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Resumen

En el presente trabajo abordamos el problema de la modelización e inferencia
de la dinámica de las poblaciones de bacterias. Dado que las mediciones del
crecimiento de bacterias en platillos de Petri, pueden fácilmente replicarse bajo
las mismas condiciones experimentales, el estudio se centra en los casos donde los
datos presentan una estructura jerárquica.

El crecimiento de bacterias está muy influido por las condiciones ambientales,
por ejemplo niveles de sal, temperatura o acidez y la relación de estos factores con
el crecimiento es muy compleja. Por ello, en experimentos bajo distintas condi-
ciones, es fundamental buscar modelos flexibles para relacionar el crecimiento con
tales condiciones.

En esta tesis, presentamos como objetivo desarrollar modelos predictivos ca-
paces de combinar toda la información disponible, como por ejemplo la repetición
de los experimentos, con el fin de lograr predicciones mas precisas. Por otra
parte, se propone también desarrollar un modelo mas general para el crecimiento
aplicable a una gran variedad de microorganismos y bajo un gran número de
combinaciones de las condiciones ambientales y ecológicas.

Con estos objetivos en mente, proponemos el uso de modelos jerárquicos
cuando se observan multiples curvas de crecimiento. De esta manera, la esti-
mación de una única curva es mejorada a través de la información que brindan
el resto de las curvas de crecimiento observadas. Adicionalmente, proponemos
también el uso de técnicas no paramétricas para modelizar los procesos de crec-
imiento, sin necesidad de asumir que las poblaciones se comportan según cierta
función paramétrica. En particular, utilizamos redes neuronales ya que tienen
una gran capacidad de describir el comportamiento de modelos complejos y no
lineales.

Los procesos de crecimiento pueden presentar ciertas fluctuaciones estocas-
ticás que no se deben a errores de medición. Los modelos que simplemente adi-
cionan un error a una función determińıstica no son capaces de capturar la vari-
abilidad total de estos procesos. En consecuencia, hemos desarrollado un modelo
estocástico que presenta dos caracteŕısticas deseables: las trayectorias de crec-
imiento son no-decrecientes y la función de medias del proceso es proporcional a
la función de Gompertz de crecimiento.

xi



xii RESUMEN

Finalmente, en este trabajo también se aborda el problema de la estimación
de los modelos, para lo cual hemos preferido utilizar inferencia bayesiana ya que,
entre otra cosas, brinda un enfoque unificado al tratar con diversos tipos de mod-
elos, como por ejemplo, jerárquicos y redes neuronales. Por otra parte, la infer-
encia Bayesiana nos permite diferenciar entre distintas fuentes de incertidumbre
a través del uso de distribuciones a priori jerárquicas, . Asi mismo, permite la
incorporación de información previa, ampliamante disponible en ciencias como la
microbioloǵıa.



Introduction and Summary

In this dissertation we study the problem of modeling and inference for the dy-
namics of bacterial populations. Bacterial growth data taken from Petri-dish
experiments is easily replicated. Moreover, external factors such as temperature,
salinity or acidity of the environment are known to influence bacterial growth and
therefore, experiments are often undertaken under a variety of conditions. This
implies that often, bacterial growth data present a multilevel structure.

The first issue that we wish to to address in this thesis is how to analyze data
from multiple experiments in this context. The aim of our study is to develop
a predictive model able to combine all available information, such as replicated
experiments, in order to get more accurate predictions. Additionally, we wish
to develop a more general model for microbial growth for a variety of organism
types and under a larger number of combinations of environmental and ecological
variables.

To accomplish this challenges, we propose the use of hierarchical models when
multiple growth curve data are observed. In this way, it is possible to improve the
estimation of a single growth curve by incorporating information from the other
bacterial growth curves. Additionally, we propose the use of non-parametric tech-
niques to model the growth process, where it is not assumed that the population
fits any parameterized model. In particular, we shall introduce models based on
neural networks which can be used to fit very complex relationships.

A growth process may display some stochastic fluctuations which are not due
to measurement errors. Models which simply add an error to a deterministic
function cannot necessarily capture the total variability of the growth process.
Therefore, it is also important to consider fully stochastic models. Another ob-
jective of this thesis is to provide a new, stochastic growth curve model of this
type.

In general, in the literature on growth curve modeling, most work has been
carried out using weighted least squares techniques and other classical approaches.
However, the Bayesian approach brings a unified approach to the handling of com-
plex models, such as hierarchical models and neural networks and allows us to
differentiate, through the use of hierarchical prior distributions, between various
sources of variability, which is an important issue in predictive microbiology. Fur-

xiii



xiv INTRODUCTION AND SUMMARY

thermore, the Bayesian approach permits the incorporation of prior information
which is abundant in experimental sciences. One of the main difficulties with the
Bayesian approach for practical purposes is that often, complex algorithms have
to be devised for the implementation of these techniques, which is a disadvantage
to non specialists. Therefore, a further objective of this thesis is to show that
Bayesian inference can be implemented for many of the models proposed using a
relatively simple algorithm based on a generally available free software package
which can be used without the need to fine tune special samplers.

In summary, this thesis aims to provide a statistical framework for the analysis
of bacterial growth processes. Modeling and prediction play a key role in the field
of microbiology as a valuable tool for making recommendations on food safety and
human health and hence, improvements in the methods available are of interest.

The rest of the thesis is structured as follows.

In Chapter 1, we present a brief description of the main population growth
models, focusing in the advantages and disadvantages of each one. Then we
show that, given a single sample of growth curve data from one of these mod-
els, it is straightforward to implement both classical and Bayesian inference for
these models. We concentrate on the Bayesian approach which is growing in
interest because of its capability to incorporate information from a variety of
widely available sources such as laboratory experiments, field measurements and
expert judgements and for the possibility to distinguish formally between differ-
ent sources of uncertainty. In particular, we show that the free software package
WinBUGS can be used to implement Bayesian inference for simple bacterial growth
models.

In Chapter 2, we consider the case when various replications of Petri dish
experiments under identical conditions are observed. In such cases, we would
expect the individual growth curves to be similar and this suggests the use of hi-
erarchical models to capture the relationship between the different growth curves.
As in Chapter 1, we illustrate that the hierarchical model we use, based on the
well known Gompertz curve, can be fitted using WinBUGS.

In Chapter 3, we then consider the case of Petri dish experiments under dif-
ferent environmental conditions. The relationship between the growth curve pa-
rameters and the environmental factors is complex, and here we consider the use
of neural networks to model this relationship. Two basic models are considered.
Firstly, we introduce a neural network based secondary model which is based on
a Gompertz curve where the parameters of the growth curve are modeled as a
function of the environmental factors. Secondly, we consider the direct modeling
of the growth curve using neural networks. As previously, inference is carried out
using a Bayesian approach implemented via WinBUGS.

These first three chapters demonstrate that WinBUGS can be a powerful and
flexible tool able to handle very complex models. We show that in practice, it
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is relatively straightforward to implement complex models in WinBUGS which
allows microbiological researchers to conduct Bayesian inference in a simple way,
without the necessity to design complex MCMC algorithms and instead to con-
centrate on the model building aspects of the problem.

In the first three chapters, we concentrate on models in discrete time which
have the restriction that, for example they may be difficult to implement if data
are observed at irregular time intervals. In contrast, in Chapter 4 we develop a
new, continuous time, stochastic growth curve model. We show by means of sim-
ulations that our proposed model has the potential to capture the the variability
observed in replications of the same experiment under identical conditions. Also,
we illustrate that by modifying the parameter values, different shaped growth
curves can be generated. Finally, we introduce two approaches to Bayesian infer-
ence for our model. Firstly, in a simple case of the model, we introduce a Gibbs
sampling algorithm and secondly, for the full model, we consider the use of an
approximate Bayesian computing algorithm.
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Chapter 1

Growth models for single
populations

1.1 Introduction

Population dynamics is the study of how and why the sizes of one or more pop-

ulations change over time and space. Therefore, the objective of population dy-

namics is trying to determine the mechanism that explains the observed patterns

of population change, not just in the numbers of individuals in the population but

also in the age structure. This mechanism can be influenced by both biological

and environmental factors, as well as by interactions among individuals from the

same or different species. The use of mathematical models helps us to understand

the dynamic processes involved and to predict future population sizes. These are

very useful tools for the analysis of endangered species populations, bacterial or

viral growth, renewable resource management, maximum harvest levels for farm-

ers, evolution of pesticide resistant strains, control of pests and, in the biomedical

sciences, epidemics, infections and cancer.

The development of population models started in the late 18th-century with

the work of Malthus (1798) who pointed out that if unchecked, populations can

grow geometrically, whereas the food supply grows only at an arithmetic rate

1



2 CHAPTER 1. SINGLE POPULATIONS

leading to severe problems such as famine and social unrest. Mathematically,

the ideas of Malthus imply exponential growth in populations. Later, Verhulst

(1838) suggested some adjustment to exponential growth and proposed a logistic

model. According to this model, the growth curve takes the shape of a sigmoid

curve so that, initially, the population grows exponentially, but then the growth

rate decreases until an upper limit determined by the environmental conditions

and the carrying capacity is reached.

This initial work did not consider the possibility of interaction between pop-

ulations via e.g. predation. Lotka (1925) and Volterra (1926) independently pro-

posed a system of paired differential equations, the well known Lotka-Volterra

model, for the interaction of two species, one a prey and the other a predator.

Improvements in population modelling have continued over time. For a much

fuller review, see e.g. Murray (2003).

1.2 Population models

In this section, we describe some of the most well known models for population

growth, pointing out their main characteristics and advantages as well as their

problems and limitations.

1.2.1 The Malthusian growth model

The first mathematical model developed for analyzing population dynamics is the

simple, exponential growth model known as the Malthusian growth model, see

Malthus (1798). The main assumption of this model is that of a constant rate.
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The model can be represented by the following differential equation,

dN

dt
= rN, (1.1)

where at time t, N = N(t) is the population size and r = b − d is the constant

growth rate, equal to the difference between the constant birth and death rates

(b and d respectively).1 The solution to the differential equation (1.1) is

N(t) = N0e
rt = N0e

(b−d)t, (1.2)

where N0 = N(0) is the initial population size at time zero. If the birth rate is

greater than the death rate, that is if b > d, then r > 0 and the population grows

exponentially while if b < d, then r < 0 and the population decreases exponen-

tially till it dies out. Finally, if b = d, then the population remains constant at its

initial level. Figure 1.1 shows how the speed of the population growth depends

on the value of r. Notice that at time 10, the size of the population represented

by the dashed line is more than twice the population size represented by the solid

line while the difference in the value of r is only one tenth.

The kind of growth represented by the Malthusian model is possible only under

special conditions. For instance, bacteria grow by simple division, so that in an

experiment under ideal conditions for reproduction, with plenty of food and lack

of predators, it is possible to observe exponential growth. However, in practice

even bacteria do not grow indefinitely as eventually, food supplies grow short and

reproduction conditions deteriorate. This is the main disadvantage of this model.

Nevertheless, the model is very simple and can be useful for predictions in the

very short time.

1For this reason this model is also called the pure birth-death process model.
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Figure 1.1: Exponential Growth

1.2.2 The logistic growth model

To overcome the problems of the Malthusian model, some adjustments are neces-

sary. Verhulst (1838) proposed a new model where the population has a maximum

size. Under this approach, the population growth rate depends not only on the

current population size, but also on how far this is from a fixed upper limit. This

maximum population size can reach is called the carrying capacity of the environ-

ment and depends on the availability of resources. Formally, Verhulst’s logistic

growth model is defined by the following differential equation:

dN

dt
= rN(1− N

K
), where r,K > 0, (1.3)

where r is the growth rate and K is the carrying capacity. This equation is in-

tended to capture two features. Firstly, when the population size is small, then

the Verhulst model is close to the Malthusian model so that growth is approxi-

mately exponential. Secondly, when the population is large, starvation occurs so

that the growth rate decreases as the population size gets closer to the carrying

capacity. Thus, if the population size is far from this maximum, it would grow
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quickly, but as it approaches the carrying capacity the growth rate slows down.

The solution of Equation (1.3) is:

N(t) =
KN0e

rt

K +N0(ert − 1)
, (1.4)

where N0 is the initial population size as earlier. Note that for r > 0, then

limt→∞N(t) = K so that the population tends to the upper limit as time in-

creases. For r < 0 the population eventually dies out and for r = 0, the popula-

tion remains at its initial size as for the Malthusian model.

Figure 1.2 shows the curve produced by the logistic equation. This is an

S-shaped or sigmoidal curve. Initially the population grows exponentially but,

when the population size is closer to the carrying capacity, growth decelerates

until the stable upper bound is reached.

Figure 1.2: Logistic Growth

The logistic growth model describes the self-limiting growth of a population

where the growth process depends on the population density. When the pop-

ulation size increases, individuals start to compete with other members of the

population for food and other critical resources. This is the so-called bottleneck
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effect. Nevertheless, the problem with this model is the difficulty of knowing the

true value of K in a given habitat. Even when this value is known, at a given

moment, it might not be constant and may change over time. Another limitation

is that the population dynamics are often more complex than can be captured by

this model. For instance, the age of the individuals is not taken into account and

this can be an important factor as often, the capacity of reproduction depends

on age.

1.2.3 Delay models

The two models considered thus far can be included in a more general class of

models, specified by the differential equation

dN

dt
= f(N)N, (1.5)

where f(N) is the specific growth rate. If f(N) is a constant, then differential

equation (1.5) leads to Malthusian, pure exponential growth while, if f(N) =

r(1−N/K) we have the Verhulst, logistic growth model. An important problem

with these models is that they assume that the reproductive capacity of the

population individuals is independent of their age. In particular, many species

need to grow to a certain age or undergo a gestation period before they are capable

of reproduction. This suggests the incorporation of a time delay. To take into

account this feature, the differential equation (1.5) may be modified to become

dN

dt
= f(N−T )N, (1.6)

where T is a positive constant and represents the delay parameter and at time

t, N−T represents N(t − T ). Equation (1.6) shows that the population is now a
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function of the current populations and the population T periods before. This

new model is a little bit more realistic than the previous ones, but a better model

for a delay effect should really be an average over all past populations.

1.2.4 Models for interacting populations

Species are not usually alone in their habitat and on the contrary, usually there are

various species interacting in the same habitat so that the population dynamics of

each species are affected by the interrelationship among them. From e.g. Murray

(2003), there are three main types of interaction:

i) If the density of one population decreases while the other increases, the

populations are in a predator- prey situation.

ii) If the growth rates of both populations decrease simultaneously, then there

is competition.

iii) If the growth rates of both populations increase simultaneously then this is

called mutualism or symbiosis.

Here, we will outline a particular model for predator-prey interactions, that

is the Lotka-Volterra equations developed in Lotka (1925) and Volterra (1926).

Under this model, when the predators population increases, the prey population

decreases and as the predator population falls, the prey population increases.

These dynamics continue in a cycle of growth and decline. The system of differ-

ential equations that model this behaviour is:

dN

dt
= N(a− bP ) (1.7)

dP

dt
= P (cN − d), (1.8)
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where N = N(t) is the prey population, P = P (t) is the predator population

and a, b, c and d are positive constants. This model assumes that the prey has

an unlimited food supply so that in the absence of predation the prey population

grows exponentially as in the Malthusian model. When predation occurs, this

reduces the prey growth rate in proportion to the product of the current prey

and predator populations, as can be seen in the last term of Equation (1.7).

The change in the prey population is given by its own growth minus the rate

at which it is preyed upon. On the other hand, in the absence of any prey

for sustenance the predator population decays exponentially. Finally, the prey

contribution to the predator growth rate is proportional to the available prey and

predator populations, bNP . The change in the predator population is the growth

of the predator population minus natural death.

Equilibrium occurs in this model when both population levels are not chang-

ing. Setting both differential equations, (1.7) and (1.8), equal to zero and solving,

we get two equilibria: first at N = P = 0, and second at N = d/c and P = a/b.

The first solution represents the extinction of both species. If both population

levels are at 0, then they will continue to be so indefinitely. The level of the

second solution depends on the parameter values. Due to the fact that all the

parameters are restricted to be positive, then at this second equilibrium both

populations sustain their current non-zero size and do so indefinitely.

Figure 1.3 shows the phase trajectories. As we can see, the trajectories in

the in the N − P phase plane are closed lines with elliptical shape. For each

possible set of initial conditions, N0 = N(0) and P0 = P (0), there is a closed

orbit with amplitude determined by the starting point. In order to analyzes the

predator-prey phase space is useful divide the graph into four regions by the
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Figure 1.3: Phase plane trajectories of the Lotka-Volterra model

equilibrium (N = d/c and P = a/b).2 In the first region, both populations grow.

In the second region, predator population grows and therefore, the number of

prey declines. In the third region, both populations decline and in the last region

predators still declining while prey population starts to grow. A closed trajectory

like this in the phase plane implies periodic solutions in t for N and P in (1.7)

and (1.8).

One of the limitations of the Lotka-Volterra model is that it is not very re-

alistic and hence context specific information must be added. The model does

not consider any competition for resources among prey or predators and, as a

consequence, the prey population may grow infinitely. On the other hand, preda-

tors have no saturation, they consumption rate is unlimited and proportional to

the prey density. Therefore, the model behaviour shows no asymptotic stability

and neither equilibrium point is stable. Instead, the predator and prey popula-

tions cycle endlessly. This cyclic behaviour has been observed in nature but it is

not very common. The Lotka-Volterra model is insufficient for modelling many

2In our example a = 0.1, b = 0.01, c = 0.001 and d = 0.05. Then the equilibrium is at
N = 50 and P = 10.



10 CHAPTER 1. SINGLE POPULATIONS

predator-prey systems.

A more general formulation of this model which resolves some of these prob-

lems assumes that the growth functions may be non-linear

dN

dt
= f(N,P )N (1.9)

dP

dt
= g(N,P )P, (1.10)

where f and g represent the per capita growth rates of the prey and predator,

respectively.

1.2.5 Stochastic models

Population dynamics are complex systems because different factors may affect

the populations. Some of these factors can be modelled explicitly but in other

cases we cannot model such factors. Nevertheless, it is necessary to include their

effects in these population models. One way to do this is to include random

variables that account for the collective influence of such factors.

Models in population dynamics include three basic forms of randomness or

stochasticity (see Lande et al. (2003)): demographic stochasticity, environmen-

tal stochasticity, and sampling error. The first one refers to chance events of

individual mortality and reproduction. At a moment of time, an individual can

die with a certain probability, and this probability is usually conceived as being

independent among individuals. This kind of stochasticity tends to have greater

effect in small populations than in large populations. Environmental stochas-

ticity refers to temporal fluctuations in the probability of the mortality and the

reproductive rate of all individuals in a population. An extreme example are
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the unpredictable catastrophes like fire, flood, hurricane, epidemic, etc. The last

source of stochasticity arises from sampling procedure.

Thus, dynamics of populations has both deterministic and stochastic com-

ponents that operate simultaneously. According to Turchin (2003), there are at

least three different ways to include the stochasticity. The most direct approach,

when data are observed at regular, discrete time points, say t = 0, 1, 2, . . ., is to

add noise to the population rate of change, that is:

rt+1 = f(Zt) + εt, (1.11)

where rt+1 = log(Nt+1/Nt), Zt is the vector of state variables and εt is a random

variable with some probability distribution. Noise is included in additive manner

because environmental fluctuations are likely to affect per capita death and birth

rates, and these rates are combined additively in determining rt+1.

A second approach to including stochasticity in the model is to add a random

component directly to Nt. One possible mechanism that supports this approach

is the inclusion of random immigration events. Finally, the third approach is

to randomly vary the parameters of the model. This approach is useful when

researchers know in which part of the population process environmental effects

are the most important.

As an example consider the following extension of the Lotka-Volterra model

proposed by Gilioli et al. (2008). They initially consider a modified predator-prey

system that takes into account the intra-specific prey competition as follows:

dN = [aN(1−N)− bNP ]dt (1.12)

dP = [cbNP − dP ]dt, (1.13)
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where N = N(t) and P = P (t) are the biomass of prey and predator at time t per

spatial unit normalized with respect to carrying capacity, a is the specific growth

rate of the prey, b is a positive constant representing the rate of effective search

per predator, c is the maximum specific production rate of the predator and d

is the specific loss rate of predator due to natural mortality. The parameters

a, c and d are known, as well as the initial values (N0, P0). The behavioural

parameter b is unknown. A stochastic extension of this model is formulated by

including both demographic and environmental stochasticity factors, which are

assumed independent. The demographic stochasticity is included by modifying

the parameter b:

b(t) = b(0) + σξ(t), (1.14)

where ξ(t) is Gaussian white noise, so that b fluctuates around its mean value. 3

Substituting (1.14) in (1.12) and (1.13) the model becomes:

dN = [aN(1−N)− b0NP ]dt− σNPdw1 (1.15)

dP = [cb0NP − dP ]dt+ cσNPdw1 (1.16)

where b0 = b(0) and w1 is a Wiener process. Environmental stochasticity is sup-

posed to affect both predator and prey populations because they share the same

habitat. The effect of this factor is included by an additive noise depending on

each population density. Finally, the proposed stochastic Lotka-Volterra system

is

dN = [aN(1−N)− b0NP ]dt− σNPdw1 + εNdw2 (1.17)

dP = [cb0NP − dP ]dt+ cσNPdw1 + ηPdw2, (1.18)

3It is assumed that mean and variance fixed are such way that the random variable can
rarely take negative values.
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where w2(t) is a Wiener process independent from w1(t) and ε and η are two

positive parameters.

1.3 Bacterial growth models

In the field of predictive microbiology the concept of the primary model is fun-

damental. A primary model describes the kinetics of the growth process by

parameters having a biological interpretation. The population size is a function

of time and the model aims to describes the different stages of growing.

Bacterial growth is the division of one bacterium into two, identical, daughter

cells during a process called binary fission. Both daughter cells do not necessarily

survive but if the number of surviving cells is, on average, greater than a half,

then the bacterial population grows exponentially. Figure 1.4 shows the typical

behaviour of bacterial density along the time. Bacterial growth in batch culture

experiments where an initial population is planted in a petri dish containing

nutrients and then growth is observed over time, can usually be divided in four

different phases:

i) In the lag phase bacteria adapt themselves to growth conditions. Individual

bacteria are not yet able to divide, they are maturing.

ii) The exponential phase is the cell doubling period. The number of new

bacteria per unit time is proportional to the present population.

iii) During the stationary phase, the growth rate slows down as a consequence

of nutrient depletion and accumulation of wastes. This phase is reached as

the bacteria begin to exhaust the limited resources available to them.
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iv) The final phase is the death phase. There are no nutrients left and the

bacteria die.

Figure 1.4: Stages of bacterial growth

Given this type of behaviour we can model bacterial growth in the first three

phases with a sigmoidal function which represents the different stages of grow-

ing. In addition to the logistic model, the most widely used deterministic, para-

metric bacterial growth models are the Gompertz, (Gompertz (1825)) Baranyi

(Baranyi and Roberts (1994), Baranyi and Roberts (1995)) and Buchanan mod-

els (Buchanan et al. (1997)) which are outlined below.

1.3.1 Gompertz model

The Gompertz function, introduced in 1825, originated in the field of actuarial

science. Gompertz proposed the following equation for the number of survivals

of a population at any age t,

N(t) = aebe
−ct

(1.19)

where a > 0 is the upper asymptote, b < 0 is a constant and c > 0 is a positive

constant related with the growth rate. After some years, the Gompertz equation
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caught the attention of other field which used it as a growth curve. The Gompertz

growth curve has been useful in applied research like in medicine for tumour

growth modelling, in biology for modelling the growth of organism, in marketing

for modelling sales of a new product, etc. As a growth curve, it is useful to write

the Gompertz curve as follow

N(t) = Kelog(
N0
K

)e−rt

(1.20)

where K denote the carrying capacity of the system, N0 = N(0) is the initial

population at time zero, and r is related to the reproduction rate. The dynamics

described in (1.20) are governed by the following first order ordinary differential

equation for N(t):

dN

dt
= r log

(
K

N

)
N, (1.21)

This differential equation is a special case of the general formulation of the growth

models expressed in (1.5), where f(N) = r log
(

K
N(t)

)
. As was mentioned pre-

viously, the Gompertz equation is an S-shaped curve, which means that growth

is slowest at the start and end of a time period and there is an inflection point

between them. In contrast to the logistic function which has the inflection point

mid-way between the asymptotes (K/2), in the Gompertz function the inflec-

tion point is reached when approximately 37% of the total growth has been

realized (K/e). In other words, in the logistic function, both asymptotes are

approached by the curve symmetrically, while in the Gompertz function the up-

per valued asymptote is approached much more gradually by the curve than the

lower asymptote.

It is often more convenient to write Equation 1.20 as the reparametrization

suggested by ? getting new parameters with biological meaning and comparable
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with the other models and known as the modified Gompertz equation,

N(t) = N0 + (Nmax −N0) exp(− exp(
µmax exp(λ− t)

(Nmax −N0) log(10)
+ 1)) (1.22)

where λ is the lag time, µmax is the maximum specific growth rate and Nmax is

the maximum population density.

1.3.2 Baranyi model

The modified Gompertz equation and the logistic function were not originally

developed by modelling bacterial growth and therefore are considered as purely

empirical models. In a series of papers, see e.g. Baranyi and Roberts (1994),

Baranyi and Roberts (1995), Baranyi et al. (1999), Baranyi and co-workers de-

veloped a mechanistic model for bacterial growth putting special attention to the

lag phase which is attributed to the need to synthesize an unknown substrate

q critical for growth. The Baranyi model is different from the previous one be-

cause it includes a new term, g(t), called the adjustment function. This function

describes the adjustment of the culture to the new environment and it affects

the course of growth before the exponential phase. In a typical batch culture

experiment the bacterial population is first cultured under more or less optimal

conditions and then inoculated and grown in a new environment. The authors

argue that the physiological state at t = 0 affects the length of the lag period

in the new environment. The lag in the post-inoculation environment is longer

if the cells are closer to the stationary phase in the pre-inoculation environment.

In a general formulation, the new model describes the bacterial batch culture by

means of the differential equation

dN

dt
= g(t)f(N)N, (1.23)
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with f(N) = µmax

(
1− N(t)

Nmax

)
and g(t) = q0

q0+et
, being µmax the maximum specific

growth rate, Nmax the maximum population density and q0 the physiological state

of the inoculum.

The explicit form of the model is the following

N(t) = N0 + µmaxA(t)− log(1 +
eµmaxA(t) − 1

e(Nmax−N0
) (1.24)

A(t) = t+
1

v
log(

e−µmaxt + q0

1 + q0

) (1.25)

with the same parameters as earlier. The more familiar lag time, λ, could be

calculated from the values of q0 and µmax as

λ =
log(1 + 1

q0
)

µmax
(1.26)

Then, the growth equation was reparametrized by Wilson (1999) in terms of the

lag time. The new form is given by:

N(t) = N0 +
N1

log(10)
− N2

log(10)
(1.27)

where

N1 = µmaxt+ log(e−µmaxt − e−µmax(t+λ) + e−µmaxλ) (1.28)

N2 = log(1 + 10(N0−Nmax)(eµmax(t−λ) − e−µmaxλ)) (1.29)

In this form the Baranyi equation is expressed in terms of more familiar quanti-

ties with intuitive biological interpretations. Since its introduction, the Baranyi

model has been used extensively to model the growth of a wide variety of mi-

croorganisms.
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1.3.3 Three phase linear model

An alternative model was proposed in Buchanan et al. (1997). This model is a

three-phase linear model where each phase describes one of the bacterial growth

stages: lag, exponential and stationary, see Figure 1.5. As, during the lag phase

bacteria are adapting to the new environment the model assumes that the growth

rate is equal to zero. Once the bacteria are adapted, they begin to divide and

in the exponential growth phase the model assumes a constant growth rate, with

the log of the density population increasing linearly with time. Finally, when the

stationary phase is reached, the growth rate returns to zero. The model can be

formalized as:

N(t) = N0 for t ≤ tlag (1.30)

N(t) = N0 + µ(t− tlag) for tlag < t < tmax (1.31)

N(t) = Nmax for t ≥ tmax (1.32)

where N(t) is the log of the population density at time t, N0 the log of the initial

population density, Nmax the log of the maximum population density supported

by the environment, t the elapsed time, tlag the time when the lag phase ends,

tmax the time when the maximum population density is reached and µ the specific

growth rate. Despite its simplicity, this model has not been as widely used for

fitting growth data as the Gompertz and Baranyi models introduced earlier.



1.3. BACTERIAL GROWTH MODELS 19

Figure 1.5: Graphical representation of the Buchanan model

1.3.4 Secondary models

Traditionally, primary growth models are developed for static environmental con-

ditions, however reality is characterized by changing environmental conditions.

Secondary models are developed to describe the effect of environmental conditions

such as, temperature, pH, salinity, water activity, on the values of the growth pa-

rameters of a primary model. Most of the secondary models can be divided

into one of three categories, that is square root, polynomial and cardinal mod-

els. Firstly, square root models describe the effect of suboptimal temperature on

growth rate of microorganisms see e.g. Ratkowsky et al. (1982). Secondly, poly-

nomial models allow any of the environmental factors and their interactions to be

taken into account and were extensively used in the 1990s. However, these models

include an excessive number of parameters with lack biological interpretability.

Rosso et al. (1993) introduced a model that described the influence of temper-

ature, acidity level and water activity on the growth rate based on the gamma

concept and using only parameters that were biologically significant. This model

then became widely known as the cardinal model. In Chapter 3, secondary models

will be presented in more detail.
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1.4 Model fitting

Most of the growth models presented previously, and, in particular, the logistic

function, the Baranyi and the Gompertz equations, are nonlinear growth models.

These were presented as deterministic parametric models, where the parameters

have meaningful biological interpretations and the functional form represents the

underlying behaviour in the growth system. Assuming that data are observed at a

set of equally spaced time points, then by adding an error term, the deterministic

model is replaced by a statistical model. In general notation, these models can

be expressed as

yi = f(xi,θ) + εi (i=1,2,. . . ,n), (1.33)

where yi is the ith observation of the dependent variable, f is a (nonlinear) func-

tion, xi are the ith observations of the independent variables, θ is the vector of

parameters and the error terms, εi, have zero mean.

To fit the curve, sometimes it is possible to transform the nonlinear model

in a linear one. This kind of models are called transformably linear or “intrinsi-

cally linear”. The advantage to apply this transformation relies on that with a

linearized model we can apply standard linear regression methods. Additionally,

depending on the structure of the errors, transformation to linearity could also

achieve errors approximately normally distributed and with constant variance.

Nevertheless, parameters of the transformed model are not as interesting or as

important as the original parameters and usually they are difficult to interpret.

1.4.1 Nonlinear Least Squares

As in linear regression, parameters of interest can be estimated by the method

of least squares. The least squares estimate of θ, denoted by θ̂, it is obtained
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minimizing the error sum of squares,

S(θ) =
n∑
i=1

[yi − f(x,θ)]2. (1.34)

Assuming that errors are independent and identically distributed with zero mean

and constant variance, θ̂ is an asymptotically unbiased estimate of the parameter

vector θ. Under certain regularity assumptions θ̂ is also asymptotically normally

distributed as n→∞. Additionally, if it is assumed that the errors are normally

distributed, then θ̂ is also the maximum-likelihood estimator. For more details

see Seber and Wild (1989).

This minimization problem yields normal equations that are nonlinear in the

parameters and therefore they can not be solved analytically for most of the mod-

els. Therefore, in order to provide approximate, analytic solutions it is necessary

to employ iterative methods.

Approximating the model by the first-order Taylor series expansion, yields

the vector of parameter estimates: b = (J′J)−1J′y; being J the Jacobian matrix

which contains the derivatives of the model with respect to the parameters and

evaluated in the n points. An estimate of the covariance matrix V of the param-

eter estimates can be computed as V̂ = (J′J)−1σ2, where σ2 is the error variance.

This method will converge fast provided the neighbourhood of the true parameter

values has been reached. However, if the initial parameter values are too faraway,

the convergence would never be reached. Alternative iterative procedures could

be applied such as the steepest descent method and the Levenberg-Marquardt’s

method. The former method is able to converge even though initial values are far

removed from the true parameter values, but the asymptotic rate of convergence

is very slow. The Levenberg-Marquardt (Levenberg (1944),Marquardt (1963))

method is the most widely used method of computing nonlinear least squares es-
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timators and most standard statistical packages contain computer routines to fit

nonlinear regression models using this algorithm. This method is a compromise

between the linearization and the gradient methods. It almost always converges

and the convergence rate does not slow down at the later stages of the iterative

procedure.

A number of software packages are available for fitting the various bacterial

growth models previously described using these techniques. In particular, the

grofit package for R available from

http://cran.r-project.org/web/packages/grofit/index.html

can be used to fit the logistic, Gompertz and modified Gompertz models among

others. In the case of the Baranyi model, software includes DMFit, for Microsoft

Excel, available from

http://www.combase.cc/index.php/en/downloads/category/11-dmfit

and MicroFit, a stand alone package distributed by the Institute of Food Re-

search in the U.K which can be obtained from

http://www.ifr.ac.uk/microfit/.

1.4.2 Bayesian estimation

As we have seen, classical statistical methods for nonlinear regression are based on

linearization of the nonlinear models around the unknown parameter. Typically,

the distribution of the least squares parameter estimators is known only asymp-

totically and these asymptotic approximations may be inadequate in practice for

small-sample problems. Assuming that the error distribution of the nonlinear

model is known, an alternative procedure which does not rely on the lineariza-

tion of the model is to use a Bayesian approach where asymptotic theory is

not involved. The Bayesian approach assumes that the parameters are random
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variables instead of unknown constants, that is the parameters themselves have

some unknown probability distribution. The approach relies on the idea that re-

searches have some prior beliefs or knowledge about the system under study and

this knowledge is updated once the data are observed. The inclusion of readily

accepted prior information is particularly useful when the sample size is small.

Consider the nonlinear model (1.33) in vector form,

y = f(θ) + ε (1.35)

Bayesian models are constructed by specifying the conditional distribution of the

observable variable y (data) given the model parameters θ, that is p(y|θ), and

a prior distribution for these parameters, p(θ) which expresses the current level

of uncertainty before any data are observed. Once data are observed, inference

about the parameters is based on the posterior distribution p(θ|y). Using Bayes

Theorem, this is calculated as:

p(θ|y) =
p(y|θ)p(θ)

p(y)

∝ p(y|θ)p(θ)

so that the posterior parameter distribution, p(θ|y), is proportional to the prod-

uct of the likelihood function, p(y|θ) and the prior distribution of the parameters

p(θ). The posterior distribution is a joint probability distribution of all model

parameters and point estimates or uncertainty intervals can be obtained from it.

For good general reviews of the Bayesian approach in ecological modeling see e.g.

McCarthy (2007), King et al. (2009).

The computation of the exact conditional posterior distributions is most often

impossible. In such cases, Markov-Chain Monte-Carlo (MCMC) techniques can
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be applied to generate samples from the posterior distributions. This method

generates chains of simulated values for parameters, with the sampling distribu-

tion converging to the relevant posterior distribution. The freeware computer

package WinBUGS, see Lunn et al. (2000) is a powerful and flexible tools able to

implement these chains for a wide range of possible models. In the next section,

we show how a Bayesian approach can be implemented to make inference for the

growth models using WinBUGS.

1.5 Growth curve modeling using WinBUGS

In Section 1.4.1 we commented on a number of packages for fitting growth models

using non-linear least squares approaches. However, to the best of our knowledge,

thus far, no general computational package has been developed for the implemen-

tation of Bayesian inference in bacterial growth models. For that reason, in this

section we describe the use of WinBUGS, in the context of bacterial growth. For a

full review of WinBUGS in the context of ecological modeling, see e.g. Kéry (2010).

1.5.1 Model specification

Assume that population density data Nt = N(t), are observed at a set of reg-

ular time points, say t = 0, 1, . . . , T . Then, a model specification must be

assumed. For illustration, consider the modified Gompertz equation, where

Nt = g(N0, Nmax, µmax, λ, t) where g is the function defined in (1.22) with four

parameters: N0 is the initial population density, Nmax the maximum population

size, µmax is the maximum growth rate and λ is the lag period. Then, a sample

distribution for the error term must be assumed. Suppose that the errors are

independent and identically normally distributed with variance σ2, so that we
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have:

Nt ∼ N (g(N0, Nmax, µmax, λ, t), σ
2). (1.36)

The model specification is completed by assigning prior distributions for the

model parameters. A possible structure of prior distributions is:

logN0 ∼ N (µN0 , σN0)

logNmax ∼ N (µNm , σNm)

log µmax ∼ N (µµ, σµ)

log λ ∼ N (µλ, σλ)

where µi and σi are the mean and the standard deviation of the natural logarithm

of the parameter i. The parameters of the prior distributions are chosen in such

a way that they reflect the prior knowledge about the model parameters. The

source of information could come from the opinion of an expert and / or the results

of previous studies. If there is no reliable previous information, it is better to

used non-informative prior distributions, that is priors with high variance which

reflect the uncertainty about model parameters. We follow this approach and

set the means of the prior distributions equal to zero and the variances equal

to 100. Finally, the prior distribution of the error variance is an inverse gamma

distribution, 1/σ2 ∼ G(a, b).

The dependence structure represented by this model and prior is represented

in Figure 1.6. In the figure, called a doodle in WinBUGS, random and logical nodes

are represented by ellipses and fixed nodes (independent variables) are represented

by rectangles. The arrows represent dependence relationships with the single

arrows showing stochastic dependence and the double arrows representing logical

dependence.



26 CHAPTER 1. SINGLE POPULATIONS

Figure 1.6: The dependence structure of the modified Gompertz model

The following WinBUGS code to represent the model specification can be gen-

erated from the doodle or programmed directly:

model{

for(i in 1:n) {

g[i] <- N0 + (Nmax-N0)* exp(-exp(((mu*exp(1)*(lambda-t[i]))/

((Nmax-N0)*log(10)))+1))

N[i] ~ dnorm(g[i], tau)

}

N0 ~ dlnorm(0, 0.01)

Nmax ~ dlnorm(0, 0.01)

lambda ~ dlnorm(0, 0.01)

mu ~ dlnorm(0, 0.01)

tau ~ dgamma(0.01,0.01)

}

where n is the number of observations. As the population size, the growth rate

and the lag period are non-negative quantities, we used lognormal prior distri-

butions, but alternative distributions can be used, such as the truncated normal

distribution
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mu ~ djl.dnorm.trunc((0,0.01,0,1000)

or the gamma distribution

mu ~ dgamma(0.01, 0.01).

Note that WinBUGS requires the specification of the precision (τ = 1/σ2) in-

stead of the variance. This is not a problem however as a helpful feature of

WinBUGS is the use of logical relationships to define functions of the parameters

in the model. For example, to calculate the variance, it is enough to define

sigma2 <- 1 / tau

which allows inference for the variance parameter to be undertaken.

In the field of microbiology, a very useful quantity of interest in is the doubling

time, also called generation time. Doubling time is the time it takes a bacterium

to do one binary fission starting from having just divided. That is looking at the

all population, it is the period of time required for the population to double in

size. Then, generation time is can be computed as the natural logarithm of 2

divided by the growth rate. Calling gt the generation time, the code for compute

it in WinBUGS in our example is

gt <- log(2) / mu

After the model code has been checked, the data must be loaded in S-Plus

format or, for data in arrays, in rectangular format. For instance, in our Gompertz

example, we need to specify the sample size, n, the vector with the observations

of the population size N and the vector of the corresponding observations times

t, both of length n. This is achieved as follows:
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list(

n = 16,

t = c( 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15),

N = c( 0.07, 0.07, 0.08, 0.09, 0.14, 0.31, 0.52, 0.74, 0.85, 0.88, 0.90, 0.92,

0.94, 0.95, 0.96, 0.96)

)

Finally, we need to specify the initial values for the variables to be estimated.

The format for introducing this information is the same as for the data. In our

example,

list(N0 = 0.07, Nmax = 1, lambda = 4, mu = 0.25, tau = 1)

Alternatively, it is possible to use the WinBUGS generator of initial values,

which are drawn from the prior distributions (or from an approximation to the

prior). Nevertheless, when vague prior distributions are used, it is not appropriate

to use this generator as the values generated could be very improbable.

After that, the model is run until convergence is reached. Convergence can

be checked in WinBUGS by looking at the trace of the sample values generated

at each iterations to see if the chain seems to be stabilized. Additionally, the

Gelman-Rubin statistic (Gelman and Rubin (1992), Brooks and Gelman (1998))

can be computed for what run several chains is needed. Finally, it is important

to check the autocorrelation of the MCMC sampled data which, for example, can

be done using simple autocorrelation plots. If there is autocorrelation up to lag

5 say, the data can be thinned by taking just every fifth datum to produce an

approximately independent sample.

A standard session in WinBUGS can be resumed as follows. Firstly, the model is

specified in the form of the likelihood and prior distributions for all the unknown
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model parameters. Secondly, data and initial values are loaded. Finally the model

is run and assuming convergence, the generated MCMC simulations are a sample

from the posterior distributions of interest.

1.5.2 Data analysis

Useful summary statistics and graphical representations of the posterior distri-

butions can easily be obtained in WinBUGS trough the Sample Monitor Tool. The

posterior mean, standard devitation and quantiles, as well as plots of smooth

kernel density estimate or trace for the parameters are outputs that WinBUGS

provides to summarize the posterior distribution.

1.5.3 Model comparison

A widely used statistic for comparing models in a Bayesian framework is the

Deviance Information Criterion (DIC) of Spiegelhalter et al. (2002). This criterion

penalizes actions for departure from the corresponding observed value as well

as for the number of parameters in the model. In this way, the approach is

a compromise between goodness of fit and model complexity. The DIC is easily

calculated from the samples generated by a Markov chain Monte Carlo simulation

and is implemented automatically in WinBUGS. Formally, for a model with data

y and parameters θ, the DIC is equal to

DIC = pD +D(θ) (1.37)

where D(θ) = −2 log(p(y|θ)) is the deviance and D(θ) is the posterior mean of

the deviance, approximated by
∑m

i=1 = θi (m is the number of iterations). The

expected deviation measures how well the model fits the data. The lower is, the
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better the fit. The effective number of parameters, pD, computed as the difference

between the measure of fit and the deviance at the estimates D(θ) − D(θ) is a

measure of model complexity, roughly speaking the number of parameters in the

model. Lower values of the criterion indicate better fitting models. More details

about the DIC can be found in Spiegelhalter et al. (2002).

1.6 Application: Listeria monocytongenes

Listeria is a bacterial genus containing six species. These species are Gram-

positive bacilli and are typified by listeria monocytogenes. This bacteria is a

well-known food-borne pathogen (rarely but fatally infectious as listeriosis) and

is commonly found in soil, stream water, sewage, plants, and food. The serious

health and economic consequences of listeriosis have lead to a wide amount of

studies of this bacteria, see e.g. Augustin and Carlier (2000), Delignette-Muller

et al. (2006), Pouillot et al. (2003) and Powell et al. (2006) among others. In our

application the models are fitted to listeria growth curves. The data come from

an experiment in broth monoculture. The environmental conditions remained the

same for the curve, which was generated at 42 ◦, pH=7,4 and 2,5% NaCl (salt

concentration). The data set consists of 16 observations.

Classical inference

Figure 1.7 shows the growth data and the fitted curves for two general growth

models discussed previously, that is the Malthusian model and the logistic model.

The Malthusian model was fitting taking into account only the data corresponding

to the exponential phase of growth and the logistic model was fitting to all the

observations. The Malthusian model fits the first part of the data well, but cannot
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explain the stationary phase of the bacterial growth.

(a) Malthusian model (b) Logistic model

Figure 1.7: Growth models fitted to the Listeria growth data

In contrast, the logistic model fits the data on the exponential and stationary

phases, but fails to explain the lag phase. To overcome these problems, we also

fitted the Baranyi and Gompertz models to these data.4 Figure 1.8 shows the

new fitted curves and Table 1.1 summarizes the results of the estimation.

Figure 1.8: Baranyi and Gompertz models fitted to the Listeria growth curve

4These models were fitted to the data using the nlstools package of R. Note that we consider
the log to base ten of the cell concentration
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Table 1.1: Baranyi and Gompertz Parameters

Estimate Std. Error 2.50% 97.50% P-value
Baranyi’s model:
λ 3.804 0.063 3.666 3.943 3.05E-16 ***
µmax 1.246 0.044 1.150 1.342 2.35E-12 ***
N0 -1.149 0.009 -1.169 -1.129 2.00E-16 ***
Nmax -0.032 0.005 -0.044 -0.021 4.93E-05 ***
RSE 0.014
Gompertz’s model:
λ 3.087 0.058 2.960 3.214 1.34E-15 ***
µmax 0.747 0.021 0.702 0.792 1.29E-13 ***
N0 -1.126 0.007 -1.142 -1.111 2.00E-16 ***
Nmax -0.022 0.005 -0.033 -0.011 0.00109 **
RSE 0.013
*** : α = 0.01 and ** : α = 0.05

We can observe that both models fit the experimental data well, with the

greatest differences being observed during the transition periods, from lag to

exponential phase and from the last one and the stationary phase. Analyzing

the residual standard errors, we can see that Gompertz model fits a little bit

better than Baranyi model. Regarding the parameter estimates, both models

yields statistically significant estimates, but the standard errors of the Gompertz

model are lower than in Baranyi model. Finally, the initial and the maximum

population density predicted for both models are similar. However, there are some

differences in the lag and the maximum specific growth rate. In the Gompertz

model, the estimated lag parameter is lower than in the Baranyi model. Also,

since the maximum population density is almost the same, the specific growth

rate in the Gompertz model is greater, as we can see in Table 1.1. Comparing

the estimation among the four parameters, the estimated error indicates that lag

parameter has larger uncertainty. 5

To asses the validity of the fitted models it is necessary to study the residuals.

Figure 1.9 shows the fitted values versus the standardized residuals, autocorre-

5Baranyi and Roberts (1994), Wijtzes et al. (1995) and Grijspeerdt and Vanrolleghem (1999)
have reported on this phenomenon previously.
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lations and histograms of the residuals for each model. In both cases, there are

neither signals of heteroscedasticity nor autocorrelation of the residuals, so that

the assumptions of the models seem to hold. Nevertheless, looking at the his-

tograms, in the case of the Baranyi model the residuals do not seem to be normal

as in the Gompertz case. Two tests were performed to complement the previous

residual analyses: the Shapiro-Wilk test to evaluate the normality of the residuals

and the runs test to asses the randomness of the residuals. The results of the

first test give p-values equal to 0.1033 for the Baranyi model and 0.9241 for the

Gompertz model respectively. Hence, the null hypothesis that the residuals are

normally distributed is not rejected at a 5% significance level. The results of the

runs test are p-values equal to 0.04139 and 0.6451 for the Baranyi and Gompertz

models respectively; therefore, in the first case the null hypothesis of randomness

is rejected at a 5% significance level.

For finite samples, in nonlinear estimation, even when the dependent variable

yt is normally distributed (so that the least squares estimator is also the maximum

likelihood estimator of β), β̂ is not a linear combination of the yt and hence in

general is not normally distributed. For this reason we computed bootstrap confi-

dence intervals based on percentiles of the bootstrap distribution of the statistics.

These confidence intervals are more accurate when the distribution of the statis-

tic is not normal and, moreover, they have good theoretical coverage properties,

see Efron and Tibshirani (1993). Table 1.2 shows the parameter estimates and

their confidence intervals using least square method and bootstrap techniques.

Note that the parameter estimates are almost the same but the length of the

confidence intervals are narrower in the bootstrap case. This suggests that the

bootstrap distribution of the parameter estimates are more leptokurtic than the

asymptotic normal distribution.
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(a) Baranyi model

(b) Gompertz model

Figure 1.9: Residual analysis

Table 1.2: Confidence Interval for Baranyi and Gompertz Parameters

Least square Bootstrap Asymptotic CI Bootstrap CI
estimate estimate 2.50% 97.50% 2.50% 97.50%

Baranyi’s model:
λ 3.804 3.808 3.666 3.943 3.689 3.903
µmax 1.246 1.244 1.150 1.342 1.171 1.322
N0 -1.149 -1.149 -1.169 -1.129 -1.163 -1.134
Nmax -0.032 -0.032 -0.044 -0.021 -0.040 -0.022

Gompertz’s model:
λ 3.087 3.089 2.960 3.214 2.988 3.178
µmax 0.747 0.748 0.702 0.792 0.710 0.784
N0 -1.126 -1.127 -1.142 -1.111 -1.138 -1.114
Nmax -0.022 -0.022 -0.033 -0.011 -0.030 -0.013
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1.6.1 Bayesian inference

This will be our basic approach to define prior distributions for the parameters

of our models, N0 the initial size population, µmax the maximum specific growth

rate, λ the lag parameter and τ the precision parameter (the reciprocal of the

variance). Prior variances were chosen so as to be high enough to give relatively

diffuse priors.

The model specification and the prior distributions for the unknown model

parameters are

Nt ∼ N (f(t, N0, Nmax, µmax, λ), σ2)

N0 ∼ N (0, 100) (1.38)

Nmax ∼ N (0, 100) (1.39)

µmax ∼ NT (0, 100, 0, 10) (1.40)

λ ∼ NT (0, 100, 0, 16) (1.41)

τ =
1

σ2
∼ G(0.01, 0.01) (1.42)

where f(t, N0, Nmax, µmax, λ) is the growth model. For the parameters that can-

not assume negative values we choose truncated normal distributions for µmax

and λ, and a gamma distributions for the precision parameter, G(a, b) where a is

shape parameter and b is the rate parameter (the inverse of the scale parameter).

Bayesian inference was carried out using WinBUGS as outlined previously. After

a burn-in phase, 6 x 104 sample values were generated. Convergence of the MCMC

algorithm was checked by visually analyzing three independent MCMC chains

using three different initial values.
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Figure 1.10: Baranyi Model

Following the suggestions of Cowles and Carlin (1996) about to combine a set of

strategies to asses convergence, we also compute the Geweke (1992) and Gelman

and Rubin’s test to complement and formalize the previous conclusions. Geweke’s

test compute the z-score calculated as the difference between the two sample

means of the first and last part of each Markov chain6 divided by its estimated

standard error. If the samples are drawn from the stationary distribution of the

chain, then the two means are equal and Geweke’s statistic has an asymptotically

standard normal distribution.

Table 1.3 shows that at a 0.05 significance level, the null hypothesis of equal-

ity of the means is rejected only in the third chain of the Baranyi model for the

lag parameter, λ, and the estimated variance. In the rest of the cases we can-

6The first 10% and the last 50% part.
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Table 1.3: Geweke’s test

lag mu N0 Nmax sigma2
Baranyi model:
Chain 1 -0.494 -0.401 -0.794 1.180 -1.567
Chain 2 0.052 0.115 -1.150 0.610 -1.857
Chain 3 2.225 1.743 0.916 -0.588 1.973
Gompertz model:
Chain 1 0.519 -0.500 -0.077 -1.862 -1.494
Chain 2 -0.647 -0.918 -0.072 0.236 0.318
Chain 3 0.387 0.363 0.128 0.226 -1.879

not reject the null hypothesis, which indicates convergence of the Markov chain.

Convergence is also supported by the Gelman and Rubin test. For almost all

the parameters in both models, the scalar factor is equal to one, which indicates

convergence (only for the case of the maximum specific growth rate, µmax, in the

Gompertz model, the scalar factor is different to one and is equal to 1.27, which

is not too far from one).

Table 1.4: Descriptive statistics of Bayesian inference

Mean Median Std. Error 2.50% 97.50%
Baranyi’s model:
λ 3.807 3.816 0.207 3.370 4.193
µmax 1.272 1.258 0.162 0.996 0.005
N0 -1.149 -1.148 0.029 -1.211 -1.091
Nmax -0.033 -0.033 0.018 -0.068 0.002
σ2 0.002 0.002 0.001 0.001 0.005

Gompertz’s model:
λ 3.098 3.102 0.232 2.630 3.538
µmax 0.765 0.754 0.180 0.620 0.951
N0 -1.127 -1.126 0.027 -1.182 -1.074
Nmax -0.022 -0.022 0.019 -0.059 0.016
σ2 0.002 0.002 0.001 0.001 0.005

The empirical posterior distributions of the model parameters are represented

in Figure 1.10 for the Baranyi model and in Figure 1.11 for the Gompertz model.

Several descriptive statistics are shown in Table 1.4. In both models, posterior

distributions of the parameters are reasonably symmetric except for σ2 that is

slightly skewed to the right. Posterior means of the parameters are relatively
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close to the least squares estimates. As in the least squares method, the greater

difference between the two models is found in the lag parameter. The estimated

standard error is always greater in Bayesian inference than in the case of least

square method. Table 1.4 also shows the estimated high posterior density inter-

vals. Note that in Bayesian inference we deals with credible intervals which are

different from the classical concept of confidence intervals.

Figure 1.11: Gompertz Model

1.7 Conclusions

In this chapter, we have presented a brief description of the main population

growth models, focusing in the advantages and disadvantages of each one. Then
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we have shown that given a single sample of data from one of these models, it is

straightforward to implement both classical and Bayesian inference for these mod-

els. In the following chapter, we shall consider how to extend the basic approach

outlined here to the case when various replications of a Petri dish experiment are

carried out under identical conditions and we would expect that the information

learned from one set of growth curve data is relevant to the prediction of a new

growth curve, motivating the use of hierarchical models.
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Chapter 2

Hierarchical models for multiple

populations

One of the main characteristics of microbiological experiments is that typically,

researchers can replicate the same experiment several times under equal condi-

tions. For example, in Petri dish experiments, bacteria are collected and grown in

Petri dishes prepared with certain levels of nutrients and it is possible to repeat

the same experiment under similar conditions many times. However, up to now,

there has been little research on incorporating multiple experimental results into

the prediction of bacterial growth under fixed conditions. In this chapter, we

shall examine the situation when we observe the growth of r > 1 bacteria popu-

lations under identical environmental conditions and we shall develop a Bayesian,

hierarchical modeling approach for systems of this type.

41
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2.1 Introduction

Growth or longitudinal data consist of repeated observations of a growth process

or of a given characteristic over time among a population of individuals. For

instance, in medicine, height and weight may be measured for children at con-

secutive ages to control their development. Other examples are measurements of

blood pressure, cholesterol or tumour volume at different moments of time for

different patients. In ecology, the mean size of fin fish or shellfish, for instance,

are measured at different ages; in biology, animal populations are measured over

time, etc. Finally, in microbiological experiments, bacterial growth is observed

over time for several experiments undertaken under equal environmental condi-

tions.

In contrast to generalized linear models where the response variable can be

assumed to be independent, in the presence of this kind of data, with repeated

measurements for each subject, independence is unlikely. These dependencies

must be taken into account to correctly model the underlying processes and to

this end, various statistical procedures might be considered.

To illustrate in a simple way the different approaches that can be followed,

consider the case that repeated measures of a continuous response variable are

observed over time for each of m subjects. Let yij be the measurement of the

characteristic observed of individual i at time tij, for i = 1, . . . ,m and j =

1, . . . , ni and ni be the total number of observations of individual i. For this data

we consider three kinds of model.

The first approach assumes a common or pooled mean effect, µ. Assuming a
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normal distribution the model can be expressed as:

Yij|µ, σ ∼ N (µ, σ2) for i = 1, . . . ,m and j = 1, . . . , ni. (2.1)

Under this model, all observations are assumed to come from a common distri-

bution. However, the assumption that the mean and variance are the same for

all individuals may be unrealistic in cases where the population is heterogeneous

for example.

A second approach assumes different, independent mean effects, µi, for each

individual i. The model is:

Yij|µi, σ ∼ N (µi, σ
2) for i = 1, . . . ,m and j = 1, . . . , ni. (2.2)

This model estimates the expected performance of each individual. However,

each mean effect is independent of the other individuals which does not seem

a realistic assumption when the behaviour of one individual is expected to be

similar to that of the others.

Finally, a third approach assumes that each mean effect µi is a sample from a

common population distribution with mean µ, called the population mean effect.

A new level of hierarchy is added to the model of (2.2) to give:

µi|µ,w ∼ N (µ,w2). (2.3)

In this model, the random effects, µi, are related and we can learn something

about one individual observing the others. Therefore, it is possible to obtain

more accurate estimations due to borrowing strength among individuals and this

effect is specially important when we deal with few number of observations for
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some of the subjects.

Note also that models with further levels of hierarchy could easily be consid-

ered. For example where the mean effect, say µit, is dependent on time and then

we might assume that the mean of µit, say µi, just depends on the individual i,

and finally that the individual effects µi are distributed around some common

mean µ.

2.1.1 Bayesian Hierarchical Modeling

Various approaches to inference for random effects or longitudinal models can be

considered. Firstly, classical methods are well reviewed in e.g. Fitzmaurice et al.

(2008). A second approach is to consider empirical Bayes methods whereby the

so called hyperparameters, µ,w of the distribution of µi in (2.3) are estimated

from the data via e.g. maximum likelihood or method of moments techniques

and then the analysis proceeds in a Bayesian way. See e.g. Cassella (1985) for a

good introduction to this approach.

In contrast to the empirical Bayes approach, fully hierarchical Bayesian anal-

yses can be carried out by specifying hyperprior distributions for these hyperpa-

rameters.

In our example, the model of (2.2) and (2.3) is completed by adding a hyper-

prior distribution for the hyperparameters, µ,w. For example,

µ|w ∼ N
(

0,
w2

c

)
1

w2
∼ G(a, b). (2.4)

Given these prior distributions, inference for the parameters of interest, e.g. µi, σ
2
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can be carried out by simply integrating out the hyperparameters, for example

p(µ1, . . . , µm, σ
2|y) ∝ p(y|µ1, . . . , µm, σ

2)

∫ ∫
p(µ1, . . . , µm|µ,w)p(µ,w) dµ dw.

(2.5)

As is typical in hierarchical models, the distribution in (2.5) does not have

a simple form. However, it is easy to see that the conditional distributions,

p(µ|y, . . . , µm, w), p(w|y, µ1 . . . , µm, µ) and p(µ1, . . . , µm|y, µ, w) can all be eas-

ily evaluated which implies that inference can be carried out using e.g. a Gibbs

sampling type algorithm. Algorithms of this type are now the standard tool for

the practical analysis of Bayesian hierarchical models. For a good recent review

of Bayesian hierarchical modeling, see e.g. Congdon (2010).

2.2 A hierarchical Gompertz model for bacte-

rial growth

As was presented in the previous chapter, the modified Gompertz equation is a

well known model for bacterial growth over time. This model has a sigmoidal

shape which reflects the three stages that characterize the bacterial growth pro-

cess: the lag stage, the exponential stage and the stationary stage. If Nt repre-

sents the population size of bacteria cultivated in a Petri dish experiment at time

t ≥ 0, then the modified Gompertz model can be expressed as

E[Nt|N0, D, µ, λ] = N0 +D exp

(
− exp

(
1 +

µe(λ− t)
D

))
≡ g(t, N0, D, µ, λ) say. (2.6)



46 CHAPTER 2. HIERARCHICAL MODELS

where e is the Euler’s number, N0 is the initial bacterial density, D is the max-

imum possible growth and is equal to the difference between the maximum bac-

terial density and the initial population density, µ is the maximum growth rate

and λ is the time lag.

Now, assume that r bacterial growth experiments under fixed conditions were

measured over time. Let Nij be the population density of replication i at time

tij, where i = 1, . . . , r, j = 0, . . . , ni and ni is the total number of observations of

replication i.

As was explained previously in Section 2.1, one possible approach to model

this kind of process is to assume that the growth curve has the same nature

for every experiment or replica. We can represent this by assuming a common

model for each growth curve. We call this a pooled model and express this in the

following form:

E[Nij|N0, D, µ, λ] = g(t,D,N0, µ, λ). (2.7)

Often it is not possible to fully control all the circumstances under which the

experiment of bacteria are carried out and could be appreciable variation among

different Petri dishes. Therefore, a disadvantage of this approach is that it does

not take into account any specific, unobserved, characteristics of the growth pro-

cess. A second possibility is to estimate each growth curve independently, follow-

ing the approach of Section 1.6.1, but this does not take into account the fact that

we should expect the different subjects to grow in a similar way under the same

conditions. Therefore we propose a a hierarchical modeling approach. Under this

approach each population follows its own growth process that is characterized by

its own growth parameters but these parameters are considered as a sample from



2.2. A HIERARCHICAL GOMPERTZMODEL FOR BACTERIAL GROWTH47

a common distribution.

Hence, we extend (2.6) to the case of hierarchical Gompertz model. This can

be expressed as

E[Nij|Ni0, Di, µi, λi] = Ni0 +Di exp

(
− exp

(
1 +

µie(λi − tij)
Di

))
≡ g(tij, Ni0, Di, µi, λi). (2.8)

Here, instead of a sampling process that comes from a unique density function,

now the growth data of each experiment is produced by a distinct but related

mechanism because of the common population density. In other words, each

particular experiment grows according to its own Gompertz curve with growth

parameters drawn from the common population density. This is a hierarchical

model structure as described in the previous section.

In order to complete the basic model, we shall assume that the observations

can be expressed as

Nij = g(tij, Ni0, Di, µi, λi) + εtij.

and will define a normal distribution for the errors.

One possiblility would be to consider independent, identically distributed er-

rors. However, Figure 2.1 illustrates different bacterial growth curves from petri

dish experiments under the same conditions (T=42◦, pH=7.4 and NaCI=2.5%).

It can be seen that the curves are closer together initially when the population

density is lower and then diverge over time as the population density grows which

suggests that the error variance should increase with population density.
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Figure 2.1: Growth curves under fixed environmental conditions: T=42◦, pH=7.4
and NaCI=2.5%

Therefore, we shall assume the following model:

εtij|g(tij), σ, p ∼ N
(
0, σ2g(tij)

p
)

(2.9)

where g(.) is the Gompertz function, σ2 ≥ 0 and p ≥ 0.5 so that the possibility

that the error variance increases with the population size is allowed for.

2.3 Bayesian inference

In order to fit the hierarchical model described in the previous section, one pos-

sibility would be to use classical, random effects techniques, but here, we prefer

to use a fully Bayesian approach. In microbiology risk assessment is important

to distinguish two sources of risk, variability and uncertainty. Uncertainty is de-

fined as the lack of perfect knowledge of some particular value. It may be reduced

by additional measurements. Variability represents the true heterogeneity of a

population and it can not be reduced by further information or studies. The
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bacterial growth process is intrinsically variable: the growth curve observed in a

Petri dish may not be equal as that of another experiment even when all growth

conditions are the same. The growth process is also uncertain mainly due to that

the microbial measurements are imperfect. In a Bayesian approach variability

and uncertainty for the growth parameters can be modelled by means of a hi-

erarchical structure and the hyperparameters. Moreover, the Bayesian approach

makes it possible to incorporate various sources of previous information such as

expert knowledge, or previous empirical results which are typically plentiful in

the field of microbiology.

In order to implement Bayesian inference, we must also define distributions

for the unknown growth parameters and the hyperparameters. Firstly, we assume

the following priors for the growth parameters:

Nij|Ni0, Di, µi, λi, σ ∼ N
(
g(tij, Ni0, Di, µi, λi), σ

2
)

Ni0|m0, s0 ∼ N
(
m0, s

2
0

)
logDi|αD, τD ∼ N

(
αN , τ

2
N

)
log µi|αµ, τµ ∼ N

(
αµ, τ

2
µ

)
log λi|αλ, τλ ∼ N

(
αλ, τ

2
λ

)
where σ2 is an unknown variance assumed to be common for each growth curve

and αD, τD, m0, s0, αµ, τµ, αλ, τλ are unknown hyperparameters. We will typi-

cally have very good prior knowledge concerning the initial population densities

Ni0, as the Petri dishes are typically seeded to some theoretical level.

Secondly, we consider an inverse gamma distribution for the model variance

σ2, that is

1

σ2
∼ G (a, b) .
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Small values can be fixed for the parameters a, b to reflect an absence of prior

information.

Finally, the prior specification is completed by setting vague, but proper prior

distributions for the remaining hyperparameters:

αD ∼ N (mD, sD)
1

τ 2
D

∼ G (rD, vD)

αλ ∼ N (mλ, sλ)
1

τ 2
λ

∼ G (rλ, vλ)

αµ ∼ N (mµ, sµ)
1

τ 2
µ

∼ G (rµ, vµ)

where mD, mλ, mµ, sD, sλ, sµ, rD, rλ, rµ, vD, vλ and vµ are assumed known and

fixed.

Given the observed data, the likelihood function can be easily derived from

(2.9) as:

f(Nij|Ni0, Di, µi, λi, σ
2) =

r∏
i=1

n∏
j=1

1√
2πσ2

exp

(
−(Nij − g(tij))

2

2σ2

)

∝ exp

(
− 1

2σ2

r∑
i=1

n∑
t=1

(Nit − g(tij))
2

)

where g(tij) is the modified Gompertz equation.

Unfortunately, given the nonlinearity of this model, the joint posterior param-

eter distribution does not have a simple form and, even the conditional posterior

distributions of most of the growth parameters cannot be obtained in a simple

closed form. Therefore, Markov-Chain Monte-Carlo (MCMC) techniques must

be employed to allow us to generate an approximate Monte Carlo sample from

the posterior parameter distributions. As in the previous Chapter, we propose to
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use WinBUGS to implement the MCMC sampler. In this case, implementation is

carried out in using WinBUGS in combination with R, via the R2WinBUGS package

available from

http://cran.r-project.org/web/packages/R2WinBUGS/.

In a similar way to Figure 1.6 in the previous chapter, Figure 2.2 illustrates

the dependence structure of the model in WinBUGS style. WinBUGS code can be

constructed based on the doodle.

Figure 2.2: Doodle showing the dependence structure of the hierarchical Gom-
pertz model

As WinBUGS is a generic approach to MCMC sampling, it is important to check

on the convergence of the sampler. Various tools can be used to check the conver-

gence. In particular, as well as standard graphical techniques such as looking at

the trace, the evolution of the mean and the autocorrelations of the sampled out-

put, we also use formal diagnostic techniques such as the modified Gelman-Rubin

statistic, discussed in the previous chapter.
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For the pooled and the independent models we follow the same approach as

before, assuming relatively uninformative log-normal prior distributions for the

non-negative Gompertz parameters D, λ and µ, and a vague inverse-gamma prior

distribution for σ2. Inference for these models is also implemented via WinBUGS.

2.4 Application: Listeria monocytogenes

In our application the models are fitted to listeria growth curves. Data come

from an experiment in broth monoculture where bacteria growth curves were

generated at fixed temperature, (42 ◦), acidity (pH = 7.4) and salt concentration

(2, 5% NaCl) levels and measured as optical density. Observations were equally

spaced and measurement times were common across replications. The data set

consists of 20 curves, each observed at 16 fixed time intervals of one hour are

those that we have seen previously in Figure 2.1.

We assume that bacteria grows according to the Gompertz equation of (2.6)

and compare the hierarchical, independent and pooled models described earlier

in Section 2.2. In order to fit the models, in each case we generated two parallel

chains using different initial values with 350000 iterations each, including 250000

iterations of burn-in. To diminish the autocorrelation between the generated val-

ues we also used a thinning rate of 10. Trace plots and autocorrelation functions

were used to check convergence and in all cases it was found that the burn-in pe-

riod was reasonable. Furthermore, the Gelman-Rubin statistic was equal o very

close to 1, giving a good indicator of convergence.
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Table 2.1: Posterior mean parameter estimates and standard deviations in the
independent model

Replicate N0 sd D sd µ sd λ sd
1 0.07 0.04 0.91 0.10 0.25 0.09 4.98 0.69
2 0.07 0.04 0.95 0.09 0.26 0.09 4.74 0.65
3 0.08 0.04 0.92 0.09 0.25 0.09 4.88 0.67
4 0.07 0.04 0.86 0.09 0.25 0.10 4.87 0.73
5 0.07 0.04 0.93 0.10 0.24 0.09 4.87 0.69
6 0.07 0.04 0.86 0.09 0.25 0.10 4.88 0.71
7 0.07 0.04 0.87 0.09 0.24 0.09 4.80 0.71
8 0.07 0.04 0.87 0.09 0.24 0.09 4.86 0.72
9 0.08 0.04 0.92 0.10 0.24 0.08 4.84 0.69
10 0.07 0.04 1.00 0.10 0.26 0.08 4.93 0.63
11 0.07 0.04 0.91 0.10 0.25 0.09 4.93 0.70
12 0.07 0.04 0.86 0.10 0.23 0.08 4.82 0.76
13 0.07 0.04 0.82 0.10 0.23 0.09 4.88 0.80
14 0.07 0.04 0.84 0.10 0.23 0.09 4.89 0.77
15 0.07 0.04 0.82 0.10 0.23 0.10 4.87 0.80
16 0.07 0.04 0.86 0.10 0.24 0.10 4.95 0.75
17 0.07 0.04 0.86 0.10 0.23 0.09 4.90 0.75
18 0.07 0.04 0.93 0.09 0.26 0.09 4.92 0.65
19 0.07 0.04 0.85 0.09 0.25 0.10 4.91 0.72
20 0.07 0.04 0.89 0.10 0.23 0.08 4.80 0.71

Mean 0.89 0.24 4.88

Independent model

Table 2.1 summarizes the estimated growth parameters for the independent model.

The posterior mean and the standard deviation for each parameter are shown.

Comparing the values of the estimated parameters for each curve, we can see the

range of variation which indicates that there are significant differences among

curves even when the environmental conditions are the same for all the cases.

The maximum specific growth rate ranges from 0.23 to 0.26, the lag parameter

ranges from 4.74 to 4.98 and the maximum population size ranges from 0.82 to

1.00. The differences between the initial population size are very small, while the

maximum observed differences are observed in the maximum population size.
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Figure 2.3 shows the fit and the 95 % credible interval for three of the curves

(replications 10, 13 and 20).
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(c) Curve 20

Figure 2.3: Fitted growth curves under the independent model

The fitted mean growth curves are very close to the observed data as we would

expect. Nevertheless, the credible intervals for the estimations are not very ac-

curate.

Pooled model

One problem with the independent model is that usually, microbiologists are

interested in a predictive curve for a bacterial population under certain environ-

mental conditions. Unfortunately, under the independent model, it is assumed

that each for the growth curves is independent of the others, and therefore there

is no information from the data to enable us to predict an unobserved growth

curve. However, the pooled model does enable us to generate a predictive mean

curve.

Table 2.2 shows a summary of the estimated parameters under this model.

As we can see, the standard errors of the estimations for all the parameters are
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lower with the pooled model compared with the independent one. The reason

is that to estimate this growth parameters we use the information from all of

the replications in the group because each observed growth curve is assumed to

be a sample from a unique growth curve implying that we have a larger sample

and therefore reduced uncertainty, leading to increased precision when estimating

the unknown parameters. The estimated curve can be interpreted as the mean

bacterial growth curve under given environmental conditions.

Table 2.2: Posterior mean parameter estimates and standard deviations in the
pooled model

N0 D µ λ
mean 0.08 0.87 0.23 5.00

sd 0.00 0.01 0.01 0.04

Figure 2.4 shows the fit of the pooled model. The solid line represents the

posterior mean and the dashed lines are the 95% credible intervals. Dotted lines

are 3 of the replications, curve 10, curve 13 and curve 20. Some observations

from curve 10 fall outside of the credible interval. As expected, the posterior

mean curve can be seen as the mean of the observed curves, but fails to describe

the exact behaviour of each individual curve.

Hierarchical model

The summary of the estimated parameters with the hierarchical model are pre-

sented in Table 2.3. The posterior mean and standard deviation of the estimated

parameters of each curve are shown and also for the population parameters. The

estimated parameter values for each curve are very similar to those obtained
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Figure 2.4: Fit of the Pooled model

with the independent model. However, the standard errors are significantly lower

for the hierarchical model. To summarize the behaviour of the bacterial growth

with the given environmental growth we can use the estimated population growth

parameters.
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(b) Curve 13
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(c) Curve 20

Figure 2.5: Fitted Growth curves under the hierarchical model

To compare the parameter estimations of the different models, the main re-

sults for the parameters modeled with hierarchical structure are included in Table
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Table 2.3: Posterior mean parameter estimates and standard deviations in the
hierarchical model

Replicate N0 sd D sd µ sd λ sd
1 0.08 0.01 0.90 0.02 0.24 0.02 5.08 0.14
2 0.08 0.01 0.94 0.02 0.25 0.02 4.83 0.14
5 0.08 0.01 0.92 0.02 0.23 0.02 4.97 0.15
6 0.08 0.01 0.85 0.02 0.24 0.02 4.99 0.14
7 0.08 0.01 0.86 0.02 0.23 0.02 4.92 0.15
8 0.08 0.01 0.86 0.02 0.23 0.02 4.98 0.15
9 0.08 0.01 0.91 0.02 0.23 0.02 4.95 0.15
10 0.08 0.01 0.99 0.02 0.25 0.02 5.01 0.14
11 0.08 0.01 0.89 0.02 0.24 0.02 5.05 0.14
12 0.08 0.01 0.85 0.02 0.22 0.02 4.97 0.15
13 0.08 0.01 0.81 0.02 0.22 0.02 5.03 0.16
14 0.08 0.01 0.82 0.02 0.22 0.02 5.04 0.16
15 0.08 0.01 0.80 0.02 0.22 0.02 5.03 0.16
16 0.08 0.01 0.85 0.02 0.23 0.02 5.07 0.15
17 0.08 0.01 0.84 0.02 0.22 0.02 5.05 0.15
18 0.08 0.01 0.92 0.02 0.24 0.02 4.99 0.14
19 0.08 0.01 0.84 0.02 0.24 0.02 5.03 0.15
20 0.08 0.01 0.88 0.02 0.23 0.02 4.93 0.15

Population mean (αi) 0.92 0.07 0.25 0.02 5.23 0.39
Population sd (τi) 0.32 0.05 0.09 0.00 1.78 1.48

2.4. The posterior mean and the 95% credible interval for the population growth

parameters are shown for the full hierarchical model, the mixed model and the

pooled model. Moreover, for the first two models and for the independent one,

individual parameters are shown for curves 10, 13 and 20 - the same curves rep-

resented graphically before. When comparing among the individual parameter

estimations between the independent model and the hierarchical models, it can be

seen that there are small differences. However, if we look at the credible intervals

it is possible to see that in hierarchical models the estimations are more precise.

Regarding the population parameters, we observe some differences between the

estimated parameters values between the pooled model and the hierarchical mod-

els. But, the credible intervals of the hierarchical models include the estimated
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Table 2.4: Parameter estimations

D Mu Lambda
mean 95% mean 95% mean 95%

Independent model
Curve 10 1.00 (0.83 1.22) 0.26 (0.14 0.50) 4.93 (3.53 6.10)
Curve 13 0.82 (0.66 1.05) 0.23 (0.10 0.49) 4.88 (2.97 6.27)
Curve 20 0.89 (0.73 1.12) 0.23 (0.11 0.47) 4.80 (3.15 6.08)

Hierarchical model
Curva 10 0.99 (0.95 1.03) 0.25 (0.22 0.28) 5.01 (4.74 5.28)
Curva 13 0.81 (0.77 0.84) 0.22 (0.18 0.26) 5.03 (4.70 5.35)
Curva 20 0.88 (0.84 0.91) 0.23 (0.19 0.26) 4.93 (4.63 5.22)
Population 0.92 (0.80 1.08) 0.25 (0.21 0.29) 5.23 (4.53 6.08)

Pooled model
Population 0.87 (0.86 0.88) 0.23 (0.22 0.24) 5.00 (4.90 5.08)

values with the former model.

Prediction

To asses the predictive capacity of the models, we consider two types of predic-

tions: one and various step ahead predictions for a given curve, and the prediction

of a new curve. Firstly, consider the case where the first 19 curves are fully ob-

served and where only the first 6 values of the 20th curve are observed, so that

we can try to predict the trajectory of the rest of the growth curve. Figure 2.6

shows the predictive curves for the hierarchical and pooled models respectively.

The predictive curve for the hierarchical model is more accurate than the one

for the pooled model. Moreover, when computing the mean squared error be-

tween the predictive curve and the real curve, the value for the former model is

equal to 0.0020 while for the later is equal to 0.0042. In general, the more the

growth process differs from the mean, the better the hierarchical model performs

in comparison with the pooled model.
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Now, we will consider the case of prediction for a new curve, J̃ which at

the beginning has not been observed at all. The procedure is as follows. First,

having observed the previous 19 curves, we will predict the cell density of the

new curve at t = 0. Then, given the true value of the bacteria density at that

time, we predict the following value, that is the cell density at t = 1. After that,

we observed the first two points and predictive the population density at t = 3

and so on. Figure 2.7 shows the predictive curves for a new experiment for the

hierarchical model and the pooled model, respectively.
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Figure 2.6: The predictive mean curve for future observations

Once again, the hierarchical model outperforms the pooled model with the

predicted curve being very close to the true curve. The mean square error of the

predictions are equal to 0.0006 and 0.0040, for the hierarchical and the pooled

model respectively, being significantly lower for the hierarchical model.

Finally, if we want to answer the previously mentioned questions of the mi-

crobiologists with the models presented here we have two possibilities. The first

one is to use the posterior predictive distribution of the pooled model. The mean

curve was represented in Figure 2.4. The second possibility is to use the hierarchi-

cal model: with the posterior distribution of the population parameters (learned

from the observed curves) in combination with the prior distribution of the in-
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Figure 2.7: Predictive Future Experiment

dividual parameters it is possible to derive a posterior predictive distribution for

the new curve. Calling θ the vector of individual growth parameters and φ the

vector of population parameters, the predictive distribution is equal to

p(ynew|yobs) =

∫
θ

∫
φ
p(ynew|θ)p(θ|φ)p(φ|yobs)dθdφ

A sample from that distribution can be easily obtained from the MCMC

previously generated.

Table 2.5: Predictive mean values at each time.

Hour 1 2 3 4 5 6 7 8
HM 0.07 0.07 0.07 0.09 0.16 0.33 0.53 0.70
PM 0.08 0.08 0.08 0.08 0.14 0.31 0.54 0.72

Hour 9 10 11 12 13 14 15 16
HM 0.81 0.87 0.91 0.93 0.94 0.95 0.95 0.95
PM 0.83 0.89 0.92 0.94 0.94 0.95 0.95 0.95

Figure 2.8 shows the predictive mean curve and the 95% credible interval.

Dotted points represent the various curves observed under the given fixed envi-
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Figure 2.8: Predictive mean curve of a new replication

ronmental conditions. The estimated predictive curve is a good representation

of the mean behaviour of the bacterial growth process. The mean curve is very

similar to the mean curve of the pooled model (Table 2.5 shows the estimated

mean values of the curve for each time). Nevertheless, in contrast with the former

model, here all the curves lie inside the credible intervals. Finally, the posterior

mean of the growth parameters are very closed to those estimated with the pooled

model (see Table 2.6).

Table 2.6: Posterior mean of the growth parameters.

N0 Dmax µ λ
Pooled 0.08 (0.00) 0.87 (0.01) 0.23 (0.01) 5.00 (0.04)

Hierarchical 0.07 (0.10) 0.88 (0.12) 0.24 (0.03) 4.99 (0.67)

The better performance of the hierarchical model with respect to the pooled

and the independent model regarding both, fitting and prediction, is also sup-

ported by the DIC and the MSE values. Table 2.4 shows that the hierarchical

model has a lower MSE indicating the goodness of fit but also a lower DIC which
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also penalizes for model complexity.

DIC MSE
IM -646.23 1.98

HM -1489.62 0.02
PM -1326.01 0.05

2.5 Conclusions

In this chapter, we have illustrated that hierarchical models can be used to model

bacterial growth functions when several replications of the same experiment un-

der equal environmental conditions such as temperature, acidity level and salt

concentration are available. Various simpler models, keeping some of the growth

parameters fixed, are also suitable.

A number of extensions to this approach are possible. Firstly, in this chapter

we have extended the modified Gompertz equation to the case of a hierarchical

model, but the approach is equally applicable to other bacterial growth models

such as the logistic or Baranyi models. Furthermore, it can also be applied to the

cases where we assume no parametric growth model and instead use a nonpara-

metric approach. Finally, in the present study we have considered experiments

under fixed environmental conditions. A natural extension of this work is to

consider modeling what happens at different levels of the environmental condi-

tions. These last two situations will be considered in the following chapters of

this thesis.



Chapter 3

Neural networks models

3.1 Introduction

In the previous chapter we have seen how to model and the predict the bacteria

growth process when environmental conditions are fixed. Nevertheless, in reality,

these external factors are not fixed. For instance, food products are affected

by different factors depending on environmental conditions in the production,

distribution, storage and consumption stage. Shelf life is determined by the

evolution and growth of the micro-organisms which can spoil the product and

cause pathogenic effects. The aim of predictive microbiology is to know which

environmental factors most influence the growth processes of micro-organisms

in food. The relationships between these factors are complex, interactive and

dynamic and therefore, it is important to develop secondary bacterial growth

models to predict the shelf life of perishable foods or the behaviour of food borne

pathogens.

In this chapter, we shall start by briefly summarizing the most popular sec-

ondary models and then propose two different approaches based on the use of

63
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neural network techniques. The first model is based on the Gompertz function

where the dependence of the growth parameters on the environmental factors is

modeled by a neural network. Secondly, we shall consider a direct, non-parametric

approach based on the use of neural networks as a primary growth model. An

important feature of our approaches is that in cases where we observe bacterial

growth in various colonies under possible different environmental conditions, we

use hierarchical modeling, as in Chapter 2, to improve the estimation of a single

growth curve by incorporating information from the various different bacterial

populations.

As in the previous chapter, inference for our models is undertaken throughout

using a Bayesian approach. One of the main problems with inference for neural

networks models was that typically, complicated inference algorithms need to be

designed and a great deal of tuning often needs to be carried out for these to

work efficiently, see e.g. Lee (2004). Here, however, we show that inference can

be still be carried out using WinBUGS.

3.2 Secondary models

Primary models for growth curve typically assume some parametric form, e.g. the

Gompertz curve for the growth model under specific environmental conditions.

It is natural however to suppose that growth will typically be different under

different environmental conditions and this can be done by allowing the model

parameters to vary depending on these conditions. Models for this variation in

parameters are called secondary models and some of the most important of these

are are outlined below.
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3.2.1 The square-root model

Ratkowsky et al. (1982) suggested a simple empirical model that describe the

effect of suboptimal temperature on growth rates of micro-organisms. Before

fitting the model to experimental growth rates, data is transformed taking the

square root in order to stabilize the variance and for this reason this model and

their future extensions are called square-root models. Suppose that µmax is the

maximum growth rate of a bacterium under optimal temperature conditions.

Then the basic square root model supposes that:

√
µmax = b(T − Tmin) (3.1)

where b is a constant and Tmin is a parameter which indicates the minimum

temperature at which growth can occur. From growth curve observed at different

temperature levels, the parameters b and Tmin can be estimated by classical model

fitting techniques. This first equation was expanded to include the effect of other

factors besides temperatures, such as water activity, acidity level, salinity level,

etc. The extended version which describes the combined effect of temperature

and other factors can be expressed as

√
µmax = b(T − Tmin)

√
X −Xmin (3.2)

where b and Tmin are as previously defined, X is another factor different from T

such as water activity or level of acidity (pH) and Xmin is the minimum level of

the that factor below which growth is not possible. These models are simple, easy

to interpret and use few parameters. Each term expresses how an environmental

factor changes the growth rate of a micro-organism. However, as pointed out in

McKellar and Lu (2004), in these models, the expected multidimensional growth
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space is not influenced by the levels of the different environmental parameters.

Thus, for instance, the level of acidity influences the range of pH values for which

growth is theoretically observed.

3.2.2 Cardinal parameter models

Cardinal parameter models (CPMs) rely on the assumption that the inhibitory

effect of the environmental factors is multiplicative. This idea was formalized

in the gamma concept introduced in Zwietering et al. (1992). Under optimal

conditions a micro-organism has a maximum growth rate, but when any envi-

ronmental factor becomes suboptimal the growth rate declines and the extent

of that inhibition depends on the rate between the test condition compared to

that at the optimum. Thus, a CPM consists of a discrete term for each envi-

ronmental factor, where each term is the growth rate relative to that when that

factor is optimal. An extensive CPM developed for growth of Listeria monocy-

togenes, includes the effect of temperature (T ), water activity (aw), acidity level

(pH), inhibitory substances (ci), and qualitative factors (kj) on µmax and can be

expressed as:

µmax = µoptτ(T )ρ(aw)α(pH)
I∏
i=1

γ(ci)
J∏
j=1

kj (3.3)

where τ = CM2, ρ = CM1 and α = CM2 with

CMn=


0 if X ≤ Xmin

Xopt−Xmin)1−n(X−Xmax)(X−Xmin)n

([(Xopt−Xmin)(X−Xopt)−(Xopt−Xmax)((n−1)Xopt+Xmin−nX)]
if Xmin < X < Xmax

0 X ≥ Xmax

γ(ci) =

 (1− ci/MICi)
2 if ci < MICi

0 otherwise
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where X is the temperature, water activity or pH, Xmin and Xmax are the values

of the factor X below and above which growth impossible, Xopt is the value at

which µmax is equal to its optimal value µopt and MICi the minimal inhibitory

concentration of specific compounds above which no growth occurs.

Cardinal models assume that different environmental factors have indepen-

dent and multiplicative effects on µmax. The assumption of independence might

not be reasonable in all cases. As is pointed out in McKellar and Lu (2004)

numerous studies have shown that the growth range of a micro-organism in one

environmental condition is affected by other environmental conditions.

3.2.3 Polynomial models

Polynomial models, also called response surface models, are probably the most

common secondary model. These kinds of models are relatively easy to fit by using

multiple linear regression techniques. Polynomial models are able to incorporate

different environmental factors and their interactive effects in a simple way. The

model can be expressed as:

θ = β0 +
k∑
j=1

βjXj +
k∑
j=1

βjjX
2
j +

∑
j<l

k∑
l=2

βjlXjXl (3.4)

where θ is the response variable, for instance a parameter of the primary growth

rate model, βj, βjj and βjl are the parameters of the model and the Xi are the

environmental factors such as temperature, salinity level, acidity level, etc. One

of the main criticisms of the polynomial models is that they have a high number

of parameters without biological interpretation that make difficult to compare

this kind of model with other secondary models.
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3.2.4 Artificial neural network models

Square-root models, cardinal parameter models and polynomial models all have

several versions depending on the micro-organisms, the environmental factors in-

cluded, the quantity of factors, the growth parameters which we want to explain

(growth rate, lag parameter, the maximum population size), etc. Due to the

long list of parametric models, it is possible to talk about model uncertainty.

Which model is the best? More recently artificial neural networks (ANNs) have

been proposed as a way to model complex non-linear systems (see e.g. Hajmeer

et al. (1997), Geeraerd et al. (1998) and Garćıa-Gimeno et al. (2002)). Neural

networks, in statistical terms, are non-parametric models, as opposed to the para-

metric models we have used earlier, which are characterized by a small number of

parameters, which often have a meaningful interpretation. Although neural net-

work models lose this easy interpretation, the advantages of neural networks are

their capability to describe very complex non-linear relationships and that they

do not impose any structure on the relationship between the interacting effects.

3.3 Neural network based growth curve models

In this section we give a brief presentation of artificial neural networks. We will

focus on feed forward neural networks, which are the most popular and widely

used network in many applications. Then we shall present two neural network

based models for bacteria growth, the first of which is a secondary model where

the parameters of the Gompertz curve are related to environmental factors using

ANNs and the second of which is a primary neural network model where no

specific form for the basic growth curve is presupposed.
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3.3.1 Feed forward neural networks

Assume that there are q dependent variables, (Y1, . . . , Yq) = Y, and a set of

explanatory variables, (x1, . . . , xp) = x. Often, the relationship between Y and

x is modeled by assuming a simple relationship such as e.g. multivariate regres-

sion. However, such a relationship may not always be appropriate and often, a

more general functional relation between the dependent and independent vari-

ables must be assumed, say

E[Y|x] = g(x)

where the functional form, (g1, . . . , gq) = g : Rp → Rq, is unknown.

One of the most popular methods of modeling the function g is via neural

networks, see e.g. Stern (1996). In particular, a feed forward neural network

takes a set of inputs x, and from them computes the vector of output values as

follows

g(x) = B ·ΨT (xTΓ) (3.5)

whereB is a q×M matrix with q ∈ N the number of output variables and M ∈ N

the number of nodes and Γ is a p ×M matrix with p ∈ N being the number of

explicative variables. The element γrk ∈ R is the weight of the connection from

input r to hidden unit k and the element βsk ∈ R is the weight connection from

hidden unit k to output unit s. Finally, Ψ(a1, . . . , aM) = (Ψ(a1), . . . ,Ψ(aM))

where Ψ is a sigmoidal function such as the logistic function

Ψ(x) =
exp(x)

1 + exp(x)
, (3.6)

which we will use here. Equations (3.5) and (3.6) define a feed forward neural

network with a logistic activation function, p explanatory variables (inputs), one
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hidden layer with M nodes and q dependent variables (outputs) that is illustrated

in Figure 3.1. Note that each output in the neural network combines the node

values in a different way.
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Figure 3.1: Neural network representation

Several features of neural networks make them valuable and attractive for pre-

dictive microbiology, where the environmental conditions that affect growth are

complex and poorly understood. First, ANNs have few prior assumptions about

the models for the problem studied. The network can learn from data and capture

subtle functional relationships even if the underlying relationships are unknown

or very complex to describe. Thus, ANNs are particularly useful when there is

little knowledge about the underlying laws governing the systems from which

data is generated but for which there are enough data or observations. ANNs

can also be used for prediction. After learning from data, an ANN can often give

good inferences about the unseen part of a population, such as prediction of the

future behaviour from knowing the past. Finally, ANNs are universal functional

approximators, meaning that a network can approximate any continuous function
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to any desired accuracy. ANNs have more general and flexible functional forms

which make possible to model very complex nonlinear systems. ANNs can deal

with nonlinear modeling without a priori assumptions about the relationships

between input and output variables.

Standard secondary growth curve models commented previously may not cap-

ture the complex relationships and interactions between growth and external fac-

tors such as temperature, pH or salt levels. Therefore, here we propose to use

neural networks to model the complex system of interactions between environ-

mental factors. In particular, we shall consider two neural network based models,

the first of which is a secondary model based on the Gompertz equation and the

second of which is a primary neural network model.

3.3.2 A neural network based Gompertz model

As we have commented previously, the Gompertz equation, has been used exten-

sively by researchers to fit a wide variety of growth curves from different microor-

ganisms. However, the primary growth model described in Equation (2.6) does

not allow for the case where we wish to study bacterial populations under a va-

riety of controlled environmental conditions. Therefore, suppose that we observe

the growth of I bacterial populations under similar initial conditions and that we

have J different environments determined by temperature, level of acidity (pH)

and salt concentration (NaCI). Now, because we want to know how the growth

process is affected by different external conditions, it may be reasonable to as-

sume that all replications have the same growth curve parameters under fixed

environmental conditions. However, growth rates will vary under different con-

ditions and therefore, assuming a Gompertz model, we propose the use of neural

networks to reflect the parameter dependence on the environmental factors. If
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Ntij is the concentration in population i under environmental conditions j at time

t the Gompertz function is

E[Ntij|N0j, Dj, µj, λj] = g(tij, N0j, Dj, µj, λj), (3.7)

where g(·) is as in (2.7), for i = 1, . . . , I and j = 1, . . . , J . Now, we model the

growth parameters µ, λ and D as a function of the temperature, the level of

acidity and the salt concentration by a feed forward neural network, that is

θs =
M∑
k=1

βsk ·Ψ(x′γk), for s = 1, 2, 3. (3.8)

where θs represents the parameters (D,µ, λ) and x = (T, pH,NaCI) is the vector

of explanatory variables representing the environmental conditions and Ψ is the

logistic function, so that

Ψ(x) =
1

1 + exp(−x)
.

From now on, the model defined by (3.7) and (3.8) will be referred to as the GNN

model.

3.3.3 A hierarchical neural network model

Here, we generalize the previous model to a new one which does not assume any

underlying parametric growth function. Instead, we propose the use of a neural

network as a primary model. The output of the network is the instantaneous

reproduction rate per member of the population and the inputs are the current

population size and the experimental conditions. Formally, we can write this



3.3. NEURAL NETWORK BASED GROWTH CURVE MODELS 73

model as

E[Ntij|N(t−1)ij, fj, Tj, pHj, NaClj] =

N(t−1)ij +N(t−1)ijfj(N(t−1)ij, Tj, pHj, NaCIj) (3.9)

fj(N(t−1)ij, Tj, pHj, NaCIj) =
M∑
k=1

βjk(Ψ(γ1kN(t−1)ij + γ2kTj + γ3kpHj + γ4kNaCIj)

−Ψ(γ2kTj + γ3kpHj + γ4kNaCIj)), (3.10)

for i = 1, . . . , I and j = 1, . . . , J , fj(·) is the growth rate for populations with

environmental condition j. From now on, the model defined by (3.9) will be

referred to as the NN model.

3.3.4 Error modeling

In the previous subsections, two approaches to modeling the expected population

density have been provided. These models are completed by including an error

term. We might consider using independent, identically distributed errors, but,

in a similar way to (2.9) in the previous chapter it would appear more reasonable

to assume that the error variance increases with population size.

Therefore, in the case of the GNN model, we assume that the error term is

εtij|gtij, σ, p ∼ N
(
0, σ2g(tij)

p
)

(3.11)

where g(.) is the Gompertz function as in (2.9).
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In the case of the NN model, we assume that

Ntij = N(t−1)ij +N(t−1)ijfj(N(t−1)ij, Tj, pHj, NaCIj) + εtij (3.12)

where we assume that the error term is

εtij|N(t−1)ij, σ, p ∼ N
(
0, σ2Np

t−1

)
. (3.13)

Note in particular that for p > 0, this error structure implies that if N(t−1)ij = 0,

then Ntij = 0, so that once the population has died out, then it remains extinct.

3.4 Bayesian inference for the neural network

models

Typically, when fitting secondary models using classical statistical procedures, a

two-stage procedure is carried out. In the first stage, a primary model is fitted to

the observed data in order to get the estimated growth parameter values under

each set of environmental conditions. The second stage then involves fitting a

secondary model to these using the sets of estimated parameters as data. These

two steps are usually not linked, which means that the uncertainty of the first

step is not taken into account in the second step. However, in a Bayesian context,

inference can be carried out directly using a one-step procedure.

Regarding fitting of neural networks, given a set of observed inputs and out-

puts, say D = (x1, y1), . . . , (xN , yN), inference can be carried out using a variety

of approaches, see e.g. Neal (1996) and Fine (1999) for reviews. Here, we shall

consider a Bayesian approach which allow an overall fitting of the primary and
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the secondary models.

In order to implement such an approach, we must first define suitable prior

distributions for the neural network parameters β and γ and for the uncertainty.

Firstly, we suppose little prior knowledge concerning the variance and hence we

propose a vague, inverse-gamma, prior distribution for it σ−2 ∼ G(a/2, b/2). In

neural network models is common to use relative uninformative prior distributions

due to the scarcity of prior information about the parameters. For simplicity we

choose hierarchical prior structures, as follows:

βik|miβ, σ
2
β ∼ N

(
miβ, σ

2
β

)
γk|mγ, σ

2
γ ∼ N

(
mγ, σ

2
γI
)
,

where the subscript i in the GNN model accounts for the growth parameters and,

in the NN model for the groups defined by the environmental conditions. The

Bayesian approach is completed by vague, but proper prior distributions for the

remaining hyperparameters as follows:

miβ|σ2
β ∼ N

(
m0β,

σ2
β

cβ

)
m0β|σ2

β ∼ N
(

0,
σ2
β

eβ

)
1

σ2
β

∼ G
(
dβ1

2
,
dβ2

2

)
mγ|σ2

γ ∼ N
(

0,
σ2
γ

cγ
I

)
1

σ2
γ

∼ G
(
dγ1

2
,
dγ2

2

)
,

where cβ, eβ, dβ1, dβ2, cγ, dγ1 and dγ2 are assume known and fixed. Similar

hierarchical prior distributions are typically used in Bayesian inference for neural

network models, see e.g. Lavine and West (1992), Müller and Insua (1998) and
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Andrieu et al. (2001). For alternatives, see e.g. Lee (2004), Robert and Mengersen

(1999) and Roeder and Wasserman (1997).

Given the above prior structure, a closed form for the posterior parameter

distributions is not available. However, Markov-Chain Monte-Carlo (MCMC)

techniques can be employed to allow us to generate an approximate Monte Carlo

sample from the posterior parameter distributions, see e.g. Gilks et al. (1996) for a

full review. Various different MCMC algorithms have been proposed in the neural

networks literature, but in general the efficiency of such samplers depends on the

model, see e.g. Lee (2004). MacKay (1995b) uses a Gaussian approximation for

the posterior distribution of the networks parameters and single values estimates

for the hyperparameters. This method was useful in some practical applications

but Neal states that not always these approximations are close to the true result

implied by the model. Neal (1996) introduces a hybrid Monte Carlo method

combining ideas from simulated annealing and Metropolis algorithm. Muller

and Rios Insua (1998) introduce an efficient MCMC algorithm based on partial

marginalization over the weights of the network and blocking (all weights are

jointly resampled). As an alternative, we propose using WinBUGS in conjunction

with R2WinBugs.

Figure 3.2 illustrates the dependence structure of the NN model in WinBugs

style (although code cannot be constructed directly from this diagram).

As we have noted previously, WinBugs is a generic approach to MCMC sam-

pling. Therefore, it is important to check on the convergence of the sampler and

to do this we use both informal trace plots and diagnostics as commented in the

previous chapters.
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Figure 3.2: Dependence structure of the NN model

3.4.1 Model selection

Thus far, inference is conditional on the number of hidden nodes, M , being un-

known. Various approaches to estimating M may be considered. One possibility

is to treat M as a variable and given a prior distribution for M , use variable

dimensional MCMC approaches to carry out inference, see e.g. Müller and Insua

(1998) or Neal (1996). An alternative which we shall employ here, is to use an

appropriate model selection technique to choose the value of M .

A number of criteria have been proposed for model selection in Bayesian infer-

ence. A standard, Bayesian selection criterion which is particularly appropriate

when inference is carried out using MCMC methods is the deviance informa-

tion criterion (DIC), as proposed in Spiegelhalter et al. (2002). However, in the

context of neural networks, the possible lack of identifiability of the model or mul-

timodality of the posterior densities make this criterium unstable. Many variants

of the DIC have also been considered and here, we prefer to apply the DIC3

criterion of Celeux et al. (2006). For a modelM with parameters θ and observed
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data y the DIC3 is defined as follows:

DIC3 = −4Eθ[log f(y|θ)|y] + 2 log
n∏
i=1

Eθ[f(yi|θ,y)].

In Celeux et al. (2006) this criterion is recommended in the context of latent

variable models.

An alternative approach which we also consider when comparing different

models is the posterior predictive loss performance (PPLP) proposed by Gelfand

and Ghosh (1998). Based on the posterior predictive distribution, this criterion

consists in defining a weight loss function which penalizes actions for departure

from the corresponding observed value as well as for departure from what we

expect the replication to be. In this way, the approach is a compromise between

the two types of departures: fit and smoothness. Under squared error loss, the

criterion becomes

PPLP =
k

k + 1

n∑
i=1

(mi − yi)2 +
n∑
i=1

s2
i

, where mi = E[yrepi |y] and s2
i = V ar[yrepi |y] are, respectively, the mean and the

variance of the predictive distribution of yrepi given the observed data y and k is

the weight we assign to departures from the observed data. The first term of the

PPLP is a plain goodness-of-fit term and the second term penalizes complexity

and rewards parsimony.

3.5 Application: Listeria monocytogenes

In this section we analyze the same data set studied in the previous chapter, but

now we incorporate new curves observed under several experimental conditions.
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The environmental factors taken into account are temperature, level of acidity

and salinity. Temperatures range between 22◦C and 42◦C, pH between 4.5 and

7.4 and NaCI between 2.5% and 5.5%. In order to facilitate the fitting of the

neural network models, temperature, pH and NaCI were all scaled to take values

in [0.1, 0.9].

There are 96 different combinations of environmental factors (which we shall

call groups) and for each group there are several replications (between 15 and 20,

depending on the group). The number of observations per curve varies between

16 and 24, depending on the curve. We retained 74 groups for the analysis

(excluding cases with extreme values of the environmental factors which inhibit

growth) and randomly choose 10 replications for each one.

Using the DIC3 criterion as outlined earlier, the optimum number of nodes

for both models is 2. In the implementation of the GNN model we keep the

hyperparameters miβ, σβ, mγ and σγ fixed at miβ = 0, σβ = 10, mγ = (0, . . . , 0)′

and σγ = 10. Regarding the error variance we choose a = 0.2 and b = 0.2. In

the NN model the highest level of hyperparameters were set to cβ = 10, eβ = 10,

dβ1 = 0.1, dβ2 = 0.01, cγ = 10, dγ1 and dγ2 = 0.01.

In order to fit the models, in each case we generated chains with random

initial values and 200000 iterations each, including 100000 iterations of burn-

in. To diminish autocorrelation between the generated values we also used a

thinning rate of 1000. Trace plots and autocorrelation functions were used to

check convergence in the predictions and in all cases it was found that the burn-

in period of 100000 iterations was reasonable. Furthermore, the Gelman-Rubin

statistic was equal o very close to 1 for predictions, being a good indicator of

convergence.

In order to have a benchmark for the comparison of models we also fit two dif-
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Figure 3.3: Fitting bacterial growth curves

ferent simple models, the independent Gompertz model and the pooled Gompertz

model. The first of these implies that each observed curve, including the repli-

cations, is independent and therefore has its own Gompertz growth parameters.

Independent, relatively diffuse normal N(0, 100) prior distributions are assumed

for these parameters. In contrast, the pooled model assumes that the replica-

tions under a fixed set of environmental conditions are samples from a unique,

underlying growth curve for that set of conditions. Normal priors are then placed

on the parameters of this growth curve as for the independent model. For both

benchmark models the errors are the same as in the GNN case with a G(0.1, 0.1)

prior distribution for the error variance.

The DIC3 and the PPLP criteria were computed in order to compare the

different models under consideration and Table 3.1 shows the estimated values

for all of these models. As is expected, the pooled model performs better than

de independent one since the assumption of independence for all the curves is

somewhat extreme. Therefore, it seems reasonable to assume different curves

under different environmental conditions but under equal conditions we assume a
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common curve. And this is the approach we choose for the proposed models. But

the problem of this model is that it does not explain the effect of the environmental

factors and it is needed to estimate one model for each group of conditions.

Then, regarding our proposed models which incorporate the environmental factors

as explicative variables the results show that hierarchical neural network model

outperforms the Gompertz model with neural networks for the parameters. The

DIC3 and the PPLP values are lowest for the former model.

Figure 3.3 shows for a particular curve (T = 34◦C, pH = 6.5 and NaCI =

5.5%) the fitting of both models. On the left, the Gompertz model with neural

networks explaining the dependence of the growth parameter on the environmen-

tal factor and on the right the fitting of the hierarchical neural network model.

The observed values are represented by points, the estimated growth curves are

represented by the solid line, and the dashed lines represents the 95% credible

interval computed from the posterior distributions. It can be observed that the

fit is good in both cases and the credible intervals included all the true observa-

tions. In the remaining curves (replications and different group conditions), we

also found good fits for both models. Similar results are observed in the fitted

plots for all the groups.

Table 3.1: Model comparison

Model DIC3 PPLP

Independet Gompertz −19136 781

Pooled Gompertz −39420 211

Gomp & NN −40099 41

Neural Networks −58492 28

Now, we consider one-step ahead predictions. That is, for a particular curve
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we observe data until observation t and predict the population size at t + 1. In

the next step, we observe data until t+ 1 and predict the population size at t+ 2

and so on, until the completion of the predictive curve. Figure 3.4 shows the

one-step-ahead predictive curves for both models for a particular growth curve

(T = 42◦C, pH = 5.5 and NaCI = 2.5%). The fit, the Gompertz model shows

a better predictive performance. The mean square error of the prediction in the

Gompertz model is equal to 0.001, while for the NN model, this is 0.008. In

the second model higher accuracy is reached as can be seen from the narrower

credible interval.
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Figure 3.4: One-step ahead predictions

In the context of model checking, several authors, e.g. Gelfand (1996) and

Vehtari and Lampinen (2003) have proposed the use of cross-validatory predictive

densities. Following this approach, the data is divided in two subsets (y1,y2).

The first of these is used to fit the model and to estimate the posterior distribution

of the parameters, while the second set is used to compute the cross-validatory

predictive density: f(y1|y2) =
∫
f(y2|θ)f(θ|y1)dθ. In our case, we computed

the predictive density for one of the groups which was not used in the model
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fitting. The environmental conditions for this new group are T = 26◦C, pH = 6.5

and NaCI = 5.5%. Figure 3.5 shows the mean prediction (solide line) and the

95% credible interval (dashed line) for both models, GNN on the left and NN on

the right. As there are many replications for this group, we plot only the mean

curve and shade the area between the minimum value and the maximum value

observed for each time t among replications. As an input of the neural network

for the NN model we used the mean curve of the replications.
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Figure 3.5: Cross-validation

Although both cross-validation predictions are fairly good, in the case of the

GNN model some observations lie outside the credible interval. Moreover, com-

paring the mean prediction with the mean observed curve, the NN model yields

more accurate predictions.

3.6 Conclusions

In this chapter, we have illustrated that neural networks can be used to model

bacterial growth for multiple populations. Neural networks were used as a sec-
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ondary model that explains the dependence on environmental factors and also

as a primary model which, besides time, includes experimental conditions as ex-

plicative variables. Inference was carried on in a Bayesian approach that avoids

the problems for doing inference in two steps. Both models yield accurate estima-

tions and good predictions which show that NNs can be used to model bacterial

growth describing accurately the complex interacting effects of environmental

factors without imposing any simplifying assumption.

Estimations were implemented in WinBUGS via R2WinBUGS showing that WinBUGS

can be a powerful and flexible tool able to handle very complex models such as

neural networks with great ease. As MacKay (1995a) pointed out, Gibbs sam-

pling method is not the most efficient of MCMC methods, but there may be

problems of interest where the convenience of this tool outweighs this drawback.



Chapter 4

Stochastic models

4.1 Introduction

Up to now, we have presented a number of parametric growth curve models to

describe the behaviour of bacterial populations over time. In particular, the mod-

els analyzed in Chapters 2 and 3 have all been discrete time models where the

mean function is deterministic conditional on the model parameters and where

a stochastic element is introduced via an additive random noise component. An

alternative approach, which we shall pursue in this chapter is to consider a con-

tinuous time modeling approach. One advantage of such an approach is being

able to easily deal with data that are irregularly spaced in time or different curves

that are observed at different moments of time.

There are several applications of the use of continuous time stochastic process

models such as birth-and-death processes, branching process and diffusion pro-

cesses in biology. In some recent papers, inter individual variability is added as

a stochastic factor to the general growth curve of the population or modelled by

stochastic differential equations (Russo et al. (2009) and (Donnet et al., 2010)).

85
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Figure 4.1: Effect of temperature

For a complete review see Renshaw (2011). Nevertheless, thus far, relatively lit-

tle work has addressed the stochastic nature of the bacterial growth in terms of

modeling and data analysis.

It is important to account for the randomness of the process in order to make

good predictions and good recommendations in predictive microbiology. For ex-

ample, imagine a situation where bacteria grow in a perishable food, such as

yoghurt. After some threshold, the level of bacterial contamination can become

dangerous to human health. Figure 4.1 illustrates bacterial growth under two

different temperature levels and the corresponding fitted curves and credible in-

tervals. If we do not take into account stochasticity, we can make the suggestion

that stocking yoghurt at a temperature below 5◦ is enough to ensure that bacte-

rial will not cross the safety limit. However, because of the random behaviour of

bacterial growth we could observe a population of bacteria growing beyond that

limit even when the temperature is below the 5◦, in our case the red line.

Some stochastic models have been proposed in the field of predictive microbi-

ology. In Baranyi (1998) a stochastic birth process model, where individual cell
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lag time follows a common distribution is introduced. Later, McKellar (2001)

proposed a model which is dynamic in the lag phase and able to describe the

adaptation of homogeneous populations of cells. In the context of interacting

populations, Gilioli et al. (2008) consider a stochastic predator-prey system where

the noise term summarizes both demographic and environmental stochasticity.

In this chapter we shall propose an alternative stochastic growth model, mono-

tonically non-decreasing with mean trajectory that follows the classic Gompertz

equation. The approach is illustrated with real bacterial growth experiment and

simulated data. Bayesian computation methods are used.

4.2 The model

Consider a birth-death process (BDP), {Ut : t ≥ 0}, that is a continuous, time

homogeneous, Markov process with finite state space such that if, at time t, the

process is in state i, after an exponential amount of time, then it moves to either

of the neighbouring states i → i + 1 or i → i − 1. The process Ut is uniquely

determined by the generator matrix, Q, and the initial distribution of the process,

ν0. Consider the following generator matrix:

Q =



−α α 0 0 0 . . .

β −(α + β) α 0 0 . . .

0 β −(α + β) α 0 . . .

...
...

...
...

...

0 0 0 0 β −β


which is a tri-diagonal matrix, where the parameters α, β > 0 are, respectively,

the instantaneous birth and death rates. Let S = {a + ib; i = 0, . . . , k} be the
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Figure 4.2: One possible realization of the Ut process

state space, where a ≥ 0 is the minimum state value, b is a jump size and k + 1

is the number of states.

Figure 4.2 shows one realization of the BDP with α = β = 1 and k = 4 and

a = b = 1 so that S = {1, 2, . . . , 5}.

Each time the process enters state i the amount of time it spends before mak-

ing a transition to a different state is exponentially distributed with parameter

λ = (α+ β) and when it leaves state i, it next enters state i+ 1 with probability

α
(α+β)

, or enters state i− 1 with probability β
(α+β)

. Obviously, in the edge states,

when i = a (i = a + kb), the only chain transition possible is to state a + b

(a+ (k − 1)b).

Let P(t) = (pij(t) : i, j ∈ S, t ≥ 0) be the transition matrix function of the

Markov process. Then, solving the Kolmogorov forward and backward equations,

it is shown that P(t) = eQt, where eQt =
∑inf

k=0
Qktk

k!
(for more details see Taylor

and Karlin (1998).

If all states of the BDP communicate (for each pair (i, j), starting in state i

there is a positive probability of ever being in state j) and the process is positive
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Figure 4.3: One possible realization of the Vt process

recurrent (starting in any state, the expected time to return to that state is finite),

then the limiting probabilities exist, pj = limt→inf pij(t), and are independent of

the initial state i. Any distribution, π, of a continuous time Markov process

with transition matrix function (P(t), t ≥ 0) which satisfies πQ = 0 is called the

invariant distribution, also known as equilibrium or stationary distribution.

Now, we define a continuous state process, {Vt : t ≥ 0} such that

Vt =

∫ t

0

Usds. (4.1)

This is a non-decreasing, continuous time process. The following graph (Figure

4.3)shows the trajectory of the Vt process corresponding to the Ut process plotted

in Figure 4.2.

The stochastic process {Vt} defined in (4.1) is the basis for our growth curve

model. However, realizations of this process, which is the integration of a step

function, do not present a standard sigmoidal shape which is typical in bacterial

growth curves. Thus the process is not directly applicable to modeling bacterial

growth. In order to do this, we apply a deterministic time change to the Vt process
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which incorporates the different growth phases. We need first to delay the growth

in the acclimatization phase, then accelerate growth in the exponential phase and

finally decelerate growth when the maximum population level is reached. This

can be done by transforming time using any sigmoidal function, for example a

Gompertz curve, to get the desirable shape.

Therefore, finally, we define our stochastic growth process, {Yt : t ≥ 0} be the

continuous time, continuous state space stochastic process with continuous state

space, defined as

Yt = VG(t), (4.2)

where Vt as defined in (4.1) is a subordinator and G(t) is the Gompertz equation

of (2.6).

In Figure 4.4 we have represented how the time change works. All the quad-

rants measure positive quantities. In quadrant IV, the Gompertz function is rep-

resented. The Gompertz value function increases in a negative direction, starting

from the origin. In the third quadrant the identity function is plotted and in

the second quadrant there is a realization of the Vt process. In quadrant II, time

increases from the origin to the left. Finally, in quadrant I, a realization of the

process Yt is represented, which is equal to VG(t), that is the process Vt after the

transformation of time.

What is the value of the trajectory of Yt at t1? To answer that question

we start by evaluating the Gompertz function at that point. When the time

is t1, the Gompertz value is G(t1) = g1. We translate this to the time axis of

quadrant II using the identity function. Then the process Vt is evaluated at that

point producing the value Vg1 = v1 which is exactly the value of Yt1 . At t2 the

Gompertz function has the same value as before, g1, which means that time in

process Vt is stopped until the Gompertz function starts to increase. Then the
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Figure 4.4: Deterministic time change
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(a) Several realizations (b) Replications

Figure 4.5: Simulated realizations and real growth curves

time is accelerated when we are in the exponential part of the Gompertz function

and at the end the time is slowed down. The resulting transformed curve is

plotted in red. Obviously, with a different realization of Vt we will get a different

transformed curve but still with a sigmoidal shape.

In Figure 4.5 the plot on the left shows several realizations of the same process,

while the plot on the right shows different replications of the real bacterial (liste-

ria) growth experiment under a given set of environmental conditions which has

been used to illustrate the previous chapters. It can be seen that the simulated

and real growth curves show similar characteristics.

To see the abilities of the proposed model to describe different growth scenar-

ios, we show realizations of this model with different parameter values. Each plot

shows 100 realizations of the process.

We can see that when the jump sizes are lower, the realizations show smoother

trajectories. Secondly, the greater the intensity rate of the jumps, the lower the

variability between curves. Additionally, we can get more variability when we
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(a) α = β = 1 and S = {0.8, 1, 1.2} (b) α = β = 20 and S = {0.8, 1, 1.2}

(c) α = β = 20 and S = {0, 1, 2} (d) S = {0.6, 0.8, 1, 1.2, 1.4} and α = β =
20

Figure 4.6: Simulations of Yt. Gompertz parameters: λ = 4, µ = 0.26 and D = 1

consider more states in the Markov process. Finally, note that we can change the

shape of the curves by changing the parameters of the Gompertz curve as Figure

4.7 shows.

4.3 The mean function of the growth process

In this section we compute the mean function of the process {Yt}. As we use

a deterministic time change, it is sufficient to compute the expected trajectory

of the subordinator, mV (t) = E[Vt], and then to apply the deterministic time

transformation to it. The expected trajectory can be computed as
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Figure 4.7: Solid line: µ = 0.40, D = 1 and lag= 2; dotted line:µ = 0.26,
D = 0.75 and lag= 4 and dashed line µ = 0.10, D = 0.5 and lag= 6

E[Vt] = E

[∫ t

0

Us(ω) ds

]
=

∫
Ω

∫ t

0

Us(ω)ds dP (ω)

=

∫ t

0

∫
Ω

Us(ω)dP (ω) ds

=

∫ t

0

E[Us]ds. (4.3)

By Fubini’s theorem it is possible to change the order of the integration. To

compute the expected trajectory of the Ut it is necessary to distinguish to cases:

i)Ut is in transient state; ii) Ut is in steady state.

4.3.1 Transient state

The process Ut is an homogeneous, continuous-time Markov chain with finite

number of states and transition matrix Pt = eQt. Let ν0 be the initial distribution

of the process and s = (s)s∈S be the vector containing all the elements of the state
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space. Then:

E[Ut] = ν ′0 e
Qts. (4.4)

In the case where all the eigenvalues of Q are different, the generator matrix

can be diagonalized as Q = BDB−1, where D is a diagonal matrix with diagonal

entries equal to the eigenvalues of Q and B is an invertible matrix with the

corresponding eigenvectors as columns. In that case, we have:

eQt =
inf∑
n=0

tn(BDB−1)n

n!
= B(

inf∑
n=0

tnDn

n!
)B−1 = BeDtB−1. (4.5)

Then, the exponential matrix can be obtained by just exponentiating every

entry on the main diagonal. Replacing this result in (4.4) gives

E[Ut] = ν ′0 BeDtB−1s

and substituting this result in (4.3), we find

E[Vt] =

∫ t

0

ν ′0 BeDsB−1s ds

E[Vt] = ν ′0 B

∫ t

0

eDs dsB−1s.

To integrate the matrix eDs we simply take the integral of each individual

component of the matrix. The mean trajectory will be a function of t, and we

can apply the deterministic time change transforming t by G(t), the Gompertz

function. When the matrix is not diagonalizable, it is still possible to work with

the Jordan form or to solve the exponential matrix using the Laplace transform.
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Example with two states

Consider the case that S has just two sates, S = {s1, s2}. The generator matrix

of the Markov process is:

Q =

−α α

β −β

 .

Then the eigenvalues of Q are 0 and−α−β and the corresponding eigenvectors

(1 1)′ and (α − β)′. Hence, Q can be diagonalized as

Q = B

0 0

0 −α− β

B−1

where B =

1 α

1 −β

, B−1 = 1
α+β

β α

1 −1

.

Using these results, we can calculate the transition matrix Pt,

P(t) = eQt =
inf∑
n=0

tn

n!
B

−0 0

0 (−α− β)n

B−1 = B

1 0

0 e(−α−β)t

B−1

=
1

α + β

β + αe(−α−β)t α− αe(−α−β)t

β − βe(−α−β)t α + βe(−α−β)t

 .

Then, the expected trajectory of Ut when the process is in transient state is
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equal to

E[Ut] = ν ′0 P(t)s

= ν ′0
1

α + β

β + αe(−α−β)t α− αe(−α−β)t

β − βe(−α−β)t α + βe(−α−β)t

 s.

Let λ = (−α− β). The expected trajectory of Vt is

E[Vt] =

∫ t

0

E[Us] ds

=

∫ t

0

ν ′0
1

α + β

β + αeλt α− αeλt

β − βeλt α + βeλt

 s ds

= ν ′0
1

α + β

∫ t0 β + αeλt ds
∫ t

0
α− αeλt ds∫ t

0
β − βeλt ds

∫ t
0
α + βeλt ds

 s

= ν ′0
1

α + β

βt+ αeλtλ−1 − αλ−1 αt− αeλtλ−1 − αλ−1

βt− βeλtλ−1 − βλ−1 αt+ βeλtλ−1 − βλ−1

 s. (4.6)

Finally, we can apply the time change to (4.6):

E[Yt] = ν ′0
1

α + β

βG(t) + αeλG(t)λ−1 − αλ−1 αG(t)− αeλG(t)λ−1 − αλ−1

βG(t)− βeλG(t)λ−1 − βλ−1 αG(t) + βeλG(t)λ−1 − βλ−1

 s.

Therefore, we have obtained a closed form solution for the transient mean

function, which is a non-linear function with 5 parameters: the intensity rates α

and β, and the Gompertz parameters D, λ and µ.
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4.3.2 Stationary state

If Ut is irreducible and all the states are positive recurrent, then the Markov chain

has a stationary distribution given by

πi =
(α
β
)i∑k

i=0(α
β
)i)

for i = 0, . . . , k. Then, E[Ut] = µ =
∑k

i=0 πi si and

E[Vt] =

∫ t

0

E[Us]ds

= E[Ut]t

= µt.

Finally, the mean trajectory is

E[Yt] = µG(t) (4.7)

that is a proportion of the Gompertz function. Note that if, instead of using G(t)

as in 2.6, we use:

F (t) = exp

(
− exp

(
1 +

µe(λ− t)
D

))
, (4.8)

then the mean trajectory is exactly the Gompertz function, where µ plays the

role of D, the difference between the maximum and the initial population size.

Again, we have obtained a closed form solution for the mean function, in this

case, for the stationary state.

In the following graph we have plot the stationary and transient state mean

functions. The solid line is the mean function in the stationary state, and the
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Figure 4.8: Mean trajectories in stationary sate (red line) and transient state
(dashed lines). Gompertz parameters:µ = 0.26, D = 1 and lag= 4

dashed lines represent mean trajectories in transient state with different initial

distribution. When the initial distribution is closer to the stationary distribution,

the curve is closer to the solid line.

4.4 Bayesian Inference

In this section, we examine two approaches to Bayesian inference for growth

curve data generated from the model described previously. The first approach is

applied to the case of a model where the underlying Markov chain has only two

states, and is based on Gibbs sampling. The second approach can be applied to

the more general case of multiple states and is based on approximate Bayesian

computation or ABC techniques.



100 CHAPTER 4. STOCHASTIC MODELS

4.4.1 Gibbs Sampling approach for the two state model

with equal rates

Suppose that we observe single or multiple growth curve data at a series of time

points. Then in our model defined by (4.1) and (4.2), the likelihood function is

analytically unavailable, but for the case of two state in the Markov process Ut,

we can find an explicit expression for the likelihood when conditioning on the

initial state and the number of jumps in successive time intervals. This allows for

the implementation of a Gibbs sampling algorithm.

Formally, consider a continuous, time homogeneous Markov process with state

space S = {0, 1}, where state transitions occur according to a Poisson process

with rate α. Suppose that bacterial population data are observed after fixed,

successive time points 0 < T1 < · · · < Tn. Then, the unknown parameters are

the Gompertz parameters and the rate parameter, α.

4.4.1.1 Estimation of the Gompertz parameters

Various approaches to estimation of the Gompertz parameters could be consid-

ered. A fully Bayesian approach would imply setting prior distributions to these

parameters as described in the previous chapters and then sampling from the

posterior conditional distributions within the MCMC algorithm. However, here,

for simplicity, we prefer to use a classical approximation. Recall firstly that under

the assumption that the process is in equilibrium initially, then from (4.7), the

mean trajectory is E[Yt] = 1
2
G(t). Therefore, we propose to use standard, classi-

cal weighted mean squares techniques to estimate these parameters by fitting the

scaled Gompertz curve to the mean trajectory at the sample data time points.

The Gompertz parameters are assumed known for the remainder of the anal-
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ysis. This implies that the overall approach to inference in this case is a form

of empirical Bayes analysis combining both classical and Bayesian estimation

techniques, see e.g Cassella (1985).

4.4.1.2 Estimation of α

Suppose now that the Gompertz parameters are known. Then, the time transfor-

mation is carried out the Gompertz function with known parameters as in (4.2).

From (4.1), the observed data are y = (y1, . . . , yn) where yi = ti1 is the total

(transformed) time spent in state 1 in interval i, so that G(Ti)−G(Ti−1) = t0i+ti1

where ti0 is the corresponding (transformed) time in interval i spent in state 0.

To compute the conditional likelihood function we will use the concept of

random division of an interval which we briefly present below following David

and Nagaraja (2003).

Random division of an interval

Suppose that n points are dropped at random on the unit interval (0, 1). The

ordered distances of these points from the origin are denoted by u(i) (i = 1, 2, ..., n)

and let wi = u(i) − u(i−1) (u(0) = 0) be the interval of time between them. Then

the random variables U(1), U(2), ..., U(n) are distributed as n order statistics from

a uniform U(0, 1) parent, that is, with joint pdf equal to n! over the simplex

0 ≤ u(1),≤ u(2),≤ ..., u(n) ≤ 1. Correspondingly, the pdf of the wi is

f(w1, w2, . . . , wn) = n! wi ≥ 0,
n∑
j=1

wj = 1. (4.9)
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The distribution is completely symmetrical in the wi. Indeed, if we define

wn+1 = 1−
n∑
j=1

wj, (4.10)

we have the (degenerate) joint probability density function (j = 1, 2, ..., n, n+ 1)

f(w1, w2, ..., wn, wn+1) = n! wi ≥ 0,
n+1∑
j=1

wj = 1, (4.11)

which is still symmetrical in all sj. It follows that the joint distribution of any k

of the Wj(k = 1, 2, ..., n) is the same as that of the first k, and in particular that

the distribution of the sum of any k of the Wj is that of

U(k) = W1 +W2 + ...+Wk, (4.12)

namely

fUk
(u) =

1

B(k, n+ 1− k)
uk−1(1− u)n−k 0 ≤ u ≤ 1. (4.13)

The Wjs are commonly referred to as spacings.

The random division of the interval may in fact originate from a Poisson

process, such as our problem, with events occurring in some interval of time.

Then, the distribution of the k’th order statistic, Uk, in the interval [0, T ] is a

scaled beta distribution, B(k, n+ 1− k):

fUk
(u) =

1

B(k, n+ 1− k)

uk−1(T − u)n−k

T n
0 ≤ u ≤ T. (4.14)
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Calculating the likelihood function

Suppose that we know the initial state, say s1, at the start of the first time

interval, and the number of state changes that occur in each time interval, say

Ni for i = 1, . . . , n. Then, the likelihood function is:

f(y|α, s1, N1, . . . , Nn) =
n∏
i=1

f(yi|α, si = mod(si−1 +Ni−1, 2), Ni) (4.15)

where mod(a, b) represents a modulo b, that is the densities of each yi are condi-

tionally independent given the state at the start of interval i and the number of

state transitions in the interval.

Now consider two cases: when Ni is odd and when Ni is even. Consider now

the different time intervals in each state.

• If Ni is odd, the process spends half of the time intervals in state 1 and the

remainder in state 0 and therefore, the distribution of the sum of (Ni+1)/2

intervals is equal to the distribution of the order statistic U((Ñi+1)/2) as

defined in (4.14), that is:

f(yi|Ni, α) =
1

B(Ni+1
2
, Ni+1

2
)

y
(Ni+1)/2−1
i (Ti − yi)(Ni+1)/2−1

TNi
i

(4.16)

• Ni even

As the number of time intervals in period i is odd, the process spends

Ni/2 + 1 time intervals in state 1 if the initial state is 1, or Ni/2 if the

initial state is 0. Therefore, from (4.14),

f(yi|si, Ni, α) =
1

B(Ni

2
+ si,

Ni

2
+ (1− si)

y
Ni/2+si−1
i (Ti − yi)Ni/2−si

TNi
i

(4.17)
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4.4.1.3 Conditional posterior distributions

Assume that α has a gamma prior distribution, say α ∼ G(a, b). Then we have:

f(α|y, s1, N1, . . . , Nn) ∝ f(y|α, s1, N1, . . . , Nn)f(α|s1, N1, . . . , Nn)

∝ f(α|N1, . . . , Nn)

∝ f(N1, . . . , Nn|α)f(α)

∝
n∏
i=1

αNie−α(G(Ti)−G(Ti−1))αa−1e−bα

α|y, s1, N1, . . . , Nn ∼ G(a+ nN, b+ nT )

where N = (1/n)Σn
i=1Ni and T = (1/n)

∑n
i=1(G(Ti) − G(Ti−1)) is the average

length of the transformed time intervals.

Latent variables Ni

f(Ni|y, s1,N−i, α) ∝ f(y|α, s1, N1, . . . , Nn)f(Ni|N−i, α)

∝ f(y|α, s1, N1, . . . , Nn)
(α(G(ti)−G(ti−1)))Ni

Ni!

The posterior distributions of the Nis do not have a simple closed form and

we use a Metropolis-Hastings algorithm to sample from these distributions based

on generating candidate values from a Poisson distribution centred at the current

value plus 0.5.
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Latent variable s1

Assume that s1 has a Bernoulli prior distribution, say P (s1 = 1|p) = p. Then,

f(s1|y, N1, . . . , Nn, α) ∝ P (s1)f(y|α, s1, N1, . . . , Nn)

∝
n∏
1

1

B( Ñi

2
+ s1,

Ñi

2
+ (1− s1))

y
Ñi/2+s1−1
i (Ti − yi)Ñi/2−s1

T Ñi
i

P (s1)

∝
n∏
1

1

B( Ñi

2
+ s1,

Ñi

2
+ (1− s1))

ys1i (Ti − yi)−s1ps1(1− p)1−s1

∼ Bernoulli(p′)

where n is how many times the number of jumps in an interval was even, Ñi =∑i
j=1Nj and p′ = pn

∏
(yi/(Ti−yi))

(1−p)n+pn
∏

(yi/(Ti−yi)) .

Gibbs sampler

Given the posterior conditional distributions calculated previously, a Metropolis

Hastings within Gibbs sampler can be defined to sample the posterior distribution

of α as follows:

1. Initialize counter k=1 and set the initial values: α(0), s
(0)
1 and

N(0)

2. Generate α(k) ∼ G(a+ nN
(k−1)

, b+ nT )

3. Generate s
(k)
1 ∼ B(p′)

4. Generate N
(k)
1 :

4.1 For all Ni, generate a candidate from the proposal distribution

Q(N
(k−1)
i |N (∗)

i ): N
(∗)
i ∼ P(N

(k−1)
i + 0.5)

4.2 Generate U ∼ U[0,1] If U ≤ min{1, P (N∗
i )Q(N

(k−1)
i |N(∗)

i )

P (N
(k−1)
i )Q(N∗

i |N
(k−1)
i )

}, then N
(k)
i =
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N∗i . If not, N
(k)
i = N

(k−1)
i .

5. Change k = k+1 and return to step 2 until convergence is reached.

4.4.1.4 Example

Assuming that the intensity rate of the jumps is α = 10, we generated a five sets of

growth curve data with twenty observations, equally spaced over time. Assuming

that the process is in stationary state, Gompertz parameters were estimated by

non-linear least squares and fixed when implementing the Gibbs sampling to

estimate α. We generated a sample of 20000 iterations, after a burn in period

of equal size. Looking at the plot of the cumulative mean of the sampled values

of α, on the left hand side of Figure 4.9, we see that the chain has converged

convergence. On the right hand side, we see the posterior distribution of α which

is centred on the true value. The posterior mean of α is equal to 9.791 and the

median is 9.705. A 95% credible interval is equal to (7.36, 12.85).

4.4.2 Approximate Bayesian Computation

When considering the general case of our model, with more than two states in

the Ut process, it is not clear that a similar expression for the likelihood can be

found as in the two state case. Therefore, the Gibbs sampling algorithm described

previously cannot be implemented and instead, we suggest applying approximate

Bayesian computation (ABC).
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Figure 4.9: Trace plot and posterior density of α

4.4.2.1 A brief review of ABC

In many complex models, the likelihood function is unknown or intractable which

makes the implementation of standard Bayesian algorithms such as MCMC im-

possible. However, in some of these cases, it may be much more straightforward

to simulate data from the model. In these cases, ABC can be used to provide

an approximation of the posterior distribution. In a nutshell, in this approach,

parameter values are simulated from the prior distribution and then data are

simulated from the model conditional on these parameters. Then a similarity

criterion between the simulated and observed data is defined as an appropriate

distance between some summary statistics computed on both data sets. Param-

eters which generate data sufficiently similar to the sample data are accepted.

For fuller reviews in the ecological and genetic contexts see Beaumont (2010) and

Lopes and Boessenkool (2010).

ABC was originally developed to perform population genetics analysis (Tavare
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et al. (1997) and Pritchard et al. (1999)), but recently it is being applied in a wide

range of fields, such as ecology, epidemiology, molecular evolution, conservation

genetics, etc. The increasing popularity on this method is due mainly to its

capability to deal with very complex models and high dimensional data via the

use of Monte Carlo simulations that avoid the need to use explicit likelihood

functions.

Assume that we have a model parameterized by θ. Then the basic algorithm

can be written as follow:

1. Sample a value of the model parameter from the prior distribution:

θ(i) ∼ f(θ)

2. Simulate data from the model, given θ(i): D(i) ∼ f(D|θ(i))

3. Summarize D(i) with a set of chosen summary statistics S(D(i))

4. Reject θ(i) if d(S(D(i)),S(y)) ≥ ε

5. Repeat until required number of candidates accepted.

where D are the simulated data, y is the observed data, d is a measure of

distance, S is some summary statistic and ε > 0 is a tolerance level. When ε

tends to zero, the algorithm provides a sample from the distribution f(θ|S(y)

which is an approximation of the desired distribution. If the summary statistic

S is sufficient, the f(θ|S(y)) = f(θ|y).

Recently, in the literature a number of modifications have been proposed

to improve the basic ABC algorithm. Firstly, Beaumont et al. (2002), propose

a regression method to improve the sampling of the posterior density. Their

algorithm introduces two innovations: weighting the parameters, θi, according to
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their distance from the real data and adjusting the θi using local-linear regression

to weaken the effects of that discrepancy.

Secondly, in the absence of of prior information flat distribution should be

used. However, if the prior distribution is diffuse then many improbable param-

eter values can be generated so that the acceptance rate of the algorithm will

be very low and the algorithm becomes very inefficient. One possibility to over-

come the problem of inefficiency in that cases is to use a sequential algorithm

as proposed by S.A. et al. (2007) and Toni et al. (2009). The idea is to run the

ABC method using a rough estimate of the ith posterior as the (i + 1)th prior.

As the number of iterations increases the posterior distribution becomes sharper

and located closer to the true value.

The third main modified version of the ABC method is MCMC-ABC, pro-

posed in Marjoram et al. (2003). This algorithm starts by sampling from the

prior f(θ) and then a new value of the parameter is proposed using a proposal

distribution which depends on the current value of the parameter, K(θ|θi−1) .

If the parameter value holds the ABC rejection step (d(S(D(i)),S(y)) ≤ ε) and

then, the Metropolis rejection step, the proposed value is accepted.

4.4.2.2 Implementation of ABC

Consider now the general model with state space S = {s1, . . . , sk} and rates α, β

and known Gompertz parameters for simplicity. Assume gamma prior distri-

butions for the intensity rate parameters, α, β. Assume that we observe data,

y.

Then the ABC algorithm proceeds by simulating parameter values and then

simulating growth curve data at the same time points as the observed data given
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these parameter values as follows.

1. Sample from the prior: α(i), β(i) ∼ G(a, b)

2. Simulate data given α(i), β(i): y(i) ∼ f(y|λ(i))

3. Reject α(i), β(i) if d(y(i),y) ≥ ε, where d(y(i),y) =
∑n

j=1 wi|y
(i)
j − yj|

4. Repeat until required number of candidates accepted.

In the case where a single curve is observed, the weights are set to be equal.

When the observed data consist of several replications of the same process, sim-

ulated data is evaluated by taking into account its distance with respect to the

mean curve. The weights then aim to account for the variability of the process at

different point of times. For instance, as was said previously, replications of the

growth curve show less variability at the beginning of the observation period and

more variability as time evolves. Thus, our weights are computed to be inversely

proportional to the maximum distance observed at each point of time. After

that, we accept the 1% of the generated values of α, β, with the lowest distance

between the observed and simulated data.

Note that although we do not detail this here, the implementation of the

algorithm in the case of unknown Gompertz parameters does not present any

extra difficulties. These parameters can also be simulated from the prior and the

same distance measures as above can also be used.
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Figure 4.10: Simulated data

4.4.2.3 Example I

We simulated a set of 20 curves, each with 16 observations at equal point of

times. Data was generated by assuming that the intensity rate is α = β = 1,

the growth rate of the Gompertz function is 0.26, the lag parameters is 4 and

the maximum population growth is 1. The Markov chain has only two states,

S = {0.8, 1}. The simulated data are shown in Figure 4.4.2.3. The thick black

line is the mean curve that we will use to compute the distance in the rejection

step of the algorithm.

We assume gamma prior distributions for all the parameters due to their are

non-negative. The prior distribution for the intensity rate is α ∼ G(1, 1), and for

the Gompertz parameters the gamma prior distributions have means equal to the

least squares estimated values and variance 1. Finally, we compute the relative

mean integrate square error (RMISE) to set the number of iterations needed:
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Table 4.1: Parameter estimates and RMISE

Numer of iterations Lambda Mu Lag D RMISE
10000 0.99953 0.29589 4.18890 0.97269 0.00223
50000 0.99704 0.27122 3.98730 1.01920 0.00055
100000 1.00230 0.25849 4.00960 1.01730 0.00098
500000 1.00170 0.26529 4.00120 1.01460 0.00097

True value 1 0.26 4 1

RMISE =
1

N

N∑
i=1

(
(θi − θ)2

θ2
) (4.18)

where N is the number of sampled points from the posterior distribution, θi is

the ith sampled point from the posterior distribution of the parameter and θ is

the true value of the parameter. Results are shown in Table 4.1.

We see that RMISE seems to have stabilized after around 100000 iterations.

We can see also that estimations are very closed to the true values of the param-

eters.

4.4.2.4 Example II

Now, we will apply the ABC method to the Listeria monocytogenes data de-

scribed previously. In this case, we consider twenty growth curves, with sixteen

equally spaced observations in each case shown on the right hand side of Fig-

ure 4.5. Given the previous simulated example, we think that 100000 points are

enough to perform the analysis and we keep the 1h best. The left hand side of

Figure 4.11 shows the total curves that ABC method generates, and on the right

the the curves kept after the rejection step, that is the curves which have less

distance to the mean observed curve (central thick black line). The right hand

side of Figure 4.11, the plot also shows the maximum and the minimum observed
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(a) All curves generated with ABC (b) The best 1h of the curves.

Figure 4.11: All and the best 1% of the generated curves

Table 4.2: Parameter estimates given different state spaces

S = {0.8, 1} S = {0.8, 1, 1.2} S = {0.8, 1, 1.2, 1.4} S = {0.8, 0.9} S = {0.8, 0.9, 1} S = {0.8, 0.9, 1, 1.1}
α 0.96 1.00 0.99 1.00 1.00 0.99
µ 0.28 0.28 0.27 0.28 0.26 0.29

lag 3.88 3.90 3.87 3.89 3.80 3.93
D 1.07 1.03 1.04 1.09 1.10 1.08

curves (thick black lines) to see that the simulated curves obtained from the ABC

show a variability similar to that observed with the real data.

The posterior means of the Gompertz function are equal to µ = 0.27616,

lag= 3.8859 y D = 1.0734 and posterior mean of the intensity rate is equal to

λ = 0.96261. Posterior densities are shown in Figure 4.12

Finally, we repeat the analysis but considering different state spaces for the

underlying Markov process. Results are presented in table 4.2. The results do not

change significantly among the different cases. Therefore, based on the Occam’s

razor principle we prefer the simpler model.
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(a) Growth rate parameter (b) Lag parameter

(c) Maximum population growth (d) Intensity rate of jumps

Figure 4.12: Posterior means

4.5 Conclusions

In this chapter, we have presented a new, continuous time model for bacteria

growth based on a stochastic generalization of the Gompertz curve. We have

shown that our model can simulate data that show similar characteristics to

real bacteria growth data and have also developed two approaches to Bayesian

inference for our model based on both exact and likelihood free approaches.



Chapter 5

Extensions

Here we present various extensions of the ideas proposed in this thesis and some

further avenues for future research. In Section 1, we consider extensions of the

ideas introduced in Chapter 3 to the case of interacting populations. Secondly,

in Section 2, we briefly comment on an application of these ideas outside of the

area of bacterial growth to the development of a neural network based software

reliability model. Finally, in Section 3, we present some further extensions of our

work.

5.1 Predator prey modeling

The models proposed in this dissertation study the case of populations growing

in isolation. Nevertheless, in reality, populations interact with other species. In

particular, in the context of microorganisms, ?? introduce a general model for

interactions between prey and predator populations based on the Lotka-Volterra

115
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model of (1.9) and (1.10).

dN
dt

= N(t)f(N(t− δ))− g(N(t), P (t))P (t)

dP
dt

= eg(N(t− τ), P (t− τ))P (t)− µP (t)

where N(t) and P (t) are the prey and predator population concentrations at time

t, f is the prey growth function, g represents the functional response relating the

reduction in prey population to current predator and prey population sizes, e is

a multiplicative constant reflecting the efficiency of the predator population in

reproduction, τ and δ are time lags and µ represents the death rate of predators.

Although in the literature there is agreement about the dynamical framework

of a predator-prey system, the explicit forms of the functional responses can be

highly controversial. ?? propose using splines to estimate the functions f and

g. Continuing the line of investigation of these authors, we propose using neural

networks, as in Chapter 3, to estimate the functional responses, f and g. To

illustrate, we have made a preliminary study applied to data on a protozoan

predator-prey interaction. Figure 5.1 shows the observed and estimated phase

trajectories of the predator-prey system in this case.

Further work is currently underway in this area.

5.2 Software reliability modeling

The non-parametric models proposed in Chapter 3, can be applied to many dif-

ferent fields, where the parameters of a primary model can be fitted as a function

of some given covariates using some form of non-parametric regression approach.

In particular, we have used these techniques in Wiper et al. (2012), to introduce

a simple parametric model for software failure where the failure rate depends on
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(a) Observed prey and predator evolution (b) Estimated prey and predator evolution

Figure 5.1: Estimated and observed phase trajectories

software metrics information and is modeled via neural networks. This is briefly

summarized below.

Consider the case where the times between successive software failures, say

T1, T2, . . . are observed and where it is presumed that the software is corrected,

possibly imperfectly, after each failure. Then, it is natural to assume a nonho-

mogeneous Poisson process for failures so that we model

Ti|λi ∼ Ex(λi) (5.1)

for i = 1, 2, . . .. Many standard software reliability models assume this basic ex-

ponential form. For instance, the Jelinski Moranda model (Jelinski and Moranda

(1972)) sets

λi = (N − i+ 1)µ

where N represents the number of faults in the original code, µ is the fault

discovery rate and perfect fault correction is assumed.
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Suppose that after each software failure is observed, the code is modified and

software metrics such as lines of code or other complexity measures reflecting the

state of the code are evaluated. Then, we relate the failure rate of the software

to the software metrics as follows:

log λi = g(xi)

where xi = (xi1, . . . , xip)
T are the metrics available after i− 1 failures have been

observed. Typically, the relation between the log failure rate and the metrics is

highly non linear and therefore, we proposed the use of a feed forward neural

network, that is:

g(x) = β0 +
k∑
j=1

βjΥ
(
γTj x

)
where

Υ(c) = (1 + exp(−c))−1

and γj = (γj1, . . . , γjp)
T .

The same prior structures as used in Chapter 3 are applied to the neural

network model and inference is again carried out using WinBUGS. Figure 5.2 taken

from Wiper et al. (2012) shows a set of Bayesian predictive intervals for numbers

of weekly software failures for a real data set consisting of the numbers of failures

in fourteen weeks where a similar, previous time period has been used as training

data. More details are available in this paper.

5.3 General extensions

In Chapter 2, we studied the case when various growth curves are observed under

the same identical conditions. The hierarchical model proposed was based on a
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Figure 5.2: Observations (red circles), predictive mean values (blue circles) and
95% credible intervals.
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Gompertz curve, as this is one of the most widely applied primary models. A

natural extension is to apply the same ideas to alternative, parametric, growth

curve models such as the logistic or Baranyi models discussed in Chapter 1.

In particular, it would then be interesting to consider the problem of selection

between models using for instance the deviance information criterion. Equally,

the extension to varying environmental conditions via the neural network based

approach of Chapter 3 would also be interesting to explore for these alternative

models.

Secondly, outside of the laboratory, in real life, environmental factors such as

temperature may vary considerably throughout the storage and distribution time

of perishable foods. Therefore, another natural extension of our proposed models

of Chapter 3, is to consider the possibility that the environmental factors change

over time. Incorporating time-varying factors will lead to dynamical system.

The model we proposed in Chapter 4 should prove to be useful for other

applications where deterministic models are too restrictive and can not capture

the various sources of variations that exist in real life. Implementation for this

model was carried out using an empirical Bayes approach via a Gibbs sampler

for the case of a two state model and it is natural to see if a fully Bayes al-

gorithm which also fits the Gompertz parameters in a Bayesian way could be

developed. Secondly, for the general model, it is clear that many improvements

to the simple ABC algorithm we propose here could be possible. It would also be

interesting to incorporate the techniques of Chapter 3 in this model to allow us

to simultaneously study bacterial populations under different conditions. Finally,

the extension of our model to interacting populations should be of great interest

in several biological applications.
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Kéry, M. (2010). Introduction to WinBUGS for Ecologists: Bayesian approach to

regression, ANOVA, mixed models and related analyses. Academic Press.

King, R., B. Morgan, O. Gimenez, and S. Brooks (2009). Bayesian Analysis for

Population Ecology. Chapman and Hall/CRC.

Lande, R., S. Engen, and B. E. Saether (2003). Stochastic populated dynamics in

ecology and conservation. Oxford University Press.

Lavine, M. and M. West (1992). A Bayesian method for classification and dis-

crimination. Canadian Journal of Statistics 20 (4), 451–461.

Lee, H. (2004). Bayesian nonparametrics via neural networks. Society for Indus-

trial Mathematics.

Levenberg, K. (1944). A method for the solution of certain non-linear problems

in least squares. Quarterly of Applied Mathematics 2, 164–168.



BIBLIOGRAPHY 125

Lopes, J. and S. Boessenkool (2010). The use of approximate bayesian computa-

tion in conservation genetics and its application in a case study on yellow-eyed

penguins. Conservation Genetics 11 (2), 421–433.

Lotka, A. J. (1925). Elements of Physical Biology. Baltimore: Williams and

Wilkins.

Lunn, D., A. Thomas, N. Best, and D. Spiegelhalter (2000). WinBUGS-a

Bayesian modelling framework: concepts, structure, and extensibility. Statis-

tics and Computing 10, 325–337.

MacKay, D. (1995a). Bayesian methods for neural networks: Theory and ap-

plications. Technical report, Cambridge: Cavendish Laboratory, Cambridge

University.

MacKay, D. (1995b). A practical bayesian framework for backpropagation net-

works. Neural Computing 4, 448–472.

Malthus, T. R. (1798). An Essay on the Principle of Population. Reprint (1998).

Amherst, NY: Prometheus Books.

Marjoram, P., J. Molitor, V. Plagnol, and S. Tavaré (2003). Markov chain monte
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