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ABSTRACT 

The use of machine learning (ML) models has been shown to have advantages over 
alternative and more traditional time series models in the presence of big data. One of 
the most successful ML forecasting procedures is the Random Forest (RF) machine 
learning algorithm. In this paper we propose a mixed RF approach for modeling 
departures from linearity, instead of starting with a completely nonlinear or 
nonparametric model. The methodology is applied to the weekly forecasts of gasoline 
prices that are cointegrated with international oil prices and exchange rates. The 
question of interest is whether gasoline prices react asymmetrically to increases in oil 
prices rather than to decreases in oil prices, the “rockets and feathers” hypothesis. In 
this literature most authors estimate parametric nonlinear error correction models using 
nonlinear least squares. Recent specifications for nonlinear error correction models 
include threshold autoregressive models (TAR), double threshold error correction 
models (ECM) or double threshold smooth transition autoregressive (STAR) models. In 
this paper, we describe the econometric methodology that combines linear dynamic 
autoregressive distributed lag (ARDL) models with cointegrated variables with added 
nonlinear components, or price asymmetries, estimated by the powerful tool of RF. We 
apply our mixed RF specification strategy to weekly prices of the Spanish gasoline 
market from 2010 to 2019. We show that the new mixed RF error correction model  has 
important advantages over competing parametric and nonparametric models, in terms 
of the generality of model specification, estimation and forecasting. 

JEL: B23, C24, C52, C53, D43, L13, L71. 

Keywords: Forecasting gasoline prices, Rockets and feathers hypothesis, 
Cointegration, Nonlinear error correction,  Machine learning, Random forest, Mixed 
random forest. 
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1. Introduction 

 Since the seminal papers of cointegration and linear error correction models of 

Granger (1981) and Engle & Granger (1987), a large body of literature has emerged 

that aims at cointegration among economic variables. The first extension to nonlinear 

error correction (NEC) models was proposed by Escribano (1985, 1986) when 

modeling the evolution of UK money demand from the nineteenth century onwards. 

Since then, several authors such as Hendry & Ericsson (1991), Teräsvista and 

Eliasson (2001), and Escribano (2004), have used a nonlinear error correction 

approach to obtain stable UK money demand parameter estimates. Other economics 

examples using asymmetric or nonlinear error correction models include: the 

relationship between production, sales and inventory, (Granger & Lee, 1989); the 

“rockets and feathers” hypothesis of how international oil prices are transmitted to 

gasoline prices in most countries when firms have market power, (Borentein, Cameron, 

& Gilbert, 1997); asymmetries in labor markets, (Escribano & Pfann, 1998); 

asymmetries in gold and silver prices (Escribano & Granger, 1998) and asymmetries in 

the terms structure of interest rates (Enders & Granger, 1998). 

 All those models are dynamic and parametric models capturing departures from 

linearity with simple nonlinear equilibrium correction specifications affecting a single 

explanatory variable. The exception to this dynamic approach is based on the 

methodology of Teräsvirta (1994) that allows the whole dynamics of the linear model to 

affect the departures from linearity with smooth transition autoregressive (STAR) 

models. To estimate those models, a few parametric functions are used such as the 

exponential function or the logistic function (transition functions). To select between the 

those two parametric functions, several decision rules have been proposed by 

Teräsvirta (1994) and Escribano & Jorda (1999, 2001). 

 The goal of this paper is to contribute to this literature on nonlinear error 

correction models by proposing a more general dynamic methodology that maintains 

the basic idea of modeling departures from linearity, but uses the advantages of a 

powerful nonlinear approach suggested in the machine learning (ML) literature; the 

random forest (RF) approach. This RF modeling approach extends the classic 

regression trees approach, by using bootstrap aggregating or bagged decorrelated 

trees, to avoid over-fitting with highly correlated trees, in the bootstrapped training 

samples. The RF model is later tested in the test set. Our approach is not the usual 

pure RF approach, but instead we suggest a new mixed RF forest approach that 

combines the information learned from: a) usual time series techniques, that has 
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proved to forecast well when there is no abrupt changes in the economy, with b) a 

flexible RF approach that is able to identify the main variables related to those 

structural changes in the economy, and also is able to generate more robust estimates 

than the usual parameter estimates provided by the nonlinear least squares (NLS) 

approach. 

 The structure of the paper as follows: Section 2 briefly reviews the empirical 

evidence of the asymmetric reactions in the fuel market to changes in international oil 

prices. Section 3 discusses the cointegrating relationship that exists in the gasoline 

market in Spain, specifies the corresponding parametric nonlinear error correction 

specifications used in the literature, and explores the consumer complaint that retail 

gasoline prices react faster to crude oil price increases than to crude oil price 

decreases. Machine learning (ML) methods are briefly introduced in Section 4. Section 

5 includes the main results from the empirical application of Logistic error correction 

models, RF error correction models, and the new mixed RF error correction approach. 

Section 6 discusses the forecasting comparison of those three approaches, and shows 

how the new mixed RF approach outperforms the rest. In Section 7, we present the 

main conclusion and consider further extensions. 

 
2. Empirical evidence of asymmetric reactions in the fuel 

market to changes in international oil prices 

 Price determination in the fuel market has been a controversial issue during the 

last decades. In most economies, the fuel sector has been accused of having high 

market power and, as a result, of carrying non-competitive practices. When input costs 

increase, output prices increase at a faster rate; however, when input costs decrease, 

output prices adjust more slowly. This phenomenon is known formally as “asymmetric 

price transmission” and informally as “rockets and feathers”. The existence of these 

asymmetries is undesirable since they can be detrimental for consumers and can lead 

to efficiency losses. 

 Asymmetric price transmission has been studied for several markets across the 

world but it has been focused on the fuel market. In the case of the US, different 

studies have focused on this topic. The most common way to tackle the presence of 

the rockets and feathers phenomenon is by following the pioneering work of Borenstein 

et al. (1997). Using weekly data for different states during the period of 1986-1990, 

those authors created an Autoregressive Distributed Lag (ARDL) and an Error 
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Correction Model (ECM). The results of these empirical models show that the 

adjustments of spot and retail gasoline prices to changes in weekly crude oil prices are 

asymmetric. However, when using daily data for the same period, Bachmeier & Griffin 

(2003) detect no asymmetries in price transmission. Balke et al. (1998) found evidence 

for a persistent asymmetry by using an ECM during the period of 1987-1997. Deltas 

(2008) showed that retail gasoline prices respond faster to wholesale price increases 

than wholesale price decreases. He suggests that sticky prices and response 

asymmetries are the consequences of retail market power. If market power leads to 

higher price-cost margins, it is more likely that the price dynamics would tend to be 

beneficial rather than detrimental regarding profits. Furthermore, his results are 

consistent with different forecast methods, which show better accuracy for asymmetric 

models rather than symmetric models. Johnson (2002) analyzed central heating oil and 

gasoline price responses to changes in crude spot levels for 15 North American states. 

The results confirm that gasoline prices respond asymmetrically to crude oil price 

changes, while central heating oil reacts symmetrically. Other studies have investigated 

the “rockets and feathers” phenomenon in South America. Balmaceda (2008) studied 

the asymmetry price transmission for the case of Chile, where there is a unique refined 

public firm (ENAP) which belongs to the state. Instead of using time-series, a panel of 

weakly data regarding several service stations over time is applied. This analysis 

showed that the best model with which to study the asymmetry is an error correction 

model. Under this method, the rockets and feathers theory is met. Additionally, the 

study reveals that independently of the margins and geographical differentiation of 

service stations, the asymmetry in prices remains the same.  

 With respect to Europe there are also several studies. The work of Bacon 

(1991) is known for being one of the pioneering studies on this topic with his 

introduction of the term “rockets and feathers”. Bettendorf et al. (2009) address the 

analysis for the Dutch retail gasoline market by using an Exponential Generalized 

Autoregressive Conditional Heteroskedasticity (EGARCH) model. The paper shows 

that the volatility process is not symmetric: a negative shock to the retail price has a 

lower impact on the variance of the retail price than a positive shock. Further evidence 

of asymmetric GARCH models is provided by Torrado & Escribano (2020) for the 

Spanish market. Galeotti et al. (2003) examined the adjustments of the retail price of 

gasoline when a shock to crude oil prices occurs. The main contribution is that different 

countries are compared using a two-stage approach for the transmission mechanisms 

with the aim of resolving whether the asymmetry is at the refinery level, at the 

distribution level, or at both stages, by applying an ECM and also bootstrapping. The 
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study found symmetric pricing for Germany, Italy and the U.K., and asymmetric 

transmissions in the case of France and Spain using the single stage approach and the 

second stage of the two stage approach. The Spanish case has not been widely 

studied. Cotín-Pillart (2008) replicates the cumulative response functions and the ECM 

model developed by Borenstein et al. (1997) for the Spanish market during the periods 

of 1993-1998 and 1998-2005.  For the first period, changes in spot gasoline prices are 

completely translated into retail price changes but in a symmetric way. Nevertheless, 

the second period shows asymmetric responses of retail prices to the spot price. More 

recent studies were undertaken by Jiménez & Perdiguero (2005), Perdiguero (2010), 

and Torrado & Escribano (2020).  

 

3. Cointegration and nonlinear error correction models of the 
Spanish fuel market 

 In order to estimate the potential asymmetric price transmissions in the Spanish 

fuel market, weekly data from January 8, 2010 until November 11, 2019. For the out-of-

sample forecasting period we use the extended data from November 3,  2017 until 

November 11, 2019. The variables employed in this paper are the price of crude oil 

(CR) in $/barrel of the Brent Spot Price FOB, the €/$ exchange rate (ER), and the pre-

tax retail price of 95 octane gasoline (RS), or Spanish retail price of gasoline in €. The 

abbreviations of the variables in capital letters refer to the series in levels and 

lowercase letters represent variables in logarithms (cr, er, and rs). For crude oil prices, 

the weekly Europe Brent Spot Price FOB ($ per barrel) from the US Energy Information 

Administration (EIA) is used and transformed into $/1000L. The exchange rate is 

obtained from the FRED. The pre-tax retail price (RS) chosen is an average of the 95 

octane gasoline prices (€/liter) provided by the Spanish National Commission of 

Markets and Competence (CNMC is the Spanish acronym), which is also transformed2 

into €/1000L. 

 The fuel market is a complex sector made up of several stages from the 

extraction of crude oil until the production, distribution, and sale of gasoline to final 

consumers, see Fig. 1.  

                                                             
2 The unit conversion of the spot price of gasoline is derived by applying the following formula: 
Pgasoline (€/1000L) = [Pgasoline (€/t)] * [740 (kg/m3) /1000]. 
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Fig. 1. Price formation along the production-distribution chain. 

 

Note. The single stage approach establishes how final retail prices (RS) in € are related 

(cointegrated) with crude oil prices (CR) in $ and the exchange rate (ER in €/$).  

 

 The plots of the price variables in Fig. 2 show the relationship between crude oil 

prices and gasoline prices at different stages of the production-distribution chain for the 

95-octane gasoline. The difference between the price series (S) and (CR_EUROS) can 

be a proxy of the margin in the first stage of the production-distribution chain, whereas 

the price difference between (RS) and (S) is a proxy for the margin in the second stage 

of Fig. 1. 

 

Fig. 2. Evolution of the prices of the oil production-distribution chain. 
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The vast majority of the rockets and feathers investigations developed an ECM 

methodology due to the presence of cointegration between downstream and upstream 

prices.  

Long-run equilibrium prices and cointegration 

 To model the gasoline market, we focus on a single-stage process. Escribano & 

Torrado (2018) also discuss the other two stages considered in Fig. 1. 

Given that all the variables are I(1) or have a unit root, if a linear combination of them is 

stationary, I(0), then the variables are cointegrated. Recall that lowercase letters 

indicate that variables are in log form.                         

                              (1) 

If ecmt>0 ( ) this means that the actual price log price, rst , is above the expected 

long-run equilibrium price  and therefore future 

prices should decrease to reduce the disequilibrium. When ecmt<0  ( ) the actual 

log-price rst is below the expected long-run equilibrium log-price and we expect future 

prices to increase to correct the disequilibrium. 

The single-stage cointegration equation is given by 

 .                                             (2) 

In Eq. (3) we allow the asymmetric behavior to affect both the dynamics and the error 

correction terms (ecmt-1) in a nonlinear way. Books adequately reviewing the modeling 

of nonlinear time series models and nonlinear error correction models are by Dufrénot 

& Mignon (2002) and Teräsvirta, Tjostheim, & Granger (2010). 

 According to the Granger Representation Theorem, the presence of a 

cointegrating relation implies that a valid ECM exists. However, it is not clear whether 

the error correction adjustment (equilibrium correction) is linear as in Engle & Granger 

(1987) or is nonlinear/asymmetric as in Escribano (1986, 2004), Escribano & Granger 

(1998), and Escribano & Pfann (1998).  

 Starting from the seminal work of Teräsvirta (1994), and the extensions 

discussed in Teräsvirta, Tjostheim, & Granger (2010), we consider a nonlinear 

autoregressive distributed lag (ARDL), also called smooth transition autoregressive 

(STAR) model, in the form of a nonlinear and time-varying error correction model. 

STAR model affecting the Dynamics and  the Error Correction term (STAR) 

rst = rst
* + ecmt = E(rst / xt ,α )+ ecmt =α 0 +α1crt +α 2ert + ecmt

ecm+
t

rst
* = E(rst / xt ,α ) =α 0 +α1crt +α 2ert

ecm−
t

rst = rsα 0 +α1crt +α 2ert + ecmt
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              (3) 

where ai(L) and cj(L) in Eq. (3) are finite order polynomials in the lag operator L, with all 

roots outside the unit circle.  

The results of the study by Escribano & Torrado (2018) show that the main source of 

asymmetries in the gasoline prices are coming from the impact of on the ecmt-1 

terms and not from the dynamic part of the autoregressive distributed lag (ARDL) 

variables of Eq. (3). In the empirical application described in this paper to the gasoline 

prices in Spain, we also find a linear behavior affecting the dynamics of the variables 

Drst and Dxt, but a nonlinearly behavior affecting the error correction terms from two 

main sources; (i) the sign of the ecmt-1 and (ii) whether the crude oil (cr) is increasing 

(∆𝑐𝑟$%	 = ∆𝑐𝑟$ if ∆𝑐𝑟$ ≥ 0	 and 0 otherwise) or decreasing (∆𝑐𝑟$*	 = ∆𝑐𝑟$		if	∆𝑐𝑟$ < 0	 and 0 

otherwise).   

Bivariate Nonlinear Error Correction (NEC) 

             (4) 

4th-order polynomial Model (4th POL-ECM), Escribano3 (1986, 2004) 

     (5) 

The starting point of the nonlinear model specification is with a general Taylor series 

expansion of the function F(.,.) in Eq. (4) given by the 4th order polynomial of Eq. (5), 

4th-order polynomial Model with double threshold (4th POL-DT-ECM), Escribano & 

Torrado (2018) 

     (6)  

Following Teräsvirta (1994) the first step is to test for linearity in Eq. (6) by testing the 

null hypothesis that  against the alternative of 

                                                             
3 In the original nonlinear error correction of Escribano (1986, 2004) applied to the UK money 
demand since the 19th century, the Taylor series expansion was based on a cubic polynomial 
expansion of the ecmt-1 term instead of the variable . Escribano & Torrado (2018) used 
this alternative specification in the Spanish fuel market but the result was statistically non-
significant. 

Δrst = a0+ ap(L)Δrst−1+ aq(L)´Δxt+

+ F(ecmt−1,Δcrt ,γ ,β )(c0+ cr (L)Δrst−1+ cm(L)´Δxt)+ ε t

Δcr t

Δrst = a0 + ap (L)Δrst−1 + aq (L)´Δxt + F(ecmt−1,Δcrt ,γ ,β )+ ε t

  

F(ecmt−1,Δcrt ,β ) = β01ecmt−1 + β1ecmt−1t−1(Δcrt )+

+ β2ecmt−1t−1(Δcrt )
2 + β3ecmt−1t−1(Δcrt )

3 + β4ecmt−1t−1(Δcrt )
4

Δrst = a0 + ap (L)Δrst−1 + aq (L)´Δxt + β01ecmt−1 + β1ecmt−1(Δcrt )+

+ β2ecmt−1(Δcrt )2 + β3ecmt−1(Δcrt )3 + β4ecmt−1(Δcrt )4 + ε t .

H0 :β1 = β2 = β3 = β4 = 0

(Δcrt )
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, or against the alternative hypothesis that at least 

some of those coefficients are different from 0. If the null hypothesis of linearity is 

rejected, the next step suggested in Teräsvirta (1994) follows a decision rule to select 

between Logistic or Exponential smooth transition specification.  

Escribano & Jorda (1999, 2001) suggested the following more powerful decision rule 

based on Eq. (6). If the minimum p-value is obtained, rejecting the null hypothesis 

, then the model is Logistic STAR. However, if the minimum p-value is 

obtained, rejecting the null hypothesis , then the model is Exponential 

STAR.  

 Six different linear and nonlinear parameterizations of error correction models 

were estimated in Escribano & Torrado (2018) with linear and nonlinear equilibrium 

correction terms and the class of selected models was the following Logistic-ECM. 

 

Smooth Transition Error Correction Models (LOGISTIC-ECM) 

                    (7) 

The nonlinear specification of Eqs. (3) and (7) are discussed in Teräsvirta & Eliasson 

(2001) with a different dataset and was also considered in Escribano & Torrado (2018). 

However, they found that model (7) or the bivariate double threshold extension of 

model (7) provided the best nonlinear models for weekly gasoline prices in Spain.  

Double Threshold Logistic Error Correction Models (DT-LOGISTIC-ECM)  

                    (8) 

To do that, they started with the following Taylor series approximation of Eq. (4) and 

Eq. (8) given in Eq. (9), 

H1 :β1 ≠ 0,β2 ≠ 0,β3 ≠ 0,β4 ≠ 0

H0L :β1 = β3 = 0

H0E :β2 = β4 = 0

  

F(ecmt−1,Δcrt ,γ ,β ) = βecmt−1

1
1+ exp(−γ Δcrt )

⎛

⎝⎜
⎞

⎠⎟
.

  

F(ecmt−1,Δcrt ,γ ,β ) = β1
+ecmt−1

+ 1
1+ exp(−γ Δcrt )

⎛

⎝⎜
⎞

⎠⎟
+

+β2
−ecmt−1

− 1
1+ exp(−γ Δcrt )

⎛

⎝⎜
⎞

⎠⎟
.
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 (9) 

 

The decision rule of Escribano & Jorda (1999, 2001) applied to Eq. (9) is the following: 

if the minimum p-value is obtained rejecting the null hypothesis , for 

j=p or n, then the models are Logistic STAR. However, if the minimum p-value is 

obtained, rejecting the null hypothesis  for j=p or n, then the model 

is Exponential STAR. Based on this decision rule they selected the Logistic STAR 

model for gasoline prices in Spain. 

 

4.  Random forest methods 

 Machine learning (ML) methods have cast light on the data analysis. Medeiros 

et al. (2019) claim that the machine learning gains in mean squared errors reach up 

to 30% in the US CPI inflation in the two years out-of-sample forecasting compared 

to the traditional random walk, autoregressive, and unobserved components of 

stochastic volatility models. In particular the random forest (RF) (Breiman, 2001), 

outperforms compared to other machine learning methods, i.e., deep neural 

networks, boosted trees, and a polynomial model estimated either by LASSO or 

adaLASSO.  

 Compared to the decision tree algorithm, in the RF the processes of finding the 

root node and splitting the feature nodes run randomly. The RF model randomly 

searches the models that fit the subset of the dataset instead of searching the best 

model that fits the whole dataset, hence the variance in models of trees are 

reduced. It leads to a reduction in the possibility of overfitting and the building of 

models that are better trained for future predictions. These good properties received 

much attention in the field of economics by such as Scornet et al. (2015) and 

Wagner & Athey (2018).  

 As an ensemble method, the RF using the tree bagging process tends to yield 

the high accuracies, by combining the predictions from multiple machine learning 

algorithms. Here, we present a brief picture about how random forest works, taking 

600 trees as the example. The RF uses the bagging process rather than the 

Δrst = a0 + ap (L)Δrst−1 + aq (L)´Δxt + β01ecmt−1 +

+ β1pecmt−1
+ (Δcrt )+ β2 pecmt−1

+ (Δcrt )2 + β3pecmt−1
+ (Δcrt )3 + β4 pecmt−1

+ (Δcrt )4 +

+ β1necmt−1
− (Δcrt )+ β2necmt−1

− (Δcrt )2 + β3necmt−1
− (Δcrt )3 + β4necmt−1

− (Δcrt )4 + ε t .

H0L :β1 j = β3 j = 0

H0E :β2 j = β4 j = 0
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boosting process, which means that the trees in random forests are run in parallel. 

There is no interaction between these trees while building the trees.  

Fig. 3 represents the basic structure of a random forest (RF) where:  

(a) the RF randomly selects “k” features from total “m” features where k<<m, for 

example, in section 5.2, Δrs$ = RF(Δcr$, Δcr$*6, Δer$, Δer$*6, Δrs$*6, Δrs$*8, ecm$*6) =

RF(𝑋$), m=7 features in the RF, 

 (b) then among these “k” features, the node (Tree 1 the first node) is obtained by 

using the best split (the splits are determined to minimize the sum of squared 

errors),  

(c) splitting the node into daughter nodes using best split,  

(d) following steps (a) to (c), until reaching “l” number if nodes,  

(e) by repeating steps (a) to (d) “n” (600 trees) number times (bagging procedure), 

then the “n” number of trees are built, 

 (f) the final prediction would be the average of predictions in all these “n” (600) 

trees.  

Fig. 3. Random Forest Structure. 

 

Biau & Scornet (2016) summarized the RF algorithm in Breiman L(2001). There are 
4 important parameters in the RF mechanism in the RF setting in the software:  

(1) aN∈ {1,…,N}: the number of sampled data points in each tree, N is total number 
of observations in the training dataset;  
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(2) mtry ∈ {1, . . . , m}: the number of possible directions for splitting at each node of 
each tree, m is the total available features;  

(3) nodesize ∈ {1, . . . , an }: the number of examples in each cell below which the 
node is not split. 

(4) n: number of trees. 

  These parameters are selected according to the minimum mean squared errors. 

 The RF builds robust models (trees), improving the accuracies. However, it is 

computationally very expensive, since many trees need to be made during the 

training process (Singh, 2018). The process (Mixed-RF) we wish to build would be 

able to reduce the tree size.  

 In economics, for decades the majority of the literature has a focus on the 

functionals of its distribution in parametric and non-parametric approaches. 

However, a mis-specified parametric model might lead to misleading results and 

well-known over-fitting problems, while non-parametric modeling suffers from less 

precision and the curse of dimensionality. Robinson (1988) offers an interesting  

semi-parametric modeling approach which provides consistent estimators when 

modeling 𝛽′𝑋$ + 𝜃(𝑍$), where 𝜃(𝑍$) is the unknown non-linear function and 𝑋$ is 

neither completely dependent on 𝑍$ nor necessarily independent on it. An alternative 

approach, with flexible correction terms including power series similar in spirit to our 

approach that also uses power series, was suggested in Newey (2009). 

 In most multivariate time series models, the dynamic behavior of economic 

variables is explained by a combination of linear dynamic parametric forms with 

nonlinear forms measuring temporal departures from linearity, as in Eq. (3). See 

Teräsvirta, Tjostheim, & Granger (2010) for a general discussion of this approach. 

Based on this mixed approach we suggest a new semi-parametric modeling.  

 In this paper, we propose a new mixed strategy to specify dynamic RF models. 

James & Wineland (2010) show that the mixed dynamic linear model, using 

OLS+RF, performs much better than adaLASSO+RF and RF in modeling and out-

of-sample forecasting when the defined linear part is independent of the unknown 

pattern function 𝜃(𝑍$). However, in our approach, we allow for some dependency 

between the specified linear part of the models and the non-linear parts. We show 

that the linear part converges after the first iteration. For interpretation purposes and 

to open the black-box of the RF, we study the features of importance, the individual 

condition expectations, and the interaction between features and dependent 

variables. 
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5. Empirical application to the gasoline market 

 In order to compare the estimation and forecasting ability of different 

procedures, we focus on the logistic-ECM, the random forest, and the new 

procedure to estimate a mixed random forest based on the single-stage co-

integration relation of gasoline prices provided by Eq. (2).  

 The weekly data set starts on January 8, 2010 and ends on November 11, 

2019. The first 405 observations are used as the training dataset (from January 8, 

2010 to October 27, 2017), and the test dataset (Forecasting period) runs from 

November 3, 2017 to November 11, 2019 with 102 forecasting periods.  

 

 

5.1 LOGISTIC-ECM model (Non-linear least squares) 

 In this section, we look at the parametric estimation of the logistic-ECM model 

of Eq. (7) using the non-linear least squares (NLS) estimation, with the initial values 

set up according to Escribano & Torrado (2018). The results of estimating model 

(10) by NLS are included in Table 1 and Fig. 5. 

.                 (10) 

 

Table 1 Nonlinear error correction model of the rate of growth of gasoline prices (Drst)  

Explanatory variables        Coefficients Std. errors t-ratio P-values 

Δcrt 0.336       0.019    17.85     < 2e-16 *** 
Δcrt-1                                             0.057       0.026 2.23     0.02612 *   
Δert 0.404 0.066     6.08     2.76e-09 *** 
Δert-1                                             0.143       0.070     2.05     0.04103 *   
Δrst-1                                             0.142       0.048     2.96     0.00323 ** 
Δrst-2                                             0.078       0.036     2.16     0.03135 *   
Logistic 
becmt-1*[1/(1+exp(-gΔcrt))]           

b = -0.158      

g = 48.75      

0.032  
39.374      

-4.97 
1.24           

9.86e-07 *** 
0.21637 

Significance:  0 '***', 0.001 '**', 0.01 '*' 

 

Δrst = â0 + âq (L)´Δxt + âp (L)Δrst−1 + β̂ecmt−1

1
1+ exp(−γ̂ Δcrt )

⎛

⎝⎜
⎞

⎠⎟
+ ε̂ t
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Escribano & Torrado (2018) show that in this parametric logistic-ECM model the ecm at 

t-1 interacts (nonlinear equilibrium correction) with the rate of change of international oil 

prices (Dcrt) thus affecting the evolution of gasoline prices, see Fig. 5.1. The gasoline 

price reaction to ecmt-1 is significant but small when the price of crude oil is decreasing 

but when the crude oil price is increasing, the gasoline price adjustment to the ecmt-1 

term is significant and much faster, see Fig. 5.2. Fig. 5.3 shows that the gasoline price 

equilibrium reaction (ecmt-1) is non-linear and changes with the level of (Dcrt).  
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Fig. 5.1 Single-stage logistic adjustment function. 

 

Fig. 5.2 Single-stage logistic adjustment function maintaining ecmt-1 fixed. 

 

Fig. 5.3. Single-stage logistic adjustment function maintaining Dcrt fixed. 
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5.2 Random forest 

 We consider the features that appear in Section 5.1, Table 1, hence: 

Δrs$ = RF(Δcr$, Δcr$*6, Δer$, Δer$*6, Δrs$*6, Δrs$*8, ecm$*6) = RF(𝑋$)             (11) 

Based on the least root mean squared errors and highest R-squared, the best 

parameters for pure Random Forest (RF) are: the number of variables available for 

splitting at each tree node(mtry) is 7, the minimum node size is 5, the maximum node 

size is 49, and the number of trees is 2000.  

The importance of each feature is presented in Table 2. The ecmt-1 and  are the 

two most important features in the RF. 

 

Table 2 Random Forest variable importance 

Variable Overall 
Δcrt 151.50 

ecmt-1   37.87 

Δcrt-1   36.09 

Δert   34.45 

Δrst-1   23.90 

Δert-1   14.89 

Δrst-2     8.31 

 

We then extract the best model in the RF to visualize and interpret random forest 

models. The order of the features is sorted in the reading direction by importance of 

variables. In Fig. 6, the y-axis has the cross validated (leave-one-out cross validation, 

in each process the optimized parameters are performed on  n-1 of n dataset pairs,  

and then the performance of the tuned algorithm is tested on the pair that have been 

left out, then repeating this process n times) contributions of each x-feature, i.e., the 

change of the predicted probabilities for different values of each x-feature. The plotting 

illustrates the main effects, as contributions by each feature were plotted against their 

respective feature values. In each sub-graph in Fig. 6, the x-axis represents the feature 

values of each regressor in vector Xt, see Eq. (11), and the black line represents the 

partial functions of each regressor on the . By employing the leave-one-out k-

nearest neighbor gaussian kernel estimation, the goodness of fit was obtained (R-

squared) for each regressor to the dependent variable ( ), which evaluates how 

Δcrt

Δcrt

Δcrt
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well each feature contribution can be explained as a main effect. From Fig. 6, we see 

clearly that  is the main effect when explaining gasoline prices, which is with R-

squared=0.99.  

 The main effect of , indicated by a non-linear pattern (S shape) of the first 

sub-graph in Fig. 6, has a Logistic shape function of the contribution of  to the rate 

of change in gasoline prices, Δrst. The second graph (in the reading direction) in Fig. 6 

shows the error correction contribution (ecmt-1) contribution to the rate of change in 

gasoline prices and as expected it is decreasing, as was also obtained in Fig. 5.3, but 

the decreasing is slow. The rest of the regressors present the positive effect on the 

gasoline prices and the partial effects of each regressor seem more linear than   

when the value of the regressor changes. A color gradient along the most influential 

feature, (cr_diff1 on the graph), was applied to search for interactions, for example 

in the first graph in  Fig. 6.  The observations in red color help discover the interactions 

with the other independent variables also presenting in red color in graphs 2 to 7 of Fig. 

6 (in the reading direction).  We can observe that there is latent interaction with ecmt-1.   

The interaction between  and ecmt-1 and the non-linear pattern (S-shape) of  , 

confirms the empirical results of Escribano & Torrado (2018) that, in the parametric 

modeling, the logistic-ECM fits the data better compared to the rest of the models, 

where the nonlinear error correction term is given by βecmt-1*[1/(1+exp(-γΔcrt))] in Eq. 

(10).  

 In Fig. 6 the color gradient suggests, that  interacted with ecmt-1 due to the 

vertical color gradient in the plot of ecmt-1. In Fig. 7 their combined feature contributions 

were plotted in the context of both features,  and ecmt-1. In this 3D plot it is 

observed, that the 2D rule of color gradients of interacting features was a basic 

consequence of the 2D projections from this 3D graph. There is no large deviation of 

feature contributions from the fitted gray color plot. Thus, it is evident that any structure 

of St, 

	

𝑆$ = (Δrs$, and	[Δcr$, Δcr$*6, Δer$, Δer$*6, Δrs$*6, Δrs$*8, ecm$*6])                        (12)  

related to  and ecmt-1 is well explained by the joint nonlinear effect of both features 

 and ecmt-1. The goodness of this fit was 0.97. Therefore, this second order effect 

plot was an appropriate representation of  and ecmt-1 contributing to the target Δrst. 

Δcrt

Δcrt
Δcrt

Δcrt

Δcrt

Δcrt Δcrt

Δcrt

Δcrt

Δcrt
Δcrt

Δcrt



18 
 

The depicted saddle-point structure of Fig. 7 was expected, as the product of  and 

ecmt-1 contributed additively to the target Δrst.  

Fig 6. 

 

Note: cr_diff1 denotes , lresidmodel3 denotes ecmt-1, lcr_diff1 denotes 	𝛥𝑐𝑟$*6, er_diff1 
denotes 𝛥𝑒𝑟$ , lrs_diff1 denotes 𝛥𝑟𝑠$*6, ler_diff1 denotes𝛥𝑒𝑟$*6 l2rs_diff1 denotes	𝛥𝑟𝑠$*8	.  R^2 
denotes R-squared.  

 

Fig. 7.  The 3D interaction plot of Δcrt and ecmt-1 on Δrst. 

 

Δcrt

Δcrt
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Note: cr_diff1 denotes , lresidmodel3 denotes ecmt-1, cr_diff1-lresidmode(Z-axis) denotes 
the interacted effect of  and  ecmt-1 on Δrst . R^2 denotes R-squared.   

5.3 Random forest nonlinear error correction models 

 The starting point in the model specification of the new mixed random forest 

(Mixed RF) approach, is to use the best parametric model of Escribano & Torrado 

(2018) in Eq. (10), estimated by nonlinear least squares (NLS) in Table 1. 

 From Eq. (10) we subtract the estimated linear dynamic part of the model and 

look for the best RF specification for the rest using the two most important features; 

ecmt-1 and .  

                      (11) 

Next, we subtract the estimated nonlinear RF terms in Eq. (11) from the dependent 

variable Drst, 

                                                  (12) 

and use the new dependent variable from Eq. (12) to estimate the new parameters of 

the linear dynamic terms based on Eq. (13). 

                                   (13) 

The iterations between the estimated models in Eq. (12) and Eq. (13) are running until 

convergence. This new semi-parametric modeling approach is called Mixed RF. 

 Based on the least root mean squared errors and highest R-squared, the best 

parameters for RF is: number of variables available for splitting at each tree node is 1, 

the minimum node size is 1, the maximum node size is 6, and the number of trees is 

259. Certainly the computing cost in the Mixed RF is much smaller than in the RF. The 

importance of each feature is:  

 

Table 3. Random forest variable importance in Mixed-RF 

Variable Overall 
ecmt-1 18.15 

Δcrt 5.48 

 

Δcrt
Δcrt

Δcrt

Δr !s ≡ Δrst − â0 + â p (L )Δrst −1 + âq (L )´Δxt = RF̂(ecmt −1,Δcrt )

Δr ⌣s ≡ Δrst − RF̂(ecmt −1,Δcrt )

Δr ⌣s = Δrst − â0 + â p (L )Δrst −1 + âq (L )´Δxt + ε̂ t



20 
 

The effects in the plot of  and ecmt-1 are clearly of a non-linear pattern, 

representing the underlying additive non-linear reaction of Δrst to changes in  and 

ecmt-1. In Fig. 8, the y-axis has the cross-validation (CV) contributions of each x-

feature, i.e., the change of the predicted probabilities for different values of each x-

feature. The plotting illustrates the main effects, as feature contributions by each 

feature were plotted against their respective feature values. In each sub-graph in Fig. 

8, the x-axis represents the feature values of each regressor in Eq. (11), and the black 

color line presents the partial functions. By employing the leave-one-out k-nearest 

neighbor gaussian kernel estimation, the goodness of fit was obtained (R-squared) for 

each regressor, which evaluates how well each feature contribution can be explained 

as a main effect. From Fig. 8, clearly is the main effect for explaining gasoline 

prices, which is with R-squared=0.89. The first sub-graph of Fig. 8 shows clearly that 

the equilibrium adjustment is more active when increasing the crude oil prices but the 

reaction is really small when there are negative changes on the crude oil prices. Fig. 8 

shows that the range of positive ecmt-1 is greater than the range of negative ecmt-1 and 

more plots are located into the positive range. A color gradient along the most 

influential feature, , is applied to search for interactions. We can observe that there 

is a latent interaction with ecmt-1.  

Fig. 8. Nonlinear reaction. 

 

Note: cr_diff1 denotes , lresidmodel3 denotes ecmt-1, R^2 denotes R-squared.  

Δcrt
Δcrt

Δcrt

Δcrt

Δcrt



21 
 

 

In Fig. 8 the color gradient suggests that  interacted with ecmt-1 due to the vertical 

color gradient in the plot of ecmt-1. In Fig. 9 their combined feature contributions are 

plotted in the context of both features,  and ecmt-1. The goodness of this fit is 0.83. 

Therefore, this second order effect plot is an appropriate representation of  and 

ecmt-1 and contributes to the adjustment of Δrst. Fig. 9 also provides evidence of the 

empirical finding of Escribano & Torrado (2018); the main and largest equilibrium 

corrections occur when the international crude oil prices are increasing. 

 

Fig. 9. Combined feature contributions. 

 
Note: cr_diff1 denotes , lresidmodel3 denotes ecmt-1, cr_diff1- lresidmode(Z-axis) denotes 
the interacted effect of  and  ecmt-1 on Δrst . R^2 denotes R-squared.   

 

By subtracting the estimated RF(ecmt-1, ) from Δrst, see Eq. (12), and estimating 

by OLS the parameters of Eq. (13), we are able to check the fast convergence of the 

parameter estimates of the dynamic linear part of the model as well as the nonlinear 

Δcrt

Δcrt
Δcrt

Δcrt
Δcrt

Δcrt
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part. By comparing the final estimation results of NLS, Eq. (10) and Table 1, with the 

Mixed Random Forest of Table 3, we observe that they are very similar, although they 

are not identical. In the following section we compare the forecasting ability of each 

nonlinear model. 

 

Table 3 Linear parameter estimates with Mixed RF 

 Coefficients Std. Errors t-ratio P-values 

Δcrt 0.330      0.019      17.16    < 2e-16 *** 

Δcrt-1 0.085      0.025       3.31     0.0010 ** 

Δert 0.383        0.067       5.67     2.71e-08 *** 

Δert-1 0.210       0.071      2.98    0.0031 ** 

Δrst-1 0.133       0.049      2.69    0.0074 **                                                         

Δrst-2 0.084      0.037       2.28      0.0231 

Significance levels:  0 '***', 0.001 '**', 0.01 '*' 

 

 

6. Forecasting comparison of three methods with training 
and test datasets 

 Table 4 presents the model performance based on both training and test 

datasets. Clearly, the mixed random forest (Mixed RF) model has the lowest root mean 

square error (RMSE) and mean absolute error (MAE) in both training and testing 

datasets while the random forest (RF) has the worse RMSE and MAE.  

 

Table 4. Comparing the model performance in each method 

 Training dataset Testing dataset 
 Logistic-

ECM 
RF Mixed-RF Logistic-

ECM 
RF Mixed-RF 

RMSE 0.0055918 0.005971 0.0052444 0.0042073 0.0042271 0.0041819 

MAE 0.0041978 0.004498 0.0039386 0.0030761 0.0030323 0.0030551 
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In all three models, the RMSE and MAE in the training dataset are bigger than in the 

testing dataset, hence the over-fitting might not be the issue here. Overall, the 

proposed Mixed RF over-performed compared to the other two models in both the 

training and testing datasets. 

 

6.1  Forecasting fuel prices with competing between these three models 

 In the previous section, we showed that the proposed Mixed RF outperformed 

the other two models in terms of model fit. Our goal now is to evaluate the out-of-

sample forecasting performance of these models based on the use of rolling windows 

in each model where the window size is 405 periods of weekly data (sub-sample). The 

forecasting period goes from November 3, 2017 to November 11, 2019 (102 periods). 

We estimate each model in each sub-sample (405 periods in our case), then we predict 

the h-step (1,2…12 in our case) ahead forecasts.   

Example: 1-step ahead forecasting: 

1. Estimate the first rolling window which is period 1 to period 405, then we 

forecast period 406 which is the first forecast period.  

2. Estimate the second rolling window which is period 2 to period 406, then we 

forecast period 407 which is the second forecast period. 

3. Keeping the procedure until the last rolling window period 102 to period 506, 

then we forecast the period 507 which is the last forecast period. 

 

The graphs of the out-of-sample forecasting of 1-week, 4-week, and 12-week ahead 

are given in Figs. 10.1, 10.2, and 10.3, respectively. The 1-step ahead forecast (Fig. 

1 405 

2 406 . 

        . 

                   . 

102 506 

Rolling window 1 

Rolling window 2 

Rolling window 102 

                                         1-step ahead forecasting 
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10.1) in Mixed RF and RF catch the true value and much closer to it than the Logistic 

ECM model. In both 4-step and 12-step ahead forecast, the Mixed RF and RF capture 

the change of gasoline price more than the Logistic ECM. 

 

                                                    Fig. 10.1 

 

                                                      Figure 10.2 
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                                                     Figure 10.3 
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 Then, we evaluate each model’s performance using the Model Confidence Set 

(MCS) proposed by Hansen et al. (2011). The MCS procedure aims to determine the 

Superior Set Models (SSM). Any model from the SSM has statistically equal 

forecasting capabilities. MCS presents the test between every pair of models. The null 

hypothesis is the equal predictive ability (EPA), which means that statistically all the 

models have the same predicting ability. The alternative is that models have different 

predicting abilities. If the null hypothesis is accepted, then we have obtained the SSM, 

otherwise, the procedure eliminates the worst performing model and the procedure is 

repeated. At 95% confidence level, all the models are not rejected for all the forecast 

results of the steps. However, at 80% confidence level, the non-linear parametric 

model is rejected in the 1-step ahead forecast.  

 Hence, the Mixed RF and the RF present an equal predictive ability in our 

dataset from the MCS test. We then evaluate the RMSEs and MAEs of these models to 

compare the accuracy of these models. The graphs of RMSEs and the MAEs of the 

out-of-sample forecast based on the 1-step to 12-step ahead forecasts are given in 

Figs. 11.1 and 11.2. We observe that the best forecasting performance is given by the 

Mixed RF since it has the lowest RMSE and MAE for all of the two forecasting horizons 

considered; short-term and middle-term on the average. However, the parametric 

logistic ECM model now gives the worst out-of-sample forecasting performance out of 

the three competing nonlinear modeling specification procedures considered. The RF 

performs slightly better in the long-term forecasting, with lower RMSEs and MAEs from 

8-step ahead to 11-step ahead. 

                                                  Fig. 11.1 
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                                                      Figure 11.2 

 

 

7. Conclusions 

 In this paper we described our testing of the consumer complaint that retail 

gasoline prices react faster to crude oil price increases than to crude oil price 

decreases. The relevance of fuel prices in the daily lives of people have attracted the 

attention of economists and competition authorities and subsequently the fuel market 

has been studied in detail for several countries. To date, no consensus has been 

reached for the Spanish sector since most of the empirical analyses previously 

undertaken, apart from those of Escribano & Torrado (2018) and Torrado &  Escribano 

(2020), did not find strong empirical evidence of asymmetric price behavior in gasoline 

markets. To tackle the “rockets and feathers” phenomenon of oil price changes those 

authors introduced an interaction term with previous long-run equilibrium error (ecmt-1), 

from the cointegrating relationship, as the transmission channel of changes in oil prices 

to changes in gasoline prices. These nonlinear models gain flexibility by introducing 

double threshold error correction terms; the error correction terms not only depend on 

whether the equilibrium error is positive or negative but also on whether the crude oil 

prices are rising or falling.  
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 In this paper, for training the mixed RF modeling we took an updated weekly 

series of variables for the period of January 2010 to October 2017. For the out-of-

sample forecast (test set) of gasoline prices we used the period of November 2017 to 

November 2019. The RF modeling in Table 2 indicates that the two main features of 

overall importance are the increases or decreases of oil prices (151.5) and the previous 

equilibrium errors (37.87). When applying the mixed RF modeling, the overall feature 

importance is reversed, with the previous equilibrium error having an importance of 

(18.15) and the increases or decreases of oil prices having a variable importance of 

(5.48). However, in both modeling approaches those are always the two main variables 

entering nonlinearly. Furthermore, from Fig. 6 to Fig. 9, both RF approaches identify 

that the Logistic approximation is the closest parametric functional form, as was 

previously established by Escribano & Torrado (2018) using a nonlinear error 

correction, the Logistic ECM. 

 The asymmetric results found in Spain in the oil market, show that sophisticated 

bivariate short-run nonlinearities are present in the gasoline market prices. Those 

gasoline price reactions depend on two main aspects; (a) whether the oil price 

increases or decreases and (b) whether the price levels of gasoline are above or below 

their long-run expected price levels. This long-run co-integrating equation relates the 

price of gasoline (€) with the international price of oil ($) and the corresponding 

exchange rate (€/$). 

 The mixed RF model corroborates the previous asymmetric results of Escribano 

& Torrado (2018). The disequilibrium in the long-run prices of gasoline is adjusted very 

slowly (slow equilibrium correction) when the international oil prices are decreasing but 

this equilibrium correction is very fast (fast equilibrium correction) when oil prices are 

increasing. 

 In terms of model fit, in both the training dataset and the test dataset, the best 

model is the new mixed RF. Similar results are also obtained when doing out-of-sample 

forecasts. Using a rolling window of 102 periods of weekly data, Figs. 10.1 to 10.3, the 

graph of the out-of-sample for 1-week, 4-week and 12-week ahead forecasting. In both 

4-step and 12-step ahead forecasting, the Mixed RF and the RF capture the change of 

gasoline price better than the Logistic ECM. From the graphs of RMSEs and the MAEs 

of the out-of-sample forecast, based on the 1-step ahead to the 12-step ahead 

forecasts, Figs. 11.1 and 11.2, we conclude that the best forecasting performance is 

given by the Mixed RF, for short-term and medium-term on average. The parametric 

logistic ECM model now gives the worst out-of-sample forecasting performance.  
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