-dNEsus

Network for Sustainable Ultrasca e Computing

Proceedings of the Third International Workshop on Sustainable
Ultrascale Computing Systems (NESUS 2016)
Sofia, Bulgaria

Jesus Carretero, Javier Garcia Blas, Svetozar Margenov
(Editors)

October, 6-7, 2016

Volume Editors

Jesus Carretero

University Carlos III

Computer Architecture and Technology Area
Computer Science Department

Avda Universidad 30, 28911, Leganes, Spain
E-mail: jesus.carretero@uc3m.es

Javier Garcia Blas

University Carlos 111

Computer Architecture and Technology Area
Computer Science Department

Avda Universidad 30, 28911, Leganes, Spain
E-mail: fjblas@inf.uc3m.es

Svetozar Margenov

Institute of Information and Communication Technologies
Bulgarian Academy of Sciences

Acad. G. Bontchev Str., Bl. 25A, 1113 Sofia, Bulgaria
E-mail: margenov@parallel.bas.bg

Published by:

Computer Architecture,Communications, and Systems Group (ARCOS)
University Carlos III

Madrid, Spain

http://www.nesus.eu

ISBN: 978-84-617-7450-0

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

This document also is supported by:

— A H

Printed in Madrid — December 2016

Preface

Network for Sustainable Ultrascale Computing (NESUS)

We are very excited to present the proceedings of the Third International Workshop on Sustainable Ultrascale Computing
Systems (NESUS 2016), a workshop created to reflect the research and cooperation activities made in the NESUS COST
Action (IC1035) (www.nesus.eu), but open to all the research community working in large/ultra-scale computing sys-
tems. It was held in Sofia (Bulgaria) on October 6-7, 2016.

The goal in scalable and sustainable technology today is to have on the one hand large parallel supercomputers, named
Exascale computers, and on the other hand, to have very large data centers with hundreds of thousands of computers
coordinating with distributed memory systems. Ultimately, NESUS idea is to have both architectures converge to solve
problems in what we call ultrascale. Ultrascale systems combine the advantages of distributed and parallel computing
systems. The former is a type of computing in which many tasks are executed at the same time coordinately to solve
one problem, based on the principle that a big problem can be divided into many smaller ones that are simultaneously
solved. The latter system, in both grid and cloud computing, uses a large number of computers organized into clusters in
a distributed infrastructure, and can execute millions of tasks at the same time usually working on independent problems
and big data. The applications of these systems and the benefits they can yield for society are enormous, according to the
researchers, who note that this type of computing will help conduct studies about genomics, new materials, simulations of
fluid dynamics used for atmospheric analysis and weather forecasts, and even the human brain and its behavior.

The goal of the NESUS Action is to establish an open European research network targeting sustainable solutions for ul-
trascale computing aiming at cross fertilization among HPC, large scale distributed systems, and big data management.
Ultrascale systems are envisioned in NESUS as large-scale complex systems joining parallel and distributed computing
systems that will be two to three orders of magnitude larger that today’s systems. The EU is already funding large scale
computing systems research, but it is not coordinated across researchers, leading to duplications and inefficiencies. The
network will contribute to glue disparate researchers working across different areas and provide a meeting ground for
researchers in these separate areas to exchange ideas, to identify synergies, and to pursue common activities in research
topics such as sustainable software solutions (applications and system software stack), data management, energy efficiency,
and resilience. Some of the most active research groups of the world in this area are members of this NESUS Action. This
Action will increase the value of these groups at the European-level by reducing duplication of efforts and providing a
more holistic view to all researchers, it will promote the leadership of Europe, and it will increase their impact on science,
economy, and society.

The scientific objective of NESUS is to study the challenges presented by the next generation of ultrascale computing sys-
tems to enhance their sustainability. These systems, which will be characterized by their large size and great complexity,
present significant challenges, from their construction to their exploitation and use. We try to analyze all the challenges
there are and see how they can be studied holistically and integrated, to be able to provide a more sustainable system. The
challenges that this type of computing poses affect aspects such as scalability, the programming models used, resilience to
failures, energy management, the handling of large volume of data, etc. One of the NESUS goals is to find the way that all
solutions that are proposed can be transmitted to user applications with the minimum possible redesign and reprogramming
effort.

The project began last March with 29 European countries, but at present consists of 39 European countries and six coun-

tries from other continents. It now involves nearly 200 scientists, almost 40% of whom are young researchers, because

one essential goal of these Actions is to promote and create an ecosystem of scientists who can work on these matters in
the European Union in the future.

This Action, which concludes in 2018, aims to produce a catalogue of open source applications that are being developed
by the members of the Action and which will serve to demonstrate new ultrascale systems and take on their main chal-
lenges. In this way, anyone will be able to use these applications to test them in their systems and demonstrate their level

of sustainability.
Prof. Jesus Carretero

University Carlos III of Madrid
NESUS Chair

December 2016

&
-3 NESUS

Network for Sustainable Ultrascale Compuiting

Aim

B Coordinate European efforts for proposing realistic solutions addressing major
challenges of building sustainable Ultrascale Computing Systems (UCS) with a
holistic approach.

To:

1. Increase EU research in the field of sustainable ultrascale computing.
. Give coherence to the European ICT research agenda related to sustainability.
3. Build a multi-disciplinary forum for cross-fertilization of ideas for sustainable
ultrascale computing.

Scientific Workplan
New problems

and research
topics

WGE
Applications: Astrophysics, Biclogy, Medicine,
Environment. Englneering, laT, Social Sciences

NGt

| WaG1
£ _I State of the
Ultrascale Computing Services T Art
. L~ vy
B S
wez | w3 wea | wes |
Programming Resilience of Sustaimable Energy
lm:_|dele and applications. data efficlency !--’!fﬁw results
! runtimeas A and runtimes | managemant _I
S = A

High-Performance
High-Throughput
Data Centers

" WG1: New techniques to enhance sustainability holistically.

-

Topics

" Wy Promoting new sustainable programming and execution

models in the context of rapidly changing underlying computing architecture.

WG3: Innovative techniques to deal with hardware and system software
failures or intentional changes within the complex system environment.

WG4: Study data management lifecycle on scalable architectures in a
synergistic approach to pave the way towards sustainable UCS.

WG5: Explore the design of metrics, analysis, frameworks and tools for
putting energy awareness and energy efficiency at the next stage.

WGB: Identify algorithms, applications, and services amenable to ultrascale
systems and to study the impact of application requirements on the sustainable
ultrascale system design.

Activities

Research activities though WGs

Set up collaborations through STSM and intemships

Training schools and PhD forum

Meetings for WGs and MC

Dissemination and cooperation with industry and stakeholders.
Publications, conference organization, industry seminars, ...

COST is supported by the EU
RTD Framework Programme

Information and
Communication

Technologies
(ICT)

el

Participating countries: 45
EU COST countries: 33

AT, BA, BE, BG, BO, CH, CY, DE, DK, EE,
EL, ES, FI, FR, HR, HU, IE, IL, IT, LT, LU,
MK, MT, NL, NO, PL, PT, RO, Sl, SK, SE,
TR, UK

NNC countries: 6

AL, AM, MD, MO, RU, UA

1

Global Collaboration: 6
AU, CA, CO, IN, MX, US

Contact details

Chair of the Action
Jesus Carretero

Iesus carretero@uc3m es

Website
WWW.nesus.eu

IROPEARRN
CIENCE
LNDETION

TABLE OF CONTENTS

Third NESUS Workshop (NESUS 2016)

11

15

23

31

37

45

51

59

69

73

79

Sasko Ristov, Radu Prodan, Marjan Gusev, Dana Petcu, Jorge Barbosa

Elastic Cloud Services Compliance with Gustafson’s and Amdahl’s Laws

Lukasz Szustak, Kamil Halbiniak, Roman Wyrzykowski, Alexey Lastovetsky

Exploring OpenMP Accelerator Model in a real-life scientific application using hybrid CPU-MIC platforms

Simon Holmbacka, Enida Sheme, Sebastien Lafond, Neki Frasheri

Geographical Competitiveness for Powering Datacenters with Renewable Energy

Atanas Hristov, Iva Nikolova, Georgi Zapryanov, Dragi Kimovski, Vesna Kumbaroska

Resource Management Optimization in Multi-Processor Platforms

Radim Blaheta, Ondrej Jakl, Jiri Stary, Ivan Georgiev, Krassimir Georgiev, Svetozar Margenov, Roman Kohut

Analysis of fiber-reinforced concrete: micromechanics, parameter identification, fast solvers

Fabrizio Marozzo, Francisco Rodrigo Duro, Javier Garcia Blas, Jesiis Carretero, Domenico Talia, Paolo
Trunfio

A Data-Aware Scheduling for DMCF workflows over Hercules

Enida Sheme, Jean-Marc Pierson, Georges Da Costa, Patricia Stolf, Neki Frasheri

Efficient Energy Resource Scheduling in Green Powered Datacenters: A Cloudsim Implementation

Pedro Alonso, Ravi Reddy, Alexey Lastovetsky

Heterogeneous computation of matrix products

Eva Burrows, Helmer Andre Friis, Magne Haveraaen

An Array API for FDM

Berk Hess, Jing Gong, Szilard Pall, Philipp Schlatter; Adam Peplinski

Highly Tuned Small Matrix Multiplications Applied to Spectral Element Code Nek5000

Nicolas Denoyelle, Aleksandar Ilic, Brice Goglin, Leonel Sousa, Emmanuel Jeannot

Automatic Cache Aware Roofline Model Building and Validation Using Topology Detection

Mateusz Jarus, Ariel Oleksiak, Wahi Narsisian, Hrachya Astsatryan
Energy-efficient Assignment of Applications to Servers by Taking into Account the Influence of Processes on

Each Other

85 Raimondas Ciegis, Vadimas Starikovicius, Svetozar Margenov

On Parallel Numerical Algorithms for Fractional Diffusion Problems

91 List of Authors

Sasko Ristov, Radu Prodan, Marjan Gusev, Dana Petcu, Jorge Barbosa

&

CcoskE

Elastic Cloud Services Compliance with
Gustafson’s and Amdahl’s Laws

SAskO Ristov, RADU PRODAN

University of Innsbruck, Austria

sasko@dps.uibk.ac.at, radu@dps.uibk.ac.at

MARJAN GUSEV

Ss. Cyril and Methodius University, Skopje, Macedonia

marjan.gushev@finki.ukim.mk

DaANA PETCU

West University of Timisoara, Romania

petcu@info.uvt.ro

JORGE BARBOSA

University of Porto, Portugal

jbarbosa@fe.up.pt

Abstract

The speedup that can be achieved with parallel and distributed architectures is limited at least by two laws: the Amdahl’s and
Gustafson’s laws. The former limits the speedup to a constant value when a fixed size problem is executed on a multiprocessor,
while the latter limits the speedup up to its linear value for the fixed time problems, which means that it is limited by the
number of used processors. However, a superlinear speedup can be achieved (speedup greater than the number of used processors)
due to insufficient memory, while, parallel and, especially distributed systems can even slowdown the execution due to the
communication overhead, when compared to the sequential one. Since the cloud performance is uncertain and it can be influenced
by available memory and networks, in this paper we investigate if it follows the same speedup pattern as the other traditional
distributed systems. The focus is to determine how the elastic cloud services behave in the different scaled environments. We
define several scaled systems and we model the corresponding performance indicators. The analysis shows that both laws limit
the speedup for a specific range of the input parameters and type of scaling. Even more, the speedup in cloud systems follows the
Gustafson’s extreme cases, i.e. insufficient memory and communication bound domains.

Keywords Load, Distributed systems, Performance, Superlinear speedup.

I. INTRODUCTION

Cloud computing has introduced a rapid change in the way
of designing the architecture of today’s services from license-
based to as-a-service-based services [1]. The main driver was
influenced by its multitenancy, on demand elastic resources
and underlined virtualisation technology. Customers do not
buy the license to own the software service, but instead they
pay only for the period of its usage. In order to satisfy the
customers’ demands, cloud providers offer various types

of resources, usually represented as virtual machine (VM)
instances, each with specific computing, memory and storage
capacity. The customers expectation is that the performance
will follow the price.

Due to its elasticity and the linear pay-as-you-go model,
the cloud is preferred platform both for the granular and
scalable algorithms, especially if they are low communication-
intensive, such as scientific applications [2, 3]. Still, many
applications are data-intensive, and provide a high through-
put. This is a huge challenge in the cloud because the data

Elastic Cloud Services Compliance with Gustafson’s and Amdahl’s Laws

transfer between the cloud compute nodes and storage is a
bottleneck [4]. Despite the additional virtualisation layer, the
superlinear speedup is also reported, both for granular [5],
and scalable application types [6].

However, despite all these benefits, the main challenge
for the customers is whether they will get the performance
proportionally to the cost. That is, whether the cloud elastic
resources comply with the Amdahl’s Law [7] for the fixed
size problems and with Gustafson’s Law [8] for the fixed
time problems. In this paper, we model several performance
indicators, to determine if both laws hold for the cloud elastic
services, each in a specific region. Although one can argue
that the web services are scalable and therefore will comply
with the Gustafson’s law only, our analysis and taxonomy
show in which scaled systems the Amdahl’s law limits the
speedup.

The rest of the paper is organised in several sections as
follows. The speedup definitions and limits in parallel and
distributed systems are described in Section II. Section III
defines a taxonomy for scaled systems in cloud, in order to
adapt the existing Amdahl’s and Gustafon’s laws for elastic
services. According to the taxonomy, Section IV models the
speeds and speedups for each scaled system for various load
regions. Despite the virtualisation layer, the cloud environ-
ment can achieve even a superlinear speedup, as discussed
in Section V. Section VI discusses further challenges. Finally,
we conclude the paper in Section VIL

II. BACKGROUND

Parallel and distributed systems offer a powerful environ-
ment that can be utilised for two main purposes: to speed
up some algorithm’s execution or to execute some big data
problems. The former is useful in order to finish with execu-
tion in proper time; for example, we need today a weather
forecast for tomorrow, and it is unusable to have it tomor-
row. Distributed systems are used to solve a problem that
cannot be even started on a single machine due to hardware
limitation. Both parallel and distributed systems have more
computing resources than a nominal single-machine or a
single-processor system. In this paper, we will denote these
systems as scaled systems.

Two main laws exist in the computer architecture, or more
broader in the parallel and distributed systems, which limit
the speedup that can be achieved, according the algorithm’s
type: Amdahl’s and Gustafson’s laws. Both laws target the
speedup, but analyse it from different perspectives.

Let’s analyze a scaled system with a scaling factor p. The
metric for measuring the performance of a scaled computing
system is the speed V(p), which defines the amount of work

W(p) performed for a period of time T(p), as presented in
(1). Another important metric is the normalised speed NV (p),
which measures the amount of work per processor per time
period, as defined in (2).

V(p) = %f)) M

V)
NVIP) = =" = T p

@)

To compare the scaled with a non-scaled system, one
should evaluate the speedup S(p), which is defined as a
ratio of speeds of the scaled system and the best speed in the
non-scaled system, as presented in (3).

_V(p) _Wp)/T(p)
=V = W ©

The amount of work is constant for fixed-time algorithms,
which transfers (3) to (4), where T(1) denotes the execution
times of the best sequential algorithm, while T(p) the exe-
cution time of the algorithm on scaled system with scaling
factor p.

S(p) = () 4)

Amdahl’s Law limits the size of the problem and limits
the speedup to the value Syx(p) = 1/5s, where s is the serial
part of the algorithm. As one can observe, the maximal
theoretical value for the speedup is limited and does not
depend on the number of processors. On the other side,
Gustafson reevaluated the Amdahl’s Law by showing that
a linear speedup Spax(p) = p can be achieved if a problem
is executed within a fixed time. He achieved a near linear
speedup of impressive 1000, when running a problem on
1024 cores [9].

III. A TAXONOMY OF SCALED SYSTEMS

Usually both Gustafson’s and Amdahl’s laws are intended
for granular algorithms, which can be divided into many
independent sub-tasks and then scattered to a scaled system
for execution. This section presents a taxonomy that we
define for scaled systems in order to adapt both laws to be
appropriate for cloud elastic services. We are using a similar
approach for scalable algorithms, such as web services, with
an exception that in this case, the parallelisation is usually
not conducted by some API, but on the web server level.

Sasko Ristov, Radu Prodan, Marjan Gusev, Dana Petcu, Jorge Barbosa

IIL1 Definition and classification of scaled systems

Let a nominal system be a cloud system that possesses R
cloud resources and is loaded with L requests, as presented
in Fig. 1 a). One would expect the nominal system can handle
L amount of work in a specific time period using R resources.
For example, the load can be represented as the number of
requests for some service which is hosted in a group of VMs
that have a total of R cloud computing resources.

Our classification is based on scaling both the require-
ments of a cloud computing system and cloud resources.
Therefore, we define two scaling types in cloud computing:
scaling the load (requirements) and scaling the (cloud com-
puting) resources. A different scaling factor can be used for
requirements and resources. Without loosing generality, we
assume that the resources can scale p > 1 times, while the
load, N times.

We will use the notation xRyL to define the taxonomy
of scaling the cloud systems where x,y € {n,s} are the
indicators in front of each scaling parameter. The s presence
indicates that the corresponding parameter is scaled and n
if it is not scaled. According to this notation, the nominal
system is defined as a non-scaled Resources non-scaled Load,
and denoted as (nRnL) system.

If the customers want to improve the performance of a
service hosted in a cloud system, they need to scale the cloud
resources. In case of scaling the load, there are two possi-
bilities for the customer: either to retain the cost (keep the
same cloud resources), but degrade the performance, or to
scale the cloud resources and to retain the same performance.
Consequently, we will define three different scaled systems
when only one or both parameters are scaled with Defini-
tions 1, 2, and 3. All three scaled systems are presented in
Fig. 1b), c¢) and d).

Definition 1 (sRnL scaled system) The sRnL scaled cloud sys-
tem denotes a cloud system with scaled Resources non-scaled
Load, that is, a system with p times more cloud resources.

Definition 2 (nRsL scaled system) The nRsL scaled cloud sys-
tem denotes a cloud system with non-scaled Resources scaled
Load, that is, a cloud system with N times more load.

Definition 3 (sRsL scaled system) The sRsL scaled cloud sys-
tem denotes a system with scaled Resources scaled Load, that
is, a system with p times more cloud resources and N times niore
load.

The next examples explain these types of scaled systems.
Assume that a web server hosted in a cloud instance with one
CPU core (R = 1) can handle 100 client requests (L = 100) in
acceptable response time. According to the Gustafson’s Law

one would expect that the performance would be doubled
when the same 100 requests are executed on a server using
resources with double the capacity (sRnL).

Another example is when both the load and resources are
scaled, that is, the expected response time of 200 requests to
be executed on a server with doubled resources should be
the same as the nominal case - 100 requests executed on one
CPU core (sRsL). And, for nRsL, the response time should
be doubled if the load is increased to 200 requests.

III.2 Expected performance of scaled cloud systems

Let PF be a function (5) that returns the performance P of
a system with specific resources R and loaded with a load
L. Then, (6) defines the expected performance for all three
scaled systems.

P = PF(R,L))

sRnL:p-P=PF(p-R,L);
nRsL :% -P=PF(R,p-L); (6)
sRsL:P =PF(p-R,p-L).

This classification of scaling the system can help in deter-
mination of performance limits of a system.

IV. THEORETICAL ANALYSIS OF SCALED SYSTEMS
COMPLIANCE WITH AMDAHL'S AND (GUSTAFSON’S LAWS

In order to adapt both laws for elastic services, this section
introduces the work per resource and models the speedup for
scaled systems compared to nominal (non-scaled) systems.

IV.1 Modeling the resource utilization

In order to find the resource utilization W we determine how
much average work (load) L is sent to a particular resource
R and calculate it according to (7) as a ratio of the load and
the number of resources. This parameter shows the average
"speed” of performing a particular work per resource. To
simplify the notation, in the remaining text we will use
abbreviations omitting the R and L identifications, such as
nn for the nRnL system.

L
Won = |5 @)

Next, distribute all L requests in groups, such that each
group has R requests to map each request to a specific com-
puting resource. Then, in each time period, R requests will

Elastic Cloud Services Compliance with Gustafson's and Amdahl’s Laws

Cloud Service Cloud Service

Cloud Service

Cloud Service |

Clients

d)

Figure 1: Nominal (non-scaled) system nRnL a) and three possible scalings b) sRnL, c) nRsL and d) sRsL

-

Resource utilization

—Wnn —Wsn —Wns —\Wss
>
L/R

Figure 2: Resource utilization of the scaled systems

be scattered among available R resources, which yields to (7).
Note that the last group will have L mod R requests, and
not all the resources will be loaded with requests.

By applying the corresponding parameters for the three
scaled systems into (7), then (8) defines the resource uti-
lizations (expressed as work per resource) Wy, Wys, Wi,
corresponding to the sRnL, nRsL and sRsL systems.

N L

p-R R

Observing the definitions for all four work per resource,
one can conclude that all of them depend on the ratio L/R,
representing a nominal value of a work per resource. There-
fore, we will continue with an analysis that determine the
impact of the L /R ratio over the work per resource and the
speedup.

Fig. 2 presents the resource utilization (work per resource)
of the nominal and the three scaled systems. Observe that
all resource utilizations are in a shape of stairs, with a linear
trendline. The stairs’ effect appears due to roundup function
in (7) and (8). Obviously, the resources of sRnL scaled system
have a smaller amount of work, while the other two scaled
systems have more, compared to the nominal system. Fig. 2

is obtained for a value of p/N = 2/4 = 1/2. We must note
that Wss and W),s can change their place in Fig. 2, depending
whether the p/N ratio is greater of smaller than 1.

IV.2 Modeling the speedup

In order to measure the impact of scaling, (9) defines the
speedup Ssn, Sns, Sss for all scaled systems, when compared
to the nominal one.

sn = HJ; Sns = HJ i Sss = HJ; ©)
|74] Bl

Fig. 3 visually presents all three speedups as a function
of the L/R ratio, along with their trendlines. The speedup
Ssn shows an increasing trend starting from 1, and saturates
up to the scaling factor p when %‘.’ — o0, Whenever p is a
divisor of L/R, the speedup achieves its maximal value of
p, regardless of the L/R ratio value, as depicted with point
A(i -p, p). Although, seemingly, it looks like that the sRnL
scaled system relies on the Gustafson’s Law, it is true only
when the L/R ratio is huge. For smaller L/R ratio, scaling
the resources will not provide a greater speedup, which is
exactly the Amdahl’s Law.

The speedup S, starts from S,; = 1 and saturates its
value to the point 1/N for greater ratio L/R. Obviously,
although Sps < p, and seemingly it is a sublinear speedup,
in fact this is a slowdown. This is expected since the load
is increased compared to the nominal system. According to
Fig. 2, the work per resource is increased, which will reduce
the performance. The tradeoff for this performance suffering
is the constant cost that the customer should pay for renting
the resources.This is the resource underprovisioning and
overutilisation.

Similar behavior for speedup is present for the the sRsL
scaled system. The only difference is that the trendline sat-
urates to the value 555 = p/N. Let us discuss about the

Sasko Ristov, Radu Prodan, Marjan Gusev, Dana Percu, Jorge Barbosa

F A & Sns +Sss p
A -
IJ-'J l- VJ —Sns o
S _linear - .
11| . . Trendline p/N
- n ‘m&'ﬂf“’"ﬂ‘l"ﬂf‘“‘h" APy Ar b=
e : 1/N lodf
| TV POUOTUUS .. Lo W 1|
enunne L/R Al ‘

Figure 3: Speedup for various scaled systems as a function of L/R

43P ()
Superlinear
s(P)=P
5 (P}
Sublinear
1t 4 I
Drawbacl s{P)=1
Server Load
Underutilized Proportional Superior Saturated

Figure 4: Expected speedup of a scaled system

expected performance of this scales system (6) and the calcu-
lated speedup (9). If the resource scaling follows the scaling
of the work, then the speedup will saturate to 1, which means
that this scaled system scales ideally. However, if p > N,
which means overprovisioning and underutilisation, we are
getting closer to the sRnl scaled system, in the hands of
Amdahl’s Law.

IV.3 Going beyond the speedup limits

Although previous subsection presents the theoretical limits
of the speedup in various scaled systems, several examples
are reported where the speedup went beyond the limits, that
is, a superlinear speedup is achieved.

Ristov et al. [10] have modeled the performance behavior
of services classifying five sub-domains of speedup:

e Drawback 0 < S(p) < 1 - worse performance for the
scaled system;

e No Speedup S(p) = 1- the new scaled system reports the

same performance as unscaled;

e Sublinear 1 < S(p) < p - similar to Gustafson's scaled
speedup;

e Linear S(p) = p - maximum limited speedup according
to the Gustafson's scaled speedup;

e Superlinear 5(p) > p - greater performance than the
limited speedup.

The expected sub-domains, along with four regions of
server load (underutilised, proportional, superior and satu-
rated) are presented in Fig. 4 [10]. The first three regions are
already expressed in our theoretical analysis. The superior
region is of interest in this paper, and it appears because the
web server with one core will enter in its saturation mode,
while the scaled system is still in its normal mode. The supe-
rior region ends when the scaled system enters the saturation
mode. This means that theoretical speedups of all scaled
systems do not saturate to the constant value, but they will
start to falling down when the ratio L/R will increase up to
some level when even the scaled resources cannot handle the
load in the appropriate time.

However, the reported results show that this model
works only for both computation-intensive and memory-
demanding web services, while the computation-intensive
only web services achieve a sublinear speedup, that is, those
systems have four regions.

V. ANALYSIS OF A SUPERLINEAR SPEEDUP IN CLOUD
ENVIRONMENT

Nowadays, cloud computing is being increasingly used for
high-performance and high throughput applications. It al-
lows the customers to rent, for example, 1000 processors
and execute a certain task at peak times, instead of building
their own data center. Since the cloud’s pricing strategy
is linear, and expected speedup is also linear, it seems that
customers will be charged fairly. However, there are several

|
I s

mpliafice with Gustdfson

Is and Amdahl’s Laws

VM1 VM1 VM1 VM2 VM| | VM2]| || VM3 ||| VM4
1 P1 P1 P1 p1 ||l P1 ||| P1 ||| P1
[T1][12][73][T4] [T1.1] [T1.2]| |[T2.1] [T2.2]
¥ Y ¢ v
C1 ‘C1H02HCBHC4‘ ‘C1_1HC1_2‘ ‘02_1“02_2‘ C1{|1C2 || C3 || C4
a) b) c) d)

Figure 5: Example of b) Vertical, c) Diagonal, and d) Horizontal scaling of nominal resources a) for granular algorithms

cases where the superlinear speedup is achieved, despite the
virtualisation layer.

V.1 Granular algorithms

Customers can scale their rented resources horizontally, ver-
tically or diagonally in the cloud for the sRuL or sRsL scaled
systems. If the original configuration maps one process to
a VM instance hosted on a processor with one CPU core,
as presented in Fig. 5 a), then Fig. 5 b), c) and d) present
the three possible cloud scalings. The horizontal scaling
presented in Fig. 5 d) increases the number of same VM
instances and maps a separate process (with a single thread)
to a different VM instance. The vertical scaling presented
in Fig. 5 b) increases the number of CPU cores per VM (re-
sized VM) and maps separate threads of a single process to
a different core on the same VM instance. A combination of
the both scaling types yields a diagonal scaling presented
in Fig. 5 c). To realise the vertical and diagonal scaling, the
customer should use some API for parallelization, such as
OpenMP, which will create parallel threads.

Few papers are reporting a superlinear speedup in both
the horizontal and vertical scaling. A superlinear speedup is
reported for cache-intensive algorithms in [5] for the case of
vertical scaling. Although sequential execution utilises cache
in the sequential execution more, the superlinear speedup
can be achieved also for horizontal scaling in the cloud,
according [11]. The authors of [12] have determined that the
cloud environment can handle the cases when the problem
size can be fitted in the last level cache memory better leading
to a superlinear speedup.

V.2 Scalable algorithms

Fig. 6 presents three possible ways how to scale from nom-
inal system to the sRnL scaled system. Similarly, there is a
horizontal, vertical and diagonal scaling. The main difference
here is the necessity of cloud load balancer that will schedule
the load among many end-point VM instances for horizontal
and diagonal scaling.

Ristov et al. [6] proposed a scalable architecture for e-
ordering system hosted in the cloud. Their experiments re-
ported a significant superlinear speedup of 20 for the SRNL
system with a scaling factor p = 4 analyzing the response
time. The superlinearity also appeared for the throughput,
i.e. the percentage of responses for given number of requests
per second.

V.3 Superlinear speedup of a load balancer

Distributing the load to several end-point servers is much
easier in the case of a load balancer, which will forward the
load to the servers by using a particular algorithm. Since it is
a new layer, it adds a small amount of delay, which usually
depends on the load. However, Ristov et al. [13] developed a
balancer with a region that achieves a superlinear speedup
when using more end-point servers.

Even more, when it is used with only one end-point web
server, the results are still better than the case without it.
This appears because of the connections that are opened to
the end-point web servers are maintained without opening
a new connection for each client request. This reduces the
number of resources for creating a new session compensating
the delay produced due to the additional layer.

Sasko Ristov, Radu Prodan, Marjan Gusev, Dana Percu, Jorge Barbosa

Scale up

(Vertical)

Diagonal

scaling

Scale out
(Horizontal)

Figure 6: Example of vertical, diagonal and horizontal scaling of nominal system for elastic cloud services

VL DiscussioNn

This section discusses further challenges and issues con-
nected to the performance of cloud elastic services.

VL1 Granular and scaling algorithms’ similarity

Although granular and scaling algorithms seem to be totally
different, as they are executed in different environment, they
still have several similarities. In case of persistent algorithms,
more memory is needed for both algorithm types. That
is why a sublinear speedup is achieved for computation-
intensive web services [10].

We can observe another similarity. The granular algo-
rithms executed on tightly coupled processors correspond
to vertical scaling for scaling algorithms, while executed on
loosely coupled processors to horizontal scaling.

These similarities can be used to utilise the pros of one
algorithm type for the other, which could also lead to a
superlinear speedup. In this context, we can follow the idea
of Trang et al. [14] who introduced a model for parallel
execution of web services promising that both approaches
can be used together.

VL2 New challenge: How to scale?

Cache-intensive granular algorithms, whose data reuse com-
plexity is similar with the problem size, will benefit from a
bigger cache. Many Intel's multiprocessors use a marketing
trick based on a huge L3 smart cache. However, one can
easily check that it is not shared among all cores, but only

among part of them. For example, 6MB of total 12MB cache
is shared between each group of two cores. In this case, the
vertical scaling will utilise more the last level cache. AMD
multiprocessors usually use a smaller L3 cache, but it is
shared among all cores of the multiprocessor. Therefore, de-
pending on the algorithm, appropriate processor and scaling
type should be chosen in order to achieve the best speedup,
potentially superlinear.

On the other hand, today’s cloud elastic resources can
also be scaled in different ways: horizontally, vertically or
diagonally, each of which can offer various performance and
possibility for achieving a superlinear speedup. The vertical
scaling provides a better speedup, but the horizontal offers
more flexible scaling of resources, which can minimise the
cost. Although, using a load balancer in front of the sib-
lings, a superlinear speedup can be achieved due to reduced
number of opened connections.

VIL.3 Further challenges

Achieving a superlinear speedup does not necessarily mean
that customers will obtain the maximum achievement. In
the workflow executions in parallel and distributed systems,
customers usually use bi-objective optimizations to minimise
the makespan and cost. These two parameters are opposite
one to another. Minimising the makespan produces a greater
cost and vice versa.

Cloud computing customers can set a deadline for the
execution requiring a minimal cost, rather than a minimal
makespan [15]. In these cases, budget constraints and reduc-
ing the race for the speedup can yield the reduced cost for the

Elastic Cloud Services Compliance with Gustafson’s and Amdahl’s Laws

execution. For example, although a superlinear speedup can
be achieved in a Windows Azure cloud for matrix multipli-
cation when VM instances with Windows operating system
are used, Linux VM instances achieved better performance
cost trade-off because they are cheaper.

On the other side, there is a risk of cloud resources per-
formance variation, different setup time [16], instance failure
over the time [17] and difficulty to predict the performance,
which will harden the resource provisioning [18]. Additional
problem in modeling the elastic cloud services” behavior
is the uncertainty in cloud provisioning and VM instabil-
ity. For example, Dejun et al. [19] reported a performance
uncertainty of up to 8% in Amazon EC2.

Increasing the budget by duplicating the tasks on more
than one instance could mitigate those risks, in order to
meet the deadline [20]. Sometimes, using a bigger instance
executes the task faster, rather than waiting several minutes
for the deployment time to start another smaller, but an
appropriate instance, which reduces the turnaround time of
an activity [21].

Not all offered pricing models are linear. For example,
some providers charge the customers on hourly based policy,
while others charge some amount at the beginning plus
charge then per smaller time unit. For example, Google
charges the usage for the first 10 minutes, and then per
minute. Also, Google have recently introduced the non-linear
model by including the VM usage sustainability. All these
issues impact on choosing the appropriate scaled system for
a specific cloud elastic service.

VII. CONCLUSION

Cloud services are scalable and can be executed in both the
parallel and distributed systems by load balancing among the
scaled resources. This balancing reduces the amount of work
per resource, which speedups the average execution time.
Predicting and measuring the performance of such services
is very difficult because the real cloud elastic service receives
client requests with an unknown distribution probability
function. Also, they are hosted on an unpredictable resource
provisioning, which makes their modeling almost impossible.
Still, by using the upper and lower limits of the speedup, one
can compare the fairness of the pricing model.

The Amdahl’s and Gustafson’s laws set limits on the
speedup that a scaled system achieves, but usually for gran-
ular algorithms. However, even in the traditional parallel
and distributed systems, there are many cases when these
laws are disproved due to the nature of the algorithms, hard-
ware and software architecture. The uncertainty of the VM
provisioning and performance, along with many differences

between the scaling and granular algorithms, questions their
compliance with both laws. However, our modeling and
theoretical analysis showed that cloud elastic services are
compliant with both laws. Such general laws are push drivers
to enable the technologies and pull drivers that lead toward
technical innovations. This chain of push and pull drivers
makes the positive feedback that enables the overall technol-
ogy continual development.

ACKNOWLEDGMENT

This work is partially supported by the European Union’s
Horizon 2020 research and innovation programme under the
grant agreements 644179 ENTICE: dEcentralized reposito-
ries for traNsparent and efficienT vIrtual maChine opEra-
tions (first two authors) and 643946, CloudLightning: Self-
organizing, self-managing Heterogeneous Clouds (fourth
author).

The authors would like to acknowledge networking sup-
port by the COST programme Action IC1305, Network for
Sustainable Ultrascale Computing (NESUS).

REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz,
A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica,

et al., A view of cloud computing, Communications of
the ACM 53 (4) (2010) 50-58.

2

_—

A. Gupta, D. Milojicic, Evaluation of hpc applications
on cloud, in: Open Cirrus Summit (OCS), 2011 Sixth,
2011, pp. 22-26. doi:10.1109/0CS.2011.10.

[3] S. A. Tsaftaris, A scientist’s guide to cloud computing,
Computing in Science Engineering 16 (1) (2014) 70-76.
doi:10.1109/MCSE.2014.12.

[4

—_—

L. Liu, M. Zhang, Y. Lin, L. Qin, A survey on workflow
management and scheduling in cloud computing, in:
Cluster, Cloud and Grid Computing (CCGrid), 2014
14th IEEE/ACM International Symposium on, 2014, pp.
837-846. doi:10.1109/CCGrid.2014.83.

[5] M. Gusev, S. Ristov, Superlinear speedup in Windows
Azure cloud, in: Cloud Networking (IEEE CLOUDNET),
2012 IEEE 1st International Conference on, Paris, France,
2012, pp. 173-175.

[6

—_

S. Ristov, F. Dimitrievski, M. Gusev, G. Armenski, Scal-
able system for e-orders as a service in cloud, in: In-
ternational Conference on Computer as a Tool (IEEE
EUROCON 2015), Salamanca, Spain, 2015, pp. 1-6.

Sasko Ristov, Radu Prodan, Marjan Gusev, Dana Petcu, Jorge Barbosa

[7]

(8]

9]

(10]

(11]

[13

—_—

(14]

G. M. Amdahl, Validity of the single-processor ap-
proach to achieving large scale computing capabilities,
in: AFIPS Conference Proceedings, Vol. 30, AFIPS Press,
Reston. Va., Atlantic City, N.J., 1967, pp. 483-485.

J. L. Gustafson, Reevaluating Amdahl’s law, Communi-
cation of ACM 31 (5) (1988) 532-533.

J. Gustafson, G. Montry, R. Benner, Development of
parallel methods for a 1024-processor hypercube, SIAM
Journal on Scientific and Statistical Computing 9 (4)
(1988) 532-533.

S. Ristov, M. Gusev, G. Velkoski, Modeling the speedup
for scalable web services, in: A. M. Bogdanova,
D. Gjorgjevikj (Eds.), ICT Innovations 2014, Vol. 311
of Advances in Intelligent Systems and Computing,
Springer International Publishing, 2015, pp. 177-186.

M. Guseyv, S. Ristov, Resource scaling performance for
cache intensive algorithms in Windows Azure, in: F. Za-
voral, J. J. Jung, C. Badica (Eds.), Intelligent Distributed
Computing VII, Vol. 511 of SCI, Springer International
Publishing, 2014, pp. 77-86.

M. Gusev, S. Ristov, The optimal resource allocation
among virtual machines in cloud computing, in: Pro-
ceedings of The 3rd International Conference on Cloud
Computing, GRIDs, and Virtualization (CLOUD COM-
PUTING 2012), Nice, France, 2012, pp. 36—42.

S. Ristov, K. Cvetkov, M. Gusev, Implementation of a
scalable L3B balancer, Scalable Computing: Practice and
Experience 17 (2) (2016) 79-90. doi:10.1109/TE.2014.
2327007.

M. X. Trang, Y. Murakami, T. Ishida, Cloud Comput-
ing: 6th International Conference, CloudComp 2015,
South Korea, Springer International Publishing, 2016,
Ch. Modeling Parallel Execution Policies of Web Ser-
vices, pp. 244-254.

[15]

[16]

[17]

(18]

[19]

[20]

[21]

M. A. Rodriguez, R. Buyya, Deadline based resource
provisioning and scheduling algorithm for scientific
workflows on clouds, IEEE Transactions on Cloud Com-
puting 2 (2) (2014) 222-235. doi:10.1109/TCC.2014.
23146565.

M. Mao, M. Humphrey, A performance study on the
vm startup time in the cloud, in: Cloud Computing
(CLOUD), 2012 IEEE 5th International Conference on,
2012, pp. 423-430.

F. Wu, Q. Wu, Y. Tan, Workflow scheduling in cloud:
a survey, The Journal of Supercomputing 71 (9) (2015)
3373-3418. doi:10.1007/s11227-015-1438-4.

A. Tchernykh, U. Schwiegelsohn, V. Alexandrov, E.-
G. Talbi, Towards understanding uncertainty in cloud
computing resource provisioning, Procedia Computer
Science 51 (2015) 1772 — 1781.

J. Dejun, G. Pierre, C.-H. Chi, Service-Oriented Com-
puting. ICSOC/ServiceWave 2009 Workshops: Inter-
national Workshops, ICSOC/ServiceWave 2009, Stock-
holm, Sweden, November 23-27, 2009, Revised Selected
Papers, Springer Berlin Heidelberg, Berlin, Heidelberg,
2010, Ch. EC2 Performance Analysis for Resource Provi-
sioning of Service-Oriented Applications, pp. 197-207.

R. N. Calheiros, R. Buyya, Meeting deadlines of scien-
tific workflows in public clouds with tasks replication,
IEEE Transactions on Parallel and Distributed Systems
25 (7) (2014) 1787-1796. doi :10.1109/TPDS.2013.238.

M. Mao, M. Humphrey, Scaling and scheduling to maxi-
mize application performance within budget constraints
in cloud workflows, in: Parallel Distributed Processing
(IPDPS), 2013 IEEE 27th International Symposium on,
2013, pp. 67-78. doi:10.1109/IPDPS.2013.61.

Lukasz Szustak, Kamil Halbiniak, Roman Wyrzykowski, Alexey Lastovetsky

&

CcoskE

11

Exploring OpenMP Accelerator Model in
a real-life scientific application using hybrid
CPU-MIC platforms

KamiL HALBINTAK*, LUKASZ SzUSTAK*, ALEXEY LASTOVETSKY** AND ROMAN WYRZYKOWSKI*

* Czestochowa University of Technology, Poland

{khalbiniak, Iszustak, roman}@icis.pcz.pl

** University College Dublin, Ireland

alexey.lastovetsky@ucd.ie

Abstract

The main goal of this paper is the suitability assessment of the OpenMP Accelerator Model (OMPAM) for porting a real-life
scientific application to heterogeneous platforms containing a single Intel Xeon Phi coprocessor. This OpenMP extension is
supported from version 4.0 of the standard, offering an unified directive-based programming model dedicated for massively
parallel accelerators. In our study, we focus on applying the OMPAM extension together with the OpenMP tasks for a parallel
application which implements the numerical model of alloy solidification. To map the application efficiently on target hybrid
platforms using such constructs as omp target, omp target data and omp target update, we propose a decomposition of main
tasks belonging to the computational core of the studied application. In consequence, the coprocessor is used to execute the major
parallel workloads, while CPUs are responsible for executing a part of the application that do not require massively parallel
resources. Effective overlapping computations with data transfers is another goal achieved in this way. The proposed approach
allows us to execute the whole application 3.5 times faster than the original parallel version running on two CPUs.

Keywords Intel MIC, hybrid architecture, numerical modeling of solidification, heterogeneous programming, OpenMP

Accelerator Model, task and data parallelism

I. INTRODUCTION

Heterogeneous platforms combining general-purpose pro-
cessors with specialized computing accelerators (e.g., GPU
or Intel Xeon Phi) offer ample opportunities for accelerating
a wide range of applications [1]. However, realizing these
performance potentials remains a challenging issue.

A promising way to exploit capabilities of heterogeneous
platforms is the OpenMP Accelerator Model [2] offered by
the OpenMP standard, starting with version 4.0. It provides
an unified directive-based programming model encompass-
ing both CPUs and accelerators. The major advantage of
this extension is applying the same programming model
for the whole application, that allows decreasing the code
complexity and increasing its portability.

The main goal of this paper is evaluation of the OpenMP
Accelerator Model for porting a real-life scientific application
to platforms equipped with a single Intel Xeon Phi copro-
cessor. In this study, we focus on the effective utilization
of new mechanisms provided by the OpenMP 4.0 standard

for parallelization of the computational core of the studied
application. The proposed approach allows us to execute
computations 3.49x faster than the original parallel code that
uses two CPUs. This application was already studied in our
previous work [3], where we developed a methodology that
utilized the dedicated Intel Offload interface.

This paper is organized as follows. Section 2 gives an
overview of the OpenMP Accelerator Model, while Section
3 introduces the numerical model of solidification, which is
based on the generalized finite difference method. The next
section describes the idea of parallelizing the solidification
application on hybrid platforms with OpenMP 4.0 mecha-
nisms, while Section 5 shows performance results achieved
by the proposed approach. Section 6 concludes the paper.

II. OvVERrRVIEW OF OPENMP ACCELERATOR MODEL

OpenMP is the directive-based programming standard de-
signed for programming shared-memory systems. [2]. Start-
ing with version 4.0, OpenMP provides a mechanism called

12 Exploring OpenMP Accelerator Model in a real-life scientific application using hybrid CPU-MIC platforms

OpenMP Accelerator Model (OMPAM in short). It aims at
simplifying the issue of programming heterogeneous com-
puting platforms with many-core accelerators such as Intel
MIC or GPU. This model assumes that a computing platform
is equipped with multiple target devices connected to the
host device.

The execution model of OMPAM is based on a host-centric
view, where the host device transfers (offloads) data and
computations to target devices before execution, using target
construct. By default, code regions offloaded to accelerators
are executed using a single thread, that can spawn multiple
threads after encountering an appropriate parallel construct.

Using accelerators requires usually to perform data trans-
fers. To reduce the total amount of allocations and dealloca-
tions of device memory, OMPOA provides target data con-
struct, which creates the data region for a device. This gives
the possibility for sharing the same data between multiple
target regions. OMPAM allows defining the data movements
between the host and the device before and after the exe-
cution of the offloaded region by using map clause. The
transfers of data are possible using the following attributes:
to, from and tofrom. These attributes allows the implicit
initialization of device buffers and determination of the di-
rection of data copying [2]. At the same time, map clause
with alloc attribute is used when the explicit allocation of
device memory is required.

Another important directive of OMPAM is target udpate.
It allows the synchronization of buffers between the host and
device environments. This construct can be used only inside
the device data region. The direction of update is specified
using two clauses: to and from, which provide the list of
synchronized buffers consistent with variables in the device
data region. Another new directive, declare target, is used to
determine regions of the source code mapped to the device,
with the resulting binaries called from the target region.

An example of source code written using the OpenMP
Accelerator Model is shown in Listing 1.

#pragma omp target data map(to: n, B[0:n]) \
map(alloc: A[0:n], C[0:n])
for(int t=0; t<num_steps; ++t) {
#pragma omp target map(to: n, B[0:n]) \
map(to: C[0:n]) map(from: A[0:n])
#pragma omp parallel for
for (int i=1; i<n—1; ++i) {
Ali]=C[i]*(B[i—1] + B[i] + B[i+1]);
}
//rest of code
}

Listing 1: Offloading computations in OpenMP Accelerator Model

Comparing to alternative tools that allow for programming
accelerators, OMPAM provides a reasonable support for mul-
tiple heterogeneous platforms, through a growing amount of
compilers. This increases the interest of developers in using
OpenMP as a promising way to achieve the code portability
between platforms.

III. APPLICATION: MODELING SOLIDIFICATION

The phase-field method is a powerful tool for solving interfa-
cial problems in materials science. It has mainly been applied
to solidification dynamics, but it has also been used for other
phenomena such as viscous fingering, and fracture dynamics.
The number of scientific papers related to the phase-field
method grows since the 90 years of XX century, reaching for
the last 7 years more than 400 positions (according to the
SCOPUS database) [4].

In the numerical example studied in this paper, a binary
alloy of Ni-Cu is considered as a system of the ideal metal
mixture in the liquid and solid phases. The numerical model
refers to the dendritic solidification process in the isother-
mal conditions with constant diffusivity coefficients for both
phases. In the model, the growth of microstructure during
the solidification is determined by solving a system of two
PDEs which define the phase content ¢ (Fig. 1) and concen-
tration c of the alloy dopant. The solutions of these PDEs
are obtained on the basis of the generalized finite difference
method and explicit scheme of calculations, so the resulting
numerical algorithm [3] belongs to the group of forward-in-
time iterative algorithms. In the model studied in the paper,
values of ¢ and c are calculated for grid nodes uniformly
distributed across a square domain. However, this model
can be also used for irregular grids.

6E-005-
__ 4E-005+
E |
>

2E-005+

0 T T T
0 2E-005 4E-005 6E-005
x [m]

Figure 1: Phase content for the simulated time t = 2.75 x 10735

Lukasz Szustak, Kamil Halbiniak, Roman Wyrzykowski, Alexey Lastovetsky 13

IV. PARALLELIZATION OF THE APPLICATION ON
Hysrip CPU-MIC PLATFORMS

IV.1 Task Parallelization with OpenMP 4.0

In the studied application, computation are interleaved with
writing partial results to a file. In the basic version (Fig.2a),
parallel computations are executed for subsequent time steps,
and writing results to the file is performed after the first time
step, and then after every package of R = 2000 time steps.

D T - I - I

timesteps

timesteps
. parallel computations transfer of input data to Phi
. writing outcomes to the file transfer of output data from Phi

Figure 2: Adapting the application to platforms with Intel MIC [3]

In the proposed approach (Fig. 2b), the Intel Xeon Phi co-
processor is utilized to perform parallel computations, while
the host processor is responsible for executing the rest of the
application that not required massively parallel resources. As
a result, writing outcomes to the file is assigned to the CPU,
while the coprocessor is utilized for parallel computations in
subsequent time steps. At the beginning, all the input data
are transferred from the CPU to the coprocessor, which then
starts computations for the first time step. After finishing
it, all the results are transferred back to the CPU. During
this transfet, the coprocessor starts computations for the next
package of R time steps. At the same time, CPU begins writ-
ing results to the file, immediately after receiving outcomes
from the coprocessor. Such a scheme is repeated for every
package of R time steps. A critical performance challenge
here is to overlap workload performed by the coprocessor
with data movements. To reach this goal, data transfers be-
tween the CPU and coprocessor, writing data to the file, as
well as computations have to be performed simultaneously.

To offload data and computations to the coprocessor, we
use two major constructs of OMPAM: omp target data and
omp target. By default, OpenMP 4.0 does not provide a
mechanism for the asynchronous execution of omp target
region. In consequence, the thread calling this pragma is
stopped before completing the execution by the accelerator.
Therefore to ensure overlapping computations with writing
outcomes to the file, we propose to use the OpenMP task

parallelism. This mechanism can be successfully applied
to parallelize these operations. As a result, two tasks are
distinguished in the proposed approach: (i) running parallel
computations on the coprocessor, and (ii) writing results to
the file. These tasks are spawned inside the parallel region
by the master thread using omp task construct.

When applying the proposed idea of adapting the solidifi-
cation application to heterogeneous platforms (Fig. 2b), the
usage of task parallelism requires to provide an adequate
task synchronisation, since results cannot be written to the
file before completing computations for the previous package
of R time steps. Therefore, the synchronization points occur
after every package. To ensure the effective synchronization
of tasks, we use omp taskwait pragma.

Overlapping data transfers with computations requires
also to apply the double-buffering technique. The first buffer
is utilized for performing parallel computations, while the
second one is for providing data movements and writing
outcomes to the file. To transfer data from the coprocessor
to CPU during computations, omp target update construct
is adopted.

IV.2 Data Parallelization

The original CPU version of the application uses the OpenMP
standard to utilize cores/threads, based on the OpenMP con-
struction #pragma omp parallel for. Since the Intel Xeon
Phi coprocessors supports OpenMP, the application code can
be rather easily ported to this platform. To ensure the best
overall performance without significant modifications in the
source code, we use several compiler-friendly optimizations,
empirically determine the best OpenMP setup for the loop
scheduling and set appropriate affinity.

The utilization of vector processing is crucial for ensuring
the best performance on Intel Xeon Phi. The quickest way to
achieve this goal is the compiler-based automatic vectoriza-
tion. However, in the studied case the innermost loop cannot
be vectorized safely, mainly because of data dependencies.
To solve this problem, we propose to change slightly the code
by adding temporary vectors responsible for loading data
from the irregular memory region, and than providing SIMD
computations (see our previous works [3, 5]).

V. PerRFORMANCE RESuLTS

In this work, we use a platform equipped with two
Intel Xeon E5-2699 v3 CPUs (Haswell-EP), and Intel
Xeon Phi 7120P coprocessor (Knight Corner). All the tests
are performed for the double-precision floating-point format
with 110 000 time steps, and 2D grid containing 4 000 000

14 Exploring OpenMP Accelerator Model in a real-life scientific application using hybrid CPU-MIC platforms

Table 1: Performance results for different versions of the application

Tasks
Version Data Parallel Time Speedup
writing | computing
original CPU CPU 641 min -

& 32 sec

offlad | CPU Mic | 18MIn 5
41 sec

OpenMP | CPU MIC 187min | 5 1oy
43 sec

nodes (2000 nodes along each dimension), using the Intel
icpc compiler (v.15.0.2) with optimization flag -O3.

Table 1 presents the comparison of the performance for:
(i) original CPU parallel version of the application running
on two CPUs with 18 cores each, (ii) offload-based code
for hybrid CPU-MIC platforms, developed in our previous
work [3], and (iii) the proposed version developed in this
work using OpenMP 4.0 mechanisms. Both the second and
third versions implement the proposed scheme of adapting
the solidification application to platforms with a single Intel
Xeon Phi coprocessor.

The total execution time of the original code is the sum
of the execution times necessary for performing parallel
computations and writing partial results to the file. The
proposed approach allows us to hide more than 99% of data
movements behind computations, for both the offload- and
OpenMP-based versions, and finally accelerate the whole
application of about 3.5x. Comparing the execution times
for the OpenMP- and offload-based codes, we can see a very
low difference of 2.2% in favour of the offload interface.

VI. ConcrusioN AND FUTURE WORKS

This paper shows that the OpenMP Accelerator Model is the
promising tool for porting a real-life scientific application to
heterogeneous platforms with many-core accelerators such
as Intel Xeon Phi. The performance results obtained for
the offload-based and OpenMP-based versions, executed on
the platform with a single coprocessor, confirms that the
OpenMP Accelerator Model allows achieving a quite similar
performance as the Intel Offload Model dedicated directly
for Intel MIC architectures. It is expected that the potential
of using OpenMP for current and future architectures will
be manifested for a wide range of applications.

The primary direction of our future work is to take ad-
vantage of all the computing resources (multiple CPUs and
multiple MICs) of heterogeneous platforms, for executing

the application. The OpenMP Accelerator Model will be
compared against the offload-based [5] and hStreams-based
[6, 7] solutions, taking into account both the performance
and productivity. We plan to explore new features avail-
able in version 4.5 of OpenMP [8], since version 4.0 does
not provides the asynchronous offload mechanisms, which
are necessary for the efficient utilization of all the resources
available in such multi-device heterogeneous platforms.

ACKNOWLEDGMENTS

This research was conducted with the support of COST Ac-
tion IC1305 (NESUS), as well as the National Science Centre
(Poland) under grant no. UMO-2011/03/B/ST6/03500. The
authors are grateful to the Czestochowa University of Tech-
nology for granting access to Intel Xeon Phi coprocessors pro-
vided by the MICLAB project no. POIG.02.03.00.24-093/13
(http:/ /miclab.pl).

REFERENCES

[1] L. Szustak, K. Rojek, R. Wyrzykowski, and P. Gepner.
Toward efficient distribution of MPDATA stencil compu-
tation on Intel MIC architecture. In Proc. 1st Int. Workshop
on High-Performance Stencil Computations (HiStencils’ 14),
pages 51-56, 2014.

[2] OpenMP Application Programming Inter-
face. http:/ /www.openmp.org/mp-documents/
OpenMP4.0.0.pdf.

[3] L. Szustak, K. Halbiniak, A. Kulawik, J. Wrobel, and
P. Gepner. Toward parallel modeling of solidification
based on the generalized finite difference method using
Intel Xeon Phi. LNCS, 9573:411-412, 2016.

[4] T. Takaki. Phase-field Modeling and Simulations of Den-
drite Growth. ISI] International, 54 (2):437-444, 2014.

[5] L. Szustak et al. Porting and optimization of solidification
application for CPU-MIC hybrid platforms. Int. Journal of
High Performance Comp. Applications, (accepted to print).

[6] Chris J. Newburn et al.
IPDPSW, AsHES, 2016.

Heterogeneous streaming.

[7] L. Szustak et al. Using hStreams Programming Library
for Accelerating a Real-Life Application on Intel MIC. In
ICA3PP 2016 Conference, (accepted to print).

[8] M. Klemm. Heterogeneous Programming with OpenMP
4.5. https:/ /www.scc kit.edu/downloads/sca /Heteroge-
neous%?20Programming%20with%200penMP%204.5.pdf.

Simon Holmbacka, Enida Sheme, Sebastien Lafond, Neki Frasheri

&

CcoskE

15

Geographical Competitiveness for Powering
Datacenters with Renewable Energy

SimoN HormBAcka*, EN1DA SHEME', SEBASTIEN LaronND*, Neki Frasheri®

*Factulty of Science and Engineering, Abo Akademi University Turku, Finland

firstname.lastname@abo.fi

tPolytechnic University of Tirana Tirana, Albania

firstname.lastname@fti.edu.al

Abstract

In this paper we analyze the feasibility of using renewable energy for powering a data center located on the 60th parallel north.
We analyze the workload energy consumption and the cost-energy trade-off related to available wind and solar energy sources.
A wind and solar power model is built based on real weather data for three different geographical locations, and The available
monthly and annual renewable energy is analyzed for different scenarios and compared with the energy consumption of a
simulated data center. We show the impact different data center sizes have on the coverage percentage of renewables, and we
discuss the competitiveness of constructing datacenters in different geographical location based on the results.

Keywords Green energy, datacenter, simulation, geographical locations

I. INTRODUCTION

The global energy price and tighter restrictions on energy
production has led to a higher utilization of green energy,
which is produced from completely carbon neutral sources.
One of the latest trends in reducing the carbon footprint
of data centers is powering the datacenters with renewable
sources of energy. This course is being encouraged by the
advances of renewable technologies and continuously de-
creasing renewable energy costs. Renewable energy sources
have become an interesting option for large scale server
farms, and initiatives such as Google Green! and Facebook
Sustainability? have been taken to decrease the carbon foot-
print both for ecological and monetary reasons. Recently, the
location of large scale server farms has shifted to the nordic
countries above the 60th parallel because of a cooler climate,
which in turn reduces the cooling costs for such datacenters.
The energy required for computation and the infrastructure
must, however, be delivered from the electric grid, preferably
generated by renewable energy. This poses a challenges for
northern countries because of the large variation in available
solar energy throughout the year. While the summer period
provides from 18 to 20 hours of sunlight, the winter period
provides merely a few hours — this from a very shallow an-
gle of reflection. The lack solar energy can be compensated
with other sources such as wind energy, but the total cost of

https:/ /www.google.com/green/
Zhttps:/ /sustainability.fb.com/en/

powering the data center must be sulfficiently low in order to
stay competitive to other geographical locations.

We present in this paper a thorough analysis of the fea-
sibility of powering large scale datacenters in geographical
locations above the 60th parallel north with renewable energy.
The analysis contains simulations of different datacenters ex-
ecuting various workloads and the requirements in green
energy production for different geographical locations. In
contrast to previous work we compare different geograph-
ical locations in terms of both available renewable energy
and required datacenter capacity for satisfying the end user.
We also provide an a competitiveness factor between differ-
ent geographical locations for the feasibility of powering a
datacenter with renewable energy sources.

II. RELATED WORK

Real implementations of green data centers. Researchers
at Rutgers University [9] present Parasol and GreenSwitch, a
research platform for a green data center prototype. It con-
sists of GreenSwitch software running over a real hardware
data center, Parasol. Its aim is reducing the total data center
cost by properly managing workloads and available energy
sources for maximum benefits. It also studies the space re-
quirements and capital costs of self-generation with wind
and solar energy. Similarly, [18] presents Blink, a physical
implementation of using intermittent power to supply a clus-
ter of 10 laptops by two micro wind turbines and two solar

16 Geographical Competitiveness for Powering Datacenters with Renewable Energy

panels, supported by small 5-minute energy buffer batteries.
HP Labs has built a 4 servers data center partially powered
by solar panels [6]. The data center is powered by the grid
when no solar energy is available. In contrast to these real
implementations, we simulate different scenarios to adapt
different data center sizes and workload, with thousands of
physical and virtual machines. Thus, we have a broader view
of the impact they have on the amount of required renewable
energy.

Simulators for green data centers. Michael Brown and
Jose Renau present ReRack [2], an extensible simulation in-
frastructure that can be used to evaluate the energy cost of
a data center using renewable energy sources. It also in-
cludes an optimization module to find the best combination
of renewable sources that minimize cost. Yanwei Zhang et
al [24] have developed GreenWare, a middleware system
that conducts dynamic request dispatching to maximize the
percentage of renewable energy used to power a network
of distributed data centers, based on the time-varying elec-
tricity prices and availabilities of renewable energy in their
geographical locations. It also considers different prices per
kWh solar and wind energy have in different geographical
data center locations, distributing the workload accordingly
for lowest overall cost possible. In our study, instead, we do
not develop a simulator but focus on studying the relation be-
tween quantity of renewable energy sources and data center
energy consumption for a certain coverage with renewable.
We take into consideration different workload scenarios.

Managing the workload in green data centers. Rutgers
University proposes GreenSlot [8], a parallel batch job sched-
uler for a data center powered by a solar panel and the
electrical grid (as a backup). It can predict the amount of
solar energy that will be available in the near future, and
schedules the workload to maximize the renewable energy
consumption up to 117% while meeting the jobs” deadlines.
Likewise, GreenHadoop [10], a GreenSlot successor, rep-
resents a MapReduce framework seeking to maximize the
renewable energy consumption within the jobs” time bounds.
Ghambkhari et. al. [7] offer an optimization-based workload
distribution framework for Internet and cloud computing
data centers with behind-the-meter renewable generators in
order to save energy. This is achieved by better resource
utilization taking into account several impacting factors like
computer servers’ power consumption profiles, data center’s
power usage effectiveness, availability of renewable power at
different locations, price of electricity at different locations.
Aksanli et al. [1] design a new data center job scheduling
methodology that effectively leverages green energy predic-
tion, which enables the scaling of the number of jobs to the
expected energy availability. They develop a discrete event-

based simulation platform for applying this methodology
in a data center consisting of hundreds of servers. Liu et
al. [14] evaluate the impact of geographical load balancing
and the role of storage in decreasing the brown energy costs.
The authors also suggest the optimal mix of renewables to
power Internet-scale systems using (nearly) entirely renew-
able energy. They use homogeneous servers and 1 week
HP Labs workload traces, while we base our simulations on
heterogeneous sets of servers and a more generalized work-
load trace, which is automatically generated by uniformly
distributed time, duration and type of the user requests.
Beside this, their selected data center countries represent
locations with high solar energy production, but we give
contribute in studying the renewable energy capacity on the
60th parallel north where sun intermittent nature is more
significant. Workload management is not part of our analysis
in this paper but we plan to address it in our future work.
Furthermore, our simulation input parameters are intended
to resemble real data centers as closely as possible in terms
of size and power, and provides clear guidelines for green
data centers’ designers.

Managing energy sources for green data centers. Re-
searchers at University of Florida, IDEAL Lab, propose
iSwitch [13], a novel dynamic load power tuning scheme
for managing intermittent renewable energy sources. The
study introduces a renewable energy utilization (REU) met-
ric, defined as (PL / PR) x 100%, where PL is the amount
of renewable power utilized by the load and PR is the to-
tal renewable power generation. Instead, we study another
parameter called Minimal Percentage Supply (MPS) which
is the percentage of total energy consumption that can be
driven by available renewable energy, given as renewable
energy divided by energy consumption converted in percent-
age.

Studies on battery usage in data centers have also been
conducted by [23],[11], [22] to optimize the energy manage-
ment and minimize the energy cost. This study does not
include the usage battery as an energy storage, but initiates a
discussion on the impact of energy storage to the cost model
and how to integrate such a factor when modelling a data
center.

III. AVAILABLE RENEWABLE ENERGY

In our study, we consider renewable energy produced by
wind turbines and solar panels. To simulate the system
and analyze the results, we must first model both the con-
sumption and production rate of our datacenter and energy
sources. Since the weather and the season directly influ-
ences the production of renewable energy, we must utilize a

Simon Holmbacka, Enida Sheme, Sebastien Lafond, Neki Frasheri

17

weather model to predict the production rate. We must also
use a simulation environment realistic enough to accurately
model the energy consumption of a datacenter.

For this we have chosen three geographically distributed
locations for investigating the feasibility study of using re-
newable energy. Firstly we chose Turku, Finland at 60°
latitude as our reference because of the increased interest in
constructing datacenters in northern countries. Secondly we
chose Crete, Greece at 35° latitude because of its typically
solar intense southern European climate. And thirdly we
selected, Ilorin, Nigeria at 8.5° latitude to cover the equa-
torial extreme point. For each of these locations we are
going to analyze the generation of renewable energy using
solar- and wind power. In this section we describe the total
amount of renewable energy produced in one year for our
chosen geographical location, and in Section V we compare
the production of energy to the consumption.

Data collection We collected the weather data from dif-
ferent sources. The weather data for Finland was collected
from a weather station located at Abo Akademi University in
Turku, Finland [3]. Sensors in this weather station [12] mea-
sure a variety of meteorological data, including wind speed
and direction, temperature, humidity, barometric pressure,
rain and solar radiation.

For the non-local geographical locations,
we collected the solar radiation data from
http://solrad-net.gsfc.nasa.gov/. The website contains
freely available data from solar radiation such as various
forms of radiation data and the energy intensity measured by
pyranometers which are compatible with the weather data
from the Finnish location. All data is sampled by at least
the granularity of one hour. For describing the production
rate of a solar panel, we acquire the data containing the
solar power radiance on a horizontal 1 m2 solar panel, and
we calculated the produced power in Watts describe later
in our power model. We acquired the local wind speed
data from the same weather station in Turku [3], and from
https://mesonet.agron.iastate.edu/ for the non-local
data. The wind speed data was converted to meter/seconds
[m/s] from the non-local weather data in order to match
with the local weather data. All data is sampled by at least
the granularity of one hour.

III.1 Solar power model

The solar power model is constructed by analyzing the solar
radiation obtained from the weather data, and by considering
the following trigonometrical aspects of the radiation angle
and practical aspects of the solar panel:

e Angle tilt: The power incident on a solar panel depends
not only on the power contained in the sunlight, but
also on the angle between the module and the sun. Re-
ferring to [4], we calculate the optimal angle at which
a solar array should be tilted in order to achieve maxi-
mum energy through the year. Different geographical
locations with different latitude are operating optimally
using different angle tilt with respect to the horizontal
plane. In all cases we assumed that the angle tilt is fixed
throughout the year for all geographical locations, but
we assume that the solar array tracks the sun on the
vertical axis (east to west). Equation 1 shows the power
generation of a 1 m? solar panel as:

Psgtar = PsoIm'_h X sin (“ —I—,B)/an (“) (1)

where Py, 1, is the solar radiance in the horizontal
plane we already have from weather data, « is the sun
elevation angle through the year and B is the tilt angle
of the module measured from horizontal plane, 45°. The
value for « is calculated according to Equation 2:

a=90—¢+6)

where ¢ is the latitude (60°) and 4 is the declination
angle computed in Equation 3 as:

§ = 23.45° x sin[360 x (284 + d)/365] (3)
where d is the day of the year.

e Solar panel efficiency: is the percentage of the sunlight
energy that is actually transformed into electricity be-
cause of limitations in the solar panel cells. Today’s
solar panel technology (multi-crystalline silicon) effi-
ciency value varies from 15% up to 18% — which is the
record of 2015 [19]. Therefore, we multiply all hourly
solar energy values with the coefficient 0.18 in order to
achieve realistic data.

e Solar inverter efficiency: is the efficiency of the inverter
connected between the solar panel cells and the AC
grid. According to [20], the average coefficient of the
DC-AC power converting today is 95%. Thus, we take
this value into account to assure accurate and realistic
power values.

II1.2 Wind power model

The wind power model describes the power generation from
the wind turbines in the system. To produce the wind en-
ergy we have chosen a HY 1000 [21], 5 blade wind turbine
generating a peak output power of 1200 W. We chose this
model because of its availability on the market and because

18 Geographical Competitiveness for Powering Datacenters with Renewable Energy

of its suitable size for our datacenter. The wind power model
is constructed by taking into consideration the following key
features:

o Wind turbine power curve: According to the power profile
in the technical specifications, we constructed the math-
ematical model of power as a function of wind speed.
Equation 4 describes the power production of a wind
turbine as follows:

Pying = 1151 x exp(—((wind,peey — 14.28)/6.103)?)
4)
where wind; e, is the wind speed in [/s]. The param-
eters in Equation 4 were obtained by using curve fitting
tools in Matlab.

o Wind inverter efficiency: according to [5], wind turbine
power converters typically reach an efficiency of 95%.
Thus, we multiply this value with the prediction of the
power model to provide a more accurate and realistic
model.

Finally, the total renewable power model is given as:

Prenewable = Psolar + Pwind (5)

which is simply the sum of the total solar and total wind pro-
duction. As a result of the above processing and calculations,
we have available total renewable (solar and wind) energy
information in hourly granularity for the whole year.

IV. RENEWABLE ENERGY ANALYSIS

To illustrate the impact of the weather conditions on the re-
newable energy production, we used the previously defined
power models for the wind turbine and solar panels to cal-
culate the total sum of the produced energy for each month
of the year. The weather data was collected at the following
points in time:

70
— 60 B B
g 50 | Nigeria
§ 40 u Greece
.5 £ ® Finland

bR B

Lk LiL

o

Ian Jul Aug Sep

Feb Mar Apr May Jun Oct Mov Dec

Figure 1: Solar energy produced by 1 m? solar panel in three
geographical locations during one year

Finland: January 1, 2012 — December 31 2012

Greece: January 1, 2006 — December 31 2006

Nigeria: January 1, 2011 — December 31 2011

Even though the data origins from different years, we assume
that the average over one year will provide a sulfficiently ac-
curate and comparable result. Figure 1 shows the energy
production of a 1 m? solar panel in Finland, Greece and Nige-
ria Figure 2 shows the energy production of one 1200W wind
turbine, and Figure 3 shows the total sum of both energy
sources throughout one year in each location.

The very predictable weather in Ilorin, Nigeria shows an
almost constant solar energy production in Figure 1. Since
all days throughout the year is approximately 12h, there is
only a slight difference between winter and summer months.
The low point is in July due to weather conditions such as
rainy seasons with an extensive cloud coverage. In Crete,
Greece, the 35°latitude and solar intensity provides a large
but varying energy production. The winter months in Greece
provide far less sunlight than the summer months, and have
therefore a lower energy production than Nigeria. However,
the days in the summer months are longer, and the solar
energy produced in one day exceeds the energy productions
of Nigeria even if the intensity of the solar radiation is larger
in Nigeria. The most varying results are measured in the
Finnish location. The winter months produce almost no
solar energy because of a very short time of sunlight during
the day. On the other hand, during the summer the solar
energy production can exceed both Greece and Nigeria; in
this case during May and June because of the long duration
of sunlight during the day. Table 1 finally shows the energy
values in kWh for each of these extreme points for total, solar
and wind energy.

Also the wind speed is relatively constant in Nigeria
throughout the year as seen in Figure 2. The wind speed is
relatively low in most months with the exception of a slight
increase during August and September. The wind speed in
Greece is, on the other hand, very strong in the early months

Nigeria

u Greece

i~

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Energy (kWh}

Figure 2: Wind energy produced by a 1200W wind turbine in three
geographical locations during one year

Simon Holmbacka, Enida Sheme, Sebastien Lafond, Neki Frasheri

19

200.00
180.00
160.00
140,00
120
100

80,

’ Nigeria
. u Greece
: I EFinland
0.00 I
Jan

20
Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Energy (kWh)
& Z
g€ 8 8 8 8

-

Figure 3: Combination of Solar- and wind energy produced in three
geographical locations during one year

Table 1: Total renewable, solar- and wind energy (kWh) extreme
months values, from 1 m? solar panel and a 1200W wind turbine

Min month | Min energy | Max month | Max energy |

Finland

Solar Dec. 1.89 May 83.34
Wind Dec. 48.71 Mar. 126.36
Total Dec. 50.6 May 182.52
Greece

Solar Dec. 15.75 Jul 67.12
Wind Now. 29.12 Feb. 138.80
Total Now. 47.21 Feb 158.83
Nigeria

Solar Jul. 37.98 Mar. 54.78
Wind Jan. 18.90 Sep. 44.85
Total Jul. 56.38 Sep 83.45

of the year, also seen in Figure 2, with a maximum in Febru-
ary. This high wind speed causes almost a possible 140 kWh
of energy to be produced with the aforementioned wind
turbine. It is about 7x higher than Nigeria and almost twice
as high as the related wind production in Finland. During
the summer month, the wind production in Greece is lower
and hits the minimum about 4x lower than the wind pro-
duction in February. The wind speed in Finland is typically
more randomized, with a slight decrease during the summer
months as seen in Figure 2. Overall though the year, the
wind energy generation is highest in Finland compared to
the other locations, even during summer months.

With this data, we will analyze the extreme months of
maximum and minimum wind and solar energy as we
intend to investigate the feasibility of using renewable
energy sources during one year. Furthermore, the data
used to build this model can be applied to other loca-
tions by considering different input values of latitude and
weather characteristics for the selected area without mod-
ifying the core method. All data is freely available at:

https://doi.org/10.5281/zenodo.154401

V. ENERGY CONSUMPTION

To account for all the attributes included in causing energy
consumption in a datacenter, we used an already made sim-
ulation environment,

System simulation We performed the simulations using
the Philharmonic simulator developed by Vienna University
of Technology, freely available at [15]. It is an open source
cloud simulator used to calculate energy consumption and
electricity costs for datacenters. The simulator allows the
user to input configuration parameters such as the number
of physical machines (PM), virtual machines (VM) and in-
ternal specification parameters such as clock speed, RAM
size etc. Virtual Machines are virtual entities running over
the physical machines and performing workload tasks. The
cloud control algorithm decides on scheduling the workload
using VM migrations and frequency scaling of the physical
machines to control the power dissipation®. The workload is
modelled with user requests uniformly distributed in time
and duration[17]. Figure 4 illustrates the overview of the
Philharmonic simulator. A given workload and cloud server
settings are taken as input after which the tool simulates the
scheduling of the workload on the defined server cloud.

] Power
Cost

Workload Utilization
model Philharmonic

r More...

Figure 4: The Philharmonic simulator uses a cloud server setup and
a defined workload to calculate power dissipation, cost, utilization
and other parameters as a function of time

We used 3 different data center sizes to observe the pro-
portion by which they impact energy consumption. The PMs
are configures with 1-4 CPU cores and 16-32 GB RAM, to
model a heterogeneous infrastructure. Each VM is config-
ured to have one CPU core and 416 GB amount of RAM to
vary resource utilization over time. The workload consists of
user requests to be handled by VMs. The user requests are

3The power model of the Philharmonic simulator was developed during
a NESUS STSM at TU Wien May 2015 and is to appear in IEEE Transactions
2016

20 Geographical Competitiveness for Powering Datacenters with Renewable Energy

generated randomly by uniformly distributing the creation
time and their duration. Each of the requests can either ask
for a new VM to be booted or an existing one to be deleted.
The specifications of the requested VMs were modelled by
normally distributing each resource type, i.e 4-16 GB of RAM.
Further details on the simulator can be found in [16] and
[17].

The total duration of the simulation was set to 1 week,
with 1 hour step size in order to be compatible with the en-
ergy production data. The simulation step size was selected
based on the available weather data input of solar and wind
energy, so that we can compare hourly available renewable
and consumed energy. Finally, the cloud control algorithm
decides on the suitable VM migrations and frequency scaling
of the physical machines to make the scenario as realistic as
possible. The best cost fit frequency scaling (BCFFS) cloud
controller described in [17] was used.

Consumed energy We defined input scenarios of 500 to
2500 PMs in the Philharmonic simulator, with a step size of
1000 PMs. The number of virtual machines was chosen 2 fold
the number of physical machines for each simulation in order
to replicate a realistic scenario. We replicate results of one
week for every week of the year, assuming that the workload
weekly pattern is homogeneously distributed over the year.
As a result, Table 2 shows the total energy consumption for
3 server scenarios during one week and one year.

Table 2: Weekly and annual energy consumption (kWh) of different
data center configurations

Nr. | nr. PMs | nr. VMs | weekly energy | annual energy
1 500 1000 2425 126500
2 1500 3000 7285 380200
3 2500 5000 12146 634000

VI. MINIMAL PERCENTAGE SUPPLY

With a model of both energy production (in Section III) and
energy consumption (in Section V), we evaluate different
scenarios to investigate the feasibility of using renewable
energy sources in different geographical locations. We give
the notion of a new metric Minimal Percentage Supply (MPS),
used to determine the data center energy coverage provided
from 1 single turbine and 1 m? solar panel. Furthermore,
we build a quantity model describing the number of wind
turbines and solar panels needed to obtain a certain energy

Table 3: MPS annual, maximal and minimal months values in
percentage

Scenario Nr. 1 1 2] 3]
Finland

Annual MPS(%) 117 | 0.39 | 0.23
May MPS(%) 1.88 | 0.62 | 0.38
December MPS(%) | 0.52 | 0.17 | 0.10
Greece

Annual MPS(%) 1.01 | 0.34 | 0.20
May MPS(%) 1.16 | 0.39 | 0.23
December MPS(%) | 0.54 | 0.18 | 0.11
Nigeria

Annual MPS(%) 0.70 | 023 | 0.14
May MPS(%) 0.68 | 0.23 | 0.14
December MPS(%) | 0.70 | 0.23 | 0.14

coverage in a certain location. MPS is calculated as:

RenewableEnergyProduction(kWh)

PS =
MPS Total EnergyConsumption(kWh)

x100% (6)

When comparing the energy production with the energy
consumption, we determine the MPS value for each data
center setting. Table 3 presents the annual, Maximum and
Minimum MPS values when applying the respective energy
values to Equation 6. The results from Table 3 indicate that
the order of magnitude for powering such a datacenter is
roughly between 102 and 10°.

We further analyze Scenario 2 datacenter with different
MPS values. The MPS of 100%, 75% and 50% for a datacenter
of size according to Scenario 2 is illustrated in Figures 5
and 6. The figures illustrate the requirements in both solar
and wind power, and various combinations for all three
geographical locations. Figure 5 shows the results from May
month, since it is the best case scenario for our reference
location: Finland. As seen in Figure 5, the least amount
of solar or wind power sources are required in Finland to
meet the MPS constraints compared to Greece and Nigeria.
For example, for an equal distribution of solar- and wind
energy a MPS of 75% can be achieved in Finland, while the
same configuration only provides 50% MPS in Greece. This
is due to the long duration of sunlight in Finland during
the summer months in combination with moderate wind
production throughout the year.

Figure 6 shows the same MPS configurations as in Figure
5 but for the worst-case month in Finland: December. Since
the duration of sunlight during the day is very limited, a
very large amount of solar panels are needed to cover the
MPS of the Scenario 2 datacenter. For MPS values over 75%,
more than 10* m? of solar panels are needed, which is orders
of magnitude more than both Nigeria and Greece. Combin-
ing solar power with wind power decreases the number of

Simon Holmbacka, Enida Sheme, Sebastien Lafond, Neki Frasheri

21

o=
X
o
o
(=]
L)

104

+
+*
&
+
+
.
¢
#

+—0+©
+ O% O=
+ O% O

-

-

-

-

2

‘Wind turbines [Nr.]

Finland 100%
Finland 75%
Finland 50%
Greece 100%
Greece 75%
Greece 50%
Nigeria 100%
Nigeria 75%
Nigeria 50%
1 g . . o .

10° 10' 10° 10°
Solar panels [Nr.]

+0=+0=+0-=

v
"

+ + E#

Figure 5: MPS of 100%, 75% and 50% for three geographical
locations in May month

required panels, and half an order of magnitude is decreased
for a 50/50 configuration. However, with the limited amount
of sunlight in December, Finland is only competitive with
Greece and Nigeria when using a significantly larger amount
of wind turbines.

Figure 7 finally shows the MPS for the annual average

0 0 00000nxD
+ b b

PP
Q QQ CCCOID

LR L

+ D0 + O
+ OO0 +# O

S

‘Wind turbines [Nr.]

Finland 100%
Finland 75%
Finland 50%
Greece 100%
Greece 75%
Greece 50%
Nigeria 100%
Nigeria 75%
Nigeria 50% |

<,
Tn

+0 = +0= %0

10° 7
10° 10 10
Solar panels [Nr.]

Figure 6: MPS of 100%, 75% and 50% for three geographical
locations annually

L & wonmane
Q O O 000
10+ 4+
I o
+
3
10°-
g
=
3
2
O
=
H
= Finland 100%
.|| © Finland75% :
1 + Finland 50% o - H
® Greece 100% & E . . L
O Greece 75% I o= : .
+ Greece 50% o* +g: bl
" Nigeria 100% * - ;%
O Nigeria 75% & + o
+ . .
" Nigeria 50%) L © +
10’ 10' 10° 10° 10*

Solar panels [Nr.]

Figure 7: MPS of 100%, 75% and 50% for three geographical
locations in December month

energy productions from solar- and wind power. Similarly
to the previous figures, the MPS values for 100%, 75% and
50% coverage is shown for all three geographical locations.
On an annual average all three locations have the same or-
der of magnitude in energy production, but a few details
differ. With the predictable and high intensity sunlight in
Nigeria, the annual average energy production from solar
power is higher than the wind power. Greece has a more bal-
anced annual energy generation from solar- and wind power.
For example using 150 solar panels and 450 wind turbines
reaches 100% MPS in Greece while the same configuration
in Nigeria results in only 50% MPS. Lastly, Figure 7 shows
that Finland reaches the MPS coverage faster than the other
locations on an annual basis only if the ratio solar-to-wind is
about 1:2.

As seen in the table, there is a 3 fold difference between
minimal and maximal MPS values, which clearly indicates
different operational costs for producing the same amount
of renewable energy during different times of the year. Ob-
viously, we need more physical resources, i.e wind turbines
and solar panels, in December to produce same amount of
energy compared to May.

VII. CONCLUSIONS

In this paper we analyzed the feasibility on competitive-
ness of powering datacenters with renewable energy at
60°latitude. The energy production on different geographi-
cal locations was determined by an energy model based on

22 Geographical Competitiveness for Powering Datacenters with Renewable Energy

real weather data from three geographical different locations,
and the energy consumption of different datacenters was
simulated on a hourly basis for one year. In order to mea-
sure the renewable coverage over the energy consumption
of a datacenter a new metric is introduced, called Minimal
Percentage Supply (MPS). We built a model for relating the
quantity between solar- and wind energy sources in order to
achieve a certain MPS coverage with renewables.

Results indicate that the geographical location influences
heavily the utilization of renewable energy; for northern lat-
itudes, energy produced from only solar energy is feasible
during the summer months, but probably insufficient during
the winter months because of the low amount of sunlight
during the day. To achieve competitive MPS on a 60°northern
latitude on an annual basis, the ratio of solar-to-wind energy
must be about 1:2. However during the summer months,
competitive (or higher) MPS is achieved on 60 “latitude loca-
tion independent of the solar-to-wind ratio and using 30-40%
less energy generators. During the winter months in Finland,
the lack of sunlight naturally deems solar power highly inef-
ficient, and a competitive MPS value is only achieved with a
solar-to-wind ratio of roughly 1:1.5. Also, during the winter
months in Finland 1.3x the amount power generators must
be installed in order to reach the same power generation as
the summer months in Finland.

Using this information datacenter designers can determine
the feasibility and cost efficiency of constructing data centers
powered by renewable energy on a northern latitude.

Acknowledgment

The work presented in this paper has been partially sup-
ported by EU under the COST programme Action IC1305:
Network for Sustainable Ultrascale Computing (NESUS) and
under the Erasmus Mundus programme Euroweb+.

REFERENCES

[1] Baris Aksanli, Jagannathan Venkatesh, Liuyi Zhang, and Tajana Rosing.
Utilizing green energy prediction to schedule mixed batch and service
jobs in data centers. In Proceedings of the 4th Workshop on Power-Aware
Computing and Systems, HotPower 11, pages 5:1-5:5, New York, N, USA,
2011. ACM.

[2] Michael Brown and Jose Renau. Rerack: Power simulation for data

centers with renewable energy generation. In In Workshop of GreenMetrics,
2011.

[3] Process Design and Abo Akademi University Systems Engineering Labo-
ratory. The weather station at the process design and systems engineering
laboratory. http: //at8 abo fi/cgi-bin/get _weather.

[4] PV Education. Solar radiation on a tilted surface. http:
//www pveducation org/pvcdrom/properties-of-sunlight/
solar-radiation-on-tilted- surface.

[5] Bob Erickson. Future directions in wind power conversion electronics.
2013.

[6] Martin Arlitt et al. Towards the design and operation of net-zero energy
data centers. ITherm, 2012.

[7] M. Ghamkhari and H. Mohsenian-Rad. Optimal integration of renew-
able energy resources in data centers with behind-the-meter renewable
generator. In Communications (ICC), 2012 IEEE International Conference on,
pages 3340-3344, June 2012.

L. Goiri, Kien Le, M.E. Haque, R Beauchea, T.D. Nguyen,]. Guitart,
]. Torres, and R. Bianchini. Greenslot: Scheduling energy consumption
in green datacenters. In High Performance Computing, Networking, Storage
and Analysis (SC), 2011 International Conference for, pages 1-11, Nov 2011.

91 imgo Goiri, William Katsak, Kien Le, Thu D. Nguyen, and Ricardo
Bianchini. Parasol and greenswitch: Managing datacenters powered by
renewable energy. SIGARCH Comput. Archit. News, 41(1):51-64, March
2013.

[10] imgo Goiri, Kien Le, Thu D. Nguyen, Jordi Guitart, Jordi Torres, and
Ricardo Bianchini. Greenhadoop: Leveraging green energy in data-
processing frameworks. In Proceedings of the 7th ACM European Conference
on Computer Systems, EuroSys "12, pages 57-70, New York, NY, USA, 2012
ACM.

[11] Sriram Govindan, Anand Sivasubramaniam, and Bhuvan Urgaonkar.
Benefits and limitations of tapping into stored energy for datacenters.
In Proceedings of the 38th Annual International Symposium on Computer
Architecture, ISCA "11, pages 341-352, New York, NY, USA, 2011. ACM.

[12] Texas Weather Instruments Inc. Texas weather instruments inc.

[13] Chao Li, Amer Qouneh, and Tao Li. Characterizing and analyzing renew-
able energy driven data centers. In Pmceedings of the ACM SIGMETRICS
Joint International Conference on M ement and Modeling of Co
Systems, SIGMETRICS ‘11, pages 131-132, New York, NY UsA, 2011
ACM.

[14] Zhenhua Liu, Minghong Lin, Adam Wierman, Steven H. Low, and
Lachlan LH. Andrew. Geographical load balancing with renewables.
SIGMETRICS Perform. Eval. Rev., 39(3):62-66, December 2011.

[15] D. Lucanin. A geo-distributed cloud simulator. https://github com/
philharmonic/philharmonic, 2014

(8

[16] D. Lucanin and I. Brandic. Pervasive cloud controller for geotemporal
inputs. Cloud Computing, IEEE Transactions on, PP(99), 2015.

[17] D. Lucanin, L Pietri, L. Brandic, and R. Sakellariou. A cloud controller
for performance-based pricing, In Cloud Computing (CLOUD), 2015 IEEE
8th International Conference on, pages 155-162, June 2015.

[18] Navin Sharma, Sean Barker, David Irwin, and Prashant Shenoy. Blink:
Managing server clusters on intermittent power. SIGARCH Comput.
Archit. News, 39(1):185-198, March 2011.

[19] First Solar. First solar achieves world record 18.percent thin film module
conversion efficiency.

[20] ENERGY STAR. Market and industry scoping report: Solar pv inverters.

[21] Guangzhou HY Energy Technology. Hy small wind turbine special
features.

[22] Rahul Urgaonkar, Bhuvan Urgaonkar, Michael]. Neely, and Anand
Sivasubramaniam. Optimal power cost management using stored energy
in data centers. In Pmmedhgs of the ACM SIGMETRICS Joint International
Conference on My t and Modeling of Computer Systems, SIGMETRICS
"11, pages 221-232, New York, NY, USA 2011. ACM.

[23] Di Wang, Chuangang Ren, Anand Sivasubramaniam, Bhuvan Urgaonkar,
and Hosam Fathy. Energy storage in datacenters: What, where, and how
much? SIGMETRICS Perform. Eval. Ren., 40(1):187-198, June 2012.

[24] Yanwei Zhang, Yefu Wang, and Xiaorui Wang. Greenware: Greening
cloud-scale data centers to maximize the use of renewable energy. In
Middleware 2011, pages 143-164. Springer, 2011.

Atanas Hristov, Iva Nikolova, Georgi Zapryanov, Dragi Kimovski, Vesna Kumbaroska 23

&

CcoskE

Resource Management Optimization in
Multi-Processor Platforms

AtANASs HrisTov

University of Information Science and Technology, Ohrid, Macedonia

atanas.hristov@uist.edu.mk

Iva N1xorova, GEORGI ZAPRYANOV

Technical University of Sofia, Bulgaria
inni@tu-sofia.bg, gszap@tu-sofia.bg

Dract KiMmovskr

University of Innsbruck, Austria
dragi@dps.uibk.ac.at

VESNA KUMBAROSKA

University of Information Science and Technology, Ohrid, Macedonia
vesna.gega@uist.edu.mk

Abstract

The modern high-performance computing systems (HPCS) are composed of hundreds of thousand computational nodes. An
effective resource allocation in HPCS is a subject for many scientific research investigations. Many programming models for
effective resources allocation have been proposed. The main purpose of those models is to increase the parallel performance
of the HPCS. This paper investigates the efficiency of parallel algorithm for resource management optimization based on
Artificial Bee Colony (ABC) metaheuristic while solving a package of NP-complete problems on multi-processor platform.In
order to achieve minimal parallelization overhead in each cluster node, a multi-level hybrid programming model is proposed that
combines coarse-grain and fine-grain parallelism. Coarse-grain parallelism is achieved through domain decomposition by message
passing among computational nodes using Message Passing Interface (MPI) and fine-grain parallelism is obtained by loop-level
parallelism inside each computation node by compiler-based thread parallelization via Intel TBB. Parallel communications
profiling is made and parallel performance parameters are evaluated on the basis of experimental results.

Keywords High-Performance Computing, Parallel Programming Model, Parallel Performance, Parallel Algorithm

I. INTRODUCTION

There are many open research problems in the field of high-
performance computing systems (HPCS) studied extensively
in many scientific research investigations. These systems
are composed of hundreds or thousands of computational
nodes and combine several technologies - hardware, software,
networking and programming to solve advanced problems
and performing experimental research work.

Most often the HPCS are used for high-throughput com-

puting in time-sharing mode as well as for running complex
parallel applications in space-sharing mode. One of the main
challenges in HPC is to achieve highest possible system per-
formance for a given application at optimal load balance and
utilization of the available computational resources on the
HPC platform. This causes the problem of effective resource
management.

The resource management system is responsible for al-
location of computing resources for extraordinary use and
also to determine an optimal job or task scheduling for a

24

Resource Management Optimization in Multi-Processor Platforms

given system topology. An effective resource allocation and
scheduling in HPCS is a subject of many scientific research
investigations. The problem is well known as NP-complete
[1], [2] and a number of approaches to different aspects of
this problem can be found in the research literature. Also,
many programming models have been proposed during the
years. The main purpose of these models is to increase the
parallel performance of HPCS. Currently, most of the HPC
systems are based on conventional sequential programming
languages as C, C++, FORTRAN. In order to achieve bet-
ter parallel performance, the flat parallel programing model
with message passing in distributed memory systems, sup-
ported by the MPI standard [3] and parallel programming
model with multithreading in shared memory systems using
the OpenMP programming interface [4] have been included
as template libraries. The main disadvantages of the parallel
programing based on conventional programming language
are: process synchronization, deadlocks, workload balancing,
and thread concurrency. In order to achieve better parallel
performance, a parallel programming model must combine
the distributed memory parallelization on the node inter-
connect with the shared memory parallelization inside of
each node.

In order to improve this situation, Intel provides a range of
tools specifically designed to help developers in parallelizing
their applications. Three sets of complementary models for
multithreading programming in shared memory systems are
supported by Intel: Intel Cilk Plus, Intel Threading Build-
ing Blocks (Intel TBB) and Intel Array Building Blocks (Intel
ArBB). The main purpose of those models is to increase the re-
liability, portability, scalability and the parallel performance
of the application during the multithreading execution [5],
[6].

The complexity class of decision problems NP-complete
can be used as a pattern for benchmarking and parallel per-
formance evaluation of multi-core and multi-machine archi-
tectures. Parallel versions of several NP-complete problems,
such as N-Queens Problem, Travelling Salesman Problem,
Sam-Loyd Puzzle etc., will be proposed in order to determi-
nate the overall parallel performance of the system.

The paper investigates the efficiency of parallel algorithm
for resource management optimization. It is proposed a
metaheuristic approach based on swarm optimization with
Artificial Bee Colony (ABC) [7] to solve the resource alloca-
tion problem for multi-core platform. The experimental work
is based on the efficiency analysis of the proposed resource
allocation scheme when solving of a package of three well
known NP-complete problems - N-Queen, Travelling Sales-
man and Sam-Loyd Puzzle on homogeneous multi-processor
platforms. Programmatically, the proposed scheme is im-

plemented on the basis of multi-level hybrid parallel com-
putational model using Intel TBB [8] and MPI [3] libraries.
This model combines coarse-grain and fine-grain parallelism.
Coarse-grain parallelism is achieved through domain decom-
position by message passing among computational nodes
using Message Passing Interface (MPI) and fine-grain par-
allelism is obtained by loop-level parallelism inside each
computation node by compiler-based thread parallelization
via Intel TBB.

The rest of this paper is organized as follows. An overview
of the resource scheduling problem is presented in Section
II with discussing some related works. In Section III, the
proposed resource allocation scheme, based on ABC meta-
heuristics and its parallel implementation is presented. An
experimental results and summary are offered in Section IV.

II. RELATED WORK

The resource management optimization problem has been
studied extensively in the parallel and distributed comput-
ing literature for more than two decades. Many studies
have been done in the field in order to effectively utilize
the costly high performance computing platforms. Most
of the advanced resource management systems are vendor-
specific, but often they do not comply with specific features
of a particular computing platform. Thus, they are not well
optimized to provide efficient management to reach the re-
quired for a given parallel application performance of the
implementation.

A variety of policies, strategies, schemes and algorithms
have been proposed, developed, analyzed and implemented
in a number of studies. These works investigate the problem
in terms of diverse target HPC platforms. The most com-
mon researches are done in the field of high performance
distributed computing with cluster, grid and cloud comput-
ing systems. Regardless of the conceptual closeness of these
systems, the strategies for an optimal reserving of comput-
ing resources, effective load balance and resource utilization
are different. Also, the resources that each parallel applica-
tion for distributed processing requires can be very different
from one to other and this raised the problem of finding an
optimal job and tasks schedule for a given set of parallel
resources. Taking into account the specific architectural, sys-
tem and communication characteristics of a given parallel
computer platform, finding an optimal solution of resource
management task is further complicated.

The parallel resource scheduling problem is known to be
NP-hard [1], [2]. It is usually solved by various heuristic and
meta-heuristics algorithmic schemes [9], [10] depending on
the homogeneity of the parallel system and the scheduling

Atanas Hristov, Iva Nikolova, Georgi Zapryanov, Dragi Kimovski, Vesna Kumbaroska 25

method applied - static (off-line) or dynamic (on-line) one.
Also, there are several exact algorithms with the goal to solve
small to medium size problems to optimality [11], [12].

In the schemes with static scheduling it assumes that the
total number of parallel executing tasks, as well the duration
of each task is known in advance. The decision concerning
computational resource allocation and task assignment is
made at the start of the job execution. Because the execu-
tion time for a task is dependent on the input data, static
scheduling carries some degree of uncertainty. This leads to
unbalanced load, which leads to longer parallel execution
time and low system resource utilization. With dynamic
scheduling, the number of computational resources allocated
to a job may vary during the execution. Also, the task as-
signment to the allocated resources takes place during the
execution of a job. As pointed out in [13], dynamic schedul-
ing policies are complementary to static policies in both their
advantages and drawbacks. Because they are implemented
at the execution time, dynamic policies usually incur in high
run-time overhead, which may lead to a degradation of per-
formance. Since decisions are made during job execution,
scheduling should be based on simple and constant time
heuristics. On the other hand, dynamic scheduling mecha-
nisms exhibit an adaptive behavior, which leads to a high
degree of load balancing.

In [14] the resource scheduling problem is explored in
terms of real-time jobs executing on heterogeneous clusters.
Heterogeneity in the parallel systems introduces an addi-
tional degree of complexity because, in addition to the prob-
lem of deciding when and how many computing resources
to allocate, scheduling policies have also to deal with the
choice among processor nodes of different speeds and also
with reliability issues and tasks independency in parallel
jobs. The proposed heuristic dynamic scheduling scheme
(reliability-driven algorithm (DRCD)) for a various cluster
sizes (between 4 and 18 machines) has been experimentally
tested on a real world application DSP [15] as well as syn-
thetic workloads, based on binary trees [16], lattices [17] and
random graphs [18].

The problem of resource management in large many-
core systems is addressed in [19], where a novel resource-
management scheme that supports so-called malleable ap-
plications is proposed. These applications can adopt their
level of parallelism to the assigned resources. [19] design a
scalable decentralized scheme that copes with the computa-
tional complexity by focusing on local decision-making. The
proposed algorithm is tested via simulation experiments on
different system sizes ranging from 5x5 to 32x32 cores and
synthetically generated workload consisting of 16, 32 and 64
parallel applications that is generated using the widely used

Downey model [20].

Many papers have been published to address the prob-
lem of resource allocation in Grid computing environments.
Some of the proposed algorithms are modifications or exten-
sions to the traditional distributed systems resource alloca-
tion algorithms. A survey of job scheduling and resource
management algorithms in Grid computing can be found in
[21] where various algorithms are compared on various pa-
rameters like distributed, hierarchical, centralized, response
time, load balancing, and resource utilization. The experi-
ments were conducted via simulations with help of GridSim
for number of jobs varied from 50 to 300.

In [22] resource-aware hybrid scheduling algorithm for
different type of application: batch jobs and workflows are
proposed. The performance tests are conducted in a realistic
setting of CloudSim tool [23] with respect to load-balancing,
cost savings, dependency assurance for workflows and com-
putational efficiency. Multimedia applications that consist in
both independent tasks and tasks with dependencies (work-
flows), and are both CPU intensive (they process a large
amount of data) and I/O intensive (they access remote data)
are used as test case scenarios. The experiments are per-
formed with a 1000 tasks, 1000 Processing Elements and 10
Virtual Machines.

III. PARALLEL IMPLEMENTATION OF RESOURCE
MANAGEMENT OPTIMIZATION ALGORITHM

An effective resource utilization of the modern high perfor-
mance computing (HPC) platforms is a subject for many sci-
entific research investigations. The resource management op-
timization for those platforms is an essential part for optimal
resource allocation while solving NP hard problems. An ef-
fective resource management algorithm strongly determines
the overall parallel performance of the high-performance
computing system. The proposed algorithm for resource
management optimization in multi-core and multi-machine
platforms is based on Artificial Bee Colony (ABC) meta-
heuristic. The ABC simulates the collective behavior of the
honeybees in nature. The basic approach during imple-
mentation process is building a computer model which will
simulate the collective behavior of the bees while collecting
nectar.

In the proposed algorithm, the bees are divided in two
beehives, beehive of the scout bees (beehive 1) and beehive
of the onlooker and worker bees (beehive 2). When the
algorithm is started, beehive 1 generates N number of scout
bees, where N represents the number of processors in the
system. Each scout bee checks whether a processor is free
or busy by execution of specific task on it. If a free resource

26

Resource Management Optimization in Multi-Processor Platforms

Mltiprocessor pem

TvvEa
%um

'“’“' ‘ | !m

uauw-n

Seout beet

#
=
8
i
g
&

e
Figure 1: Parallel computing model for resource management
optimization based on Artificial Bee Colony metaheuristic

is found the scout bee record the ID of the processor into
the table of available resources and returns to the beehive 1,
where it is terminates. The main purpose of the beehive 2
is to generate M number of onlooker bees, where M is the
optimal number of parallel threads. After generation, the
onlooker bees search in to table of available resources. If
the onlooker bee finds a free resource, it takes the ID of the
processor and removes it from the table. If the onlooker bee
do not find a free resource in the table, the bee will return to
the beehive 2 and will be terminate. Once the onlooker bee
takes the available resource it starts to behave as a worker
bee. Thus obtained K number of worker bees initially turned
to the table of outstanding tasks where they taking certain
sub-problem, remove it from the table and submit it for the
performance by the processor which ID has been taken from
the table of available resources. After the processor solves a
sub-problem, it provides the solution to a worker bee. The
worker bee with the current solution returns to beehive 2,
where it is terminated.

In Figure 1, parallel computing model for resource manage-
ment optimization based on artificial bee colony metaheuris-
tic is presented. Parallel implementation of the algorithm
was realized by using MPICH-2 message passing model and
Intel TBB programming model built in Intel Parallel Studio
2010. For virtualization of resources a virtual machine of
Intel ArBB, built-in Intel Parallel Studio 2010 was used.

IV. EXPERIMENTAL EVALUATION

The experimental results were conducted by using multi-
processor platform. The platform is represented by a ho-

mogenous cluster composed of twelve Blade servers, HS21,
Xeon Quad Core E405 80w 2.00GHz/1333MHz/12MB L2
and hard disk drive subsystems IBM 750GB Dual Port HS
SATA HDD and Windows Server 2008 operating system.

_,ﬂ%m%ﬂ ﬁ—‘ET'ﬂ “ mﬁ J =
ULM WL U-l-‘g”‘%uk H

Figure 2: CPU load while solving package of three NP-Complete
problems without the algorithm for resource management optimiza-
tion

" »—-..__

The load of the computational resources while solving a
package of three NP-Complete problems - Traveling Sales-
man Problem, the N-queens problem, and the Sam-Loyd
puzzle are presented in Figure 2. The package is started
without algorithm for resource management optimization.
From the charts shown on the figure, it is clear that the
load of the processors is not well balanced, because only at
a certain point of the time the processors have good load
balance i.e. there are only few processors where the number
of cores corresponds with the number of active processes.
On the other hand, during the most of the time some of the
processors have less number of active processes than cores,
while some processors are overloaded i.e. the number of
active processes exceeds number of cores in the processor.

Figure 3: CPU load while solving package of three NP-Complete
problems by using the algorithm for resource management opti-
mization

In order to improve this situation, the proposed algorithm
for resource management optimization was implemented on

Atanas Hristov, Iva Nikolova, Georgi Zapryanov, Dragi Kimovski, Vesna Kumbaroska 27

the target platform. In Figure 3, the load of the processors
while solving a package of three NP-Complete problems by
using the algorithm for resource management optimization
based on ABC metaheuristic is shown.

According to the figure above, it is clear that after the
implementation of the optimization algorithm, the load of
the processors is almost optimal as the overloading of the
processors is avoided i.e. starting a bigger number of threads
than cores on single processor, while dissatisfied load is
shown only during the timeslots reserved of implementation
of the algorithm for resource planning.

Figures 4 and 5 presents the load of the cluster during the
execution of the tested package.

Cluster Load Percentages

100+
H75-100
bl 50-75
E25-30

E0-25

Figure 4: Cluster load during the execution of a package with three
NP-Complete problems without the optimization algorithm

Cluster Load Percentages

5% 2%

100+

B 75-100
Wi 50-75
M 25-50

Wo0-25

Figure 5: Cluster load during the execution of a package with
three NP-Complete problems by using the proposed optimization
algorithm

During the execution of package with three NP-Complete
problems without the proposed algorithm for resource man-
agement optimization, only 22,22% of the resources of the
cluster have optimal load balancing with 75-100%, while the

remaining resources are overloaded with 100%+ or not good
loaded i.e. below 75%. On the other hand, during the exe-
cution of the package by using the algorithm for resource
management optimization, 82.22% of the resources of the
cluster have optimal load balancing and only 17.77% of the
resources have poor load balance. These 17% of the resources
with poor load balance appears mainly due to the time re-
quired for implementation of the algorithm for resource
planning as well as other system costs of the platform.

V. CONCLUSION AND FUTURE WORK

An effective resource utilization of the modern high per-
formance computing (HPC) systems is a subject for many
scientific research investigations. The resource management
for those platforms is an essential part for optimal resource
allocation while solving NP complete problems. An effec-
tive resource management algorithm strongly determines
the overall parallel performance of the high-performance
computing system.

This paper suggests an innovative algorithm for effective
resource management in multi-processor platforms based on
parallel metaheuristic "Artificial Bee Colony" (ABC) optimiza-
tion. The efficiency of the proposed algorithm for resource
management in multi-processor platforms was evaluated on
the basis of the software tools of Intel Array Building Blocks
build-in Intel Parallel Studio.

Moreover, parallel programming implementations of three
NP-Complete problems: the N-Queens problem, the Sam-
Loyd puzzle, and the Traveling Salesman Problem (TSP)
have been proposed in order to evaluate the overall parallel
performance of the platform. The proposed parallel imple-
mentations were developed on the basis of Message Passing
Interface (MPI) and Intel Threading Building Blocks (TBB)
programming models.

Finally, we applied the proposed algorithm a homogenous
cluster composed of twelve Blade servers HS21. This allows
us to observe the behavior of the cluster while simultaneously
is started a package of three NP-Complete problems. From
the experimental results we conclude that in the cases when
the proposed algorithm is run on the target platform, the
cluster has very good load balance, which leads to increasing
of the overall parallel performance of the system.

Future objectives of this research include implementation
of our algorithm on very large-scale systems and on the new
generation of ExaScale machines.

28

Resource Management Optimization in Multi-Processor Platforms

ACKNOWLEDGMENT

This work is partially supported by EU under the COST
Program Action IC1305: Network for Sustainable Ultrascale
Computing (NESUS).

REFERENCES

[1] Ullman, J.D., 1975. NP-complete scheduling problems.
Journal of Computer and System sciences, 10(3), pp.384-
393.

[2] Hall, N.G. and Sriskandarajah, C., 1996. A survey of
machine scheduling problems with blocking and no-wait
in process. Operations research, 44(3), pp.510-525.

[3] Gropp, W., Lusk, E., Doss, N. and Skjellum, A., 1996. A
high-performance, portable implementation of the MPI
message passing interface standard. Parallel computing,
22(6), pp.789-828.

[4] Sato, M., 2002, October. OpenMP: parallel programming
API for shared memory multiprocessors and on-chip
multiprocessors. In Proceedings of the 15th international
symposium on System Synthesis (pp. 109-111). ACM.

[5] Wooyoung Kim, Voss M., 2011. Multicore Desktop Pro-
gramming with Intel Threading Building Blocks. IEEE
Software journal, Page(s): 23 aAS 31.

[6] Newburn C.J., Byoungro So, Zhenying Liu, McCool
M., Ghuloum A., Toit S.D., 2011. Intel’s Array Building
Blocks: A retargetable, dynamic compiler and embedded
language. In Proceedings of the 9th Annual IEEE/ACM
International Symposium on Code Generation and Opti-
mization, Page(s): 224 aAS 235.

[7] Karaboga, D. and Basturk, B., 2007. A powerful and
efficient algorithm for numerical function optimization:
artificial bee colony (ABC) algorithm. Journal of global
optimization, 39(3), pp.459-471.

[8] Reinders, J., 2007. Intel threading building blocks: outfit-
ting C++ for multi-core processor parallelism. " O’Reilly
Media, Inc."

[9] Haouari, M., Gharbi, A. and Jemmali, M., 2006. Tight
bounds for the identical parallel machine scheduling
problem. International Transactions in Operational Re-
search, 13(6), pp.529-548.

[10] Talbi, E.G., 2009. Metaheuristics: from design to imple-
mentation (Vol. 74). John Wiley & Sons.

[11] Darbha, S. and Agrawal, D.P., 1998. Optimal schedul-
ing algorithm for distributed-memory machines. IEEE
transactions on parallel and distributed systems, 9(1),
pp-87-95.

[12] Dell’Amico, M., Iori, M., Martello, S. and Monaci, M.,
2008. Heuristic and exact algorithms for the identical
parallel machine scheduling problem. INFORMS Journal
on Computing, 20(3), pp.333-344.

[13] Saha, D., Menasce, D. and Porto, S., 1995. Static and dy-
namic processor scheduling disciplines in heterogeneous
parallel architectures. Journal of Parallel and Distributed
Computing, 28(1), pp.1-18.

[14] Qin, X. and Jiang, H., 2005. A dynamic and reliability-
driven scheduling algorithm for parallel real-time jobs
executing on heterogeneous clusters. Journal of Parallel
and Distributed Computing, 65(8), pp.885-900.

[15] Woodside, C.M. and Monforton, G.G., 1993. Fast allo-
cation of processes in distributed and parallel systems.
IEEE Transactions on parallel and distributed systems,
4(2), pp.164-174.

[16] Srinivasan, S. and Jha, N.K., 1999. Safety and reliabil-
ity driven task allocation in distributed systems. IEEE
Transactions on Parallel and Distributed Systems, 10(3),
pp.238-251.

[17] Qin, X. and Jiang, H., 2001, September. Dynamic,
reliability-driven scheduling of parallel real-time jobs
in heterogeneous systems. In Parallel Processing, 2001.
International Conference on (pp. 113-122). IEEE.

[18] Ahmad, I. and Kwok, Y.K.,, 1999. On parallelizing the
multiprocessor scheduling problem. IEEE Transactions
on Parallel and Distributed systems, 10(4), pp.414-431.

[19] Kobbe, S., Bauer, L., Lohmann, D., SchrAtder-
Preikschat, W. and Henkel, J., 2011, October. DistRM:
distributed resource management for on-chip many-core
systems. In Proceedings of the seventh IEEE/ACM/IFIP
international conference on Hardware/software codesign
and system synthesis (pp. 119-128).

[20] Downey, A.B., 1997. A model for speedup of parallel
programs. University of California, Berkeley, Computer
Science Division.

[21] Buyya, R. and Murshed, M., 2002. Gridsim: A toolkit
for the modeling and simulation of distributed resource
management and scheduling for grid computing. Con-
currency and computation: practice and experience,
14(13aAR15), pp.1175-1220.

Atanas Hristov, Iva Nikolova, Georgi Zapryanov, Dragi Kimovski, Vesna Kumbaroska 29

[22] Vasile, M.A., Pop, E, Tutueanu, R.I. and Cristea, V.,
2013, December. HySARC2: hybrid scheduling algorithm
based on resource clustering in cloud environments. In In-
ternational Conference on Algorithms and Architectures
for Parallel Processing (pp. 416-425). Springer Interna-
tional Publishing.

[23] Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A.
and Buyya, R., 2011. CloudSim: a toolkit for modeling
and simulation of cloud computing environments and
evaluation of resource provisioning algorithms. Software:
Practice and Experience, 41(1), pp.23-50.

Radim Blaheta, Ondrej Jakl, Jiri Stary, Ivan Georgiev, Krassimir Georgiev, Svetozar Margenov, Roman Kohut 31

&

-G

ocosk

Analysis of fiber-reinforced concrete:
micromechanics, parameter identification,
fast solvers

R. Branera®, I Georarev?, K. Georarev?, O. Jaxi?, R. Konurt?, S. MaRGENOV?, J. STARY?

“ Institute of Geonics, Czech Academy of Sciences, Ostrava, CR
b Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, Sofia, BG
[blaheta, jakl, kohut, stary]@ugn.cas.cz, [ivan.georgiev, georgiev, margenov|@parallel.bas.bg

Abstract

Ultrascale computing is required for many important applications in chemistry, computational fluid dynamics etc., see an
overview in the paper Applications for Ultrascale Computing by M. Mihajlovic et al. published in the International Journal
Supercomputing Frontiers and Innovations, Vol 2 (2015). In this abstract we shortly describe an application that involves many
aspects described in the above paper - the multiscale material design problem. The problem of interest is analysis of the fiber
reinforced concrete and we focus on modelling of stiffness through numerical homogenization and computing local material
properties by inverse analysis. Both problems require a repeated solution of large-scale finite element problems up to 200 million
degrees of freedom and therefore the importance of HPC and ultrascale computing is evident.

Keywords Analysis of fiber-reinforced concrete, homogenization, identification of parameters, parallelizable solver, additive

Schwarz method, two-level parallelization

I. INTRODUCTION

This paper is a continuation of paper [1] presented at the
NESUS workshop in Cracow, Poland 2015. While [1] focused
on linear micromechanics exploiting CT scans for determina-
tion of microstructure and numerical homogenization, this
paper is driven by a specific application - analysis of fiber-
reinforced concrete. This analysis includes an identification
problem and stochastic uncertainty, which brings new dimen-
sion and enhances the need for fast solvers and ultrascale
computations.

Fiber-reinforced concrete with steel fibers has a lot of ap-
plications in civil and geotechnical engineering. It is less
expensive than hand-tied rebar, while still increasing the ten-
sile strength many times. The shape, dimension, and length
(standard 1 mm diameter, 45 mm length) of the fiber together
with fiber volume amount and distribution are important
parameters influencing the tensile strength of concrete.

The analysis includes assessment of tensile stiffness for
several samples of fiber-reinforced concrete which differ in
amount and distribution of fibers. These samples are scanned
by CT and analysed with provided elastic parameters for
steel fibers and concrete matrix. The detailed scan of a
sample leads to solving of elastic problems with about 200
million degrees of freedom.

As the global response of the samples can be tested on a
loading frame, then the output allows to solve an inverse
identification procedure to determine the elastic properties
of the concrete matrix. In this way we can both determine
the properties of concrete matrix, which can also be variable
to some extent, as well as assess whether some discrepancy
can be explained by imperfect bonding of fibers.

It is also possible not only to investigate selected physical
samples of the fiber-reinforced concrete but to do stochastic
analysis with a repeated generation of stochastic microstruc-
ture, see e.g. [5, 6].

II. HOMOGENIZATION AND IDENTIFICATION OF
PARAMETERS

The numerical homogenization starts with solving the elas-
ticity problem on the domain () with given microstructure.
The solution is possibly repeated for different loadings by
imposed boundary conditions. In an abstract way, we de-
note the loading conditions by L or in the case of multiple
loading by LK), The stress and strain tensors ¢(k) and &(¥)
are averaged over () and the homogenized elasticity tensor

c S Rg;;,?xaxs, C= [Cijﬁ]f Cl'jki = Cjiki = del'j' is determined

32 Analysis of fiber-reinforced concrete: micromechanics, parameter identification, fast solvers

as a (generalized) solution of the system

ce®) = gk) k) :|n|—y o®dq, g(k}:|ﬂ|_y NOPTeY
(9] 0

Assuming isotropy of the homogenized elasticity tensor,
one loading is sufficient for getting elasticity constants. If
¢ = Cyo1 + Ciev, is the decomposition of ¢ € RS‘S;,‘,,? into the
volumetric and deviatoric parts and ||-|| is the Frobenius
norm, then the bulk and shear moduli can be determined as

1, _ 1, _
K= 3 1%all / [[Ewill, G = 3 l|0aeoll / [|Eaeoll -

For parameter identification, we assume that some local
material properties are unknown, e.g. that the concrete
matrix is described by unknown parameters p = (K., G;),
where K and G, are unknown bulk and shear parameters of
the concrete. More generally, () can be split into subdomains
with different unknown elastic moduli of concrete. Then the
parameters are found by minimization of a proper objective
function | over a set of admissible parameters, see e.g. [7].

The construction of the objective function can be as follows

i

where %) (p) and &%) (p) are averaged stresses and strains
computed by solving the boundary value problem in (2 with
given microstructure, local material properties involving the
parameters from p and the loading L&) This boundary
value problem represents a physical test on the specimen
(). The test configuration is such that in the case of homo-
geneity of (), the problem has a solution with unique and

constant stress af(fs)t and strain EEQE, which can be determined
from measurements. The weights w;; can be determined by
numerical experiments or simply set to be equal w;; = 1.
The optimization is performed by a suitable method, we
already successfully tested the Nelder-Mead and Gauss-
Newton methods.
More details on the exploited homogenization and identi-

fication methods can be found in [3, 4].

19 = X [o) 2+ e [00p) ol

III. ApDDITIVE SCHWARZ SOLVER WITH TWO-LEVEL
PARALLELIZATION

A crucial component of the homogenization and identifica-
tion procedures is the solver for boundary value problems
of elasticity. We assume finite element discretization leading
to algebraic systems of the type of Au =b or A(p)u(p) =b,
where later indicates dependence on some local material
parameters. The system can be solved by the preconditioned

conjugate gradient (PCG) method with one level additive
Schwarz (AS) preconditioner B4s1 and mostly its extended
two-level version B4s»,

N
Bas1 = E R;{AEIRJ, Basp = Bas1 + R(];AEIR;].
k=1

Here Ry is a restriction defined by subdomain () or alge-
braically by overlapping decomposition of the solution vector
u € R", Ay is an approximation to Ay = RkART In our case
A} is a displacement decomposition - incomplete factoriza-
tion of A;. The one level AS preconditioner is not scalable,
the number of iterations increases with N, although this
grow is a bit compensated by the fact that A; becomes a
better approximation to A;. It fits the algebraic form of the
Schwarz methods if Ry € R"0*" is a Boolean matrix, which
defines aggregation of degrees of freedom, ie. each row
of Ry defines one aggregate by unities in this row. On the
other hand, each degree of freedom corresponds to just one
aggregate, i.e. there is precisely one unity in each column of
Ry. More details about this setting can be found e.g. in [2].

In the case of computing at a massively parallel computer
like Salomon [8], it is possible to exploit hundreds of pro-
cessors, which makes the local problems A; small even for
large scale matrices A. It makes difficult to keep balance of
times for solving the local problems Ay and the coarse global
one Ay. For this reason, parallel inner CG iterations for the
solution of problem A, were suggested and the algorithm
become with two levels of parallelization.

IV. NUMERICAL EXPERIMENTS

Our numerical experiments present five real samples of fiber-
reinforced concrete, each of cubic shape and size 35 mm.

Variant | Steel fibers Volume Volume
[kg/m3] Steel [%] Voids [%]
0 0 0.00 1.55
2 50 0.92 1.22
3 100 1.82 0.75
4 150 257 0.71
5 200 211 1.83

Table 1: Characteristics of REV for each sample of reinforced con-
crete. Variants differ in the volumes of steel fibers as well as voids.
The size of fibers: length 6 mm, diameter 0.12 mm.

Their microstructure is taken from industrial CT scanning
performed at the CT lab of the Institute of Geonics. Digital

Radim Blaheta, Ondrej Jakl, Jiri Stary, Ivan Georgiev, Krassimir Georgiev, Svetozar Margenov, Roman Kohut 33

models arose from meshes of approx. 1400x 1400 x 1400 vox-
els, which were further trimmed to 1000x1000x 1000 voxels
due to surface damage or irregular sides of the samples.

Consequent computational models use smaller represen-
tative volumes (REV) and standard linear tetrahedral finite
elements. The size of each REV is 400x400x400 for ho-
mogenization experiments or 100 x100x 100 voxels for tests
related to material identification, respectively. Accordingly
the model leads to a (repeated) solution of the resulting linear
system in size of about 193 millions or 3 millions degrees of
freedom. Main characteristics of each REV are summarized
in Tab. 1.

‘ Material ‘ E [GPa] v ‘

concrete 19 0.2
steel 200 0.3
voids 0.01 0.1

Table 2: List of involved materials and their properties (Young’s
modulus E and Poisson’s ratio v).

The properties of the materials involve in mathematical
modelling are listed in Tab.2. Voids (air bubbles in the
microstructure) bring a kind of singularity caused by the
finite elements weekly hanged in the void space. They are
replaced with a very week elastic material. The convergence
of the applied PCG method is then smoother and faster.

The arising large-scale systems of linear equations are
processed by parallel solvers based on the PCG method,
with stabilization in the singular case [10]. The computa-
tions are performed on SGI cluster Salomon [8] run by the
IT4Innovations National Supercomputing Center in Ostrava.
The cluster, currently on 55. place in Top500, consists of
24192 cores and 129 TB of memory in total and with the
theoretical peak performance over 2 Pflop/s. The most of its
compute nodes is equipped by two 12-core processors Intel
Xeon E5-2680 v3 and 128 GB of memory.

Tab. 3 gives the results of numerical homogenization apply-
ing pure Dirichlet and pure Neumann boundary conditions
(BC). The choice of BC sets a configuration of homogeniza-
tion procedure, which simulates an appropriate laboratory
test under uniaxial loading. Dirichlet BC prescribe some
non-zero displacement on the top side in the direction of
uniaxial loading, the other sides have zero normal displace-
ments. Neumann BC enter opposite non-zero forces on the
top and bottom sides in the direction of uniaxial loading,
the other sides have zero normal forces. The use of pure
Dirichlet and pure Neumann BC allows us to get upper and
lower bounds for the upscaled elasticity tensor, see e.g. [3].

Due to irregular placement of steel fibers as well as voids

Dirichlet BC
Variant E [GPa] ‘ v

18.365 18.370 18.407 | 0.199 0.199 0.199
0 18.381 0.199

19.050 18.960 19.063 0.200 0.201 0.200
2 19.024 0.200

20.015 19.621 19.768 | 0200 0202 0.201
3 19.801 0.201

20.865 19.977 19.960 0.198 0.203 0.203
4 20.267 0.201

19.345 19.508 19.715 0.202 0.202 0.201
5 19.523 0.202

Neumann BC
Variant E [GPa] ‘ v

18.307 18.305 18.216 0.199 0.199 0.197
0 18.276 0.198

18.692 18.822 18.798 0.197 0.199 0.199
2 18.771 0.198

19.912 19.599 19.716 0.203 0.199 0.201
3 19.742 0.201

20.613 19.948 19.435 0.204 0.199 0.195
4 19.999 0.199

18.297 17.193 19.213 0.190 0.178 0.199
5 18.234 0.189

Table 3: Results obtained by numerical homogenization applying
Dirichlet and Neumann BC. Values of material parameters for
different directions (X Y Z) of uniaxial loading and averaged
(below).

in the microstructure, the results documents the anisotrophy
of tested material, when the values of material properties
strongly vary for different directions of loading, e.g. the
Young’s modulus E (the sample 4, Neumann BC) in Tab.3
varies about more than 1 GPa. However as expected and con-
sistent with theory, their averaged values follow the increase
of volume of steel fibers in concrete.

The corresponding values for pure Dirichlet and pure Neu-
mann BC give quite close bounds for real material properties.
However we observe that these bounds grow away with the
increasing volume of voids in the microstructure, moreover
when the voids are closer to the border of the studied do-
main and pure Neumann BC are applied, see the values
for the sample 5. Comparing with the others, the sample
5 contains also another abnormality. Although this sample
should contain the most of steel fibers according to Tab.1,
the real volume of steels in REV is not the biggest. Moreover,

34 Analysis of fiber-reinforced concrete: micromechanics, parameter identification, fast solvers

REV of this sample overcomes the others in the volume of
the void space in its microstructure.

The previous tests were related to the direct problem denot-
ing a computation of stiffness of the fiber reinforced concrete
based on known material distribution and local material
properties. The next numerical experiments describe one of
the possible inverse problems, an identification of the mate-
rial properties (Young’s modulus E and Poisson ratio v) of
the concrete matrix from known material distribution, elastic
properties of fibers and response of the sample (REV) to uni-
axial or triaxial loading tests. This inverse problem exploits
the objective function (the cost functional) J(p), p = (E,v),
w1k = Wy = 1, introduced in the section II. For more details
see [3].

Dirichlet BC
Variant ‘ Steps E [GPa] v
0 135 19.020 0.199
2 141 19.000 0.200
3 141 19.005 0.200
4 141 19.029 0.200
5 141 19.007 0.200

Neumann-Dirichlet BC

Variant ‘ Steps E [GPa] v
0 138 18.996 0.200
2 135 19.004 0.200
3 135 19.006 0.200
4 162 19.034 0.200
5 129 19.007 0.200

Table 4: Results of material identification applying Dirichlet and
Neumann-Dirichlet BC. The number of transformation steps of the
applied Nelder-Mead method and the identified averaged material
properties of the concrete matrix for each REV.

The optimization is performed by the non-gradient Nelder-
Mead (NM) method with starting values (E, v) provided by
three pairs (17.000, 0.26), (21.000, 0.17), (18.000, 0.23). In
each step of the NM method, three direct problems (three
computation of local stresses and strains), corresponding to
simulation of uniaxial loading tests for each direction X, Y
and Z, are solved. Dirichlet BC describe the same loading
as in case of homogenization tests. Neumann-Dirichlet BC
enter a combination of pure Dirichlet and pure Neumann
BC introduced earlier. It means the prescribed non-zero
displacement on the top side in the direction of loading,
zero displacement on the bottom side in the direction of
loading and zero normal forces on the other sides. The NM

iterations are stopped if the decrease of the cost functional
and differences in the identified parameters are sufficiently
small.

The numbers of transformation steps performed by the
NM optimizaton procedure and the averaged values of
the identified material properties are summarized in Tab. 4.
Dirichlet BC on the whole sample boundary are used for
comparison purposes. They are applicable if the loading
response is computed artificially. The obtained results show
a good accordance with the values for the concrete matrix
presented in Tab.2. Considering the number of NM steps
and a need to repeat the FEM calculation several times in
each step, the results document also a substantially increased
requirements on the computational power of the used com-
puter.

V. TUNING OF PARALLEL SOLVERS

Nowadays powerful parallel computers for HPC have hun-
dreads or thousands of cores. Therefore we decided to reim-
plement our original parallel solver for large-scale systems
of linear equations arising from 3D boundary problems of
elasticity. The solver dates back to the times of Beowulf type
clusters and small multiprocessors with up to 20 processors.
The original solver is based on the PCG method, uses the
one-directional domain decomposition for parallelization of
iterative process as well as the construction of efficient one-
level and two-level AS preconditioners (AS1, AS2), see their
definition through B4s; and Bygp in III. Parallel processes
communicate through message passing (MPI standard).

Figure 1: Traces of one PCG iteration processing 4 subdomains.
From above, records for the original solver with AS1 and AS2, and
new solver with AS1 only. States of parallel processes: work (blue),
wait or idle (red).

Fig. 1 shows traces of the runs of parallel solvers produced
by the Intel Trace Analyzer. The implementation of the

Radim Blaheta, Ondrej Jakl, Jiri Stary, Ivan Georgiev, Krassimir Georgiev, Svetozar Margenov, Roman Kohut

35

original solver follows the master-slave design, when the
first process (from above) is the master, almost idle, just
controlling the iterative process and computing two global
scalar products. Each of the four slave processes (below
the master) works on its portion of data, especially during
the dominating operations matrix by vector multiplication
(MXV) and preconditioning (PREC).

The second trace adds a coarse grid computation to AS2.
This computation is performed by a separate process, idle for
more than a half of the iteration execution time. Nevertheless
this process is very important because a coarse grid compu-
tation strongly improves the efficiency of the preconditioner
and speeds up the convergence of the PCG iterations.

The third trace documents a run of the new version of
the parallel solver, surpassing the original one in the execu-
tion time and a better utilization of processes. New solver
works internally with data in double precision and dynamic
allocation of memory, uses a modified domain decomposi-
tion (with an overlapping of subdomains) leading to a better
load balancing of processes, has optimized (mainly global)
communication of processes and also calculations in loops
(during MXV and PREC operations). The new solver aban-
dons master-slave design, the negligible amount of work
performed by the master process was taken over by the other
processes.

4 subdomains
- 32 subdomains

Figure 2: A coarse grid computation bottleneck in the original
solver. Traces of one PCG iteration processing 4 and 32 subdo-
mains.

The next step in the parallel solver optimization is indi-
cated by Fig.2. With the increase of processes, the execution
time of the most demanding MXV and PREC operations per-
formed by worker processes scales down correspondingly,
whilst the execution time of a coarse grid computation stays
constant. In the example shown in Fig. 2, the described effect
limits the possible speed-up of the solver only to 3, instead of

expected 8, which corresponds to the increase of the number
of processes.

Such a negative effect can be eliminated by a coarse grid
parallelization in a hybrid way, when all processes do not
perform the same calculations. On hundreads of computing
elements (processors or cores), such hybrid parallelization
includes the most of processes solving the subproblems cor-
responding to subdomains and only a few (units or tens) of
processes performing coarse grid computations in parallel.
It should not substantially decrease convergence properties
of the applied AS2 preconditioner, but dramatically increase
the efficiency of the resulting PCG iterations. However, the
described hybrid paralellization can bring difficulties how to
treat optimal load balancing of processes.

VI. CONCLUSIONS

The paper demonstrates the need for high performance com-
puting by focusing on one engineering application - investi-
gation of the fiber reinforced concrete. The primary analysis
solves a microscale problem for homogenization within the
range of linear material behaviour. This basic problem can
be modified (extended) in several directions and any of them
substantially increases the computational demands. One
extension, roughly described in this abstract, is the solution
of the inverse problem of identification of the local material
parameters or some level of debonding of the matrix and
fibers. This problem is solved by the optimization methods
which require repeated solution of the basic problem. The
increase in computational demands can be about hundred
times. Another extension is based not only on the solution of
selected and scanned samples of the concrete, but also on the
stochastic generation of a set of such samples and evaluation
of the mean properties by Monte Carlo or multi-level Monte
Carlo methods, see e.g. [9]. The last extension is to consider
the strengths and non-linear post peak behaviour, which
involves the usage of damage mechanics techniques, see e.g.
[5] and the references therein.

Acknowledgement: The work is supported by COST Action
IC1305 project Network for Sustainable Ultrascale Comput-
ing and a bilateral project of collaboration between the In-
stitute of Geonics CAS and IICT BAS. Further support is
through the projects LD15105 Ultrascale computing in geo-
sciences and LQ1602 IT4Innovations excellence in science
supported by the Ministry of Education, Youth and Sports of
the Czech Republic.

36 Analysis of fiber-reinforced concrete: micromechanics, parameter identification, fast solvers

REFERENCES

[1] R. Blaheta, A. Kolcun, O. Jakl, K. Souéek, J. Stary and
I. Georgiev: HPC in Computational Micromechanics of Com-
posite Materials. NESUS workshop, Cracow, Poland, 2015.

[2] R. Blaheta, O. Jakl, R. Kohut and]. Stary: GEM - A
Platform for Advanced Mathematical Geosimulations. In:
R. Wyrzykowski et al. (eds.): PPAM 2009, Part I, LNCS
6067, 2010, pp. 266-275.

[3] R. Blaheta, R. Kohut, A. Kolcun, K. Soucek, L. Stag and
L. Vavro: Digital image based numerical micromechanics of
geocomposites with application to chemical grouting. Interna-
tional Journal of Rock Mechanics and Mining Sciences.
Vol. 77 (2015), pp. 77-88.

[4] R. Blaheta, R. Kohut and J. Stary: Computational and reli-
ability aspects of micro-geomechanics. In: Oka, Murakami,
Uzuoka and Kimoto (eds.): Computer Methods and Re-
cent Advances in Geomechanics, Taylor & Francis Group,
London, 2015.

[5] M.A. Hickman and P.K. Basu: Stochastic Multiscale Char-
acterization of Short-Fiber Reinforced Composites. Technische
Mechanik, 36, Vol. 1-2 (2016), pp. 13-31.

[6] X. Guan, X. Liu, X. Jia, Y. Yuan, J. Cui and H.A. Mang:
A stochastic multiscale model for predicting mechanical prop-
erties of fiber reinforced concrete. International Journal of
Solids and Structures, Vol. 56-57 (2015), pp. 280-289.

[7] J. Haslinger, R. Blaheta and R. Hrtus: Identification prob-
lems with given material interfaces. Journal of Computa-
tional and Applied Mathematics, early view June 2016.

[8] Salomon Cluster Documentation, https:/ /docs.itdi.cz/salomon

[9] R. Blaheta, S. Domesova and M. Béres: A study of stochastic
FEM method for porous media flow problem. Proceedings of
PhD workshop, Institute of Geonics CAS, December 2015.

[10] R. Blaheta, O. Jakl, J. Stary and E. Turan: Parallel
solvers for numerical upscaling. In: PARA 2012, LNCS 7782,
Springer-Verlag, 2013, pp. 375-386.

Fabrizio Marozzo, Francisco Rodrigo Duro, Javier Garcia Blas, Jesus Carretero, Domenico Talia, Paolo Trunfio 37

&

CcoskE

A Data-Aware Scheduling Strategy for
DMCF workflows over Hercules

FaBr1zio MAROZZO*, FRANCISCO RODRIGO DUROT, JAVIER GARCIA BLASt

fmarozzo@dimes.unical.it, frodrigo@arcos.inf.uc3m.es, fjblas@arcos.inf.uc3m.es

Jesus CARRETEROT, DOMENICO TALIA*, PAOLO TRUNFIO*

jesus.carretero@uc3m.es, talia@dimes.unical.it, trunfio@dimes.unical.it

* DIMES, University of Calabria, Italy
t ARCOS, University Carlos III, Spain

Abstract

As data-intensive scientific prevalence arises, there is a necessity of simplifying the development, deployment, and execution of
complex data analysis applications. The Data Mining Cloud Framework is a service-oriented system for allowing users to design
and execute data analysis applications, defined as workflows, on cloud platforms, relying on cloud-provided storage services for
I/O operations. Hercules is an in-memory 1/O solution that can be deployed as an alternative to cloud storage services, providing
additional performance and flexibility features. This work extends the DMCF-Hercules cooperation by applying novel data

placement and task scheduling techniques for exposing and exploiting data locality in data-intensive workflows.

Keywords DMCEF, Hercules, workflows, in-memory storage, data cache, Microsoft Azure, data locality

I. INTRODUCTION

Scientific computing applications and platforms are evolving
from CPU-intensive tasks executed over strongly coupled
infrastructures, i.e. complex simulations running on super-
computers, to data-intensive problems requiring flexible com-
puting resources depending on the requirements and budget
of the user. This evolution paves the future of Ultrascale
systems, which will blur the differences of existing scientific
computing infrastructures, such as HPC systems and cloud
computing platforms. In current approaches, the interfaces
and management of the different infrastructures are too dif-
ferent, requiring different programming models, even for the
same application. In contrast, the future Ultrascale systems
should take advantage of every possible resource available,
in a transparent way for the user.

Workflow engines are the leading approach for executing
data-intensive applications in different computing infrastruc-
tures. Scientific workflows consist of interdependent tasks,
connected in a DAG style, which communicate through in-
termediate storage abstractions, typically files. There is a
main tradeoff that should be taken into account when the
user relies on workflow engines for data-intensive appli-

cations. While portability and flexibility offers a broader
support of the existing computing resources, the achieved
performance is usually limited in contrast with native appli-
cations (classical HPC applications running on HPC clusters
or supercomputers).

The increasing availability of data generated by high-
fidelity simulations and high-resolution scientific instru-
ments in domains as diverse as climate, experimental physics,
bioinformatics, and astronomy, has shown the underlying
I/0 subsystem to be a substantial performance bottleneck.
While typical high-performance computing (HPC) systems
rely on monolithic parallel file systems, data-intensive work-
flow implementations must borrow techniques from the Big
Data computing (BDC) space, such as exposing data storage
locations and scheduling work to reduce data movement.
This lack of performance is the result of a sub-optimal ex-
ploitation of the available resources, based on two main rea-
sons: task schedulers unable to select the best nodes depend-
ing on the characteristics of the task and under-performing
I/0 solutions.

Our previous works have targeted these disadvantages in a
real-world scenario by combining two existing solutions: the
Data Mining Cloud Framework (DMCF) and the in-memory

38

A Data-Aware Scheduling for DMCF workflows over Hercules

I/0 accelerator known as Hercules. The present work deep-
ens in this combination providing locality-aware features,
both in the DMCEF task scheduler and in the Hercules data
placement algorithms. By running the workflow workers in
the same VM instances as Hercules I/O nodes, data locality
can be exposed and exploited, executing the task in the node
where the data are stored in-memory.

This paper proposes the application of locality-aware data
placement and data discovery techniques into the DMCEF-
Hercules integration. Additionally, this work proposes a
novel task scheduler integrated in DMCEF for the co-location
of tasks and data, relying on the locality-aware functional-
ity offered by Hercules. The evaluation carried on shows
how data-locality exploitation is especially critical in cloud
platforms, where virtualized network interfaces provide lim-
ited bandwidth in contrast with the state-of-the-art high-
performance network infrastructures present in HPC sys-
tems.

The remainder of the paper is structured as follows. Sec-
tion II describes the main features of DMCF. Section III in-
troduces Hercules architecture and capabilities. Section IV
emphasizes the advantages of integrating DMCF and Her-
cules and outlines how this integration will work. Section
IV.3 details the novel locality-aware techniques proposed
in this work. Section V presents preliminary results of the
performance improvements achieved by the application of
the locality-aware techniques in a Microsoft Azure cloud
infrastructure. Finally, section VI concludes the work and
give some future research related to the presented work.

II. Data MINING CLOUD FRAMEWORK OVERVIEW

The Data Mining Cloud Framework (DMCF) [1] is a software
system designed for designing and executing data analysis
workflows on Clouds. A Web-based user interface allows
users to compose their applications and to submit them for
execution to the Cloud platform, following a Software-as-a-
Service (SaaS) approach.

The architecture of DMCF includes different components
that can be grouped into storage and compute components
(see Figure 2).

The DMCF architecture has been designed to be imple-
mented on top of different Cloud systems. The implementa-
tion used in this work is based on Microsoft Azure!.

DMCEF allows to program data analysis workflows using
two languages: VL4Cloud (Visual Language for Cloud) and
JS4Cloud (JavaScript for Cloud).

Both languages use two key programming abstractions:

http:/ /azure.microsoft.com

e Data elements, denoting input files or storage elements
(e.g., a dataset to be analyzed) or output files or stored
elements (e.g., a data mining model).

o Tool elements, denoting algorithms, software tools or
complex applications performing any kind of operation
that can be applied to a data element (data mining,
filtering, partitioning, etc.).

Another common element is the Task concept, which rep-
resents the unit of parallelism in our model. A task is a
Tool invoked in the workflow, which is intended to run in
parallel with other tasks on a set of Cloud resources. Accord-
ing to this approach, VL4Cloud and JS4Cloud implement a
data-driven task parallelism.

III. HERCULES OVERVIEW

Hercules [2] is a distributed in-memory storage system based
on the key/value Memcached database [3]. The distributed
memory space can be used by the applications as a virtual
storage device for I/O operations and has been especially
adapted in this work for being used as an in-memory shared
storage for cloud infrastructures. Our solution relies on
an improved version of Memcached servers, for offering
an alternative storage solution to the default cloud storage
service provided by Azure.

Figure 3 shows how Hercules architecture has two main
layers: front-end (Hercules client library) and back-end
(server layer). The worker user-level library is based on a
layered design, while back-end components are based on the
Memcached server, extending its functionality with persis-
tence and tweaks. Main advantages offered by Hercules are:
scalability, easy deployment, flexibility, and performance.

Scalability is achieved by fully distributing data and meta-
data information among all the nodes, avoiding the bottle-
necks produced by centralized metadata servers. Data and
metadata placement is completely calculated in the worker-
side by a hash algorithm. The servers, on the other hand, are
completely stateless.

Easy deployment and flexibility at worker-side are tackled
using a POSIX-like user-level interface (open, read, write,
close, etc.) in addition to classic put/get approach existing
in current NoSQL databases. Existing software requires
minimum changes to run using Hercules. Servers can be
deployed without requiring any special privileges

Finally, performance and flexibility at server-side are tar-
geted by exploiting the parallel I/O capabilities of Mem-
cached servers. Flexibility is achieved by Hercules due to its
easiness to be deployed dynamically on as many nodes as

Fabrizio Marozzo, Francisco Rodrigo Duro, Javier Garcia Blas, Jesiis Carretero, Domenico Talia, Paolo Trunfio 39

Workerd b Werker 0
Worker1 = % Worksr 1
L] -

. .

L] -
Werker N4 WorkerN-A

(a) Scenario 1: Azure storage.

(b) Scenario 2: Hercules.

(c) Scenario 3: Azure storage and Her-
cules .

Figure 1: Integration scenarios between DMCF and Hercules.

Cloud platform

 virtuel Compate Servers

bBB0O

wirtual Web Servers

Workngm Tebve Tool Tooke Toss Tonk |

Figure 2: DMCF architecture.

necessary. Each node can be accessed independently, multi-
plying the total throughput peak performance.

IV. INTEGRATION BETWEEN DMCF AND HERCULES

The integration between DMCF and Hercules is an ongoing
work where different scenarios have been studied in previous
works. As can be seen in Figure 1, Hercules and DMCF can
be configured according with different deployment scenarios
to achieve different levels of integration.

Figure 1(a) shows the original approach of DMCEFE, where
every I/O operation is performed against the cloud storage
service offered by the cloud provider (Azure Storage). There
are, at least, four disadvantages about this approach: pro-
prietary interfaces, I/O contention in the service, lack of
configuration options, and persistence-related costs unneces-
sary for temporary data.

Figure 1(b) shows a second scenario with the use of Her-
cules as the default storage for temporary generated data [4].
Hercules I/0 nodes can be deployed on as many VM in-

Worker node
ElIElES

Hercules library

Generic Persistence plugin

Memcached || NoSQLDB |

¢
Hercules IO node 0 Hercules VO node n-1
Memcached back-end Memcached back-end
viemcached distnbuted hasl ap
Persistence manager

Generic Persisience plugin

[Memcached || NoSQL DB

LocalFS || Other

Cocrts

Figure 3: Hercules architecture.

stances as needed by the user depending on the required
performance and the characteristics of data.

Figure 1(c) shows a third scenario with a tighter integration
of DMCF and Hercules infrastructures. In this scenario,
initial input and final output are stored on persistent Azure
storage, while intermediate data are stored on Hercules in-
memory nodes. Hercules 1/0O nodes share virtual instances
with the DMCF workers.

Previous work [5] explored the third scenario outlined
above. However, in order to simplify the implementation of
the solution, some workarounds were explored: each time

40

A Data-Aware Scheduling for DMCF workflows over Hercules

that one worker needed to access data (read /write operations
over a file), it copied the whole file from Hercules servers to
the worker local storage. This approach may greatly penalize
the potential performance gain in I/O operations for two
main reasons:

o Data placement strategy. The original Hercules data place-
ment policy distributes every partition of a specific file
among all the available servers. This strategy has two
main benefits: avoids hot spots and improve parallel
accesses. In an improved DMCF-Hercules integration,
whole files can be stored on the same Hercules server.

o Data locality agnosticism. Data-locality will not be fully
exploited until the DMCF scheduler is tweaked for run-
ning tasks on the node that contains the necessary data
and/or the data is placed where the computation will
be realized.

IV.1 Improved integration strategy

Other
': Worker! Hercules Node N Worker/ Hercules
Nodes
Main Memory
_________ qm=—=— ===
1
Hercules | ’
local 1 Tr e
memory 1 = A
I g

| T
”
.
-
ercuiesy, DMCF Azu P
F;z:rln‘::]s ‘_"Worker client | 4
1bray / daemon “Jibrany

=~/

Figure 4: DMCF and Hercules daemons.

Figure 4 describes the proposed improvement to the third
scenario of integration between DMCF and Hercules. Four
main components are present: DMCF Worker daemon, Her-
cules daemon, Hercules client library, and Azure client li-
brary. The DMCF workers are in charge of executing the
tasks of the workflow (data analysis tools/applications), Her-
cules daemons act as I/O nodes (storing data in-memory
and managing data accesses), the Hercules client library is
intended to be used by the applications to access to the data
stored in Hercules (query Hercules daemons), and the Azure
client library is used to read/write data from/to the Azure
storage.

To exploit the potential of the data-aware DMCF-Hercules
integration, we propose the use of a RAM disk as generic
storage buffer for I/O operations performed by workflow
tasks. The objective of this approach is the support of DMCF

to any existing tool, supporting even binaries independently
of the language used for their implementation, while offering
in-memory performance for local accesses.

The logic used for managing this RAM disk bulffer is based
on the full information about the workflow possessed by the
DMCF workers. When every dependency of an specific
task is fulfilled (every input file is ready to be accessed) the
DMCEF worker brings the necessary data to the node from
the storage (Azure Storage in the first scenario or Hercules
in the second scenario). Instead of storing the data in the
default file system, as in previous works, we propose storing
the data in a RAM disk.

IV.2 Resource optimization challenge and possible
solutions

If this solution shows potential performance gains compared
with the existing solution, the need of duplicated memory re-
gions (RAM disk and Hercules local memory) can be avoided.
We propose three different approaches for solving this chal-
lenge:

e Modify Hercules daemons to use the RAM disk memory
region as default storage, avoiding the necessity of the
Hercules local memory region. Hercules daemon can store
data in the RAM disk instead of using the Hercules
local memory. Any data stored in the RAM disk can be
transparently accessed by workflow tasks.

e Modify the code of the workflow tasks
(tools/applications) to use the Hercules client li-
brary for performing every data access directly over
Hercules I/O nodes, avoiding the use of a RAM
disk. The main disadvantage is the limited support of
existing applications, requiring the modification and
re-compilation of every application/tool executed as
workflow task.

o Offer the memory managed by Hercules as a storage
device, accessed transparently by the workflow tasks.
If the Hercules memory subsystem can be mounted as
a storage device in every DMCF worker, the applica-
tions/tools can access data stored in Hercules in the
same way as data stored in any other file system. This
approach can be implemented as a FUSE interface or as
on-the-fly patching of POSIX I/O operations.

The implementation and evaluation of this approaches
is out of the scope of this work, but will be studied in the
future.

Fabrizio Marozzo, Francisco Rodrigo Duro, Javier Garcia Blas, Jesus Carretero, Domenico Talia, Paolo Trunfio 41

IV.3 DMCF execution mechanisms and data-aware
scheduling

We propose novel workflow-aware task and data placement
mechanisms that combine DMCF load-balancing capabilities
and Hercules data and metadata distribution functionality
for implementing various locality-aware and load-balancing
policies. Data placement mechanisms focus in grouping data
related to the same task, while the locality-aware scheduler
policy targets the co-location of compute task in the nodes
where the data can be found in-memory.

In the new execution mechanism proposed the DMCF
Worker cyclically checks whether there are tasks ready to be
executed in the Task Queue. If so, a task is removed from the
Task Queue and its status is changed to ‘running’. To take
advantage of data locality, the task removed from the queue
is the one having the highest number of inputs locally. This
differs from the original data-locality agnostic scheduling
policy adopted in DMCE, as described in [6], in which each
Worker picks and executes the task from the queue following
a FIFO policy.

Then, the transfer of all the needed input resources (files,
executables and libraries) is performed from their location
(Hercules local or remote node) to two local folders and the
Worker locally executes the task and waits for its completion.

V. EVALUATING THE INTEGRATION BETWEEN DMCF
AND HERCULES

In this section we show the evaluation results of the inte-
gration between DMCF and Hercules. For this evaluation,
we have emulated the execution of a data analysis workflow
using three alternatives:

o Azure-only scenario: every I/O operation of the work-
flow is performed by DMCF using the Azure storage
service.

o Locality-agnostic Hercules scenario: a full integration
between DMCF and Hercules is exploited, where each
intermediate data is stored in Hercules, while initial
input and final output are stored on Azure. DMCF
workers and Hercules I/O nodes share resources (they
are deployed in the same VM instance), however, every
I/0 operations is performed over remote Hercules I/O
nodes through the network.

e Locality-aware Hercules scenario: based on the same
deployment as the previous case, this scenario simulates
a full knowledge of the data location, and executes every
task in the same node as the data are stored, leading to
fully local accesses over temporary data. Based on this

locality exploitation, every I/O operation is performed
in-memory instead of through the network.

The goal of this evaluation is to better understand the
potential performance improvements in different scenarios
where the Hercules I/O accelerator is combined with the
DMCEF scheduler.

The evaluation is based on a data mining workflow that
analyzes n partitions of the training set using k classification
algorithms so as to generate kn classification models. The kn
models generated are then evaluated against a test set by a
model selector to identify the best model. Then, n predic-
tors use the best model to produce in parallel n classified
datasets. The k classification algorithms used in the work-
flow are C4.5 [7], Support Vector Machine (SVM) [8] and
Naive Bayes [9], that are three of the main classification algo-
rithms [10]. The training set, test set and unlabeled dataset,
which represent the input of the workflow, have been gen-
erated from the KDD Cup 1999's dataset?, which contains
a wide variety of simulated intrusion records in a military
network environment.

The workflow is composed of 3 + kn 4 2m tasks. In the
specific example, where n = 20, k = 3, m = 80, the number
of generated tasks is equal to 223.

Figure 5 shows the VL4Cloud version of the data mining
workflow. The visual formalism clearly highlight the level
of parallelism of the workflow, expressed by the number of
parallel paths and the cardinality of tool array nodes.

Once the workflow is submitted to DMCF using either
JS4Cloud or VL4Cloud, DMCF generates a JSON descriptor
of the workflow, specifying which are the tasks to be executed
and the dependency relationships among them. Thus, DMCF
creates a set of tasks that will be executed by workers.

Table 1 lists all the read /write operations performed dur-
ing the execution of the workflow on each data array. Each
row of the table describes: i) the number of files included in
the data array node; ii) the total size of the data array; iii)
the total number of read operations performed on the files
included in the data array; and iv) the total number of write
operations performed on the files included in the data array.
As can be noted, all the inputs of the workflow (i.e., Train,
Test, UnLab) are never written on persistent storage, and the
output of the workflow (i.e., ClassDataset) is never read.

The simulation results are based on synthetic bandwidth
measurements performed over the Azure infrastructure. The
benchmark application performs write and read operations
over a 256 MB file with a 4 MB chunk size. We have deployed
the application on Azure D2_v2 VM instances. The results
can be found in Table 3 and represent the expected I/O

Zhttp:/ /kdd.ics.uci.edu/databases/kddcup99/kddcup99

42

A Data-Aware Scheduling for DMCF workflows over Hercules

g
£

cas [20]
PS: dataset

w dataset 24 sDataset » dataset J,y datasetPart fo =

Train Shuffler STrain Partitioner TrainPart[20

SVM[20]
PS: dataset

NaiveBayes [20]

PS5: dataset

[,\"I dataset

UnLab[80]

{f@] model |,7 1

model

Model_0[20]
2, bestModel

\ 5
odelSelector BestMod.
méd:

Model_1{20]

=1

[s0] c [80]
PS: dataset

- dataget
Model_2[20]

fDataset r
=

FUnlab[80]

L \‘@-{I
Filter [80]
PS: dataset

Figure 5: Classification VL4Cloud workflow.

Table 1: Read/write operations performed during the execution of
the workflow.

N. of Total Number of Number of
Data node X X . . .

files size read operations ~ write operations
Train 1 100MB 1 -
Strain 1 100MB 1 1
TrainPart 20 100MB 60 20
Model 60 ~20MB 60 60
Test 1 50MB 1 -
BestModel 1 300KB 80 1
UnLab 80 8GB 80 -
FUnLab 80 ~8GB 80 80
ClassDataset 80 ~6GB - 80

Table 2: Read/write operations performed during the execution of
the workflow.

Execution times

Task Node N. of istances .
in secs

Shuffler 1 1
Partitioner 1 1

C45 20 288
SVM 20 600
NaiveBayes 20 791
Filter 80 104
ModelSelector 1 9
Predictor 80 2,321

performance of the application when deployed over each
evaluated scenario.

Table 3: Synthetic bandwidth measurements performed over the
Azure IaaS platform.

Solution Write op. Read op.
Azure storage 30 MB/s 60 MB/s
Hercules remote 180 MB/s 175 MB/s
Hercules local 1,000 MB/s 800 MB/s

Figures 6, 7, and 8 show different details of the same
experiment where the previously introduced workflow is
simulated in different infrastructures. The configurations
of the infrastructures range from 1 to 32 DMCF workers.
Every DMCEF is deployed over a different VM instance, and
one Hercules I/O node is deployed on each VM, sharing
resources with the DMCF worker. Three different scenarios
are studied, as previously presented: Azure-only (labeled as
Azure), Locality-agnostic Hercules (labeled as Hercules remote),
and Locality-aware Hercules (labeled as Hercules local).

Figure 6 presents an estimation of the total execution time
scaling the available resources. The figure shows how the
differences in total execution time estimated for every case
are narrow, but the cases where the Hercules 1/0 accelerator
is applied are always in front of the Azure-only solution, re-
sulting in up to 8% improvements in total execution times for
the best scenarios where the data locality is fully-exploited

Fabrizio Marozzo, Francisco Rodrigo Duro, Javier Garcia Blas, Jesiis Carretero, Domenico Talia, Paolo Trunfio 43

1/0 Time (sec)
NGow oA
g 8 8
& & B

1000

No. Workers

—Azure =Hercules remote Hercules local

Figure 6: Estimated execution time of the workflow deployed over
different scenarios, using up to 32 DMCF workers.

900
800
700

o 600

3

£ 400
2 300
200
100

No. Workers

-Azure =——Hercules remote Hercules local

Figure 7: Estimated time required by the application to perform
every I/O operation. Different scenarios have been evaluated, using
up to 32 DMCF workers.

for temporary files, while 6% reductions in execution time
are obtained in locality-agnostic scenarios.

Figure 7 presents an estimation of the time required by the
application to perform every I/O operation of the applica-
tion, and Figure 8 increases the level of detail, showing only
the operations affected by the deployment of the Hercules
/0O accelerator: 1/O operations performed strictly over tem-
porary files. The deployment of Hercules is translated in up
to 52% reductions in the time spent in I/O operations when
fully exploiting data locality (95% over temporary files) and
up to 42% in locality-agnostic scenarios (77% over temporary

450
400
350

o300 X

o 250 \

E 200 N

L 150
100

50

No. Workers

-Azure =—Hercules remote Hercules local

Figure 8: Estimated time required by the application to perform
I/O operations strictly over temporary files (I/O operations affected
by Hercules). Different scenarios have been evaluated, using up to
32 DMCF workers.

files).

In order to better show the impact of the Hercules I/O
accelerator, Figure 9 presents a breakdown of the total ex-
ecution time, detailing the time spent on each of the tasks
executed by the workflow application: computation tasks,
1/0 tasks over input/results files stored in Azure Storage,
and I/0O operations performed over temporary files, stored
in Hercules when available. This figure clearly shows how
the time required for I/O operations over temporary files,
the only operations affected by the Hercules accelerator, are
reduced to be almost negligible during the execution of
the workflow, showing a great potential for increasing the
1/0 performance in data-intensive applications with large
amounts of temporary data. Should be noted how the axis
in Figure 9 starts in the second 230, in order to zoom in the
top part of the figure, where the I/O times are depicted. The
time excluded from the figure (seconds 0 to 230) are spent
on CPU operations.

Based on these estimations, we can conclude that the de-
ployment of the Hercules 1/O accelerator can greatly benefit
the execution of data-intensive applications when a large
amount of temporary data is present. The evaluation also
shows that, with proper locality-aware mechanisms, the I/O
performance can be further improved, exploiting data locality
through in-memory computation.

A Data-Aware Scheduling for DMCF workflows over Hercules

Azure Hercules remote Hercules local
1/O Time {over temporary data)
M /O Time (over input and results files)

B CPU Tima

Figure 9: Breakdown of the estimated total execution time deployed
over 16 worker nodes sharing resources with 16 Hercules 1/0
nodes. The breakdown shows the time required by the application
to perform compute tasks, I/O tasks over input/result files, and I/O
tasks over temporary files (affected by Hercules).

VI. CoNCLUSIONS

This work presents an evolution of the integration of the
Data Mining Cloud Framework (DMCF) with the Hercules
in-memory 1/O accelerator. The DMCF task scheduler has
been improved in combination with Hercules modifications
in order to expose and exploit data locality for data-intensive
applications.

The evaluation shows an estimation of the potential im-
provements in I/O performance when data locality is fully
exploited during the execution of a data-intensive workflow
application deployed over the DMCF-Hercules solution.

Future work should focus on the execution of a real data-
intensive application and the evaluation of the improvements
achieved by the proposed locality-aware mechanisms. Ad-
ditionally, an evaluation of the cost of deploying Hercules
should be performed, in contrast with the Azure storage-only
approach.

Acknowledgment

This work is partially supported by EU under the COST
Program Action IC1305: Network for Sustainable Ultrascale

Computing (NESUS).
REFERENCES

[1] Fabrizie Marozzo, Domenico Talia, and Paolo Trunfio.
Jsdcloud: Script-based workflow programming for scal-

able data analysis on cloud platforms. Concurrency and
Computation: Practice and Experience, 27(17):5214-5237,
2015.

[2] Francisco Rodrigo Duro, Javier Garcia Blas, and Jesus
Carretero. A hierarchical parallel storage system based
on distributed memory for large scale systems. In Pro-
ceedings of the 20th European MPI Users” Group Meeting,
EuroMPI 13, pages 139-140, New York, NY, USA, 2013.
ACM.

[3] Brad Fitzpatrick. Distributed caching with memcached.
Linux J., 2004(124):5-, August 2004.

[4] Francisco Rodrigo Duro, Fabrizio Marozzo, Javier Gar-
cia Blas, Jesus Carretero, Domenico Talia, and Paolo
Trunfio. Evaluating data caching techniques in dmcf
workflows using hercules. In In Proceedings of the Second
International Workshop on Sustainable Ultrascale Computing
Systems (NESUS 2015), pages 95-106, Krakow, Poland,
2015.

[5] Francisco Rodrigo Duro, Fabrizio Marozzo, Javier Gar-
cia Blas, Domenico Talia, and Paolo Trunfio. Exploiting
in-memory storage for improving workflow executions
in cloud platforms. The Journal of Supercomputing, pages
1-20, 2016.

[6] Fabrizio Marozzo, Domenico Talia, and Paolo Trunfio. A
workflow management system for scalable data mining
on clouds. IEEE Transactions On Services Computing (IEEE
TSC), 2016.

[7] J. Ross Quinlan. C4.5: Programs for Machine Learning.
Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 1993.

[8] S.S. Keerthi, SK. Shevade, C. Bhattacharyya, and K.RK.
Murthy. Improvements to platt's smo algorithm for
svm classifier design. Neural Computation, 13(3):637-649,
2001.

[9] George H. John and Pat Langley. Estimating contin-
uous distributions in bayesian classifiers. In Eleventh
Conference on Uncertainty in Artificial Intelligence, pages
338-345, San Mateo, 1995. Morgan Kaufmann.

[10] Xindong Wu, Vipin Kumar,]. Ross Quinlan, Joy-
deep Ghosh, Qiang Yang, Hiroshi Motoda, Geoffrey J.
McLachlan, Angus Ng, Bing Liu, Philip 5. Yu, Zhi-Hua
Zhou, Michael Steinbach, David]. Hand, and Dan Stein-
berg. Top 10 algorithms in data mining. Knowl. Inf. Syst.,
14(1):1-37, December 2007.

Enida Sheme, Jean-Marc Pierson, Georges Da Costa, Patricia Stolf, Neki Frasheri 45

&

CcoskE

Efficient Energy Sources Scheduling in

Green Powered Datacenters: A Cloudsim
Implementation

ENntDA SHEME! PATRICIA STOLF* GEORGES DA COSTA* JEAN-MARC PIERSON™ NEKI FRASHERT

+

Polytechnic University of Tirana, Albania®

esheme@fti.edu.al, nfrasheri@fti.edu.al

University of Toulouse, France*

patricia.stolf@irit.fr, Georges.Da-Costa@irit.fr, jean-marc.pierson@irit.fr

Abstract

In this paper we address the issue of managing different energy sources which supply green powered datacenters. The sources are
scheduled based on a priority scheme, aiming to maximize the renewable energy utilization, minimize the energy used from the
grid and optimize battery usage. Dynamic power capping technique is used to put a threshold on the drawn energy from the grid.
The algorithm is implemented and tested in CloudSim simulator. Renewable energy is considered as solar energy. A workload
scheduling algorithm is already implemented for higher renewable energy utilization. The results show that the proposed scheme
is efficient and it is a promising direction in the field of the optimization in datacenters using renewable energy.

Keywords green datacenter, renewable energy, grid energy, battery, priority scheme, dynamic power capping, simulator,

CloudSim

I. INTRODUCTION

Recent studies have addressed the topic of using different
sources of energy, mainly renewable one, to supply datacen-
ters. As such, studying the energy sources engagement with
resource scheduling has become one of the research direc-
tives of this field. Some of the existing techniques take in
consideration renewable energy only with batteries and/or
grid as a backup. This approach has two disadvantages: first
it is not realistic for the current conditions when grid is still
the main source of energy in most of datacenters. Second,
it requires high capacity of batteries to compensate energy
needs in time periods when renewable energy is lacking.
This means higher costs, longer charging time and higher
environmental risks from battery pollution.

In our paper we propose a new prototype scheme for man-
aging three sources of energy: renewable, grid and battery,
following this priority level. The aim is to maximize renew-
able energy utilization, minimize energy taken from the grid
and optimize battery usage. Dynamic power capping tech-
nique is used in order to limit the grid power used to supply
the datacenter. The proposed algorithm is evaluated through
simulations.

The paper is organized as follows. Section II describes the
energy context where the new sources scheduling algorithm

is studied: the energy consumption of a chosen datacenter
and the renewable energy used to supply it. At section III
the proposed scheduling scheme is introduced and its im-
plementation in CloudSim simulator is illustrated. Another
workload scheduling algorithm is integrated in the simula-
tor, being described at section II1.2 . Section IV illustrates
the conducted experiments and the results of implement-
ing the proposed priority scheme. The paper finalizes with
conclusions at section V .

II. ENERGY CONSUMPTION AND RENEWABLE ENERGY

In this section we evaluate the energy consumption of a
datacenter running a given workload, describing datacenter
parameters and workload characteristics. The available re-
newable energy is explored and presented as well, based on
real weather data in Tirana, Albania.

II.1 Energy Consumption

The energy consumption is evaluated in a simulator environ-
ment, running a chosen workload over a specific datacenter.
The datacenter size is chosen based on similar experimental
studies in the field of energy efficiency in datacenters. Data-
center represents the processing entity in our system. It runs

46 Efficient Energy Resource Scheduling in Green Powered Datacenters: A Cloudsim Implementation

the workload and consumes energy, which we track during
24 hours of simulations. Datacenter parameters are chosen
based on similar experimental studies in the field of energy
consumption in datacenters and typical datacenter size in
Albania. To run the simulation we configured the number of
hosts equal to 100 and the number of virtual machines run-
ning over hosts equal to 200. This means, 2 virtual machines
run in every host. The host model is HP ProLiant ML110 G5,
Xeon 3075 , processing capacity 2660 MHz, 2 cores and RAM
of 4GB. The workload chosen to run the experiments repre-
sent a synthetic reproduction of a Google workload, scaled
over our own simulating datacenter parameters. A Google
trace file was published in 2011, giving detailed information
of 12.000 Google servers traffic over 29 days, processing var-
ious types of applications. This workload data are studied
in order to know its characteristics. The main findings of
studies [1], [2], are used in our workload in order to produce
patterns that resemble to the Google workload.

Figure 1: Energy consumption over 24 hours of simulation.

As such, we configure the following workload parameters
for our study: total number of jobs, their length, deadline,
resource requirements and inter-arrival time. The chosen
number of jobs is 400, where 200 of them are short, 150 are
medium and 50 are long. The length of short jobs varies
from 5 to 7 minutes, medium jobs from 25 to 50 minutes
and long jobs from 100 to 300 minutes. The jobs length is
generated through Poisson distribution. Deadline is another
parameter we set, which is the limit of time it can pass till
the job is fully completed. Based on bibliography [1], [2], we
categorize jobs into three types of deadline: loose, medium
and urgent. 130 of short jobs have loose deadline, which
means they are tolerant to be postponed for running in a
later moment, 50 of short jobs have medium deadline and 20
are urgent. Out of 150 medium length jobs, 100 of them have
loose deadline and 50 have medium deadline. Meanwhile,
all long jobs have loose deadline. Loose, medium and urgent
deadline is set in proportion to the length of jobs. Regarding

resource requirements, half of short jobs require an average
of 25% of CPU usage and other half requires 50% of CPU. 50
out of 150 medium jobs require 25% CPU and 100 of them
need an average of 50% CPU. While long jobs need to use an
average of 80% CPU. The inter-arrival time is set to every 7
minutes for short jobs, every 10 minutes for medium length
jobs and every 30 minutes for long jobs.

The energy consumed by the datacenter running the de-
scribed workload over 24 hours time of simulation is evalu-
ated through CloudSim simulator. The total value of energy
consumption is 120 kWh and its distribution through time is
shown in figure 1.

II.2 Renewable Energy

In our study, we used solar energy to represent renewable
energy. A. Maraj presents a study regarding solar energy
in Tirana [3]. We acquire the solar energy data from the
results of this study. The parameters are provided from the
database built through the utilization of a data collecting
system, which is installed on behalf of the Department of
Energy, Faculty of Mechanical Engineering, Polytechnic Uni-
versity of Tirana. Solar power irradiance on a 45 degrees
tilted 1 squared meter solar panel, installed over the terrace
of the central building of this University, has been collected,
providing data for every 5 minutes of its daily operation. We
consider a typical clear summer day as input for renewable
energy in our experiments. The specific date is July 16, 2010.
Further details on solar panel specifications and results of
the study are explained in the article [3]. The solar irradiance
over 24 hours of a typical summer day in Tirana is shown in
figure 2 .

1400

1200

=
=]
=]
=]

Solar radiation (W/m2)
L]
(=]
Qo

Figure 2: Solar irradiance over 24 hours.

Enida Sheme, Jean-Marc Pierson, Georges Da Costa, Patricia Stolf, Neki Frasheri 47

ITII. ENERGY SOURCES SCHEDULING SCHEME

In this section, we describe the working platform, CloudSim
simulator, and a workload scheduling algorithm already im-
plemented aiming to maximize the utilization of available
renewable energy. We further present the analysis and im-
plementation of the energy sources scheduling algorithm,
which is the new prototype scheme we propose in this pa-
per. A detailed explanation of how this algorithm works is
described at section IT1.3 .

III.1 CloudSim Simulator

CloudSim is an extensible simulation toolkit that enables
modeling and simulation of Cloud computing systems and
application provisioning environments [4]. The CloudSim
toolkit supports both system and behavior modeling of
Cloud system components such as datacenters, virtual ma-
chines (VMs) and resource provisioning policies. Its main
functional entities include:

e Hosts: physical machines where the jobs are to be exe-
cuted.

o Virtual machines: virtual entities running over real phys-
ical entities.

o Cloudlets: representing the workload or the jobs to be
executed in the datacenter.

e Broker: a scheduler which allocates virtual machines to
hosts and cloudlets to virtual machines.

CloudSim is chosen as a simulator because of its high rate
in reviews of the energy efficiency in datacenter field, 7 years
among researchers and still being widely used, open source
code and a rich forum of programmers and researchers.

III.2 Workload Scheduling Algorithm

The algorithm already implemented in CloudSim regarding
efficient workload scheduling aims higher leveraging of avail-
able renewable energy. The main idea is to postpone non
urgent jobs towards periods of time when renewable energy
availability is higher. Equivalently, some jobs might be run
urgently though they are not urgent in order to exploit cur-
rent available renewable energy if this level is predicted to
be decreasing in the near future. The steps of this algorithm
are presented at figure 3 .

Basically, the code is divided in two sections, testing if the
available renewable energy is increasing or decreasing. In
each case, the behaviour will be different. After testing the
urgency of the arrived job, the algorithm decides to run it

if it is urgent or postpone it if it is not urgent. The amount
of time it will be postponed depends on renewable energy
prediction and length of the job. If it is an increasing period,
than short jobs are postponed with a time period equal to
their length, medium jobs are postponed to medium time
between arrival and start deadline time, while long jobs are
postponed at their maximum allowed time, as long as it does
not violate the desired quality of service. Otherwise, if it
is a decreasing period, the behaviour will be contrary to
the mentioned approach. Short jobs will be postponed at
their maximum, as they require less processing resources,
while the long jobs are immediately run in order to use the
available solar energy, as figure 3 presents.

Mewjh

Urgent?

MO,

REINCREASE Ll
?

Execute
vES |
e | <

Madium
Jok?
MO |
s ves ,/ “‘x\ Vis
Lomg el £_mew = t_grrivai+ | =" rongiorr T omew =t arrival | |
et >

END

Figure 3: Workload scheduling algorithm.

The result of implementing this algorithm is illustrated in
figure 4 . The energy consumption through 24 hours without
using the workload scheduling algorithm is compared to
the energy consumption after implementing this algorithm.
The workload is intentionally modelled in higher intensity
in the morning and in the evening to show the benefits of
the algorithm. The results show 21% higher utilization of
solar energy. More details on this algorithm can be found at
article [5].

IIL.3 Energy Sources Scheduling Algorithm

The energy sources scheduling algorithm works in coopera-
tion with the jobs scheduling algorithm described at section
III.2 . Both algorithms are implemented in CloudSim simula-
tor.

Based on prior studies on the field [6], [7], [8], [9] only two
sources of energy are used, according to a priority scheme

48 Efficient Energy Resource Scheduling in Green Powered Datacenters: A Cloudsim Implementation

= Without
algorithm

Energy (Wh)

——With
algorithm

Figure 4: Energy consumption without and with implemented
workload scheduling algorithm.

as given in Equation 1 .

Consum = RE + battery(+grid) 1)

where Consum is the energy consumption of the datacen-
ter, RE represents renewable energy, battery is the energy
drawn from battery and grid represents energy taken from
the grid. First priority is given to renewable energy source,
and battery is mainly used as the second source, alternatively
combining with grid energy. We evaluate this scheme as not
yet realistic and not optimal. The main reason is because: if
only grid is used as a backup, high amount of grid energy
is needed during times when renewable energy is lacking.
If only battery is used a backup, we cannot yet switch to no
grid energy systems when nowadays grid energy serves as
main source of energy supplier in almost 100% of electric
and electronic equippments. Furthermore, we mention 4
drawbacks of batteries to argument why using battery as a
second source is not a good choice:

e High capacity battery is needed to compensate required
energy during periods when renewable energy is lack-
ing. This means higher costs of using batteries.

e Up to 30% of its produced energy is wasted due to
AC/DC convertion.

o Batteries self - discharge.

e Batteries are toxic for the environment.

We propose a new priority scheduling scheme, where first
priority is given to renewable energy, second priority to the
grid energy, power capped dynamically, and third priority to
the battery, as given in Equation 2 .

Consum = RE + gridcapped + battery 2)

The proposed scheme uses three priority levels for the
different sources of energy. The aim is to prioritize renewable
energy usage, in order to maximize its utilization which is
equivalent to minimizing its waste. First priority is given
to available renewable energy. Second, power from the grid
is used if energy consumption is greater than the available
quantity of renewable energy. However, dynamic power
capping, a well-known technique on energy efficiency [10],
is applied to the grid energy aiming to limit the power taken
from the grid. The dynamic power capping factor is based on
the difference between energy consumption and renewable
energy. Table 1 describes how the power capping factor is set
based on combinations between 3 levels of renewable energy
and 4 levels of energy consumption.

Consumption / Renewable 1 2 3
1 2 1 1
2 3 2 1
3 4 3 2
4 4 4 3

Table 1: Power capping factor value based on combinations of
energy consumption and renewable energy levels.

—
START

™ o~
! Consum (t), RE (t) //,

~——

—
- Consum <= RE ~ YES re = Consum;

grid = 0; battery = 0

NO

~
" Consum <=RE + \\ YES

calculateP(C,RE)
//
NO

re = RE; grid = calculateP(C,RE)
battery = Consum = (re + grid)

re = RE; battery = 0
grid = calculateP(C,RE)

L

PRINT OUT
re, grid, battery

Figure 5: Energy sources scheduling algorithm.

Available renewable energy, which we assume to be known,
is divided into 3 levels: 0-33% of its maximum generated

Enida Sheme, Jean-Marc Pierson, Georges Da Costa, Patricia Stolf, Neki Frasheri 49

value belongs to level 1, 34%-66% of the maximum belongs
to level 2 and 67% - 100% of the maximum belongs to level
3. Likewise, energy consumption, which we suppose it is
known, is categorized into 4 levels: 1 means low energy
consumption and 4 means very high energy consumption.
The levels are set in segments of 0-25%, 26%-50%, 51%-75%
and 76%-100% of the maximum value of daily energy con-
sumption. The power capping factor is assigned a value
from 1 to 4, accordingly, as illustrated at table 1 : higher is
the gap between required energy and available renewable
energy higher it is this value and vice versa. Higher power
capping value means more power will be drawn from the
grid. Dynamic power capping is already used for energy
savings purpose in datacenters [10], [11], but it is never used,
to our knowledge, in green powered datacenters for energy
sources scheduling.

The energy sources scheduling algorithm is explaind in
details by the depicted flowchart given at figure 5. Consum
represents the energy consumption at a given time and RE
is the available renewable energy at the same moment of
time. Variables re, grid, and battery represent the amount
of energy that is drawn from each of the energy sources to
supply the datacenter. Given a certain amount of energy
consumption and available renewable energy in a given mo-
ment of time ¢, first conducted test is to know whether the
available renewable energy is enough to meet datacenter
energy need. If yes, then all needed energy is taken from
renewable source and grid energy and battery is assigned a
value equal to 0. If energy consumption is higher than the
available renewable energy, then power from grid will be
taken. The amount to be drawn from it is calculated from
a function named calculateP(C,RE) which assigns the value
of power capping factor, according to the logic described
at table 1 . If the energy drawn from both sources is not
enough for the datacenter energy requirements then the bat-
tery will be used. The amount that will be drawn from it is
defined by the difference between energy consumption and
energy taken from renewable and grid sources. All the three
sources are printed out to be used for illustrating and further
ellaboration purpose.

IV. EXPERIMENTS AND RESULTS

The experiments aim to assess the result of applying the pro-
posed scheduling algorithm to the energy quantity driven
from each of the energy sources used to fulfill the energy
requirements of the datacenter. Figure 6 represents the re-
newable energy utilization over total energy consumption
through 24 hours of simulation. The horizontal axis repre-
sents 288 5-minutes time intervals of energy consumption

in blue and renewable energy shown in red, expressed in
Wh unit. The total energy consumption is 120 kWh and
the total renewable energy used is 90kWh. This figure is
interconnected to figure 7 which illustrates the energy drawn
from the grid and from the battery considering the same
energy required for the datacenter. We can notice that re-
newable energy is fully used when it is available, during
the day, while grid and battery are used during the night,
when solar energy is lacking. It can be clearly seen from the
graph that the grid power is capped at 4 levels and battery is
used exactly during these periods when renewable energy
and limited energy from the grid do not satisfy the need for
energy.

450
400
350
§ 300 ——Energy
-E 250 consumption
£ 200
150
100 e Renowahble
50 energy
o

Figure 6: Renewable energy usage and datacenter energy consump-
tion over 24 hours.

Energy (Wh)

Figure 7: Grid energy and battery usage over 24 hours.

Table 2 presents experiment results regarding the value
and percentage of using these three energy sources. We in-
tentionally chose a 75% renewable energy supply scenario,
to explore the quantity that would be used from two other
sources. The results show that out of 100% of energy con-
sumption, 75% is drawn from the renewable energy source,
20% is taken from the grid and 5% is taken from battery.

——Grid Energy
— Battery

50 Efficient Energy Resource Scheduling in Green Powered Datacenters: A Cloudsim Implementation

Energy source Renewable Grid Battery
Value(kWh) 90 25 5
Percentage(%) 75 20 5

Table 2: Value and percentage of energy sources utilization.

V. CONCLUSIONS

In this paper we present a new energy sources scheduling
scheme in order to maximize the renewable energy utiliza-
tion, and reduce energy drawn from the grid and batteries.
First priority is given to renewable energy, second priority is
given to grid energy and third one to batteries. A dynamic
power technique is used for capping the energy used from
the grid. In a 75% renewable energy coverage scenario, the
results of the experiments show that 20% of the required
energy is supplied by the grid and 5% is drawn from bat-
teries. The advantage of this algorithm is that it is enough
realistic to consider supplying the datacenter with energy
from the grid, which is limited by implementing a dynamic
power capping technique. On the other hand, we optimize
the battery usage by encouraging lower capacity batteries.

The proposed algorithm has higher efficiency if it is imple-
mented over a platform where renewable energy is efficiently
and maximally exploited, e.g using a workload scheduling
algorithm. Also, a precondition of this new algorithm to
function is it assumes energy consumption and renewable
energy are already known through prediction.

To conclude, we point out that the proposed scheme is a
first prototype. Other elements should be taken in considera-
tion in the future, like: the lifetime of the battery (number
of cycles) and other power characteristics. Furthermore, the
experiments will be extended to 2 days of simulation in order
to monitor jobs that are postponed to the consecutive day.

Acknowledgment

The work presented in this paper has been supported by EU
under the COST programme Action IC1305: Network for
Sustainable Ultrascale Computing (NESUS).

REFERENCES

[1] M. Alam, K. Shakil, Sh. Sethi, Analysis and Clustering
of Workload in Google Cluster Trace based on Resource
Usage, CoRR Journal, Volume 1501.01426, 2015.A.

[2] E Gbaguidi, S. Boumerdassi, E. Renault, E. Ezin, Charac-
terizing servers workload in Cloud Datacenters, In Pro-

ceedings of 3rd International Conference on Future Internet of
Things and Cloud (FiCloud), 2015

[3] A.Maraj A. Londo, C. Firat, A. Dorri, M. Alcani. Energy
investigation of the flat plate solar collector during its
daily operation in clear days of summer and winter. Jour-
nal of Natural and Technical Sciences, Vol XIX (1), Academy
of Sciences, Albania, 2014.

[4] Rodrigo N. Calheiros, Rajiv Ranjan, Anton Beloglazov,
Cesar A. F. De Rose, Rajkumar Buyya. CloudSim: a
toolkit for modeling and simulation of cloud computing
environments and evaluation of resource provisioning
algorithms. Published in Journal of Software, Practice and
Experience, Vol. 41, Issue 1, New York, USA, January 2011

[5] E. Sheme, N. Frasheri. Implementing workload postpon-
ing in CloudSim to maximize renewable energy utiliza-
tion. In International Journal of Engineering Research and
Application (IJERA), Vol. 6, Issue 8, August 2016

[6] Raymond Carroll, Sasitharan Balasubramaniam, Dmitri
Botvich, William Donnelly. Application of Genetic Algo-
rithm to Maximise Clean Energy usage for Data Centres.
Volume 87 of the series Lecture Notes of the Institute for
Computer Sciences, Social Informatics and Telecommunica-
tions Engineering, Pages 565-580, 2012.

[7] Inigo Goiri, William Katsak, Kien Le, Thu D. Nguyen,
Ricardo Bianchini. Parasol and GreenSwitch: Manag-
ing Datacenters Powered by Renewable Energy, In ASP-
LOS’13, 2013

[8] M. A. et al., Towards the design and operation of net-zero
energy data centers. In ITherm’12, 2012.

[9] Sonja Klingert, Florian Niedermeier, Corentin Dupont,
Giovanni Giuliani, Thomas Schulze, and Hermann de
Meer. Renewable Energy-Aware Data Centre Operations
for Smart Cities, the DC4Cities Approach, International
Conference on Smart Cities and Green ICT Systems (SMART-
GREENS), 2015, Pages 1-9

[10] Hao Chen, Can Hankendi, Michael C. Caramanis and
Ayse K. Coskun. Dynamic Server Power Capping for
Enabling Data Center Participation in Power Markets.
In Proceedings of the International Conference on Computer-
Aided Design ICCAD ’13, San Jose, California, 2013

[11] Simon Seagrave. HP Dynamic Power Capping. Available
online through URL http://techhead.co/hp-dynamic-
power-capping/, 2008

Pedro Alonso, Ravi Reddy, Alexey Lastovetsky

-~
CrcoskE

51

Heterogeneous computation of matrix
products

PEDRO ALONSO Ravi REDDY MANUMACHU ALEXEY LASTOVETSKY

Universitat Politecnica de Valéncia, Spain University College of Dublin, Ireland University College of Dublin, Ireland

palonso@upv.es ravi.manumachu@ucd.ie alexey.lastovetsky@ucd.ie

Abstract

The work presented here is an experimental study of performance in execution time and energy consumption of matrix multiplications on
a heterogeneous server. The server features three different devices: a multicore CPU, an NVIDIA Tesla GPU, and an Intel Xeon Phi coprocessor.
Matrix multiplication is one of the most used linear algebra kernels and, consequently, applications that make an intensive use of this operation
can greatly benefit from efficient implementations. This is the case of the evaluation of matrix polynomials, a core operation used to calculate
many matrix functions, which involve a very large number of products of square matrices. Although there exist many proposals for efficient
implementations of matrix multiplications in heterogeneous environments, it is still difficult to find packages providing a matrix multiplication
routine that is so easy to use, efficient, and versatile as its homogeneous counterparts. Our approach here is based on a simple implementation
using OpenMP sections. We have also devised a functional model for the execution time that has been successfully applied to the evaluation of

matrix polynomials of large degree so that it allows to balance the workload and minimizes the runtime cost.

Keywords Matrix multiplication, heterogeneous system, energy consumption, matrix polynomials

I. INTRODUCTION

Matrix multiplication is one of the most essential computational
kernels used in the core of scientific applications. This operation
has been highly studied in the past in order to improve the effi-
ciency of its computation in both sequential and parallel computer
architectures. It has also received full attention in parallel heteroge-
neous environments. Many contributions in this context basically
propose irregular partitions of the factor matrices that can efficiently
be mapped on the computing resources; see for instance [10, 16, 12].

It is difficult to find actual implementations of the matrix multi-
plication on heterogeneous nodes that feature very different devices.
The MAGMA project, for instance, aims to develop a dense linear
algebra library similar to LAPACK but for heterogeneous/hybrid ar-
chitectures; it is one of the most active projects that implement BLAS
routines for nodes featuring accelerators [22]. Currently, MAGMA
implements a version for NVIDIA GPUs in which the matrix multi-
plication is carried out only by the GPUs, i.e. the CPU does not inter-
vene. The MAGMA project also provides with a version, MAGMA
MIC, which provides hybrid algorithms that involve the host CPU
and one or more Intel Xeon Phi processors. However, this project
does not use both NVIDIA GPUs and MICs processor all together
in the same host. Authors of [13] propose a programming model
for heterogeneous computers featuring CPU, a GPU and a Xeon Phi
with the aim to incorporate it to MAGMA library. However, they
have not shown its proposal with matrix multiplication. Hence and
as a starting point, we propose here a simple implementation to
carry out parallel heterogeneous matrix multiplications in a node
composed by CPU cores, one NVIDIA GPU, and one Intel Xeon Phi.

As it is explained in the next section, in this paper we are interested
in evaluating matrix polynomials of only square matrices. Section III
shows the application implemented to carry out a square matrix

multiplication on these three different devices. The following section
shows experimental results both in time and energy consumption of
our application. In Section V we propose a model to implement a
heterogeneous matrix multiplication routine that can exploit easily
the underlying hardware. We finish the paper with some conclusions
and proposals for future research.

II. MATRIX POLYNOMIALS

An application for matrix multiplications is, for instance, the calculus
of matrix polynomials. Matrix polynomials are used, e.g. for the
computation of functions of matrices [9] by the Taylor method. A
matrix function is the exponential of a matrix [21]. This function
appears in the solution of many engineering and physics phenom-
ena which are governed by systems of linear first-order ordinary
differential equations with constant coefficients [15]. Also, the matrix
exponential appears in other scientific contexts like, e.g. control the-
ory [14] or theory of multimode electric power lines [24]. Some other
engineering processes are described by second order differential
equations, whose exact solution is given in terms of the trigonomet-
ric matrix function sine and cosine [11, 17].

There are different techniques for computing or approximating
matrix functions. Some of them are very general but others are
specialized to particular functions. Two techniques are widely used
to approximate a matrix function, one is based on polynomial ap-
proximations and the other is based on rational approximations. The
one based on polynomial approximations makes intensive use of
matrix multiplications. For example, the matrix exponential can be
calculated efficiently by using Taylor series [21], which is in turn
formulated as a matrix polynomial. Other trigonometric matrix
function is the cosine of a matrix. This function has been tackled
in [20] to show that it is possible to perform its computation in a

52

Heterogeneous computation of matrix products

Algorithm 1 Algorithm for the evaluation of a matrix polynomial.

1: function EVALUATE(#, X, d, &) return P
i P+ wpl

3 P+—P+mX

& B+ X

5; fori « 2,d do

3 A+ B

7 B+ X-A

8 P+ P+a;B

9: end for

10: end function

very efficient way by using also a Taylor series approximation. As
it has been shown in [19] it is possible to obtain more accuracy
with polynomial approximations than with rational approximations
with similar or even lower computational cost. Another advantage
of using this technique is due to the fact that the most expensive
operations are all matrix products and there exist many libraries
that provide efficient implementations of this operation in different
environments. For instance, one can find very optimized imple-
mentations for multicore processors in Intel MKL, OpenBLAS, or
BLIS. Another example is CUBLAS, a library that includes a very
efficient routine to perform matrix multiplications in NVIDIA GPUs.
This library was recently used in [9] to implement the algorithm
proposed in [20] that computes the cosine of a matrix using one or
two GPUs.
A matrix polynomial P of degree d can be defined as

d .
P = Yag X% (0
=0

l‘xd'Xd + IId_'le_.l + -+ m X +agl,

where X, I € R"™", being I the identity matrix. The polynomial
matrix X can be arbitrary large, eg when appears in the solution
of PDEs related to fluid dynamics. Also the polynomial degree d
can be very large, e.g. 30 is a common number in the calculus of a
trigonometric matrix function [19].

In theory, the evaluation of a matrix polynomial with the form (1)
is quite straightforward by using, for instance, Algorithm 1. There
exist algorithms that allow to reduce the total number of matrix
products by means of the so called Paterson-Stockmeyer method [9].
However, these methods also need an efficient i.mplementaﬁon of
the matrix product. In any case, the efficiency of the evaluation of a
matrix polynomial depends on how efficient the underlying matrix
multiplication routine is. When the computational resources are the
cores of a multicore, we rely on threaded routines (e.g. Intel MKL) that
exploit all the CPU cores concurrently to perform this computation
transparently to the user. But things are more complicated in a
heterogeneous environment, where the computational resources are
different among them and, in turn, are “far away” from the main
memory where data initially reside.

III. A HysriD MATRIX MULTIPLICATION APPLICATION

In order to solve efficiently problems like the evaluation of ma-
trix polynomials that intensively use matrix multiplications on a

16 .
/
15 F oo ¥ A\ "r
14 Yav, o
i " " AN
12 = "
= rin)
1 b /_(\//_ BLIS —— -
w: [el OpenBLAS ———
MKL
g 1 1 1

15000 15500 16000 16500 17000 17500

Matrix size

Figure 1: Execution time for a square matrix multiplication in one core
using different libraries.

heterogeneous server, we propose an implementation for a matrix
multiplication application and present an experimental study of its
performance in both execution time and energy consumption.

III.1 The Hardware and Software Used

The heterogeneous server we have been working with features the
following devices:

o CPU: Two sockets with an Intel Xeon CPU E5-2670 v3 at 2.30
GHz each. This processor has 12 cores so the server contains a
total of 24 threads. The main memory of the host is 64 GB.

o GPU: NVIDIA Tesla K40c with 2880 cores and 12 GB of device
memory.

e PHL An Intel Xeon Phi 3120A coprocessor with 57 processors
(228 cores) and 6 GB of device memory.

Although the term “device” is usually assigned to accelerators only,
ie. GPU and PHI, in the next and for the sake of simplicity, we will
use it to denote the three of them.

On the software side, we have within reach different implementn~
tions of BLAS [1] to perform the matrix multiplication:

MKL: Intel Math Kernel Library is an optimized implementation
of linear algebra routines contained in BLAS and LAPACK,
and other mathematical functions like the FFT. This library is
available for multicore x86 Pprocessors, and also for the Intel
Xeon Phi coprocessor [3]. There exist “threaded” routines, e.g.
the matrix multiplication routine GEM, for both devices.

OpenBLAS: OpenBLAS is an optimized BLAS library based on
GotoBLAS2 1.13 BSD version [4]. Used in the CPU.

BLIS: This library is self-described as “a portable software frame-
work for instantiating high-performance BLAS-like dense linear
algebra libraries”. In addition the “framework was designed to
isolate essential kernels of computation that, when optimized,
immediately enable optimized implementations of most of its

Pedro Alonso, Ravi Reddy, Alexey Lastovetsky

53

commonly used and computationally intensive operations” [23].
The library is accessible in [2]. It has been used in the CPU.

CUBLAS: BLAS implementation for NVIDIA GPUs [8].

We performed a simple experimental analysis of the speed of the
matrix multiplication (GEMM) in the CPU (Figure 1). For this test
we used the maximum available CPU cores, i.e. 24. (We ignored
the fact that Hyper-Threading (HT) can be enabled to give a total
of 48 logical processors. We observed that using just one thread
per core is enough to fully exploit the execution resources of the
core and not increase in performance can be achieve by activating
HT.) It must be said that the performance of BLIS could be probably
better by selecting the best parallel configuration. Contrary to the
other two packages, BLIS is tuned by setting the value of up to four
environment variables. That value corresponds to the number of
threads that will be used to parallelize a given loop among the five
nested loops in which the matrix multiplication is implemented in
order to exploit the hierarchical set of intermediate memories of
the most current architectures. In this test, only the outer loop was
parallelized. A more suitable combination of values are likely to
produce a better performance of BLIS, however, we decided not
to test the large set of different combinations with the idea that
barely the performance would outperform MKL in this machine.
Consequently, we consider the performance of Intel MKL to be the
best and, therefore, it is the only library used on the CPU side.

III.2 Implementation option

To proceed towards a heterogeneous matrix product, we started
by implementing an application that partitions the problem into
three concurrent pieces so that the three devices can cooperate in
the solution. There exist different options to implement such an
application. However, all the options can be gathered into two main
classes standing for the use of light processes (threads), or heavy
processes. The last option can be implemented e.g. by using MPI [7].
Here, we decided to use a simple approach based on threads, which
are spawned by means of OpenMP sections.

The application has been implemented with OpenMP sections, so
that each device code is included in a given section (Listing 1). The
code for the Intel Xeon Phi, in lines 31-32, is implemented in a differ-
ent source file (Listing 2) and compiled separately. This is because it
is necessary to compile this code with the Intel C compiler (icc). For
the compilation of the rest of the C code of the application we used
the GNU compiler (gcc) since there exists incompatibility between
the available versions for the NVIDIA compiler (nvcc, version 7.5)
and for the Intel compiler (icc, version 16.0).

The basics of the heterogeneous multiplication are easy. To per-
form the multiplication C = AB, matrix A is completely broadcast
to the two accelerators from the Host computer. Matrix B, how-
ever, is partitioned into three blocks of consecutive columns. The
second block is uploaded to the GPU, the third one is uploaded
to the PHI, and the first one remains into the host memory. The
amount of columns of each block is denoted in Listing 1 by the
values of variables gpu_n, phi_n, and cpu_n for the GPU, the PHI,
and the CPU, respectively. Currently, the application receives these
values as arguments by command line, in particular, the user sets
the percentages for the GPU and for the PHI in the range [0, 1], the
rest is computed by the CPU. Upon termination of the execution,

16

26

int gpu_n = (int) (gpu_weight * n);

int phi_n = (int) (phi_weight * n);

int cpu_n = n-gpu_n-phi_n;

#pragma omp parallel sections num_threads (3)

#pragma omp section
{ // GPU
if (gpu_n) {
cublasHandle_t handle;
CUBLAS_SAFE_CALL (cublasCreate (¢handle));
double *gpu_A, *gpu_B, *gpu_C;
CUDA_SAFE_CALL(cudaMalloc((void *%) &gpu_A, n*n*sizeof (double)));
CUDA_SAFE_CALL (cudaMalloc((void **) &gpu_B, n*gpu_nxsizeof (double)));
CUDA_SAFE_CALL(cudaMalloc((void **) &gpu_C, n¥gpu_n*sizeof (double)));
CUBLAS_SAFE_CALL(cublasSetMatrix(n, n, sizeof(double), A, n, gpu_A, n));
CUBLAS_SAFE_CALL(cublasSetMatrix(n, gpu_n, sizeof(double),
&B[n*cpu_n], n, gpu B, n));
CUBLAS_SAFE_CALL(cublasDgemm(handle, CUBLAS_OP_N, CUBLAS_OP_N, n, gpu.m,
n, %alpha, gpu_A, n, gpu_B, n, &beta, gpu C, n));
CUBLAS_SAFE_CALL(cublasGetMatrix(n, gpu_n, sizeof(double), gpu_C, n,
&C[n*cpu_nl], n));
CUDA_SAFE_CALL(cudaFree(gpu_A));
CUDA_SAFE_CALL(cudaFree(gpu_B));
CUDA_SAFE_CALL(cudaFree (gpu_C));
CUBLAS_SAFE_CALL(cublasDestroy(handle));
}
}
#pragma omp section
{ // PHI
if (phi_n) {
gemmPHI(n, alpha, A, n,
&C[n*(cpu_n+gpu_n)l, n);

phi_n, n, beta, &B[n*(cpu_n+gpu_n)l, n,
}

¥

#pragma omp section

{ // cru
if (cpu_n) {
dgemm(&transa, &n,

&n);

gtransb, &n, &cpu_n, &n, &alpha, A, &n, B,
&beta, C,
}
}

¥

Listing 1: Code for the heterogeneous matrix multiplication.

the resulting matrix C appears partitioned and distributed among
the three devices. We include in the application, and in the time
measurement, the operation of gathering the result in the memory
location allocated into the host to store the resulting matrix.

The code for the execution in the GPU is quite regular (Lines 7-27).
It includes creation of the CUBLAS context, allocating memory for
the three matrix factors, uploading matrices, executing the matrix
product, downloading the result, and freeing the resources involved
in the computation.

For the Xeon Phi, we used the “offload mode” of computation,
that is, data is explicitly uploaded to the device and the operation is
also explicitly executed there. Thus, the programmer have control
of what exactly is executing the coprocessor. Arguments in, out,
and inout specify clearly the direction of variables characterized by
those words. The operation is actually performed by calling to the
BLAS matrix multiplication routine using the MKL version.

Finally, the code executed by the CPU only includes a call to the
gemm routine (lines 38-39) for the matrix computation using MKL as
well. We used the fortran interface instead of the C one used for
the PHI for no specific reason but the application is oblivious of this.

Attention must be paid to the way in which the application is
executed in our heterogeneous server. As it has been implemented,
only three OpenMP threads are created so that each one will execute
a different section. There will be, thus, one thread bound to each
accelerator for data transference and control purposes. For the
CPU case, however, the execution of the MKL routine will use only

Heterogeneous computation of matrix products

|| void gemmPHI{ int m. imt m, int o, double alpha, double +A. imt 1lda,
2 double beta,. double +B, int 1ldb, double +C, imt ldc } {
1| #apragma offlcad target(mic) in(m,n,o,alpha, beta,lda,ldb,ldc}

1 in(i:length{me+o}} in(B:lemgth{o=n}} imont (C:lemgth{me+n)}
S| L

cblas_dgemm(CblasColMajor, CblasNoTrans, CblasNoTrams, m, 1, o,

7 alpha, A, lda, B, 1db,. beza, C. ldc);
B}

i

Listing 2: Code for the heterogeneous matrix multiplication in the Xeon
Phi (offload mode).

one thread. To use more threads (cores) collaborating in the matrix
mulﬁp].icaii(‘m on the CPU side, the “nested para]le]iSm" ability must
be explicitly set. In addition, there are more environment variables
that control the behaviour of the application (Table 1).

This is an example of execution:

shell $ MKL_NUM_THREADS=22 OMP_NESTED=TRUE MKL_DYNAMIC=FALSE
MKL_MIC_ENABLE=0 MIC_ENV_PREFII=MIC
MIC_KMP_AFFINITY=balanced,granularity=fine
MIC_OMP_NUM_THREADS=228 MIC_USE_2MP_BUFFERS=64K
mumactl --physcpubind=+0-11,12-23 program 10000 0.48 .15
The example executes the program program which generates two
random matrices of order n = 10000. The GPU performs 48% of the
computation, 15% is carried out by the PHI, and the rest, 37%, is
computed by the CPU.

It should also be noted that the server has the hyperthreading
enabled, but we decided not to use all the 48 threads and always use
24 as a maximum number of threads instead. For instance, when
operating with the three devices, two threads are bound to one
accelerator each, leaving the other 22 for the execution of the matrix
multiplication in the CPU.

In addition, we have always used core affinity. This is to prevent
threads from leaping amongst the cores at runtime, so as to reduce
the variability of the execution times and also to improve the perfor-
mance of all the devices attached to the host. Concretely speaking,
we use the tool numactl to bind threads to cores.

The following is an example of the output of the application:

n = 10000 (CPU = 38.00% CPU = 50.00% PHI = 12.00%) [4 reps]
(cpu = 1.17 sec. gpu = 1.14 sec. phi = 1.10 sec.)
(1.30 sec. 1541.47 gflops)

for a random matrix of size n = 10000. The weight used for each
device in this example results in a workload rather well balanced.

IIL.3 Energy consumption

We are also interested on evaluating the energy consumption of
the devices participating in the matrix multiplication with the aim
at, first, understandjng the power trace of each device and, second,
exploring a workload distribution which can result in energy savings.

For the energy measurement, we have used a tool called
powerrun [5]. This tool is a wrapper to other tools for measur-
ing the power draw of the CPU (uses PAPI and Intel PCM), of the
GPU (uses NVML [18]), and of the PHI (uses Intel’s MPSS [6]). The
tool gathers the power samples of all the devices under operation
and dumps a power trace to a file to compute the energy consumed
during the execution time. This tool provides a library to instrument
the code under test with simple calls that frame the part of the code
to be measured.

1200 |-

joules
g
7]
&
{

6000 7000 B0D0 9000 10000 11000 12000

Matrix size

Figure 2: Energy consumption when executing @ matrix multiplication in
the CPU and the other two devices remain idle.

900 ¢
B0 - CpU
700 |-
600 .. PHI
3 500 |- Gpy
E; o L
300 : o]
200 i o e i
100 s

0

6000 7000 8000 9000 10000 11000 12000

Matrix size

Figure 3: Energy consumption when executing a matrix multiplication in
the GPU and the other two devices remain idle.

joules
E
|
(]
&
‘h,

6000 7000 B000 9000 10000 11000 12000

Matrix size

Figure 4: Energy consumption when executing a matrix multiplication in
the PHI and the other two devices remain idle.

We provide here three tests that show the energy consumption
(in joules) of the three devices, respectively. In each test, the three
devices are operating concurrently. Only one of them is working on
a matrix multiplication while the other two remain idle. The test
samples the energy of the three devices.

Figure 2 shows the energy consumed by the system when only
the CPU is “working” and is rather easy to interpret. The CPU is the
most consuming device since it is the only one that performs useful
work, while the other two consume the energy in idle state. It is also
quite clear the difference in energy consumption when idle between
the two accelerators, being very low in the case of the NVIDIA GPU

Pedro Alonso, Ravi Reddy, Alexey Lastovetsky 55

Variable name

Meaning

OMP_NESTED: Set to TRUE to ensure that MKL uses more than one thread when called inside an OpenMP section.
MKL_NUM_THREADS: Number of threads used by MKL (CPU).
MKL_DYNAMIC: Set to FALSE to avoid MKL automatically selects the number of threads (CPU).

MKL_MIC_ENABLE:
MIC_ENV_PREFIX:
MIC_OMP_NUM_THREADS:

Set to 0 to avoid the Xeon Phi is used to accelerate the CPU computation.
Specifies the environment variables with prefix MIC will address only the PHL
Number of threads used by the PHI to execute MKL routines.

MIC_KMP_AFFINITY, MIC_USE_2MB_BUFFERS:

These variables control the efficiency of the Xeon Phi in the execution of the matrix multiplication routine.

They have been set to such values according to the advice of Intel documentation.

Table 1: Meaning of shell variables used to execute the heterogeneous matrix multiplication application.

050 101 0% 108
093 056 0% 102 1M
75 089 057 0% 053 103 113
052 085 095 DSI OS2 103 130
084 050 07 0S4 057 113 133 1 0
073 088 092 DE3 105 116 132 1481 130
072 081 089 D53 102 113 133 1B 160 188
§ 30 073 052 080 B4 104 116 125 133 163 170 170
087 052 085 DSE 053 120 130 143 138 473 180 187
096 053 089 DSL 102 120 123 141 163 170 184
107 100 099 053 0S4 119 137 13 161 4170 174
108 107 102 053 104 108 131 147 154 470 169 189 1
2% 113 123 114 109 107 117 124 146 133 173 178
121 130 115 112 108 106 129 145 164 4177 182

127 463 121 124 118 124 128 12 183 1% 1
132 133 136 122 118 114 122 1 E 160 475 1
144 141 134 123 123 122 130 12 15 188 1

0 185 143 188 136 122 118 122 1 0 145 188 171 17 1

n = 8000

100 518
529 523
479 487 504
472 510 502 470
446 471 446 477 455
75 452 400 444 410 440 249
383 436 393 402 423 437 455
364 374 402 378 376 421 444 504
325 355 354 384 369 422 450 516 536
367 362 335 326 323 414 451 497 544 577

S 50 408 396 353 328 320 419 457 509 546 589 626

430 440 416 354 342 414 466 505 555 594 627 669

467 450 435 387 366 418 452 512 556 588 625 679 699
506 489 464 432 391 411 455 500 554 587 636 671 716 753
538 536 511 466 441 421 453 504 541 554 651 674 709 7

25 582 575 545 497 473 435 440 503 546 588 652 666 706 7
600 616 574 548 518 506 456 498 542 584 622 680 723 7
647 641 622 579 547 513 4091 488 551 604 632 664 7.
669 675 643 606 583 554 515 497 540 588 640 668 7
722 699 665 647 608 572 560 520 544 585 623 668 711 7
I’J- 745 703 671 648 616 591 539 527 574 617 651 704 7.
o 25 50 75 100

PHI
n = 14000

Figure 5: Execution time in seconds for a matrix product varying the weight of workload on each device.

compared with the Intel Xeon Phi.

Figure 3 shows the energy consumption when the GPU is the only
device operating on a matrix multiplication. Note that one of the
cores of the CPU is also working since it is in charge of sending the
two matrices to be multiplied and receiving the resulting one. The
consumption of the Intel Xeon Phi is very large in idle state when
compared with the CPU.

As expected, the consumption of the Intel Xeon Phi is quite large
when executing the matrix multiplication (Figure 4). Also in this
case one of the cores of the CPU is working to feed the coprocessor
with the two factor matrices and to receive the solution matrix.

IV. ExPErRIMENTAL RESULTS OF THE MATRIX
MULTIPLICATION APPLICATION

Figure 5 shows the execution time in seconds spent by the application
to perform a matrix multiplication of two square matrices of sizes
n = 8000 and n = 14000. The two graphics show times for different
weight combinations. The percentage of computation carried out by
the GPU is shown on the y-axis, while the work done by the PHI is
shown on the x-axis. These two values are selected by the user. The
rest of the computation is performed by the CPU. The figure shows
less execution times (clearer cells) within the region between = 25%
and = 50% for the GPU, and < 20% for the PHI in the case of the
problem sizes selected. There exists more opportunity for the PHI to
participate as long as the problem size increases.

Figure 6 shows the percentages of the minimum values obtained
for the problem sizes n = 8000, 10000, 12000, 14000, which are 0.72
sec., 1.30 sec., 2.08 sec., and 3.20 sec., respectively. For large problems

n € [2000,10000] n € [10000, 14000]

Wphi = 0 an- —50
Wepy = %+47.5 —3%4-85
Wepu = 100 — Wepu 100 — (wph,- + wEEf}

Table 2: Functions of the weight for each device for the execution time of
the matrix multiplication.

both the CPU and the GPU reduce their weight to make room for the
PHI, which does not contribute to the task with any size smaller than
n = 12000. We can approximate the weight of each device, i.e. wepy,
Wepu, and wpm1, by the two linear functions shown in Table 2 for two
intervals. By means of a larger experimental setup we could easily
devise a functional model that allows to predict the best percentage
of workload to be mapped on each device. However, we must take
into account that there exist a problem size not very much smaller
than n = 2000 for which it is not worthwhile to use the GPU. Also,
for problem sizes n > 14000, the weight to be assigned to each device
stabilizes around a fix value (wphi == 15% and Wehi =2 55%). However,
as the problem size increases a little more, out-of-core algorithms
are required and these functional models can significantly change.
Things are slightly different when we observe the total energy
consumed by the matrix multiplication application. The minimum
values of energy (in joules) are 379, 700, 1177, and 1783, for the
problem sizes 8000, 10000, 12000, and 14000, respectively. Figure 7

INote that the number of matrix columns assigned to a device d is ny = n - wy, where
d = cpu, gpu, phi.

56 Heterogeneous computation of matrix products
Algorithm 2 Heterogeneous algorithm for the evaluation of a matrix
100 ; : : T polynomial.
g0 |.%of GPU —
9, of CPU 1: function EVALUATE(1, X, d, &) return P
80 |- 2 P+ wpl
% of PHI - ;
70 = 8 P+ P+mX
T e L 4 ;D T ;
— = B, 4 5: R+
.@J L 6 Bp + Xp
2 % 7 fori+ 2,ddo
30 8: Ap+ Bp
20 9 Bp +— Xg-Ap
10 10: Pp + Pp +a;Bp
. 11 end for

2000 4000 6000 8000 10000 12000 14000 16000

Matrix size

Figure 6: Functional model in graphics for the execution time of the matrix
multiplication.

shows, as an example, the energy consumption with problem sizes
n = 8000 and n = 14000. The corresponding weights of wgpy in
which we can find these minimum values are 55%, 60%, 60%, and
60%, for each problem size, respectively, and 0% for Wphi- These
numbers show that while Intel Xeon Phi can contribute a little
to reduce the execution time, it can contribute nothing towards
reducing the energy consumption in any case, as it was expected
according to Figures 2-4. The NVIDIA GPU is, currently, a more
efficient device for HPC. In this particular server and for large
problem sizes (n > 10000), the Intel Xeon Phi is used as a trade-off
between execution time and total energy consumption.

We also figured out the dynamic energy of the application, i.e. the
energy due to the execution of the application and that we obtain
after taking away the energy consumed by each device in idle state.
The results showed that we can find the minimum value for the
dynamic energy for all problem sizes when none of the accelerators
are used. This is due, on one hand, to the high energy consumption
of the PHI and, on the other hand, to that the NVIDIA GPUs has two
different performance states (when idle) that are difficult to control
and disturb the actual energy measurement when the device is idle.

V. A HETEROGENEOUS MATRIX MULTIPLICATION
SysSTEM FOR EVALUATING MATRIX POLYNOMIALS

For this part of the work we have got a representative application of
matrix polynomials, i.e. that intensively uses matrix multiplications.
This application has been recently developed and it allows to com-
pute the cosine of a matrix [9]. Implementing this application on the
top of a heterogeneous matrix multiplication routine allows to get
the most out of a heterogeneous computer.

The task of developing a program that solves this problem poses
a big challenge from the performance point of view, as we showed
before, but also from the progranunabi]iiy poi.nt of view. Thus,
in order to make as easy as possible the programming task we
propose a system based on three different kind of objects which

12: end function

represent matrices. Let M be a square matrix stored into the host
main memory, then we report the following definitions:

® Regular matrices: these matrices are uniquely stored into the
CPU main memory, e.g. the matrix M itself.

® Replicated matrices: these matrices, denoted by subscript R (e.g.
ME), are replicated into all the three devices.

e Distributed matrices: these matrices, denoted by subscript D (e.g.
Mp), are partitioned in column blocks and scattered into all the
three devices.

We use these objects to rewrite Algorithm 1 into its heterogeneous
counterpart, Algorithm 2 . In the heterogeneous algorithm, each
matrix object is characterized by its condition according to where the
entries of this matrix are stored, i.e. regular, replicated or distributed.

We also describe the communication operation that takes place
between each pair of matrix-types as follows:

e M — Mpg: This is a Broadcast communication.
® M — Mp: This is Scatter communication.

e Mp — M: This is a dummy operation since the destination
matrix is already into CPU memory and can be implemented
through a local copy.

e Mp — Mp: This is a local copy of the right data partition.
e Mp — M: This is a Gather communication.
® Mp — Mg: This is an Allgather communication.

We make the assumption that there exists just one distribution
for all the distributed matrices involved, and this distribution, repre-
sented by the tuple (Wepu, Wgpu, Wphi), has been previously calculated
and it is known before executing the algorithm. There are conversion
operations between matrix types in steps 4 and 5. Steps 6 and 8 are
local copies of the proper data objects, and Step 10 can be readily
implemented calling to the BLAS saxpy routine. Step 9 is the matrix
multiplication of the replicated matrix Xg by the distributed matrix
Ap, and this is just the multiplication tackled in Section IIL

Figure 8 represents the evolution of runtime with regard to the
polynomial degree for the evaluation of two polynomials of size

Pedro Alonso, Ravi Reddy, Alexey Lastovetsky

57

g2

a5
ar

W

HEGRG=NERERREGEE

BEBEfE

a7

EEEREEER
Eag

437

]
BEsEEEERLE

T

BEOBEEESEAEEEEEEEE
EYEEBEESEBBEREEEE
nEREREEEREEEEREDE

b8

i

-8
:

= 800D

10 15
M52 2009
198 011 2004
204 JIFE P02 1976
106 2075 1963 2005 1911
TS MSS 1911 2007 150 1935 1938
1913 05 1905 1914 1954 1950 1959
1M0 1933 162 BEE 1679 1976 1980
1743 1938 1932 1935 1877 OG0 2067
B 1906 1962 188 H36 1801 DOOS 2100
s o M0 2070 1946 B4 1856 JOET 2122
* 2139 2210 2183 1951 1M8 151 0
2159 134E Ir13 2065 2003 1206 21D
. 315 1370 2eA TS 278
e 2334 2T 136 233
43 2 2082
455

Figure 7: Energy consumption in joules for a matrix product varying the weight of workload on each device.

n = 10000 and n = 14000, respectively, of random coefficients. The
figure shows the execution times using only the CPU versus using
the three devices. For the second case, we selected the distribution

tuple suggested by Figure 6 and Table 2 for each problem size.

The figure demonstrates that the evaluation of matrix polynomials
can be speeded up significantly by using all the devices in the
heterogeneous platform.

160 Ll P Sh Jopin v (R Fmia e ey
——— Only CPU (n = 14000)
140 = Only CPU (n = 10000) I
120 CPU+GPU+PHI (n = 14000) -
CPU+GPU+PHI (1 = 10000)
= 100 =
€ -
g 1
£ 60 S 4
L1 __—-F”‘_P-J —
40 » T =
20 i =
e
0 ==

234567 8 91011121314151617 1819 20

Polynomial degree

Figure 8: Execution time for the evaluation of matrix polynomials.

VI CONCLUSIONS AND FUTURE WORK

This work has presented an application for matrix multiplications
in a heterogeneous node composed by a multicore CPU and two
very different accelerators. We have shown that it is not difficult to
implement the app]icah'on using OpenMP sections. However, the
incompatibility among compiler versions can make this task a bit
cumbersome, and in addition, selecting the exact suitable value for
the large number of environment variables is an arduous task that
highly affects the performance of the application.

We have reduced the study of our application to a particular case
in which all matrices involved are square. This case is motivated
by our aim to evaluate efficiently matrix polynomials, which is the

core operation to obtain matrix functions using the Taylor method.

However, the study can be extended to rectangular matrices with
little effort. We have developed a functional model for the runtime

s0 that we can select the proper amount of work to do by each
device. In our node, the K40 is the most speedy device, far more
than the Xeon Phi, which only has opportunity to contribute to the
computation on matrices larger than n = 10000. Furthermore, the
Xeon Phi is currently the most expensive device in terms of energy
consumption, and the K40 is the most energy efficient. Our study
on the energy consumption resulted in a quite simple behaviour, i.e.
the lowest total energy consumption is achieved when the GPU is
used in a similar proportion as that selected to achieve the lowest
execution time, pmvided the Xeon Phi is not used at all. It was
impossible to obtain an accurate measure of dynamic energy due to
specific behaviour of the GPU, which changes between two different
performance states (when idle) in an unpredictable way.

Finally, we proposed a heterogeneous matrix multiplication sys-
tem to make easy the programmability of algorithms based on a
heterogeneous matrix multiplication. The system was successfully
applied to obtain rapidly an application for the evaluation of matrix
polynomials. We plan for the future to generalize this system so that
we can perform products of the form

Cy + BCx +aAyByz,

being X, Y, Z € {none, R, D}, i.e. products that involve any type of
matrix distribution.

Finally, our aim is to extend everything carried out in this work
as fast and easy as possible to host the new upcoming FPGA device.

Acknowledgment

This research has been supported by EU under the COST programme
Action IC1305, "Network for Sustainable Ultrascale Computing (NE-
Susy.

REFERENCES

[1] BLAS: Basic linear algebra subprograms library. http://www.
netlib.org/blas. Accessed: 2016-04-12.

[2] Blis: BLASJike library instantiation software framework
https://github. com/flame/blis. Accessed: 2016-04-12.

[3] Intel Math Kernel Library (Intel MKL). https://software.
intel.com/en-us/intel-mkl. Accessed: 2016-04-12.

58

Heterogeneous computation of matrix products

[4] OpenBLAS: An optimized BLAS library.
openblas.net. Accessed: 2016-04-12.

http://wuw.

[5] powerrun: A tool to measure energy. Accessed: 2016-04-12.

[6] Intel Manycore Platform Software Stack (Intel
MPSS). https://software.intel.com/en-us/articles/
intel-manycore-platform-software-stack-mpss, 2016.

[7] Message Passing Iterface. https://www.mpi-forum.org, 2016.

[8] NVIDIA CUDA Basic Linear Algebra Subroutines (cublas) li-
brary. https://developer.nvidia.com/cublas, 2016.

[9] Pedro Alonso, Javier Ibafiez, Jorge Sastre, Jestis Peinado, and
Emilio Defez. Efficient and accurate algorithms for computing
matrix trigonometric functions. Journal of Computational and
Applied Mathematics, 309:325-332, January 2017.

[10] Olivier Beaumont, Vincent Boudet, Arnaud Legrand, Fab-
rice Rastello, and Yves Robert. Heterogeneous matrix-matrix
multiplication, or partitioning a square into rectangles: NP-
completeness and approximation algorithms. In EuroMicro
Workshop on Parallel and Distributed Computing (EuroMicro’2001),
pages 298-305. IEEE Computer Society Press, 2001.

[11] S. M. Cox and P. C. Matthews. Exponential time differencing for
stiff systems. J. of Comput. Physics, Elsevier, 176:430-455, 2002.

[12] Ashley DeFlumere, Alexey Lastovetsky, Brett Becker, et al. Par-
titioning for parallel matrix-matrix multiplication with het-
erogeneous processors: The optimal solution. In Parallel
and Distributed Processing Symposium Workshops & PhD Forum
(IPDPSW), IEEE 26th International, pages 125-139. IEEE, 2012.

[13] Azzam Haidar, Jack Dongarra, Khairul Kabir, Mark Gates, Piotr
Luszczek, Stanimire Tomov, and Yulu Jia. Hpc programming
on intel many-integrated-core hardware with magma port to
xeon phi. Scientific Programming, 23, 01-2015 2015.

[14] Nicholas J. Higham. Functions of Matrices: Theory and Computa-
tion. SIAM, Philadelphia, PA, USA, 2008.

[15] Marlis Hochbruck, Christian Lubich, and Hubert Selhofer. Ex-
ponential integrators for large systems of differential equa-
tions. The SIAM Journal on Scientific Computing, 19(5):1552-1574,
September 1998.

[16] A. Kalinov and A. Lastovetsky. Heterogeneous distribution
of computations solving linear algebra problems on networks
of heterogeneous computers. Journal of Parallel and Distributed
Computing, 61:520-535, 2001.

[17] Aly Khan Kassam and Lloyd N. Trefethen. Fourth-order
time-stepping for stiff PDEs. The SIAM . on Scientific Comp.,
26(4):1214-1233, 2005.

[18] NVIDIA. NVML Reference Manual. https://developer.
nvidia.com/nvidia-management-library-nvml, 2013.

[19]]. Sastre, Javier J. Ibéafiez, E. Defez, and Pedro A. Ruiz. Accurate
matrix exponential computation to solve coupled differential.
Mathematical and Computer Modelling, 54:1835-1840, 2011.

[20]]. Sastre, Javier J. Ibafez, E. Defez, and Pedro A. Ruiz. Com-
puting matrix functions arising in engineering models with
orthogonal matrix polynomials. Mathematical and Computer
Modelling, 57:1738-1743, 2013.

[21] J. Sastre, Javier]. Ibafiez, E. Defez, and Pedro A. Ruiz. Ef-
ficient scaling-squaring Taylor method for computing matrix
exponential. SIAM . on Scientific Comput., 37(1):A439-455, 2015.

[22] Stanimire Tomov, Jack Dongarra, and Marc Baboulin. Towards
dense linear algebra for hybrid GPU accelerated manycore
systems. Parallel Computing, 36(5-6):232—-240, June 2010.

[23] Field G. Van Zee and Robert A. van de Geijn. BLIS: A frame-
work for rapidly instantiating BLAS functionality. ACM Trans-
actions on Mathematical Software, 41(3):14:1-14:33, 2015.

[24] D. E Williams, L. A. Hayden, and R. B. Marks. A complete
multimode equivalent-circuit theory for electrical design. SIAM
J. on Scientific Comput., 102(4):405-423, 1997.

Eva Burrows, Helmer Andre Friis, Magne Haveraaen

59

An Array API for FDM

EvA BUurRrOws?!

1 Bergen Language Design Laboratory
Department of Informatics, University of Bergen, Norway
https://bldl.ii.uib.no/

HELMER ANDRE FRIIS*

MAGNE HAVERAAENT #

* IRIS
Stavanger, Norway
http://www.iris.no/

Abstract

As we move towards ultrascale computing, computer architecture is bound to see dramatic changes. Multiple nodes, with or
without shared memory, multicore and accelerators (GPUs, FPGAs) will be the norm. For many problems, such as finite difference

numerical simulations, the array used to represent a perfect match between the user level code and the hardware architecture’s
uniform memory access. Arrays, and to some extent multiarrays, are well supported by most programming languages. A standard

compiler maps the array for uniform memory. Some programming models, such as partitioned global address space, allows
mapping an array across distributed, yet for each partition, uniform memory. For ultrascale architectures, the simple mapping

between user level (multi)array and distributed, non-uniform memory, will disappear. Here we propose an API for arrays,

empowering the software developer to implement their own array-memory layout. Application code written towards the API will

be independent of underlying architecture changes, thus easily ported to new architectures as they evolve.

Keywords Scientific Computing, Ultrascale Computing, Multiarray API, Array API for Finite Difference Methods

I[. INTRODUCTION

The array has been a central concept for software development, es-
pecially in the high performance domain. For instance, multiarrays
are key to explicit finite difference solvers for partial differential
equations (PDE). Languages for programming in computational
science have direct language support for arrays. Many also di-
rectly support multidimensional array manipulations (e.g. MAT-
LAB, Fortran, F), or introduce libraries or packages to support this
(e.g. Boost.MultiArray Library for C++, NumPy for Python). In
the problem space, the array provides an abstraction for indexable
data collections. In the hardware space, the array represents linear
addressable memory.

Compilers exploit that traditionally computer memory has been
uniformly accessible. A linear function is sufficient to map from an
array (multi)index to a memory address, giving efficient access to a
memory location. The move towards ultrascale computing is break-
ing this mapping. Currently we see architectures with collections of
manycore processors, connected on fast networks, often with GPUs
and other accelerators connected to each processor. The combined
memory of such an architecture is no longer linearly addressable,
but possibly hierarchical: indexed by processor in the network, then
split into core local memory, accelerator local memory, shared core
memory and shared accelerator/processor memory. The access time
for a memory location varies, depending on where the memory is
located, which core/accelerator is accessing the location, and the
local, global and collective data access patterns (cache lines, net-
work contention, etc.). On future ultrascale architectures we should
expect the data access functions and memory access costs to be

more complex.

Programming models to deal with the situation are slow to emerge.
The two dominant approaches are explicit processes with message
passing (e.g., MPI [15]), and variations of partitioned global address
space (PGAS). Both of these models currently assume that memory
is distributed across nodes (or cores), but lack support for hierar-
chical memory and accelerators. The message passing approach is
a dramatic change from sequential programming, since a compu-
tation here is an ensemble of explicitly communicating programs.
Veritying the correctness of concurrent processes is hard. Using
a pragmatic single program multiple data (SPMD) approach the
code transformation to message passing form becomes manageable.
The PGAS model is closer to standard programming and is thus
easier to reason about. A PGAS compiler may use message passing
processes as the target code [8]. Accelerators are mostly supported
by specialised models (e.g., Cuda). Hybrid models, e.g., mixing
MPI and multicore programming or MPI and accelerators, are be-
ing used for hybrid architectures. Porting an application from one
programming model to another requires considerable changes to the
code. This causes severe challenges to the portability of application
between current architectures, and thus may be a severe hindrance
for the uptake of efficient future ultrascale architectures.

The emerging gap between problem space arrays and computer
memory addressing should be bridged by tools such as the compiler
and its support libraries. Keeping tools up to date is a continuous
effort as new architectures are being continuously introduced. Un-
fortunately, tool and compiler vendors are not catching up to the
pace of change. For instance, Fortran’s take on the PGAS model

60

An Array API for FDM

was standardised in 2008 [13], almost a decade ago. Yet few Fortran
compilers in 2016 support the coarray feature.

This paper promotes the idea that for the hardware space we need
a standardised, linear array API encapsulating the heterogeneous
memory structure. This can be considered a variation of the PGAS
model for distributed memory, and is a refinement of our earlier
suggestion [9]. Such an API will empower the software developer to
provide their own mapping of the linear indices onto the hierarchical
memory structure, in case a relevant one does not already exist. This
liberates the developer from relying on compilers and other tools
that may never materialise. It also liberates the hardware manufac-
turer from providing a full fledged tool chain to support every new
architecture. A good implementation of the relatively simple API
for the new architecture is sufficient. For the problem space we
need various adapters mapping, e.g., multiarray or tree structures,
to the linear array API. Again, the software developer is empowered
to provide relevant mappings in case none exist. Such mappings
are obviously reusable across problems with similar needs. The
mapping from linear array to hardware structure will be reusable
for every application running on that hardware. The mapping from
problem space to linear array will be reusable for all applications in
the problem space, across all applicable hardware architectures. In
order to make such a software architecture to become an efficient
tool, it is (1) important to tune the APIs carefully for generic reuse,
and (2) to develop applications focussed on using collective oper-
ations on the user space abstractions. The former requires careful
domain engineering coupled with domain experience. The latter
require a change with software developers, who normally are drilled
to work with individual elements of arrays and other structures.
The proposed approach requires a focus on collective operations
on entire data sets. The APIs need to be stable across old and new
architectures ensuing portability of application code. The basic
linear algebra subprograms (BLAS [12]) is an example of what
can be achieved by an API approach. With many of the similar
approaches (PGAS, Global Arrays, Coarrays), new notation creeps
in to handle new hardware. This causes application portability costs.
New notation causes portability issues with existing applications.

The contribution of the paper is to show that an API approach is
viable by presenting an API suitable for explicit finite difference
solvers. We use collective multiarray operations to develop a solver
for Burgers’ equation. The multiarray API is mapped to a linear
array APL The linear array API is mapped to a plain CPU with
linear memory, a GPU local memory, and a GPU local memory
with explicit administration of data allocation and deallocation.
Since these three distinct hardware mappings all provide the same
linear array API, no change is needed in neither the multiarray
mapping nor the solver itself. We present the APIs as concepts in
the sense of [19], i.e., with declarations of types and operations, and
axioms describing their properties. Such concepts provide precise
description of intended semantics. They work very well with generic

implementations (reusable code), and provide verifiable/testable
requirements [1].

The paper is organised as follows. In the next section, we intro-
duce the mathematics of our running example, the Burgers’ equation,
and show how a PDE normally is massaged for implementing a
solver. In Section III, we propose our multiarray API, followed by a
presentation of the linear array API in Section IV. These two APIs
are tied together in Section V. Then we present some experimental
results of using our approach to target the Burgers’ solver for CPU
and GPU implementations. Finally, Section VII discusses some
related work before we conclude in Section VIIIL.

II. FINITE DIFFERENCE NUMERICAL SOFTWARE

‘When writing numerical software, the HPC engineer typically starts
from a partial differential equation which is then manipulated into
a form suitable for programming. We will use Burgers’ equation
[3] as an illustration. Burgers’ equation is an important nonlinear
prototype equation, used for instance in the mathematical modelling
of gas dynamics and traffic flow. It is similar to the incompressible
Navier-Stokes equation, without the pressure term and external
forces like, e.g., gravity. In coordinate free form it reads

M 7.V =vVia, (1
ot

where i denotes velocity, £ is time, and v is a viscosity coefficient.
In one spatial dimension, putting if = (u), we get

d(u
f.gt) +(u) V(1) = vV (u), @
Choosing Cartesian coordinates, we can elaborate the gradient, the
laplacian and the dot product, giving

du du %u

o + ua = vﬁ. (3)
We implement the initial value problem u(x,0) = ug(x), for peri-
odic boundary conditions on an interval of length L, u(x + L, t) =
u(x,t).

To solve the problem numerically, the standard approach is to
discretise the domain. For this we introduce the grid values u} =
u(iﬁ, ty) fori =0,.., N — 1, and t, = nAt, where At is the time
step size. In the finite difference method (FDM), we compute a
partial derivative by a weighted sum of neighbouring grid points.
The weights are formed from two components: (i) a list of factors
called the stencil, and (ii) a factor computed from the data resolution
(the number of gridpoints). The stencil is carefully decided by a
numerical expert. The choice is based on the kind of problem being
solved, the initial value being used, accuracy versus speed, etc. For
example, in this paper we use the numerical stencils (—0.5, 0, 0.5)

and (1, —2,1) for aa; and -, with factors Ax = % and (Ax)2 =

ax?®

Eva Burrows, Helmer Andre Friis, Magne Haveraaen

61

%, respectively. The standard explicit finite difference numerical

approximation for equation (3) then becomes,

A
1
ui™t = uf - m“?(”?ﬂ —)
vAt
—+ —(Ax)2 (uifpq Hui g —2ud). 4)

The above approximation is accurate to O((Ax)2, At).

The formulation in equation (4) is easy to write up as traditional
code: The data for u”*! and u" is stored in two arrays, one for
each, and a single loop, for all element indices 0 through N — 1,
computes 1"+ from u”.

Now consider equation (1) in higher spatial dimensions. Using
a Cartesian coordinate system, we can write Burgers’ equation in
three spatial dimensions (3D) as

8_u+ua_u+va_u+wa_u = v@+v82—u+v@ (5)
ot 9x dy 9z ox2 9y? 9z
@+uﬁ+va—v+wﬁ = vi)2_0+v@+v£92_v (6)
ot ' ox ' oy 9z ax2 o9y ' az2
ow ow ow ow Pw Pw Fw
¥+HE +U@+WE = UW +Uay2 +U—(aZ2 7)

where we have put if = (u,v, w). Here we also choose periodic
boundary conditions in a 3D domain of length L, Ly and L; in
the x, y, and z coordinate directions, respectively. Introducing
appropriate grid values, we denote for the first velocity component
wthat ull, = ux(ik,j 5 kg, t) fori = 0,.,N—-1,j =
0,..,M —1andk =0, ..., P — 1. Using analogous approximations
as in equation (4), equation (5) can then be discretised as follows.

+1 At
W = Uik E”E,ﬁk(urﬂ,jﬁ —Ui_1ix)

vAt

+ [(ufya,je + iy i — 2ug55)
At

- m_yvfjx(”ﬁjﬂx — Ui 1x)
vAt

+ @y)? (U + 41 — 24550)
At

- Ewaﬁ}r(”gﬂrﬂ — Uik 1)

vAt
+ @(RELJMI F Uik —2u58), @)
where Ax = % Ay = %ﬁ and Az = I"fr Clearly, the two remain-
ing equations (6-7) can be discretised in a similar manner.

Writing traditional style code for the 3D version is more involved
than for the 1D case. The data for each of u, v, w is a multiarray
with three indices (i, j, k). We will need two sets of multiarrays, one
for timestep n and one for the next timestep n + 1. A triply nested
loop is then used to compute timestep n + 1 from n.

for(int 1 = 0; 1 < N; i++) {
for (int j = 0; j < M; j++) {
for(int k = 0; k < P; k++) {

up (i, j, k) = un(i, j, k)

- deltat » un(i, j, k)

* (un(i+l,j, k) — un(i-1,3j, k))
/ (2 + deltax)

P coo B
Vp(irjrk) =
wp({i,j, k) = ...
}

}
}

Here the suffix p is used for variables at timestep n + 1, the suffix
n for variables at timestep n.

In each elaboration step above, abstractions from the problem
domain are unfolded and removed from the exposition. In the end, it
is difficult to directly relate the nested loops to the original problem.
First, the coordinate-free operators V, - and V2 were instantiated
with the number of dimensions and Cartesian coordinate system,
yielding equation (3) and equations (5-7), for 1 and 3 dimensions,
respectively. Then the spatial representation as a finite difference
method was chosen, and the continuous operators 333, Eax—zz, ... were
instantiated with the corresponding stencils. Thus the forms equa-
tion (3) and equations (5-7) bear little resemblance to each other,
nor to the problem formulation equation (1). That the resulting code
in fact is related to the original problem is non-trivial to validate,
and a separate documentation trail needs to be maintained in order
to relate the instantiations to the original problem.

Above we have sketched the sequential implementations, almost
taking the code directly from the elaborated version of the equations.

LY

ITI. A BURGERS SOLVER AND MULTIARRAY API

As initially motivated, we want to reformulate the solver using
collective operations, i.e., operations that work on the entire array
rather than looping through the individual elements. The abstraction
level in equation (3) consists of the continuous operators: partial
differentiation, addition, multiplication, etc. Considering the FDM
discretisation, addition, multiplication, etc, are simple pointwise
operations on the array, while partial differentiation relies on neigh-
bouring data.

First we assume an indexing function which returns the element
given by the multiindex (i, j, k).

function get (a:MA, i:int, j:int, k:int) : E;

The type MA is the multiarray, int is an integer type used for

indexing data, and E is the element type (floating point number).
Next we investigate mapped elemental operations, like +, %, —.

Mapped functions can be defined as the following concept.

AW

L S S

[o)}

]

62

An Array API for FDM

1 /% Elemental addition, multiplication and subtraction . */
function _+_ (a:E, b:E) : E;
function _x_ (a:E, b:E) : E;
function _-_ (a:E, b:E) : E;
function —_ (a:E) : E;
/x% Mapped addition, multiplication and subtraction . */
function _+_ (a:MA, b:MA) : MA;
function _*x_ (a:MA, b:MA) : MA;
function _-_ (a:MA, b:MA) : MA;
function -_ (a:MA) : MA;

/«x Relating the mapped and elemental operations . x/
axiom binaryMap (a:MA, b:MA, i,]j,k:int) {
assert get (a+b, i,3j,k)
== get(a,i,j, k) + get(b,i,j, k);
assert get (axb, i,3j,k)
== get(a,i,j, k) * get(b,i,]j, k);
assert get (a-b, i,3j,k)
== get(a,1i,J,k) - get(b,1i,3,k);
}
axiom unaryMap (a:MA, i,3j,k:int) {
assert get (-a, 1i,3j,k) == - get(a,i,j, k);
}

The assertions in the axiom must hold for all combinations of input
data, the parameters, to the axiom. An axiom is like a procedure,
whose intended effect is to validate the assertions on the input data.
This can be used to test the correctness of the code, though testing
on floating point data seldom works as intended.

To provide the partial difference operators we will need a shift
function on the multiarrays.

function shift (a:MA, dir:int, d:int) : MA;

Here the parameter dir instructs which direction we will be
shifting (1 for x direction or index i, 2 for y direction or index j, 3
for z direction or index k), and d gives the shift distance (31 for
one step as needed in the example).

axiom multiarrayShiftAxiom
(a:MA, d:int, 1i,3,k:int) {
assert get (shift(a,1,d), 1i,3, k)
== get (a, (Lx+i+d)%Lx, Jj, k);
assert get (shift(a,2,d), 1i,3j, k)
== get(a, i, (Ly+j+d)s%Ly,k);
assert get (shift(a,3,d), i,3j,k)
== get(a, 1i,3J, (Lz+k+d)%Lz);
}i
Using the modulus operator % for index manipulation above, we
define a circular shift, as needed for circular boundary conditions.
With this sketch of the multiarray API, the indexing, map and
shift operations, in place, we can for any stencil define the par-
tial derivatives as collective operations on a multiarray. The func-

B W oo =

0 N N

tion partiall implements a st order partial derivative using a

(—0.5,0,0.5) stencil, and the function partial2 implements a
2nd order partial derivative using a (1, —2,1) stencil.

function partiall (a:MA, dir:int) : MA {

return (shift (a,dir,1) - shift(a,dir,-1))
/ (2 * deltax);

}i

function partial2 (a:MA, dir:int) : MA {

return
(shift(a,dir,-1) - 2xa + shift(a,dir,1))
/ (deltax * deltax);

bi

The dir argument encodes the direction, dir==1 for x-

O 9%a - irection 92 Gl
direction §7 and O dir==2 for y-direction y and oy)2°
. . 2
and dir==3 for z-direction % and (37‘32.

The solver step for equations (5-7) can now be coded using these
operations.

+ nuxdeltat=
(partial2(un,1)
+ partial2 (un,2)
+ partial2 (un, 3))
- deltatxun*partial (un, 1)
- deltat*vn*partial (un, 2)
- deltatxwn*partial (un, 3);
vp = ...;
wp = ...;
Notice how we easily may change the stencil for this computation:
it is encapsulated in the partial derivative functions, so replacing
these with functions for another stencil is all it takes. The stencil is
no longer embedded all over in the formulation of the solver, as it
was in equation (4)

IV. LINEAR ARRAY API FOR ABSTRACTING HARDWARE

Instead of implementing the multiarray API directly in the hardware,
we propose a linear API for the mapping onto the hardware. The
linear API is slightly more convoluted than the multiarray API, but
is often more straight forward to implement on a target hardware
architecture.

For this exposition, the linear array needs the following primitive
operation to access an element based on an integer index.

/xx Get the element at the index position i. */

function get (a:A, i:int) : E;
The type A is an array of elements and E is the element type,
typically floating point numbers.

We have a similar mapping of elemental functions for the linear

Eva Burrows, Helmer Andre Friis, Magne Haveraaen

63

AW =

)}

16
17

/% Shifts the grp—sized groups of data d positions

circularly

// local index within a segment

var si = j % seg;
//normalize actual shift value to perform within a segment
var sh = (grp * (seg + d)) %

// new index within segment after the local shift

seg;

var ni = (seg+si-sh) % seg;
// obtain the global position of ni within the whole array
var ind = idiv(j, seg)=*seg + ni;

assert get (shiftSegmentGroups (a, seg,grp,d), ind)

}i

to the left within each seg—sized segment. */

function shiftSegmentGroups (a:A, seg:int, grp:int, d:int) : A
guard seg % grp == 0 && getSize(a) % seg == 0 && abs(d) <= seg;

axiom shiftSegmentGroupsDefinitionAxiom (a:A, seg:int, grp:int, d:int, Jj:int) {
var size = getSize(a);
assert size % seg == 0 && seg % grp == 0 && abs(d) <= seg && 0 <= j && J < size;

get (a, j);

Figure 1: Definition of shiftSegmentGroups operation for the linear array.

AW N =

N W

0

20

array as we did for the multiarray.

/«x Elemental addition, multiplication and subtraction . x/

function _+_ (a:E, b:E) E;
function _x_ (a:E, b:E) E;
function _—_ (a:E, b:E) E;
function —_ (a:E) E;
/x% Mapped addition, multiplication and subtraction . */
function _+_ (a:A, b:A) A;
function _x_ (a:A, b:A) A;
function _—_ (a:A, b:A) A;
function —_ (a:A) A;
/xx Relating the mapped and elemental operations . */
axiom binaryMap (a:A, b:A, i:int) {
assert get (atb, i) == get(a,i) + get(b,1i);
assert get (axb, i) == get(a,i) * get(b,1i);
assert get (a-b, i) == get(a,i) - get(b,1i);

}
axiom unaryMap (
assert get (-a, i

}

a:A, i:int) {
) == - get(a,i);

We also need to rearrange (permute) the data of the array in
various ways for different purposes. Here we provide a fairly general
shift operation, see figure 1. It shifts groups of data within segments
of the array. The group size must divide the segment size, the
segment size must divide the actual array size, and the shift distance
must at most be equal to the segment size. (this is written in the

guard phrase, which captures the precondition for the shift function).

W N =

The axiom similarly asserts the relevance of its input data, then nails
down the behaviour of this shift function.

These are the linear array operations we need to define and im-
plement for explicit finite difference solvers for PDEs. For other
application domains the linear array API may need to contain further
operations. Typically a linear API will also provide collective oper-
ations like the prefix scan and fold/reduce. These are not covered
here.

In section VI.1 we sketch some hardware oriented implementa-
tions of this APL

V. MULTIARRAY LIBRARY

In section III we defined a multiarray API, and in the previous
section we defined a linear array API to mask hardware. Here we
explain how to provide a multiarray library on top of the linear array
APL

First we define how to retrieve an element from the linear array
using a multiindex. This is a bijective, simple linear mapping from
a multilinear array with size Ly by Ly by L; to a linear array of size
LyLyL;.

function get (a:MA, i, Jj,k:int) : E {

return get (a, ixLyxLz + JjxLz + k);
}

The map functions are straight forward to reuse from the linear array.
The maps are pointwise, and thus irrespective of indexing, the result
will be at the correct position.

The multiarray shift similarly needs to match both the multiar-

64

1
2
3
4
5

6
7

1

2
5
S)

~

)

11

12

13

An Array API for FDM

(Lx+i+d) $Lx, j, k) ;

i*LyxLz + j*xLz + k)

i*LyxLz + j*xLz + k)

— dxLy*Lz) % (LxxLy=*Lz));
i*Ly*xLz + j*Lz + k)

% Lx)*xLy*xLz);
i*xLyxLz + j*xLz + k)

assert get (shift(a,1,d), 1i,3,k) == get(a,
assert get (shiftSegmentGroups (a,LxxLy*Lz,LyxLz,d),
== get(a, ((Lx+i+d)%Lx)+*LyxLz + j*xLz + k);
assert get (shiftSegmentGroups (a,LxxLy*Lz,LyxLz,d),
== get (shiftSegmentGroups(a,Lx*xLy*Lz,LyxLz,d),
((Lx+i+d) $Lx) «Ly*Lz + jxLz + k + (LxxLyxLz
assert get (shiftSegmentGroups (a,LxxLyxLz,Ly*Lz,d),
== get (shiftSegmentGroups (a,Lx*LyxLz,Ly*Lz,d),
((Lx+i+d) $Lx) xLy*Lz + JxLz + k + ((Lx-d)
assert get (shiftSegmentGroups (a,LxxLy*Lz,LyxLz,d),
== get (shiftSegmentGroups (a, Lx*Ly*Lz,LyxLz,d),

((Lx+i+d+ Lx-d)%Lx)*LyxLz + jxLz + k);

Figure 2: Proof for the correctness of the multiarray shift.

ray’s indexing structure and the linear array’s shift behaviour, see
figure 1. The following defines an appropriate function.

function shift (a:MA, dir:int, d:int) MA |
var seg =
if dir == 1 then Lx ~ Ly * Lz
else if dir == 2 then Ly * Lz
else /x dir ==3 */ Ttz g
end end;
var grp = seqg /
if dir == 1 then Ly » Lz
else if dir == 2 then Lz
else /x dir ==3 */ 1g
end end;
return shiftSegmentGroups(a, seg, grp, d);

}

We sketch a proof of correctness for the x direction in fig-
ure 2. The first assert is from multiarrayShiftAxiom.
In the next assert we have inserted the multiarray get
shift

shiftSegmentGroupsDefinitionAxiom to re-
place the right hand side with an expression involving

shiftSegmentGroups . The remaining lines simplify
the right hand side until it is clear it matches the left hand side
expression. The proof for the y and z directions follow a similar
pattern.

and algorithms above. The third assert uses

The necessary abstractions to code FDM solvers at the con-

tinuous level requires a multiarray shift and mapped +, —, *, /
on the multiarray. This now boils down to providing
shiftSegmentGroups and the mapped functions 4, —, *, /

on an ordinary linear array. This API is quite simple with a few
recurring patterns: (i) the map operations, representing a local, per
element computation, (ii) the shift operation, representing data reor-
ganisation and communication. Compared to rewriting the entire

application code for each architecture, implementing this limited set
of functions will be rather trivial—empowering the user to imple-
ment hardware specific array libraries if the hardware vendor does
not provide it.

VI. RUNTIME EXPERIMENTS

‘We have done several runtime experiments with the developed 3D
Burgers’ solver. It uses the form from equations (5-7). The runtime
experiments target the following two issues.

e Does the suggested approach support easy porting of code
between architectures?
To answer this question we provide implementations of the pro-
posed array API for several architectures, and validate that the
application using the API, without source code modification,
will run on the relevant hardware.

e Does the application code scale as expected on the various
architectures?
To answer this question we run the application on varying
data sizes. For our application example, a 3D FDM Burgers
solver, we should see linear scaling with respect to data set
size, modulo any effects of caching and virtual memory.

VI.1 Linear array implementations

Currently we have targeted two hardware architectures for the linear
array abstraction.

CPU C++ A plain sequential implementation for a single CPU and
uniform memory. This uses C++ arrays for the linear array
API. The mapped operations are each wrapping a loop se-
quentially performing the lifted operation element by element.
The shiftSegmentGroups operation makes a tempo-
rary copy of the current data, then overwrites the argument
array with the shifted data.

Eva Burrows, Helmer Andre Friis, Magne Haveraaen

65

Cuda An Nvidia GPU version implemented in Cuda. The array
is represented as a linear structure in device (GPU) memory,
avoiding transfer of data between CPU and GPU memory
during the computation. The 5 lifted functions, +, —, *, /,
are implemented as device loops in Cuda, then called to
be executed in multithreading GPU kernel mode. This im-
plies no internal synchronisation, but each mapped opera-
tion must be complete before the next operation is started.

shiftSegmentGroups can be implemented by either
synchronising the shifted data between the GPU thread blocks
using multiple kernel invocations, or by obtaining the result
of the shift operation in a fresh array across the GPU device,
eliminating the need for explicit synchronisation within the
function. We have chosen the latter, keeping the shift function
as a single kernel call. This causes a larger memory use than
strictly needed, but is not detrimental to efficiency if the appli-
cation still fits into GPU memory. If this is not the case, other
approaches may be beneficial.

During a computation temporary data is continuously created as
subexpressions are evaluated, and subsequently released when the
result of the expression is assigned to a variable. On the GPU
allocating and deallocating data takes a significant amount of time,
so yet another version of the linear array library was created.

CudaBuffer An Nvidia GPU version implemented in Cuda as
above, but where a buffer large enough to store all temporary
device data is created at the start. This is then managed ex-
plicitly under the hood by the linear array implementing code,
possibly giving more efficient reuse of GPU memory when
temporary variables are created and deleted.

This provides an affirmative answer to our first research question:
we have achieved portability at the application level by a problem
specific APL.

These implementations do not attempt any clever optimisations.
For instance, map fusion (loop merging) could give significant
speedups. This entails rearranging the expressions of the PDE solver,
such that local data is only iterated once on the cores, not once per
operation. For instance, mapping A = f(A, B, C) for an elemental
function f(a,b,c) = a b + c typically is faster than mapping each
of the operations +, * in A = A % B + C. Such rewriting should
be tool supported, otherwise the clarity, and possibly the portability,
of the code will be sacrificed for efficiency.

Even for languages that natively support lifted operations, the
efficiency of mapped operations is an important aspect. For instance,
in early Fortran 90 compilers, executing A = A + B was much
slower for the multiarray version than the corresponding nested loop
version.

V1.2 Runtime results

We configured the software for varying data sizes, each chosen
data size doubling the memory requirement for the program. The
data, 10 waves of sine functions in the z direction, was generated in
the appropriate resolution. Since we are working with 3D data, we
double the size of the data set (the size of the linear array), whenever
the number of elements in each direction in increased by a factor of
/2 ~ 1.26. We used data set sizes 78MB (503 elements), 156MB
(60%), 307MB (79%), 624MB (1003), 1248MB (126%), 2 508MB
(1593), 4992MB (200%), and 9 985MB (2523). Each problem size
was executed for 1,10,100,1000 timesteps in each of the three
versions (CPU, GPU, GPU buffered), yielding a total of 8 x4 % 3 =
96 runs. The applications were run on the department’s compute
server Lyng. It has Intel Xeon CPU E5-2699 v3 at 2.30GHz cores
and Nvidia Tesla K40m with 2880 CUDA Cores at 745 MHz. The
runtime is wall clock time. The clock was started immediately
before the time iteration of the solver, and stopped immediately
after the time iteration. This eliminates unpredictable overhead in
starting especially the GPU (Cuda, CudaBuffer) applications. The
overhead includes a Cuda just-in-time compilation of GPU code
and initialisation of device data, which together may take several
seconds even for small datasets. The CPU does not exhibit similar
disparity between total execution times and the solver’s timestepping
loop times.

The CPU timings are tabulated below. The row captions show the
linear data sizes, the column captions show the number of iteration
timesteps, and the table data is the software’s runtime in seconds.

Cpu C++ 1 10 100 1000
50 0.268 2.900 26.198 264.116

63 0.535 5.794 53.620 530.304

79 1.058 11.516 103.989 1032.465

100 2.176 21.374 220.488 2181.002

126 4.671 51.581 482.747 4642.034

159 10.156 128.887 1176.986 10124.613

200 28.517 958.223 6532.079 32186.134

252 | 776.532 | 2387.521 | 13636.333 | 120525.580

These runs were concurrent with other loads on the computer, leav-
ing about 10GB of free memory for our application. The results
scale well for the smaller tests: it roughly doubles with data set size
for the 4 smaller data sizes, and scales linearly with the number
of timesteps for the 6 smaller data sizes. The two largest data set
sizes behave somewhat erratic, see figure 3, possibly due to swap
behaviour when memory ran low.

The Cuda timings are tabulated below. The row captions show the
linear data sizes, the column captions show the number of iteration
timesteps, and the table data is the software’s runtime in seconds.

An Array API for FDM

Cuda 1 10 100 1000
50 | 0.290 3.151 29479 286.206
63 | 0.310 3.408 31.190 311.993
79 | 0.370 3.939 36.294 363.476

100 | 0.487 4.848 | 49.076 | 492.145
126 | 0.747 7.557 75.908 | 749.141
159 | 1.325 | 14.401 | 132.114 | 1327.804
200 | 3.227 | 31.472 | 310946 | 3098.445
252 | 6.448 | 62.974 | 638.149 | 6358.311

These runs had exclusive access to the GPU. We see the runtimes
grow linearly with the number of timesteps for all data set sizes, see
figure 4. For the 4 larger data set sizes the runtime roughly doubles
when the data set size doubles. However, the 4 smaller data set
sizes do not double in runtime as the data set sizes double. This
indicates overheads on the GPU for these smaller data set sizes,
possibly related to allocation/deallocation of temporary variables.
The Cuda buffered timings are tabulated below. The row captions
show the linear data sizes, the column captions show the number of
iteration timesteps, and the table data is the software’s runtime in

seconds.

CudaBuffer 1 10 100 1000

50 | 0.052 0.577 5.057 50.619

63 | 0.095 1.045 9.552 94.447

79 | 0.162 1777 16.178 162.277

100 | 0.290 2.934 20.526 292.908

126 | 0.563 5.694 57.514 567.513

159 | 1.133 | 12.439 | 114.399 | 1134.132

200 | 2.346 | 26.430 | 233.351 | 2477.200

252 | 5.108 | 49.518 | 500.261 | 5032.021

These runs show very good scaling in both dimensions, see figure 5.
For each data set size, the runtime scales linearly with the number
of timesteps, and the runtime roughly doubles when data set size is
doubled.

Comparing the two Cuda versions against each other, we notice
that for the smaller data set sizes, the unbuffered versions are 5-6
times slower than the buffered version. For the larger data set sizes,
this difference is down to 25%. This is still a noticeable speedup for
the buffered over the non-buffered GPU version.

Comparing the Cuda version with the CPU version, we see that
the CPU does well for the smallest data set size. As the data set
sizes grow, the CPU slows significantly down compared to the GPU
executions, at times becoming a factor of 20 slower. Comparing the
CPU to the buffered Cuda version, we see a slowdown factor close
to 30 for some instances. In the figures 3-5, both Cuda versions
(the two lower diagrams), are on the same scale, while the CPU
version (the upper diagram) has an extra line for 100000 seconds.
This just indicates the common observation that in the PDE domain
significant speedups can be achieved using parallel GPU computing
over standard single-threaded CPU computing.

Cpu C++

100000

Runtine

1 10 100 1000
Timesteps
Figure 3: Runtimes for Burgers 3D solver on main CPU using

collective operations implemented in plain C++.
Cuda

—=—50
——63

—i— 100
——12%

159
—=—200

Runfime

1 10 100 1000
Timesteps
Figure 4: Runtimes for Burgers 3D solver on GPU using collective
operations implemented in Cuda.
CudaBuffer

1 10 100 1000
Timesteps
Figure 5: Runtimes for Burgers 3D solver on GPU using collective
operations with explicit buffer management implemented in Cuda.

‘We have previously promoted similar ideas in [9] where we
demonstrated an implementation using MPI of a multiarray abstrac-
tion. Again the data showed similar scaling.

The experiments confirm that the proposed abstraction layered
approach to utilising heterogeneous architectures works. At least
on the chosen kind of example (explicit finite difference solver),
the measured runtimes roughly scale as expected for each type of
backend.

Eva Burrows, Helmer Andre Friis, Magne Haveraaen

67

VII. RELATED WORK AND DISCUSSION

Abstracting away parts of numerical computations has long been
recognised as the path to increase numerical software development
productivity and flexibility. As a result, either language extensions
or reusable software libraries have been proposed to raise the ab-
straction level. In the past decade, high-level parallelisation aspects
of numerical code has also emerged as an active research field and
most proprietary and open source software used in computational
science tackle this issue to some extent. We will briefly summarise
three approaches: directives, language extensions and libraries.

Common directives-based languages are OpenMP [4] and Ope-
nACC [17]. Directives provide meta-information about the code,
enabling the compiler to parallelise and distribute it across cores on
a parallel architecture. These are fully dependent on compiler sup-
port, and the user cannot adapt the tools to deal with new hardware
architectures. Directives are not compatible with our proposed API
approach.

Fortran 2008 [13] is a programming language standard with ex-
plicit support for parallelism in the form of coarrays. Using coarrays
require changing the sequential code, a change that may influence
the structure of the entire program [10]. However, a coarray adapted
program may also execute on sequential architectures, in principle
making the code portable. The coarray feature has been designed
for the PGAS model, but provides only rudimentary support for
the feature. Work is being done to provide a reusable, open source
support for coarrays [8]. The initiative builds on the MPI library,
see discussion below. Some authors have proposed extensions to
Fortran to handle accellerators [16].

There is a wide range of libraries for supporting parallel and
distributed programming. We mention a few here.

C++ [2] has no native support for parallelism, but there are
many libraries supporting multiarrays and parallelism (boost.org,
Blitz++[20, 7]). It is easy to implement our proposed API structure
as a C++ library.

Cuda [5] is an extension to C, C++ and Fortran providing fa-
cilities for using Nvidia GPUs. It makes GPGPU programming
straightforward, but the code is not portable to other parallel ar-
chitectures or competing GPU vendors. We use Cuda in our GPU
implementation of Burgers’ equation.

OpenCL [14] is an extension to C providing interfaces to many
different hardware backends, e.g., GPUs and FPGAs. The paral-
lel programming features are low level, but should be well suited
for writing the lower level parallel libraries in our proposed API
structure.

MPI [15] is a widespread library for explicit communication of
data. The library is available for most programming languages, and
is adapted to almost all current parallel architectures. Using the
library directly is intrusive and forces significant rewrite of source
code. It is used as the standard low level communication library,

and can easily be used for implementing our low level linear array
abstraction.

Diffpack [11] is a proprietary C++ library based on object-
oriented numerical code widely used in CSE applications and simu-
lations. Diffpack has become successful due to the powerful abstrac-
tions imposed on numerial code offering productivity and efficient
code. This provides a domain oriented API as proposed in our
approach, but Diffpack does not empower their user to provide their
own architecture mappings as we suggest.

Mathworks has an extensive parallel Computing Toolbox for
Matlab [6]. These are based on the multiarray abstraction, and
provides backends for many parallel architectures. It is possible to
implement our proposed API structure in Matlab, but the user is
dependent on the vendor for adaption to new architectures.

VIII. CONCLUSION

Software structure is very important for the versatility of software,
specifically the ability of re-targeting a numerical solver for new
HPC architectures. We argue that carefully creating a system of
APIs for computational software is a way of organising software
achieving this. With object-oriented numerics programming styles
becoming embraced also in HPC [18], abstraction oriented ap-
proaches are now part of the HPC toolbox.

A well designed library API will embody the application do-
main’s concepts, in such a way that a clean and natural separation
occurs between application code and, in our case, the underlying
hardware architectures. A message passing library, e.g., MPI, does
not have such a property wrt PDE solvers, while an array based
library does.

We have proposed using simple array based APIs as a means
of abstracting over hardware and providing the applications with a
stable abstraction layer. The approach empowers the user to provide
their own mappings to heterogenous architectures. Empowering the
user to easily re-target a code for new architectures is important to
prepare for ultrascale computing.

Compiler vendors seem to a limited extent be able to support this
fast changing landscape, hence leaving compiler dependent software
support in the dark. Many language extensions for parallelism also
fail in portability, requiring more or less intrusive rewrites of code
when porting between architectures.

The technical results show that our approach is feasible and de-
livers on two important issues: (I) the approach makes applications
portable across varying hardware architectures without modifica-
tions in the application source code, and (II) the approach achieves
the expected runtime scalability to be useful for HPC. We have
thus converted a portability problem into a much simpler library
implementation problem.

Future work includes building further benchmarks for more com-
plex hardware architectures, and comparing our results to those

68

An Array API for FDM

achieved by the more labour intensive standard approaches. Further
we want to expand the ideas to other problem domains.

Acknowledgment

This research has in part been financed by The Research Council of Norway
through the project Design of a Mouldable Programming Language (DMPL),
and has received support from EU under the COST Program Action IC1305,
Network for Sustainable Ultrascale Computing (NESUS).

REFERENCES
[1] Anya Helene Bagge, Valentin David, and Magne Haveraaen.
Testing with axioms in C++ 2011. Journal of Object Technol-

ogy, 10:10:1-32, 2011.

2

—

Pete Becker et al. ISO/IEC 14882:2011: Programming lan-
guages — C++ (final draft international standard). Technical
Report N3290, JTC1/SC22/WG21 — The C++ Standards Com-
mittee, April 2011.

[3] J.M. Burgers. A mathematical model illustrating the theory of
turbulence. In Richard Von Mises and Theodore Von Karman,
editors, Advances in Applied Mechanics, volume 1, pages 171
—199. Elsevier, 1948.

[4

—

Barbara Chapman, Gabriele Jost, and Ruud van der Pas. Using
OpenMP: Portable Shared Memory Parallel Programming
(Scientific and Engineering Computation). The MIT Press,
2007.

[5

—_

Shane Cook. CUDA Programming: A Developer’s Guide to
Parallel Computing with GPUs. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 1st edition, 2013.

[6

—_

Timothy A. Davis. MATLAB Primer, Eighth Edition. CRC
Press, Inc., Boca Raton, FL, USA, 8th edition, 2010.

[7] Denis Demidov, Karsten Ahnert, Karl Rupp, and Peter
Gottschling. Programming CUDA and opencl: A case study
using modern C++ libraries. SIAM J. Scientific Computing,
35(5), 2013.

[8

—_—

Alessandro Fanfarillo, Tobias Burnus, Valeria Cardellini, Sal-
vatore Filippone, Dan Nagle, and Damian W. I. Rouson. Open-
Coarrays: Open-source transport layers supporting coarray
Fortran compilers. In Allen D. Malony and Jeff R. Ham-
mond, editors, Proceedings of the 8th International Confer-
ence on Partitioned Global Address Space Programming Mod-
els, PGAS 2014, Eugene, OR, USA, October 6-10, 2014, pages
4:1-4:11. ACM, 2014.

[9] Magne Haveraaen. Machine and collection abstractions for
user-implemented data-parallel programming. Scientific Pro-
gramming, 8(4):231-246, 2000.

[10] Magne Haveraaen, Karla Morris, Damian W. I. Rouson, Hari
Radhakrishnan, and Clayton Carson. High-performance de-
sign patterns for modern Fortran. Scientific Programming,
2015:942059:1-942059:14, 2015.

[11] Hans Petter Langtangen. Computational Partial Differential
Equations - Numerical Methods and Diffpack Programming,
volume 1 of Texts in Computational Science and Engineering.
Springer, 2003.

[12] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh.
Basic linear algebra subprograms for fortran usage. ACM
Trans. Math. Softw., 5(3):308-323, September 1979.

[13] M. Metcalf, J. Reid, and M. Cohen. Modern Fortran Explained.
Oxford University Press, 2011.

[14] Aaftab Munshi, Benedict Gaster, Timothy G. Mattson, James
Fung, and Dan Ginsburg. OpenCL Programming Guide.
Addison-Wesley Professional, 1st edition, 2011.

[15] Peter S Pacheco. Parallel programming with MPI. Morgan
Kaufmann, 1997.

[16] Craig Rasmussen, Matthew Sottile, Soren Rasmussen, Dan
Nagle, and William Dumas. Cafe: Coarray Fortran exten-
sions for heterogeneous computing. In Proceedings IPDPS
Workshops, page to appear, 2016.

[17] Ruyman Reyes, Ivan Lépez, Juan J. Fumero, and Francisco
Sande. A preliminary evaluation of openacc implementations.
J. Supercomput., 65(3):1063-1075, September 2013.

[18] Damian W.I. Rouson, Jim Xia, and Xiaofeng Xu. Scientific
Software Design: The Object-Oriented Way. Cambridge Uni-
versity Press, 2011.

[19] Alexander Stepanov and Paul McJones. Elements of Program-
ming. Addison-Wesley Professional, 1st edition, 2009.

[20] Todd L. Veldhuizen. Blitz++: The library that thinks it is
a compiler. In Hans Petter Langtangen, Are Magnus Bru-
aset, and Ewald Quak, editors, Advances in Software Tools for
Scientific Computing, volume 10 of Lecture Notes in Computa-
tional Science and Engineering, pages 57-87. Springer Berlin
Heidelberg, 2000.

Berk Hess, Jing Gong, Szilard Pall, Philipp Schlatter; Adam Peplinski

&

CcoskE

69

Highly Tuned Small Matrix Multiplications
Applied to Spectral Element Code Nek5000

BERrRK HEss, JING GONG, SZILARD PALL

KTH Royal Institute of Technology, Sweden
hess,gongjing,pszilard@kth.se

PHILIPP SCHLATTER, ADAM PEPLINSKI

Department of Mechanics, KTH Royal Institute of Technology, Sweden
pschlatt,adam@mech kth.se

Abstract

Nek5000 is an open-source code for simulating incompressible flows using MPI for parallel communication. In the Nek5000
code, the tensor-product-based operator evaluation can be implemented as small dense matrix-matrix multiplications. It is clear
that the routines for calculating the matrix-matrix product dominate the execution time of Nek5000. In this paper, we conduct
the optimization of matrix-matrix multiplication using SIMD intrinsics and the LIBXSMM package. The evaluation of the
computational cost and optimization of these subroutines is not only applied to the CFD code Nek5000, but also to the NekCEM
and NekLEM software, which share same data structures with Nek5000.

Keywords Spectral Element Method (SEM), Nek5000, Nekbone, Single instruction multiple data (SIMD), LIBXSMM

I. INTRODUCTION

Nek5000 [1] is an open-source code for simulating incom-
pressible flows using MPI for parallel communication. The
code is widely used in a broad range of applications. The
Nek5000 discretization scheme is based on the spectral-
element method [2]. In this approach, the incompressible
Navier-Stokes equations are discretized in space by using
high-order weighted residual techniques employing tensor-
product polynomial bases. The tensor-product-based opera-
tor evaluation can be implemented as small matrix-matrix
multiplication, The main part of the program Nek5000
consists in small matrix-matrix multiplication routines, in
which the program spends most of its time (more than 60%
in a 2D version) [3].

Currently, the routines are basic FORTRAN routines
with nested loops to compute the matrix multiplications in
Nek5000. The aim of the work is to enhance the routines us-
ing vectorization techniques like SIMD (Single Instruction
Multiple Data) instructions [4] and the high performance li-
brary for small matrix multiplications LIBXSMM [5].

The remainder of this paper is organized as follow. Sec-

tion 2 describes the algorithms and the SIMD implemen-
tations. Section 3 presents the main performance results.
Finally the conclusions and further works are discussed in
Section 4.

II. THE ALGORITHMS AND THE SIMD
IMPLEMENTATION

In Nek5000, the small dense matrix multiplication is written
as

mem::AmxmBmxm

where the size of 17, 115, and 13 can be N or N2 with typical
N € (4 —16). In the routine written as below we use the “C”
ordering wherein columns of B are assumed stored consec-
utively and that successive rows of A are stored n; floating
point words apart in memory, see [7]).

int i, j, k;
for (i = 0; i < ni1; i++) {
for (k = 0; k < n3; k++) {
cl[il[k] = 0.0;
for (j = 0; j < n2; j++) {

70 Highly Tuned Small Matrix Multiplications Applied to Spectral Element Code Nek5000

c[i][k] += alil[j] * b[j]1[k];
}
}
}

However this implementation is very time consuming
since the compilers have a hard time optimizing and vector-
izing it. Also there is no hint given for the values of the loop
parameters, and the compiler would not take full advantage
of the underlying SIMD architecture.

The principle of SIMD instruction is to apply an instruc-
tion to multiple operands at once instead of on one operand
and thus considerable improving code performance. Re-
cent processors, e.g. Intel Haswell, have support for 256-bit
SIMD instructions that operate on 256-bit registers [6] (512-
bit for the next generation), thus processing 4 double pre-
cision numbers simultaneously. With 2 fused multiply-add
operations per cycle per core, this results in a peak through-
put of 16 FLOPs per cycle per core. However, with standard
code one has to rely on the compiler to extract sufficient
SIMD vectorization. Except for triial cases, such as opera-
tions on large vectors, this is a difficult task. Furthermore,
the throughput is often limited by speed with which the
operands can be loaded from memory or L2/L3 cache into
SIMD registers.

int i, j, k;
for(k = 0; k + 1 <n3; k += 1) {
simd_db bs0[n2];
for (int j = 0; j < n2; j++) {
bs0[j] = simd_broadcast_sd(b + j + k * n2);
}

i= 0;

while(i + SIMD_WIDTH <= ni1) {
simd_db as = simd_loadu_pd(a + i);
simd_db cO0 = simd_mul_pd(as, *bsO0);

for (int j = 1; j < n2; j++) {
as = simd_loadu_pd(a + i + j*nl);
c0 = simd_fmadd_pd(as, bsO[j]l, cO);
}
simd_storeu_pd(c + i + k * nl, c0);
i += SIMD_WIDTH;
}
if (i < n1) {
simd_si mm = simd_castpd_si(simd_loadu_pd(
(const double*)mask[ni-i]));
simd_db as = simd_maskload_pd(a + i, mm);
simd_db cO0 = simd_mul_pd(as, *bsO0);
for (j = 1; j < n2; j++) {

as
c0

simd_maskload_pd(a + i + j*nl, mm);
simd_fmadd_pd(as, bs0[j], c0);

}
simd_maskstore_pd(c + i + k * nl, mm, c0);
}
}

To optimize the matrix-matrix multiplication routines in
the program we firstly take maximum advantage of the un-
derlying architecture by using SIMD intrinsics, supported
by several compilers, and to help the compiler by unrolling
the different loops that are involved in the routine [8]. The
fact that we have stride-1 access within the j-loops and not
necessarily within the i-loops at the same time makes this
idea less appealing. Thus, we could aim at SIMD vectoriz-
ing to ensure that all j-loops will SIMD vectorize well in the
matrix-matrix multiplication and this requires that the com-
piler does indeed recognize the j-loops as stride-1 loop. By
using the instruction set provided for AVX2-compatible ar-
chitecture (_mm256_x). One instruction has been replicated 4
times in B and 4 rows in A are computed simultaneously.

[[B1,1 By,]| (A1 - Ay
By -+ By, [Ag1 Ay
B31 -+ Bgy |As1| - Asy
By -+ By, |Agq Ay

LBu1 - Bpy) LAnt o A

Using assembly code can further optimize loops and
memory fetching wherever possible and manually unroll. In
Algorithm 1 we shown the core of assembly code for the rou-
tine. Most of the loops go downwards instead of the natural
upward scheme. We keep in register everything that is often
need (loop indexes) to avoid redundancy when possible.

The Intel LIBXSMM is designed in a very flexible way, that
is, separated into a frontend (routine selection) and backend
(specific XxGEMM code generation). As a result, LIBXSMM
can achieve its high application level performance for In-
tel processors. LIBXSMM offers an auto dispatcher which
decides which backend should be executed for the given
parameter set [5]. Finally we call through the interface
of LIBXSMM, which implements the matrix multiplication
shown in Algorithm 2 [9].

III. PERFORMANCE RESULTS

To understand the performance implications of SIMD opti-
mization, this paper presents case studies of porting and op-
timization of kernel benchmarks for a spectral element code
Nekbone, which is a simplified version of a computational

Berk Hess, Jing Gong, Szilard Pall, Philipp Schlatter; Adam Peplinski 71

Algorithm 1 Assembly SIMD code

for_j_loop:
subq %r9, %rid
load_bsO_array

#Initialisation of i-loop

movl %r8d, %riid

subq %r8, %rdi

subl $32, Yriid

jle while_i_loop_end
while_i_loop:

loop_mult for_k_loop

subl $32, %riid

jis while_i_loop

while_i_loop_end:

loop_mult for_k_loop_in_nl, 1

decl %r10d

jge for_j_loop
end_of_function:

popa %r15

popq hrid

Algorithm 2 LIBXSMM Interface

CALL libxsmm_init()

CALL libxsmm_dispatch(xmm, &
nl, n3, n2, alpha=alpha, beta=beta)

IF (libxsmm_available(xmm)) then

CALL libxsmm_call(xmm, C_LOC(ap), &

C_LOC(bp), C_LOC(cp))

ENDIF

CALL libxsmm_finalize()

fluid dynamics (CFD) code Nek5000. Nekbone focuses on
the Poisson operator evaluation that is a central computa-
tional kernel in Nek5000. As kernel benchmarks, we focus
on highly tuned matrix multiplications for fine-grained par-
allelism of matrix-vector multiplications.

An initial performance profiling of Nek5000 application
on a single Haswell node was carried out using the Cray
Performance Analysis Tools (CrayPAT) profiler. The goal of
this profiling work was to identify which subroutines are
the most time consuming and can provide enough work-
load to exploit the SIMD instructions. The profiling table
above shows the profiling results. The subroutine mx2mf2
for the matrix multiplication takes around 42.3% total exec-
utive time.

Table 1: Profile by Function

Samp’% | Samp | Group
| | Function

100.0% | 2811.0 | Total
| o e e
| 95.7% | 2689.0 | TUSER
R e e L L L L e Pt
[l 42.3% | 1190.0 | mxmf2
[l 14.5% | 408.0 | cg_
[l 12.3% | 347.0 | glsc3_
[l 11.3% | 319.0 | add2s2_
[4.0% | 113.0 | add2si_
[1 3.1% | 86.0 | jl_gs_gather
[l 2.04 1 55.0 | jl_gs_scatter
Il 1.7% | 47.0 | add2_
[1 1.7% | 47.0 | jl_sortp_ull
[l 1.3% 1 37.0 | jl_sortp_ui

| 4.3% | 120.0 | ETC

We carry out the performance tests on Beskow which is
a Cray XC40 system, based on Intel Haswell processors and
Cray Aries interconnect technology. This system has Intel
Xeon E5-2698v3 (Haswell) CPUs with processor frequency
of 2.3 GHz.

Figures 1 and 2 show the performance results with num-
ber of elements E = 10000 and E = 20000, respectively.
From these figures, we find that better performance can
be obtained using the SIMD intrinsics and LIBXSMM. Also
SIMD intrinsic code can lead high performance with lower
orders of polynomial (N = 4,6, 8).

IV. ConcrusioN AND FUTURE WORK

We have studied the performance implications of several
optimization of small matrix-matrix multiplication. Specifi-
cally an originally optimized version is adapted to Nek5000.
Through the SIMD vector instructions and the Intel library
LIBXSMM, the results show that the performance signifi-
cantly improved on the matrix multiplication. The overall
performance of Nek5000 has also been improved due to the
use of SIMD instructions.

REFERENCES

[1] P. E Fischer, J. W. Lottes, and S. G. Kerkemeier, Nek5000
web page, Web page: http://nek5000.mcs.anl.gov.

72 Highly Tuned Small Matrix Mulriplications Applied to Spectral Element Code Nek5000

25

E MXM
B SIMD
| LIBXSMM

[
L=}

—
wu

Performance (GFLOPS)
=
o

wu

N=4 N=6 N=8 N=10 N=12 N=14 N=16

Figure 1: Performance results on a Haswell node with number of
elements E = 10000

[2] M. Deville, P. Fischer, and E. Mund, High-order methods
for incompressible fluid flow, Cambridge University Press,
2002.

[3] P. Fischer,]. Lottes, W. D. Pointer, and A. Siegel, “Petas-
cale Algorithms for Reactor Hydrodynamics”, Journal of
Physics: Conference Series, vol. 125, 012076, 2008.

[4] Intel Architecture Instruction Set Ex-
tensions Programming Reference,
www.naic.edu/ phil/software/intel/319433-014.pdf

[5] A. Heinecke, H. Pabst and G. Henry, “LIBXSMM: A
High Performance Library for Small Matrix Multiplica-
tions,” in the Proceedings of SC15, Austin, USA, Novem-
ber 15-20, 2015.

[6] G. Mitra, B. Johnston, A.P. Rendell, E. Mccreath, and J.
Zhou, “Use of SIMD vector operations to accelerate ap-
plication code performance on low-powered ARM and
Intel platforms. in IEEE 27ih International Parallel and Dis-
tributed Processing Symposium Workshops and PhD Forum
(IPDPSW), pp 1107-1116, 2013.

[71 W. P. Petersen and P. Arbenz, Introduction to Parallel Com-
puting, A Practical Guide with Examples in C, Oxford Uni-
versity Press, 2004.

[8] S. Pall and B. Hess “A flexible algorithm for calculat-
ing pair interactions on SIMD architectures”, Computer
Physics Communications, vol. 184, no. 12, pp. 2641-2650,
2013.

 MXM
B SIMD
| EEE LIBXSMM

[
o

._.
&

Performance (GFLOPS)
=
(=]

wn
T

N=4 N=6 N=8 N=10 N=12 N=14 N=16

Figure 2: Performance results on a Haswell node with number of
elements E = 20000

[9] M. Hutchinson, A. Heinecke, H. Pabst, G. Henry, M.
Parsani and D. Keyes, “Efficiency of High Order Spec-
tral Element Methods on Petascale Architectures,” in
ISC High Performance 2016 LNCS 9697, |.M. Kunkel et al.
(Eds), pp. 449466, 2016.

Acknowledgment

This work is partially supported by EU under the COST
Program Action IC1305: Network for Sustainable Ultrascale
Computing (NESUS) and the Swedish e-Science Research
Center (SeRC).

We would also like to thank Erik Lindahl and Ismael
Bouya for help with the SIMD code as well as Alexander
Heinecke, Hans Pabst, and Greg Henry from Intel for the
LIBXSMM used in the paper.

Nicolas Denoyelle, Aleksandar llic, Brice Goglin, Leonel Sousa, Emmanuel Jeannot 73

&

CcoskE

Automatic Cache Aware Roofline Model
Building and Validation Using Topology

Detection

Nicoras DENOYELLE & ALEKSANDAR ILIC & BRICE GOGLIN & LEONEL SOouUsA & EMMANUEL JEANNOT

Inria - France — INESC-ID - Portugal
nicolas.denoyelle@inria.fr ilic@sips.inesc-id.pt brice.goglin@inria.fr las@sips.inesc-id.pt emmanuel jeannot@inria.fr

Abstract

The ever growing complexity of high performance computing systems imposes significant challenges to exploit as much as
possible their computational and memory resources. Recently, the Cache-aware Roofline Model has gained popularity due to its
simplicity when modeling multi-cores with complex memory hierarchy, characterizing applications bottlenecks, and quantifying
achieved or remaining improvements. In this short paper we involve hardware locality topology detection to build the Cache
Aware Roofline Model for modern processors in an open-source locality-aware tool. The proposed tool also includes a set of
specific micro-benchmarks to assess the micro-architecture performance upper-bounds. The experimental results show that by
relying on the proposed tool, it was possible to reach near-theoretical bounds of an Intel 3770K processor, thus proving the

effectiveness of the modeling methodology.

Keywords Roofline Model, DRAM, Cache, Tool, Cache Aware Roofline Model, hwloc

I. INTRODUCTION

Since the advent of multi-core era, computer systems tend
to incorporate an increasing number of cores, while the
relative memory bandwidth and memory space per core is
decreasing [11]. In order to address application requirement
and improve the overall performance, current computing
platforms rely on memory hierarchies of increasing complex-
ity. Reshaping applications data layout to take full advantage
of those architectures can significantly improve the overall
performance at the cost of tremendous development efforts.
The Cache Aware Roofline Model (CARM) [5] is able to
aggregate this complexity in a single insightful model, and
guide application optimization to fit the micro-architecture
performance upper-bounds. Its effectiveness motivated us
to bring it to non expert developer a robust tool equipped
with deep benchmarking of multi-core platforms with
complex memory hierarchy, which automatically builds
the model and provides the application optimization insights.

To conduct a thorough evaluation of memory and
compute capabilities of a given platform, the proposed tool
also includes the necessary software support to identify both
micro-architecture instruction set and cache topology. The
former can be found with compiler support [1], whereas
the latter has only been mastered in a portable way by
hwloc (hardware locality) library [3]. By relying on this

run-time detection of compute and memory resources, the
proposed tool automatically instantiates a set of custom
platform-specific micro-benchmarks for deep evaluation
of platform capabilities, upon which the Cache-aware
Roofline Model is generated. Furthermore, the proposed
tool also includes a lightweight library to provide access
to the hardware counters and extract, at runtime, the
application features to be mapped in the model. To the best
of our knowledge, there are no existing cross-platform and
open-source tools that allow automating this process (i.e
building the CARM and mapping applications in it).

The remainder of this paper is organized as follow: Sec-
tion II describes the original Roofline Model and the Cache
Aware Roofline Model. Section III details our tool features,
design choices to model the cache hierarchy, and take full ad-
vantage of the architecture, and provides preliminary results.
Section IV concludes the paper.

II. THE ROOFLINE MODEL THEN AND Now

The Roofline modeling, in general, is an insightful approach
to represent the performance upper-bounds of a processor
micro-architecture. ~ Since computations and memory
transfers can be simultaneously performed, the Roofline
modeling is based on the assumption that the overall
execution time can be limited either by the time to perform

74 Automatic Cache Aware Roofline Model Building and Validation Using Topology Detection

»
>

fpeak

& b4
o
N>
&

f Optimization

Performance [GFlops/s]

Memory bound region Compute bound region

»
L

fpeak

Optimization

Performance [GFlops/s]

Memory bound region Compute bound region

Operational Intensity [Flops/DRAMBYyte]

Figure 1: ORM chart

computations or by the time to transfer data. Hence, from
the micro-architecture perspective, the overall performance
(typically expressed in flops/s) can be limited by the peak
performance of computational units or by the capabilities
of memory system (i.e., memory bandwidth). To this date,
there are two main approaches for Roofline modeling,
namely: the Original Roofline Model (ORM) [13] and
the Cache-aware Roofline Model (CARM) [5]. These two
approaches provide different perspectives when describing
the micro-architecture upper-bounds, and they are also
differently constructed, validated, and used for application
characterization and optimization.

The ORM targets the systems with a processing element
(PE) connected to a single (slow) memory (usually, the
DRAM). The ORM’s PE encapsulates computational units
and a set of fast memories (i.e., caches). As such, the ORM
mainly considers the memory transfers between the last
level cache and the DRAM (commonly referred as DRAM-
Bytes). Hence, it denotes the theoretical DRAM bandwidth
as one of the potential execution bottlenecks. Depending on
the "operational intensity", i.e., the ratio of compute opera-
tions (flops) over the quantity of DRAM data (DRAMBytes),
the applications can be characterized as compute-bound or
memory-bound. The model was used in several works for
application optimization [6] [10] [12], as well as to model
other.

Figure 1 represents the ORM for a hypothetical computing
platform. The axes of the chart are presented in log-log scale,
where the "operational intensity" (in flops/DRAMByte)
stands on abscissa and the performance (in flops/s) stands
in ordinate.

In contrast, the CARM perceives the memory transfers
from a consistent micro-architecture point of view, i.e., a core,
where the memory transactions are issued. As such, the
CARM targets contemporary systems where the PE encloses
only compute units and registers, while all other memory

Operational Intensity [Flops/Byte]

Figure 2: CARM chart

levels are separately and explicitly considered. For this
purpose, the CARM includes several memory lines in the
same plot, each corresponding to the realistically achievable
bandwidth of a specific memory level to the core, i.e., cache
levels and DRAM. When characterizing the applications,
the CARM relies on the true "arithmetic intensity", i.e., the
ratio of performed compute operations (flops) over the total
volume of requested data (in bytes) by taking into account
the complete memory hierarchy (i.e., caches and DRAM).

Fig. 2 shows the CARM general layout for a hypothetical
micro-architecture with a single cache level and DRAM. The
CARM axes are presented in the log-log scale, where the
x-axis refers to the arithmetic intensity (in flops/byte) and
the y-axis to the performance (in flops/s). As presented
in Fig. 2 (see dashed line), the CARM allows visualizing
whether an application with a given arithmetic intensity is
memory-bound or compute-bound by observing if a straight
vertical line hits a peak (FP) roof or a bandwidth roof.

For these reasons, we base our methodology on the Cache
Aware Roofline Model. As explained above, the CARM
differs from the original model, it is usually capable of pro-
viding deeper insights when analyzing the applications ex-
ecution bottlenecks, and it also has potential to be adapted
to future memory designs. Moreover, the ORM has already
a dedicated tool [7] for a similar purpose as ours, but the
approach adopted in the herein proposed tool significantly
differs and it targets a more consistent and concrete analysis.

III. LocArLiTY-AWARE ROOFLINE TooL

Our main contribution consists in the development of
the open-source tool named Locality Aware Roofline Tool
(LART)!, which exploits hwloc topology detection to auto-
matically build the Cache Aware Roofline Model (CARM).

lavailable at: https://github.com/NicolasDenoyelle/ LARM-Locality-
Aware-Roofline-Model-

Nicolas Denoyelle, Aleksandar Ilic, Brice Goglin, Leonel Sousa, Emmanuel Jeannot 75

Main tool features.

The proposed LART is composed of 3 main components,
namely:

e A set of micro-benchmarks for automatic CARM con-
struction on a given micro-architecture;

e The library for counter-based extraction of CARM met-
rics from a user application (i.e., the number of per-
formed flops and transferred bytes, as well as the overall
execution time);

e A visualization tool to present the model with architec-
ture bounds and applications metrics extraction.

The first component consists in a program that automat-
ically builds the CARM for the specific processor micro-
architecture where the tool is run. By relying on a set
of hwloc features, the proposed tool automatically detects
the memory hierarchy and processor compute capabilities,
based on which specific micro-benchmarks are instantiated
to deeply evaluate the bandwidth of each memory level, as
well as the peak floating point (FP) performance according to
the CARM methodology. In addition, the proposed tools also
permits to perform the CARM validation tests, by running a
set of micro-benchmarks with variable arithmetic intensity.
The second component of the tool represents a library with a
set of API calls. These API calls are aimed at performing the
automatic CARM characterization of a given user application,
by instrumenting the application source code. To provide
a wider cross-platform portability, this component relies on
PAPI [9] features to collect all necessary CARM metrics via
hardware performance counters, i.e., to determine the ap-
plication arithmetic intensity and performance. The third
component of the proposed tool is a command-line generat-
ing a visual plot of the CARM using platform analysis results.
It enables a user to plot application metrics extracted with
the above-referred library in the CARM chart. The model
validation and bandwidth deviation can also be seen and
provide a straightforward evaluation of the confidence one
can grant to the model.

Building the model from a hierarchical topology

Discovering all the computing and memory resources in a
computing platform can be performed with tools such as
hwloc [4]. Prior to hwloc, the similar approaches were of-
ten less portable or they were not capable of exposing as
many details about cache sharing etc. The hwloc framework
models the machine topology as a tree and suits particularly
well the caches structure. As presented in Figure 3, the view
returned by the hwloc represents, express this structure with

Machine (7884MB total)
NUMANode P#0 (7884MB)
Package P#0
L3 (8192KB)
L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB)
L1d (32KB) L1d (32KB) L1d (32KB) L1d (32KB)
Core P#0 Core P#1 Core P#2 Core P#3

Figure 3: Topology of Intel Ivy Bridge processor model i7 3770k as
seen by hwloc

nested boxes. Each core has a stack of 2 private caches, while
all cores share the last level cache and the main memory
(DRAM). This model where each Core sees the cache hierar-
chy as a cache stack of increasing size?, perfectly suits the
way how the CARM perceives the memory hierarchy. In ad-
dition, the hwloc library also allows a straightforward identi-
fication of the cache and memory sizes via the attributes of
the Core parent nodes. These parameters are further used
in the proposed tool in order to instantiate the appropriate
micro-benchmarks for different memory subsystem levels
by using the state of the art technique (i.e. buffer streaming
of increasing sizes). The floating point peak performance is
determined by executing a set of flop instructions in parallel
on each core detected by hwloc. However, determining the
bandwidth for different levels of memory hierarchy is more
challenging, since it is required detecting the cache hierarchy
structure with hwloc. This "topology aware” benchmarking
technique is detailed in algorithm 1. For each cache level
and memory, the proposed tool automatically determines an
upper bound and lower bound size, which are subsequently
used to build buffers of varying size fitting only the tar-
get cache. Afterwards, a specifically developed bandwidth
benchmark is performed several times, the median value
of all benchmarked sizes is reported as the experimentally
determined bandwidth for the target memory level.

2 The processors use a cache replacement policy where old data from closer
caches is evicted in favor of more frequently used ones. The replacement
policy defines the method how data is moved from bottom caches to top
ones(see in Figure 3). Since the size of the caches closer to cores is smaller
than the one for the farther memory levels, the cache stack as seen by each
core has an increasing size from bottom to top.

76 Automatic Cache Aware Roofline Model Building and Validation Using Topology Detection

Data: topology, repeat

n_threads = hwloc_get_nbobjs_by_type(topology,
HWLOC_OB]_CORE);

Core0 = hwloc_get_obj_by_type(topology,
HWLOC_OBJ_CORE, 0);

/% See subsection III.3, figure 4 for benchmark

details */
fpeak = median(parallel_flop_uops(repeat));
/* Cache here is a memory subsystem. */

foreach cache in ancestors(topology, Core0) do
min_size = cache.size *
hwloc_get_nbobj_inside_cpuset_by_type(topology,
cache.cpuset, HWLOC_OBJ_CORE);
max_size = ancestor_cache(topology, cache).size;
for size in min_size:max_size do
buffer = array_of_size(size /n_threads);
/* See subsection III.3, figure 5 for
benchmark details */
time = parallel_mem_uops(copy(buffer));
bandwidths[size] = buffer.size*n_threads/time;
end
cache.bandwidth = median(bandwidths);
end
Algorithm 1: Memory subsystem benchmark algorithm

Reaching the architecture upper-bounds

Nowadays, general purpose processors usually implement a
variety of vector operations, also named as Single Instruction
Multiple Data (SIMD) operations. Depending on the target
micro-architecture, the tool proposed herein is able to auto-
matically detect the operation type that allows to fully exploit
the micro-architecture capabilities (typically, the widest vec-
tor instructions). These instructions refer to both compute
operations and memory transactions, where the performance
upper-bound of each involved unit is expressed as a function
of the register size (i.e the number of floating point elements
it contains) and the achievable throughput. By compiling
the benchmarks on target architecture, we ensure that the
largest vector size is used for the benchmarks by interpreting
the compiler macros. For instance, figure 4 presents a set of
instruction for MUL roof measure on architecture supporting
AVX SIMD instructions. Each MUL instruction (vmulpd)
is performed using a single register (ymm) for both MUL
operands, i.e., it is equivalent to squared value. By ensuring
the use of a single register per FP operation, the register de-
pendencies among different instructions are avoided, which
allows exercising the full potential of FP units in terms of the
achievable throughput.

It is worth to emphasize that typically there are several

loop:
vmulpd 4AymmO, %/ymmO, ¥%%ymmO
vmulpd 4Aymml, %/ymml, %A%ymml

vmulpd %Aymml5, %%ymml5, %/ymml5
sub $1, (Y%[n_times])
jnz loop

Figure 4: assembly sample for MUL fpeak benchmark. The run time,
the register size, and the number of instructions, determine the
floating point peak performance of the unit running the benchmark.

types of memory/compute instructions on modern proces-
sors, and separate hardware units capable of performing
different operations simultaneously. For instance, a core may
perform a multiplication (MUL) and an addition (ADD) on
separate FPUs, which can also be performed in parallel when
there are no dependencies between them. Hence, a core can
provide significantly higher performance for the codes that
fully interleave ADD and MUL operations. This principle
also applies to the memory subsystem, where several ports
can be dedicated in modern processors to simultaneously
serve different number of load (LD) and store (ST) opera-
tions, e.g., two LD and one ST 128-bit ports in the Intel Ivy
Bridge micro-architecture. Hence, in order to exercise the full
compute and memory capabilities of the target architecture,
the proposed tool relies on several types of operations to
benchmark the platform and it selects by default the one
used by the CARM, e.g.for the Intel Ivy Bridge, it interleaves
2 LD and 1 ST instruction when assessing the peak memory
bandwidth, while one ADD and one MUL are interleaved
for peak FP performance. Figure 5 shows a 2 LD and 1 ST
instruction set as used in our bandwidth benchmarks for
architecture supporting AVX SIMD instructions.

LART Reproducing CARM Experimental Results on
Intel Ivy Bridge

Figure 6, shows an output of the CARM plot generated by
the herein proposed tool for an Intel i7 3770k (Ivy Bridge)
processor, which topology is previously displayed in Figure 3.
The black, red, green and blue oblique lines distinguish
several regions of the attainable performance upper-bounds
for AVX instructions, which are limited by the bandwidth
of different memory levels , ie, L1, L2, L3 and DRAM,
respectively. The two horizontal lines represent the peak
FP performance for MUL/ADD and multiplication with
addition (MAD).

It is worth to note that the proposed tool was capable
of reaching the near-theoretical upper-bounds of the tested

Nicolas Denoyelle, Aleksandar Ilic, Brice Goglin, Leonel Sousa, Emmanuel Jeannot 77

loop:

vmovapd (% [bufl), %%ymm0
vmovapd 32 (%[bufl]), %lymmi
vmovapd %iymm2, 64 (%[bufl)
vmovapd 96 (%[bufl), %iymm3
vmovapd 128(%[bufl), %AAymmd
vmovapd %fymm2, 150 (%[bufl)
add $182, % [buf]

sub $182, %[buf_size]

jnz loop

Figure 5: assembly sample for 2LD 1ST bandwidth benchmark. The
loop is run several times until the whole buffer is walked. The run
time, the register size, and the number of instructions determine
the bandwidth of the unit running the benchmark.

micro-architecture both for the the L1 bandwidth and peak
FP performance. In particular, by relying on the CARM
testing methodology, the throughput of 1.49 instructions per
cycle (IPC) was achieved for the L1 AVX-256 accesses. In
addition, the IPC of 1.98 was achieved for FP performance,
which closely match the theoretical throughput of AVX FP
instructions when overlapping ADD and MUL operations.

The colored points matching the CARM lines represent
the results of the validation benchmarks provided within the
proposed tool, i.e., a set of synthetic benchmarks tailored to
hit the performance upper-bounds of the micro-architecture
for different arithmetic intensities.

As presented in Figure 6, legend in the bottom right cor-
ner, includes first the memory subsystem, then the micro-
operation type(i.e. 21d1st - interleaving of 2 LD and 1 5T) and
the experimentally obtained bandwidth. On the top right
corner in Figure 6, the legend refers to the tested applications
for which the CARM metrics were extracted with our library.
Those applications express different arithmetic intensity and
are well suited to be analyzed with this model. In particular
they represent application potential hot spot and come from
well known benchmarks named as HPCCG(from Mantevo [2]
mini-applications) and STREAM [8]. Although deep perfor-
mance evaluation of those applications is out of the scope
of the paper, it is worth to note that the proposed LART
tool is capable of providing the facilities visually analyze the
behaviour even for real-world applications.

IV. CoONCLUSION AND FUTURE WORK

On the path of extreme scale computing, computer systems
complexity is increasing to address hardware and software
constraints. The CARM is able to aggregate this complexity

and by relying on hwloc topology detection capability we
developped a robust tool to build this model and character-
ize applications. The LART tool is capable of performing
deep platform analysis, as well as model validation with
automatic detection of micro architecture capabilities and
topology. In order to further ease the burden of platform-
specific benchmarking for non expert developers the pro-
posed tool also provides a library to project and visualize
applications in the model. The efficiency of the proposed
tool was verified on a computing platform with Intel Ivy
Bridge micro-architecture, where the obtained experimental
results show that the proposed tool was capable of reaching
near-theoretical performance.

In a close future, we plan to extend the tool and the model
to cover heterogeneous memory systems and show their
usefulness to improve data spatial locality in Non-uniform
memory access (NUMA) systems, while the current model
is manly used to improve data temporal locality with cache
usage optimization.

V. ACKNOWLEDGEMENTS

We would like to acknowledge Action IC1305 (NESUS) for
funding this work.

REFERENCES
[1] GCC documentation on platform specific
macros. https://gcc.gnu.org/onlinedocs/

gcec-6.2.0/gec/x86-Built-in-Functions.html#
x86-Built-in-Functions.

[2] Richard F Barrett, Paul S Crozier, DW Doerfler,
Michael A Heroux, Paul T Lin, HK Thornquist, TG Tru-
cano, and Courtenay T Vaughan. Assessing the role of
mini-applications in predicting key performance char-
acteristics of scientific and engineering applications.
Journal of Parallel and Distributed Computing, 75:107-122,
2015.

3

Francois Broquedis, Jérome Clet-Ortega, Stéphanie
Moreaud, Nathalie Furmento, Brice Goglin, Guillaume
Mercier, Samuel Thibault, and Raymond Namyst. hwloc:
a Generic Framework for Managing Hardware Affini-
ties in HPC Applications. In IEEE, editor, PDP 2010
- The 18th Euromicro International Conference on Paral-
lel, Distributed and Network-Based Computing, Pisa, Italy,
February 2010.

[4

Brice Goglin. Exposing the Locality of Heterogeneous
Memory Architectures to HPC Applications. In 1st

78 Automatic Cache Aware Roofline Model Building and Validation Using Topology Detection

i7_3770k

load ddot
v load scale
load triad

GFlops/s

1[}—2]

L1d:0 2id1st=167.85 GBls

L2:0 2id1st=42 06 GB/s

L0 21d1st=30.35 GB/s
NUMANode:0 2id1st=10.16 GB/s

al 20 21 22

I I I I I I I
2* 28 26

[a*]
T

Flops/Byte

Figure 6: CARM on i7 3770k with LART tool.

ACM International Symposium on Memory Systems (MEM-
5Y516), Washington, DC, United States, October 2016.
ACM.

[5] Aleksandar Ilic, Frederico Pratas, and Leonel Sousa.
Cache-aware roofline model: Upgrading the loft. IEEE
Computer Architecture Letters, 13(1):21-24, 2014.

[6] Ki-Hwan Kim, KyoungHo Kim, and Q-Han Park. Perfor-
mance analysis and optimization of three-dimensional
{FDTD} on {GPU} using roofline model. Computer Physics
Communications, 182(6):1201 - 1207, 2011

[7]1 Yu Jung Lo, Samuel Williams, Brian Van Straalen,
Terry J. Ligocki, Matthew J. Cordery, Nicholas]. Wright,
Mary W. Hall, and Leonid Oliker. Roofline Model Toolkit:
A Practical Tool for Architectural and Program Analysis,
pages 129-148. Springer International Publishing, Cham,
2015,

[8] John D McCalpin. Stream benchmark. Link: wiww. cs.
virginia. edu/stream/ref. html# what, 22, 1995.

[9] Philip] Mucci, Shirley Browne, Christine Deane, and
George Ho. Papi: A portable interface to hardware
performance counters. In Proceedings of the department of
defense HPCMP users group conference, pages 7-10, 1999,

[10] Diego Rossinelli, Christian Conti, and Petros Koumout-
sakos. Mesh—particle interpolations on graphics process-
ing units and multicore central processing units. Philo-
sophical Transactions of the Royal Society of London A: Math-
ematical, Physical and Engineering Sciences, 369(1944):2164-
2175, 2011.

[11] Avinash Sodan. Multi Core Trends in High Performance
Computing. https://www.sics.se/sites/default/
files/pub/sics.se/avinash_final_sweden_many_

core_day_keynote_-_avinash_final -_clean.pdf.

[12] Rob V. van Nieuwpoort and John W. Romein. Using
many-core hardware to correlate radio astronomy sig-
nals. In Proceedings of the 23rd International Conference on
Supercomputing, ICS '09, pages 440-449, New York, NY,
USA, 2009. ACM.

[13] Samuel Williams, Andrew Waterman, and David Patter-
son. Roofline: An insightful visual performance model
for multicore architectures. Commiun. ACM, 52(4):65-76,
April 2009.

Mateusz Jarus, Ariel Oleksiak, Wahi Narsisian, Hrachya Astsatryan

&

CcoskE

79

Energy-efficient Assignment of Applications to
Servers by Taking into Account the Influence of
Processes on Each Other

Mateusz Jarust, Ariel Oleksiak™, Wahi Narsisian*, and Hrachya Astsatryan*

tPoznari Supercomputing and Networking Center, ul. Jana Pawla IT 10, 61-139 Poznari
tPoznan University of Technology, P1. Marii Sktodowskiej-Curie 5, 60-965 Poznari
*Institute for Informatics and Automation Problems of the National Academy of Sciences of the Republic of Armenia,
P. Sevak 1, Yerevan 0014, Armenia

Abstract

The power consumption of data centers is becoming a crucial challenge in the context of the steadily increasing demand for
computation. In this regard finding a way to improve energy efficiency of running applications in data centers is becoming a crucial
trend. One method to improve the processor utilization is the consolidation of applications on physical servers. It is possible to
run multiple jobs in parallel on the same machine, especially when their requirements regarding computation are smaller than the

maximum processor performance. It reduces the number of servers in the data center required to handle multiple requests and
therefore leads to energy usage reductions. In this paper, we introduce a realistic model of applications with deadlines executed
in parallel on a server and competing for the shared resources and present an energy-aware algorithm which may be used to

minimize the overall energy consumption of the servers.

Keywords Data centers, Energy efficiency, Processor utilization, Applications scheduling

I. INTRODUCTION

Data centers are under pressure to transform their infrastructure to
reduce energy cost, increase reliability and efficiency. Increasing
the data volumes and network traffic in data centers is a worldwide
trend. At the same time, the number of applications running in these
data centers is becoming bigger and bigger over time. The types of
the executed applications differ and include databases, file servers,
middleware and various others. The difference between such data
centers and typical HPC supercomputers is that it is natural in such
places to co-locate dozens of tasks on a single physical node. It is
a method for improving resource utilization. The relocation of the
applications on servers is playing an important role to decrease the
number of physical servers in data centers and to reduce the energy
consumption.

In the case of data centers particularly important is the Service
Layer Agreement which needs to fulfilled. In our model, it is
introduced in the form of deadlines for the tasks.

In this paper, we create a realistic model of applications with
deadlines executed in parallel on a server, which compete for the
shared resources, such as memory or disk. We explain the obser-
vations from the experiments that create the basis for the model.

We describe how the processor time quantum is shared between the
applications and how their performance degrades through the use of
the shared resources. We also present a Branch and Bound algorithm
which may be used to minimize the overall energy consumption of
the servers.

The reminder of this paper is divided into the following sections:
Section 2 presents related work; Section 3 describes the model; Sec-
tion 4 shows the performed experiments and their results; Section 5
concludes the paper.

II. RELATED WORK

As virtualization [1] has become the most widespread used technol-
ogy in modern data centers, and due to the advances in virtualization
technologies it is much easier to manage the allocation of tasks to
the available resources. The live migration technique allows moving
a running virtual machine from one physical server to another with
no impact on virtual machine availability. Increasingly popular be-
comes the Docker platform, which allows starting up its containers
even ten times faster than a standard virtual machine. The man-
agement of tasks is therefore very fast and efficient. However, the
allocation of tasks to servers to maximize the utilization of resources

80 Energy-efficient Assignment of Applications to Servers by Taking into Account the Influence of Processes on Each Other

remains a challenge.

In [2] the authors illustrate the workload sensitivity to the ma-
chine on which it executed and the type of co-running applications.
They analyzed co-running different applications on various proces-
sors and proved that it resulted in various levels of performance
degradation of these jobs. The authors observed significant perfor-
mance variability from the heterogeneity of the datacentre and from
the co-allocation of applications. It is, therefore visible that in order
to efficiently utilize available resources it is required to take into
account the type of applications that are executed in parallel.

Multiple researchers have aimed at creating an algorithm to in-
crease the utilization of machines in datacentres. In [3] the authors
propose a Bubble-Up characterization methodology that enables
the accurate prediction of the performance degradation that results
from the contention for shared resources in the memory subsys-
tem. Using this methodology they can improve the utilization of a
500-machines cluster by 50% to 90%.

In [4] the authors propose a performance model that considers
the interferences in the shared last-level cache and memory bus.
They also present a virtual machines consolidation method which is
based on their interference model.

In [5] the authors propose a new resource management model
for the collocation of different tasks that share a single physical
machine. The model uses two parameters of a task — its size and
its type — to characterize how a task influences the performance of
other tasks allocated on the same machine.

However, all of the above methods are simplified. They take
into account only one parameter of the application (such as mem-
ory accesses) or model the interference between applications by
using one artificial parameter specified by the user. Experiments on
real hardware prove that the dependencies between jobs are more
complicated.

III. MODEL OF TASKS EXECUTED IN PARALLEL ON A
SINGLE MACHINE

‘We propose a mathematical model that simulates the complex de-
pendencies between co-running applications and hardware. It based
on the observation that each of the executed benchmarks affects
the underlying hardware by utilizing its resources (processor, mem-
ory, hard drive, etc.). The load exerted on these subcomponents
influences in turn other co-running applications — their performance
degrades due to the need to compete for shared resources. The
model does not try to simulate the interactions between applications
per se, but rather captures the relationships between applications
that appear when sharing the available resources.

In the model both the processor performance and the application,
size is represented as Instructions Per Second (IPS). When all of
the applications exert load that is equal to or smaller than 100%,
the server has enough performance to efficiently execute all of

them. The situation becomes more complicated when the total
requirements from applications are higher, for example, if each of
the two applications requires 60% of the CPU load. In such case,
they exceed the maximum processor performance. It is possible
to execute them sequentially with the expected performance. They
may also run in parallel but slower due to: a) the competition for
shared resources, b) not satisfied CPU performance requirements.
In both cases, the overall energy consumption and the duration of
the execution may be analyzed.

To explain this mechanism in more detail, consider an application
X that executes on a given server in T1 seconds and exerts the
L1 load on the CPU. Another application with L2 load on the
CPU may be executed in parallel, where L1 + L2 <= 100%. The
execution time of X will increase slightly due to the interference
effect, as they will compete for shared resources, such as memory
or disk. Starting additional applications will further extend the
execution time of application X. As long as the aggregated load
from all applications will be smaller than 100%, the performance
degradation of application X will only result from the increasing
load on the shared resources. However, when CPU load exceeds
100%, another factor of performance degradation becomes visible.
The execution of the application is affected by periods of inactivity
when it needs to wait for the processor time quantum.

We have performed a few experiments on Intel Core i5 6200U
with three different applications, each exerting different load on the
CPU: pi (30%), siege (50%) and openssl (65%). We tested the exe-
cution time of pi application while running additional applications
in parallel. When the aggregated load was lower than 100%, the ex-
ecution of Pi increased slightly. However, it increased significantly
more after exceeding 100% CPU load, when all applications were
executed in parallel.

The situation changes when the power consumption is considered.
Starting additional applications increases the power consumption of
the processor proportionally to the load that they make.

Similar experiment was performed with the same three appli-
cations, but this time to calculate the power consumption of the
processor. The CPU power increased only until the CPU load was
below 100%. After this point it stabilized. Since it is not possible to
exceed the maximum processor speed, after reaching the point of
100% CPU load the power consumption did not change. However,
the execution time of the applications increased significantly, having
an impact on the whole energy consumption

When realistic energy efficient job scheduling is considered, two
challenges need therefore to be analyzed.

o the interference of applications on each other when they com-
pete for shared resources,

o the calculation of the execution time of applications when
their aggregated performance requirements exceed maximum
processor performance.

Mateusz Jarus, Ariel Oleksiak, Wahi Narsisian, Hrachya Astsatryan

81

III.1 Interference of applications

Our model is based on the observation that the applications do not
affect directly each other but rather influence the underlying hard-
ware, which in turn has an impact on the other executed applications.
For example, accessing the memory by one application may cause a
delay in accesses by another application.

In the model for each application different parameters regarding
hardware may be specified, such as the number of memory accesses
or disk usage. The more parameters are defined, the more accurate
the results, but at the same time, the more data needs to be collected
to run the experiments. For each application, there also needs to be
defined a function of execution slowdown due to the aggregated load
of a given subcomponent. It may be calculated using the Bubble-Up
methodology, presented in [3]. It enables the accurate prediction of
the performance degradation using a tunable amount of “pressure”
to the subcomponent — memory in the case of this paper. “Bubble”
is an artificial benchmark which is only used to stress the server
memory. For different values of this pressure, the performance
degradation of the original application is analyzed.

III.2 The extension of the execution time due to higher
processor performance requirements

The model is based on the fact that the processor time quantum
is consistently shared between the executed applications. This
situation is presented in Figure 1. In this example, the maximum
processor performance is 10 IPS and is named here “an execution
window”. This run window is moved down in each second and
shared between neighboring applications. Linux Completely Fair
Scheduler is based on the same assumption that each application
receives a fair amount of time quantum — according to its needs.

Figure 2 presents the new speed of execution of an application
when the aggregated requirements of all applications are higher than
the maximum processor performance. The size of the execution
window is equal to the maximum processor performance — 10 IPS
in this example. For the sake of clarity the applications are ana-
lyzed for a time which is equal to the time window — though the
calculations are general and independent of the length of execution
of any application. Variable x represents the exceeded processor
performance. In this example there are four applications, x is cal-
culated as x = (s1+ 52+ s3 + s4) — perf, where perf is the
maximum processor performance and s1, s2, s3 and s4 are the ex-
ecution speeds or the CPU loads exerted by the four consecutive
applications. New speed of any application may be calculated as
IPSyery = %2¢ — S2X. For example, the original speed of the second
application in Figure 2 was 4 IPS, while when running with three
other applications in parallel it slows down to % IPS ~ 3,08 IPS
(interference effect due to the competition for shared resources is
not considered in these calculations yet).

job €

jeb D

jobC

* | (B0 b b
k| BB b b
e ddad
| e
| BEpbb
* %% |[BBbbp
* % x| BB bp
e S e
| e g
| e

[| S35

job D

LR 22322
* %[pp
% n|ppppp
|
|
| e ddd
|
il sl dad
4| BB

%
%

Time [s] Time [2]

@)]

b [[T IXYIXXYYY}
C]

] fob A

amE
EEEEEEEE o

EpRp
ot |t d i

A

A

job € “

| A
A

99998
o D

A
A
job € A
A
A
.
*
+

LRl 223 22
el 2 d 333
el | e ddd
R dadad
Rl add g
i | dddds
bt | ddddd

* %
e
e

‘ b D

LS 33

Tene Js) Time 3]
(e {d)

Figure 1: Model of the execution of the applications that exceed
100% of the processor load

IV. THE ENERGY-AWARE JOB SCHEDULING ALGORITHM

The input parameters for the algorithm are:

e the maximum processor performance (in IPS),
e the maximum power consumption of the processor,
o the number of all instructions for each application,

o the initial requirements for each application regarding proces-
sor performance (in IPS),

o the requirements for each application regarding its hardware
usage (such as memory or disk usage),

o the function of performance degradation for each application
due to the load exerted on different subcomponents of the
server (such as memory or disk),

o the deadline for each application.

To calculate the optimal solution for a given processor and a num-
ber of various applications we implemented a Branch and Bound
algorithm. It analyzes all correct instances of the problem. It starts
with an array of a size N x N, where N is the number of applications.
Each analyzed job may allocated to one of the N x N cells in the
array. Columns represent the sequential execution of applications,
while rows allow them to run in parallel. More generally — X axis
represents passing time, while Y axis is the load of the CPU. An
example instance of the problem presented in Figure 3 a). All of
the jobs are allocated to the first column. Therefore all of them

82 Energy-efficient Assignment of Applications to Servers by Taking into Account the Influence of Processes on Each Other

should be executed at time O in parallel. Figure 3 b) shows their
final execution on the processor. It is important to underline here
that the array in Figure 3 a) does not take into account the length of
the execution of any job and its requirements regarding processor
performance. At this stage these values are not calculated, only their
relative position against each other considered here.

Figure 4 a) presents another example of scheduling the tasks. In
this case, there is a blank space between an orange and a green
task. Figure 4 b) shows how these applications will executed on the
server. It represents a situation where the green task should not be
executed in parallel with the blue task.

Please note that the position of the green task on the Y axis has no
meaning, since there is no other job running in parallel. In this case
only the height of the green task is significant as it represents the
CPU load. In Figure 4 b) the green task may be therefore depicted
at the same level as the blue task.

Please also note that if the green application would be scheduled
in the same last column but in the lower row (the same row as the
blue task), this allocation would not be correct. It would represent
a situation in which there should be a delay of execution between
the blue and the green task. However, since the orange application
is shorter than the blue one, there is no other application that could
separate them. Artificial delays of any length are not considered by
the algorithm since they are useless. They do not improve the energy
consumption and do not prevent from exceeding the deadlines. Such
a schedule would be correct if the orange application would be
longer than the blue one. At this stage this information is not
available yet — the correctness of the instance validated at a later
stage.

The algorithm creates all possible instances of the problem using
a Branch and Bound technique. A few different instances of the
problem are presented in Figure 5.

For each instance of the problem in the first step the algorithm
calculates the time when each application finishes its execution. An
example is presented in Figure 6. Vertical borders that represent
these times create different phases of execution. If the length of
the execution of each application is different, there are always as
many stages as the number of applications, no matter what is their
relative order. Please note that in each phase the same application
might have a different speed of execution. In this example the
maximum processor performance is not exceeded, therefore it does
not contribute to a slowdown of any application. However, if that
would be the case here, the green application in phase 2 would have
a higher speed (higher height in the figure) because it would no

longer share the processor time quantum with the blue application.

For this reason, every phase needs to be analyzed separately.

3 not d instr.
10 executed instr.

]

12 not executed instr,
40 executed instr,

I sd=41P5

emglasd
+il=
13

15 not executed instr.
50 executed instr,

9 not executed instr,

30 executed instr, = 2IPS

I | i | O |
131211109 87 6 5 4 3 2 1
Time [s]

§2ec—82 o x 4°13-4+3 0 10g
e _IPS2 = = = 13 =10

Figure 2: New speed of execution of an application after exceeding
maximum processor performance

cPy cPU
load Ioad
rime
b)

time

a)

Figure 3: a) An example scheduling of the tasks and b) their final
execution on the processor.

cPu
load

time time
a) b)

Figure 4: a) Another example of scheduling the tasks with a delay
between an orange and a green task and b) their final execution on
the processor.

Mateusz Jarus, Ariel Oleksiak, Wahi Narsisian, Hrachya Astsatryan

83

~ T

=
[

2 VAN
| Y-

Figure 5: A few different instances of the problem created by the
Branch and Bound algorithm.

[

.I j%_ jooo
eale (@A] [@lal] [elal CICIry

In the second step for each row a bidirectional list is created (see
Figure 6 c¢). Each item on these lists represents either a given job or
an empty space between them. Each of these elements will hold the
time when its phase finishes.

The algorithm iterates over every phase. For each list is saves the
pointer to the currently analyzed item. For each phase it does two
rounds — in the first one it analyzes items that are jobs, it the second
round it analyzes blank items.

It starts with the first item on every list. If the first item on a given
list represents a job (in our example on both lists the first items are
jobs), it saves in it the execution time of this job, which is calculated
as time = instructions/speed.

This value is added to the list borders, which holds information
about the times of consecutive borders between phases. It moves
the pointer of the currently analyzed item to the next one. While the
next item on the given list is also a job, it repeats the same procedure
— it calculates the time of the execution of this job. It adds to it the
time of the previous item on the list and saves this value inside the
currently analyzed item. It also adds it to the list borders. If the
next item on a given list is a blank space, the algorithm moves to
the next list and repeats the same procedure.

When all first jobs on each list are analyzed, the algorithm moves
to the second phase — it examines blank spaces for each list. The
algorithm checks whether the first item on the list borders is higher
than the value saved for the previous item on the analyzed list. If
yes, it saves it inside the item and moves the pointer to the currently
analyzed item to the next one. If not, it leaves the item untouched.
When all blank spaces in this phase for every list are checked, it
removes the first item on the borders list.

The algorithm then moves to the next phase and repeats the whole
procedure until all items on all lists are checked.

This step calculates the execution times for each job and the
phases in which they are run. For instance, in the analyzed example,
it shows that the green application is executed in phase 1 and 2,
the blue one only in phase 1, while the orange one only in phase 3.

It also shows which applications are run in parallel with others in
every phase.

Since the allocations to different stages are now known, the
algorithm may calculate for each phase the processor load and the
aggregated loads exerted on the subcomponents, such as memory.
For example, in phase 1 it sums up the memory requirements of
the green and the blue application. Then it analyzes the speed
degradation for each of them under this aggregated memory load.
Based on that information it updates the time of each phase, already
saved in the previously mentioned lists. In the next step, it analyzes
the new speed of each application according to the calculations
presented in section II1.2. Based on that information it again updates
the time of each phase, already saved in the previously mentioned
lists.

Figure 6: a) An example instance of the problem, b) marked the end
of execution for each application (borders between phases) and c)
the lists for each row that present the dependencies between tasks

The final result is the time of the end of every phase. It allows
the algorithm to calculate the whole time required to run all of the
applications. It also verifies the deadlines — if they are exceeded,
the solution is treated as unacceptable. The energy consumption
may be calculated as the time multiplied by the power (both of these
values are known).

Since this is a Branch and Bound algorithm, the currently ana-
lyzed solution is compared to the previously saved. If it is better
than the previous one, it will consider the best option. Finally, the
algorithm returns the best instance from all analyzed.

V. EXPERIMENT

To test the algorithm we have started it with five applications. The
applications compete for one shared resource, which is a memory.

84 Energy-efficient Assignment of Applications to Servers by Taking into Account the Influence of Processes on Each Other

The number of instructions, initial CPU and memory requirements
and deadlines for each application is specified in Table 1. Appli-
cations three and four have high memory requirements. The first
and the last applications have many instructions to execute (at the
same time their execution would be the longest without taking into
account the interference effects). All of them have specified dead-
lines.

Table 2 presents speed degradation of all applications in function
of the memory load. For example, application one slows down by
5% when the memory load is 10 (e.g. Mb/s).

‘ Name ‘ Instructions ‘ CPU ‘ Memory ‘ Deadline

one 1000 40 10 50
two 200 15 1 40
three 400 45 55 30
four 400 60 55 12
five 1000 30 10 40

Table 1: Parameters of five applications used to test the algorithm

Application slowdown
Memory one ‘ two ‘ three ‘ four ‘ five
10 5,00% | 5,00% | 10,0% | 15,0% | 5,00%
20 6,00% | 6,00% | 18,0% | 20,0% | 6,00%
30 7,00% | 6,30% | 21,0% | 25,0% | 7,00%
40 7,30% | 6,80% | 23,0% | 30,0% | 7,30%
50 7,60% | 7,10% | 30,0% | 35,0% | 7,60%
60 8,00% | 7,20% | 35,0% | 40,0% | 8,00%
70 8,10% | 7,20% | 38,0% | 45,0% | 8,10%

Table 2: Speed degradation of applications in function of the mem-
ory load

Figure 7 presents the most energy-efficient scheduling for the
proposed parameters. The time of calculations is 47,48 seconds and
the energy consumed is 1751 Ws. In this solution, no deadlines are
exceeded. It is also visible that the maximum processor performance
is not exceeded in any phase. All of the applications are executed
with the initially required speed.

VI. CONCLUSION

In this paper, we presented a model of applications with deadlines
executed in parallel on a server, which compete for the shared re-
sources, such as memory or disk. This model realistically represents
the real execution of applications on physical servers, taking into
account their speed, hardware requirements and performance degra-
dation due to loaded subcomponents of the server. We presented a

Branch and Bound algorithm to calculate the most energy-efficient
scheduling of jobs. The algorithm was verified by five applications
with specified hardware requirements and deadlines.

CPU
load !
Max CPU H
performance 1

time
35175 35635 47485

Figure 7: The most energy-efficient scheduling for the selected
applications.

Acknowledgment

This work is partially supported by EU under the COST Program
Action 1305: Network for Sustainable Ultrascale Computing
(NESUS). The research presented in this paper is partially funded
by a grant from Polish National Science Center under award
number 2013/08/A/ST6/00296. This research was supported by the
EU Seventh Framework Programme FP7/2007-2013 under grant
agreement no. FP7-ICT-2013-10 (609757).

REFERENCES

[1] M. Wang, X. Meng, L. Zhang, "Consolidating virtual machines
with dynamic bandwidth demand in data centers” in: IEEE
INFOCOM 2011 Proceedings, Shanghai, China, June 2011, pp.
71-75.

[2] J. Mars, L. Tang, R. Hundt, "Heterogeneity in "Homogeneous’
Warehouse-Scale Computers: A Performance Opportunity”, in:
IEEE Computer Architecture Letters, vol. 10, No. 2, pp. 29-32,
2011.

[3] J. Mars, L. Tang, K. Skadron, M. L. Soffa, R. Hundt, "Increas-
ing Utilization in Modern Warehouse-Scale Computers Using
Bubble-Up”, in: IEEE Micro, vol. 32, pp. 88-99, 2012.

[4] S. Kim, H. Eom, H. Y. Yeom, ”Virtual machine consolidation
based on interference modeling”, in: The Journal of Supercom-
puting, vol. 66, pp. 1489-1506, 2013.

[5] F. Pascual, K. Rzadca, "Partition with side effects", in: IEEE
22nd International Conference on High Performance Comput-

ing, vol. 66, pp. 1489-1506, 2013.

—

Raimondas Ciegis, Vadimas Starikovicius, Svetozar Margenov

&

CcoskE

85

On Parallel Numerical Algorithms for
Fractional Diffusion Problems

Raimonpas Ciecist, Vapimas Starikoviciust, SveTozar MARGENOV*

tVilnius Gediminas Technical University, Lithuania

raimondas.ciegis@vgtu.lt,

vadimas.starikovicius@vgtu.lt

*IICT-BAS, Bulgaria
margenov@parallel.bas.bg

Abstract

In this work, we consider a parallel numerical solution of problems depending on fractional powers of elliptic
operator. Three different state of the art approaches are used to transform the original non-local problem info
well-known local PDE problems. Parallel numerical algorithms for all three approaches are developed and discussed.
Results of their parallel performance tests are presented and analysed.

Keywords Fractional Diffusion, Parallel Numerical Algorithms, Multigrid, Strong Scalability

1. INTRODUCTION

The permanent development of the large scale com-
putational systems with all their diversity requires a
constant attention, which must be paid to a develop-
ment and selection of proper parallel algorithms for
the solution of various problems. In this paper, we
consider a parallel numerical solution of problems in-
volving fractional powers of elliptic operators. Such
problems arise in a wide range of areas, including im-
age processing, porous media flow, material sciences
(see, e.g., [1] and the references therein.

In this paper, we investigate the scalability and effi-
ciency of parallelization of three state of the art discrete
algorithms used for numerical solution of fractional
power elliptic problems. These algorithms are reduc-
ing the given non-local diffusion problem to some local
classical differential problems formulated in spaces of
higher dimension. It is important to note, that despite
using a common embedding technique, these three
approaches lead to very different challenges in con-
struction of efficient parallel algorithms.

The rest of this paper is organized as follows. In
Section II, we describe the problem under consider-
ation with fractional power of elliptic diffusion op-
erator. In Section III, three partial differential equa-
tions (PDEs) models are formulated and applied to

construct efficient numerical solution techniques for
considered problems. They are based on different
types of PDEs and all of them define local operators
but embedded into higher dimension space. The finite
volume method is used to approximate the formulated
PDEs by the discrete schemes. The parallelization is-
sues of these three numerical solution algorithms are
discussed in Section IV. Parallel performance results
of the developed parallel algorithms are presented and
analysed. The strong scalability is considered. Some
final conclusions are given in Section V.

II. ProsBLEM FORMULATION

Let () be a bounded domain in R", n > 2 with bound-
ary d{). Given a function f, we seek u such that

bu=f Xen (1)

with some boundary conditions on d(}, 0 < f < 1 and

"9 du
j=1 il]

Let us denote by {¢}, k =1,2,...,N the orthonormal

basis (for convenience, here we restrict to the case of

86 On Parallel Numerical Algorithms for Fractional Diffusion Problems

finite number of modes typical for discrete approxima-
tions)
Lgx = M-

Then the fractional powers of the diffusion operator
are defined by

N
LPu=Y Afwgy,)
k=1

where wy, = (1,).

Note, that the direct implementation of this ap-
proach is very expensive. It requires the computation
of all eigenvectors and eigenvalues of large matrices.
This algorithm can be used for practical computations
if the fractional power of Laplace operator is solved
in rectangular domain, when FFT techniques can be
applied.

III. PDE APPROACH FOR THE FRACTIONAL
NON-LOCAL MODEL

In this section we formulate three PDE models to ap-
proximate problems involving fractional powers of
elliptic operators. These approximations allow us to
construct efficient solution techniques for the original
problem. The formulated PDEs are approximated by
the finite volume schemes.

III.1 Extension to the mixed boundary

value problem in the semi-infinite
cylinder C = Q x (0, 00) C R"*!

Non-local problem (1) is equivalent to the following
classical local linear problem in the extended space
R"*1 [2, 3]:

d av
_@(yﬂa—y)-l—yﬂLV—O, (X,y) €C, 11—1—2(]3;
3

v _
— ﬂ_:

V'S, = X € 0 x {0},
V=0, (X,y)eCg=aC\Qx {0},

where dg is a positive normalization constant that de-
pends only on B. Then u(X) = V(X,0).

In order to construct a finite volume approximation
of (3), the semi-infinite cylinder is approximated by the
truncated cylinder Cy = Q) x {0,Y} with a sufficiently
large Y. A uniform mesh), is introduced in () and
anisotropic mesh wy, = {y; = (j/M)"Y,j =0,..., M}
is used to compensate the singular behaviour of the
solution as y — 0, where v > 3/(28) [2, 3].

By using the finite volume method and standard
notations of the finite differences we define the discrete
problem, which approximates (3):

B (y‘?‘ Vijs1 — Vh g Vi — Vh,j—l)

j+1/2 Hj+1/2 j—1/2 Hj—1/2
n 9?:11/2 - y?jl/z

1 LpVy =0,

(Xh, y}') [Cyh,
4)
Via —Vio , ¥ih
Hi/» a+1
Xp € Qp x {0},
Vi =0, (Xp yj) € 9Cy, \ Oy x {0},

|

—Yip2 LyVy = dgfh,

where

n
LyVy =— Z Ix, (k(Xp)9z, Vi),
k=1

_ YitYin
Yiv1/2 = 7

’ Hj+1/2 =Yj+1 — Yj-

II.2 Integral representation of the solu-
tion of initial problem (1)

The algorithm is based on the integral representation

of the non-local operator using the classical local oper-
ators [4]:

in 1
L_'BZ 2s ?Enﬁ) [L y2,8—1(1+y2L)—1dy (5)

+[)1 yl_zﬁ(yzf-l-L)_ldb"}-

Different quadrature schemes can be used to approx-
imate these singular integrals. In this paper, we have
applied a graded partition of integration interval [0, 1]
to resolve the singular behaviour of y?~1:

= (i/M)% if 26 -1 <0, i—o... M
YT\ /M if 26—1>0, ’ A

Raimondas Ciegis, Vadimas Starikovicius, Svetozar Margenov

87

A similar partition is used to resolve the singularity of
y'=26. Then the following approximation of integrals
(5) is applied

_ 2sin(7B)
L}, ﬁfh = —ax P
M 2B _ 2B

Yij —Y1,j1 -1
E # (In+yij 1/2Ln) " fu (6)
]:

M yz—zﬁ 228

2j Y1 -1
+Z 12_251 (yij_]/zmeLh) ful-
j=1

One or two level parallelization strategies can be
applied to solve the multiple independent local linear
sub-problems (I, + y]?Lh)—lf and (y71, + L)~ 1f.

III.3 Reduction to a pseudo-parabolic PDE
problem

The solution of non-local problem (1) is sought as a

mapping [5]:
V(X,t) = (H(L—68I) + 1) P,

where L > §pl, 0 = 700, 0 <y < 1.
Thus it follows that V(X,1) = L—#f. The function
V satisfies the evolutionary pseudo-parabolic problem

(tG +51)% +BGV =0, 0<t<1, (7

V(0) =57Ff, t=0,
where G = L — 1.

Again, instead of the non-local problem (1) we solve
a non-stationary local pseudo-parabolic problem (for-
mally in R*+1 space). In order to solve (7), we use the
following finite volume scheme [6]:

n n—1

vr—vV,
(t"72Gy + 61y ——"—+ BGV; T2 =0, (8)
0O<n<M,
VP =6"Ff,
where G, = Ly — 6, V]'7"/2 = (V + V'')/2 and
tﬂ—l/Z — (tﬂ—l + t”)/Z.

IV. PARALLEL ALGORITHMS

In this section we are considering and discussing the
parallelization of all three numerical solution algo-
rithms presented in Section III. Our analysis is re-
stricted to the strong scalability, when the size of dis-
crete problems is fixed and different numbers of pro-
cessors are used in the computations. Such an informa-
tion is very important when a medium size problem
should be solved as fast as possible (consider opti-
mization algorithms when computation of the value of
the objective function reduces to numerical solution of
fractional power of elliptic problem).

All parallel numerical tests in this work were per-
formed on the computer cluster “HPC Sauletekis”
(http://www.supercomputing.ff.vu.1lt) at the High
Performance Computing Centre of Vilnius University,
Faculty of Phésics. We have used up to 10 nodes with
Intel® Xeon® processors E5-2670 with 16 cores (2.60
GHz) and 128 GB of RAM per node. Computational
nodes are interconnected via the InfiniBand network.

IV.1 Discrete elliptic problem

The approximate PDE model (3) transforms the non-
local fractional diffusion problem (1) into well-studied
case of PDEs problems with elliptic operators. The
selected finite volume scheme (4) means that our first
numerical algorithm essentially deals with a solution
of one large system of linear equations. In case, when
the problem domain () is two-dimensional, one needs
to solve a system with 7 point stencil of size N =
Ny; X Ny, x M.

A standard approach for the parallel solution of such
problems is the domain decomposition method [7].
The discrete mesh of the problem domain and its asso-
ciated fields are partitioned into sub-domains, which
are allocated to different processes. Note that in our
case, the discrete mesh Cy, of the truncated cylinder
Cy = O x {0,Y} needs to be partitioned. In this work,
we use a simple one-dimensional partitioning in y di-
rection.

It is well known that the parallel performance of PDE
problem solver essentially depends on the quality of
the parallel linear solver. In this work, we have used the
parallel multigrid solver from AGMG package [8, 9].

88 On Parallel Numerical Algorithms for Fractional Diffusion Problems

To test the parallel performance of the developed
algorithm, we have considered the problem (3) in the
2D unit square domain () using the discrete mesh of
the size Ny, = Ny, = 1000 and M = 250. The tolerance
of multigrid solver was set to 107 in all tests. Obvi-
ously, the computational complexity of this problem
also depends on the fractional power B. The available
numerical tests in the literature mostly concern the
cases B € {0.25,0.5,0.75}. In this article, we present
numerical tests only for the most complicated case
B = 0.75. Here we restrict to the analysis of 1D domain
decomposition and the y coordinate is divided into
M/ p size blocs and distributed among p processes.
From a scalability analysis it is known that for the
larger problems and larger number of processors the
2D and 3D partitionings are more efficient decomposi-
tion strategies and this topic will be investigated in a
separate paper.

Parallel performance results are presented in Ta-
ble 1. The total wall time T, is given in seconds.
Here p = ny x n. is the number of used parallel pro-
cesses computing with 74 nodes and 7. cores per node.
In Table 1, we present the obtained values of paral-
lel algorithmic speed-up S, = T;/T, and efficiency
E, =Sp/p.

p 1=1x1 2=1x2 4=1x4 8=1x8
Ty 1020 575.6 308.6 170.4
Sp 1 1.77 3.31 5.99
Ep 1 0.89 0.83 0.75

p 16=1x16 32=2x16 32=8x4 48=3x16
T, 127.4 94.3 75.6 158.8
Sp 8.01 10.82 13.50 6.43
E, 0.50 0.34 0.42 0.13

Table 1: The total wall time Ty, speed-up S, and efficiency
E, solving problem (3) with Ny, = Ny, = 1000, M = 250,
B = 0.75.

The obtained speed-up and efficiency values are not
very good. The efficiency of the parallel algorithm is
much better when a weak scalability analysis is done
and the size of the discrete problem is increased pro-

portionally to the increased number of processes. How-
ever, the presented results of strong scalability analysis
show potential drawbacks of the first approach for the
parallel solution with a larger number of processors.

IV.2 Integral evaluation problem

Using the second approach described in Section II1.2,
the non-local fractional diffusion problem (1) is trans-
formed into a computation of two integrals (5). Each
term in both sums of numerical approximation (6) can
be computed independently, what is very convenient
for the parallelization.

In our second parallel solver, we employ the well-
known Master-Slave parallel model [10, 11]. Master
process generates and distributes tasks (a block of con-
secutive y; values) between the slave processes. For
each received y; value a slave process solves the local
elliptic problem (I, + y]ZLh)_lf or (yjzlh + Ly)"1f in
domain Q.

Differently from the usual Master-Slave model, in
our solver, slave processes do not return to the mas-
ter results of each task immediately after its solution.
The slave processes accumulate the obtained results -
compute partial sums of the solution u for each mesh
point. These big data vectors of the size Ny, x Ny, are
sent only once, after the solution of the last task. The
problem solution u is collected from the partial sums
at the master process by MPI reduction operation [12].

To test the parallel performance of the developed
algorithm, we have considered the problem (5) in the
2D unit square domain () using the discrete mesh of
the size Ny, = Ny, = 1000 and M = 3000 in (6). A
single task was defined as a block of 10 consecutive y;
values. For the local elliptic problems the tolerance of
multigrid solver was set to 10~°. The fractional power
B was set to 0.75.

Parallel performance results of our second parallel
solver are presented in Table 2. The total wall time
Ts 1% n. is given in seconds. Here p = n; X n, is the to-
tal number of used parallel processes computing with
ny nodes and #, cores per node, s = p — 1 is the num-
ber of slave processes, which are solving computational
tasks. In Table 2, we also present the obtained values
of parallel algorithmic speed-up S5 = T1/Ts 1, xn, and
efficiency E; = S;/s.

Raimondas Ciegis, Vadimas Starikovicius, Svetozar Margenov

89

1,1x2 2,1x3 4,1x5 8, 1x9 15, 1x16
Ts 11862 6192 3098 1605 1047
Ss 1 1.92 3.83 7.39 11.33
Es 1 0.96 0.96 0.92 0.76
31, 2x16 47, 3x16 63,4x16 127, 8x16 159, 10x16
Ts 521.5 354.0 268.0 140.2 113.6
Ss 2275 33.51 44.26 84.6 104.4
E; 073 0.71 0.70 0.67 0.66

Table 2: The total wall time Tsy,xn,, speed-up Ss and ef-
ficiency Es solving problem (5) with Ny, = Ny, = 1000,
M = 3000, block size - 10, § = 0.25.

A slight degradation of the performance of our sec-
ond parallel solver is caused by the load imbalance of
the slave processes. The computational complexity of
the local elliptic problems is different for the different
y; values. The number of tasks assigned to the single
slave process is decreasing as the number of processes
increases. This causes an increasing influence of the
load imbalance on the total solution time.

The reduction of the single task (i.e. y; block size)
should reduce this drawback. However, this will cause
an increasing communication between the master and
slave processes. At some point, this can cause an idling
of slave processes, waiting for the tasks from busy
master.

IvV.3

Using the third approach described in Section III.3,
the non-local fractional diffusion problem (1) is trans-
formed into another well-studied case of pseudo-
parabolic PDE problem (7).

The constructed finite volume scheme (8) implies
that our third numerical algorithm will advance in
pseudo-time solving one system of linear equations
at each of M iterations. In case, when the problem
domain Q) is two-dimensional, the linear system will
have 5 point stencil matrix of size N = Ny, X Ny,.

One can easily see the similarities and differences
with the first approach. One of the important prac-
tical implications is the significantly smaller amount

Discrete pseudo-parabolic problem

of memory required to fit the system matrix, solution,
and other data.

Again, a standard domain decomposition method
is used for the parallel solution of pseudo-parabolic
PDE problem. The discrete mesh of problem domain
) and its associated fields are partitioned into sub-
domains, which are allocated to different processes.
As in the previous tests, a simple one-dimensional
block partitioning is used.

To test the parallel performance of the developed
algorithm, we have considered the problem (7) in the
2D unit square domain () using the discrete mesh
of the size Ny, = Ny, = 1000 and M = 1000. The
tolerance of AGMG multigrid solver was set to 10~°
in all tests. Obviously, the computational complexity
of problem (7) also depends on the fractional power
B and parameter 4. In this case, we have performed
numerical tests for § = 0.25 and ¢ = 10.

Parallel performance results are presented in Ta-
ble 3. The total wall time T), is given in seconds.
Here p = ny x n, is the number of used parallel pro-
cesses computing with n; nodes and n. cores per node.
In Table 3, we present the obtained values of paral-
lel algorithmic speed-up S, = T;/T, and efficiency
E, =S, /p.

p 1=1x1 2=1x2 4=1x4 8=1x8
T, 24811 1562.7 813.6 421.7
Sp 1 1.59 3.05 5.88
Ep, 1 0.79 0.76 0.74

p 1l6=1x16 32=2x16 32=8x4 48=3x16
Ty 320.9 376.6 345.3 610.3
Sp 7.73 6.59 7.18 4.07
E, 0.48 0.21 0.22 0.08

Table 3: The total wall time Ty, speed-up S, and efficiency
Ey solving problem (7) with Ny, = Ny, = 1000, M =
1000, g = 0.25, 5 = 10.

Again, as it was with the first solver, the obtained
speed-up and efficiency values are not very good. Since
the size of 2D problem is even smaller, in this case the
parallel scalability of AGMG multigrid solver is even

90 On Parallel Numerical Algorithms for Fractional Diffusion Problems

more critical, than in the case of the first solver.

V. CONCLUSIONS

Three different parallel numerical algorithms were de-
veloped for fractional diffusion problems. All of them
rely on transformations of the original non-local prob-
lem to well-known local PDE problems.

The advantage of this approach is that due to the
common use of these PDEs models their numerical so-
lution methods are well developed. The software pack-
ages for their numerical solution (including parallel)
are subject to a long-time development and permanent
improvements.

The first and third algorithms strongly depend on
the parallel scalability of the available multigrid solvers.
The third algorithm has the significantly smaller de-
mand on the amount of the required memory com-
pared to the first one.

The performance results of second parallel algorithm
are very promising. The issue of load balancing needs
a special attention and further research. Possibility
of employing a multilevel parallelism makes this ap-
proach even more attractive.

The weak scalability of these parallel algorithms will
be studied in a following paper.

Acknowledgment

The work presented in this paper has been partially
supported by EU under the COST programme Action
IC1305, "Network for Sustainable Ultrascale Comput-
ing (NESUS)'". This research was also funded by a grant
(No. MIP-074/2015) from the Research Council of
Lithuania.

Computations were performed on resources at the
High Performance Computing Centre “HPC Sauletekis”
in Vilnius University Faculty of Physics.

REFERENCES

[1] S. Harizanov, S. Margenov, P. Marinov and Y. Vutov,
“Volume constrained 2-phase segmentation method
utilizing a linear system solver based on the best
uniform polynomial approximation of x1/2 ”, Jour-

nal of Computational and Applied Mathematics, vol.
310, no. 1, 115-28, 2017.

[2] R. H. Nochetto, E. Otarola, and A.]. Salgado, “A
PDE approach to fractional diffusion in general
domains: a priori error analysis”, Foundations of

Computational mathematics, vol. 15, no. 3, pp. 733-
791, 2015.

[3] R. H. Nochetto, E. Otarola, and A.]. Salgado, “A
PDE approach to numerical fractional diffusion”,
in Proceedings of the 8th ICIAM, Beijing, China, 2015,
pp- 211-236.

[4] A. Bonitto and]. E. Pasciak, “Numerical approxi-
mation of fractional powers of elliptic operators”,
Math. Comp., vol. 84, pp. 2083-2110, 2015.

[5] P. N. Vabishchevich, “Numerical solving unsteady
space-fractional problems with the square root of
an elliptic operator”, Math. Model. and Anal., vol.
21, no.2, pp. 220-238, 2016.

[6] R. C'iegis and N. Tumanova, “Stability analysis of fi-
nite difference schemes for pseudo-parabolic prob-
lems with non-local boundary conditions”, Math.
Model. and Anal., vol. 19, no.2, pp. 285-297, 2014.

[7] A. Quarteroni and A. Valli, A Domain Decomposi-
tion Methods for Partial Differential Equations, Oxford
Science Publications, 1999.

[8] Y. Notay, “AGMG software and documen-
tation”, http://homepages.ulb.ac.be/ ynotay/
AGMG. Last access: September 2016.

[9] A. Napov and Y. Notay, “An algebraic multigrid
method with guaranteed convergence rate”, SIAM
. Sci. Comput., vol. 34, pp. 1079-1109, 2012.

[10] V. Kumar, A. Grama, A. Gupta, and G. Karypis, In-
troduction to Parallel Computing: Design and Analysis
of Algorithms, Benjamin/Cummings, 1994.

[11] R. Ciegis, V. Starikovitius, N. Tumanova, and M.
Ragulskis, “Application of distributed parallel com-
puting for dynamic visual cryptography”, Journal
of Supercomputing, doi:10.1007/s11227-016-1733-8.

[12] MPI Forum, “MPIL A Message Passing Interface
Standard”, www.mpi-forum.org, 1995.

List of Authors

Alonso, Pedro, 51
Andre, Helmer, 59

Astsatryan, Hrachya, 79

Barbosa, Jorge, 1
Blaheta, Radim, 31

Burrows, Eva, 59

Carretero, Jesus, 37

Ciegis, Raimondas, 85

Da, Georges, 45

Denoyelle, Nicolas, 73
Frasheri, Neki, 15, 45

Garcia, Javier, 37
Georgiev, Ivan, 31
Georgiev, Krassimir, 31
Goglin, Brice, 73
Gong, Jing, 69

Gusev, Marjan, 1

Halbiniak, Kamil, 11
Haveraaen, Magne, 59
Hess, Berk, 69
Holmbacka, Simon, 15

Hristov, Atanas, 23
Ilic, Aleksandar, 73

Jakl, Ondrej, 31
Jarus, Mateusz, 79

Jeannot, Emmanuel, 73

Kimovski, Dragi, 23
Kohut, Roman, 31

Kumbaroska, Vesna, 23

Lafond, Sebastien, 15

Lastovetsky, Alexey, 11, 51

Margenov, Svetozar, 31, 85

Marozzo, Fabrizio, 37

Narsisian, Wahi, 79
Nikolova, Iva, 23

Oleksiak, Ariel, 79

Pall, Szilard, 69
Peplinski, Adam, 69
Petcu, Dana, 1
Pierson, Jean-Marc, 45

Prodan, Radu, 1

Reddy, Ravi, 51
Ristov, Sasko, 1

Rodrigo, Francisco, 37

Schlatter, Philipp, 69
Sheme, Enida, 15, 45

Sousa, Leonel, 73

Starikovicius, Vadimas, 85

Stary, Jiri, 31
Stolf, Patricia, 45
Szustak, Lukasz, 11

Talia, Domenico, 37

Trunfio, Paolo, 37

Wyrzykowski, Roman, 11

Zapryanov, Georgi, 23

