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Abstract Weighted Sobolev spaces play a main role in the study of Sobolev orthogo-
nal polynomials. The aim of this paper is to prove several important properties of
weighted Sobolev spaces: separability, reflexivity, uniform convexity, duality and
Markov-type inequalities.

Communicated by Ari Laptev.

Francisco Marcellán: Supported in part by two Grants from Ministerio de Economía y Competitividad
(MTM2012-36732-C03-01 and MTM2015-65888-C4-2-P), Spain. Yamilet Quintana: Supported in part
by a Grant from Ministerio de Economía y Competitividad (MTM2012-36732-C03-01), Spain. José M.
Rodríguez: Supported in part by three Grants from Ministerio de Economía y Competititvidad, Agencia
Estatal de Investigacin (AEI) and Fondo Europeo de Desarrollo Regional (FEDER) (MTM2013-46374-P,
MTM2016-78227-C2-1-P and MTM2015-69323-REDT), Spain, and a Grant from CONACYT
(FOMIX-CONACyT-UAGro 249818), México.

B José M. Rodríguez
jomaro@math.uc3m.es

Francisco Marcellán
pacomarc@ing.uc3m.es

Yamilet Quintana
yquintana@usb.ve

1 Departamento de Matemáticas, Universidad Carlos III de Madrid, Avenida de la Universidad 30,
28911 Leganés, Madrid, Spain

2 Departamento de Matemáticas Puras y Aplicadas, Edificio Matemáticas y Sistemas (MYS),
Universidad Simón Bolívar, Apartado Postal: 89000, Caracas 1080 A, Caracas, Venezuela

3 Instituto de Ciencias Matemáticas (ICMAT) Campus Cantoblanco UAM, C/ Nicolás Cabrera,
13-15, 28049 Madrid, Spain

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s13373-017-0104-y&domain=pdf
http://orcid.org/0000-0003-2851-7442


234 F. Marcellán et al.

Keywords Extremal problems · Markov-type inequality · Weighted Sobolev norm ·
Weighted L2-norm · Duality

Mathematics Subject Classification 33C45 · 41A17 · 26C99

1 Introduction

Let us consider 1 ≤ p < ∞ and k + 1 measures μ = (μ0, . . . , μk) in R. We define
the Sobolev norm

∥
∥ f

∥
∥
Wk,p(μ)

:=
⎛

⎝

k
∑

j=0

∥
∥
∥ f ( j)

∥
∥
∥

p

L p(μ j )

⎞

⎠

1/p

for appropriate functions f (e.g., polynomials if μ0, . . . , μk have compact support).
The Sobolev space associated to this norm (see the precise definition in Sect. 3) has
been very useful in Approximation Theory, but the basic properties of these Sobolev
spaces have not been studied so far. The aim of this paper is to prove several important
properties of weighted Sobolev spaces: separability, reflexivity, uniform convexity,
duality and Markov-type inequalities.

Given a norm on the linear space P of polynomials with real coefficients, the so-
called Markov-type inequalities are estimates connecting the norm of derivatives of a
polynomial with the norm of the polynomial itself. These inequalities are interesting
by themselves and play a fundamental role in the proof of many inverse theorems in
polynomial approximation theory (cf. [25,29] and the references therein).

It is well known that for every polynomial P of degree at most n, the Markov
inequality

∥
∥P ′∥∥

L∞([−1,1]) ≤ n2 ‖P‖L∞([−1,1])

holds and it is optimal since you have equality for the Chebyshev polynomials of the
first kind.

The above inequality has been extended to the p norm (p ≥ 1) in [15]. For every
polynomial P of degree at most n their result reads

∥
∥P ′∥∥

L p([−1,1]) ≤ C(n, p)n2 ‖P‖L p([−1,1])

where the value of C(n, p) is explicitly given in terms of p and n. Indeed, you have a
bound C(n, p) ≤ 6e1+1/e for n > 0 and p ≥ 1. In [12] admissible values for C(n, p)
and some computational results for p = 2 are deduced. Notice that for any p > 1 and
every polynomial P of degree at most n

∥
∥P ′∥∥

L p([−1,1]) ≤ Cn2‖P‖L p([−1,1]),

where C is explicitly given and it is less than the constant C(n, p) in [15].
On the other hand, using matrix analysis, in [8] it is proved that the exact value of

C(n, 2) is the greatest singular value of the matrix An = [a j,k]0≤ j≤n−1,0≤k≤n , where
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a j,k = ∫ 1
−1 p

′
j (x)pk(x)dx and {pn}∞n=0 is the sequence of orthonormal Legendre

polynomials. A simple proof of this result, with an interpretation of the sharp constant
C(n, 2) as the largest positive zero of a polynomial as well as an explicit expression of
the extremal polynomial (the polynomial such that the inequality becomes an equality)
in the L2-Markov inequality appears in [16].

If you consider weighted L2-spaces, the problem becomes more difficult. For
instance, let ‖ · ‖L2((a,b),w) be a weighted L2-norm on P, given by

‖P‖L2((a,b),w) =
(∫ b

a
|P(x)|2w(x)dx

)1/2

,

where w is an integrable function on (a, b), −∞ ≤ a < b ≤ ∞, such that w > 0 a.e.
on (a, b) and all moments

rn :=
∫ b

a
xnw(x)dx, n ≥ 0,

are finite. It is clear that there exists a constant γn = γn(a, b, w) such that

∥
∥P ′∥∥

L2((a,b),w)
≤ γn‖P‖L2((a,b),w), for all P ∈ Pn, (1.1)

where Pn is the space of polynomials with real coefficients of degree at most
n. Indeed, the sharp constant is the greatest singular value of the matrix Bn =
[b j,k]0≤ j≤n−1,0≤k≤n , where b j,k = ∫ 1

−1 p
′
j (x)pk(x)w(x)dx and {pn}∞n=0 is the

orthonormal polynomial system with respect to the positive measure w(x)dx . Thus,
from a computational point of view you need to find the connection coefficients
between the sequences {p′

n}∞n=0 and {pn}∞n=0 in order to proceed with the compu-
tation of the matrix, and in a second step, to find the greatest singular value of the
matrix Bn . Notice that for classical weights (Jacobi, Laguerre and Hermite), such
connection coefficients can be found in a simple way.

Mirsky [27] showed that the best constant γ ∗
n := supP∈Pn {||P ′||L2((a,b),w) :

||P||L2((a,b),w) = 1} in (1.1) satisfies

γ ∗
n ≤

(
n

∑

ν=1

ν
∥
∥p′

ν

∥
∥2
L2((a,b),w)

)1/2

. (1.2)

Notice that the main interest of the above result is however qualitative, since the
bound specified by (1.2) can be very crude. In fact, when w(x) = e−x2 on (−∞, ∞),
the estimate (1.2) becomes

γ ∗
n ≤

(
n

∑

ν=1

2ν2
)1/2

=
√

1

3
n(n + 1)(2n + 1) = O

(

n3/2
)

.

The contrast between this estimate and the classic result of Schmidt [40], which estab-
lishes γ ∗

n = √
2n, is evident.
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236 F. Marcellán et al.

Also, whenwe consider the weighted L2-norm associated with the Laguerre weight
w(x) := xαe−x in [0,∞), with a − 1, the results in [3] give the following inequality

∥
∥P ′∥∥

L2(w)
≤ Cαn ‖P‖L2(w), for all P ∈ Pn . (1.3)

Notice that the nature of the extremal problems associated to the inequalities (1.1)
and (1.3) is different, since in the first case the constant on the right-hand side of (1.1)
depends on n, while in the second one the multiplicative constantCα on the right-hand
side of (1.3) is independent of n.

There exist a lot of results on Markov-type inequalities (see, e.g. [10,11,25], and
the references therein). In connection with the research in the field of the weighted
approximation by polynomials,Markov-type inequalities have been proved for various
weights, norms, sets over which the norm is taken (see, e.g. [24] and the references
therein) and more recently, the study of asymptotic behavior of the sharp constant
involved in some kind of these inequalities have been done in [3] for Hermite, Laguerre
andGegenbauer weights and in [4] for Jacobi weights with parameters satisfying some
constraints.

On the other hand, a similar problemconnectedwith theMarkov–Bernstein inequal-
ity has been analyzed in [13] when you try to determine the sharp constantC(n,m;w)

such that

∥
∥
∥Am/2P(m)

∥
∥
∥
L2((a,b),w)

≤ C(n,m;w)‖P‖L2((a,b),w), for all P ∈ Pn . (1.4)

Here w is a classical weight satisfying a Pearson equation (A(x)w(x))′ =
B(x)w(x) and A, B are polynomials of degree at most 2 and 1, respectively.

An analogue of the Markov–Bernstein inequality for linear operators T from Pn

intoP has been studied in [18] in terms of singular values ofmatrices. Some illustrative
examples when T is either the derivative or the difference operator and you deal with
some classical weights (Laguerre, Gegenbauer in the first case, Charlier, Meixner
in the second one) are shown. Another recent application of Markov–Bernstein-type
inequalities can be found in [5].

With these ideas in mind, one of the authors of the present paper posed in 2008
during a conference on Constructive Theory of Functions held in Campos do Jordão,
Brazil, the following problem: Find the analogous of Markov-type inequalities in the
setting of weighted Sobolev spaces. A partial answer of this problemwas given in [29],
considering an extremal problem with similar conditions to those given by Mirsky,
and following the scheme of Kwon and Lee [18], mainly.

Our main aim is the study of several properties involving inequalities in weighted
Sobolev spaces.

The first part of this paper is devoted to provide some Markov–Bernstein-type
inequalities based on the adequate use of inequalities of kind (1.3) [3,10,40], in the
setting of weighted Sobolev spaces, when the considered weights are generalized
classical weights.

In the second part we study other basic facts about Sobolev spaces with respect
to measures: separability, reflexivity, uniform convexity and duality, which to the
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best of our knowledge are not available in the current literature. In order to obtain
these properties we work with other inequalities on weighted Sobolev spaces (e.g.,
Muckenhoupt inequality).

These Sobolev spaces appear in a natural way and are a very useful tool when
we study the asymptotic behavior of Sobolev orthogonal polynomials (see [7,19–
21,33–35,37,39]). In particular, the completeness of these spaces has been shown
very useful; it is a remarkable fact that it took 6years to prove this natural property
(see [2,36,37,39]).

The outline of the paper is as follows. The first part of Sect. 2 provides some short
background about Markov-type inequalities in L2 spaces with classical weights and
the second one deals with a Markov-type inequality corresponding to each weighted
Sobolev norm with respect to these classical weights and to some generalized weights
(seeTheorem2.1). Section3 contains definitions and adiscussion about the appropriate
vectormeasureswhichwewill need in order to get completeness of our Sobolev spaces
with respect tomeasures. Finally, Sect. 4 contains some basic results on Sobolev spaces
with respect to the vector measures defined in the previous section (see Theorems 4.2
and 4.3): separability, reflexivity, uniform convexity and duality.

2 Markov-type inequalities in Sobolev spaces with weights

The following proposition summarizes theMarkov-type inequalities in L2 spaces with
classical weights, which will be used in the sequel. Recall that we denote by Pn the
linear space of polynomials with real coefficients and degree less than or equal to n.

Proposition 2.1 The following inequalities are satisfied.

(1) Laguerre case [3] (see also [9]):

∥
∥P ′∥∥

L2(w)
≤ Cαn ‖P‖L2(w),

where w(x) := xαe−x in [0,∞), α > −1 and P ∈ Pn.
(2) Generalized Hermite case [10,40]:

∥
∥P ′∥∥

L2(w)
≤ √

2n ‖P‖L2(w),

where w(x) := |x |αe−x2 in R, α ≥ 0 and P ∈ Pn.
(3) Jacobi case [11]:

∥
∥P ′∥∥

L2(w)
≤ Cα,β n2 ‖P‖L2(w),

where w(x) := (1 − x)α(1 + x)β in [−1, 1], α, β > −1 and P ∈ Pn.

The multiplicative constants Cα and Cα,β are independent of n.

Remark 2.1 The results in [3] and [11] are different from (1) and (3) in Proposition 2.1.
However, one can deduce Proposition 2.1 from these results.
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For instance, by [3] we know that if

Mα,n := sup
P∈Pn

∥
∥P ′∥∥

L2(w)

‖P‖L2(w)

for w(x) := xαe−x in [0,∞) and α > −1, then there exists a positive constant kα

such that

Mα,n = n

kα

(

1 + O(1)
)

.

Hence, for each fixed α > −1,

Mα := sup
n

Mα,n

n
< ∞ and ‖P ′‖L2(w) ≤ Mα n ‖P‖L2(w)

for every P ∈ Pn . Also, this inequality can be deduced from [9].
By [11] we know that if

Mα,β,n := sup
P∈Pn

∥
∥P ′∥∥

L2(w)

‖P‖L2(w)

for w(x) := (1 − x)α(1 + x)β in [−1, 1] and α, β > −1, then

Mα,β,n ≤ Nα,β,n :=
√

n(n + 1)(α + β + 2)(α + β + n + 1)(α + β + n + 2)

8(α + 1)(β + 1)
.

Hence, for each fixed α, β > −1,

lim
n→∞

Nα,β,n

n2
= lim

n→∞

√
n(n+1)(α+β+2)(α+β+n+1)(α+β+n+2)

8(α+1)(β+1)

n2

=
√

(α + β + 2)

8(α + 1)(β + 1)
< ∞,

Nα,β := sup
n

Nα,β,n

n2
< ∞, Mα,β,n ≤ Nα,β,n ≤ Nα,β n2,

‖P ′‖L2(w) ≤ Nα,β n2 ‖P‖L2(w)

for every P ∈ Pn .
We are interested in obtaining bounds such as a constant (independent of n) multi-

plied by a power of n.

In Theorem 2.1 below we extend these results to the context of weighted Sobolev
spaces.Wewant to remark that the proof provides explicit expressions for the involved
constants.
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Theorem 2.1 The following inequalities are satisfied.

(1) Laguerre–Sobolev case:

‖P ′‖Wk,2(w,λ1w,...,λkw) ≤ Cαn ‖P‖Wk,2(w,λ1w,...,λkw),

where w(x) := xαe−x in [0,∞), α > −1, λ1, . . . , λk ≥ 0, P ∈ Pn and Cα is
the same constant as in Proposition 2.1 (1).

(2) Generalized Hermite–Sobolev case:

‖P ′‖Wk,2(w,λ1w,...,λkw) ≤ √
2n ‖P‖Wk,2(w,λ1w,...,λkw),

where w(x) := |x |αe−x2 in R, α ≥ 0, λ1, . . . , λk ≥ 0 and P ∈ Pn.
(3) Jacobi–Sobolev case:

‖P ′‖Wk,2(w,λ1w,...,λkw) ≤ Cα,β n2 ‖P‖Wk,2(w,λ1w,...,λkw),

wherew(x) := (1− x)α(1+ x)β in [−1, 1], α, β > −1, λ1, . . . , λk ≥ 0, P ∈ Pn

and Cα,β is the constant in Proposition 2.1 (3).
(4) Let us consider the generalized Jacobi weight w(x) := h(x)�r

j=1|x − c j |γ j in
[a, b] with c1, . . . , cr ∈ R, γ1, · · · , γr ∈ R, γ j > −1 when c j ∈ [a, b], and h
a measurable function satisfying 0 < m ≤ h ≤ M in [a, b] for some constants
m, M. Then we have

‖P ′‖Wk,2(w,λ1w,...,λkw) ≤ C1(a, b, c1, . . . , cr , γ1, . . . , γr ,m, M)

×n2 ‖P‖Wk,2(w,λ1w,...,λkw),

for every λ1, . . . , λk ≥ 0 and P ∈ Pn.
(5) Consider now the generalized Laguerre weightw(x) := h(x)�r

j=1|x −c j |γ j e−x

in [0,∞) with c1 < · · · < cr , cr ≥ 0, γ1, . . . , γr ∈ R, γ j > −1 when c j ≥ 0,
and h a measurable function satisfying 0 < m ≤ h ≤ M in [0,∞) for some
constants m, M.

(5.1) If
∑r−1

j=1 γ j = 0, then

‖P ′‖Wk,2(w,λ1w,...,λkw) ≤ C2(c1, . . . , cr , γ1, . . . , γr ,m, M)

×n2 ‖P‖Wk,2(w,λ1w,...,λkw),

for every λ1, . . . , λk ≥ 0 and P ∈ Pn.
(5.2) Assume that c1 < · · · < cr and

∑r
j=1 γ j > −1. Let r0 := min{1 ≤ j ≤

r | c j ≥ 0}, γ ′
r0−1 := γ ′

r+1 := 0 and γ ′
j := γ j for every r0 ≤ j ≤ r . Assume

that max{γ ′
j , γ

′
j+1} ≥ −1/2 for every r0 − 1 ≤ j ≤ r . Then we have

‖P ′‖Wk,2(w,λ1w,...,λkw) ≤ C ′
2(c1, . . . , cr , γ1, . . . , γr ,m, M)

×na
′ ‖P‖Wk,2(w,λ1w,...,λkw),
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240 F. Marcellán et al.

for every λ1, . . . , λk ≥ 0 and P ∈ Pn, where

a′ := max
{

2 ,
b′ + 2

2

}

, b′ := max
r0−1≤ j≤r

(

γ ′
j + γ ′

j+1 + |γ ′
j − γ ′

j+1| + 2
)

.

(6) Let us consider the generalizedHermite weightw(x) := h(x)�r
j=1|x−c j |γ j e−x2

inRwith c1 < · · · < cr , γ1, . . . , γr > −1with
∑r

j=1 γ j ≥ 0 and h ameasurable
function satisfying 0 < m ≤ h ≤ M in R for some constants m, M. Define
γ0 := γr+1 := 0 and assume that max{γ j , γ j+1} ≥ −1/2 for every 0 ≤ j ≤ r .
Then we have

‖P ′‖Wk,2(w,λ1w,...,λkw) ≤ C3(c1, . . . , cr , γ1, . . . , γr ,m, M)

×na ‖P‖Wk,2(w,λ1w,...,λkw),

for every λ1, . . . , λk ≥ 0 and P ∈ Pn, where

a := max
{

2 ,
b + 1

2

}

, b := max
0≤ j≤r

(

γ j + γ j+1 + |γ j − γ j+1| + 2
)

.

In each case the multiplicative constants depend just on the specified parameters
(in particular, they do not depend on n).

Remark 2.2 Note that (4), (5), and (6) are new results in the classical (non-Sobolev)
context (taking λ1 = · · · = λk = 0). In (5.2), there is no hypothesis on

∑r−1
j=1 γ j .

Remark 2.3 In the inequalities in (1), (2), (3), (4) and (5.1) appear powers of n with
exponent at most 2. One could expect to obtain the power n2 in (5.2) and (6) (we will
need to bound in the proof some norms in compact intervals with Jacobi weights, and
then in those computations the exponent 2 comes up). This is the case if b′ ≤ 2 and
b ≤ 3, respectively. Otherwise, the argument in the proof gives exponents a′ and a,
respectively. These exponents appear as a consequence of Lupaş’ inequality [22], but
we need it (or some similar inequality) in order to obtain, for every P ∈ Pn ,

∫ 1

−1
|P(x)|2dx ≤ Kn(α, β)

∫ 1

−1
|P(x)|2(1 − x)α(1 + x)βdx .

If α ≤ 0 and β ≤ 0, then we obtain this inequality with a constant independent of
n (note that we have the continuous inclusion L2([−1, 1], (1 − x)α(1 + x)βdx) ⊆
L2([−1, 1], dx) since infx∈(−1,1)(1− x)α(1+ x)β > 0). However, if α > 0 or β > 0,
then it is clear that Kn(α, β) must grow with n, since the difference L2([−1, 1], (1−
x)α(1 + x)βdx)\L2([−1, 1], dx) is non-empty.

Proof First of all, note that if the inequality

‖P ′‖L2(w) ≤ C(n, w) ‖P‖L2(w)
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holds for every polynomial P ∈ Pn and some fixed weight w, then we have

‖P( j+1)‖L2(λw) ≤ C(n, w) ‖P( j)‖L2(λw) (2.1)

for every polynomial P ∈ Pn and everyλ ≥ 0.Consequently, for theweighted Sobolev
norm on P

‖P‖Wk,2(w,λ1w,...,λkw) :=
⎛

⎝‖P‖2L2(w)
+

k
∑

j=1

∥
∥P( j)

∥
∥2
L2(λ jw)

⎞

⎠

1/2

, λ1, . . . , λk ≥ 0,

we have
‖P ′‖Wk,2(w,λ1w,...,λkw) ≤ C(n, w) ‖P‖Wk,2(w,λ1w,...,λkw), (2.2)

for every polynomial P ∈ Pn and every λ1, . . . , λk ≥ 0.
Thus, (1), (2) and (3) hold.
In order to prove (4), note that, for each a1 < a2, by using Proposition 2.1 (3) and

the affine transformation

T x = 2x − a1 − a2
a2 − a1

(which maps [a1, a2] onto [−1, 1]), we obtain

‖P ′‖L2(w) ≤ C(a1, a2, α, β) n2 ‖P‖L2(w),

for the weight w(x) := (a2 − x)α(x − a1)β in [a1, a2] and every polynomial P ∈ Pn .
Without loss of generality we can assume that a ≤ c1 < · · · < cr ≤ b, since

otherwise we can consider

w(x) = h̃(x)
∏

1≤ j≤r
c j∈[a,b]

|x − c j |γ j , h̃(x) := h(x)
∏

1≤ j≤r
c j /∈[a,b]

|x − c j |γ j .

If we define c0 := a, cr+1 := b and γ0 := γr+1 := 0, then we can write w(x) =
h(x)�r+1

j=0|x − c j |γ j . Denote by h j the function

h j (x) := w(x)

|x − c j |γ j |x − c j+1|γ j+1
,

for 0 ≤ j ≤ r . It is clear that there exist positive constants m j , Mj (depending just on
m, M, c1, . . . , c j−1, c j+2, . . . , cr , γ1, . . . , γ j−1, γ j+2, . . . , γr ), with m j ≤ h j (x) ≤
Mj for every x ∈ [c j , c j+1].
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242 F. Marcellán et al.

Hence, for P ∈ Pn , we have

‖P ′‖L2([c j ,c j+1],w) =
(

∫ c j+1

c j

∣
∣P ′(x)

∣
∣2 h j (x)|x − c j |γ j |x − c j+1|γ j+1 dx

)1/2

≤ √

Mj

(
∫ c j+1

c j

∣
∣P ′(x)

∣
∣2 |x − c j |γ j |x − c j+1|γ j+1 dx

)1/2

≤ √

Mj C
(

c j , c j+1, γ j , γ j+1
)

n2

×
(

∫ c j+1

c j
|P(x)|2 |x − c j |γ j |x − c j+1|γ j+1 dx

)1/2

≤ √

Mj C(c j , c j+1, γ j , γ j+1) n
2

×
(

∫ c j+1

c j
|P(x)|2 |x − c j |γ j |x − c j+1|γ j+1

h j (x)

m j
dx

)1/2

=
√

Mj

m j
C(c j , c j+1, γ j , γ j+1) n

2 ‖P‖L2([c j ,c j+1],w).

Next, “pasting” several times this last inequality in each subinterval [c j , c j+1] ⊆
[a, b], 0 ≤ j ≤ r , we obtain

‖P ′‖L2(w) ≤ C1(a, b, c1, . . . , cr , γ1, . . . , γr ,m, M) n2 ‖P‖L2(w)

for every polynomial P ∈ Pn , with

C1(a, b, c1, . . . , cr , γ1, . . . , γr ,m, M) := max
0≤ j≤r

√

Mj

m j
C(c j , c j+1, γ j , γ j+1).

Hence, we obtain the case (4) by applying (2.2).
Similarly, for the case (5.1) we can write

w(x) = H1(x)
r

∏

j=1

|x − c j |γ j ,

where H1(x) := h(x)e−x satisfies 0 < m e−cr ≤ H1 ≤ M in [0, cr ]. Then the case
(4) provides a constant Ĉ1, which just depends on the appropriate parameters, with

‖P ′‖2Wk,2([0,cr ],w,λ1w,...,λkw)
≤ Ĉ2

1 n
4 ‖P‖2Wk,2([0,cr ],w,λ1w,...,λkw)

, (2.3)

for every λ1, . . . , λk ≥ 0 and every polynomial P ∈ Pn .
Proposition 2.1 (1) gives

‖P ′‖L2(w1)
≤ Cα n ‖P‖L2(w1)

,
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where w1(x) := xαe−x in [0,∞), α > −1 and P ∈ Pn . Hence, replacing x by x − c,
we obtain with the same constant Cα

‖P ′‖L2([c,∞),(x−c)αec−x ) ≤ Cα n ‖P‖L2([c,∞),(x−c)αec−x ),

for every c ≥ 0 and P ∈ Pn . Now, if w2(x) := (x − c)αe−x , then the previous
inequality implies

‖P ′‖L2([c,∞),w2)
≤ Cα n ‖P‖L2([c,∞),w2)

,

for every c ≥ 0 and P ∈ Pn , and (2.2) gives

‖P ′‖Wk,2([c,∞),w2,λ1w2,...,λkw2)
≤ Cα n ‖P‖Wk,2([c,∞),w2,λ1w2,...,λkw2)

,

for every c ≥ 0, λ1, . . . , λk ≥ 0 and P ∈ Pn .
We can write now

w(x) = H2(x)(x − cr )
γr e−x ,

where H2(x) := h(x)�r−1
j=1|x−c j |γ j and there exist constantsm2, M2 with 0 < m2 ≤

H2 ≤ M2 in [cr ,∞), since
∑r−1

j=1 γ j = 0. Thus,

‖P ′‖2Wk,2([cr ,∞),w,λ1w,...,λkw)
≤ C2

γr

M2

m2
n2 ‖P‖2Wk,2([cr ,∞),w,λ1w,...,λkw)

, (2.4)

for every λ1, . . . , λk ≥ 0 and P ∈ Pn .

If we define Ĉ2 :=
√

Ĉ2
1 + C2

γr
M2/m2 , then (2.3) and (2.4) give

‖P ′‖Wk,2(w,λ1w,...,λkw) ≤ Ĉ2 n
2 ‖P‖Wk,2(w,λ1w,...,λkw),

for every λ1, . . . , λk ≥ 0 and P ∈ Pn .
Let us prove now (5.2). Define A := 1 + cr . We can write

w(x) = H3(x)
r

∏

j=1

|x − c j |γ j ,

where H3(x) := h(x)e−x satisfies 0 < m e−A ≤ H3 ≤ M in [0, A]. Then the case
(4) provides a constant C1, which just depends on the appropriate parameters, with

‖P ′‖Wk,2([0,A],w,λ1w,...,λkw) ≤ C1 n
2 ‖P‖Wk,2([0,A],w,λ1w,...,λkw), (2.5)

for every λ1, . . . , λk ≥ 0 and every polynomial P ∈ Pn .
Proposition 2.1 (1) gives a constant Cs with

‖P ′‖2L2(w3)
≤ C2

s n
2 ‖P‖2L2(w3)

,
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where w3(x) := xse−x , s := ∑r
j=1 γ j > −1 and P ∈ Pn .

We can write now

w(x) = H4(x)x
se−x = H4(x)w3(x),

where H4(x) := h(x)x−s�r
j=1|x − c j |γ j , and there exist constants m4, M4 with

0 < m4 ≤ H4 ≤ M4 in [A,∞), since s = ∑r
j=1 γ j . Thus,

‖P ′‖2L2([A,∞),w)
≤ M4‖P ′‖2L2(w3)

≤ C2
s n

2M4 ‖P‖2L2(w3)

≤ C2
s n

2 M4

m4
‖P‖2L2([A,∞), w)

+ C2
s n

2M4 ‖P‖2L2([0,A], w3)
,

(2.6)

for every P ∈ Pn .
Using Lupaş’ inequality [22] (see also [26, p. 594]):

‖P‖L∞([−1,1]) ≤
√

�(n + α + β + 2)

2α+β+1�(q + 1)�(n + q ′ + 1)

(
n + q + 1

n

)

×
√

∫ 1

−1
|P(x)|2(1 − x)α(1 + x)βdx,

for every P ∈ Pn , where q = max(α, β) ≥ −1/2 and q ′ = min(α, β), we obtain that

2‖P‖2L∞([−1,1]) ≤ �(n + α + β + 2)�(n + q + 2)

2α+β�(q + 1)�(q + 2)�(n + 1)�(n + q ′ + 1)

×
∫ 1

−1
|P(x)|2(1 − x)α(1 + x)βdx .

Now, taking into account that

lim
n→∞

�(n + x)

�(n + y)nx−y
= 1, x, y ∈ R,

we get

�(n + α + β + 2)�(n + q + 2)

�(n + 1)�(n + q ′ + 1)
∼ nα+β+1nq−q ′+1 = nα+β+|α−β|+2.

Consequently, there exists a constant k1, which just depends on α and β, such that

∫ 1

−1
|P(x)|2dx ≤ 2‖P‖2L∞([−1,1]) ≤ k1(α, β)nv(α,β)

∫ 1

−1
|P(x)|2(1 − x)α(1+x)βdx,

where v(α, β) = α + β + |α − β| + 2 and P ∈ Pn .

123



Weighted Sobolev spaces: Markov-type inequalities and... 245

Recall that max{γ ′
j , γ

′
j+1} ≥ −1/2 for every r0 − 1 ≤ j ≤ r and

b′ := max
r0−1≤ j≤r

(

γ ′
j + γ ′

j+1 + |γ ′
j − γ ′

j+1| + 2
)

.

Therefore, a similar argument to the one in the proof of (4) gives

∫ A

0
|P(x)|2 dx ≤ k2 n

b′
∫ A

0
|P(x)|2

r+1
∏

j=r0−1

|x − c j |γ
′
j dx

= k2 n
b′

∫ A

0
|P(x)|2

r
∏

j=r0

|x − c j |γ j dx,

for every polynomial P ∈ Pn and some constant k2 which just depends on
cr0 , . . . , cr , γr0 , . . . , γr . Thus,

∫ A

0
|P(x)|2 dx ≤ k3 n

b′
∫ A

0
|P(x)|2

r
∏

j=1

|x − c j |γ j dx,

for every polynomial P ∈ Pn and some constant k3 which just depends on
c1, . . . , cr , γ1, . . . , γr .

Hence,

‖P‖2L2([0,A],w3)
=

∫ A

0
|P(x)|2xse−x dx ≤ As

∫ A

0
|P(x)|2 dx

≤ k3 n
b′
As

∫ A

0
|P(x)|2

r
∏

j=1

|x − c j |γ j dx

≤ 1

m
k3 n

b′
AseA

∫ A

0
|P(x)|2h(x)

r
∏

j=1

|x − c j |γ j e−x dx

= 1

m
k3 A

seAnb
′ ‖P‖2L2([0,A],w)

,

for every polynomial P ∈ Pn .
This inequality and (2.6) give

∥
∥P ′∥∥2

L2([A,∞),w)
≤ C2

s
M4

m4
n2‖P‖2L2([A,∞),w)

+ C2
s
M4

m
k3 A

seAnb
′+2‖P‖2L2([0,A],w)

≤ k4 n
b′+2

(

‖P‖2L2([A,∞),w)
+ ‖P‖2L2([0,A],w)

)

= k4 n
b′+2 ‖P‖2L2(w)

,
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for every polynomial P ∈ Pn , where

k4 := max
{

C2
s
M4

m4
,C2

s
M4

m
k3 A

seA
}

.

Hence,

‖P ′‖2Wk,2([A,∞), w,λ1w,...,λkw)
≤ k4 n

b′+2 ‖P‖2Wk,2(w,λ1w,...,λkw)
,

for every λ1, . . . , λk ≥ 0 and every polynomial P ∈ Pn , and (2.5) allows to deduce

‖P ′‖2Wk,2(w,λ1w,...,λkw)
≤ (

C2
1n

4 + k4 n
b′+2)‖P‖2Wk,2(w,λ1w,...,λkw)

,

for every λ1, . . . , λk ≥ 0 and every polynomial P ∈ Pn . If we define

k5 := (

C2
1 + k4

)1/2
,

and we recall that

a′ := max
{

2 ,
b′ + 2

2

}

,

then

‖P ′‖Wk,2(w,λ1w,...,λkw) ≤ k5 n
a′ ‖P‖Wk,2(w,λ1w,...,λkw),

for every λ1, . . . , λk ≥ 0 and every polynomial P ∈ Pn .
Finally, let us show (6). Define B := 1 + max{|c1|, |cr |}. We can write

w(x) = H5(x)
r

∏

j=1

|x − c j |γ j ,

where H5(x) := h(x)e−x2 satisfies 0 < m e−B2 ≤ H5 ≤ M in [−B, B]. Then the
case (4) provides a constant C1, which just depends on the appropriate parameters,
with

‖P ′‖Wk,2([−B,B],w,λ1w,...,λkw) ≤ C1 n
2 ‖P‖Wk,2([−B,B],w,λ1w,...,λkw), (2.7)

for every λ1, . . . , λk ≥ 0 and every polynomial P ∈ Pn .
Proposition 2.1 (2) gives

‖P ′‖2L2(w4)
≤ 2n ‖P‖2L2(w4)

,

where w4(x) := |x |αe−x2 , α := ∑r
j=1 γ j ≥ 0 and P ∈ Pn .
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We can write now

w(x) = H6(x)|x |αe−x2 = H6(x)w4(x),

where H6(x) := h(x)|x |−α�r
j=1|x − c j |γ j , and there exist constants m6, M6 with

0 < m6 ≤ H6 ≤ M6 in (−∞,−B] ∪ [B,∞), since α = ∑r
j=1 γ j . Thus,

‖P ′‖2L2((−∞,−B]∪[B,∞),w)
≤ M6‖P ′‖2L2(w4)

≤ 2nM6 ‖P‖2L2(w4)

≤ 2n
M6

m6
‖P‖2L2((−∞,−B]∪[B,∞), w)

+ 2nM6 ‖P‖2L2([−B,B], w4)
,

(2.8)

for every P ∈ Pn .
Since max{γ j , γ j+1} ≥ −1/2 for every 0 ≤ j ≤ r and b := max0≤ j≤r

(

γ j +
γ j+1 + |γ j − γ j+1| + 2

)

, the argument in the proof of (5.2), using Lupaş’ inequality,
gives

∫ B

−B
|P(x)|2 dx ≤ k6 n

b
∫ B

−B
|P(x)|2

r
∏

j=1

|x − c j |γ j dx,

for every polynomial P ∈ Pn and some constant k6 which just depends on
c1, . . . , cr , γ1, . . . , γr .

Hence,

‖P‖2L2([−B,B],w4)
=

∫ B

−B
|P(x)|2|x |αe−x2 dx ≤ Bα

∫ B

−B
|P(x)|2 dx

≤ k6 n
bBα

∫ B

−B
|P(x)|2

r
∏

j=1

|x − c j |γ j dx

≤ 1

m
k6 n

bBαeB
2
∫ B

−B
|P(x)|2h(x)

r
∏

j=1

|x − c j |γ j e−x2 dx

≤ 1

m
k6 n

bBαeB
2‖P‖2L2(w)

,

for every polynomial P ∈ Pn .
This inequality and (2.8) give

‖P ′‖2L2((−∞,−B]∪[B,∞),w)
≤ max

{

2
M6

m6
n, 2

M6

m
k6 B

αeB
2
nb+1

}

‖P‖2L2(w)

≤ k7 n
b+1 ‖P‖2L2(w)

,
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for every polynomial P ∈ Pn , where

k7 := max

{

2
M6

m6
, 2

M6

m
k6 B

αeB
2
}

.

Hence,

∥
∥P ′∥∥2

Wk,2((−∞,−B]∪[B,∞), w,λ1w,...,λkw)
≤ k7 n

b+1 ‖P‖2Wk,2(w,λ1w,...,λkw)
,

for every λ1, . . . , λk ≥ 0 and every polynomial P ∈ Pn , and (2.7) allows to deduce

‖P ′‖2Wk,2(w,λ1w,...,λkw)
≤ (

C2
1n

4 + k7 n
b+1)‖P‖2Wk,2(w,λ1w,...,λkw)

,

for every λ1, . . . , λk ≥ 0 and every polynomial P ∈ Pn . If we define

k8 := (

C2
1 + k7

)1/2
,

and we recall that

a := max
{

2 ,
b + 1

2

}

,

then

‖P ′‖Wk,2(w,λ1w,...,λkw) ≤ k8 n
a ‖P‖Wk,2(w,λ1w,...,λkw),

for every λ1, . . . , λk ≥ 0 and every polynomial P ∈ Pn . ��

3 Sobolev spaces with respect to measures

In this section we recall the definition of Sobolev spaces with respect to measures
introduced in [36–38].

Definition 3.1 Given 1 ≤ p < ∞ and a set A which is a union of intervals in R, we
denote by Bp(A) the set of weights w such that w−1 ∈ L1/(p−1)

loc (A) (if p = 1, then
1/(p − 1) = ∞).

It is possible to construct a similar theory with p = ∞. We refer to [2,30–32] for
the case p = ∞.

If A = R, then Bp(R) contains, as a very particular case, the classical Ap(R)

weights appearing in Harmonic Analysis. The classes Bp(	), with 	 ⊆ R
n , have

been used in other definitions of weighted Sobolev spaces in Rn in [17].
We consider vector measures μ = (μ0, . . . , μk) in the definition of our Sobolev

space inR.We assume that eachμ j is σ -finite; hence, byRadon–Nikodym’s Theorem,
we have the decomposition dμ j = d(μ j )s + w j ds, where (μ j )s is singular with
respect to Lebesgue measure andw j is a non-negative Lebesgue measurable function.

In [17], Kufner and Opic define the following sets:
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Definition 3.2 Let us consider 1 ≤ p < ∞ and a vector measure μ = (μ0, . . . , μk).
For 0 ≤ j ≤ k we define the open set

	 j := {

x ∈ R : ∃ an open neighborhood V of x with w j ∈ Bp(V )
}

.

Note that we always have w j ∈ Bp(	 j ) for any 0 ≤ j ≤ k. In fact, 	 j is the
largest open set U with w j ∈ Bp(U ). It is easy to check that if f ( j) ∈ L p(	 j , w j ),

1 ≤ j ≤ k, then f ( j) ∈ L1
loc(	 j ) and, therefore, f ( j−1) ∈ ACloc(	 j ), i.e., f ( j−1) is

a locally absolutely continuous function in 	 j .
Since the precise definition of Sobolev space requires some technical concepts (see

Definition 3.8), we would like to introduce here a heuristic definition of Sobolev space
and an example which will help us to understand the technical process that we will
follow in order to reach Definition 3.8.

Definition 3.3 (Heuristic definition) Let us consider 1 ≤ p < ∞ and a p-admissible
vector measure μ = (μ0, . . . , μk) in R. We define the Sobolev space Wk,p(μ) =
Wk,p(�,μ), with � := ∪k

j=0supp(μ j ), as the space of equivalence classes of

V k,p(μ) := V k,p(�,μ) :=
{

f : � → R : ∥
∥ f

∥
∥
Wk,p(�,μ)

:=
⎛

⎝

k
∑

j=0

∥
∥ f ( j)∥∥p

L p(�,μ j )

⎞

⎠

1/p

< ∞ ,

f ( j) ∈ ACloc(	 j+1 ∪ · · · ∪ 	k ) and f ( j) satisfies

“pasting conditions” for 0 ≤ j < k
}

,

with respect to the seminorm ‖ · ‖Wk,p(�,μ).

These pasting conditions are natural: a function must be as regular as possible. In
a first step, we check if the functions and their derivatives are absolutely continuous
up to the boundary (this fact holds in the following example), and then we join the
contiguous intervals:

Example μ0 := δ0, μ1 := 0, dμ2 := χ[−1,0](x)dx and dμ3 := χ[0,1](x)dx , where
χA denotes the characteristic function of the set A.

Since	1 = ∅,	2 = (−1, 0) and	3 = (0, 1),W 3,p(μ) is the space of equivalence
classes of

V 3,p(μ) =
{

f : ‖ f ‖W 3,p(μ) < ∞ , f, f ′ satisfy “pasting conditions”,

f, f ′,∈ AC((−1, 0)) and f, f ′, f ′′ ∈ AC((0, 1))
}

=
{

f : ‖ f ‖W 3,p(μ) < ∞ , f, f ′ satisfy “pasting conditions”,

f, f ′,∈ AC([−1, 0]) and f, f ′, f ′′ ∈ AC([0, 1])
}

=
{

f : ‖ f ‖W 3,p(μ) < ∞ , f, f ′ ∈ AC([−1, 1]) and f ′′ ∈ AC([0, 1])
}

.

In the current case, since f and f ′ are absolutely continuous in [−1, 0] and in [0, 1],
we require that both are absolutely continuous in [−1, 1].
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These heuristic concepts can be formalized as follows:

Definition 3.4 Let us consider 1 ≤ p < ∞ and μ, ν measures in [a, b]. We define

�+
p,[a,b](μ, ν) := sup

a<x<b
μ((a, x])

∥
∥
∥(dν/ds)−1

∥
∥
∥
L1/(p−1)([x,b]) ,

�−
p,[a,b](μ, ν) := sup

a<x<b
μ([x, b))

∥
∥
∥(dν/ds)−1

∥
∥
∥
L1/(p−1)([a,x]) ,

where we use the convention 0 · ∞ = 0.

Muckenhoupt inequality (See [28], [23, p. 44], [2, Theorem 3.1]). Let us consider
1 ≤ p < ∞ and μ0, μ1 measures in [a, b]. Then:
(1) There exists a real number c such that

∥
∥
∥
∥

∫ b

x
g(t) dt

∥
∥
∥
∥
L p((a,b],μ0)

≤ c
∥
∥g

∥
∥
L p((a,b],μ1)

for any measurable function g in [a, b], if and only if �+
p,[a,b](μ0, μ1) < ∞.

(2) There exists a positive constant c such that

∥
∥
∥
∥

∫ x

a
g(t) dt

∥
∥
∥
∥
L p([a,b),μ0)

≤ c
∥
∥g

∥
∥
L p([a,b),μ1)

for any measurable function g in [a, b], if and only if �−
p,[a,b](μ0, μ1) < ∞.

Definition 3.5 Let us consider 1 ≤ p < ∞. A vector measure μ = (μ0, . . . , μk) is
a right completion of a vector measure μ = (μ0, . . . , μk) in R with respect to a in a
right neighborhood [a, b], if μk = μk in [a, b], μ j = μ j in the complement of (a, b]
and

μ j = μ j + μ̃ j , in (a, b] for 0 ≤ j < k ,

where μ̃ j is any measure satisfying μ̃ j ((a, b]) < ∞ and �+
p,[a,b](μ̃ j , μ j+1) < ∞.

Muckenhoupt inequality guarantees that if f ( j) ∈ L p(μ j ) and f ( j+1) ∈ L p(μ j+1),
then f ( j) ∈ L p(μ j ) (see some examples of completions in [2,36]).

Remark 3.1 We can define a left completion of μ with respect to a in a similar way.

Definition 3.6 For 1 ≤ p < ∞ and a vector measure μ in R, we say that a point
a is right j-regular (respectively, left j-regular), if there exist a right completion μ

(respectively, left completion) of μ in [a, b] and j < i ≤ k such that wi ∈ Bp([a, b])
(respectively, Bp([b, a])). Also, we say that a point a ∈ γ is j-regular, if it is right
and left j-regular.
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Remark 3.2 1. A point a is right j-regular (respectively, left j-regular), if at least
one of the following properties holds:
(a) There exist a right (respectively, left) neighborhood [a, b] (respectively, [b, a])

and j < i ≤ k such that wi ∈ Bp([a, b]) (respectively, Bp([b, a])). Here we
have chosen w̃ j = 0.

(b) There exist a right (respectively, left) neighborhood [a, b] (respectively, [b, a])
and j < i ≤ k, α > 0, δ < (i − j)p − 1, such that wi (x) ≥ α |x − a|δ , for
almost every x ∈ [a, b] (respectively, [b, a]). See Lemma 3.4 in [36].

2. If a is right j-regular (respectively, left), then it is also right i-regular (respectively,
left) for each 0 ≤ i ≤ j .

When we use this definition we think of a point {t} as the union of two half-points
{t+} and {t−}. With this convention, each one of the following sets

(a, b) ∪ (b, c) ∪ {b+} = (a, b) ∪ [b+, c) �= (a, c) ,

(a, b) ∪ (b, c) ∪ {b−} = (a, b−] ∪ (b, c) �= (a, c) ,

has two connected components, and the set

(a, b) ∪ (b, c) ∪ {b−} ∪ {b+} = (a, b) ∪ (b, c) ∪ {b} = (a, c)

is connected.
We use this convention in order to study the sets of continuity of functions: we

want that if f ∈ C(A) and f ∈ C(B), where A and B are union of intervals, then
f ∈ C(A ∪ B). With the usual definition of continuity, if f ∈ C([a, b)) ∩ C([b, c])
then we do not have f ∈ C([a, c]). Of course, we have f ∈ C([a, c]) if and only
if f ∈ C([a, b−]) ∩ C([b+, c]), where by definition, C([b+, c]) = C([b, c]) and
C([a, b−]) = C([a, b]). This idea can be formalized with a suitable topological space.

Let us introduce some more notation. We denote by 	( j) the set of j-regular points
or half-points, i.e., x ∈ 	( j) if and only if x is j-regular, we say that x+ ∈ 	( j) if and
only if x is right j-regular, and we say that x− ∈ 	( j) if and only if x is left j-regular.
Obviously, 	(k) = ∅ and 	 j+1 ∪ · · · ∪ 	k ⊆ 	( j). Note that 	( j) depends on p.

Intuitively, 	( j) is the set of “good” points at the level j for the vector weight
(w0, . . . , wk): every function f in theSobolev spacemust verify that f ( j) is continuous
in 	( j).

Let us present now the class of measures that we use in the definition of Sobolev
space.

Definition 3.7 We say that the vectormeasureμ = (μ0, . . . , μk) inR is p-admissible
if μ j is σ -finite and μ∗

j (R\	( j)) = 0, for 1 ≤ j < k, and μ∗
k ≡ 0, where dμ∗

j :=
dμ j − w jχ	 j

dx and χA denotes the characteristic function of the set A (then dμk =
wkχ	k

dx).

Remark 3.3 1. The hypothesis of p-admissibility is natural. It would not be reason-
able to consider Dirac’s deltas in μ j in the points where f ( j) is not continuous.

2. Note that there is not any restriction on μ0.
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3. Every absolutely continuous measure w = (w0, . . . , wk) with w j = 0 a.e. in
R\	 j for every 1 ≤ j ≤ k, is p-admissible (since then μ∗

j = 0). It is possible to
find a weight w which does not satisfy this condition, but it is a hard task.

4. (μ j )s ≤ μ∗
j , and the equality usually holds.

Definition 3.8 Let us consider 1 ≤ p < ∞ and a p-admissible vector measure
μ = (μ0, . . . , μk) in R. We define the Sobolev space Wk,p(μ) = Wk,p(�,μ), with
� := ∪k

j=0supp(μ j ), as the space of equivalence classes of

V k,p(�,μ) :=
{

f : � → R : f ( j) ∈ ACloc(	
( j)) for 0 ≤ j < k and

∥
∥ f

∥
∥
Wk,p(�,μ)

:=
⎛

⎝

k
∑

j=0

∥
∥
∥ f ( j)

∥
∥
∥

p

L p(�,μ j )

⎞

⎠

1/p

< ∞
}

,

with respect to the seminorm ‖ · ‖Wk,p(�,μ).

4 Basic results on Sobolev spaces with respect to measures

This definition of Sobolev space is very technical, but it has interesting properties: we
know explicitly how are the functions in Wk,p(�,μ) (this is not the case if we define
the Sobolev space as the closure of some space of smooth functions, as in [19–21]);
if � is a compact set and μ is a finite measure, then in many cases, Wk,p(�,μ) is
equal to the closure of the space of polynomials (see [2, Theorem 6.1]). Furthermore,
we have powerful tools in Wk,p(�,μ) (see [2,36,37,39]).

In [39, Theorem 4.2] appears the following main result in the theory (in fact, this
result in [39] holds for measures defined in any curve in the complex plane instead of
R).

Theorem 4.1 Let us consider 1 ≤ p < ∞ and a p-admissible vector measure μ =
(μ0, . . . , μk). Then the Sobolev space Wk,p(�,μ) is a Banach space.

We want to remark that the proof of Theorem 4.1 is very long and technical: the
paper [36] is mainly devoted to prove a weak version of Theorem 4.1, and using this
version, [39] provides a very technical proof of the general case. Note that it took
6years to prove this natural property of Sobolev spaces with respect to measures.

For each 1 ≤ p < ∞ and p-admissible vector measureμ inR, consider the Banach
space

∏k
j=0 L

p(�,μ j ) with the norm

‖ f ‖∏k
j=0 L

p(�,μ j )
=

⎛

⎝

k
∑

j=0

∥
∥ f j

∥
∥p
L p(μ j )

⎞

⎠

1/p

for every f = ( f0, f1, . . . , fk) ∈ ∏k
j=0 L

p(�,μ j ).
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Definition 4.1 For each 1 ≤ p < ∞ we denote by q the conjugate or dual expo-
nent of p, i.e., 1/p + 1/q = 1. Consider a p-admissible vector measure μ. If
f ∈ ∏k

j=0 L
p(�,μ j ) and g ∈ ∏k

j=0 L
q(�,μ j ), we define the product ( f, g) as

( f, g) =
k

∑

j=0

∫

�

f j g j dμ j .

Let us consider the projection P : Wk,p(�,μ) −→ ∏k
j=0 L

p(�,μ j ), given by

P f = ( f, f ′, . . . , f (k)).

Theorem 4.2 Let 1 ≤ p < ∞ and μ a p-admissible vector measure. Then
Wk,p(�,μ) is separable. Furthermore, if 1 < p < ∞, then it is reflexive and uni-
formly convex.

Proof The map P is an isometric embedding of Wk,p(�,μ) onto W :=
P(Wk,p(�,μ)). ThenW is a closed subspace since

∏k
j=0 L

p(�,μ j ) andWk,p(�,μ)

are Banach spaces by Theorem 4.1.
If 1 ≤ p < ∞, then each L p(�,μ j ) is separable; furthermore, if 1 < p < ∞,

then it is reflexive and uniformly convex. Then
∏k

j=0 L
p(�,μ j ) is separable (and

reflexive and uniformly convex if 1 < p < ∞) by [1, p. 8].
SinceW is closed and

∏k
j=0 L

p(�,μ j ) is separable,W is separable; furthermore,

if 1 < p < ∞, then W is reflexive and uniformly convex since
∏k

j=0 L
p(�,μ j )

is reflexive and uniformly convex (see [1, p. 7], [14]). Since W and Wk,p(�,μ) are
isometric, Wk,p(�,μ) also has these properties.

Theorem 4.3 Let 1 ≤ p < ∞, q the dual exponent of p, andμ a p-admissible vector
measure. Consider the canonical map J : ∏k

j=0 L
q(�,μ j ) −→ (Wk,p(�,μ))′

defined by J (v) = (·, v), i.e.,
(

J (v)
)

( f ) = (P f, v). Then giving any T ∈
(Wk,p(�,μ))′ there exists v ∈ ∏k

j=0 L
q(�,μ j ) with

T = J (v) and
∥
∥T

∥
∥

(Wk,p(�,μ))′ = ‖v‖∏k
j=0 L

q (�,μ j )
. (4.1)

Furthermore, if 1 < p < ∞, then there exists a unique v ∈ ∏k
j=0 L

q(�,μ j ) verifying
(4.1).

Proof First of all we will prove that J is, in fact, a map J : ∏k
j=0 L

q(�,μ j ) −→
(Wk,p(�,μ))′. Given v ∈ ∏k

j=0 L
q(�,μ j ), consider J (v). Then continuous and

discrete Hölder’s inequalities give
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∣
∣
(

J (v)
)

( f )
∣
∣ = ∣

∣(P f, v)
∣
∣ ≤

k
∑

j=0

∫

�

∣
∣
∣ f ( j) v j

∣
∣
∣ dμ j ≤

k
∑

j=0

∥
∥
∥ f ( j)

∥
∥
∥
L p(μ j )

∥
∥v j

∥
∥
Lq (μ j )

≤
⎛

⎝

k
∑

j=0

∥
∥
∥ f ( j)

∥
∥
∥

p

L p(μ j )

⎞

⎠

1/p ⎛

⎝

k
∑

j=0

∥
∥v j

∥
∥
q
Lq (μ j )

⎞

⎠

1/q

= ‖ f ‖Wk,p(�,μ)‖v‖∏k
j=0 L

q (�,μ j )
.

Hence,
∥
∥J (v)

∥
∥

(Wk,p(�,μ))′ ≤ ‖v‖∏k
j=0 L

q (�,μ j )
. (4.2)

Thus we have proved that J : ∏k
j=0 L

q(�,μ j ) −→ (Wk,p(�,μ))′. Let us prove
now that J is onto.

Consider T ∈ (Wk,p(�,μ))′. The map P is an isometric isomorphism of
Wk,p(�,μ) onto W := P(Wk,p(�,μ)). Then T ◦ P−1 ∈ W ′ and

∥
∥T ◦ P−1

∥
∥
W ′ = ∥

∥T
∥
∥(

Wk,p(�,μ)
)′ .

Since W is a subspace of
∏k

j=0 L
p(�,μ j ), by Hahn–Banach Theorem there exists

T0 ∈
⎛

⎝

k
∏

j=0

L p(�,μ j )

⎞

⎠

′
=

k
∏

j=0

(

L p(�,μ j )
)′ =

k
∏

j=0

Lq (

�,μ j
)

,

with

T0|W ′ = T ◦ P−1,
∥
∥T0

∥
∥(

∏k
j=0 L

p(�,μ j )
)′ = ∥

∥T ◦ P−1
∥
∥
W ′ .

Therefore, there exists v ∈ ∏k
j=0 L

q(�,μ j ) with v � T0, i.e.,

T0( f ) = ( f, v), ∀ f ∈ W,

and

‖v‖∏k
j=0 L

q (�,μ j )
= ∥

∥T0
∥
∥(

∏k
j=0 L

p(�,μ j )
)′ = ∥

∥T ◦ P−1
∥
∥
W ′ = ∥

∥T
∥
∥(

Wk,p(�,μ)
)′ .

(4.3)
Hence,

T ( f ) = T0(P f ) = (P f, v) = (

J (v)
)

( f ), ∀ f ∈ Wk,p(�,μ),

T = J (v) and J is onto.
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If 1 < p < ∞, let us consider the set U := {u ∈ ∏k
j=0 L

q(�,μ j ) : T = J (u)}.
Note that (4.2) and (4.3) give

∥
∥T

∥
∥

(Wk,p(�,μ))′ = inf
{

‖u‖∏k
j=0 L

q (�,μ j )
: u ∈ U

}

= min
{

‖u‖∏k
j=0 L

q (�,μ j )
: u ∈ U

}

.

It is easy to check that U is a closed convex set in
∏k

j=0 L
q(�,μ j ). Since

∏k
j=0 L

q(�,μ j ) is uniformly convex, this minimum is attained at a unique u0 ∈ U
(see, e.g., [6, p. 22]), and (4.3) gives u0 = v.
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