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Abstract

Many topics in Actuarial and Financial Mathematics lead to Minimax or Maximin

problems (risk measures optimization, ambiguous setting, robust solutions, Bayesian

credibility theory, interest rate risk, etc.). However, minimax problems are usually

difficult to address, since they may involve complex vector (Banach) spaces or con-

straints.

This paper presents an unified approach so as to deal with minimax convex prob-

lems. In particular, we will yield a dual problem providing necessary and sufficient

optimality conditions that easily apply in practice. Both, duals and optimality con-

ditions are significantly simplified by using a new Mean Value Theorem. Important

applications in risk analysis are given.

Key words. Optimization in Banach Spaces, Min-Max Strategies, Duality, Ap-

plications in Actuarial and Financial Mathematics.
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1 Introduction

The notion of general risk measure is becoming more and more important in Actuarial

and Financial Mathematics. Many interesting actuarial and financial problems involve the

optimization of risk measures. In a recent paper Balbás et al. (2010a) have provided a

new method so as to optimize convex measures of risk. Useful applications of this new

methodology have been provided by the same authors. For instance, Balbás et al. (2009)

dealt with the optimal reinsurance problem of Actuarial Mathematics, Balbás et al. (2010b)

dealt with portfolio choice problems and equilibrium issues in Financial Economics, and

Balbás et al. (2010c) dealt with pricing issues in incomplete markets.

Though former papers dealt with convex analysis and sub-gradient linked optimality condi-

tions in order to minimize risk measures (see, for instance, Ruszczynski and Shapiro, 2006),

the novelty in the analysis of Balbás et al. (2010a) was the incorporation of two elements:

Firstly, the representation theorem of convex risk measures permits us to transform a risk

minimization problem in a minimax problem. Secondly, the discovery of a new Mean Value

Theorem allows us to simplify the dual problem of the minimax one, as well as to provide

simple (linear) necessary and sufficient optimality conditions.

There are many classical actuarial and financial problems that are beyond the minimiza-

tion of risk measures but still lead to minimax or maximin problems. For instance, the

minimization of distances, semi-norms or deviations, the Bayesian credibility theory as a

experience rating technique (Lemaire, 1995), the incorporation of ambiguity or uncertainty

(Klibanoff et al., 2005, Schied, 2007, etc.), the interest in robust solutions (Calafiore, 2007,

Zhu and Fukushima, 2009, etc.), some interest rate linked problems (Bierwag and Khang,

1979, Balbás and Romera, 2007, etc.), etc. Therefore, it is worthwhile to study whether

the Balbás et al. (2010a) methodology applies for further analyses.

This paper focuses on a general minimax convex problem and provides both a dual ap-

proach and necessary and sufficient optimality conditions, which easily apply in practical
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applications. In Section 2 we will introduce the general framework and will prove a Mean

Value Theorem significantly extending that in Balbás et al. (2010a). It will characterize

some specially important linear and continuous real valued functions on a general Banach

space, and the Hahn Banach and the Banach Steinhause Theorems will play a crucial role

in the proof. Section 3 will yield a new dual problem and Theorem 3, which states the exis-

tence of strong duality between the initial minimax problem and its dual. Some corollaries

will focus on particular interesting situations. Section 4 will present four applications: The

optimization of risks, problems involving ambiguity and robust optimization, problems in-

volving markets with frictions, and interest rate problems. Finally, Section 5 will conclude

the paper.

2 Preliminaries and notations

Let Y and Y be Banach spaces and Z and Z their dual spaces. Denote by Y ×Z � (y, z)→

〈y, z〉 ∈ IR and Y × Z � (γ, λ) → 〈γ, λ〉 ∈ IR the usual bilinear maps. Suppose that Y is

ordered by the (non necessarily pointed) convex cone Y+ (and therefore Z is ordered by

the dual cone Z+) whose interior is non void. For j = 1, 2, ..., k fix yj ∈ Y , Tj : Y → Y

linear and continuous, and ∆j ⊂ Z convex and σ (Z, Y )−compact. Fix finally a convex set

Y0 ⊂ Y and a convex function H : Y0 → Y. We will deal with the minimax problem




Min ρ (y)

H (y) ≤ 0, y ∈ Y0
(1)

ρ : Y → IR given by

ρ (y) =Max {〈Tj (y) + yj, zj〉 ; zj ∈ ∆j , j = 1, 2, ..., k} . (2)

Notice that the weak∗−compactness of every ∆j guarantees the existence of the maximum

in (2). In order to prevent the existence of “duality gaps” (Luenberger, 1969), we will

impose the assumption below.

Assumption 1. Y+ has non void interior and there exists y ∈ Y0 with H (y) ∈ − (Y+)
◦.

In particular, (1) is feasible. �

Expression (2) implies that

ρ (λy + (1− λ) y′) ≤ λρ (y) + (1− λ) ρ (y′)
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for every λ ∈ [0, 1] and every y, y′ ∈ Y , and consequently ρ is a convex function and (1) is

a convex problem.

As will be seen in section 4, some actuarial and financial problems have the maximin form





Max φ (y)

H (y) ≤ 0, y ∈ Y0
(3)

where

φ (y) =Min {〈Tj (y) + yj, zj〉 ; zj ∈ ∆j , j = 1, 2, ..., k} . (4)

Obviously, (3) and (4) may be trivially reduced to (1) and (2) because one can deal with

the equivalent problem 



Min − φ (y)

H (y) ≤ 0, y ∈ Y0

and

−φ (y) =Max {〈Tj (y) + yj , zj〉 ; zj ∈ −∆j , j = 1, 2, ..., k} .

Denote by C (∆j) the Banach space composed of the IR−valued and σ (Z, Y )−continuous

functions on ∆j endowed with the usual supremum norm. Denote by M (∆j) the space of

inner regular real valued σ−additive measures on the Borel σ−algebra of ∆j (∆j endowed

with the weak∗ topology), and by P (∆j) ⊂M (∆j) the set composed of those σ−additive

measures that are probabilities (i.e., if µ ∈M (∆j) then µ ∈ P (∆j) if µ ≥ 0 and µ (∆j) =

1). According to the Riesz Representation Theorem M (∆j) endowed with the variation

norm is the dual space of C (∆j). In order to simplify some notations, C+ (∆j) andM+ (∆j)

will represent the usual non-negative cones of C (∆j) and M (∆j), respectively.

Next we will prove a Mean Value Theorem which extends particular results of Balbás et

al. (2009) and (2010a). Indeed, Balbás et al. (2009) stated this Theorem for expectation

bounded risk measures and deviations, and Balbás et al. (2010a) dealt with more complex

convex risk measures.

Lemma 1 (Mean Value Theorem). For every IP ∈ P (∆j) there exists a unique zIP ∈ Z
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such that ∫

∆j

〈y, z〉 dIP (z) = 〈y, zIP〉 (5)

for every y ∈ Y . Furthermore, zIP ∈ ∆j.

Proof. ∆j is σ (Z, Y )−compact, and therefore the Banach-Steinhause Theorem (Rudin,

1972) shows that it is bounded, i.e., there exists M ∈ IR such that ‖z‖ ≤ M for every

z ∈ ∆j. For every y ∈ Y we have that

∣∣∣∣∣

∫

∆j

〈y, z〉 dIP (z)

∣∣∣∣∣
≤

∫

∆j

|〈y, z〉| dIP (z) ≤

(∫

∆j

‖z‖ dIP (z)

)

‖y‖ ≤M ‖y‖ ,

which implies that

Y � y →

∫

∆j

〈y, z〉 dIP (z) ∈ IR

is a continuous linear function. Thus, there exists a unique zIP ∈ Z such that (5) holds,

and it only remains to see that zIP ∈ ∆j. If zIP /∈ ∆j then zIP and the σ (Z, Y )−compact set

∆F can be separated (Hahn-Banach Theorem, Rudin, 1972), and there exists y∗ ∈ Y with

〈y∗, zIP〉 < Min {〈y
∗, z〉 ; z ∈ ∆j} .

Then, bearing in mind Expression (5) we have that

〈y∗, zIP〉 < Min {〈y
∗, z〉 ; z ∈ ∆j} =

∫
∆j
(Min {〈y∗, z〉 ; z ∈ ∆j}) dIP (z) ≤

∫
∆j
〈y∗, z〉 dIP (z) = 〈y∗, zIP〉

which is absurd. �

3 Duality for Min-Max problems

Henceforth we will consider the following dual problem of (1).






Max

(

Inf

{(
k∑

j=1

λj 〈Tj (y) + yj , zj〉

)

+ Λ ◦H(y); y ∈ Y0

})

zj ∈ ∆j , j = 1, 2, ..., k, Λ ∈ Z+

λj ∈ IR, λj ≥ 0, j = 1, 2, ..., k,
k∑

j=1

λj = 1

(6)
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In order to simplify some expressions let us denote by D the dual feasible set, i.e.,

D =

{(
(zj)

k

j=1 ,Λ, (λj)
k

j=1

)
∈

k∏

j=1

(∆j)×Z+ × IR
k;

k∑

j=1

λj = 1 and λj ≥ 0, j = 1, 2, ..., k

}

We will prove the absence of duality gap and the existence of strong duality between (1)

and (6). However, the standard Duality Theory for Convex Programming generates a dual

problem much more complex than (6), since some dual variables should involve spaces of

inner regular σ−additive measures (recall that M (∆j) is the dual of C (∆j)). Thus, let us

see that the Mean Value Theorem permits us to simplify the usual dual of (1).

Lemma 2 Consider Problem





Max

(

Infy∈Y0

{(
k∑

j=1

∫
∆j
〈Tj (y) + yj , z〉 dmj (z)

)

+ Λ ◦H (y)

})

Λ ∈ Z+, mj ∈M+ (∆j) , j = 1, 2, ..., k
k∑

j=1

∫
∆j
dmj = 1

(7)

and denote by DM its feasible set. Consider the correspondence

k∏

j=1

(M+ (∆j))×Z+ �
(
(mj)

k

j=1 ,Λ
)
→
(
(zj)

k

j=1 ,Λ, (λj)
k

j=1

)
∈

k∏

j=1

(∆j)×Z+ × IR
k

characterized by

λj =
∫
∆j
dmj, j = 1, 2, ...,m

〈y, zj〉 =
1

mj(∆j)

∫
∆j
〈y, zj〉 dmj (z) ∀y ∈ Y, if mj (∆j) > 0

zj ∈ ∆j is arbitrary, if mj (∆j) = 0

(8)

This correspondence is surjective from DM to D, and the (7)−objective value in every(
(mj)

k

j=1 ,Λ
)

equals the (6)−objective value in its images. Hence,

(
(mj)

k

j=1 ,Λ
)
∈

k∏

j=1

(M+ (∆j))×Z+

solves (7) if and only if

(
(zj)

k

j=1 ,Λ, (λj)
k

j=1

)
∈

k∏

j=1

(∆j)×Z+ × IR
k

solves (6), and, conversely, every solution of (6) is given by (8) and a solution of (7). Both

optimal values coincide.
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Proof. The Mean Value Theorem (Lemma 1) shows that the correspondence given by (8)

is well defined, and the constraints of (7) show that the element
(
(zj)

k

j=1 ,Λ, (λj)
k

j=1

)
in

(8) is (6)-feasible. Moreover, the objective function of
(
(zj)

k

j=1 ,Λ, (λj)
k

j=1

)
on (6) equals

the objective function of
(
(mj)

k

j=1 ,Λ
)

on (7). Hence, the result will be proved if we see

that every (6)-feasible
(
(zj)

k

j=1 ,Λ, (λj)
k

j=1

)
is generated by a (7)-feasible

(
(mj)

k

j=1 ,Λ
)

. To

prove that property, take a (6)-feasible
(
(zj)

k

j=1 ,Λ, (λj)
k

j=1

)
and define

(mj)
k

j=1 =
(
λjδzj

)k
j=1

∈
k∏

j=1

(M+ (∆j)) ,

every δzj denoting the usual Dirac delta concentrating the whole mass on {zj}. �

Theorem 3 Suppose that (1) is bounded.

a) Problem (6) is solvable (the optimal value is attainable) and both optimal objective values

coincide, i.e.,

Inf
y ∈ Y0

H (y) ≤ 0

(ρ (y)) =

Max((zj)kj=1,Λ,(λj)
k
j=1)∈D

(

Inf

{
k∑

j=1

λj (〈Tj (y) + yj, zj〉) + Λ ◦H(y); y ∈ Y0

})

.

b) If y∗ ∈ Y0 and H (y∗) ≤ 0 then y∗ solves Problem (1) if and only if there exists((
z∗j
)k
j=1
,Λ∗,

(
λ∗j
)k
j=1

)
∈ D such that

k∑

j=1

λ∗j
(〈
Tj (y) + yj , z

∗

j

〉)
+ Λ∗ ◦H(y) ≥

k∑

j=1

λ∗j
(〈
Tj (y

∗) + yj, z
∗

j

〉)
+ Λ∗ ◦H(y∗)

(9)

for every y ∈ Y0, and the complementary slackness condition





Λ∗ ◦H (y∗) = 0

λ∗j
(〈
Tj (y

∗) + yj , z
∗

j

〉
− ρ (y∗)

)
= 0, j = 1, 2, ..., k

(10)

holds. In such a case
((
z∗j
)k
j=1
,Λ∗,

(
λ∗j
)k
j=1

)
solves Problem (6).
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Proof. Expression (2) shows that (1) is equivalent to






Min θ

〈T1 (y) + y1, z〉 − θ ≤ 0, ∀z ∈ ∆1

....

〈Tk (y) + yk, z〉 − θ ≤ 0, ∀z ∈ ∆k

H (y) ≤ 0

θ ∈ IR, y ∈ Y0

(11)

(θ, y) being the decision variable. Indeed, y solves (1) if and only if (θ, y) solves (11) for

some θ ∈ IR, in which case θ = ρ (y).The first constraints of (11) are C (∆j)−valued. Since

M (∆j) is the dual space of C (∆j) the Lagrangian function (Luenberger, 1969)

IR× Y0 ×
k∏

j=1

(M+ (∆j))×Z+ �
(
θ, y, (mj)

k

j=1 ,Λ
)
→ L

(
θ, y, (mj)

k

j=1 ,Λ
)
∈ IR

becomes

L
(
θ, y, (mj)

k

j=1 ,Λ
)
=

θ

(

1−
k∑

j=1

∫
∆j
dmj

)

+
k∑

j=1

(∫
∆j
〈Tj (y) + yj , z〉 dmj (z)

)
+ Λ ◦H (y) .

According to the Duality Theory in Luenberger (1969),
(
(mj)

k

j=1 ,Λ
)
∈
∏k

j=1 (M+ (∆j))×

Z+ is dual-feasible if and only if

Inf(θ,y)∈IR×Y0L
(
θ, y, (mj)

k

j=1 ,Λ
)
> −∞,

which implies that
k∑

j=1

∫
∆j
dmj = 1. In such a case, L does not depend on θ, and the dual

problem of (1) becomes (7). Since the non negative cone of C (∆j) has non void interior,

in order to guarantee that (7) is solvable and there is no duality gap between (1) and (7)

it is sufficient to see that (11) satisfies the Slater qualification, i.e., the constraints of this

problem are strictly satisfied for at least a feasible element (see Luenberger, 1969). But

this is obvious because one can choose a feasible element (θ, y) with H(y) in the interior of

Y+ (Assumption 1) and then take

θ > Max {〈Tj (y) + yj, z〉 ; z ∈ ∆j} ,

j = 1, 2, ..., k, so as to ensure that 〈Tj (y) + yj , z〉−θ < 0 for every z ∈ ∆j and j = 1, 2, ..., k.
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a) Statement a) is an obvious consequence of Lemma 2 and the existence of strong duality

between (1) and (7).

b) Suppose that y∗ ∈ Y0 and H (y∗) ≤ 0. y∗ solves (1) if and only if there exists θ∗ ∈ IR

such that (θ∗, y∗) solves (11), in which case θ∗ = ρ (y∗). According to Luenberger (1969),

(θ∗, y∗) solves (11) if and only if there exists
((
m∗

j

)k
j=1
,Λ∗

)
∈
∏k

j=1 (M+ (∆j))×Z+ such

that
k∑

j=1

(∫
∆j
〈Tj (y

∗) + yj , z〉 dm
∗

j (z)
)
+ Λ∗ ◦H (y∗) ≥

k∑

j=1

(∫
∆j
〈Tj (y) + yj, z〉 dm

∗

j (z)
)
+ Λ∗ ◦H (y)

(12)

for every y ∈ Y0, and the complementary slackness conditions

∫
∆j
(〈Tj (y

∗) + yj , z〉 − θ
∗) dm∗

j (z) = 0, j = 1, 2, ..., k (13)

and Λ∗ ◦H (y∗) = 0 hold. Besides, Lemma 2 and its proof prove that (12) holds if and only

if (9) holds. Moreover, (13) and θ∗ = ρ (y∗) imply the fulfillment of (10).

Conversely, if (9) and (10) hold then Lemma 2 guarantees the fulfillment of (12). If we

show that (13) holds for some θ∗ with (θ∗, y∗) (11)−feasible then y∗ will solve (1). Take

θ∗ = ρ (y∗) and (2) guarantees that (θ∗, y∗) is (11)−feasible.

Finally, in the affirmative case,
(
(mj)

k

j=1 ,Λ
)

solves (7), and then
((
z∗j
)k
j=1
,Λ∗,

(
λ∗j
)k
j=1

)

solves Problem (6) due to Lemma 2. �

Consider now that Constraint H (y) ≤ 0 is removed. The new problem become




Min ρ (y)

y ∈ Y0
(14)

whose dual will be





Max

(

Inf

{(
k∑

j=1

λj 〈Tj (y) + yj , zj〉

)

; y ∈ Y0

})

zj ∈ ∆j , j = 1, 2, ..., k.

λj ∈ IR, λj ≥ 0, j = 1, 2, ..., k,
k∑

j=1

λj = 1

(15)

We still have strong duality between (14) and (15).

Corollary 4 Suppose that (14) is feasible and bounded from below.
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a) Problem (15) is solvable (the optimal value is attainable) and both optimal objective

values coincide.

b) If y∗ ∈ Y0 then y∗ solves Problem (14) if and only if there exists
((
z∗j
)k
j=1
,
(
λ∗j
)k
j=1

)

(15)−feasible such that

k∑

j=1

λ∗j
〈
Tj (y) + yj , z

∗

j

〉
≥

k∑

j=1

λ∗j
〈
Tj (y

∗) + yj, z
∗

j

〉

for every y ∈ Y0, and the complementary slackness condition

λ∗j
(〈
Tj (y

∗) + yj, z
∗

j

〉
− ρ (y∗)

)
= 0, j = 1, 2, ..., k

holds. In such a case
((
z∗j
)k
j=1
,
(
λ∗j
)k
j=1

)
solves Problem (15).

Proof. It immediately follows from the previous Theorem if one takes Y = IR and

H = −1. �

As said in the previous section, some classical problems of Actuarial and Financial Math-

ematics are Maximin rather than Minimax. In such a case, by using the straightforward

modifications indicated in Section 2, we have:

Corollary 5 the dual problem of (3) is






Min

(

Sup

{(
k∑

j=1

λj 〈Tj (y) + yj, zj〉

)

− Λ ◦H(y); y ∈ Y0

})

zj ∈ ∆j , j = 1, 2, ..., k, Λ ∈ Z+

λj ∈ IR, λj ≥ 0, j = 1, 2, ..., k,
k∑

j=1

λj = 1

(16)

There is no duality gap between both problems and (16) is solvable. Furthermore, if y∗ ∈

Y0 and H (y∗) ≤ 0, then it solves (3) if and only if there exists
((
z∗j
)k
j=1
,Λ∗,

(
λ∗j
)k
j=1

)

(16)−feasible such that

k∑

j=1

λ∗j
(〈
Tj (y) + yj , z

∗

j

〉)
− Λ∗ ◦H(y) ≥

k∑

j=1

λ∗j
(〈
Tj (y

∗) + yj , z
∗

j

〉)
− Λ∗ ◦H(y∗)

for every y ∈ Y0 and (10) holds. In such a case
((
z∗j
)k
j=1
,Λ∗,

(
λ∗j
)k
j=1

)
solves (16). �
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Remark 1 Notice that ρ (y∗) arises in (10), which might generate computational problems

in some applications. However, in most of the cases the minimum value in (2) will be

achieved in a unique (j0, zj0). Then

λ∗j
(〈
Tj (y

∗) + yj , z
∗

j

〉
− ρ (y∗)

)
= 0

is equivalent to

λ∗j = 0, j �= j0

ρ (y∗) =
〈
Tj0 (y

∗) + yj0, z
∗

j0

〉

that may be easily applied in practice. �

4 Actuarial and financial applications

As said in the introduction, there are many classical problems in Actuarial and Financial

Mathematics fitting in the framework of this paper. Let us devote this section to presenting

four examples.

4.1 Risk measures, semi-norms and deviations

General risk measures are becoming very important in finance and insurance. Artzner et al.

(1999) introduced the axioms and properties of the “Coherent Measures of Risk”, and, since

then, many authors have extended the discussion. In our setting, particularly important

are the expectation bounded risk measures and the deviation measures of Rockafellar et

al. (2006), because both are particular cases of (2) with Y = Lp (Ω,F , IP) and Z =

Lq (Ω,F , IP), p ≥ 1, q ≤ ∞, 1/p+ 1/q = 1, and (Ω,F , IP) being a probability space.

The optimization of risk measures and deviations is a very complex problem that has

motivated several deep analyses (Nakano (2004), Ruszczynski and Shapiro (2006), Mansini

et al. (2007), etc.), all of them related to Convex Analysis. As said in the introduction, the

approach of this paper is an alternative way that significantly simplifies many applications

and allows us to reach further conclusions about the analyzed problems. In Balbás et al.

(2009), (2010b) and (2010c) one can find actuarial and financial problems involving risk

measures, all of then solved with the method proposed in Balbás et al. (2010a) that has

been extended in Theorem 3 and its corollaries.
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4.2 Ambiguity and robust optimization

Ambiguity arises in finance and insurance if we are not sure about the real probability

space reflecting the random or stochastic behavior of the variables we are interested in.

Recent significant examples are Calafiore (2007), Schied (2007) and Zhu and Fukushima

(2009), where portfolio selection problems are studied.

All of these analyses fit in our framework, since, instead of dealing with “variable prob-

ability spaces” one can often fix the “true” probability space (Ω,F , IP) and then intro-

duce the ambiguity by modifying the distribution of some random variables indicating our

risk/uncertainty. For instance, let us adapt the optimal reinsurance problem of Balbás et

al. (2009) to the ambiguous setting. Without ambiguity the problem is as follows: Consider

that the insurance company receives the fixed amount S0 (premium) and will have to pay

the random variable

C ∈ Lp+ (Ω,F , IP) = {y ∈ L
p (Ω,F , IP) : IP (y ≥ 0) = 1}

within a given period [0, T ] (claims). Suppose also that a reinsurance contract is signed in

such a way that the company will only pay y ∈ Lp (Ω,F , IP), whereas the reinsurer will pay

C − y. If the reinsurer premium principle is given by the continuous linear function,

π : Lp (Ω,F , IP) −→ IR

and S1 > 0 is the highest amount that the insurer would like to pay at T for the contract,

then the insurance company will choose y (optimal retention) so as to solve






Min ρ (S0 − y − π (C − y))

π (C − y) ≤ S1

0 ≤ y ≤ C

(17)

ρ representing an expectation bounded and coherent risk measure. Problem (17) may

incorporate ambiguity if we consider that the total claims C are ambiguous and, therefore,

it may be substituted by a convex set

{

C +
k∑

j=1

αjCj;
k∑

j=1

αj = 1, αj ≥ 0, j = 1, 2, ..., k

}

,
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where {Cj ; j = 1, 2, ..., k} ⊂ L
p (Ω,F , IP) is fixed. In such a case (17) would become






Min F (y)

π (C + Cj − y) ≤ S1, j = 1, 2, ..., k

0 ≤ y ≤ C + Cj , j = 1, 2, ..., k

where

F (y) =Max {〈(S0 − y − π (C + Cj − y)) , z〉 ; z ∈ ∆, j = 1, 2, ..., k} ,

∆ ⊂ Lp (Ω,F , IP) being the sub-gradient of the risk measure ρ (see Rockafellar et al., 2006).

4.3 Imperfect markets

In practice transaction costs may be significant enough so as to modify the real financial

markets behavior. Thus, though linear pricing rules are usual in perfect or friction free

markets (Duffie, 1988), convex pricing rules are usual when dealing with imperfections

(Jouin and Kallal, 1995, Schachermayer, 2004, etc.). Hence, pricing or portfolio selection

problems become convex too under transaction costs. For instance the optimal portfolio

problem of Balbás et al. (2010b) will be




Min Π (y)

y ∈ C, ρ (y) ≤ 1, IE (y) ≥ R

where ρ : L2 (Ω,F , IP) −→ IR is a expectation risk measure or a deviation measure,

C ⊂ L2 (Ω,F , IP) is the convex cone of reachable pay-offs in a market with frictions,

Π : L2 (Ω,F , IP) −→ IR is a pricing rule that satisfies Expression (2), R > 0 is the minimum

required expected return, and IE denotes the mathematical expectation of every random

variable. The developed theory allows for extensions of those properties found in Balbás et

al. (2010b).

Other interesting minimax problem related to imperfections is the minimization of the price

of a given pay-off. Though this problem does not make any sense in frictionless arbitrage

free markets, because there is only one price per pay-off, this property does not remain true

under frictions, and the corresponding minimax problems becomes




Min Π(y)

y ∈ C, y ≥ P

P being the desired pay-off.

13



4.4 Interest rate risk

Interest rate risk hedging is a classical issue in Financial Mathematics. If the Term Structure

of Interest Rates (TSIR) grows (falls) then bond prices fall (grow) which implies that

traders may lose money due to the TSIR evolution. Usually, duration and convexity

(Montrucchio and Peccati, 1991, among others) are the portfolio parameters that investors

control in order to protect their wealth, but Bierwag and Khang (1979) showed that hedged

portfolios are also maximin strategies. Since then, many researchers have extended the

discussion, and a very complete analysis may be found, for instance, in Barber and Copper

(1998) or Balbás and Romera (2007). In particular, this recent paper has developed a

semi-infinite simplex like algorithm (Anderson and Nash, 1987) that leads to the maximin

strategy for a wide family of TSIR shifts.

Following Balbás and Romera (2007), consider n arbitrary bonds Bj, j = 1, 2, ..., n, and

denote by p = (p1, p2, ..., pn), pj > 0, j = 1, 2, ..., n, the vector of prices. Suppose that T

is a future date such that the bond maturities lie within the interval [0, T ]. Suppose that

m ∈ [0, T ] represents the horizon planning period and K is a set of real valued functions

on [0, T ] whose elements are admissible shocks on the TSIR. The portfolio composed of

qj units of Bj, j = 1, 2, ..., n, will be represented by q = (q1, q2, ..., qn) ∈ IR
n and

∑n

j=1 pjqj

will be its price. If Vj(k) is the value of Bj, j = 1, 2, ..., n, at m if k ∈ K takes place, then

the real valued function V : IRn ×K −→ IR given by

V (q, k) =
n∑

j=1

qjVj(k) (18)

will provide the value of q = (q1, ..., qn) at m if k takes place.

Expression (18) implies that V (−, k) is linear in the q variable. We will assume that K is

endowed with an appropriate topology and becomes Hausdorff and compact. For instance,

in Balbás and Romera (2007) there are three examples, whose compactness is implied by

the Ascoli-Arzelà or the Alaoglu’s Theorem (Rudin, 1972). These examples are:

a) K1 ⊂ C[0, T ] is composed of those continuously differentiable functions k such that

| k(t) |≤ λ1 and | k′(t) |≤ λ2 for every t ∈ [0, T ]. K1 is endowed with the compact-open

topology topology.

b)K2 ⊂ L
2[0, T ] is composed of those functions k such that | k(t) |≤ λ1 and | k(t2)−k(t1) |≤

14



λ2 almost everywhere. K2 is endowed with the weak topology.

c) If K3 is a closed ball of L2[0, T ], endowed with the weak topology.

Moreover, Vj : K −→ IR, j = 1, 2, ..., n, is assumed to be continuous and, therefore, it

follows from (18) that V (q,−) : K −→ IR is also continuous in the k variable.

Given q ∈ IRn, we define its guaranteed value at m by

V̄ (q) =Min{V (q, k); k ∈ K},

which implies that V̄ is the minimum of a family of linear functions. Moreover, the maximin

hedging problem is given by 



Max V̄ (q)

q ∈ Q
(19)

where the convex set Q will be defined by real constraints in practical applications. They

may be related to budget, short-selling or duration restrictions, liabilities, and other situa-

tions. Obviously, (19) is a particular case of (3) and therefore Corollary 5 applies. Hence,

Problem (19) may be frequently solved by methods less complex than the semi-infinite

simplex like algorithm Balbás and Romera (2007). Since q ∈ IR
n then for every fixed

k ∈ K the linear function q → V (q, k) belongs to IRn too, i.e., (19) fits in (3) with the

finite-dimensional framework Y = Z = IRn. Thus, the conditions of Corollary 5 apply in

finite dimensions, which significantly simplifies the previous theoretical and computational

analyses dealing with this problem (Barber and Copper, 1998, Balbás and Romera, 2007,

etc.).

5 Conclusions

This paper has provided a new Duality Theory for maximin and minimax convex problems.

The major finding is Theorem 3, which guarantees strong duality between the minimax

problem and its dual, as well as the existence of simple systems of equations character-

izing both primal and dual solutions. With respect to former studies, this new approach

significantly simplifies the optimality conditions, which become easy to apply in practice.

Actuarial and Financial applications have been given. �
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