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1 Introduction

In this short paper we examine the equilibria of a spatial model of proportional
representation, in which the policy space is multidimensional and the policy
outcome is a linear combination of parties�positions weighted by the share of
votes each party gets in the election. The understanding of such issues is a
fundamental step in order to study the relation between strategic voting and
the number of parties resulting at equilibrium, as well as the relation between
strategic voting and the position of the parties voters decide to vote for.
In a recent paper (De Sinopoli and Iannantuoni, 2003) we analyze a sim-

ilar model of proportional representation, in which the policy space is unidi-
mensional. The main result is that, if voters� preferences are single peaked,
essentially an unique Nash equilibrium exists, characterized by the fact that
any voter on the left/right of the corresponding policy outcome votes for the
leftmost/rightmost party. The incentive to vote for an extreme is given by the
maximal e¤ect that such a vote has on the outcome.
In this paper, we show how this result extends to a multidimensional policy

space. If we assume that the policy space is the unit square and there are
parties located at the four corners, it is unambiguous that these parties are the
extreme ones. In this political scenario, we prove that, if voters� preferences
are single peaked in each dimension with the peak independent from the other
dimension, only the extreme parties take a relevant amount of votes. Hence,
under the above assumptions, the extreme result holds also when strategic voters
face a two-dimensional policy space. However, a simple example shows that the
assumption of strict quasi-concavity of the utility function, which is the natural
extension of single-peakedness to the multidimensional case, is not su¢ cient to
obtain the result that only the extreme parties get votes.
The hypothesis that four parties located at the corners exist can be relaxed,

at the cost of dealing with a speci�c utility function. We study the case in
which each voter has a loss function given by a weighted sum of each issue�s
distance from his preferred policy. In this circumstance, we demonstrate that
only parties located on the boundary of the convex hull of parties�positions take
a relevant amount of votes.
We emphasize that, even if all the results are proven assuming a two-dimensional

policy space, the extensions to more than two dimensions are straightforward.
Before proceeding to the model, let us mention that Scho�ed and Sened

(2002) present a model of multi-party spatial competition under proportional
rule. Their main result, supported also by an empirical analysis to the Israeli
politics, shows that �the centre is empty in politics�.
We describe the model in the next Section, and, then, we study strategic

voting when the four parties located at corners exist in Section 3, while in
Section 4 we analyze the case in which each voter has a loss function given by
a weighted sum of each issue�s distance from his preferred policy. Section 5
concludes the paper. An appendix contains most of the proofs.
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2 The Model

Policy Space. The policy space X is a rectangle and without loss of generality
we assume X = [0; 1]2 :
Parties. Parties are �xed both in number and in their positions, in that

there is no strategic role for them: there is an exogenously given set of parties
M = f1; :::; k; :::mg, indexed by k. Each party k is characterized by a policy
�k = (�k1; �k2) 2 X.
Proportional Rule. Given the set of parties M , each voter can cast his vote

for any party.1 The pure strategy space of each player i is Si = f1; :::; k; :::;mg
where each k 2 Si is a vector of m components with all zeros except for a one
in position k, which represents the vote for party k.
A mixed strategy of player i is a vector �i = (�1i ; :::�

k
i ; :::; �

m
i ) where each

�ki represents the probability that player i votes for party k:

The policy outcome. The policy outcome is a linear combination of parties�
policies each coe¢ cient being equal to the corresponding share of votes.2 Given
a pure strategy combination s = (s1; s2; :::; sn), v(s) = 1

n

P
i si is the vector

representing for each party its share of votes, hence the policy outcome can be
written as:

X (s) =
mX
k=1

�kvk (s) : (1)

Voters. Each voter i is characterized by a bliss point �i 2 � = �1 � �2 =
[0; 1]

2. We assume that it exists a fundamental utility function (à la Harsanyi)
u : <4 ! <, representing the preferences, which is ui(X) = u(X; �i). In other
words, a player is fully characterized by his bliss point.

Given the set of parties and the utility function u, a �nite game � is char-
acterized by a set of players N = f1; :::; i; :::; ng and their bliss points. Given �,
let F1(�1) and F2 (�2) be the marginal distributions of players�bliss points on
�1 and �2, that is to say F1(�1) is the proportion of voters i with �i1 � �1, and
F2 (�2) is the proportion of voters i with �i2 � �2.
The utility that player i gets under the strategy combination s is:

Ui(s) = u(X(s); �i)

Given a mixed strategy combination � = (�1; :::; �n), because players make
their choice independently from each other, the probability that s = (s1; s2; :::; sn)

1 In this model we do not allow for abstention. We cannot claim that this assumption is
neutral. In our proof we use the fact that, as the number of players goes to in�nity, the weight
of each player goes to zero, and this does not hold when a large number of voters abstains.

2Note that, if politicians have a loss function that is quadratic, our outcome function is the
utilitarian solution of a bargaining process among them. Hence it is the result of a bargaining
process of government formation à la Baron and Diermeier (2001), under the assumption that
the statu quo is quite negative for parliamentary members. This is a weak assumption if the
statu quo is given by new election where parliamentary members face the risk of not being
reelected, and the cost of staying out of the legislature is su¢ ciently large, as in Austen-Smith
and Banks (1988).
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occurs is:
�(s) =

Y
i2N

�sii :

The expected utility that player i gets under the mixed strategy combination
� is:

Ui(�) =
X

�(s)Ui(s):

In the following, as usual, we shall write � = (��i; �i), where ��i =
(�1; :::�i�1; �i+1; :::�n) denotes the (n� 1)�tuple of strategies of the players
other than i. Furthermore, si will denote the mixed strategy �i that gives prob-
ability one to the pure strategy si. Given a mixed strategy combination �, ��
will denote the �average�strategy, i.e. �� =

P
i2N

�i
n ; and, with abuse of notation,

X(��) the corresponding outcome, that is X(��) =
mP
k=1

�k��k:

3 Parties at the corners of the square

In this section, we study the equilibria of the model when there are four parties
located at the four corners of the policy space and voters�preferences are single
peaked in X1(resp. X2) with the peak independent from X2(resp. X1). The
two assumptions can be formulated as:

Assumption 1: The four extremist parties LB; LT; RB; RT with �LB = (0; 0);
�LT = (0; 1); �RB = (1; 0); �RT = (1; 1) exist.

3

Assumption 2:
8X2; �i: X1 < X

0

1 � �i1 or �i1 � X
0

1 < X1 implies u(X1; X2; �i) < u(X
0

1; X2; �i)

8X1; �i: X2 < X
0

2 � �i2 or �i2 � X
0

2 < X2 implies u(X1; X2; �i) < u(X1; X
�
2; �i):

We �rst state a trivial result for pure strategies. Every pure strategy equi-
librium is such that, except for voters located in a small subset of the policy
space, whose area is inversely related to the number of players, voters vote only
for the extreme parties.

Proposition 1 Under Assumptions 1 and 2, let s be a pure strategy equilibrium
of the game � with n voters, then
(�) if �i � X (s)� ~1

n then si = LB;

(�) if �i � X (s) + ~1
n then si = RT ;

() if �i1 � X1 (s)� 1
n and �i2 � X2 (s) +

1
n then si = LT ;

(�) if �i1 � X1 (s) + 1
n and �i2 � X2 (s)�

1
n then si = RB.

3This Assumption could be weakened, at the cost of a much heavier notation, by simply
requiring that the convex hull of parties�position is a rectangle, with the sides parallel to the
axis.
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Proof. (�) First notice that if �i � X (s�i; LB), then by Assumption 2 voting
for LB is the only best reply for player i against s�i. Because X(s�i; LB) =
X(s) � 1

n�si � X(s) � ~1
n , then �i � X(s) � ~1

n implies that LB is the unique
best reply, for player i, to s�i. (�) () (�) A symmetric argument holds.

3.1 On the need of Assumption 2

In De Sinopoli and Iannantuoni (2003) we have shown that single-peakedness
of voters�preferences is the only assumption needed to prove that almost any
voter, in any pure strategy equilibrium, votes only for the two extremist parties.
Hence, it is quite natural to check if Assumption 2 can be relaxed by simply
assuming that the voters� utility functions are strictly quasi-concave, that is
the natural extension of single-peakedness when the policy space is multidimen-
sional. At this end, let us consider the following example with �ve parties, the
four extremists LB; LT; RB; RT (as described in Assumption 1) and the center
C with �c = (

1
2 ;

1
2 ):

The strictly quasi-concave utility function of voter i, characterized by the
bliss point �i = (�i1; �i2), is:

u (X; �i) = �

0@ 2X
j=1

(Xj � �ij)2
1A�10

s��
�i2 �

1

2

�
X1 +

1

2
(�i1 � �i2)�

�
�i1 �

1

2

�
X2

�2
:

Voters are located in four regions (see �gure 1) on � = [0; 1]2:

A =

�
�1 � min

�
3

2
�2 �

1

4
;
5

4
� 3
2
�2;

1

2

��
;

B =

�
�1 � max

�
3

2
�2 �

1

4
;
5

4
� 3
2
�2;

1

2

��
;

C =

�
�2 � min

�
3

2
�1 �

1

4
;
5

4
� 3
2
�1;

1

2

��
;

D =

�
�2 � max

�
3

2
�1 �

1

4
;
5

4
� 3
2
�1;

1

2

��
:

It takes few calculations to check that, independently from the number of
voters, everybody voting for C is a Nash Equilibrium of the game.

We show that for a player i located in region A and with �i2 � 1
2 (see �gure

2), voting for the center is a best reply to everybody voting for the center. By
symmetry, it will follow that everybody voting for the center is a Nash equi-
librium of the game. Let C�i be the strategy combination given by everybody
except player i voting for C.

If player i votes for C the policy outcome is (X1; X2) =
�
1
2 ;

1
2

�
, hence
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u ((C�i; C) ; �i) = �
�
1
2 � �i1

�2 � � 12 � �i2�2 :
If player i votes for LB the policy outcome is (X1; X2) =

�
1
2 �

1
2n ;

1
2 �

1
2n

�
,

hence

u ((C�i; LB) ; �i) =

�
�
1
2 �

1
2n � �i1

�2�� 12 � 1
2n � �i2

�2�10q���i2 � 1
2

� �
1
2 �

1
2n

�
+ 1

2 (�i1 � �i2)�
�
�i1 � 1

2

� �
1
2 �

1
2n

��2
:

If player i votes for LT the policy outcome is (X1; X2) =
�
1
2 �

1
2n ;

1
2 +

1
2n

�
,

hence

u ((C�i; LT ) ; �i) =

�
�
1
2 �

1
2n � �i1

�2 � � 12 + 1
2n � �i2

�2 �
� 10

q��
�i2 � 1

2

� �
1
2 �

1
2n

�
+ 1

2 (�i1 � �i2)�
�
�i1 � 1

2

� �
1
2 +

1
2n

��2
:

If player i votes RB the policy outcome is (X1; X2) =
�
1
2 +

1
2n ;

1
2 �

1
2n

�
,

hence

u ((C�i; RB) ; �i) =

�
�
1
2 +

1
2n � �i1

�2�� 12 � 1
2n � �i2

�2�10q���i2 � 1
2

� �
1
2 +

1
2n

�
+ 1

2 (�i1 � �i2)�
�
�i1 � 1

2

� �
1
2 �

1
2n

��2
:

If player i votes RT the policy outcome is (X1; X2) =
�
1
2 +

1
2n ;

1
2 +

1
2n

�
,

hence

u ((C�i; RT ) ; �i) =

�
�
1
2 +

1
2n � �i1

�2�� 12 + 1
2n � �i2

�2�10q���i2 � 1
2

� �
1
2 +

1
2n

�
+ 1

2 (�i1 � �i2)�
�
�i1 � 1

2

� �
1
2 +

1
2n

��2
:

The �rst easy observation is that voting LB is a better reply than voting for
any other extremist party4 .

Hence if u ((C�i; C) ; �i) � u ((C�i; LB) ; �i) voting for C is a best reply for
player i.

It is easy to calculate that
u ((C�i; C) ; �i)�u ((C�i; LB) ; �i) = 1

n

�
1
4n � 1� 4�i1 + 6�i2

�
, which is strictly

positive since �i 2 A (i.e. �i1 � 3
2�i2 �

1
4 ).

By symmetry, everybody voting for C is a Nash equilibrium (independently
from the number of the players), and, hence, the assumption of strictly quasi-
concavity of the utility function does not imply that voters vote only for the
parties located at the corners.

4For example, u ((C�i; LB) ; �i)�u ((C�i; LT ) ; �i) = 6
n
(1� 2�i2) that is non-negative for

�i2 � 1
2
.
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3.2 Mixed strategy equilibria

In this section we analyze mixed strategy equilibria. To carry on such analysis
we assume that the utility function is continuously di¤erentiable respect to the
policy.5

Assumption 3: The fundamental utility function u : <4 ! < is continu-
ously di¤erentiable with respect to the policy.6

In view of the result of Proposition 1, it is natural to analyze the policy
outcome obtained when anybody strictly to the left-bottom of it votes for LB,
anybody strictly to the left-top votes for LT and so on.

At this end, let �� =
�
��1 ; �

�
2

�
be the unique �xed point of the correspondence

H : �! � de�ned by:7

H1(�) =

"
1� F1(�1); lim

y!��1

1� F1(�1)
#

H2(�) =

"
1� F2(�2); lim

y!��2

1� F2(�2)
#
:

In the appendix we will prove the following results:

Proposition 2 Under assumptions 1, 2 and 3, 8� > 0, 9n0 such that 8n � n0
if � is a Nash equilibrium of a game � with n voters, then:
(�) if �i � �� � ~� then �i = LB;
(�) if �i � �� + ~� then �i = RT ;
() if �i1 � ��1 � � and �i2 � ��2 + � then �i = LT ;
(�) if �i1 � ��1 + � and �i2 � ��2 � � then �i = RB:

The above proposition replicates and extends the result previously obtained
for pure strategy equilibria. It replicates the previous result in the sense that
every equilibrium is such that, except for voters located in a small subset of the
policy space, whose area is inversely related to the number of players, voters
vote only for the extreme parties. It extends it, because it shows that every
equilibrium conforms to the same �cutpoint���:

5To study mixed strategies equilibria some cardinal assumptions on the utility function are
needed. Because we use the mean value theorem, the cardinal assumption we have made is the
di¤erentiability one. Furthermore, the continuity of @u(X;�)

@X1
and @u(X;�)

@X2
in X guarantees the

existence, for each player, of a lower bound on the number of players for which the results hold.
The continuity of the above derivatives in � assures that a bound can be found independently
from the set of players.

6With assumption 2, this implies that 8X2; 8�i @u(X;�i)@X1
R 0 if X1 Q �i1 as well as 8X1; 8�i

@u(X;�i)
@X2

R 0 if X2 Q �i2.
7Obviously, �� exists, by the Kakutani�s �xed point theorem, and is unique, because 8j =

1; 2
�0j > �j =) maxHj(�

0) � minHj(�):
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4 A speci�c utility function

In the previous section we have made a very strong political assumption, that
is four parties located at the corners of the policy space exist. In the following,
we will drop Assumption 1, at the cost to deal with a speci�c utility function,
which corresponds to a loss function equal to a weighted sum of each issue�s
distance from the preferred policy:

Assumption 4: The fundamental utility function u : <4 ! < is:

u (X; �i) = �� (�i) j�i1 �X1j � j�i2 �X2j

where � (�i) : [0; 1]
2 ! <++ is a continuous function.

Also in this case, for large electorate, an �extreme� result holds. In the
appendix, we will prove:

Proposition 3 Under Assumption 4, 8" > 0, 9n0 such that 8n � n0 if � is a
Nash equilibrium of a game � with n voters, then:
(�) if �i � X (��)�~" and c =2argmin

k2M
[� (�i) �k1 + �k2] then �

c
i = 0;

(�) if �i � X (��) +~" and c =2argmax
k2M

[� (�i) �k1 + �k2] then �
c
i = 0;

() if �i1 � X1 (��)� " , �i2 � X2 (��) + " and c =2argmin
k2M

[� (�i) �k1 � �k2] then
�ci = 0;

(�) if �i1 � X1 (��) + " , �i2 � X2 (��)� " and c =2argmax
k2M

[� (�i) �k1 � �k2] then
�ci = 0:

The above Proposition shows that, for large electorate, parties that are not
located on the boundary of the convex hull of parties�positions will not take a
relevant amount of votes.

5 Conclusion

In this short paper we have studied strategic voting under proportional rep-
resentation, when the policy space is multidimensional. We prove that, when
four parties located at the corners of the policy space exist, if voters�prefer-
ences are single-peaked in each dimension with the peak independent from the
other dimension, and if the utility function is continuously di¤erentiable with
respect to the policy, there exist a �cutpoint�policy such that any equilibrium
conforms to such a cutpoint, that is to say almost everybody located on the
left-bottom of the cutpoint votes for the left-bottom corner and so on. Because
the assumption that there are four parties located at the corners is quite strong,
we drop it, at the cost to deal with a speci�c utility function. If the preferences
are represented by a loss function that is a weighted sum of each issue�s dis-
tance from the player�s bliss policy, in any equilibrium, only parties located on
the boundary of the convex hull of parties�positions take a relevant amount of
votes.
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Appendix: Proofs of Proposition 2 and 3
Given a mixed strategy �j ; the player j�s vote is a random vector8 ~sj with

Pr (~sj = k) = �
k
j . Given ��i = (�1; :::�i�1; �i+1; :::�n); let ~s

�i = 1
n�1

P
j2N=i

~sj

and ���i = 1
n�1

P
j2N=i

�j . The following Lemma will be useful to prove both

Propositions:

Lemma 4 8� > 0 and 8� > 0; if n > m
4�2�

+ 1; then 8�;8i

Pr
���~s�i � ���i�� � ~�� > 1� �:

Proof. To prove the lemma we can use Chebyshev�s inequality component by
component. Given ��i, it is easy to verify that E(~sjk) = �kj and V ar(~sjk) =
�kj (1 � �kj ) � 1

4 ; hence E(~s
�i
k ) = ���ik and V ar(~s�ik ) � 1

4(n�1) . By Chebyshev�s
inequality we know that 8k;8�:

Pr
���~s�ik � ���ik

�� > �� � 1

4(n� 1)�2
:

Hence

Pr
���~s�i � ���i�� � ~�� � 1�X

k

Pr
���~s�ik � ���ik

�� > �� � 1� m

4(n� 1)�2
;

which is strictly greater than 1� � for n > m
4�2�

+ 1:
Proof of Proposition 2.
The �rst step of the proof consists in showing:

Lemma 5 Under Assumptions 1-3, 8" > 0, 9nLB0 such that 8n � nLB0 , if the
game has n voters and if �i � X (��) � ~", then LB is the only best reply for
player i to ��i.

Proof. Fix " > 0: De�ne, 8� 2
�
0; 1� "

2

�2
;

M"1 (�) = max
(X1;X2)2[�+ "

2 ;1]
2

@u(X; �)

@X1
:

By Assumption 2 we know that M"1 (�) < 0: Moreover, given the continuity of
@u(X;�)
@X1

; we can apply the theorem of the maximum to deduce that the function

M"1 (�) is continuous, hence it has a maximum on
�
0; 1� "

2

�2
, which is strictly

negative. Let
M�
"1 = max

�2[0;1� "
2 ]
2
M"1 (�) :

8We remind readers that a vote is a vector with m components.
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De�ne analogouslyM�
"2: LetM

�
" = max fM�

"1;M
�
"2g, and c¯=mink2M=fLBg f�k1 + �k2g.

Let �M1 and �M2 denote, respectively, the upper bound9 of
���@u(X;�)@X1

��� and of���@u(X;�)@X2

��� on X��, �M = max
�
�M1; �M2

	
and let ��" =

�M�
" c¯

2 �M�M�
" c¯
and �� =

(�2+
p
6)"

m . We prove that if n > m
4��2��"

+ 1, then LB is the only best reply

for player i, which, setting nLB0 equal to the smallest integer strictly greater
than m

4��2��"
+ 1, directly implies the claim.

Take a party c 6= LB. We will show that n > m
4��2��"

+ 1 implies

Ui (��i; c)� Ui (��i; LB) < 0

and, hence, c 6= LB is not a best reply for player i.

Ui (��i; c)�Ui (��i; LB) =
X

s�i2S�i

� (s�i)

�
u

�
X (s�i; c)�

1

n
(�c � �LB); �i

�
� u (X (s�i; c) ; �i)

�
.

Because the outcome function X (s) depends only upon v(s), denoting with V �i

the set of all vectors representing the share of votes obtained by each party with
(n� 1) voters, the right-hand side of the above expression can be written as:X
v�i2V �i

Pr(~s�i = v�i)

�
u

�
X
�
v�i; c

�
� 1

n
(�c � �LB); �i

�
� u

�
X
�
v�i; c

�
; �i
��

where, with abuse of notation, X
�
v�i; c

�
= �c

n +
n�1
n

mP
k=1

�kv
�i
k .

By the mean value theorem we know that 8v�i,
9X�belonging to the line joining X

�
v�i; c

�
� 1

n�c and X
�
v�i; c

�
such that�

u
�
X
�
v�i; c

�
; �i
�
� u

�
X
�
v�i; c

�
� 1

n (�c � �LB); �i
��

1
n

=
@u(X�; �i)

@X1
�c1+

@u(X�; �i)

@X2
�c2:

Hence we have:

Ui (��i; c)�Ui (��i; LB) =
1

n

X
v�i2V �i

Pr(~s�i = v�i)

�
u
�
X
�
v�i; c

�
; �i
�
� u

�
X
�
v�i; c

�
� 1

n (�c � �LB); �i
��

1
n

� 1

n
Pr(
��~s�i � ���i�� � ~��) [M�

n1(�
�; �i1)�c1 +M

�
n2(�

�; �i2)�c2]+
2

n
(1�Pr(

��~s�ik � ���i
�� � ~��)) �M

where

M�
n1(�

�; �i1) = max
(X1;X2)2[X(���i�~�

�
;c)� 1

n �c;1]
2

@u(X; �i)

@X1

M�
n2(�

�; �i2) = max
(X1;X2)2[X(���i�~�

�
;c)� 1

n �c;1]
2

@u(X; �i)

@X2
:

9The continuity of @u(X;�)
@X1

and @u(X;�)
@X2

assures that these bounds exist.
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Now we prove that, for n > m
4��2��"

+1; M�
n1(�

�; �i1) �M�
" as well asM

�
n2(�

�; �i2) �
M�
" .

We show that M�
n1(�

�; �i1) � M�
" , the other one being completely analogous.

From the de�nition ofM�
" , it su¢ ces to prove thatM

�
n1(�

�; �i1) �M"1, which is
true if X1(���i�~�

�
; c)� 1

n�c1 is greater than �i1+
"
2 , and X2(��

�i�~�
�
; c)� 1

n�c2
is greater than �i2 + "

2 . We only prove the inequality for the �rst coordinate,
the proof for the second coordinate being similar.

X1(���i � ~�
�
; c)� 1

n
�c1 =

n� 1
n

X
k

���ik �k1 �
n� 1
n

X
k

���k1 =

X1(��)�
1

n

X
k

�ki �k1�
n� 1
n

X
k

���k1 > X1(��)�
1

n
�m�� � �i1+"�

1

n
�m��:

Hence, this step of the proof is concluded by noticing that ��" is by de�nition
less than 1

2 , hence
10

�i1+"�
1

n
�m�� > �i1+"�m���

2��2

m
= �i1+"�

(20� 8
p
6)"2

m3
�"
�
�2 +

p
6
�
�

�i1 + "(1�
(20� 8

p
6)

8
+ 2�

p
6) = �i1 +

1

2
":

By Lemma 4, we know that, for n > m
4��2��"

+ 1;

Pr(
��~s�i � ���i�� � ~��) [M�

n1(�
�; �i1)�c1 +M

�
n2(�

�; �i2)�c2]+2(1�Pr(
��~s�i � ���i�� � ~��)) �M <

(1� ��")M�
" c¯
+ 2��"M = (1� �M�

" c¯
2M �M�

" c¯
)M�

" c¯
+ 2

�M�
" c¯

2M �M�
" c¯
M = 0;

which concludes the proof.

A symmetric argument proves:

Lemma 6 Under Assumptions 1-3, 8" > 0;9nRT0 ; nLT0 ; nRB0 such that:
(�) 8n � nRT0 , if the game has n voters and if �i � X (��) +~", then RT is the
only best reply for player i to ��i.
(�) 8n � nLT0 , if the game has n voters and if �i1 � X1 (��) � ", and �i2 �
X2 (��) + ", then LT is the only best reply for player i to ��i.
() 8n � nRB0 , if the game has n voters and if �i1 � X1 (��) + ", and �i2 �
X2 (��)� ", then RB is the only best reply for player i to ��i:

Combining the result of the following Lemma, we obtain Proposition 2

10 In the following we assume that " � 1, since otherwise the proposition is trivially true.
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Lemma 7 Under Assumptions 1-3, 8� > 0, 9n0 such that 8n � n0 if � is a
Nash equilibrium of a game � with n voters, then:
(�) if �i1 � ��1 � � then �i 2 fLB;LTg
(�) if �i1 � ��1 + � then �i 2 fRB;RTg
() if �i2 � ��2 � � then �i 2 fLB;RBg
(�) if �i2 � ��2 + � then �i 2 fLT;RTg.

Proof. We only prove (�) and (�) because the proof of () and (�) is completely
similar. Fix � and, in Lemmas 5 and 6, take " = �

2 and let n0 be the greater
number among the corresponding nLB0 ; nRT0 ; nLT0 ; and nRB0 . It is easy to see
that if n � n0 and � is a Nash equilibrium of �, ��1 � �

2 � X1 (��) � ��1 +
�
2 .

Suppose by contradiction that ��1 � �
2 > X1 (��) ; then Lemma 6 implies that all

voters i with �i1 � ��1 vote either for RB or for RT and hence ��1 � X1 (��),
contradicting ��1 � �

2 > X1 (��). Analogously for the second inequality. Hence
��1 � � � X1 (��) � �

2 and �
�
1 � � � X1 (��) +

�
2 , which with Lemmas 5 and 6

complete the proof.
�

Proof of Proposition 3: We �rst prove the following Lemma:

Lemma 8 Under Assumption 4, 8" > 0, 9nLB0 such that 8n � nLB0 , if the game
has n voters, � is a Nash equilibrium, �i � X (��)�~", and c =2argmin

k2M
[� (�i) �k1 + �k2]

then �ci = 0.

Proof. Fix " > 0. Take a party lb 2argmin
k2M

[� (�i) �k1 + �k2]. De�ne, for

k =2argmin
k2M

[� (�i) �k1 + �k2],

Dk (�i) = [� (�i) �lb1 + �lb2 � � (�i) �k1 � �k2]

De�ne also D (�i) = max
k=2arg min

k2M
[�(�i)�k1+�k2]

Dk (�i), as well as D = max
�i
D (�i).

Clearly D is strictly negative. Let �� = max
�
� (�), �� = �D

1+���D ; and �
� =

(�2+2
p
2)"

m . Clearly �� and �� are strictly positive.
Now we prove that if n > m

4��2��
+ 1, then 8c =2argmin

k2M
[� (�i) �k1 + �k2]:

Ui (��i; c)� Ui (��i; lb) < 0

which, setting nLB0 as the smallest integer greater or equal to m
4��2��

+1, implies
the claim.

As in the proof of Lemma 5,

Ui (��i; c)�Ui (��i; lb) =
X

v�i2V �i

Pr(~s�i = v�i)
�
u
�
X
�
v�i; c

�
; �i
�
� u

�
X
�
v�i; lb

�
; �i
��
:
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Notice that, if �
�i1 � min fX1 (s�i; c) ; X1 (s�i; lb)g
�i2 � min fX2 (s�i; c) ; X2 (s�i; lb)g

then

u (X (s�i; c) ; �i)�u (X (s�i; lb) ; �i) =
1

n
[� (�i) �lb1 + �lb2 � � (�i) �c1 � �c2] =

1

n
Dc (�i) .

Moreover,

max
s�i;c

ju (X (s�i; c) ; �i)� u (X (s�i; lb) ; �i)j �
1

n
[� (�i) + 1] .

Obviously,X1
�
s�i;~0

�
� min fX1 (s�i; c) ; X1 (s�i; lb)g, as well asX2

�
s�i;~0

�
�

min fX2 (s�i; c) ; X2 (s�i; lb)g.11 From Lemma 4 we know, for n > m
4��2��

+ 1,

that Pr
���~s�i � ���i�� � ~��� > 1���. Because, for n > m

4��2��
+1,X

�
���i � ��;~0

�
>

X (��)�~" � �i12 , we can deduce:

u (X (��i; c) ; �i)�u (X (��i; lb) ; �i) =
X

v�i2V �i

Pr(
�
~s
�i
= v�i)

�
u
�
X
�
v�i; c

�
; �i
�
� u

�
X
�
v�i; lb

�
; �i
��
<

1

n
[(1� ��)D + ��(1 + ��)] = 1

n

�
(1� �D

1 + �� �D )D +
�D

1 + �� �D (1 + �
�)

�
= 0

and, hence, c =2argmin
k2M

[� (�i) �k1 + �k2] cannot be a best reply for player i.

Analogously, the following Lemma can be proved:

Lemma 9 Under Assumption 4, 8" > 0, 9nRT0 ; nLT0 ; nRB0 such that
(�) 8n � nRT0 , if the game has n voters, � is a Nash equilibrium, �i � X (��)+~",
and
c =2argmax

k2M
[� (�i) �k1 + �k2] then �

c
i = 0.

(�) 8n � nLT0 , if the game has n voters, � is a Nash equilibrium, �i1 � X1 (��)�
", �i2 � X2 (��) + ", and c =2argmin

k2M
[� (�i) �k1 � �k2] then �ci = 0.

() 8n � nRB0 , if the game has n voters, � is a Nash equilibrium, �i1 � X1 (��)+
", �i2 � X2 (��)� ", and c =2argmax

k2M
[� (�i) �k1 � �k2] then �ci = 0.

11With abuse of notation X
�
s�i;~0

�
denotes the outcome that would have been resulted if

a party in (0; 0) existed and player i voted for it.
12We only prove the inequality for the �rst coordinate because the proof for the second

coordinate is completely analogous.

X1(��
�i � ~��;~0) = X1(��)�

1

n

X
k

�ki �k1 �
n� 1
n

X
k

���k1 > X1(��)�
1

n
�m��:

This step of the proof is concluded by noticing that ��" is by de�nition less than
1
2
, hence

X1(��)�
1

n
�m�� > X1(��)�m���

2��2

m
= X1(��)�(�2+2

p
2)"� 24� 16

p
2

m3
"2 > X1(��)�":
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Setting n0 = max
�
nLB0 ; nRT0 ; nLT0 ; nRB0

	
completes the proof. �
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Figure 1: x = �1; y = �2:

Figure 2: x = �1; y = �2:
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