
Working Paper 14-28 
Statistics and Econometrics Series (19) 
October 2014 

Departamento de Estadística 
Universidad Carlos III de Madrid

Calle Madrid, 126
28903 Getafe (Spain)

Fax (34) 91 624-98-49

Particle Learning for Bayesian Non-Parametric Markov 
Switching Stochastic Volatility Model 

Audron  Virbickait *1, Hedibert F. Lopes2,  

M. Concepción Ausín3, Pedro Galeano4

Abstract 

This paper designs a Particle Learning (PL) algorithm for estimation of Bayesian non-
parametric Stochastic Volatility (SV) models for financial data. The performance of this 
particle method is then compared with the standard Markov Chain Monte Carlo 
(MCMC) methods for non-parametric SV models. PL performs as well as MCMC, and 
at the same time allows for on-line type inference. The posterior distributions are 
updated as new data is observed, which is prohibitively costly using MCMC. Further, a 
new non-parametric SV model is proposed that incorporates Markov switching jumps. 
The proposed model is estimated by using PL and tested on simulated data. Finally, the 
performance of the two non-parametric SV models, with and without Markov 
switching, is compared by using real financial time series. The results show that 
including a Markov switching specification provides higher predictive power in the tails 
of the distribution. 

Keywords: Dirichlet Process Mixture; Markov Switching; MCMC; Particle Learning; 
Stochastic Volatility; Sequential Monte Carlo. 
  

                                                 
* Corresponding author 
1 Universidad Carlos III de Madrid (UC3M), c/ Madrid 126, Getafe (Madrid), Spain, 28903, 
audrone.virbickaite@uc3m.es 
2 Insper Institute of Education and Research, Sao Paulo, Brazil, 04546-042, hedibertfl@insper.edu.br 
3 UC3M, Getafe (Madrid), Spain, 28903, concepcion.ausin@uc3m.es 
4 UC3M, Getafe (Madrid), Spain, 28903, pedro.galeano@uc3m.es 



Particle Learning for Bayesian Non-Parametric

Markov Switching Stochastic Volatility Model
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Carlo (MCMC) methods for non-parametric SV models. PL performs as well as

MCMC, and at the same time allows for on-line type inference. The posterior dis-

tributions are updated as new data is observed, which is prohibitively costly us-

ing MCMC. Further, a new non-parametric SV model is proposed that incorporates

Markov switching jumps. The proposed model is estimated by using PL and tested

on simulated data. Finally, the performance of the two non-parametric SV models,
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predictive power in the tails of the distribution.
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1 Introduction

Understanding, modeling and predicting volatility of financial time series has been ex-

tensively researched for more than 30 years and interest in the subject is far from de-

creasing. Volatility prediction has a very wide range of applications in finance, for ex-

ample, in portfolio optimization, risk management, asset allocation, asset pricing, etc.

The two most popular approaches to model volatility are based on the Autoregressive

Conditional Heteroscedasticity (ARCH) type, first introduced by Engle [1982], and the

SV type, first introduced by Taylor [1982], models. There is evidence in the literature

that SV models provide more flexibility than Generalized ARCH (GARCH, Bollerslev,

1986) specifications, see e.g. Broto and Ruiz [2004].

The SV model, as introduced by Taylor [1982], allows for time-varying volatility but

it is unable to capture the usual heavy-tailed behavior of conditional distribution of the

returns, since they are assumed to be Gaussian. One alternative is to abandon paramet-

ric assumptions for the returns altogether and consider a semi-parametric SV model,

where the distribution of the returns is modeled non-parametrically, at the same time

conserving the parametric discrete representation of the SV model.

Bayesian non-parametric approach in SV models is quite a new field of research,

with growing popularity due to its flexibility and superior performance, see Jensen and

Maheu [2010, 2012] and Delatola and Griffin [2011, 2013]. In these works it is assumed

that the distribution of the returns follows an infinite mixture of Normals via Dirich-

let Process Mixture (DPM) models (see Ferguson, 1983 and Lo, 1984, among others)

and Bayesian estimation is performed using MCMC methods. The MCMC approach

for SV models is the usual methodology since the seminal work by Jacquier et al. [1994],

where Bayesian inference for standard SV models was firstly developed. For a survey on

Bayesian estimation of time-varying volatility models see Virbickaitė et al. [2013]. How-

ever, MCMC methods in general are computationally demanding and inherently non-

sequential [Lopes and Polson, 2010]. Alternatively, one can rely on Sequential Monte

Carlo (SMC) methods, also known as particle filters, that allow for on-line type infer-

ence by updating the posterior distribution as the new data is observed.

Therefore, in this work we use SMC methods for Bayesian non-parametric SV models
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which allows us to incorporate new information on-line, i.e. as it arrives. In particular,

we make use of the PL approach, which is a particle based method, firstly introduced by

Carvalho et al. [2010a]. Differently from other particle methods, it does not suffer from

particle degeneracy. It also makes model comparison easy, since at each step we have

the predictive likelihood as a by-product. PL methods have been shown to outperform

the existing particle filtering alternatives and to be a competitor to MCMC, see Lopes

et al. [2011].

In the first part of the paper we design a PL algorithm for a SV model with DPM

innovations, referred to as a SV-DPM, similar to that of Delatola and Griffin [2011], and

compare the performance of the algorithm to MCMC. We find that PL performs as well

as MCMC, but, as commented above, the PL method provides the advantage of easily

incorporating the information from the new observation, while MCMC requires to re-

run the algorithm again.

In the second part of the paper we augment the SV-DPM model by incorporating

Markov switching jumps, as seen in So et al. [1998] and Carvalho and Lopes [2007],

resulting into a new MSSV-DPM model. We extend the previously developed PL algo-

rithm to this new model and apply it on simulated data. Then, the performance of the

new MSSV-DPM model is compared with the SV-DPM specification using real financial

time series and we obtain that the new model provides better predictive power in the

tails of the distribution.

The paper is structured as follows. Section 2 presents the linearized SV model with

non-parametric errors and compares the estimation output for the SV-DPM model by

using PL and MCMC. Then, Section 3 introduces a new MSSV-DPM model and designs

a PL algorithm for inference and prediction. Section 4 compares the performance of the

two non-parametric models by using real data. Finally, Section 5 concludes.
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2 SV-DPM Model

In this section we briefly review a commonly used version of the standard stochastic

volatility model with Normal errors. We then drop the normality hypothesis and in-

troduce a novel particle learning scheme to perform sequential Bayesian learning in the

class of SV model with Dirichlet Process Mixture models innovations (SV-DPM). We

show, via synthetic examples, that our particle filter performs similarly to the standard

MCMC scheme, with the advantage of producing online inference and, as a by product,

online model comparison/selection statistics.

2.1 Normal errors

The standard SV model looks as follows:

yt = exp {ht/2} vt,

ht = α + βht−1 + τηt,

where we impose |β| < 1 for the stationarity of the volatilities; vt and ηt are the error

terms, such that ηt ∼ N (0, 1) and the distribution of the vt with zero mean and unit

variance takes many different forms in the existing literature: from a standard Normal,

to heavy-tailed Student-t and others (see Kim et al., 1998, Chib et al., 2002, for example).

Kim et al. [1998] proposed linearlization of the standard SV model by defining rt =

log y2
t and εt = log v2

t , resulting into the following dynamic linear model:

rt = ht + εt, where εt ∼ F , (1)

ht = α + βht−1 + τηt, where ηt ∼ N (0, 1). (2)

Observe that the distribution of εt is a log χ2
1 if vt is Normally distributed. Kim et al.

[1998] and Omori et al. [2007] use carefully tuned finite mixtures of Normals to approx-

imate the distribution of log χ2
1 and use a data augmentation argument to propose fast

MCMC schemes that jointly sample {h1, . . . , hT} based on the well-known forward fil-

tering, backward sampling (FFBS) algorithm of Carter and Kohn [1994] and Frühwirth-
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Schnatter [1994].

However, the recent literature is abundant in showing that the distribution of vt has

heavier tails than Normal, rendering the above approximations useless. Below we intro-

duce the simple linearlized SV model with non-parametric errors to model the unknown

return distribution.

2.2 Non-Normal errors

Delatola and Griffin [2011, 2013], for example, propose to approximate the log-square of

the unknown return distribution εt ∼ F as an infinite mixture of Normals by relying on

DPM models. The simple SV-DPM model presented in this section is of the same spirit

as the model in Delatola and Griffin [2011].

Another important issue concerns the moments of the distribution of εt. Even though

the original errors vt are generated by a process with zero mean and unit variance, the re-

sulting moments of εt can vary greatly, depending on the distribution of vt. For example,

if vt ∼ N (0, 1), then E[εt] = −1.272, V[εt] = 4.946, S[εt] = −1.539 and K[εt] = 7.015,

where E[·], V[·], S[·] and K[·] denote mean, variance, skewness and kurtosis, respec-

tively. On the other hand, if vt ∼ ST (7), scaled in such a way that E[vt] = 0 and

V[vt] = 1, then E[εt] = −1.428, V[εt] = 5.218, S[εt] = −1.404 and K[εt] = 6.583. How-

ever, Student-t and Normal are not the only possible distributions for the errors. There is

an infinite number of possibilities for the distribution of the error term, whose moments

are impossible to “map” backwards in order to recover the true error distribution. Ac-

tually, the main interest is usually not the distribution of the error term, but filtering and

predicting the volatilities of the returns, which are highly sensitive to the choice of the

error distribution.

The model specification in (1) and (2) is slightly different from the one in Delatola and

Griffin [2011], since we do not sum the constant volatility parameter α into the mixture.

We leave this constant separate since in Section 3 we augment the model by considering

two different volatility levels, i.e. αst , where st ∈ {0, 1}.

Next, we do not specify a parametric model for the error density, but instead, we

assume a Dirichlet Process Mixture prior, firstly introduced by Lo [1984]. DPM models
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have been widely used for modeling time-varying volatilities, see Jensen and Maheu

[2010, 2012, 2013], Delatola and Griffin [2011, 2013], Kalli et al. [2013], Ausı́n et al. [2014]

and Virbickaitė et al. [2014]. This type of approach is known as time-invariant (indepen-

dent) DPM.

As seen in Escobar and West [1995], the DPM model has the following density func-

tion:

f (εt; G) =
∫

k(εt; θt)dG(θt),

where k is some density kernel with parameters θt and the mixing distribution G has

a DP prior, denoted here by G ∼ DP(c, G0(θ; 	)). Here the sub-index t in θt does not

mean time-varying parameters, but refers to the fact that at each time t the observation

εt comes from a different kernel density with some parameters θt, following the mixing

distribution G. Parameter c is called the concentration parameter and G0(θ; 	) is called

the base distribution. The concentration parameter c can be interpreted as the prior

belief about the number of clusters in the mixture. Small values of c assume a priori an

infinite mixture model with a small number of components with large weights. On the

contrary, large values of c assume a priori an infinite mixture model with all the weights

being very small. c is also called a precision parameter and indicates how close G is to

the base distribution G0, where larger c indicates that G is closer to G0.

Gaussian kernel and conjugate base prior. Considering a Gaussian kernel density,

θt ∼ N (μt, σ2
t ), the conjugate base prior G0(μ, σ2; 	) is a Normal - Inverse Gamma

prior, denoted here by G0 ∼ NIG(μ, σ2; m0, V0, a0, a0σ2
0 ), such that μ|σ2 is Normal,

N (μ; m0, V0σ2) and σ2 is Inverse Gamma, IG(σ2; a0/2, a0σ2
0 /2). Here m0, V0, a0 and

a0σ2
0 are the hyper-parameters in 	.

Define Φ =
(
α, β, τ2) as the set of parameters associated with the parametric part of

the model, Ω = {(μ, σ2)(j)}∞
j=1 as a set of parameters associated with the distribution of

the error term, and Θ = (Φ, Ω) as a complete set of all model parameters. Therefore,
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the model in (1) and (2) can be rewritten as follows:

rt|ht, Θ ∼ c
c + t − 1

N (rt; μ0 + ht, σ2
0 ) +

1
c + t − 1

L�
t−1

∑
j=1

nt−1,jN (rt; μj + ht, σ2
j ), (3)

ht|ht−1, Θ ∼ N (ht; α + βht−1, τ2), (4)

where nt,j is a number of observations assigned to jth component at time t and L�
t is a

number of non-empty components in the mixture at time t. Given this missing infor-

mation, the mixture becomes finite, where the maximum number of components the-

oretically is limited by the number of observations. In practice, data tends to cluster,

meaning that some observations come from the same component, therefore L�
t ≤ t.

2.3 MCMC for SV-DPM

The standard Bayesian estimation of SV models, parametric or non-parametric, relies

on MCMC methods, which, however, can be costly, because they have to consider a

sampler for latent volatilities.

Jensen and Maheu [2010] construct a MCMC scheme for their proposed SV-DPM

model, where latent volatilities are sampled via random length block sampler, which

helps to reduce correlation between draws. The authors found that the semi-parametric

SV model is more robust to non-Normal data and provides better forecasts. In another

paper, Jensen and Maheu [2012] consider an asymmetric SV-DPM model. The authors

extend their previous semi-parametric sampler to a bivariate setting, where the inno-

vations of the returns and volatilities are modeled jointly via infinite scale mixture of

bivariate Normals.

Meanwhile, Delatola and Griffin [2011] use a linearized version of SV model. Con-

ditional on knowing which mixture component the data belongs to, the linearized SV

model is just a Normal Dynamic Linear Model (NDLM) and the latent volatilities are

updated by FFBS (see the discussion at the end of Section 2.1). The remainder of the

model parameters are sampled via an extension of Gibbs sampler, called hybrid Gibbs

sampler. In their subsequent paper, Delatola and Griffin [2013] consider an asymmet-

ric SV model. Same as before, they make use of the linearization and update the latent
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log-volatilities via FFBS and the other parameters via Metropolis-Hastings. All above

MCMC schemes are costly in the context of SV models for at least two reasons: (1) the

MCMC sampler has to include a filter for latent volatilities, and (2) the sampler has to

be re-run each time a new observation arrives.

2.4 PL for SV-DPM

In this section we present the algorithm to perform PL estimation for a SV model with

non-parametric errors. PL, which was firstly introduced by Carvalho et al. [2010a],

allows for sequential filtering, smoothing and parameter learning by including state-

sufficient statistics in a set of particles. For reviews of particle methods in general, see

Lopes and Tsay [2011] and Lopes and Carvalho [2013]. The Appendix section at the

end of this paper includes a brief description of the main idea behind PL. For a more

detailed explanation of PL with illustrations refer to Carvalho et al. [2010a] and Lopes

et al. [2011], among others.

The priors for model parameters are chosen to be conditionally conjugate: h0 ∼
N (c0, C0), σ2 ∼ IG(a0/2, a0σ2

0 /2), μ|σ2 ∼ N (m0, V0σ2), τ2 ∼ IG(b0/2, b0τ2
0 /2), β|τ2 ∼

T N (−1,1)(mβ, Vβτ2), α ∼ N (mα, Vα). Here T N (a,b) represents Normal distribution,

truncated at a and b. c0, C0, a0, a0σ2
0 , m0, V0, b0, b0τ2

0 , mβ, Vβ, mα and Vα are hyper-

parameters. Then, a set of sufficient statistics St contains all updated hyper-parameters,

necessary for the parameter simulation, as well as filtered state variables, which are of

two kinds: the latent log-volatilities ht and the indicator variable kt, which tells us to

which mixture component the error data point belongs to. For t = 1 . . . , T and for each

particle (i) iterate through three steps:

1. Resampling.

Resample old particles (states, sufficient statistics and parameters) with weights

w ∝
1

c + t − 1

L�
t−1

∑
j=0

nj fN(rt; α + βht−1 + μj, τ2 + σ2
j ),

proportional to the predictive density of the returns (n0 = c). The components

of Θ = (α, β, τ2, μ1, . . . , μL�
t−1

, σ2
1 , . . . , σ2

L�
t−1

) have been simulated at the end of the
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previous period.

2. Sampling.

(a) Sample new log-volatilities ht from

p(ht|h̃t−1, Θ̃, ñ, L̃?
t−1, rt) =

L?
t−1

∑
j=0

nj

c + t− 1
N (ht; mhj, Vhj),

where, Vhj = Ajσ̃
2
j , mhj = Aj(rt − µ̃j) + (1 − Aj)(α̃ + β̃h̃t−1), and Aj =

τ̃2/(τ̃2 + σ̃2
j ).

(b) Sample new indicators kt from {1, . . . , L?
t−1 + 1}, with weights proportional

to

ñj fN(rt; α + βht−1 + µj, τ2 + σ2
j ), j = 1, . . . , L?

t−1 + 1,

where ñL?
t−1+1 = c and σ2

L?
t−1+1 = σ2

0 .

3. Propagating sufficient statistics and learning Θ.

(c.1) Sample τ2 from IG(τ2; b?0/2, b?0τ2?
0 /2), where

b?0 = b̃0 + 1 and b?0τ2?
0 = b̃0τ̃2

0 +
(m̃βh̃t−1 − (ht − α̃))2

1 + Ṽβh̃2
t−1

.

(c.2) Sample β from T N (−1,1)(β; m?
β, V?

β τ2), where

m?
β =

m̃β + Ṽβh̃t−1(ht − α̃)

1 + Ṽβh̃2
t−1

and V?
β =

Ṽβ

1 + Ṽβh̃2
t−1

.

(c.3) Sample α from N (α; m?
α, V?

α ), where

m?
α =

m̃ατ2 + Ṽα(ht − βh̃t−1)

τ2 + Ṽα
and V?

α =
τ2Ṽα

τ2 + Ṽα
.
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(c.4) Sample σ2
kt

from IG(σ2
kt

; a�0/2, a�0σ2�/2), where

a�0 = ã0 + 1 and a�0σ2�
0 = ã0σ̃2

0 +
(yt − ht − m̃0)

2

1 + Ṽ0
.

(c.5) Sample μkt from N (μkt ; m�
0, V�

0 σ2), where

m�
0 =

m̃0 + Ṽ0(yt − ht)

1 + Ṽ0
and V�

0 =
Ṽ0

1 + Ṽ0
.

2.5 Simulation exercise

We compare, based on simulated data, the posterior output for the SV-DPM model,

estimated using MCMC and PL. A time series of length T = 3000 was simulated di-

rectly from the linearized model with α = 0, β = 0.98 and τ2 = 0.10, where the log-

square of the returns εt comes from the mixture of 7 Normals proposed by Kim et al.

[1998] to approximate the log χ2
1 distribution. Simulated returns can be recovered as

yt = exp{rt/2}. MCMC results are obtained via Matlab code of Delatola and Grif-

fin [2011], which is available on Jim Griffin’s website1. The MCMC algorithm was run

for a total of 100k iterations, with the first 50k discarded as burn-in. The prior on the

persistence parameter is β ∼ T N (−1,1)(0.95, 0.1) and the prior for the volatility of the

volatility is τ2 ∼ IG(8, 0.24). The prior for the mixture components is different than

in this paper, since Delatola and Griffin [2011] use an alternative specification for the

base distribution (see Griffin, 2010). Our PL algorithm, written in R, was run for a total

of 300k particles. The hyper-parameters in the PL scheme are set as c0 = 0, C0 = 0.1,

mα = 0, Vα = 0.01, mβ = 0.98, Vβ = 0.1, b0 = 6, b0τ2
0 = 1.20, a0 = 6, a0σ2

0 = 19,

m0 = −1.27, V0 = 5. The concentration parameter c in both codes is set to be equal to

one. For volatility process and the parameters we report the median particle as an esti-

mate together with 97.5% and 2.5% percentile particles for 95% credible intervals (CIs).

For asymmetric distributions instead of quantiles we are using the corresponding HPD

(Highest Posterior Density) intervals.

We have split the sample into three data sets of T = 1000, 2000 and 3000 observa-

1http://www.kent.ac.uk/smsas/personal/jeg28/index.htm
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tions. In this way it is possible to see how PL is learning as compared to MCMC. The

true advantage of the PL procedure becomes evident at the moment when the new ob-

servation arrives. In MCMC setting we need to re-run the entire chain all over again in

order to incorporate this new information, meanwhile in PL we just add this new in-

formation to the existing output to obtain new updated parameters and states, which is

just a matter of seconds. The CPU time for both estimation approaches is presented in

Table 1.

Next, we compare the posterior output for both estimation methods graphically in

Figures 1, 2 and 3 and Table 2. Figure 1 draws the estimated density at T = 3000 for

the log of the squared returns for PL and MCMC, compared to the true one. Both es-

timations seem reasonable and very close to the true data generating density. Table 2

presents the estimated median parameter values with their corresponding 95% CIs or

HPDs for the PL and MCMC estimation procedures. Estimation of the persistence pa-

rameter β is almost identical among both procedures. The posterior distribution of the

volatility parameter τ2 is always slightly more peaked in PL setting. In fact, as the sam-

ple size increases, the width of the HPD intervals for τ2 for MCMC and PL decreases,

and PL always presents around 20% thinner HPD intervals. This might be influenced

by the fact the original model specifications are slightly different.

Figure 2 presents the posterior distributions for the log-volatilities at three differ-

ent data points T = 1000, 2000 and 3000. The posterior distributions for T = 2000

and T = 3000 look identical among PL and MCMC. However, in order to obtain these

distributions MCMC had to be re-run three times for three ”different“ data sets, mean-

while PL just incorporated new information sequentially and the posterior distribution

of any p(ht|rt) is readily available in the estimation output. Finally, Figure 3 draws the

PL parameter estimation path with 95% confidence bounds, as compared with the true

parameter values. As we can see, the parameter estimations become stable around the

1500th observation. Also, there is no sign of particle degeneracy, which is a problem

in other particle filtering methods, see Rios and Lopes [2013] for example. Therefore,

PL can be seen as an efficient alternative to MCMC methods. Moreover, once the chain

has been run, at the arrival of the new observation the posterior distributions can be

updated at a very low computational cost.
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In the next section we extend the non-parametric SV model to include Markov switch-

ing jumps and design a PL algorithm for inference and prediction.

3 MSSV-DPM Model

The simple SV model has some limitations such as it does not account for structural

changes in the volatility process, which we have to take into consideration, otherwise

the persistence parameter might be overestimated.

In this paper we consider a two-state Markov switching SV (MSSV) model, based on

the model of So et al. [1998], where the log-volatility equation is of the following form:

ht = αst + βht−1 + τηt, ηt ∼ N (0, 1),

where st are the regime variables following a two-state first order Markov Process:

pij = P [st = j|st−1 = i] , for i, j = 0, 1.

As seen in Carvalho and Lopes [2007], we have to introduce the following reparametriza-

tion for αst in order to avoid identification issues:

αst = γ0 + γ11 {st = 1} , γ0 ∈ � and γ1 > 0.

Here 1{st = 1} is an indicator function that takes values equal to one if the volatility

is in the high state (st = 1) and zero otherwise (st = 0). We also need to define the

transition matrix between the states 0 and 1:

T =

⎡
⎣ P(st = 0|st−1 = 0) P(st = 1|st−1 = 0)

P(st = 0|st−1 = 1) P(st = 1|st−1 = 1)

⎤
⎦ =

⎡
⎣ p 1 − p

1 − q q

⎤
⎦ .

There are several papers that consider regime switching SV models in Bayesian con-

text. Kalimipalli and Susmel [2004] have proposed a two-factor SV model with regime

switching and estimated it using Gibbs sampler. They find that the high volatility per-
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sistence is reduced when the regimes are incorporated in the model. Also, the authors

compare the new model with other two alternative two-factor models, simple SV and

GARCH, and find that SV always outperforms GARCH, both in sample and out of sam-

ple. The regime switching SV performs better than the simple SV in sample, however,

out of sample, it is only marginally better. Lopes and Carvalho [2007] extend SV model

to multivariate case and present a Factor Stochastic Volatility (FSV) model with Markov

switching jumps. They construct a novel MCMC scheme for inference and find that the

new model can capture market crashes in an instantaneous way, as opposed to the tra-

ditional FSV models. Carvalho and Lopes [2007] have constructed a sequential Monte

Carlo filter by combining auxiliary particle filter (APF) with the filter of Liu and West

[2001] to estimate a SV model with Markov switching regimes. They found that in terms

of prediction the Markov switching SV specification outperforms a simple SV model.

Here we extend the SV-DPM model in (3) and (4) to accommodate the above regime-

shifting structure:

rt|ht, Θ ∼ c
c + t − 1

N (rt; μ0 + ht, σ2
0 ) +

1
c + t − 1

L�
t−1

∑
j=1

nt−1,jN (rt; μj + ht, σ2
j ),

ht|ht−1, λt, Θ ∼ N (ht; γ0 + γ1λt + βht−1, τ2),

λt|Θ ∼ BER
(
(1 − p)1−λt−1qλt−1

)
,

where BER(p) denotes a Bernoulli distribution with parameter p and λt is a Bernoulli

distributed state variable.

3.1 PL for MSSV-DPM

We extend the previous PL algorithm of SV-DPM for MSSV-DPM, by incorporating the

estimation of three extra parameters and filtering of one more state variable λt. The

set of the parameters for the parametric part of the model is Φ = (γ0, γ1, β, τ2, p, q).

Also, priors for the new parameters are: γ0 ∼ N (mγ0 , Vγ0), γ1 ∼ T N (0,+∞)(mγ1 , Vγ1),

p ∼ B(αp, βp) and q ∼ B(αq, βq). For t = 1 . . . , T and for each particle (i) iterate through

three steps:

13



1. Resampling.

Resample with weights proportional to the predictive density of the returns:

w(i) ∝
1

c + t− 1

L?
t−1

∑
j=1

nj fN(rt; γ0 + γ1λt−1 + βht−1 + µj, τ2 + σ2
j )+

c
c + t− 1

fN(rt; γ0 + γ1λt−1 + βht−1 + µ0, τ2 + σ2
0 ).

Here Θ = (γ0, γ1, β, τ2, p, q, µ1, . . . , µL?
t−1

, σ2
1 , . . . , σ2

L?
t−1

) have been simulated at the

end of the previous period.

2. Sampling.

(a) Sample new states of the log-volatilities λt:

λt|λt−1, ht−1, Θ, rt ∼ BER
(

z2

z1 + z2

)
,

where

z1 =
1

c + t− 1

L?
t−1

∑
j=1

nj fN(rt; γ0 + βht−1 + µj, τ2 + σ2
j )+

c
c + t− 1

fN(rt; γ0 + βht−1 + µ0, τ2 + σ2
0 )× Pr(λt = 0|λt−1, Θ),

z2 =
1

c + t− 1

L?
t−1

∑
j=1

nj fN(rt; γ0 + γ1λt−1 + βht−1 + µj, τ2 + σ2
j )+

c
c + t− 1

fN(rt; γ0 + γ1λt−1 + βht−1 + µ0, τ2 + σ2
0 )× Pr(λt = 1|λt−1, Θ).

Then call α̃ = γ̃0 + γ̃1λt.

(b) Sample new log-volatilities ht:

p(ht|h̃t−1, Θ̃, ñ, L̃?
t−1, rt) =

L?
t−1

∑
j=1

nj

c + t− 1
N (ht; mhj, Vhj) +

c
c + t− 1

N (ht; mh0, Vh0),

14



where

mhj =
τ̃2(rt − µ̃j) + σ̃2

j (α̃ + β̃h̃t−1)

τ̃2 + σ̃2
j

and Vhj =
σ̃2

j τ̃2

σ̃2
j + τ̃2

.

For each particle we sample ht from a mixture of L?
t−1 + 1 components with

the corresponding weights from the previous period.

(c) Sample new indicators kt from {1, . . . , L?
t−1 + 1}, with weights proportional

to:

ñj fN(rt; α + βht−1 + µj, τ2 + σ2
j ), j = 1, . . . , L?

t−1,

where ñL?
t−1+1 = c and σ2

L?
t−1+1 = σ2

0 .

3. Propagating sufficient statistics and learning Θ.

(c.1) Sample γ0 from N (γ0; m?
γ0

, V?
γ0
), where

m?
γ0

=
m̃γ0 τ̃2 + Ṽγ0(ht − (γ̃1λt + β̃h̃t−1))

τ̃2 + Ṽγ0

and V?
γ0

=
τ̃2Ṽγ0

τ̃2 + Ṽγ0

.

(c.2) Sample γ1 from T N (0,+∞)(γ1; m?
γ1

, V?
γ1
), where

m?
γ1

=
m̃γ1 τ̃2 + Ṽγ1λt(ht − (γ0 + β̃h̃t−1))

Ṽγ1λt + τ̃2
and V?

γ1
=

τ̃2Ṽγ1

τ̃2 + λtṼγ1

.

Call α = γ0 + γ1λt.

(c.3) Sample p from B(p; α?p, β?
p), where

α?p = αp + 1 if λt = 0|λt−1 = 0 and β?
p = βp + 1 if λt = 1|λt−1 = 0.

(c.4) Sample q from B(q; α?q , β?
q), where

α?q = αq + 1 if λt = 1|λt−1 = 1 and β?
q = βq + 1 if λt = 0|λt−1 = 1.

15



(c.5) Sample τ2 from IG(τ2; b�0/2, b�0τ2�
0 /2), where

b�0 = b̃0 + 1 and b�0τ2�
0 = b̃0τ̃2

0 +
(m̃βh̃t−1 − (ht − α))2

1 + Ṽβh̃2
t−1

.

(c.6) Sample β from T N (−1,1)(β; m�
β, V�

β τ2), where

m�
β =

m̃β + Ṽβh̃t−1(ht − α)

1 + Ṽβh̃2
t−1

and V�
β =

Ṽβ

1 + Ṽβh̃2
t−1

.

(c.7) Sample σkt from IG(σ2
kt

; a�0/2, a�0σ2�/2), where

a�0 = ã0 + 1 and a�0σ2�
0 = ã0σ̃2

0 +
(rt − ht − m̃0)

2

1 + Ṽ0
.

(c.8) Sample μkt from N (μkt ; m�
0, V�

0 σ2), where

m�
0 =

m̃0 + Ṽ0(rt − ht)

1 + Ṽ0
and V�

0 =
Ṽ0

1 + Ṽ0
.

3.2 Simulated Data

In order to test the proposed model we use a simulated data set with the following

parameters: γ0 = −0.06, γ1 = 0.08, β = 0.92, τ2 = 0.01, p = 0.995, q = 0.995. The

errors follow a standard Normal distribution εt ∼ N (0, 1). The hyper-parameters are:

mγ0 = γ0, Vγ0 = γ2
0, mγ1 = γ1, Vγ1 = γ2

1, αp = 4, βp = 1, αq = 4, βq = 1, mβ = β,

Vβ = 0.1, b0 = 3, b0τ2
0 = 0.01, m0 = −1.2704, V0 = 5, a0 = 5 and a0σ2

0 = 15. We

estimate this data with MSSV-DPM model using PL, number of particles N = 300k. The

estimation results are presented in the Figures 4, 5 and 6.

Figure 4 top graph draws the simulated returns. The middle graph represents the

true realization of the log-volatility (in black) and the mean estimated filtered log-volatility

(in grey). The estimation of the latent log-volatility seems reasonable. The bottom graph

of the same figure draws the mean probability of being in a state one (st = 1). As seen

from the figure, PL takes some time to learn, since at first it is not able to distinguish the

regimes well. However, around observation 1000 the algorithm is able to correctly iden-
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tify the regimes with the overall miss-classification rate equal to 13%. Figure 5 draws the

true and estimated density for the log-squared returns, which is log χ2
1. Finally, Figure 6

draws the sequential estimation of the model parameters and their 95% HPD intervals.

Overall, the obtained estimation results seem quite reasonable and PL is able to cor-

rectly identify volatility regimes, filter log-volatilities, estimate the density of the errors

and the parameters in an efficient sequential manner.

4 Real Data Application

In this section we present a real data application using return time series for various

financial assets, in particular one index - S&P500, one company - Ford - and one com-

modity - natural gas. The S&P500 prices are from Jan 2nd 1997 till Sept 9th 2014, Ford

from Jan 2nd 1997 till Sept 9th 2014 and Henry Hub natural gas spot prices (dollars per

million btu) from Jan 5th 1997 till Sept 9th 2014. The summary of descriptive statistics

can be seen in Table 3 and Figure 7.

Next, we estimate the data with two non-parametric models, SV-DPM and MSSV-

DPM. The hyper-parameters for the priors are as follows: c0 = 0, C0 = 0.1, mα = 0,

Vα = 0.001, mβ = 0.95, Vβ = 0.1, b0 = 8, b0τ2
0 = 0.24, a0 = 6, a0σ2

0 = 18, m0 = −1.26,

V0 = 5 for SV-DPM and mγ0 = −0.10, Vγ0 = 0.01, mγ1 = 0.20, Vγ1 = 0.04, αp = 7,

βp = 1, αq = 7, βq = 1, mβ = 0.95, Vβ = 0.01, b0 = 8, b0τ2
0 = 0.456, m0 = −1.26, V0 = 5,

a0 = 6, a0σ2
0 = 18 for MSSV-DPM. The codes were run for 500k particles each.

To compare the performance of the models, we use the average log-predictive score

(LPS) and average log-predictive tail score (LPTSα), which restrics attention to the events

in the upper 100α% of the empirical distribution of the squared returns, as seen in Dela-

tola and Griffin [2011]. The LPS is defined as follows:

LPS = − 1
T

T

∑
t=1

log p(rt|rt−1),
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and LPTSα is defined as:

LPTSα = − 1
T
∑

t=1
1{rt > zα}

T

∑
t=1

1{rt > zα} log p(rt|rt−1),

where zα is the upper 100α percentile of the empirical distribution of rt. As Delatola and

Griffin [2011] point out, the LPTSα is not considered a proper scoring rule, however, it

can be very useful for understanding how the model performs in the tails.

The log-predictive densities are very easy to obtain in SMC setting, since they are a

by-product of the estimation procedure and, for each t = 1, . . . , T, are calculated as

log p(rt|rt−1) =
1
N

N

∑
i=1

p(rt|(Θ, ht, kt)
(i)). (5)

Differently than in Delatola and Griffin [2011], there is no need to fix a certain Θ̂ for

the calculation of the LPS and LPTSα, since we can account for parameter and state

uncertainty by using the approximation in (5).

Next, we present the estimation results for the S&P500 data set. Figures 8 and 9

present estimated predictive densities, filtered volatilities and volatility states and Ta-

ble 4 presents the estimated parameters. Figure 8 shows the estimated densities for the

error term as compared to the frequently used mixture of 7 Normals, as an approxima-

tion of log χ2
1. SV-DPM and MSSV-DPM models estimates are very similar to each other

and different from the 7N approximation. This shows that the assumption of Normality

is very restrictive and in most cases incorrect. As we can see in Figure 9, the filtered

volatility for both models is very similar (second and third graphs). Additionally, the

MSSV-DPM model is able to identify some different volatility regimes, especially in the

second half of the data series when the algorithm had time to learn (bottom graph). As

for the parameter estimation in Table 4, the volatility persistence parameter tends to

be larger for the SV-DPM model, as expected, see So et al. [1998] and Kalimipalli and

Susmel [2004], among others.

Table 5 presents the LPS and LPTSα for the S&P500 data. Same as in the paper by

Delatola and Griffin [2011], where the authors compare parametric and non-parametric
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SV models, the LPS are very similar thus making the models virtually indistinguishable.

However, once we concentrate on the tails, the MSSV-DPM model tends to perform

better, especially if we consider the very extreme events (the 99th percentile).

Similar results can be seen in the estimation of the other two data sets, see Tables 6, 7, 8

and 9 and Figures 10 and 11. For Ford and Natural gas data the SV-DPM model esti-

mates larger persistence parameter, same as in the S&P500 data set. Also, the LPS for

both models are very similar, but the differences appear when we consider only the tails

of the distribution.

To conclude, it seems that the SV-DPM and MSSV-DPM models tend to perform

similarly, if we consider the entire predictive distribution of the returns. However, the

identification of different volatility regimes becomes important if we consider the tails of

the distributions, where the MSSV-DPM model performs better. This is of major interest

to the investors, who are usually more interested in the tails than the entire distribution.

5 Discussion

This paper designs a more efficient estimation procedure, based on SMC schemes, for a

non-parametric SV-DPM model. We compare the performance of PL with the standard

Bayesian estimation methods - MCMC. PL performs as well as MCMC, however, at a

much lower computational cost whenever the new observation arrives. PL provides

on-line type inference, which enables us to see the evolution of parameter learning and

also provides the predictive likelihoods at each data point as a by-product. Next, the

existing SV-DPM model is augmented with Markov switching jumps to capture differ-

ent volatility regimes. We test the new model on simulated data and find that it is able

to identify different volatility regimes. Finally, we present a real data application using

three financial time series of the returns for one index - S&P500, one company - Ford,

and one commodity - Natural gas. We find that the new MSSV-DPM model performs

as well as the SV-DPM model if we consider the entire predictive distribution of the re-

turns. However, the MSSV-DPM model outperforms the SV-DPM model if we consider

only the tails of the distribution, especially, very rare events (the 99th percentile).
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Appendix: A brief review of particle learning

Define St as an essential state vector to be tracked in time. St is sufficient for the compu-

tation of p(rt+1|St), p(St+1|St, rt+1) and p(Θ|St+1). Usually it contains the filtered states

and the hyper-parameters for the distributions of the model parameters Θ. PL, differ-

ently than other particle methods, relies on a resample-propagate scheme, that can be

understood by rewriting the Bayes theorem:

p(St|rt+1) ∝ p(rt+1|St)p(St|rt) :

Resample p(St|rt) with weights p(rt+1|St),

p(St+1|rt+1) =
∫

p(St+1|St, rt+1)dP(St|rt+1) :

Propagate St+1 via some propagation rules.

Here rt+1 = (r1, . . . , rt+1). At t = 0 initial values for parameters and states are simu-

lated from their prior distributions: Φ0 of dimension K×N (N is the number of particles

and K is the number of model parameters), Ω0 of dimension 2×N (at time t = 1 there is

only one mixture component, having only two parameters) and h0 of dimension 1× N.

Also, an essential state vector S0 is constructed, containing all the hyper-parameters for

the parameters of the model and mixture components, the volatility states and other in-

formation about the mixture. This vector is of dimension Zt × N, where Zt changes in

time depending on the number of the mixture components. Then, PL iterates through

three steps, for each particle (i), for i = 1, . . . , N:

1. Resample the particles with weights proportional to the posterior predictive den-

sity w(i) ∝ p(rt+1|S
(i)
t ) to obtain resampled particles S̃(i)

t . In other words, we obtain

a new essential state vector S̃t by sampling from the existing essential state vector

St with weights that give more importance to the particles that produce higher

likelihood with respect to the new data point.

2. Propagate the particles S(i)
t+1 ∼ p(St+1|S̃

(i)
t , rt+1). In this step we update all the

elements of the essential state vector through some propagation rules.

3. Learn about the parameters on-line or off-line by approximating p(Θ|rt+1) as fol-
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lows:

p(Θ|rt+1) ≈ 1/N
N

∑
i=1

p(Θ|St+1).

In this step, once the elements of the essential state vector have been propagated,

we use those updated hyper-parameters to sample from the posterior distributions

of the parameters, obtaining new samples for the parameters Θ. In some cases it is

possible to integrate out the parameter uncertainty in resample step. Then, the pre-

dictive density depends only on the essential state vector p(rt+1|S(i)
t ). However, in

many other cases it is not possible to integrate out the parameter uncertainty ana-

lytically. Then, in order to calculate the predictive density in the resample step, we

use the sampled parameters, obtained from the hyper-parameters in the essential

state vector: p(rt+1|Θ(i)
t , S(i)

t ).

Carvalho et al. [2010b] presented a detailed explanation of PL methods for general

mixtures, including DPM models. As before, nt,j is a number of observations assigned to

the jth mixture component at time t and kt is an allocation variable that indicates which

mixture component the observation belongs to. We can augment the essential state vec-

tor St by including nt,j and kt. Then density estimation by using a infinite location-scale

mixture of Normals via PL can be carried out by iterating through the following two

steps, for each particle i:

1. Resample with weights proportional to the predictive density w(i) ∝ p(rt+1|S(i)
t )

to obtain resampled particles S̃(i)
t ;

2. Propagate allocation variable k(i)t+1 ∼ p(kt+1|S̃(i)
t , yt+1), and the rest of the sufficient

statistics S(i)
t+1 = p(St+1|S̃(i)

t , kt+1, yt+1), including n(i)
t+1.

The third step, parameter learning, can be performed off-line since the parameter

uncertainty, as mentioned before, can be integrated out. In various simulation studies,

presented in the papers above, the authors show that PL outperforms other particle

filtering approaches, and is a cost-efficient alternative to MCMC methods.
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Audronė Virbickaitė, M. Concepción Ausı́n, and Pedro Galeano. A Bayesian Non-

Parametric Approach to Asymmetric Dynamic Conditional Correlation Model with

Application to Portfolio Selection. Revised and submitted to CSDA, arXiv:1301.5129v2,

2014.

26



Tables and Figures

Table 1: CPU time in seconds for MCMC and PL.

T MCMC (50k+50k) PL (300k particles)
1000 23356
2000 51796
3000 80401 56999

Table 2: Parameter estimates and their corresponding 95% CIs for PL and MCMC for
T = 1000, 2000, 3000.

MCMC PL
T Mean 95%CI Mean 95%CI

1000 0.9616 (0.9368, 0.9826) 0.9671 (0.9464, 0.9841)
β = 0.98 2000 0.9701 (0.9552, 0.9833) 0.9753 (0.9627, 0.9854)

3000 0.9809 (0.9721, 0.9889) 0.9843 (0.9768, 0.9906)
1000 0.1303 (0.0856, 0.1887) 0.1060 (0.0705, 0.1457)

τ2 = 0.10 2000 0.1140 (0.0805, 0.1538) 0.0837 (0.0590, 0.1147)
3000 0.1021 (0.0774, 0.1295) 0.0727 (0.0610, 0.1010)
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Table 3: Descriptive statistics for S&P500, Ford and Gas data.

S&P500 Ford Gas
Mean 0.0223 0.0182 0.0104

Median 0.0690 -0.0778 0.0668
St.dev. 1.2752 2.8026 4.4554

Skewness -0.2237 -0.0220 0.7370
Kurtosis 10.4789 15.8981 28.3024

T 4447 4329 4193

Table 4: Parameter estimation for SV-DPM and MSSV-DPM models for S&P500 data at
time T.

SV-DPM MSSV-DPM
Mean 95%CI Mean 95%CI

α 0.0144 (0.0098, 0.0190) - -
β 0.9792 (0.9747, 0.9837) 0.9474 (0.9383, 0.9550)
τ2 0.0187 (0.0172, 0.0202) 0.0255 (0.0239, 0.0276)
γ0 - - 0.0052 (-0.0010, 0.0131)
γ1 - - 0.1279 (0.1069, 0.1497)
p - - 0.9943 (0.9898, 0.9973)
q - - 0.9585 (0.9352, 0.9782)

Table 5: LPS and LPTSα for SV-DPM and MSSV-DPM for S&P500 data.

SV-DPM MSSV-DPM difference
LPS 2.1907 2.2029 -0.0122

LPTS0.10 2.6444 2.6610 -0.0166
LPTS0.05 2.9369 2.9282 0.0087
LPTS0.01 3.6168 3.5068 0.1100
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Table 6: Parameter estimation for SV-DPM and MSSV-DPM models for Ford data at time
T.

SV-DPM MSSV-DPM
Mean 95%CI Mean 95%CI

α 0.0198 (-0.0238, 0.0264) - -
β 0.9738 (0.9678, 0.9791) 0.9389 (0.9287, 0.9481)
τ2 0.0274 (0.0171, 0.0366) 0.0474 (0.0442, 0.0509)
γ0 - - 0.0013 (-0.0088, 0.0089)
γ1 - - 0.0875 (0.0731, 0.1087)
p - - 0.9944 (0.9909, 0.9974)
q - - 0.9854 (0.9755, 0.9929)

Table 7: LPS and LPTSα for SV-DPM and MSSV-DPM for Ford data.

SV-DPM MSSV-DPM difference
LPS 2.0718 2.0851 -0.0133

LPTS0.10 2.7639 2.7687 -0.0048
LPTS0.05 3.1086 3.0956 0.0130
LPTS0.01 4.1864 4.1007 0.0857

Table 8: Parameter estimation for SV-DPM and MSSV-DPM models for Gas data at time
T.

SV-DPM MSSV-DPM
Mean 95%CI Mean 95%CI

α -0.0430 (-0.0481, -0.0342) - -
β 0.9823 (0.9755, 0.9845) 0.9458 (0.9414, 0.9502)
τ2 0.0278 (0.0253, 0.0441) 0.0374 (0.0340, 0.0404)
γ0 - - -0.1103 (-0.1173, -0.1030)
γ1 - - 0.3961 (0.3574, 0.4314)
p - - 0.9682 (0.9596, 0.9761)
q - - 0.6458 (0.5762, 0.7125)
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Table 9: LPS and LPTSα for SV-DPM and MSSV-DPM for Gas data.

SV-DPM MSSV-DPM difference
LPS 2.1431 2.1485 -0.0054

LPTS0.10 2.7865 2.8091 -0.0226
LPTS0.05 3.1608 3.1560 0.0049
LPTS0.01 4.5336 4.2702 0.2634

Figure 1: Density of a mixture of 7 Normals and the density of the simulated data com-
pared to the predictive density for εt = log ε2

t , estimated by PL and MCMC for T = 3000.
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Figure 2: Posterior distributions of the log-volatilities for MCMC and PL for T =
1000, 2000 and 3000.
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Figure 3: PL parameter estimates with 95% CI for one run of 300k particles, compared
to the true parameter values.
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Figure 4: Simulated data: daily returns (top graph), true and estimated log-volatilities
(middle graph) and true and estimated regimes (bottom graph).
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Figure 5: Simulated data: true and estimated density for log-squared return distribution.
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Figure 6: Simulated data: true and estimated parameters with 95% HPD intervals.
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Figure 7: Daily log-returns (in %) and corresponding histograms for S&P500, Ford and
Natural gas data.
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Figure 8: Estimated densities for the log-squared error term for SV-DPM and MSSV-
DPM models.
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Figure 9: Filtered volatilities and volatility states for S&P500 data for SV-DPM and
MSSV-DPM models.
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Figure 10: Filtered volatilities and volatility states for Ford data for SV-DPM and MSSV-
DPM models.
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Figure 11: Filtered volatilities and volatility states for Gas data for SV-DPM and MSSV-
DPM models.
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