
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Formally, Σ is a sesquilinear, symplectic form by which we mean that it satisfies
the following conditions:

i) Σ is conjugate linear in the first argument and linear in the second.

ii) Σ
(

(ϕ1, ϕ2), (ψ1, ψ2)
)

= −Σ
(

(ψ1, ψ2), (ϕ1, ϕ2)
)

, (ϕ1, ϕ2), (ψ1, ψ2) ∈
Hb .

iii) Σ is non-degenerate, i.e., Σ
(

(ϕ1, ϕ2), (ψ1, ψ2)
)

= 0 for all (ψ1, ψ2) ∈ Hb
implies (ϕ1, ϕ2) = (0, 0) .

The analysis of the isotropic subspaces of such sesquilinear forms is by no means
new and their characterisation is well known ([BGP08], [Koc75]). However, in
order to keep this dissertation self-contained, we provide in the following para-
graphs independent proofs of the main results that we will need.

First we write the sesquilinear symplectic form Σ in diagonal form. This is
done introducing the unitary Cayley transformation C : Hb → Hb ,

C(ϕ1, ϕ2) :=
1√
2

(ϕ1 + iϕ2, ϕ1 − iϕ2) , (ϕ1, ϕ2) ∈ Hb .

Putting

Σc

(
(ϕ+, ϕ−), (ψ+, ψ−)

)
:= −i

(
〈ϕ+, ψ+〉 − 〈ϕ−, ψ−〉

)
with (ϕ+, ϕ−), (ψ+, ψ−) ∈ Hb , the relation between Σ and Σc is given by

Σ
(

(ϕ1, ϕ2), (ψ1, ψ2)
)

= Σc

(
C(ϕ1, ϕ2), C(ψ1, ψ2)

)
(3.1.4)

with (ϕ1, ϕ2), (ψ1, ψ2) ∈ Hb .

Definition 3.1.3. Consider a subspace W ⊂ Hb and define the Σ-orthogonal
subspace by

W⊥Σ :=
{

(ϕ1, ϕ2) ∈ Hb | Σ
(

(ϕ1, ϕ2), (ψ1, ψ2)
)

= 0 , ∀(ψ1, ψ2) ∈ W
}
.

A subspaceW ⊂ Hb is Σ-isotropic [resp. maximally Σ-isotropic] ifW ⊂ W⊥Σ

[resp.W =W⊥Σ].
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We begin enumerating some direct consequences of the preceding definitions:

Lemma 3.1.4. LetW ⊂ Hb and putWc := C(W) .

i) W is Σ-isotropic [resp. maximally Σ-isotropic] iffWc is Σc-isotropic [resp.
maximally Σc-isotropic].

ii) If (ϕ1, ϕ2) ∈ W ⊂ W⊥Σ , then 〈ϕ1, ϕ2〉 = 〈ϕ1, ϕ2〉 . If (ϕ+, ϕ−) ∈ Wc ⊂
W⊥Σc
c , then ‖ϕ+‖ = ‖ϕ−‖ .

Proof. Part (i) follows directly from Eq.(3.1.4) and the fact that C is a unitary
transformation. To prove (ii) note that if (ϕ1, ϕ2) is in an isotropic subspaceW ,
then

Σ
(

(ϕ1, ϕ2), (ϕ1, ϕ2)
)

= 〈ϕ1, ϕ2〉 − 〈ϕ2, ϕ1〉 = 0 .

One argues similarly in the other case.

Proposition 3.1.5. LetW± ⊂ H0(∂Ω) be closed subspaces and putWc :=W+×
W− ⊂ Hb .

i) The subspaceWc is Σc-isotropic iff it exists a partial isometry

V : H0(∂Ω)→ H0(∂Ω)

with initial spaceW+ and final spaceW− , i.e., V ∗V (H0(∂Ω)) =W+ and
V V ∗(H0(∂Ω)) =W− and

Wc = {(ϕ+, V ϕ+) | ϕ+ ∈ W+} = graV .

ii) The subspaceWc is maximally Σc-isotropic iff it exists a unitary

U : H0(∂Ω)→ H0(∂Ω)

such that

Wc = {(ϕ+, Uϕ+) | ϕ+ ∈ H0(∂Ω)} = graU . (3.1.5)
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Proof. (i) For any (ϕ+, ϕ−) ∈ Wc we define the mapping V : H0(∂Ω)→ H0(∂Ω)

by V (ϕ+) := ϕ− , ϕ+ ∈ W+ and V (ϕ) = 0 , ϕ ∈ W⊥+ . Since Wc ⊂ W
⊥Σc
c

we have from part (ii) of Lemma 3.1.4 that V is a well-defined linear map and a
partial isometry.

The reverse implication is immediate: for any (ϕ+, V ϕ+) ∈ Wc and ψ+ ∈
H0(∂Ω) we have

Σc

(
(ϕ+, V ϕ+), (ψ+, V ψ+)

)
= −i

(
〈ϕ+, ψ+〉 − 〈V ϕ+, V ψ+〉

)
= 0 ,

henceWc = {(ϕ+, V ϕ+) | ϕ+ ∈ W+} = graV is Σc-isotropic.

(ii) Suppose thatWc =W⊥Σc
c . By the previous item we have

Wc = {(ϕ+, Uϕ+) | ϕ+ ∈ W+}

for some partial isometry U : H0(∂Ω) → H0(∂Ω) . Consider the following de-
compositions H0(∂Ω) = W+ ⊕ W⊥+ = (UW+) ⊕ (UW+)⊥ and note that any
(ϕ⊥+, ϕ

⊥
−) ∈ W⊥+ × (UW+)⊥ satisfies (ϕ⊥+, ϕ

⊥
−) ∈ W⊥Σc

c . SinceWc = W⊥Σc
c

we must have ϕ⊥+ = ϕ⊥− = 0 , or, equivalently,W+ = H0(∂Ω) = UW+ , hence
kerU = kerU∗ = {0} and U is a unitary map.

To prove the reverse implication considerWc = {(ϕ+, Uϕ+) | ϕ+ ∈ H0(∂Ω)}
with U unitary and choose (ψ+, ψ−) ∈ W⊥Σc

c . Then for any ϕ+ ∈ H0(∂Ω) we
have

0 = Σc

(
(ϕ+, Uϕ+), (ψ+, ψ−)

)
= −i

(
〈ϕ+, ψ+〉 − 〈Uϕ+, ψ−〉

)
= −i

(
〈ϕ+, (ψ+ − U∗ψ−)〉

)
.

This shows that ψ− = Uψ+ and hence (ψ+, ψ−) ∈ Wc , therefore Wc is maxi-
mally Σc-isotropic.

The previous analysis allows to characterise finally the Σ-isotropic subspaces
of the boundary Hilbert spaceHb .
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Theorem 3.1.6. A closed subspace W ⊂ Hb is maximally Σ-isotropic iff there
exists a unitary U : H0(∂Ω)→ H0(∂Ω) such that

W =
{(

(I + U)ϕ , −i(I− U)ϕ
)
| ϕ ∈ H0(∂Ω))

}
.

Proof. By Lemma 3.1.4 (i) and Proposition 3.1.5 (ii) we have thatW is maximally
Σ-isotropic iffW = C−1Wc , whereWc is given by Eq. (3.1.5).

Proposition 3.1.7. Let U : H0(∂Ω) → H0(∂Ω) be a unitary operator and con-
sider the maximally isotropic subspaceW given in Theorem 3.1.6. ThenW can
be rewritten as

W =
{

(ϕ1 , ϕ2) ∈ Hb | ϕ1 − iϕ2 = U(ϕ1 + iϕ2)
}
. (3.1.6)

Proof. Let W be given as in Theorem 3.1.6 and let W ′ be a subspace defined
as in Eq. (3.1.6). Put ϕ1 := (I + U)ϕ and ϕ2 := −i(I − U)ϕ . Then it is
straightforward to verify that (ϕ1 , ϕ2) satisfy the relation defining Eq. (3.1.6)
and thereforeW ⊂W ′ .

Consider a subspace W ′ defined as in Eq. (3.1.6) and let (ϕ1 , ϕ2) ∈ W ′ .
Then the following relation holds

(1− U)ϕ1 − i(1 + U)ϕ2 = 0 . (3.1.7)

Now consider that (ϕ1, ϕ2) ∈ W⊥ . Then for all ϕ ∈ H0(∂Ω)

0 = 〈ϕ1 , (1 + U)ϕ〉+ 〈ϕ2 ,−i(1− U)ϕ〉
= 〈(1 + U∗)ϕ1 + i(1− U∗)ϕ2 , ϕ〉

and therefore
(1 + U∗)ϕ1 + i(1− U∗)ϕ2 = 0 . (3.1.8)

Now we can arrange Eqs. (3.1.7) and (3.1.8)

M

(
ϕ1

ϕ2

)
:=

(
1− U −i(1 + U)
1 + U∗ i(1− U∗)

)(
ϕ1

ϕ2

)
= 0 , (3.1.9)

where now M : Hb → Hb . But clearly M is a unitary operator so that Eq. (3.1.9)
implies that (ϕ1, ϕ2) = 0 and therefore W ⊕ W ′⊥ = (W⊥

⋂
W ′)⊥ = Hb .

This condition together withW ⊂ W ′ impliesW = W ′ becauseW is a closed
subspace, as it is easy to verify.
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3.1.2. Admissible unitaries and closable quadratic forms

In this subsection we will restrict to a family of unitaries U : H0(∂Ω) →
H0(∂Ω) that will allow us to describe a wide class of quadratic forms whose
Friedrichs’ extensions are associated to self-adjoint extensions of the Laplace-
Beltrami operator.

Definition 3.1.8. Let U : H0(∂Ω) → H0(∂Ω) be unitary and denote by σ(U) its
spectrum. We say that the unitary U on the boundary has gap at −1 if one of the
following conditions hold:

i) I + U is invertible.

ii) −1 ∈ σ(U) and −1 is not an accumulation point of σ(U) .

Definition 3.1.9. Let U be a unitary operator acting onH0(∂Ω) with gap at −1 .
Let Eλ be the spectral resolution of the identity associated to the unitary U , i.e.,

U =

∫
[0,2π]

eiλdEλ .

The invertibility boundary space W is defined by W = RanE⊥π . The orthogonal
projection onto W is denoted by P .

Definition 3.1.10. Let U be a unitary operator acting on H0(∂Ω) with gap at
−1 . The partial Cayley transform AU : H0(∂Ω)→W is the operator

AU := iP (U − I)(U + I)−1 .

Proposition 3.1.11. The partial Cayley transform is a bounded, self-adjoint op-
erator onH0(∂Ω) .

Proof. First notice that the operators P , U andAU commute. ThatAU is bounded
is a direct consequence of the Definition 3.1.8, because the operator P (I + U) is,
under the assumption of gap at -1, an invertible bounded operator on the boundary
space W . To show that AU is self-adjoint consider the spectral resolution of the
identity of the operator U . Since U has gap at −1 , either {eiπ} 6∈ σ(U) or there
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exists a neighbourhood V of {eiπ} such that it does not contain any element of
the spectrum σ(U) besides {eiπ} . Pick δ ∈ V ∩ S1 . Then one can express the
operator AU using the spectral resolution of the identity of the operator U as

AU =

∫ π−δ

−π+δ
i
eiλ − 1

eiλ + 1
dEλ =

∫ π−δ

−π+δ
− tan

λ

2
dEλ .

Since λ ∈ [−π + δ, π − δ] , then tan λ
2 ∈ R . Therefore the spectrum of AU is a

subset of the real line, necessary and sufficient condition for a closed, symmetric
operator to be self-adjoint.

We can now introduce the class of closable quadratic forms that was an-
nounced at the beginning of this section.

Definition 3.1.12. Let U be a unitary with gap at −1 , AU the corresponding
partial Cayley transform and γ the trace map considered in Theorem 2.3.7. The
Hermitean quadratic form associated to the unitary U is defined by

QU (Φ,Ψ) = 〈dΦ , dΨ〉 − 〈γ(Φ) , AUγ(Φ)〉∂Ω .

on the domain
DU =

{
Φ ∈ H1(Ω)

∣∣P⊥γ(Φ) = 0
}
.

Proposition 3.1.13. The quadratic form QU is bounded by the Sobolev norm of
order 1,

QU (Φ,Ψ) ≤ K‖Φ‖1‖Ψ‖1 .

Proof. That the first summand of QU is bounded by the H1(Ω) norm is a direct
consequence of the Cauchy-Schwartz inequality and Proposition 2.3.6.

For the second term we have that

|〈γ(Φ) , AUγ(Ψ)〉∂Ω| ≤ ‖AU‖ · ‖γ(Φ)‖0 ‖γ(Ψ)‖0
≤ C‖AU‖ · ‖γ(Φ)‖ 1

2
‖γ(Ψ)‖ 1

2

≤ C ′‖AU‖ · ‖Φ‖1‖Ψ‖1 ,

where we have used Theorem 2.3.7 and Proposition 3.1.11 in the last inequality.
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Finally, we need an additional condition of admissibility on the unitaries on
the boundary that will be needed to prove the closability of QU .

Definition 3.1.14. LetU be a unitary with gap at−1 . The unitary is said to be ad-
missible if the partial Cayley transform AU : H0(∂Ω) → H0(∂Ω) is continuous
with respect to the Sobolev norm of order 1/2 , i.e.,

‖AUϕ‖H1/2(∂Ω) ≤ K‖ϕ‖H1/2(∂Ω) .

Example 3.1.15. Consider a manifold with boundary given by the unit circle, i.e.,
∂Ω = S1 , and define the unitary (Uβϕ)(z) := eiβ(z) ϕ(z) , ϕ ∈ L2(S1) . If
β ∈ L2(S1) and ranβ ⊂ {π}∪ [0, π− δ]∪ [π+ δ, 2π) , for some δ > 0 , then Uβ
has gap at −1 . If, in addition, β ∈ C∞(S1) , then Uβ is admissible.

3.2. Closable and semi-bounded quadratic forms

This section addresses the questions of semi-boundedness and closability of
the quadratic form QU defined on its domain DU (cf., Definition 3.1.12).

3.2.1. Functions and operators on collar neighbourhoods

We will need first some technical results that refer to the functions and oper-
ators in a collar neighbourhood of the boundary ∂Ω and that we will denote by
Ξ . Recall the conventions at the beginning of Section 3.1: if Φ ∈ H1(Ω) , then
ϕ = γ(Φ) denotes its restriction to ∂Ω and for Φ smooth, ϕ̇ = γ(dΦ(ν)) is the
restriction to the boundary of the normal derivative.

Lemma 3.2.1. Let Φ ∈ H1(Ω) , f ∈ H1/2(∂Ω) . Then, for every ε > 0 it exists
Φ̃ ∈ C∞(Ω) such that

• ‖Φ− Φ̃‖1 < ε ,

• ‖ϕ− ϕ̃‖H1/2(∂Ω) < ε ,

• ‖f − ˙̃ϕ‖H1/2(∂Ω) < ε .
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Proof. The first two inequalities are standard (cf., Theorem 2.3.7). Moreover, it is
enough to consider Φ ∈ C∞(Ω) with dΦ(ν) ≡ 0 , where ν ∈ X(Ω) is the normal
vector field on a collar neighbourhood Ξ of ∂Ω , (see [Hir76, Chapter 4] for details
on such neighbourhoods). According to the proof of [Dav95, Theorem 7.2.1] this
is a dense subset of H1(Ω) . The compactness assumption of Ω assures that the
collar neighbourhood has a minimal width δ . Without loss of generality we can
consider that the collar neighbourhood Ξ has gaussian coordinates x = (r,θ) ,
being ∂

∂r the normal vector field pointing outwards. In particular, we have that
Ξ ' [−δ, 0] × ∂Ω and ∂Ω ' {0} × ∂Ω . It is enough to consider f ∈ H1(∂Ω) ,
becauseH1(∂Ω) is dense inH1/2(∂Ω) .

Consider a smooth function g ∈ C∞(R) with the following properties:

• g(0) = 1 and g′(0) = −1 .

• g(s) ≡ 0 , s ∈ [2,∞) .

• |g(s)| < 1 and |g′(s)| < 1 , s ∈ R+
0 .

Define now the rescaled functions gn(r) := 1
ng(−nr) . Let {fn(θ)}n ⊂

C∞(∂Ω) be any sequence such that ‖fn − f‖H1(∂Ω) → 0 . Now consider the
smooth functions

Φ̃n(x) := Φ(x) + gn(r)fn(θ) . (3.2.1)

Clearly we have that ˙̃ϕn(θ) ≡ fn(θ) and therefore ‖ ˙̃ϕn − f‖H1(∂Ω) → 0 as

needed. Now we are going to show that Φ̃n
H1

→ Φ . According to Proposition 2.3.6
it is enough to show that the functions and all their first derivatives converge in the
H0(Ω) norm.

‖Φ̃n(x)− Φ(x)‖H0(Ω) = ‖gn(r)fn(θ)‖H0([− 2
n
,0]×∂Ω) (3.2.2a)

≤ 2

n2
‖fn‖H0(∂Ω) .

‖ ∂
∂r

Φ̃n(x)− ∂

∂r
Φ(x)‖H0(Ω) ≤ ‖fn(θ)‖H0([− 2

n
,0]×∂Ω) (3.2.2b)

≤ 2

n
‖fn‖H0(∂Ω) .
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‖ ∂
∂θ

Φ̃n(x)− ∂

∂θ
Φ(x)‖H0(Ω) = ‖gn(r)

∂

∂θ
fn(θ)‖H0([− 2

n
,0]×∂Ω) (3.2.2c)

≤ 2C

n2
‖fn‖H1(∂Ω) .

The constant C in the last inequality comes from the inequality

‖∂fn
∂θ
‖H0(∂Ω) ≤ C‖fn‖H1(∂Ω) .

Since {fn(θ)} is a convergent sequence in H1(∂Ω) the norms appearing at the
right hand sides are bounded.

Corollary 3.2.2. Let Φ ∈ H1(Ω) and c ∈ R . Then for every ε > 0 there exists a
Φ̃ ∈ C∞(Ω) with ˙̃ϕ = c ϕ̃ such that ‖Φ− Φ̃‖1 < ε .

Proof. As in the proof of the preceding lemma it is enough to approximate any
smooth function Φ with vanishing normal derivative in a collar neighbourhood.
Pick now a sequence of smooth functions

Φ̃n(x) := Φ(x) + cΦ(0,θ)
(
gn(r)− 1

n

)
,

where gn is the sequence of scaled functions defined in the proof of the preceding
lemma. This family of functions clearly verifies the boundary condition ˙̃ϕ = c ϕ̃ .
The inequalities (3.2.2) now read

‖Φ̃n(x)− Φ(x)‖H0(Ω) ≤ ‖cΦ(0,θ)
(
gn(r)− 1

n

)
‖H0([− 2

n
,0]×∂Ω)+

+
c

n
vol(Ω) · sup

Ω
|Φ(0,θ)|

≤ 2

n2
‖cΦ(0,θ)‖H0(∂Ω) +

c

n
vol(Ω) · sup

Ω
|Φ(0,θ)| .

‖ ∂
∂r

Φ̃n(x)− ∂

∂r
Φ(x)‖H0(Ω) ≤ ‖cΦ(0,θ)‖H0([− 2

n
,0]×∂Ω)

≤ 2c

n
‖Φ(0,θ)‖H0(∂Ω) .
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‖ ∂
∂θ

Φ̃n(x)− ∂

∂θ
Φ(x)‖H0(Ω) ≤ ‖c

(
gn(r)− 1

n

) ∂
∂θ

Φ(0,θ)‖H0([− 2
n
,0]×∂Ω)+

+
c

n
vol(Ω) · sup

Ω
|∂Φ(0,θ)

∂θ
|

≤ 2c

n2
‖∂Φ(0,θ)

∂θ
‖H0(∂Ω)+

+
c

n
vol(Ω) · sup

Ω
|∂Φ(0,θ)

∂θ
| .

Corollary 3.2.3. Let {Φn}n ⊂ H1(Ω) and letAU be the partial Cayley transform
of an admissible unitary U . Then it exists a sequence of smooth functions {Φ̃n} ⊂
C∞(Ω) such that

• ‖Φn − Φ̃n‖H1(Ω) <
1
n ,

• ‖ϕn − ϕ̃n‖H1/2(∂Ω) <
1
n ,

• ‖ ˙̃ϕn −AU ϕ̃n‖H1/2(∂Ω) <
1
n .

Proof. For Φn0 , n0 ∈ N , take the approximating smooth function Φ̃n0 as in
Lemma 3.2.1 with

f := AUϕn0 ∈ H1/2(∂Ω)

(note that since U is admissible we have indeed that f ∈ H1/2(∂Ω) , cf., Defini-
tion 3.1.14). Choose also ε > 0 such that

ε ≤ 1

(1 + ‖AU‖H1/2(∂Ω))n0

and note that this implies ε ≤ 1
n0

. Then the first two inequalities follow directly
from Lemma 3.2.1. Moreover, we also have

‖ ˙̃ϕn0 −AU ϕ̃n0‖H1/2(∂Ω) ≤ ‖ ˙̃ϕn0 −AUϕn0‖H1/2(∂Ω) + ‖AUϕn0 −AU ϕ̃n0‖H1/2(∂Ω)

≤ ε+ ‖AU‖H1/2(∂Ω)‖ϕn0 − ϕ̃n0‖H1/2(∂Ω)

≤ (1 + ‖AU‖H1/2(∂Ω))ε ≤
1

n0
.
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For the analysis of the semi-boundedness and closability of the quadratic
form (QU ,DU ) of Definition 3.1.12 we need to analyse first the following one-
dimensional problem in an interval. The operator is defined with Neumann con-
ditions at one end of the interval and Robin-type conditions at the other end.

Definition 3.2.4. Consider the interval I = [0, 2π] and a real constant c ∈ R .
Define the second order differential operator

R : D(R)→ H0([0, 2π]) by R = − d2

dr2

on the domain

D(R) :=

{
Φ ∈ C∞(I)

∣∣∣ ∂Φ

∂r

∣∣
r=0

= 0 and
∂Φ

∂r

∣∣
r=2π

= cΦ|r=2π

}
.

Proposition 3.2.5. The symmetric operator R of Definition 3.2.4 is essentially
self-adjoint with discrete spectrum and semi-bounded from below with lower bound
Λ0 .

Proof. It is well known that this operator together with this boundary conditions
defines an essentially self-adjoint operator (see, e.g., [AIM05, BGP08, Gru68]).
We show next that its spectrum is semi-bounded from below. Its closure is a
self-adjoint extension of the Laplace operator defined on H2

0[0, 2π] . The latter
operator has finite dimensional deficiency indices and its Dirichlet extension is
known to have empty essential spectrum. According to [Wei80, Theorem 8.18]
all the self-adjoint extensions of a closed, symmetric operator with finite defi-
ciency indices have the same essential spectrum and therefore the spectrum of R
is discrete.

Consider now the following spectral problem:

RΦ = ΛΦ,
∂Φ

∂r

∣∣∣
r=0

= 0,
∂Φ

∂r

∣∣∣
r=2π

= cΦ|r=2π , (3.2.3)

with c a real constant. On general solutions Φ(r) = Aeiλr + Be−iλr we impose
the boundary conditions. For nonzero solutions we obtain the following relation

−(iλ+ c)e−i2πλ + (iλ− c)ei2πλ = 0 , (3.2.4)
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where Λ = λ2 ∈ R . The equation is symmetric under the interchange λ → −λ .
It is therefore enough to consider either λ ≥ 0 or λ = iµ with µ > 0 . These two
choices correspond to the positive and negative eigenvalues, respectively. The
imaginary part of Eq. (3.2.4) vanishes identically. If λ ≥ 0 its real part takes the
form

tan 2πλ = − c
λ
,

which leads to infinite solutions for each c ∈ R and therefore there are infinitely
many positive eigenvalues. If λ = iµ we obtain from Eq. (3.2.4)

e−4πµ =
µ− c
µ+ c

,

which has either no solution for c < 0 , the trivial solution µ = 0 for c = 0
and exactly one negative solution for c > 0 . So the operator R is positive for
c ≤ 0 and semi-bounded from below for c > 0 . We denote the lowest possible
eigenvalue by Λ0 .

Definition 3.2.6. Consider the interval I = [0, 2π] and let {Γi(θ)} ⊂ H0(∂Ω) be
an orthonormal basis. Consider the following operator A on the tensor product
H0(I)⊗H0(∂Ω) ' H0(I × ∂Ω) given by

A : D(A)→ H0(I)⊗H0(∂Ω) where A := R⊗ I ,

on its natural domain

D(A) =
{

Φ ∈ H0(I)⊗H0(∂Ω)
∣∣ Φ =

n∑
i=1

Φi(r)Γi(θ) , n ∈ N , Φi ∈ D(R)
}
.

Proposition 3.2.7. The operator A is essentially self-adjoint, semi-bounded from
below and has the same lower bound Λ0 as the operator R of Proposition 3.2.5.

Proof. Let Ψ ∈ ker(A† ∓ i) and consider its decomposition in terms of the or-
thonormal basis {Γi(θ)} ⊂ H0(∂Ω) such that Ψ =

∑∞
i=0 Ψ(r)iΓi(θ) . We have

that 〈Ψ , (A ± i)Φ〉 = 0 for all Φ ∈ D(A) . In particular his is true for any
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Φ = Φi0Γi0 ∈ D(A) . Then

0 = 〈Ψ , (A± i)Φi0Γi0〉 =

∞∑
i

〈Ψi , (R± i)Φi0〉H0(I)〈Γi ,Γi0〉H0(∂Ω)

= 〈Ψi0 , (R± i)Φi0〉H0(I) ∀Φi0 ∈ D(R) .

This implies that Ψi0 = 0 because, by Proposition 3.2.5, R is essentially self-
adjoint. Recall Definition 2.1.9 and Remark 2.1.11. Since the choice of Φi0 was
arbitrary this implies that Ψ = 0 and therefore A is essentially self-adjoint.

Finally we show the semi-boundedness condition. Using the orthonormality
of the basis {Γi(θ)} and for any Φ ∈ D(A) we have that

〈Φ , AΦ〉H0(I×∂Ω) =
n∑
i=1

〈Φi , RΦi〉H0(I)

≥ Λ0

n∑
i=1

〈Φi ,Φi〉H0(I)

= Λ0〈Φ ,Φ〉H0(I×∂Ω) .

3.2.2. Quadratic forms and extensions of the minimal Laplacian

We begin associating quadratic forms to some of the operators on a collar
neighbourhood of the precedent subsection.

Lemma 3.2.8. Denote byQA the closed quadratic form represented by the closure
of A . Then its domain D(QA) contains the Sobolev space of class 1. For any
Φ ∈ H1(I × ∂Ω) ⊂ D(QA) we have the expression

QA(Φ) =

∫
∂Ω

[∫
I

∂Φ̄

∂r

∂Φ

∂r
dr − c|γ(Φ)|2

]
dµ∂η .
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Proof. Let Φ ∈ D(A) . Then, recalling the boundary conditions specified in the
domain D(R), we have that

QA(Φ) = 〈Φ , AΦ〉H0(I×∂Ω) =
∑
i

〈Φi , RΦi〉H0(I)

=
∑
i

〈∂Φi

∂r
,
∂Φi

∂r
〉H0(I) − cΦ̄i(0)Φi(0)

=

∫
∂Ω

[∫
I

∂Φ̄

∂r

∂Φ

∂r
dr − c|ϕ|2

]
dµ∂η . (3.2.5)

Now it is easy to check that the graph norm of this quadratic form is dominated
by the Sobolev norm of order 1,H1(I × ∂Ω) .

|‖Φ‖|2QA = (1 + |Λ0|)‖Φ‖2H0(I×∂Ω) +QA(Φ)

≤ (1 + |Λ0|)‖Φ‖2H0(I×∂Ω) +

∫
∂Ω

∫
I

∂Φ̄

∂r

∂Φ

∂r
drdµ∂η + c‖ϕ‖2H0(∂Ω)

≤ (1 + |Λ0|)‖Φ‖2H0(I×∂Ω) + C‖Φ‖2H1(I×∂Ω)

≤ C ′‖Φ‖2H1(I×∂Ω) ,

where in the second step we have used again the equivalence appearing in Propo-

sition 2.3.6 and Theorem 2.3.7. The above inequality shows that D(A)
‖·‖1 ⊂

D(QA) . Moreover, Corollary 3.2.2 states that D(A) is dense in H1(I × ∂Ω) .
Hence the expression Eq. (3.2.5) holds also onH1(I × ∂Ω) .

Theorem 3.2.9. Let U : H0(∂Ω) → H0(∂Ω) be a unitary operator with gap at
−1 . Then the quadratic formQU of Definition 3.1.12 is semi-bounded from below.

Proof. Let (Ω, ∂Ω, η) be a compact, Riemannian manifold with boundary. One
can always select a collar neighbourhood Ξ of the boundary with coordinates
(r,θ) such that Ξ ' [−L, 0]× ∂Ω and where

η(r,θ) =

[
1 0
0 g(r,θ)

]
.
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The normal vector field to the boundary is going to be ∂
∂r . With this choice

the induced Riemannian metric at the boundary becomes ∂η(θ) ≡ g(0,θ) . The
thickness L of the collar neighbourhood Ξ can be also selected such that it exists
δ � 1 that verifies

(1− δ)
√
|g(0,θ)| ≤

√
|g(r,θ)| ≤ (1 + δ)

√
|g(0,θ)| . (3.2.6)

The quadratic form QU can be adapted to this splitting. Let Φ ∈ DU ⊂ H1(Ω) .
Obviously Φ|Ξ ∈ H1(Ξ) ' H1(I×∂Ω) . In what follows, to simplify the notation
and since there is no risk of confusion, the symbol Φ will stand for both Φ ∈
H1(Ω) and Φ|Ξ ∈ H1(Ξ) .

QU (Φ) =

∫
Ω
η−1(dΦ̄,dΦ)dµη −

∫
∂Ω
ϕ̄Aϕdµ∂η (3.2.7a)

=

∫
Ξ
η−1(dΦ̄,dΦ)dµη +

∫
Ω\Ξ

η−1(dΦ̄,dΦ)dµη −
∫
∂Ω
ϕ̄Aϕdµ∂η

(3.2.7b)

≥
∫

Ξ
η−1(dΦ̄,dΦ)dµη −

∫
∂Ω
ϕ̄Aϕdµ∂η (3.2.7c)

=

∫
∂Ω

∫
I

[∂Φ̄

∂r

∂Φ

∂r
+ g−1(dθΦ,dθΦ)

]√
|g(r,θ)|dr ∧ dθ −

∫
∂Ω
ϕ̄Aϕdµ∂η

(3.2.7d)

≥
∫
∂Ω

∫
I

∂Φ̄

∂r

∂Φ

∂r

√
|g(r,θ)|dr ∧ dθ −

∫
∂Ω
ϕ̄Aϕdµ∂η (3.2.7e)

≥ (1− δ)
∫
∂Ω

∫
I

∂Φ̄

∂r

∂Φ

∂r

√
|g(0,θ)|dr ∧ dθ −

∫
∂Ω
ϕ̄Aϕ

√
|g(0,θ)|dθ

(3.2.7f)

≥ (1− δ)
∫
∂Ω

[∫
I

∂Φ̄

∂r

∂Φ

∂r
dr − ‖A‖

(1− δ)
|ϕ|2

]√
|g(0,θ)|dθ (3.2.7g)

≥ −|Λ0|(1− δ)‖Φ‖2H0(I×∂Ω) ≥ −|Λ0|
1− δ
1 + δ

‖Φ‖2H0(Ξ) (3.2.7h)

≥ −|Λ0|
1− δ
1 + δ

‖Φ‖2H0(Ω) . (3.2.7i)
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In the step leading to (3.2.7c) we have used the fact that the second term is pos-
itive. In the step leading to (3.2.7e) we have used that the second term in the
first integrand is positive. Then (3.2.7f) follows using the bounds (3.2.6). The
last chain of inequalities follows by Proposition 3.2.7 and Lemma 3.2.8, taking
c = ‖A‖/(1− δ) . Notice that the semi-bound of Proposition 3.2.7 is always neg-
ative in this case because c = ‖A‖/(1 − δ) > 0 . In Definition 3.2.4 the interval
I was taken of length 2π whereas in this case it has length L . This affects only
in a constant factor that can be absorbed in the constant c by means of a linear
transformation of the manifold T : [0, 2π]→ I .

Theorem 3.2.10. LetU : H0(∂Ω)→ H0(∂Ω) be an admissible, unitary operator.
Then the quadratic form QU of Definition 3.1.12 is closable.

Proof. According to Remark 2.2.3 a quadratic form is closable iff for any Φ ∈
DU
|‖·‖|QU such that the corresponding Cauchy sequence {Φn} verifies ‖Φn‖ → 0

then Q(Φ) = 0 . Let Φ ∈ DU
|‖·‖|QU .

(a) Lets show that it exist {Φ̃n} ∈ C∞(Ω) such that |‖Φ − Φ̃n‖|QU → 0
and ‖ ˙̃ϕn − AU ϕ̃n‖H1/2(∂Ω) → 0 . It exists {Φn} ∈ DU ⊂ H1(Ω) such that
|‖Φ− Φn‖|QU → 0 . For the sequence {Φn} take {Φ̃n} ∈ C∞(Ω) as in Corollary
3.2.3. Then we have that

|‖Φ− Φ̃n‖|QU ≤ |‖Φ− Φn‖|QU + |‖Φn − Φ̃n‖|QU
≤ |‖Φ− Φn‖|QU +K‖Φn − Φ̃n‖1 ,

where we have used Proposition 3.1.13.

(b) Lets assume that ‖Φn‖ → 0 . This implies that ‖Φ̃n‖ → 0 . For every
Ψ ∈ H2

0 = D(∆min) we have that

|〈∆minΨ , Φ̃n〉| ≤ ‖∆minΨ‖‖Φ̃n‖ → 0 .

Hence lim Φ̃n ∈ D(∆†min) = D(∆max) . According to Theorem 2.3.9 the traces

of such functions exist and are elements ofH−1/2(∂Ω) , i.e., ϕ̃n
H−1/2(∂Ω)→ ϕ̃ .
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(c) Finally we have that

QU (Φ) = lim
m→∞

lim
n→∞

[
〈dΦ̃n , dΦ̃m〉 − 〈ϕ̃n , AU ϕ̃m〉∂Ω

]
= lim

m→∞
lim
n→∞

[
〈Φ̃n ,−∆ηΦ̃m〉+ 〈ϕ̃n , ˙̃ϕm〉∂Ω − 〈ϕ̃n , AU ϕ̃m〉∂Ω

]
= lim

m→∞
(ϕ̃ , ˙̃ϕm −AU ϕ̃m)∂Ω = 0 .

Notice that in the last step we have used the continuous extension given in Propo-
sition 2.4.2 of the scalar product of the boundary 〈· , ·〉∂Ω to the pairing

(· , ·)∂Ω : H−1/2(∂Ω)×H1/2(∂Ω)→ C

associated to the scale of Hilbert spaces H1/2(∂Ω) ⊂ H0(∂Ω) ⊂ H−1/2(∂Ω) ,
and the fact that the unitary operator is admissible.

Theorem 3.2.9 and Theorem 3.2.10 ensure that Theorem 2.2.4 applies and that
the closure of the quadratic form QU for an admissible unitary U is representable
by means of a unique self-adjoint operator T , with domain D(T ) ⊂ D(QU ) :=

DU
|‖·‖|QU , i.e.,

QU (Ψ,Φ) = 〈Ψ , TΦ〉 Ψ ∈ D(QU ),Φ ∈ D(T ) .

The following theorem establishes the relation between this operator T and the
Laplace-Beltrami operator.

Theorem 3.2.11. Let T be the self-adjoint operator with domain D(T ) repre-
senting the closed quadratic form QU with domain D(QU ) . The operator T is a
self-adjoint extension of the closed symmetric operator −∆min .

Proof. By Theorem 2.2.4 we have that Φ ∈ D(T ) iff Φ ∈ D(QU ) and it exists
χ ∈ H0(Ω) such that

QU (Ψ,Φ) = 〈Ψ , χ〉 ∀Ψ ∈ D(QU ) .

Let Φ ∈ H2
0(Ω) ⊂ DU and Ψ ∈ DU . Then

Q(Ψ,Φ) = 〈dΨ , dΦ〉 − 〈ψ ,AUϕ〉∂Ω

= 〈Ψ ,−∆minΦ〉+ 〈ψ , ϕ̇〉∂Ω − 〈ψ ,AUϕ〉∂Ω

= 〈Ψ ,−∆minΦ〉 .



3.3. Examples 45

Since DU is a core for QU and D(QU ) ⊂ H0(Ω) the above equality holds also
for every Ψ ∈ D(QU ) . Therefore D(∆min) = H2

0(Ω) ⊂ D(T ) and moreover
T |D(∆min) = −∆min .

3.3. Examples

In this section we introduce some examples that show that the characterisation
of the quadratic forms of Section 3.1 and Section 3.2 include a large class of
possible self-adjoint extensions of the Laplace-Beltrami operator. This section
also illustrates the simplicity in the description of extensions using admissible
unitaries at the boundary.

As the boundary manifold ∂Ω is an (n − 1)-dimensional, smooth manifold,
there always exist a (n− 1)-simplicial complex K and a smooth diffeomorphism
f : K → ∂Ω such that f(K) = ∂Ω cf., [Whi40, Whi57]. Any simplex in the
complex is diffeomorphic to a reference polyhedron Γ0 ⊂ Rn−1 . The simplicial
complexK defines therefore a triangulation of the boundary ∂Ω = ∪Ni=1Γi , where
Γi := f(Ai) , Ai ∈ K . For each element of the triangulation Γi it exists a
diffeomorphism gi : Γ0 → Γi . Consider a reference Hilbert space H0(Γ0, dµ0)
where dµ0 is a fixed smooth volume element. Each diffeomorphism gi defines a
unitary transformation as follows:

Definition 3.3.1. Let |Ji| be the Jacobian determinant of the transformation of
coordinates given by the diffeomorphism gi : Γ0 → Γi . Let µi ∈ C∞(∂Ω) be the
proportionality factor g?i dµ∂η = µidµ0 , where g?i stands for the pull-back of the
diffeomorphism. The unitary transformation Ti : H0(Γi, dµ∂η) → H0(Γ0, dµ0)
is defined by

TiΦ :=
√
|Ji|µi(Φ ◦ gi) . (3.3.1)

We show that the transformation above is unitary. First note that T is invert-
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ible. It remains to show that T is an isometry:

〈Φ ,Ψ〉Γi =

∫
Γi

ΦΨdµ∂η

=

∫
Γ0

(Φ ◦ gi)(Ψ ◦ gi)|Ji|g?i dµ∂η

=

∫
Γ0

(Φ ◦ gi)(Ψ ◦ gi)|Ji|µidµ0 = 〈TiΦ , TiΨ〉Γ0 .

Example 3.3.2. Consider that the boundary of the Riemannian manifold (Ω, ∂Ω, η)
admits a triangulation of two elements, i.e., ∂Ω = Γ1 ∪ Γ2 . The Hilbert space of
the boundary satisfiesH0(∂Ω) = H(Γ1∪Γ2) ' H0(Γ1)⊕H0(Γ2) . The isomor-
phism is given explicitly by the characteristic functions χi of the submanifolds Γi ,
i = 1, 2 . Modulo a null measure set we have that

Φ = χ1Φ + χ2Φ .

We shall define unitary operators U = H0(∂Ω) → H0(∂Ω) that are adapted to
the block structure induced by the latter direct sum:

U =

[
U11 U12

U21 U22

]
,

where Uij : H0(Γj)→ H0(Γi) . Hence, consider the following unitary operator

U =

[
0 T ∗1 T2

T ∗2 T1 0

]
, (3.3.2)

where the unitaries Ti are defined as in Definition 3.3.1. Clearly, U2 = I , and
therefore the spectrum of U is σ(U) = {−1, 1} with the corresponding orthogo-
nal projectors given by

P⊥ =
1

2
(I− U) ,

P =
1

2
(I + U) .
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The partial Cayley transformAU is in this case the null operator, sinceP (I−U) =
0 . The unitary operator is therefore admissible and the corresponding quadratic
form will be closable. The domain of the corresponding quadratic form QU is
given by all the functions Φ ∈ H1(Ω) such that P⊥γ(Φ) = 0 , which in this case
becomes

P⊥γ(Φ) =
1

2

[
I1 −T ∗1 T2

−T ∗2 T1 I2

] [
χ1γ(Φ)
χ2γ(Φ)

]
=

[
χ1γ(Φ)− T ∗1 T2χ2γ(Φ)
−T ∗2 T1χ1γ(Φ) + χ2γ(Φ)

]
= 0 .

(3.3.3)
We can rewrite the last condition as

T1(χ1γ(Φ)) = T2(χ2γ(Φ)) . (3.3.4)

More concretely, this boundary conditions describe generalised periodic bound-
ary conditions identifying the two triangulation elements of the boundary with
each other. The unitary transformations Ti are necessary to make the triangula-
tion elements congruent. In particular, if (Γ1, ∂η1) and (Γ2, ∂η2) are isomorphic
as Riemannian manifolds then one can recover the standard periodic boundary
conditions.

Example 3.3.3. Consider the same situation as in the previous example but with
the unitary operator replaced by

U =

[
0 T ∗1 e

iαT2

T ∗2 e
−iαT1 0

]
, α ∈ C∞(Γ0) . (3.3.5)

In this case we have also that U2 = I and the calculations of the previous example
can be applied step by step. More concretely P⊥ = (I − U)/2 and the partial
Cayley transform also vanishes. The boundary condition becomes in this case

T1(χ1γ(Φ)) = eiαT2(χ2γ(Φ)) . (3.3.6)

This boundary conditions can be called generalised quasi-periodic boundary con-
ditions. For simple geometries and constant function α these are the boundary
conditions that define the periodic Bloch functions.

The condition α ∈ C∞(Γ0) in the example above can be relaxed. First we will
show that the isometries Ti do preserve the regularity of the function.
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Proposition 3.3.4. Let Ti be a unitary transformation as given by Definition 3.3.1.
Let Φ ∈ Hk(Γi) , k ≥ 0 . Then TiΦ ∈ Hk(Γ0) .

Proof. It is well known, cf., [AF03, Theorem 3.41] or [Dav95, Lemma 7.1.4],
that the pull-back of a function under a smooth diffeomorphism g : Ω1 → Ω2

preserves the regularity of the function, i.e., g?Φ ∈ Hk(Ω1) if Φ ∈ Hk(Ω2) ,
k ≥ 0 . It is therefore enough to prove that multiplication by a smooth positive
function also preserves the regularity. According to Definition 2.3.3 it is enough
to prove it for a smooth, compact, boundary-less Riemannian manifold (Ω̃, η̃) and
to consider that Φ ∈ C∞(Ω̃) , since this set is dense inHk(Ω̃) . Let f ∈ C∞(Ω̃) .∫

Ω̃
fΦ(I −∆η̃)

k(fΦ)dµη̃ ≤ sup
Ω̃

|f |
∫

Ω̃
Φ(I −∆η̃)

k(fΦ)dµη̃

≤ sup
Ω̃

|f |
∫

Ω̃
(I −∆η̃)kΦfΦdµη̃

≤ (sup
Ω̃

|f |)2

∫
Ω̃

(I −∆η̃)kΦΦdµη̃ <∞ .

We have used Definition 2.3.2 directly and the fact that the operator (I −∆η̃)
k is

essentially self-adjoint over the smooth functions.

According to Proposition 3.3.4 we have that Ti(χiγ(Φ)) ∈ H1/2(Γ0) , i =
1, 2 . Therefore, to get nontrivial solutions for the expression (3.3.6), the function
α : Γ0 → [0, 2π] can be chosen such that eiαT2(χ2γ) ∈ H1/2(Γ0) . Since C0(Γ0)
is a dense subset inH1/2(Γ0) , and pointwise multiplication is a continuous oper-
ation for continuous functions it is enough to consider α ∈ C0(Γ0) .

Example 3.3.5. Consider that the boundary of the Riemannian manifold (Ω, ∂Ω, η)
admits a triangulation of two elements like in the Example 3.3.2. So we have that
∂Ω = Γ1∪Γ2 . Consider the following unitary operator U : H0(∂Ω)→ H0(∂Ω)
adapted to the block structure defined by this triangulation

U =

[
eiβ1I1 0

0 eiβ2I2

]
, (3.3.7)
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where C0(Γi) 3 βi : Γi → [−π + δ, π − δ] with δ > 0 . The latter condition
guaranties that the unitary matrix has gap at −1 . Since the unitary is diagonal
in the block structure, it is clear that P⊥ = 0 . The domain of the quadratic form
QU is given in this case by all the functions Φ ∈ H1(Ω) . The partial Cayley
transform is in this case the operator AU = H0(∂Ω)→ H0(∂Ω) defined by

AU =

[
− tan β1

2 0

0 − tan β2

2

]
. (3.3.8)

A matrix like the one above will lead to self-adjoint extensions of the Laplace-
Beltrami operator that verify generalised Robin type boundary conditions χiϕ̇ =
− tan βi

2 χiϕ . Unfortunately, the partial Cayley transform does not satisfy the
admissibility condition in this case. Nevertheless, we will show that the quadratic
form above is indeed closable.

Given a triangulation of the boundary ∂Ω = ∪Ni=1Γi we can consider the
Hilbert space that results of the direct sum of the corresponding Sobolev spaces.
We will denote it as

⊕Hk := ⊕Ni=1Hk(Γi) .

Assuming that the partial Cayley transform verifies the condition

‖AUγ(Φ)‖⊕H1/2 ≤ K‖γ(Φ)‖⊕H1/2 ,

we can generalise Lemma 3.2.1 and Corollary 3.2.3 as follows.

Lemma 3.3.6 (Lemma 3.2.1∗). Let Φ ∈ H1(Ω) , f ∈
(
⊕H1/2

)
. Then, for every

ε > 0 it exists Φ̃ ∈ C∞(Ω) such that

• ‖Φ− Φ̃‖1 < ε ,

• ‖ϕ− ϕ̃‖H1/2(∂Ω) < ε

• ‖f − ˙̃ϕ‖⊕H1/2 < ε .

Proof. The proof of this lemma follows exactly the one for the Lemma 3.2.1. It is
enough to notice that the spaceH1(∂Ω) is dense in ⊕H1/2 .
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Corollary 3.3.7 (Corollary 3.2.3∗). Let {Φn} ⊂ H1(Ω) and let AU be the partial
Cayley transform of a unitary operator with gap at −1 such that

‖Aγ(Φ)‖⊕H1/2 ≤ K‖γ(Φ)‖⊕H1/2 .

Then it exists a sequence of smooth functions {Φ̃n} ∈ C∞(Ω) such that

• ‖Φn − Φ̃n‖H1(Ω) <
1
n ,

• ‖ϕn − ϕ̃n‖H1/2(∂Ω) <
1
n ,

• ‖ ˙̃ϕn −AU ϕ̃n‖⊕H1/2 < 1
n .

Proof. The proof is the same as for Corollary 3.2.3 but now we take Φ̃n0 as in
Lemma 3.3.6 with f = AUϕn0 ∈

(
⊕H1/2

)
.

Now we can show that the quadratic formsQU defined for unitary operators of
the form appearing in Example 3.3.5 are closable. Let us show first that the partial
Cayley transform of Equation (3.3.8) verifies the conditions of the Corollary 3.3.7
above. We have that

‖AUϕ‖2⊕H1/2 = ‖AUχ1ϕ‖2H1/2(Γ1)
+ ‖AUχ2ϕ‖2H1/2(Γ2)

= ‖ tan
β1

2
χ1ϕ‖2H1/2(Γ1)

+ ‖ tan
β2

2
χ2ϕ‖2H1/2(Γ2)

≤ K
[
‖χ1ϕ‖2H1/2(Γ1)

+ ‖χ2ϕ‖2H1/2(Γ2)

]
= K‖ϕ‖2⊕H1/2 .

The last inequality follows from the discussion after Example 3.3.3 because the
functions βi : Γi → [−π+δ, π−δ] are continuous. Take the sequence {Φn} ∈ DU
as in the proof of Theorem 3.2.10 and accordingly take {Φ̃n} ∈ C∞(Ω) as in
Corollary 3.3.7. Then we have that

|Q(Φ)| = lim
m→∞

lim
n→∞

∣∣∣〈dΦ̃n ,dΦ̃m〉 − 〈ϕ̃n , Aϕ̃m〉∂Ω

∣∣∣
≤ lim

m→∞
lim
n→∞

[
|〈Φ̃n ,−∆ηΦ̃m〉|+ |〈ϕ̃n , ˙̃ϕm −AU ϕ̃m〉∂Ω|

]
= lim

m→∞
lim
n→∞

[
|〈Φ̃n ,−∆ηΦ̃m〉|+ |

N∑
i=1

〈ϕ̃n , ˙̃ϕm −AU ϕ̃m〉Γi |
]
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≤ lim
m→∞

lim
n→∞

N∑
i=1

|〈ϕ̃n , ˙̃ϕm −AU ϕ̃m〉Γi |

≤ lim
m→∞

lim
n→∞

N∑
i=1

‖χiϕ̃n‖H−1/2(Γi)
‖χi ˙̃ϕm − χiAU ϕ̃m‖H1/2(Γi)

≤ lim
m→∞

lim
n→∞

‖ϕ̃n‖H−1/2(∂Ω)

N∑
i=1

‖χi ˙̃ϕm − χiAU ϕ̃m‖H1/2(Γi)
= 0 .

We have used Definition 2.3.3 and the structure of the scales of Hilbert spaces
H1/2(Γi) ⊂ H0(Γi) ⊂ H−1/2(Γi) . Hence, the unitary operators of Example
3.3.5 are closable. In particular, this class of closable quadratic forms defines
generalised Robin type boundary conditions ϕ̇ = − tan β

2ϕ where β is allowed
to be a piecewise continuous function with discontinuities at the vertices of the
triangulation.

Example 3.3.8. Consider a unitary operator at the boundary of the form

U =

[
−I1 0
0 eiβ2I2

]
, (3.3.9)

with β2 : Γ2 → [−π+ δ, π− δ] continuous. Again we need the condition δ > 0 in
order to guaranty that the unitary matrix U has gap at −1 . In this case it is clear
that

P⊥ =

[
I1 0
0 0

]
,

and that the partial Cayley transform becomes

AU =

[
0

− tan β2

2

]
.

This partial Cayley transform verifies the weaker admissibility condition of the
previous example and therefore defines a closable quadratic form too. This one
defines a boundary condition of the mixed type where

χ1ϕ = 0 , χ2ϕ̇ = − tan
β2

2
χ2ϕ .
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In particular when β2 = 0 this mixed type boundary condition defines the bound-
ary conditions of the so called Zaremba problem with

χ1ϕ = 0 , χ2ϕ̇ = 0 .

Example 3.3.9. Let (Ω, ∂Ω, η) be a smooth, compact, Riemannian manifold. Sup-
pose that the boundary manifold admits a triangulation ∂Ω = ∪Ni=1Γi . Any uni-
tary matrix that has blockwise the structure of any of the above examples, i.e.,
Equations (3.3.2), (3.3.5), (3.3.7) or (3.3.9) leads to a closable, semi-bounded
quadratic form QU .



4
NUMERICAL SCHEME TO SOLVE THE SPECTRAL
PROBLEM OF THE LAPLACE-BELTRAMI OPERATOR

In this chapter we develop a class of numerical algorithms that can be used to
approximate the spectral problem for the self-adjoint extensions of the Laplace-
Beltrami operator described in chapter 3. The numerical scheme that we use
is based in the finite element method. A standard reference for this method is
[BS08].

In what follows let−∆U denote the self-adjoint operator associated to the clo-
sure of the quadratic form QU of Definition 3.1.12. Theorem 3.2.9 and Theorem
3.2.10 ensure that this closure exists and that the operator −∆U , with domain
D(∆U ) , is semi-bounded below. Moreover −∆U is a self-adjoint extension of
−∆min , cf., Theorem 3.2.11. We are interested in obtaining numerical approxi-
mations of pairs (Φ, λ) ∈ H0(Ω)× R that are solutions of the spectral problem

−∆UΦ = λΦ Φ ∈ D(∆U ) . (4.0.1)

Proposition 4.0.10. A pair (Φ, λ) ∈ H0(Ω) × R is a solution of the spectral



54 NUMERICAL SCHEME TO SOLVE THE SPECTRAL PROBLEM OF THE L.-B. OPERATOR

problem (4.0.1) iff it is a solution of the weak spectral problem

QU (Ψ,Φ) = λ〈Ψ ,Φ〉 ∀Ψ ∈ DU . (4.0.2)

Proof. The only if part is trivial. Suppose that (Φ, λ) ∈ DU
|‖·‖|QU ×R is a solution

of the weak spectral problem (4.0.2). Let {Φn} ∈ D(∆U ) be a sequence such that
|‖Φn − Φ‖|QU → 0 and let Ψ ∈ D(∆U ) . Then we have that

〈−∆UΨ ,Φ〉 = 〈−∆UΨ , lim
n→∞

Φn〉

= lim
n→∞

〈−∆UΨ ,Φn〉

= lim
n→∞

QU (Ψ,Φn)

= QU (Ψ,Φ)

= 〈Ψ , λΦ〉 .

According to Definition 2.1.3 the equality above ensures that Φ ∈ D(∆†U ) =
D(∆U ). Moreover it ensures that

−∆UΦ = λΦ .

Hence, in order to approximate the solutions of (4.0.1) it is enough to approx-
imate the solutions of the weak spectral problem (4.0.2). This is very convenient
for two reasons. First, the domain of the quadratic form is bigger than the domain
of the associated operator and we can use a wider space to look for the solutions.
In our particular case this means that we can look for solutions inH1(Ω) instead of
looking for them in the more regular spaceH2(Ω) . Second, the finite-dimensional
approximation of the weak spectral problem is explicitly Hermitean. Numerical
tools for computing the eigenvalues of Hermitean finite-dimensional matrices are
much faster than the corresponding ones for the non-Hermitean case.

The way that we shall use to approximate the solution of the weak spectral
problem (4.0.2) is to find a family of finite-dimensional subspaces {SN}N ⊂ DU
and to look for solutions (ΦN , λN ) ∈ SN×R of the approximate spectral problem

QU (ΨN ,ΦN ) = λN 〈ΨN ,ΦN 〉 ∀ΨN ∈ SN . (4.0.3)
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Section 4.1 is devoted to show that the solutions of the approximate spectral
problem (4.0.3) converge to the solutions of the weak spectral problem (4.0.2)
provided that the family {SN}N verifies the appropriate conditions. In Section
4.2 we construct explicitly a family {SN}N for the one-dimensional case. Even
if this situation may appear simple, the fact that we want to compute any possible
self-adjoint extension of ∆min introduces complications that are not dealt with
in the common algorithms based on the finite element method. More concretely,
one needs to introduce a nonlocal subspace of functions that is able to encode
all the possible boundary conditions. In Section 4.3 we study the stability of the
method, treat some particular cases, and compare the results with other available
algorithms. In particular we show that this procedure is more reliable in some
cases and that it can implement any boundary condition leading to a self-adjoint
operator over a one-dimensional manifold.

4.1. Convergence of the numerical scheme

In what follows we assume that the unitary operatorU describing the quadratic
form QU is admissible. Hence we are under the conditions of Theorem 3.2.9 and
Theorem 3.2.10 and therefore the quadratic form

QU (Φ,Ψ) = 〈dΦ ,dΨ〉 − 〈γ(Φ) , AUγ(Φ)〉∂Ω (4.1.1)

with domain
DU =

{
Φ ∈ H1(Ω)

∣∣P⊥γ(Φ) = 0
}
, (4.1.2)

where AU is the partial Cayley transform of Definition 3.1.10, is closable and
semi-bounded below.

Definition 4.1.1. Let {SN}N be a family os subspaces of H0(Ω) . We will say
that {SN}N is an approximating family of QU if⋃

N>0

SN
‖·‖1

= DU . (4.1.3)
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The convergence of the eigenvalues and eigenvectors follows by standard ar-
guments.

Theorem 4.1.2. Let {SN}N be an approximating family of QU and let

{(ΦN , λN )}N ∈ {SN}N × R

be the sequence of solutions corresponding to the the nth lowest eigenvalue of
the approximate spectral problems (4.0.3). Then a solution (Φ, λ) of the weak
spectral problem exists such that

|‖Φ− ΦN‖|QU → 0 and lim
N→∞

λN = λ .

Proof. The admissibility condition for the unitary operator U ensures that the
quadratic form QU is semi-bounded and closable. The convergence of the eigen-
values is proved as follows.

Let Vn and V N
n be the subspaces

Vn = {Φ ∈ DU
∣∣〈Φ , ξi〉 = 0 , ξi ∈ H0(Ω) , i = 1, . . . , n} ,

V N
n = {ΦN ∈ SN

∣∣〈ΦN , ξi〉 = 0 , ξi ∈ H0(Ω) , i = 1, . . . , n} .

Then, applying the min-max Principle, Theorem 2.2.6, to the quadratic forms on
the domains of the weak and the approximate spectral problems and subtracting
them we get

sup
ξ1,...,ξn−1

[
inf

ΦN∈V Nn−1

Q(ΦN ,ΦN )

‖ΦN‖2

]
− sup
ξ1,...,ξn−1

[
inf

Φ∈Vn−1

Q(Φ,Φ)

‖Φ‖2

]
= λN − λ ,

(4.1.4)
where λN is the nth eigenvalue of the approximate problem and λ is either the nth
lowest eigenvalue of the weak problem or the bottom of the essential spectrum of
−∆U . The left-hand side tends to zero in the limit N → ∞ provided that SN is
an approximating family, cf., Definition 4.1.1, and therefore

lim
N→∞

λN = λ . (4.1.5)
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Now let {(ΦN , λN )}N be a sequence of solutions of (4.0.3) corresponding to
the nth lowest eigenvalue λN . We can assume that |‖ΦN‖|QU = 1 for every N
and therefore the Banach-Alaoglu theorem ensures that subsequences {ΦNj} and
accumulation points Φ exist such that for every Ψ ∈ DU

lim
Nj→∞

QU (Ψ,Φ− ΦNj ) = 0 . (4.1.6)

If we denote by PNΨ the orthogonal projection of Ψ onto SN , we have that for
every Ψ ∈ DU

|Q(Ψ,Φ)− λ〈Ψ ,Φ〉| ≤ |Q(Ψ,Φ− ΦNj )|+ |λ||〈Ψ ,Φ− ΦNj 〉|+
+ |λNj − λ||〈Ψ ,ΦNj 〉|+ |Q(Ψ− PNΨ,ΦNj )|+
+ |λNj ||〈Ψ− PNΨ ,ΦNj 〉| .

The first two terms go to zero because of the weak convergence in |‖ · ‖|QU . The
third one because of (4.1.5) and the fact that

‖ΦNj‖ ≤ |‖ΦNj‖|QU = 1 .

The last two terms go to zero because the assumption that {SN}N is an approx-
imating family ensures that ‖Ψ − PNΨ‖1 → 0 and both terms are continuous
with respect to the Sobolev norm of order 1, cf., Proposition 3.1.13. Since the
left-hand side does not depend on Nj this shows that (Φ, λ) is a solution of the
weak spectral problem.

4.2. Finite element method for the eigenvalue problem in dimension 1

As it was stated at the beginning of this chapter, we will restrict our atten-
tion to the case of one-dimensional compact manifolds. Let us discuss first the
particularities of this situation.

Notice first that a compact one-dimensional manifold Ω consists of a finite
number of closed intervals Iα , α = 1, . . . , n . Each interval will have the form
Iα = [aα, bα] ⊂ R and the boundary of the manifold Ω =

∐n
α=1[aα, bα] is
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given by the family of points ∂Ω = {a1, b1, . . . , an, bn} . Functions Ψ on Ω are
determined by vectors (Ψ1, . . . ,Ψn) of complex valued functions Ψα : Iα → C .
A Riemannian metric η on Ω is given by specifying a Riemannian metric ηα on
each interval Iα , this is, by a positive smooth function ηα(x) > 0 on the interval
Iα , i.e., η|Iα = ηα(x)dx ⊗ dx . Then the H0(Ω) inner product on Iα takes the
form 〈Ψα,Φα〉 =

∫ bα
aα

Ψα(x)Φα(x)
√
ηα(x)dx and the Hilbert space of square

integrable functions on Ω is given byH0(Ω) =
⊕n

α=1H0(Iα, ηα) .
On each subinterval Iα = [aα, bα] the differential operator ∆ηα = ∆η|Iα

takes the form of a Sturm–Liouville operator

∆α = − 1

Wα

d

dx
pα(x)

d

dx
(4.2.1)

with smooth coefficients Wα = 1/(2
√
ηα) > 0 and pα(x) = 1/

√
ηα .

The boundary ∂Ω = {a1, b1, . . . , an, bn} is a discrete set of cardinality #(∂Ω) =
2n . Hence the Hilbert space at the boundary is finite-dimensional and therefore

H0(∂Ω) ' C2n .

One particular property of the one-dimensional situation is that all the Sobolev
spaces at the boundary are isomorphic to each other

Hk(∂Ω) ' C2n ∀k ∈ R .

These observations lead to the following proposition.

Proposition 4.2.1. Let Ω be a one-dimensional, compact, Riemannian manifold.
Any unitary operator acting on the Hilbert space of the boundary has gap at −1
and is admissible.

Proof. Any unitary operator U ∈ U(2n) has gap at -1 since it can be represented
by a unitary matrix and therefore has pure discrete spectrum. Recalling Definition
3.1.14 we need only to show that it exists a constant K > 0 such that

‖Uϕ‖H1/2(∂Ω) ≤ K‖ϕ‖H1/2(∂Ω) ∀ϕ ∈ H1/2(∂Ω) ,
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but this is clearly satisfied since

‖ · ‖H1/2(∂Ω) ∼ ‖ · ‖H0(∂Ω)

and U is a bounded operator inH0(∂Ω) .

The Lagrange boundary form in dimension 1, cf., Definition 3.1.1, becomes
now a sesquilinear form

Σ : C2n × C2n → C .

According to Proposition 3.1.7 their maximally isotropic subspaces W can be
described in terms of a unitary operator U ∈ U(2n) as

W = {(ϕ1, ϕ2) ∈ C2n × C2n | ϕ1 − iϕ2 = U(ϕ1 + iϕ2)} .

By the previous proposition the unitary operator U has gap at -1 and the condition

ϕ1 − iϕ2 = U(ϕ1 + iϕ2) (4.2.2a)

is equivalent to the conditions

Pϕ2 = AUϕ1 and P⊥ϕ1 = 0 , (4.2.2b)

where, as in Definition 3.1.9 and Definition 3.1.12, P is the projection onto W =
RanE⊥{π} , the orthogonal complement of the eigenspace associated to the eigen-
value -1 of the operator U , and P⊥ is the projection onto W⊥ . The linear system
(4.2.2b) constitutes a system of 2n equations.

4.2.1. Finite elements for general self-adjoint boundary conditions

As stated at the beginning of this chapter, to approximate the solutions of
(4.0.2) we shall construct a family of finite-dimensional subspaces of functions
{SN}N of H0(Ω) ⊂ DU . Such finite-dimensional subspaces are constructed
using finite elements. The way in which we are going to force our family of func-
tions {SN}N to be inDU is imposing the boundary conditions given by equations
(4.2.2). In this case we will take

ϕ1 = γ(ΦN ) = ΦN |∂Ω ,



60 NUMERICAL SCHEME TO SOLVE THE SPECTRAL PROBLEM OF THE L.-B. OPERATOR

ϕ2 = γ(dΦN (ν)) =
∂ΦN

∂ν

∣∣∣
∂Ω

,

with ΦN ∈ SN . Notice that with this choice the boundary term of the quadratic
form (4.1.1) can be written as

〈γ(ΦN ) , AUγ(ΦN )〉∂Ω = 〈γ(ΦN ) , γ(dΦN (ν))〉∂Ω = 〈ϕ , ϕ̇〉∂Ω . (4.2.3)

Recall that small greek letters denote the restriction to the boundary of the corre-
sponding capital greek letters and that doted, small greek letters denote restrictions
to the boundary of the normal derivatives. The subindex N labelling the subspace
{SN} will be dropped in the small greek letter notation as long as there is no risk
of confusion.

The finite element model (K,P,N ) that we use is given by the unit interval
K = [0, 1] , P the space of linear polynomials onK , andN the vertex set {0, 1} .

The domain of our problem is the manifold Ω which consists of the disjoint
union of the intervals Iα = [aα, bα] , α = 1, . . . , n . For each N we will construct
a non-degenerate subdivision MN as follows. Let rα be the integer defined as
rα = [LαN/L] + 1 , where [x] denotes the integer part of x , Lα = |bα − aα| ,
and L = L1 + . . .+ Ln . We will assume that each rα ≥ 2 , and N ≥ 2n . Let us
denote by r the multi index (r1, . . . , rn) . Then |r| = r1 + · · ·+ rn satisfies

N ≤ |r| ≤ N + n . (4.2.4)

Now we will subdivide each interval Iα into rα + 1 subintervals of length:

hα =
Lα

rα + 1
.

The non-degeneracy condition supposes that it exists ρ > 0 such that for all Iα,a ∈
MN and for all N > 1

diamBIα,a ≥ ρdiam Iα,a ,

where BIα,a is the largest ball contained in Iα,a such that Iα,a is star shaped with
respect to BIα,a . In our particular case this is satisfied trivially since

diamBIα,a = diam Iα,a .
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(It would be possible to use a set of independent steps hα , one for each interval;
however, this could create some technical difficulties later on that we prevent in
this way.) Each subinterval Iα contains rα + 2 nodes that will be denoted as

x
(α)
k = aα + hαk, k = 0, . . . , rα + 1 .

Bulk functions

Consider now the family Fr of |r| − 2n piecewise linear functions

{f (α)
k (x)}rα−1

k=2 , α = 1, . . . , n , 2 ≤ k ≤ rα − 1 ,

that are zero at all nodes except at the kth node of the interval Iα , where it has
value 1 , or more explicitly,

f
(α)
k (x) =


s , x = x

(α)
k−1 + shα, 0 ≤ s ≤ 1 ,

1− s , x = x
(α)
k + shα, 0 ≤ s ≤ 1 ,

0 , otherwise .

Notice that these functions are differentiable on each subinterval. All these func-
tions satisfy trivially the boundary conditions (4.2.2) because they and their nor-
mal derivatives vanish at the endpoints of each interval. They are localised around
the inner nodes of the intervals. We will call these functions bulk functions.

Boundary functions

We will add to the set of bulk functions a family of functions that implement
nontrivially the boundary conditions determining the self-adjoint extension. These
functions will be called boundary functions and the collection of all of them will
be denoted by Br . Contrary to bulk functions, boundary functions need to be
“delocalised” so that they can fulfil any possible self-adjoint extension’s boundary
condition.

Because the endpoints x(α)
0 = aα , x(α)

rα+1 = bα of the intervals Iα and the

adjacent nodes, x(α)
1 and x(α)

rα , are going to play a prominent role in what follows,
we introduce some notation that takes care of them. We will consider an index
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I1 Iα In

v1 v2

w1 w2 w2α−1

v2α−1

v2α

w2α
v2n

w2nw2n−1

v2n−1

Figure 4.1: Boundary function β(w) .

l = 1, . . . , 2n that labels the endpoints of the intervals. Now for each vector
w = (wl) ∈ C2n consider the following functions (see Figure 4.1):

β(w)(x) =



v2α−1 + s(w2α−1 − v2α−1) , x = x
(α)
0 + shα ,

w2α−1(1− s) , x = x
(α)
1 + shα ,

s w2α , x = x
(α)
rα−1 + shα ,

w2α + s(v2α − w2α) , x = x
(α)
rα + shα, ,

0 , x
(α)
2 ≤ x ≤ x(α)

rα−1 ,

0 ≤ s ≤ 1 ,
1 ≤ α ≤ n .

Each function of the previous family is determined (apart from the vector w)
by the vector v = (vl) ∈ C2n that collects the values of β(w) at the endpoints
of the subintervals. If we denote by w(k) the vectors such that w(k)

l = δlk ,
k = 1, . . . , 2n , the 2n vectors w(k) are just the standard basis for C2n . The cor-
responding functions β(w) will now be denoted simply by β(k) . Notice that each
boundary function β(k) is completely characterised by the unique non-extremal
node where it does not vanish1 and the values at the endpoints. We denote by
v

(k)
l , l = 1, . . . , 2n , the boundary values of the functions β(k) above.

1If k = 2α− 1 , it is the node x(α)
1 , and if k = 2α , it corresponds to the node x(α)

rα .

~ .... L~ .... L~ .... L 
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The boundary matrix

The 2n extremal values v(k)
l of the boundary functions β(k) are undefined, but

we are going to show that the 2n conditions (4.2.2) imposed on the boundary func-
tions constitute a determinate system of linear equations for them. Because the
boundary functions are constructed to be piecewise linear, the normal derivatives
of these functions at the boundary can be obtained easily. For the left boundaries
of the intervals, i.e., at the points aα , we have

dβ(k)

dν

∣∣∣∣∣
x=aα

= − 1

hα
(w

(k)
2α−1 − v

(k)
2α−1) , (4.2.5)

and respectively, for the right boundaries,

dβ(k)

dν

∣∣∣∣∣
x=bα

=
1

hα
(v

(k)
2α − w

(k)
2α ) = − 1

hα
(w

(k)
2α − v

(k)
2α ) . (4.2.6)

Thus the vector containing the normal derivatives of the function β(k) , consis-
tently denoted by β̇(k) , is given by

β̇
(k)
l = − 1

hl
(w

(k)
l − v

(k)
l ) = − 1

hl
(δlk − v

(k)
l ) , (4.2.7)

where we use again the consistent notation hl = hα , if l = 2α − 1 , or l = 2α .
For each boundary function β(k) , the boundary conditions (4.2.2a) read simply as
the system of 2n equations on the components of the vector v(k) ,

v(k) − iβ̇(k) = U(v(k) + iβ̇(k)) ,

or, componentwise,

v
(k)
l

(
1− i

hl

)
+

i

hl
w

(k)
l =

2n∑
j=1

Ulj

[
v

(k)
j

(
1 +

i

hj

)
− i

hj
w

(k)
j

]
,
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with l = 1, . . . , 2n . Collecting coefficients and substituting the expressions
w

(k)
l = δlk we get

2n∑
j=1

[(
1− i

hj

)
δlj − Ulj

(
1 +

i

hj

)]
v

(k)
j =

[
− i

hk
δlk − Ulk

i

hk

]
. (4.2.8)

This last equation can be written as the matrix linear system:

FV = C (4.2.9)

with V a 2n×2nmatrix whose entries are given by Vjk = v
(k)
j , j, k = 1, . . . , 2n .

The kth column of V contains the boundary values of the boundary function β(k) .
The 2n× 2n matrix F with entries

Flj =

(
1− i

hj

)
δlj − Ulj

(
1 +

i

hj

)
,

will be called the boundary matrix of the subdivision of the domainM determined
by the integer N , and

Clk = − i

hk
(δlk + Ulk)

defines the inhomogeneous term of the linear system (4.2.9). Using a compact
notation we get

F = diag(1− i/h)− Udiag(1 + i/h) , C = −i (I + U)diag(1/h) ,

where 1/h denotes the vector whose components are 1/hl . Notice that F depends
just on U and the integer |r| defining the discretisation of the manifold.

4.2.2. Conditioning of the boundary matrix

Before addressing the construction of the approximate spectral problem we
will study the behaviour of system (4.2.9) under perturbations; in other words, we
will compute the condition number of the boundary matrix F and show that it is
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small enough to ensure the accuracy of the numerical determination of our family
of boundary functions β(i) . The relative condition number we want to compute is

κ(F ) = ‖F‖‖F−1‖ .

In our case, the boundary matrix F can be expressed as

F = D̄ − UD = (I − UDD̄−1)D̄

with Djk(h) = Djk = (1 + i
hj

)δjk . Notice that the product UDD̄−1 is a unitary
matrix which we will denote asU0(h) or simplyU0 if we do not want to emphasise
the h dependence of U0 . Thus, F = (I − U0)D̄ and

‖F‖ = ‖(I − U0)D̄‖ ≤ ‖I − U0‖‖D̄‖ ≤ 2‖D‖ .

On the other hand,

‖F−1‖ = ‖D̄−1(I −U0)−1‖ ≤ ‖D̄−1‖‖(I −U0)−1‖ =
‖D−1‖

minλ∈spec(U0){|1− λ|}

and thus we obtain

κ(F ) ≤ κ(D)
2

minλ∈spec(U0){|1− λ|}
. (4.2.10)

As D is a diagonal matrix its condition number is given by

κ(D) =

√
1

h2
min

+ 1√
1

h2
max

+ 1
≤ hmax

hmin

with hmax (hmin) the biggest (smallest) step of the discretisation determined by
N . We get finally,

κ(F ) ≤ hmax

hmin

2

|1− λ|
(4.2.11)

with λ the closest element of the spectrum of U0 to 1 . Of course, because U0 is
unitary, it may happen that 1 is in its spectrum, so that the condition number is not
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bounded. Because the matrix U0 depends on h , its eigenvalues will depend on h
too. We want to study the dependence of the closest eigenvalue to 1, or 1 for that
matter, with respect to perturbations of the vector h .

Lemma 4.2.2. Suppose that X0 is an eigenvector with eigenvalue 1 of U0 and
that the perturbed matrix Û = U0 + δU , for ‖δU‖ small enough, is such that
1 ∈ σ(Û) . Then X̄T

0 δUX0 = 0 to first order in δU .

Proof. Clearly, if 1 ∈ σ(Û) and δU is small enough, there exist a vector X̂ =
X0 + δX , with ‖δX‖ ≤ C‖δU‖ , such that ÛX̂ = 1X̂ . Then we have

U0δX + δUX0 + δUδX = δX.

Because U0X0 = X0 and U0 is unitary, X̄T
0 U0 = X̄T

0 , and then multiplying on
the left by X̄T

0 and keeping only first order terms, we get the desired condition:
X̄T

0 δUX0 = 0.

Because of the previous lemma, if Û = U0 + δU is a unitary perturbation
of U0 such that X̄T

0 δUX0 6= 0 , for any eigenvector X0 with eigenvalue 1, then
1 /∈ σ(Û) . Now if we consider a unitary perturbation Û of U0 such that 1 /∈ σ(Û)
we want to estimate how far 1 is from the spectrum of Û . Consider the eigenvalue
equation for the perturbed matrix. The perturbed eigenvalue λ̂ = 1 + δλ will
satisfy

(U0 + δU)(X0 + δX) = (1 + δλ)(X0 + δX) . (4.2.12)

Multiplying on the left by X̄T
0 and solving for |δλ| it follows that

|δλ| ≥ |X
H
0 δUX0 +XH

0 δUδX|
|1 +XH

0 δX|
≥ |X

H
0 δUX0| − |XH

0 δUδX|
1 + ‖δX‖

(4.2.13)

for ‖δU‖ small enough. Taking into account the particular form of the ma-
trix U0 = UDD̄−1 we have that δU = Uδ(DD̄−1) and therefore ‖δU‖ =
‖δ(DD̄−1)‖ . Moreover, because δ(DD̄−1) is a diagonal matrix, δ(DD̄−1)kk =
−2i

(hk−i)2 δhk and its singular values are the modulus of its diagonal entries. Hence
we have the following proposition.
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Proposition 4.2.3. Given the matrix U0 = UDD̄−1 with eigenvalue 1, then 1
is not an eigenvalue of any unitarily perturbed matrix U + δU = U0(DD̄−1 +
δ(DD̄−1)) with ‖δ(DD̄−1)‖ small enough and δh = min{|δhk|} > 0 . Moreover
there exists a constant C > 0 such that the perturbation δλ of such eigenvalue
satisfies the lower bound,

|δλ| ≥ σmin(δ(DD̄−1))− Cσ2
max(δ(DD̄−1))

1 + Cσmax(δ(DD̄−1))
> 0.

Proof. Because of Lemma 4.2.2 it is sufficient to show that X̄T
0 δ(DD̄

−1))X0 6=
0 . But this is an easy consequence of the fact that |

∑2n
i=1(|X0,i|2δ(DD̄−1))ii| ≥

2δh . Furthermore there exists a constantC > 0 such that ‖δX‖ ≤ C‖δU‖; hence
taking ‖δ(DD̄−1)‖ small enough we get σmin(δ(DD̄−1))−Cσ2

max(δ(DD̄−1)) >
0 and the bound follows from (4.2.13).

Now we can apply Proposition 4.2.3 to (4.2.11) and if we neglect terms |h2
i | �

1 and |δhi| � |hi| we finally get the desired bound for the condition number

κ(F ) ≤ hmax

hmin

1

δh
. (4.2.14)

Then, if for a given N we obtain a boundary matrix F which is bad conditioned,
it suffices to change the size of the discretisation, i.e., to increase N , to improve
the condition number. Of course, if N is already quite large, then the bound
(4.2.14) could be useless. For typical values h ≈ 10−2 ∼ 10−3 , it can be taken
as δh ≈ 10−4 ∼ 10−5 to provide condition numbers κ(F ) ≈ 104 ∼ 105 .

4.2.3. The spectral pencil

For any N > 2n we define the finite-dimensional approximation space SN as
the linear span of the bulk and boundary functions, i.e., SN = span{f (α)

k , β(l) |
α = 1, . . . , n, k = 2, . . . , rα − 1, l = 1, . . . 2n} . All functions f (α)

k and β(l) are
linearly independent; thus the dimension of SN will be |r| = r1 + . . .+ rn . The
relation of the index N and the value |r| is given by (4.2.4). It is convenient to
rearrange the elements of the basis above as follows:

β(1), f
(1)
1 , . . . , f (1)

r1 , β
(2), β(3), f

(2)
1 , . . . , f (2)

r2 , β
(4), . . . , β(2n−1), f

(n)
1 , . . . , f (n)

rn , β
(2n).
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Using this ordering, we will rename the elements of this basis as fa , with a =
1, . . . , |r| , and an arbitrary element ΦN ∈ SN will be written as ΦN (x) =∑|r|

a=1 Φafa(x). We consider now the approximate spectral problem (4.0.3):

Q(ΨN ,ΦN ) = 〈dΨN ,dΦN 〉 − 〈ψ , ϕ̇〉∂Ω

= 〈dΨN ,dΦN 〉 − 〈γ(ΨN ) , γ(dΦN (ν))〉∂Ω = λ〈ΨN ,ΦN 〉

Introducing the expansion above we get

|r|∑
a,b

Ψa

[
〈dfa ,dfb〉 − 〈γ(fa) , γ(dfb(ν))〉∂Ω − λ〈dfa ,dfb〉

]
Φb = 0. (4.2.15)

As (4.2.15) holds for every ΨN ∈ SN , this equation is equivalent to the eigen-
value equation of the matrix pencil A− λB

A = λB, (4.2.16)

where

Aab = 〈dfa , dfb〉 − 〈γ(fa) , γ(dfb(ν))〉∂Ω

= 〈dfa , dfb〉 − 〈γ(fa) , AUγ(fb)〉∂Ω ,

Bab = 〈dfa , dfb〉 .
Notice that A and B are both Hermitian matrices, which improves the numerical
algorithms used to compute the eigenvalues of the pencil. In fact, when solving
numerically (4.2.16), it is relevant to preserve its Hermitian character. Notice that
the boundary functions β(l)(x) satisfy

〈β(l) , β̇(m)〉∂Ω − 〈β(m) , β̇(l)〉∂Ω = 0 , (4.2.17)

because their boundary values are elements of a maximally isotropic subspace
of the Lagrange boundary form, i.e., they satisfy (4.2.2a). Using (4.2.7) and the
definition of the boundary values of the boundary functions codified in the matrix
V we have

〈β(l) , β̇(m)〉∂Ω =
2n∑
k=1

1

hk
V̄kl(Vkm − δkm) =

2n∑
k=1

1

hk
V̄klVkm −

1

hm
V̄ml .
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This identity together with (4.2.17) leads to

1

hj
V̄jk =

1

hk
Vkj . (4.2.18)

The Hermitian relation (4.2.18) is satisfied by the numerical solutions of (4.2.9)
up to roundoff errors and consequently the pencil (4.2.16) is Hermitian only up
to these roundoff errors. We will force the numerical solution of matrix V to
satisfy (4.2.18) so that the Hermiticity of the pencil is preserved exactly. This is
convenient because the algorithms for solving the general eigenvalue problem are
much better behaved in the Hermitian case [Dem97, Chapter 5].

To end this discussion we must realise that, with the basis fa for SN we have
just constructed, the matrices A and B are almost tridiagonal and the unique el-
ements different from zero, besides the tridiagonal ones, are those related to the
matrix elements of the boundary functions. In fact, we can consider a number of
cases. If the function fa is an interior bulk function, i.e., not corresponding to the
node xα2 or x(α)

rα−1 , it is obvious that the only nontrivial inner products 〈fa, fb〉 and
〈f ′a, f ′b〉 will correspond to b = a − 1, a, a + 1 . If the function fa is an extreme
bulk function, for instance, f (α)

2 , then it has nontrivial inner products only with
β(2α−1) and f (α)

3 , and if fa is now a boundary function β(l) , then the only non-
vanishing inner products will be with the other boundary functions and an extreme
bulk function, namely, f (α)

2 if l = 2α− 1 or f (α)
rα−1 if l = 2α .

4.2.4. The family {SN}N is an approximating family of QU

We conclude this section by showing that the family of subspaces {SN}N
constructed in the previous subsections is indeed an approximating family ofQU .
The results of section 4.1 show that the solutions of the spectral pencil (4.2.16) do
approximate the solutions of the spectral problems for the self-adjoint extensions
of the Laplace-Beltrami operator −∆U .

Theorem 4.2.4. The closure of the union of all the finite-dimensional spaces SN

in the Sobolev norm of order 1 is the domain DU of the quadratic form QU ,

∪N>1S
N
‖·‖1

= DU .



70 NUMERICAL SCHEME TO SOLVE THE SPECTRAL PROBLEM OF THE L.-B. OPERATOR

Proof. First notice that for every N the functions in SN verify the same boundary
condition than the functions in DU , namely

P⊥γ(ΦN ) = 0 .

Hence SN ⊂ DU .
Now let PN : H0(Ω) → SN be the orthogonal projection onto SN . It is

enough to show that ∪N>1 RanPN is dense inH1(Ω) . Let {ΩN}N , 0 ≤ 1
N ≤ 1 ,

be the non-degenerate family of subdivisions of the manifold Ω ⊂ R defined in
subsection 4.2.1. It consists of a collection of |r| + n closed subintervals Iα,a ,
a = 1, . . . , rα + 1 , of the real line. Each subinterval is a representation of the
reference elementK = [0, 1] with nodal setN = {0, 1} . According to subsection
4.2.1, the family of functions P consists of the space of linear polynomials in K .
Let Pm be the space of polynomials of degree m . Then the reference element
(K,P,N ) satisfies the following for m = 1, 2 and l = 0:

• K is star-shaped with respect to some ball.

• Pm−1 ⊆ P ⊆Wm,∞(K) .

• The nodal variables N involve derivatives up to order l .

For all Iα,a ∈ MN let (K,Pα,a,Nα,a) be the affine-equivalent element. Suppose
that 1 < p < ∞ and m − l − 1/p > 0 . Then, according to [BS08, Theorem
4.4.20], there exists a constant C , depending on the reference element, m , and p
such that for 0 ≤ s ≤ m , ∑

Iα,a∈MN

‖Ψ− PNΨ‖pHs(Iα,a)

1/p

≤ CN s−m‖Ψ‖Hm(Ω). (4.2.19)

Particularising for the case s = 1 , m = 2 , p = 2 , inequality (4.2.19) becomes

‖Ψ− PNΨ‖H1(Ω) ≤
C

N
‖Ψ‖H2(Ω). (4.2.20)

Since H2(Ω) is a dense subset in H1(Ω) the inequality above ensures that for
every Ψ ∈ DU the sequence PNΨ ⊂ SN satisfies that

lim
N→∞

‖Ψ− PNΨ‖H1(Ω) = 0 .



4.3. Numerical experiments 71

Notice that the proof of this theorem also provides an estimation for the con-
vergence rate of the numerical scheme. In fact the result in [BS08, Theorem
4.4.20], quoted in the proof of the theorem above, shows that the error in the dis-
cretisation measured in the H1-norm decreases as 1/N . Among other issues, in
the next section we are going to show how this bound is satisfied for a particular
instance of the numerical algorithms described in this section.

4.3. Numerical experiments

The numerical scheme described in Section 4.2 results in the finite dimen-
sional eigenvalue problem of (4.2.16). Furthermore, we have that the error of the
solution measured in the H1-norm decreases as 1/N . Hence, if we were able
to solve (4.2.16) for increasing grid size N , we would get better and better ap-
proximations to the eigenvalue problem. As remarked in the previous section, the
pencil is almost tridiagonal and both matrices A and B are Hermitian. Therefore
the resulting problem is algebraically well behaved and it should lead to accurate
results.

We will now discuss some numerical experiments that illustrate the stability
and the convergence of the algorithm. We will also compare these results with
those obtained by using two other algorithms (not based on the finite element
method). In the latter cases we will use a particular choice of boundary conditions
close to the singular case described in [BD08]. We will consider the case of the
Laplacian in Ω = [0, 2π] subject to different boundary conditions:

− d2

dx2
Ψ = λΨ . (4.3.1)

Notice that in this simple case there is only one interval and |r| = N + 1 , so
we can use |r| or N interchangeably. The number h = 2π

r+1 is going to be the
length of each subinterval. After some straightforward computations we find that
the matricesA andB defining the spectral pencilA−λB associated to (4.3.1) are
given by
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akk = 2, k = 2, . . . , r − 1 ,
ak k+1 = ak+1 k = −1, k = 1, . . . , r − 1 ,
a11 = 2− V11 ,
arr = 2− V22 ,
a1r = −V12 ,
ar1 = a1r = −V21 ,
akj = 0, j ≥ k + 2, j ≤ k − 2 ,
Akj = 1

hakj ,

(4.3.2)

bkk = 4, k = 2, . . . , r − 1 ,
bk k+1 = bk+1 k = 1, k = 1, . . . , r − 1 ,
b11 = 4 + 2[|V11|2 + |V21|2] + 2V11 ,
brr = 4 + 2[|V22|2 + |V12|2] + 2V22 ,
b1r = 2[V̄11V12 + V̄21V22] + 2 ,

br1 = b1r ,
bkj = 0, j ≥ k + 2, j ≤ k − 2 ,

Bkj = h
6 bkj .

(4.3.3)

In each case, in order to obtain the matrix V , one needs to solve previously
the corresponding system of equations (4.2.9) for the given self-adjoint extension.
The solutions of these generalised eigenvalue problems have been obtained us-
ing the Octave built-in function eig . The details of this routine can be found in
[A+92]. This built-in function is a general-purpose diagonalisation routine that
does not exploit the particularly simple algebraic structure of this problem. One
could adapt the diagonalisation routine to the algebraic structure of the problem at
hand (there are only two elements outside the main diagonals) to improve the ef-
ficiency. Moreover, one could also use the p-version of the finite element method
that, considering that the solutions are smooth, would be more adaptive. However
our main objective here is to show that the computation of general self-adjoint
extensions by using non-localised finite elements at the boundary, as explained in
Subsection 4.2.1, is reliable and accurate. We consider that the results explained
below account for this, and we leave these improvements for future work.

First we will test the stability of the method against variations of the input
parameters. The parameters of this procedure are the matrix U determining the
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self-adjoint extension whose eigenvalue problem we want to solve. We will per-
turb an initial self-adjoint extension, described by a unitary matrix U , and we will
observe the behaviour of the eigenvalues. In other words, we are interested now
in studying the relation

|∆λ| = K(ε)‖∆U‖ , (4.3.4)

where ε is the parameter measuring the size of the perturbation. If the algorithm
were stable one would expect that the condition numberK(ε) would grow at most
polynomially with the perturbation ε . However, we must be careful in doing so
since the exact eigenvalue problem presents divergences under certain circum-
stances (explained below) which could lead to wrong conclusions. In fact, as a
consequence of Theorem 3.2.9, we see that when a self-adjoint extension is pa-
rameterised by a unitary matrix U that has eigenvalues close but not equal to −1 ,
it happens that some eigenvalues of the considered problem take very large neg-
ative values. However, matrices with −1 in the spectrum can lead to self-adjoint
extensions that are positive definite, for example, Dirichlet or Periodic self-adjoint
extensions. Thus, following a path in the space of self-adjoint extensions, it could
happen that a very small change in the arc parameter leads to an extremely large
jump in the exact eigenvalues. Such self-adjoint extensions are precisely the ones
that lead in higher dimensions to the problem identified by M. Berry as a Dirichlet
singularity2 [BD08],[Ber09], [MR09]. In fact these boundary conditions can be
described by unitary operators that do not have gap at -1. The results discussed in
chapter 3 show in fact that such boundary conditions can lead to truly unbounded
self-adjoint extensions of the Laplace-Beltrami operator, i.e., not semi-bounded,
and they will be the target of our latter tests. For proving the stability it is there-
fore necessary to perturb the unitary matrix along a direction of its tangent space
such that the gap condition is not a jeopardy. A path in the space of self-adjoint
extensions where the aforementioned jumps in the spectrum do not occur is, for
instance, the one described by the so-called quasi-periodic boundary conditions
[AEP83]. These correspond to the unitary operator described in Example 3.3.3. In
this case, the self-adjoint domain is described by functions that satisfy the bound-
ary conditions Ψ(0) = ei2πεΨ(2π) and Ψ′(0) = ei2πεΨ′(2π) , which correspond

2Notice again that U = −1 is the unitary matrix describing Dirichlet boundary conditions.
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to the family of unitary matrices

U(ε) =

(
0 ei2πε

e−i2πε 0

)
. (4.3.5)

Notice that this particular choice of boundary conditions, which are non-local
in the sense that they mix the boundary data at both endpoints of the interval,
can naturally be treated by the discretisation procedure introduced in Section 4.2
and that goes beyond the ones usually addressed by most approximate methods
[AGM09], [Cha99], [FGT57], [Pru73], described by local equations of the form
α ·Ψ(a) + β ·Ψ′(a) = 0 , γ ·Ψ(b) + δ ·Ψ′(b) = 0 .

Let us then consider perturbations of the periodic case in the quasi-periodic
direction, i.e., we consider

U(ε) ' U + iεA =

(
0 1
1 0

)
+ iε

(
0 1
−1 0

)
.

We have calculated the numerical solutions for values of ε between 10−4 and 10−1

in steps of 10−4 and the discretisation size used was N = 250 . In the latter case
the perturbation is ‖∆U‖ = ‖iεA‖ = ε , hence the absolute error ratio is

K(ε) =
|∆λ|
‖∆U‖

=
1

ε
|∆λ| .

The results are plotted in figure 4.2. As can be seen, K(ε) is a decreasing func-
tion of ε except for the fundamental level. In the latter case the absolute ratio is
an increasing function of ε . However, in this case it can be seen clearly that the
growth is linear. This result shows that the procedure is stable under perturbations
of the input matrix U .

We will consider now the Laplacian (4.3.1) subjected to quasi-periodic bound-
ary conditions:

Ψ(0) = ei2πεΨ(2π) , Ψ′(0) = ei2πεΨ′(2π) . (4.3.6)

These are codified by the unitary matrix (4.3.5). This is a meaningful example
since it demonstrates that this algorithm provides a new way to compute the Bloch
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Figure 4.2: Absolute error ratio K(ε) of the five lowest levels for the periodic
boundary problem plotted against ε in log-log scale.

decomposition of a periodic Schrödinger operator. This problem is addressed
usually by considering the unitary equivalent problem−

(
d
dx + iε

)2
Ψ = λΨ with

periodic boundary conditions. However, our procedure is able to deal with it
directly in terms of the original boundary condition.

The analytic solutions for this particular eigenvalue problem can be obtained
explicitly [AEP83]. They are λn = (n+ε)2 , ψn = 1√

2π
e−i(n+ε)x, n = 0, ±1, . . . ,

and we can compare the approximate solution obtained by the procedure described
in Section 4.2. In particular we show that the bound (4.2.20) is satisfied, i.e., that
the error between the approximate solutions and the analytic ones measured in the
H1-norm is of the form 1/N . The results for the five lowest eigenvalues corre-
sponding to ε = 0.25 are shown in figure 4.3.3 As is known for the finite element

3In order to avoid errors coming from numerical quadratures, the solutions of the integrals ap-
pearing in the H1-norms of each subinterval, comparing the analytic solutions and the linear ap-

Absolut Error Ratio in lag-lag seall! 
10·,-----______________ ------------------__ ----------------~ 



76 NUMERICAL SCHEME TO SOLVE THE SPECTRAL PROBLEM OF THE L.-B. OPERATOR

approximations, the error grows with the order of the eigenvalue; however, it is
clearly seen that for all the cases the decay law is of the form 1/N , therefore sat-
isfying the bound.

Figure 4.3: Evolution of the error, measured in the H1-norm, for the five lowest
levels of the quasi-periodic Laplacian problem (ε = 0.25) with increasing lattice
size plotted in normal scale and log-log scale.

Finally we consider again the Laplacian, but in this case subjected to the local
boundary conditions

Ψ′(0) = 0 ,
tan(−θ/2) ·Ψ(2π) + Ψ′(2π) = 0 ,

(4.3.7)

proximations, have been computed explicitly.
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which are determined by the unitary matrix

U =

(
1 0
0 e−iθ

)
. (4.3.8)

This is a particular case of Example 3.3.5. Moreover, this is the problem of the
interval addressed in Definition 3.2.4. These boundary conditions, unlike the pre-
vious ones, can be handled by most of the software packages available for the
integration of Sturm-Liouville problems. As is stated in Proposition 3.2.5, when
θ = π the Laplace operator is positive, but for values of θ < π the fundamental
level is negative with increasing absolute value as θ → π . It happens that for val-
ues of θ ' π the absolute value of this fundamental eigenvalue is several orders
of magnitude bigger than the closest eigenvalue.

The solutions of the discrete problem, according to Theorem 4.1.2, are guar-
anteed to converge to solutions of the exact problem for increasing lattice size.
However, it is not necessary that the sequence of eigenvalues obtained in the ap-
proximate solution is in correspondence with the sequence of eigenvalues of the
exact problem. It may happen that for some threshold N some new eigenval-
ues appear that were not detected for smaller N . The big gap between the two
lowest levels in the self-adjoint extensions described above is a good example of
this feature. We have computed the spectrum for a fixed value θ = 0.997π for
N in increasing steps. For each value of N we show the lowest five eigenvalues
returned by the procedure. The results are plotted in Figure 4.4. Notice that for
N ≤ 1300 the negative fundamental level is not detected. However, forN = 1400
an approximation of the negative eigenvalue is returned (∼ −6000). Now, in this
situation and for N > 1400 , the second to fifth lowest eigenvalues coincide with
the lowest four returned for the situations below the threshold. The convergence
of the negative eigenvalue is also visible. The scale in the negative y-axis has been
rescaled so that the performance could be better appreciated.

As stated at the beginning of this section, we are now going to compare the re-
sults obtained with the numerical scheme described so far, from now on referred
to as FEM, with two other algorithms that are not based on the finite element
method, namely the line-based perturbation method (LPM) and the constant refer-
ence potential perturbation method (CPM) proposed in [LRI+06] and [LvDvB05],
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Figure 4.4: Five lowest eigenvalues for θ = 0.997π and increasing lattice size.

respectively. The software used for the calculations is, in the latter cases, a ready-
to-run version provided by the authors.4 The objective is now to find the solutions
for the Schrödinger problem with the boundary conditions given by (4.3.7).

The LPM routine reported errors for the lowest order eigenvalues for θ ≥ 2.6
and was not able to produce any output to compare. The results comparing the
CPM and FEM routines for the Laplacian are shown in Figures 4.5 to 4.7. The
discretisation size used for all the FEM calculations was N = 5000 . Both meth-
ods provide almost the same results for the first excited states (indices 1 to 5);
however, this is not the case for the fundamental level (Figure 4.5), where it is
expected that the eigenvalues take increasingly large negative values for θ ap-
proaching π . Note that the lowest value achieved with FEM is λ0 ' −7 · 104 .

4http://www.twi.ugent.be.
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Clearly the CPM routine fails to reproduce the correct eigenvalues in this situa-
tion, although it provides good approximations for θ ≤ 0.989π . In all these cases
the CPM routine issued warnings on the low reliability of the results and an initial
estimate for the fundamental eigenvalue was necessary. Although the numerical
eigenvalues are in agreement with the expected ones, except for the fundamental
level, the eigenfunctions plotted in figures 4.6 and 4.7 for the case θ = 3.1 show
clearly that the solutions provided by FEM are more accurate. For instance, the so-
lutions obtained with CPM present discontinuities near the middle of the interval,
although they are expected to be smooth functions. The eigenfunction obtained
for the fundamental level (Figure 4.7) is especially remarkable. This function does
not present a singularity in the boundary; however, the x-axis has been enlarged
so that the localisation at the boundary could be better appreciated. The FEM
solution is a clear example of an edge state. These are eigenfunctions that are as-
sociated with negative eigenvalues and that are strongly localised at the boundary
of the system, while they vanish in the interior of the manifold (the interior of the
interval in this case). These edge states are important in the understanding of cer-
tain physical phenomena like the quantum Hall effect (see [Wen92] and references
therein). The bad behaviour of the eigenfunctions obtained with the CPM routine
could be due to the fact that, after an initial estimation of the corresponding eigen-
value, it uses a numerical integrator to propagate the solution from one end of the
interval to the other. Then it uses the differences between the obtained boundary
conditions and the given ones to provide a new starting point and propagate it
back. This procedure continues iteratively until convergence while continuity is
imposed in the centre of the interval. This last statement could explain why the
bad behaviour always appears in the middle of the interval. It needs to be said
that the results using CPM do not depend on the special form that one selects to
implement the boundary conditions. If one uses one of the equivalent forms

Ψ′(0) = 0
Ψ(2π) + cot(−θ/2) ·Ψ′(2π) = 0

(4.3.9)

or
Ψ′(0) = 0

sin(−θ/2) ·Ψ(2π) + cos(−θ/2) ·Ψ′(2π) = 0
(4.3.10)

the results remain the same. The CPM routine in general worked much faster than



80 NUMERICAL SCHEME TO SOLVE THE SPECTRAL PROBLEM OF THE L.-B. OPERATOR

the FEM routine in all the performed calculations.5 However, as stated earlier, the
algebraic routine used to solve the generalised eigenvalue problem is not adapted
to the structure of the problem and other finite element schemes could be used to
improve convergence and efficiency.

-4500

-3250

-2000

-1000

.987pi .989pi .992pi .995pi .998pi

λ
0

θ

CPM

-60

-50

-40

-30

-20

-10

0

.987pi .989pi .992pi .995pi .998pi

λ
0

θ

FEMx10
3

Figure 4.5: Groundlevel eigenfunctions of the Laplacian for increasing values of
θ .

5All the numerical calculations of this section were performed with a laptop computer with an
Intel Core i5 processor at 2.53 GHz with 4 GB DDR3 RAM.
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Figure 4.6: First excited eigenfunctions for the Laplacian for θ = 3.1 . FEM
functions are plotted in black. CPM functions are plotted in grey.
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5
SELF-ADJOINT EXTENSIONS WITH SYMMETRY AND
REPRESENTATION OF QUADRATIC FORMS

As we have discussed in the introduction, in most occasions quantum systems
are constructed starting with a densely defined symmetric operator T whose self-
adjoint extensions will define either physical observables or unitary dynamical
evolution. It is necessary then to understand under what conditions a group acting
on the Hilbert space by unitary transformations will become a symmetry group
for the corresponding extensions of the operator, or which self-adjoint extensions
will haveG as a symmetry group. We will discuss these problems in Secs. 5.1 and
5.2 both from the point of view of the general theory of self-adjoint extensions of
symmetric operator and the theory of quadratic forms.

In the particular instance that our quantum system is of mechanical type, we
are led necessarily to the study of self-adjoint extensions of the Laplace-Beltrami
operator as we have discussed exhaustively. In many interesting examples and
applications, there is a group of transformations G acting on the configuration
manifold Ω by isometries, this is, preserving the Riemannian metric η. Then, this
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group of transformations has a canonical unitary representation V on all Sobolev
spaces defined on the manifold by using the Laplace-Beltrami operator. Moreover,
the operator ∆min satisfies:

V (g)∆minV (g)† = ∆min .

We say that ∆min is G-invariant. We shall introduce this notion more precisely in
Section 5.1. The question is whether or not the different self-adjoint extensions of
∆min will share this property. It is a common error in the literature to assume that
all the self-adjoint extensions will also be G-invariant. We will show that this is
not true in general.

In general, a densely defined self-adjoint operator T does not have to be semi-
bounded from below. Hence, its associated quadratic form Q is not semi-bounded
from below either. It is an open problem to characterise those Hermitean quadratic
forms that are not semi-bounded and that do admit a representation in terms of a
self-adjoint operator. We will introduce a family of not necessarily semi-bounded
quadratic forms, that we will call partially orthogonally additive, and that can be
represented in terms of self-adjoint operators. We also will introduce the notion
of sector of a quadratic form. This notion will play the role for quadratic forms
that the invariant subspaces do in the context of self-adjoint operators.

This chapter is organised as follows. In Section 5.1 we introduce the main
definitions and give an explicit characterisation of the self-adjoint extensions that
are G-invariant in the most general setting, i.e., using the characterisation due to
von Neumann described in Section 2.1. In Section 5.2 we introduce the notion of
G-invariant quadratic form and relate them with the notion of G-invariant opera-
tor. In Section 5.3 and Section 5.4 we analyse the quadratic forms associated to
the Laplace-Beltrami operator, as introduced in Chapter 3, when there is a com-
pact Lie Group acting on the manifold. Thus, we provide a characterisation of
the self-adjoint extensions of the Laplace-Beltrami operator that are G-invariant.
Finally, Section 5.5 is devoted to the generalisation of Kato’s representation theo-
rem, Theorem 2.2.4, for quadratic forms that are not semi-bounded.
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5.1. General theory of self-adjoint extensions with symmetry

In this section we shall assume that we have a Hilbert spaceH and a groupG ,
not necessarily compact, that possesses a unitary representation V acting onH ,

V : G→ U(H) .

Definition 5.1.1. Let T be a linear operator with dense domain D(T ) and let
V : G → U(H) be a unitary representation of the group G . The operator T is
said to be G-invariant if
V (g)D(T ) ⊂ D(T ) for all g ∈ G and[

T, V (g)
]
Ψ = 0 ∀g ∈ G, ∀Ψ ∈ D(T ) ,

where
[
·, ·
]

stands for the formal commutator of operators, i.e.,[
A,B

]
= AB −BA .

Proposition 5.1.2. Let T be a G-invariant, symmetric operator. Then the adjoint
operator T † is G-invariant.

Proof. Let Ψ ∈ D(T †) . Then, according to Definition 2.1.3, it exists χ ∈ H such
that

〈Ψ , TΦ〉 = 〈χ ,Φ〉 ∀Φ ∈ D(T ) .

Now we have that

〈V (g)Ψ , TΦ〉 = 〈Ψ , V (g−1)TΦ〉
= 〈Ψ , TV (g−1)Φ〉
= 〈χ , V (g−1)Φ〉
= 〈V (g)χ ,Φ〉 .

The above equalities are true ∀Φ ∈ D(T ) and hence V (g)Ψ ∈ D(T †) . Moreover,
we have that T †V (g)Ψ = V (g)χ = V (g)T †Ψ .

Corollary 5.1.3. Let T be a G-invariant and symmetric operator on H. Then its
closure T is also G-invariant.
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Proof. The operator T is symmetric and therefore closable and we have T = T ∗∗ .
Since T is G-invariant, by the preceding proposition we have that T ∗ is also G-
invariant, hence also T = (T ∗)∗ .

This lemma shows that we can always assume without loss of generality that
the G-invariant symmetric operators are closed.

Corollary 5.1.4. Let T be a symmetric,G-invariant operator. Then, the deficiency
spaces N±, cf., Definition 2.1.9, are invariant under the action of the group, i.e.,

V (g)N± = N± .

Proof. Let ξ ∈ N+ ⊂ D(T †) . Then (T † − i)ξ = 0 and we have that

(T † − i)V (g)ξ = V (g)(T † − i)ξ = 0 .

This shows that V (g)N+ ⊂ N+ , for all g ∈ G . Now

N+ = V (g)(V (g−1)N+) ⊂ V (g)N+

which shows the equality. Similarly for N− .

With the same arguments as in the final part of the preceding proof we have
the following general result:

Lemma 5.1.5. Let D be any subspace of H that remains invariant under the
action of the group G , i.e.,

V (g)D ⊂ D ,∀g ∈ G .

Then V (g)D = D .

Theorem 5.1.6. Let T be a symmetric,G-invariant operator with equal deficiency
indices, cf., Definition 2.1.9. Let TK be the self-adjoint extension of T defined by
the unitary K : N+ → N− . Then TK is G-invariant iff

[
V (g),K

]
ξ = 0 for all

ξ ∈ N+ , g ∈ G .

Proof.
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(⇐) According to Theorem 2.1.10 the domain of TK is given by

D(TK) = D(T ) +
(
I +K

)
N+ .

Let Ψ ∈ D(T ) and ξ ∈ N+ . Then we have that

V (g)
(
Ψ +

(
I +K

)
ξ
)

= V (g)Ψ +
(
V (g) + V (g)K

)
ξ

= V (g)Ψ +
(
V (g) +KV (g)

)
ξ

= V (g)Ψ +
(
I +K

)
V (g)ξ .

By assumption V (g)Ψ ∈ D(T ), and by Corollary 5.1.4, V (g)ξ ∈ N+ .
Hence V (g)D(TK) ⊂ D(TK) . Moreover, we have that

TKV (g)Ψ = T †V (g)
(
Ψ +

(
I +K

)
ξ
)

= TV (g)Ψ + T †V (g)
(
I +K

)
ξ

= V (g)TΨ + V (g)T †
(
I +K

)
ξ = V (g)TKΨ ,

where we have used Proposition 5.1.2.

(⇒) Suppose that we have the self-adjoint extension defined by the unitary

K ′ = V (g)KV (g)† .

If we consider the domain D(TK′) defined by this unitary we have that

D(TK′) = D(T ) +
(
I + V (g)KV (g)†

)
N+

= V (g)D(T ) + V (g)
(
I +K

)
V (g)†N+

= V (g)D(TK) = D(TK) ,

where we have used again Proposition 5.1.2, Corollary 5.1.4 and Lemma
5.1.5. Now von Neumann’s theorem, Theorem 2.1.10, establishes a one-to-
one correspondence between isometries K : N+ → N− and self-adjoint
extensions of the operator T . Therefore K = K ′ = V (g)KV (g)† and the
statement follows.
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We want to finish this section by pointing out that the important condition
for a group to be a symmetry of a self-adjoint extension, i.e., for a self-adjoint
extension TK to be G-invariant, is that the unitary representation of the group
leaves the domain D(TK) invariant. The commutation property follows from this
latter one.

5.2. Invariant quadratic forms

It is time now to introduce the analogue concept to G-invariant operators for
quadratic forms. As before we assume that there is a group G that has a unitary
representation in the Hilbert spaceH .

Definition 5.2.1. Let Q be a quadratic form with domain D and let V : G →
U(H) be a unitary representation of the group G . We will say that the quadratic
form is G-invariant if V (g)D ⊂ D for all g ∈ G and

Q(V (g)Φ) = Q(Φ) ∀Φ ∈ D,∀g ∈ G .

It is clear by the polarisation identity ,cf., Eq. (2.2.1), that if Q is G-invariant,
then Q(V (g)Φ, V (g)Ψ) = Q(Φ,Ψ) , g ∈ G . We can now relate the two notions
of G-invariance, for operators and for quadratic forms.

Theorem 5.2.2. Let Q be a closed, semi-bounded quadratic form with domain D
and let T be the associated semi-bounded, self-adjoint operator. The quadratic
form Q is G-invariant iff the operator T is G-invariant.

Proof.

(⇒) By Theorem 2.2.4, Ψ ∈ D(T ) iff Ψ ∈ D and it exists χ ∈ H such that

Q(Φ,Ψ) = 〈Φ , χ〉 ∀Φ ∈ D .

Let Ψ ∈ D(T ) . Now we have that

Q(Φ, V (g)Ψ) = Q(V (g)†Φ,Ψ)

= 〈V (g)†Φ , χ〉 = 〈Φ , V (g)χ〉 .
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This implies that V (g)Ψ ∈ D(T ) . Moreover, it implies that

TV (g)Ψ = V (g)χ = V (g)TΨ , Ψ ∈ D(T ) , g ∈ G .

(⇐) To prove this implication we are going to use he fact that D(T ) is a core for
the quadratic form. Let Φ,Ψ ∈ D(T ) . Then we have that

Q(Φ,Ψ) = 〈Φ , TΨ〉 = 〈V (g)Φ , V (g)TΨ〉 = Q(V (g)Φ, V (g)Ψ)) .

These equalities show that the G-invariance condition is true at least for the
elements in the domain of the operator. Now let Ψ ∈ D . Then it exists
{Ψn} ∈ D(T ) such that |‖Ψn−Ψ‖|Q → 0 . This, together with the equality
above, implies that {V (g)Ψn} is a Cauchy sequence with respect to |‖ · ‖|Q .
Since Q is closed, the limit of this sequence is in D . Moreover it is clear
that H − limn→∞ V (g)Ψn = V (g)Ψ , which implies that |‖V (g)Ψn −
V (g)Ψ‖|Q → 0 .

So far we have proved that V (g)D ⊂ D . Now let Φ,Ψ ∈ D and let
{Φn}, {Ψn} ⊂ D(T ) respectively be sequences converging to them in the
norm |‖ · ‖|Q . Then

Q(Φ,Ψ) = lim
n→∞

lim
m→∞

Q(Φn,Ψm)

= lim
n→∞

lim
m→∞

Q(V (g)Φn, V (g)Ψm) = Q(V (g)Φ, V (g)Ψ) .

This result allows us to reformulate Kato’s representation theorem, Theorem
2.2.4, in the following way.

Theorem 5.2.3. LetQ be aG-invariant, semi-bounded quadratic form with lower
bound a and domain D . The following statements are equivalent:

i) There is a G-invariant, lower semi-bounded, self-adjoint operator T on H
that represents the quadratic form, i.e.,

Q(Φ,Ψ) = 〈Φ , TΨ〉 ∀Φ ∈ D, ∀Ψ ∈ D(T ) .
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ii) The quadratic form is closed and its domain is a Hilbert space with respect
to the inner product

〈Φ ,Ψ〉Q = (1 + a)〈Φ ,Ψ〉+Q(Φ,Ψ) .

Proof. The equivalence is direct application of Kato’s representation theorem
(Theorem 2.2.4) and Theorem 5.2.2 .

Recall the scales of Hilbert spaces introduced in Section 2.4.

Theorem 5.2.4. Let Q be a closed, semi-bounded, G-invariant quadratic form
with lower bound a . Then

i) V restricts to a unitary representation on H+ := D(Q) ⊂ H with scalar
product given by

〈Φ ,Ψ〉+ := 〈Φ ,Ψ〉Q = (1 + a)〈Φ ,Ψ〉+Q(Φ,Ψ) , Φ,Ψ ∈ H+ .

ii) V extends to a unitary representation onH− and we have, onH− ,

V (g)I = IV (g) , g ∈ G , (5.2.1)

where I : H− → H+ is the canonical isometric bijection of Definition 2.4.1.

Proof. i) To show that the representation V is unitary with respect to 〈· , ·〉+ note
that by definition of G-invariance of the quadratic form we have for any g ∈ G
that V (g) : H+ → H+ and

〈V (g)Φ , V (g)Ψ〉+ = 〈Φ ,Ψ〉+ .

Since any V (g) is invertible we conclude that V restricts to a unitary representa-
tion onH+ .

(ii) To show that V extends to a unitary representation on H− consider first
the following representation of G onH− :

V̂ (g)α := I−1V (g)Iα , α ∈ H− .
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This representation is unitary. Indeed,

〈V̂ (g)α , V̂ (g)β〉− = 〈I−1V (g)Iα , I−1V (g)Iβ〉−
= 〈V (g)Iα , V (g)Iβ〉+ = 〈Iα , Iβ〉+ = 〈α , β〉− .

The restriction of V̂ (g), g ∈ G , to H coincides with V (g). Let Φ ∈ H and
consider the pairing of Proposition (2.4.2). Then,

(V̂ (g)Φ ,Ψ) = (I−1V (g)IΦ ,Ψ)

= 〈V (g)IΦ ,Ψ〉+
= 〈IΦ , V (g−1)Ψ〉+
= (Φ , V (g−1)Ψ)

= 〈Φ , V (g−1)Ψ〉
= 〈V (g)Φ ,Ψ〉 = (V (g)Φ ,Ψ) , ∀Ψ ∈ H+ .

Since V̂ (g) is a bounded operator in H− and H is dense in H−, V̂ (g) is the
extension of V (g) toH− .

The preceding theorem shows that the G-invariance of the quadratic form is
equivalent to the existence of unitary representations on the scale of Hilbert spaces

H+ ⊂ H ⊂ H− .

5.3. A class of invariant self-adjoint extensions of the Laplace-Beltrami op-
erator

In this section we are going to analyse the class of quadratic forms intro-
duced in Chapter 3 when there is a group of symmetries acting on the manifold.
Throughout the rest of the section we are going to consider that G is a compact
group acting in the Riemannian manifold (Ω, ∂Ω, η) . We are going to consider
that the action of the group is compatible with the restriction to the boundary.
This is, the action of G on Ω maps the boundary ∂Ω into itself, or in other words,
the action of G on Ω induces and action of G on ∂Ω considered as a subset of
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Ω. Moreover, we are going to assume that the group acts by isometric diffeomor-
phisms. More concretely, let g : Ω → Ω be the diffeomorphism associated to
the element g ∈ G , that we will denote with the same symbol for simplicity of
notation. Then we have that g∗η = η , where g∗ stands for the pull-back by the
diffeomorphism. Automatically G acts by isometries on the boundary ∂Ω, i.e.,
g∗η∂Ω = η∂Ω for all g ∈ G. These isometric actions of the group G induce uni-
tary representations of the group on Ω and ∂Ω . Let the unitary representations be
denoted as follows:

V : G→ U(H0(Ω)) ,

V (g)Φ = (g−1)∗Φ Φ ∈ H0(Ω) .

v : G→ U(H0(∂Ω)) ,

v(g)ϕ = (g−1)∗ϕ ϕ ∈ H0(∂Ω) .

Then we have that

〈V (g−1)Φ , V (g−1)Ψ〉 =

∫
Ω

(Φ ◦ g)(Ψ ◦ g) dµη

=

∫
Ω

(Φ ◦ g)(Ψ ◦ g) g∗dµη

=

∫
gΩ

ΦΨ dµη

= 〈Φ ,Ψ〉 ,

where we have used the change of variables formula and the fact that g∗dµη =
dµη . The result for the boundary is proved similarly. The induced actions are
related with the trace map as follows

γ(V (g)Φ) = v(g)γ(Φ) ∀g ∈ G . (5.3.1)

Let us consider the family of quadratic forms associated to the Laplace-Beltrami
operator introduced in Chapter 3. Consider the quadratic form

QU (Φ,Ψ) = 〈dΦ ,dΨ〉 − 〈γ(Φ) , AUγ(Φ)〉∂Ω (5.3.2)
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with domain
DU =

{
Φ ∈ H1(Ω)

∣∣P⊥γ(Φ) = 0
}
, (5.3.3)

whereAU is the partial Cayley transform of Definition 3.1.10. We are considering
that the unitary U has gap at −1 and the projector P is the orthogonal projector
onto the invertibility boundary space W = RanE⊥π , where Eλ is the spectral
resolution of the identity associated to the unitary U . We are going to show the
necessary and sufficient conditions for this quadratic form to be G-invariant. In
order to do so we are going to need the next result.

Proposition 5.3.1. Let G be a compact group that acts by isometric diffeomor-
phisms in the Riemannian manifold Ω . The quadratic form defined by

〈dΦ , dΨ〉

with domainH1(Ω) is G-invariant.

Proof. First notice that the pull-back of a diffeomorphism commutes with the
action of the exterior differential, cf., [AMR88, Theorem 7.4.4]. Then we have
that

d(V (g−1)Φ) = d(g∗Φ) = g∗dΦ .

Hence

〈d(V (g−1)Φ) ,d(V (g−1)Ψ)〉 =

∫
Ω
η−1(g∗dΦ, g∗dΨ)dµη (5.3.4a)

=

∫
Ω
g∗
(
η−1(dΦ, dΨ)

)
g∗dµη (5.3.4b)

=

∫
gΩ
η−1(dΦ,dΨ)dµη (5.3.4c)

= 〈dΦ , dΨ〉 , (5.3.4d)

where in the second inequality we have used that g : Ω → Ω is an isometry and
therefore

η−1(g∗dΦ, g∗dΨ) = g∗η−1(g∗dΦ, g∗dΨ) = g∗
(
η−1(dΦ,dΨ)

)
.
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The equations (5.3.4) guaranty also that V (g)H1(Ω) = H1(Ω) since V (g) is a
unitary operator inH0 and by Remark 2.3.6 the norm

√
‖d · ‖2 + ‖ · ‖2 is equiv-

alent to the Sobolev norm of order 1.

Now we are able to prove the following theorem:

Theorem 5.3.2. Let v : G → U(H0(∂Ω)) be the induced unitary representation
of the group G at the boundary. Then the quadratic form QU of Definition 3.1.12
is G-invariant iff [

v(g), U
]
γ(Φ) = 0 ∀Φ ∈ DU .

Proof. By Proposition 5.3.1 it is enough to show that 〈γ(Φ) , AUγ(Φ)〉∂Ω defined
on DU is G-invariant iff[

v(g), U
]
γ(Φ) = 0 ∀Φ ∈ DU .

(⇐) Let Φ ∈ DU . Notice that
[
v(g), U

]
γ(Φ) = 0 is equivalent to[

v(g), P⊥
]
γ(Φ) = 0 and

[
v(g), AU

]
γ(Φ) = 0 ,

where P⊥ is the orthogonal projector onto RanE{π} , the closed subspace
associated to the eigenvalue −1 of the unitary operator U , cf., Definition
3.1.9 and Definition 3.1.10. From the former equality we have that

P⊥γ(V (g)Φ) = P⊥v(g)γ(Φ) = v(g)P⊥γ(Φ) = 0 ,

where we have used Eq. (5.3.1). Hence we have that V (g)DU ⊂ DU . From
the commutation relation for the partial Cayley transform AU we have that

〈v(g)γ(Φ) , AUv(g)γ(Φ)〉∂Ω = 〈v(g)γ(Φ) , v(g)AUγ(Φ)〉∂Ω

= 〈γ(Φ) , AUγ(Φ)〉∂Ω .

(⇒) Let Φ ∈ DU , then P⊥γ(Φ) = 0 and clearly

v(g)P⊥γ(Φ) = 0 .



5.4. Examples 95

Since the quadratic form is G-invariant we have that V (g)DU ⊂ DU and
therefore P⊥v(g)γ(Φ) = P⊥γ(V (g)Φ) = 0 . Hence[

v(g), P⊥
]
γ(Φ) = 0 .

On the other hand we have that

〈ψ ,AUϕ〉∂Ω = 〈ψ , v(g)†AUv(g)ϕ〉∂Ω , ψ, ϕ ∈ PH1/2(∂Ω) .

Since the subspace PH1/2(∂Ω) is a dense subspace of the invertibility
boundary space W = RanE⊥{π} , see Definition 3.1.9, the equality above
shows that

‖
(
AU − v(g)†AUv(g)

)
ϕ‖W = 0 , ∀ϕ ∈ PH1/2(∂Ω) ,

and therefore [
v(g), AU

]
γ(Φ) = 0 .

Summarising we can say that given a compact group acting on a Riemannian
manifold, if we are able to find an admissible unitary operator on the boundary
verifying the commutation relation above, we can describe self-adjoint extensions
of the Laplace-Beltrami operator that are G-invariant.

5.4. Examples

In this section we introduce two particular examples of G-invariant quadratic
forms. In the first example we are considering a situation where the symmetry
group is a discrete group. In the second one we consider G to be a genuine com-
pact Lie group.

Example 5.4.1. Let Ω be the cylinder [−1, 1]× [−1, 1]/∼ , where ∼ is the equiv-
alence relation (−1, y) ∼ (1, y) . The boundary ∂Ω is the disjoint union of the
two circles Γ1 =

{
[−1, 1] × {−1}/∼

}
and Γ2 =

{
[−1, 1] × {1}/∼

}
. Let η be
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the euclidean metric. Now consider that G is the discrete, abelian group of two
elements, {e, f} and consider the following action on Ω:

e : (x, y)→ (x, y) ,

f : (x, y)→ (−x, y) .

The induced action on the boundary is

e : (±1, y)→ (±1, y) ,

f : (±1, y)→ (∓1, y) .

Clearly G transforms Ω onto itself and preserves the boundary. Moreover it is
easy to check that f∗η = η .

Since the boundary ∂Ω consists of two disjoints manifolds Γ1 and Γ2 , the
Hilbert space of the boundary isH0(∂Ω) = H0(Γ1)⊕H0(Γ2) . Let Φ ∈ H0(∂Ω) .
Then we can represent it using the associated block structure, namely:

Φ =

(
Φ1(y)
Φ2(y)

)
with Φi ∈ H0(Γi) . The identity element will not introduce any restriction so
let us concentrate on the element f . The induced unitary action on H0(∂Ω) is
therefore:

v(f)

(
Φ1(y)
Φ2(y)

)
= v(f)

(
Φ(−1, y)
Φ(1, y)

)
=

(
Φ(1, y)

Φ(−1, y)

)
=

(
Φ2(y)
Φ1(y)

)
=

(
0 I
I 0

)(
Φ1(y)
Φ2(y)

)
.

The set of unitary operators that describe the closable quadratic forms as defined
in Chapter 3 is given by unitary operators

U =

(
U11 U12

U21 U22

)
,



5.4. Examples 97

with Uij = H0(Γj) → H0(Γi) . According to Theorem 5.3.2 only those unitary
operators commuting with v(f) will lead to G-invariant quadratic forms. Impos-
ing [(

0 I
I 0

)
,

(
U11 U12

U21 U22

)]
= 0 ,

we get the conditions

U21 − U12 = 0 ,

U22 − U11 = 0 .

We can consider now the particular case of generalised Robin boundary con-
ditions shown in Example 3.3.5. These are given by unitaries of the form

U =

[
eiβ1I1 0

0 eiβ2I2

]
. (5.4.1)

The G-invariance condition forces β1 = β2 , as one could expect. Notice that if
β1 6= β2 we can obtain a self-adjoint extension of the Laplace-Beltrami operator,
∆min , associated to the closable quadratic form defined by the unitary U . This
extension will not be G-invariant even though ∆min is.

We can consider also conditions of the quasi-periodic type as in Example
3.3.3. In this case

U =

[
0 eiα

e−iα 0

]
, α ∈ C0(S1) . (5.4.2)

The G-invariance condition imposes that eiα = e−iα and therefore among all the
quasi-periodic conditions only the periodic ones, α ≡ 0 , are allowed.

Example 5.4.2. Let Ω be the unit, upper hemisphere. Its boundary ∂Ω is going to
be the unit circle on the horizontal plane. Let η be the induced Riemannian metric
from the euclidean metric in R3 . Consider that G is the compact Lie group O(2)
of rotations around the z-axis. If we use polar coordinates on the horizontal plane,
then the boundary is isomorphic to the interval [0, 2π] with the two endpoints
identified, i.e., ∂Ω ' [0, 2π]/∼ , where ∼ is the equivalence relation 0 ∼ 2π . If θ
is the coordinate describing the boundary, then the Hilbert space of the boundary
is given byH0([0, 2π]) .
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Let ϕ ∈ H1/2(∂Ω) . The induced action of the group G in this space is there-
fore given by

v(g−1
α )ϕ(θ) = ϕ(θ + α) .

To analyse what are the possible unitary operators that lead toG-invariant quadratic
forms it is convenient to use the Fourier series expansions of the elements in
H0(∂Ω) . Let ϕ ∈ H0(∂Ω) , then

ϕ(θ) =
∑
n∈Z

ϕ̂ne
inθ ,

where the coefficients of the expansion are given by

ϕ̂n =
1

2π

∫ 2π

0
ϕ(θ)e−inθdθ .

We can therefore consider the induced action of the groupG as a unitary operator
on the Hilbert space l2 . In fact we have that :

̂(v(g−1
α )ϕ)n =

1

2π

∫ 2π

0
ϕ(θ + α)e−inθdθ

=
∑
m∈Z

ϕ̂me
imα

∫ 2π

0

ei(m−n)θ

2π
dθ = einαϕ̂n .

So that the induced action of the group G is a unitary operator in U(l2) . More

concretely we can represent it as v̂(g−1
α )nm = einαδnm . From all the possible

unitary operators acting on the Hilbert space of the boundary, only those whose
representation in l2 commutes with the above operator will lead to G-invariant

quadratic forms. Since v̂(g−1
α ) acts diagonally on l2 it is clear that only operators

of the form Ûnm = eiβnδnm , βn ∈ R , will lead to G-invariant quadratic forms.
As a particular case we can consider that all the parameters are equal, i.e.,

βj = β . In this case it is clear that (Ûϕ)n = eiβϕn which gives that

U(ϕ) = eiβϕ ,

showing that the only generalised Robin boundary conditions compatible with the
rotation symmetry are those that have a constant value along the boundary.
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5.5. Representation of generic unbounded quadratic forms

During this dissertation we have been using Kato’s Representation Theorem,
Theorem 2.2.4, intensively. It has allowed us to obtain a variety of self-adjoint
extensions of the Laplace-Beltrami operator. In fact, this is a powerful tool that
allows for the characterisation of self-adjoint extensions of symmetric operators
in a much general context. However, there is an important assumption without
which the representation theorem does not follow. This assumption is the semi-
boundedness assumption. As it is stated in the introduction it remains as one of
the main open problems in the field to obtain a generalisation of this theorem to
quadratic forms that are truly unbounded, i.e., not semi-bounded.

The converse is clearly true. Given a generic self-adjoint operator one can
always construct an associated quadratic form by means of its spectral resolution
of the identity, cf., Theorem 2.1.7. Let T be a self-adjoint operator with domain
D(T ) and letEλ : H → H be the corresponding spectral resolution of the identity.
Then one can define the following domain, cf., [RS72, Section VIII.6]:

D(QT ) := {Φ ∈ H|
∫
R
|λ|d(〈Φ , EλΦ〉) <∞}

and an associated quadratic form by

QT (Φ,Ψ) =

∫
R
λd(〈Φ , EλΨ〉) ∀Φ,Ψ ∈ D(QT ) .

Notice that the domain of the quadratic form contains the domainD(T ) of the
operator T , that can be identified with

D(QT ) := {Φ ∈ H|
∫
R
|λ|2d(〈Φ , EλΦ〉) <∞} .

Moreover, it is clear that this quadratic form might be represented in terms of the
operator T , namely

QT (Φ,Ψ) = 〈Φ , TΨ〉 , Φ,Ψ ∈ D(T ) .

This quadratic form is representable and is in general not lower nor upper semi-
bounded. The question is now clear. What are the sufficient conditions for an
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Hermitean, not semi-bounded quadratic form to be representable? The aim of this
section is to step forward towards an answer.

In order to state the results in the most general form we will need the notion of
direct integral of Hilbert spaces, cf., [Dix81, Chapter II.1], [LM72, Section 1.2.3].

Definition 5.5.1. Let A be a measure space with Radon measure µ and let Hα ,
α ∈ A , a family of complex separable Hilbert spaces. We will say that Hα is
a µ-measurable field of Hilbert spaces if there exists a family M of functions
Φ: α 7→ Hα such that:

i) For all Φ ∈M the function ‖Φ‖(·) : α 7→ ||Φ(α)||Hα is µ-measurable.

ii) If Ψ is a function α 7→ Hα and for all Φ ∈ M, the scalar function α 7→
〈Φ(α) ,Ψ(α)〉Hα is µ-measurable, then Ψ ∈M.

iii) There exists a sequence Φ1,Φ2, . . . of elements ofM such that, for all α ∈
A, the sequence Φ1(α),Φ2(α), . . . generatesHα .

The functions in the familyM will be called µ-measurable functions of the field.

Definition 5.5.2. LetA be a measure space with Radon measure µ and letHα be
a µ-measurable field of Hilbert spaces with family of µ-measurable functionsM.
The direct integral of the field of Hilbert spacesHα, denoted by

H =

∫ ⊕
A
Hαdµ(α) ,

is defined as the family of µ-measurable functions of the field Φ ∈M such that

||Φ||2 =

∫
A
||Φ(α)||2Hαdµ(α) <∞ .

The functions Φ ∈ H can be written as

Φ =

∫
A

Φ(α)dµ(α) ,
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where the integral has to be understood in the sense of Bochner. The scalar prod-
uct onH is given by

〈Φ ,Ψ〉 =

∫
A
〈Φ(α) ,Ψ(α)〉Hαdµ(α) .

Remark 5.5.3. Notice that if {Wi}i∈Z is a discrete family of orthogonal Hilbert
subspaces ofH such that

H =
⊕
i∈Z

Wi ,

then automatically {Wi} is a µ-measurable field of Hilbert spaces over the dis-
crete space Z with µ the counting measure, i.e., µ({k}) = 1, k ∈ Z. Then∫ ⊕

Z
Widµ(i) =

⊕
i∈Z

Wi = H .

Moreover, the set of µ-measurable functionsM is just the family of vectors {Φi ∈
Wi | i ∈ Z} and the elements of the direct integral of the field of Hilbert spaces
{Wi} is given by those functions that verify∑

i∈Z
‖Φi‖2 <∞ .

Definition 5.5.4. Let Q be a Hermitean quadratic form and let Wα be a µ-
measurable field of orthogonal subspaces of a Hilbert space H such that H =∫ ⊕

Wαdµ(α) and let Pα : H →Wα be the corresponding orthogonal projectors.
Q is partially orthogonally additive with respect to the family {Wα} if

Q(Φ + Ψ) = Q(Φ) +Q(Ψ) ,

whenever Φ and Ψ are such that
∫
I〈PαΦ , PαΨ〉dµ(α) = 0 for all I ⊂ A . The

sectors Qα are defined to be the restrictions to the subspaces Wα ,

Qα(·) := Q(Pα·) .
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Notice that the condition 〈PαΦ , PαΨ〉 = 0 implies that

〈Φ ,Ψ〉 =

∫
A
〈PαΦ , PαΨ〉dµ(α) = 0 .

Proposition 5.5.5. LetQ be a partially orthogonally additive quadratic form with
respect to the family {Wα} , α ∈ A . Then Q can be written as

Q(Φ) =

∫
A
Qα(Φ)dµ(α) .

Proof. From Definition 5.5.2 and Definition 5.5.4 we have that

Q(Φ) = Q

(∫
A
PαΦdµ(α)

)
=

∫
A
Q(PαΦ)dµ(α) =

∫
A
Qα(Φ)dµ(α) .

Now we are ready to state the main theorem of this section.

Theorem 5.5.6. Let Q be a partially orthogonally additive quadratic form with
respect to the family {Wα} , α ∈ A , defined on the domain D . Let each sector
Qα be semi-bounded (upper or lower) and closable. Then

i) The quadratic form can be extended continuously to the closure of the do-
main with respect to the norm

|‖Φ‖|2Q =

∫
A
|‖PαΦ‖|2Qαdµ(α) ,

i.e., to the domain
D(Q) := D|‖·‖|Q .

The extension will be denoted by Q.

ii) The quadratic form Q defined on D(Q) is representable, i.e., it exists a
self-adjoint operator T with domain D(T ) such that

Q(Φ) = 〈Φ , TΦ〉 ∀Φ ∈ D(T ) .
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Proof. i)

|Q(Φ,Ψ)| ≤
∫
A
|Q(PαΦ, PαΨ)|dµ(α)

≤
∫
A
|‖PαΦ‖|Qα |‖PαΨ‖|Qαdµ(α)

≤
∫
A
|‖PαΦ‖|2Qαdµ(α)

∫
A
|‖PαΨ‖|2Qαdµ(α) ,

where each |‖·‖|Qα is defined using the corresponding lower or upper bound,
i.e., if Qα is lower semi-bounded with lower bound a then

|‖ · ‖|2Qα = (1 + a)‖Pα · ‖2 +Q(·) ,

and if Qα is upper semi-bounded with upper bound b then

|‖ · ‖|2Qα = (1 + b)‖Pα · ‖2 −Q(·) .

ii) By construction the sector Qα , α ∈ A , defines a closed semi-bounded
quadratic form since Qα is assumed to be closable. Then for each α ∈ A it
exists a self-adjoint operator Tα : D(Tα)→Wα such that

Qα(Φ,Ψ) = 〈PαΦ , TαΨ〉 Φ,Ψ ∈ D(Tα) .

Notice that each Tα commutes with the corresponding Pα. Let T : D(T )→
H be the operator

T =

∫
A
Tαdµ(α)

with domain

D(T ) = {Φ ∈ D(Q) |
∫
A
|‖PαΦ‖|2Tαdµ(α) <∞} ,

where
|‖ · ‖|2Tα = ‖Pα · ‖2 + ‖Tα · ‖2 .
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Notice that Φ ∈ D(T ) implies PαΦ ∈ D(Tα) . Denote the norm in the
above domain by

|‖ · ‖|2T =

∫
A
|‖Pα · ‖|2Tαdµ(α) .

From Definition 5.5.2 it is clear that (D(T ), |‖ · ‖|T ) is a Hilbert space and
therefore T is a closed operator. It is easy to show that it is symmetric. Let
us show that this operator is indeed self-adjoint.

Let Φα ∈ D(Tα) and let Ψ ∈ N+. Then

0 = 〈Ψ , (T + i)〉 =

∫
A
〈PαΨ , (Tα + i)Φα〉dµ(α)

= 〈PαΨ , (Tα + i)Φα〉

This implies that that PαΨ = 0. Since the choice of Pα is arbitrary we
have that Ψ = 0 and therefore n+ = 0. Equivalently n− = 0. Hence T is
self-adjoint, cf., Theorem 2.1.10.

For a general unbounded quadratic form it is enough that there exist at least
two subspaces, W+ and W− , that verify the above conditions. The former needs
to be lower semi-bounded and the latter upper semi-bounded. The quadratic form
will be the sum of the corresponding sectors. To show that the above characteri-
sation is meaningful, let us consider three examples in which we obtain represen-
tations for 3 well known operators.

Example 5.5.7 (The multiplication operator). Consider the Hilbert space H =
H0(R) . Let Q be the Hermitean quadratic with domain C∞c (R) defined by

Q(Φ) =

∫
R

Φ̄(x)xΦ(x)dx .

Consider the subspaces

W+ = {Φ ∈ H| supp Φ ⊂ R+
0 } ,
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W− = {Φ ∈ H| supp Φ ⊂ R−} .

The projections onto these subspaces are given by multiplication with the corre-
sponding characteristic functions. The restrictions of the quadratic form above
are therefore

Q+(Φ) =

∫
R+

0

Φ̄(x)xΦ(x)dx ,

Q−(Φ) =

∫
R−

Φ̄(x)xΦ(x)dx .

The sector Q+ is clearly a lower semi-bounded quadratic form. The proof that it
is in fact closable is a standard result in the theory of quadratic forms, since it is
the quadratic form associated to a lower semi-bounded, symmetric operator, see
comments after Remark 2.2.5. The domain of the corresponding closed quadratic
form and associated self-adjoint operators are

D(Q+) = {Φ ∈ H|
∫
R+

0

x|Φ|2dx <∞} ,

D(T+) = {Φ ∈ H|
∫
R+

0

x2|Φ|2dx <∞} .

The sector Q− is an upper semi-bounded quadratic form. Hence consider
−Q− . It is closable by the same reasons thanQ+ . In this case the corresponding
domains are

D(Q−) = {Φ ∈ H|
∫
R−
−x|Φ|2dx <∞} ,

D(T−) = {Φ ∈ H|
∫
R−

x2|Φ|2dx <∞} .

The quadratic form Q can therefore be extended to the domain

D(Q) = {Φ ∈ H|
∫
R
|x| |Φ|2dx <∞} ,

where Q(Φ) = Q+(Φ) +Q−(Φ) and can be represented by the operator

T = T+P+ + T−P−
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with domain

D(T ) = {Φ ∈ H|
∫
R
x2 |Φ|2dx <∞} .

Example 5.5.8 (The momentum operator). Consider the Hilbert space H =
H0(R) . Let Q be the Hermitean quadratic form with domain C∞c (R) defined
by

Q(Φ) =

∫
R

Φ̄(x)
(
−i d

dx
Φ(x)

)
dx . (5.5.1)

We are going to obtain also in this case two subspaces W± with respect to which
the quadratic form is partially orthogonally additive. To do so we need to make
use of the Fourier transform. Let Φ ∈ C∞c (R) . The Fourier transform is defined
by

FΦ(k) =
1√
2π

∫
R

Φ(x)e−ikxdx .

It is well known that this operation can be extended continuously to a unitary
operation F : H0(R) → H0(R) . Moreover, the momentum operator defined
above acts diagonally on the transformed space, i.e.,

F
(
−i d

dx
Φ(x)

)
(k) = kFΦ(k) .

Under this transformation this example becomes the example of the multiplication
operator above and hence we can define the subspacesW± accordingly. Consider
the subspaces

W+ = {Φ ∈ H| suppFΦ ⊂ R+
0 } ,

W− = {Φ ∈ H| suppFΦ ⊂ R−} .

Since the Fourier transform is a unitary operation, the quadratic form of Eq. (5.5.1)
is clearly partially orthogonally additive with respect to this decomposition. For
the same reason the sectors are semi-bounded. Again the restriction Q− is upper
semi-bounded and we need to consider −Q− . In this case the domains of the as-
sociated quadratic forms and operators can also be described precisely and have
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the form of the corresponding domains on Example 5.5.7 with Φ replaced by FΦ .
Notice that in this case the quadratic form can be extended to the domain

D(Q) = {Φ ∈ H|
∫
R
|k||FΦ|2dk <∞}

and the corresponding self-adjoint operator T is defined on

D(T ) = {Φ ∈ H|
∫
R
k2|FΦ|2dk <∞} .

These last two spaces can be proved to be equivalent to H1/2(R) and H1(R)
respectively.

In the last example we consider a quadratic form QU given as in Definition
3.1.12. However we will not ask the unitary operator to have gap at -1. Neverthe-
less the Cayley transform, cf., Definition 3.1.10 is still going to be a well defined
self-adjoint operator. It will not be bounded though.

Example 5.5.9. Let Ω be the unit disk

Ω = {(x, y) ∈ R2 | x2 + y2 ≤ 1}

and let η be the euclidean metric. The boundary is therefore ∂Ω = S1. The
rotation groupO(2) acts naturally on this manifold by rotations around the origin.
In polar coordinates we have that

gα : (r, θ)→ (r, θ + α) .

Let us consider anO(2)-invariant quadratic formQU . Any unitaryU ∈ U(H0(∂Ω))
that verifies [

v(g), U
]
ϕ = 0 ∀ϕ ∈ H(∂Ω)

will lead to a O(2)-invariant quadratic form. From the analysis in Example 5.4.2
we know that only those unitaries whose representation in the Fourier transformed
space is diagonal will satisfy the commutation relation. Then consider

Ûnm = eiβnδnm , with βn =


π(1− 1

n) , n > 0

0 , n = 0

−π(1 + 1
n) , n < 0

. (5.5.2)
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Such an unitary operator does not verify the gap condition, cf., Definition
3.1.8. Hence it will not lead to a a semi-bounded quadratic form. In the trans-
formed space the Cayley transform reads

(ÂU )nm = − tan
βn
2
δnm .

We can express the quadratic form QU in terms of the subspaces associated with
the irreducible representations of the group O(2). This subspaces coincide with
the expansion in the Fourier basis, {einθ}. Namely,

Φ(r, θ) =
∑
n∈Z

Φ̂n(r)einθ .

So we have that

QU (Φ) =

∫
Ω
η−1(dΦ,dΦ)

√
|η|drdθ − 〈γ(Φ) , AUγ(Φ)〉∂Ω

=

∫ 1

0

∫ 2π

0

(∣∣∣∂Φ

∂r

∣∣∣2 +
1

r2

∣∣∣∂Φ

∂θ

∣∣∣2) rdrdθ−
− 〈γ(Φ̂n(r))einθ , AU

(
(Φ̂n(r))einθ

)
〉∂Ω

=
∑
n

∫ 1

0

(∣∣∣∂Φ̂n

∂r

∣∣∣2 +
n2

r2
|Φ̂n|2

)
rdr +

∑
n

tan
βn
2
‖γ(Φ̂n)‖2H0(∂Ω)

=
∑
n

Qn(Φ̂n) ,

where we have defined

Qn(Φ̂n) :=

∫ 1

0

(∣∣∣∂Φ̂n

∂r

∣∣∣2 +
n2

r2
|Φ̂n|2

)
rdr + tan

βn
2
‖γ(Φ̂n)‖2H0(∂Ω) .

This shows that QU is partially orthogonally additive with respect to the family
of subspaces {einθ} , n ∈ Z . Notice that the boundary term of QU not lower nor
upper semi-bounded. However, for each sector Qn we can use similar arguments
to those in the proof of Theorem 3.2.9, more concretely in Eqs. (3.2.7), to show that
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it is semi-bounded below. That the sectors Qn are closable can be proved using
similar arguments to those in Theorem 3.2.10. Hence we are in the conditions
of Theorem 5.5.6 and it exist a self-adjoint operator that represents the quadratic
form QU . Theorem 3.2.11 ensures that it is a self-adjoint extension of the minimal
closed extension −∆min .

Corollary 5.5.10. Let {Wi}i∈Z be a discrete family of finite dimensional orthog-
onal subspaces of the Hilbert space H and let Q be a partially orthogonally ad-
ditive Hermitean quadratic form with respect to the family {Wi}i∈Z. Then, Q is
representable.

Proof. This is a direct application of Theorem 5.5.6 since each sectorQi is bounded
and therefore semi-bounded.

Corollary 5.5.11. Let G be a compact Lie group with unitary representation V :
G → U(H), such that the multiplicity of each irreducible representation of G in
V is finite. Let Q be a G-invariant Hermitean quadratic form on H with domain
D(Q). Then Q is representable.

Proof. The Hilbert spaceH can be decomposed in terms of the irreducible repre-
sentations of the group G as

H =
⊕
i∈Ĝ

Hi .

By assumption, eachHi is the direct sum of a finite number of copies of the finite
dimensional spaces carrying the irreducible representations of the group G. By
the previous corollary it is enough to show that the quadratic form will be partially
orthogonally additive with respect to this family. The following identity holds for
Φ,Ψ ∈ D(Q).

Q(Φ + Ψ) = Q(Φ) +Q(Ψ) + 2ReQ(Φ,Ψ) .

Let us show that Q(Φ,Ψ) = 0 if Φ ∈ Hi ,Ψ ∈ Hj ,i 6= j . Since each Hi is finite
dimensional we can consider the following mapping

Q̃∗ij : Hi → H∗j
Φi → Q̃∗ij(Φi)(·) := Q(Φi, ·) ,
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where H∗j stands for the dual space. We can identify H∗j with itself and we shall
consider then the corresponding map

Q̃ij : Hi → Hj .

Now we have that

Q̃∗ij(V (g)Φi)(Ψj) = Q(V (g)Φi,Ψj)

= Q(Φi, V (g)†Ψj)

= Q̃∗ij(Φi)(V (g)†Ψj) ,

and therefore
Q̃ij(V (g)Φi) = V (g)Q̃ij(Φi)

for all g ∈ G. By Schur’s Lemma we have that Q̃ij = 0.



CONCLUSIONS AND FURTHER WORK

In this dissertation we have provided a characterisation of a wide class of
self-adjoint extensions of the Laplace-Beltrami operator. The key object to char-
acterise the boundary conditions is the boundary equation

ϕ− iϕ̇ = U(ϕ+ iϕ̇) , (6.0.1)

see Proposition 3.1.7. The boundary conditions described by such equation are in
one-to-one correspondence with self-adjoint extensions of the Laplace-Beltrami
operator only if the manifold Ω is one-dimensional. However, the fact that it is
strongly related with the structure of the boundary manifold makes it very suitable
to study the different self-adjoint extensions of the aforementioned operator. The
results shown in Chapter 4 and Chapter 5 account for this.

As stated in the introduction, our approach complements the existing charac-
terisations of the extensions of elliptic differential operators. On one hand there is
the theory developed by G. Grubb in the 1960’s , cf., [Gru68], where the structure
of the boundary is kept but the the role of the unitary operator U ∈ U(H0(∂Ω))
is substituted by a family of pseudo-differential operators acting on the Sobolev
spaces of the boundary. On the other hand there is the theory of boundary triples,
cf., [BGP08]. In this case the boundary form is substituted by a form in an abstract
space. This form is such that their maximally isotropic subspaces, i.e., the sub-
spaces where the form vanish identically, are in one-to-one correspondence with
the set of unitary operators acting on this space. Thus, in this approach the set
of self-adjoint extensions is in one-to-one correspondence with the unitary group,
but it fails to capture the structure of the boundary.
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In Chapter 3 we have shown under what assumptions do the boundary con-
ditions described by Eq. (6.0.1) lead to self-adjoint extensions of the Laplace-
Beltrami operator. More concretely, a condition on the spectrum of the unitary
operator characterising the self-adjoint extension, the gap condition (see Defini-
tion 3.1.8), is enough to ensure semi-boundedness. Moreover, a variety of mean-
ingful examples is provided. In particular, the set of generalised periodic boundary
conditions described in Example 3.3.2 is well suited for the analysis of topology
change in quantum theory, see [AIM05, BBMS95, SWX12] . As showed in Ex-
ample 3.3.5 and Example 3.3.8 the aforementioned self-adjoint extensions include
boundary conditions of Robin type. So, as a particular case, we have shown that
Robin boundary conditions of the form

ϕ̇ = g · ϕ g ∈ C0(∂Ω) ,

lead to semi-bounded self-adjoint extensions of the Laplace-Beltrami operator.
This kind of Robin boundary conditions appear in the study of certain quan-

tum systems with boundary such as the ones related to topological insulators and
to the quantum Hall effect, cf., [HK10, Mor88] . This boundary conditions ap-
pear naturally at the interphase between two materials when one of them is in
the superconducting phase. The fact that the corresponding operators describing
the dynamics can be proved to be lower semi-bounded is of main importance for
the consistency of the physical theory describing such systems. Moreover, the
states with the lowest energies are known to be strongly localised at the bound-
ary. The lowest eigenvalue showed at the right of Figure 4.7 is an example of
this localisation at the boundary. In recent research together with M. Asorey and
A.P. Balachandran, [ABPP13], it is shown that the appearance of such low lying
edge states is a quite general feature that happens not only for the Laplace opera-
tor but also for the Dirac operator or for the generalisation of the Laplace operator
to tensor fields, the Laplace-de Rham operator, that includes the electromagnetic
field. In fact, the results of Chapter 3 are easily extendable to the more general
setting of Hermitean fibre bundles, where the Laplace-Beltrami operator is gen-
eralised by the so called Bochner Laplacian (see, e.g., [BBW93, LM89, Poo81]).
The biggest obstruction to obtain such generalisation is to find a proper substitute
for the radial operator R, cf., Definition 3.2.4 and Proposition 3.2.5. Neverthe-
less, this can be circumvented too. We leave this generalisation for further work.
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In Chapter 4 and Chapter 5 the particular structure of the boundary conditions in
Eq. (6.0.1) is used to proof a number of other results.

In Chapter 4 a numerical scheme to approximate the spectral problem is in-
troduced. In particular it is shown that the convergence of the scheme is granted
provided that the gap condition for the unitary operator holds. As a proof of
the factibility of this numerical scheme a one-dimensional version is constructed
explicitly. The numerical experiments show, among other things, that the conver-
gence rates provided are satisfied. It is worth to mention that the convergence of
the numerical scheme is proved for any dimension. Thus, this family of numerical
algorithms can be used to approximate the solutions of problems in dimension two
and higher, which in particular can be applied to the analysis of topology change
and to the study of the edge states mentioned before. The task of programming
a two-dimensional version of the numerical scheme is currently being carried out
together with A. López Yela.

The Chapter 5 is devoted to the analysis of the role of symmetries in the con-
struction of the different self-adjoint extensions. During this dissertation we have
used the notion of G-invariance to avoid confusion with the notion of symmet-
ric operator, cf., Definition 2.1.4. We showed using the most abstract setting,
i.e., using von Neumann’s Theorem, that the set of G-invariant self-adjoint exten-
sions of a symmetric operator is in one-to-one correspondence with the isometries
K : N+ → N− that lie in the commutant of the unitary representation of the
group. This shall point out that even if a symmetric operator is G-invariant it may
happen that their self-adjoint extensions are notG-invariant. Consider an operator
that is constructed as the tensor product of two operators. It is a common error
to assume that all the self-adjoint extensions of the former can be obtained by the
tensor product of the isometries defining the self-adjoint extensions of the factors
in the tensor product. The reason behind this is more easily understood using the
characterisation by boundary conditions developed in this dissertation. Consider
a symmetric operator defined on a manifold

Ω = Ω1 × Ω2 .

Then, the self-adjoint extensions will be parameterised using the Hilbert space of
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square integrable functions defined on the boundary of the manifold

∂Ω = ∂Ω1 × Ω2 t Ω1 × ∂Ω2 .

The common error consists in just considering boundary conditions defined over

∂Ω1 × ∂Ω2 .

The G-invariance results proved in Chapter 5, mainly Theorem 5.1.6, Theorem
5.2.2, and Theorem 5.2.3 provide tools that help to deal with this considerations.
In particular we have focused again in the particular family of quadratic forms
associated to the Laplace-Beltrami operator introduced in Chapter 3. We show
that the set of self-adjoint extensions compatible with the symmetries of the un-
derlying Riemannian manifold is also related with the commutant of the unitary
representation of the group.

The analysis of self-adjoint extensions compatible with symmetries can be
carried a step further. We have already discussed that in quantum mechanics situ-
ations where one operator is invariant under the action of a symmetry are common
and very important. However, sometimes it is the case that the dynamics of a given
physical situation is given over the quotient of a manifold by the action of a group.
A typical example of this is the treatment of indistinguishable particles, where the
configuration space is the quotient of the space where the particles move by the
permutation group (see [LM77] and references therein). The description of such
situations can become very involved. In particular, if the action of the group has
fixed points the quotient is no longer a differentiable manifold. Moreover, the
fixed points become elements of the boundary of the quotient space. The de-
scription of possible self-adjoint extensions over those quotients is therefore at
jeopardy. The study of the relations of the self-adjoint extensions compatible with
the symmetry may help to analyse the structure of the dynamics at the quotient
space.

The final section of Chapter 5 is devoted to the generalisation of Kato’s Repre-
sentation Theorem to quadratic forms that are not semi-bounded. We have intro-
duced the notion of sector of the quadratic form, cf., Definition 5.5.4. This notion
shall play the analogue role to the concept of invariant subspaces that appears
when analysing the structure of self-adjoint operators. We have shown in Theo-
rem 5.5.6 that quadratic forms whose sectors are both, semi-bounded and closable,
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are representable in terms of a self-adjoint operator. Thus we have paved the way
towards a generalisation of Kato’s Representation Theorem for truly unbounded,
i.e., not semi-bounded, quadratic forms. This generalisation remains to be one of
the main open problems in the field. The last step in order to obtain the proper gen-
eralisation would be to identify under what circumstances do Hermitean quadratic
forms possess semi-bounded and closable sectors or to show that they do always
possess them. In particular we have shown by means of Example 5.5.9 that the gap
condition, cf., Definition 3.1.8, is not mandatory and that the class of self-adjoint
extensions of the Laplace-Beltrami operator that can be obtained by means of the
quadratic forms introduced in Chapter 3 is even wider.
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[Fri34] K. FRIEDRICHS. Spektraltheorie halbbeschränkter operatoren und anwen-
dung auf die spektralzerlegung von differentialoperatoren. Math. Ann., 110
(1934), 685–713.

[GG91] V.I. GORBACHUK AND M.L. GORBACHUK. Boundary Value Problems for
Operator Differential Equations., volume 48 of Mathematics and its Appli-
cations (Soviet Series). Kluwer Academic Publishers, 1991.

[GP90] A. GALINDO AND P. PASCUAL. Quantum Mechanics I. Springer, 1990.

[Gru68] G. GRUBB. A characterization of the non-local boundary value problems
associated with an elliptic operator. Ann. Sc. Norm. Sup., 22(3) (1968), 425–
513.



126 BIBLIOGRAPHY
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