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Abstract

The quadratic and linear cash flow dispersion measures M2 and ~NN are two immunization
risk measures designed to build immunized bond portfolios. This paper generalizes these

two measures by showing that any dispersion measure is an immunization risk measure and

therefore, it sets up a tool to be used in empirical testing. Each new measure is derived from

a different set of shocks (changes on the term structure of interest rates) and depends on the

corresponding subset of worst shocks. Consequently, a criterion for choosing appropriate im-

munization risk measures is to take those developed from the most reasonable sets of shocks

and the associated subset of worst shocks and then select those that work best empirically.

Adopting this approach, this paper then explores both numerical examples and a short empir-

ical study on the Spanish Bond Market in the mid-1990s to show that measures between linear

and quadratic are the most appropriate, and amongst them, the linear measure has the best

properties. This confirms previous studies on US and Canadian markets that maturity-

constrained-duration-matched portfolios also have good empirical behavior. � 2002 Elsevier

Science B.V. All rights reserved.
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1. Introduction

The immunization risk measure M2 was introduced by Fong and Vasicek (1984)
to overcome the main limitation of the traditional theory of immunization as formal-
ized by Fisher and Weil (1971). It is possible to assume specific changes on the term
structure of interest rates and develop different duration measures. 2 Unfortunately,
these duration measures are valid and therefore immunization is achieved only if in-
terest rate changes conform to the specific process assumed. Fong and Vasicek (1984)
showed that if the derivative of the instantaneous forward interest rate changes has
an upper bound, then the return of a matching duration portfolio is bound from
below by the M2 quadratic cash flow dispersion measure, which depends only on
the structure of the portfolio. Therefore, minimizing the M2 measure minimizes
the immunization risk.
Recently, a new immunization risk measure ~NN was introduced by Balb�aas and

Ib�aa~nnez (1998). This new measure is a linear cash flow dispersion measure and is de-
veloped by considering the general set of shocks in which the difference between any
two shocks on the forward instantaneous interest rates has an upper bound. The du-
ration matching portfolio that minimizes the ~NN measure also minimizes the immuni-
zation risk. Balb�aas and Ib�aa~nnez (1998) also show the tie between these immunization
risk measures and what they call the ‘‘weak immunization condition’’. By minimizing
either the M2 or ~NN measure, the effect of the worst shock, which prevents immuniza-
tion in each model, is minimized. 3; 4

This paper generalizes M2 and ~NN by showing that any cash flow dispersion
measure is an immunization risk measure and therefore, it sets up a tool to be used
in empirical testing. Each new measure is derived from a different set of shocks
(changes on the term structure of interest rates) and depends on the corresponding
subset of worst shocks. Consequently, a criterion for choosing appropriate immuni-
zation risk measures is to take those developed from the most reasonable sets of
shocks and the associated subset of worst shocks and then select those that work best
empirically.
Empirical results support the use of M2 and maturity matching bonds. For ex-

ample, Lacey and Nawhalka (1993) empirically demonstrated the effectiveness of
matching duration and minimizing the M2 measure. Bierwag et al. (1993) showed
that among matching duration portfolios, the inclusion of a maturity matching bond
works best empirically. Balb�aas and Ib�aa~nnez (1998) illustrated with examples that the
matching duration portfolio that minimizes the ~NN measure usually requires a matu-

2 For instance, parallel shifts or other non-parallel shifts (Bierwag, 1977; Chambers et al., 1988; Prisman

and Shores, 1988), shifts in an equilibrium models context (Cox et al., 1979; Brennan and Schwartz, 1983),

or empirically estimated shifts (Litterman and Scheinkman, 1991; Chance and Jordan, 1996; and others).

Furthermore, most of these strategies require no short selling constraints.
3 Unless the trivial case that a zero coupon bond with appropriate maturity is available.
4 Bowden (1997) and Barber and Copper (1998) also propose a new method to obtain the worst changes

on the interest rates. However, neither approach is equivalent to the M2 or ~NN methods.
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rity matching bond. Therefore, studying the relationship between dispersion mea-
sures and immunization risk measures is worthwhile.
Additionally, this paper presents an empirical study on the Spanish bond market

for a brief period in the mid-1990s that tests the dispersion measures developed here
against other standard immunization strategies from the literature. Among the dis-
persion measures, the empirical test and numerical examples show that the best im-
munization results are obtained by using measures between the linear and the
quadratic, with the linear ~NN having the best properties. These tests also show that
the linear measure usually includes a maturity matching bond. Furthermore, tests
on maturity-constrained duration-matched portfolios, as suggested in Bierwag
et al. (1993) and others, perform well empirically. This confirms previous empirical
results on US and Canadian markets.
The paper is organized as follows. Section 2 derives a generalized measure of

cash flow dispersion in a bond portfolio. Section 3 ranks these dispersion mea-
sures bearing in mind their associated set of shocks and worst shocks. Section 4 pre-
sents a short empirical study on the Spanish Bond Market. Section 5 concludes the
paper.

2. A generalized cash flow dispersion measure

This section builds on Balb�aas and Ib�aa~nnez (1998). They developed a linear disper-
sion measure by considering the general set of shocks in which the difference between
any two shocks on the forward instantaneous interest rates has an upper bound. This
upper bound can be understood as a volatility measure in this immunization context.
Further, they showed that within this set there exists a subset of ‘‘worst shocks’’,
which affect any immunized portfolio most negatively. Finally, among this subset
of worst shocks, there exists one element such that immunization is not feasible.
The authors demonstrate that the portfolio that minimizes the linear risk measure
is the portfolio that minimizes the effect of this one worst shock.
We are now in a position to introduce the main result of this paper. The following

Theorem 1 extends Balb�aas and Ib�aa~nnez (1998) by introducing the general dispersion
measure Mn, n > 0. We refer the reader to Appendix A for the construction and
proof of these results.
Let ½0; T � be the time interval with t ¼ 0 the present moment and m be the investor

planning period, 0 < m < T . Let us denote by C the capital to invest, by R the m ma-
turity zero coupon bond return, and by K the set of feasible shocks on the term struc-
ture of instantaneous forward interest rates. Following the usual assumptions,
portfolio q pays a continuous coupon cðtÞP 0, 06 t6 T , whose current value is de-
noted by cðt; 0Þ. If gðtÞ, 06 t6 T , represents the instantaneous forward interest rates
and kðtÞ 2 K is a shock on gðtÞ, then the value of the q portfolio at m, including the
coupons paid before m, is denoted by V ðq; kÞ.
We will consider an infinite number of possibilities for the convex set of feasible

shocks, K, and for each one we will develop a dispersion measure. For arbitrary
n > 1, let us introduce the set
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Kn ¼ kðtÞ; dkðtÞ
dt

�
6 kðn� 1Þ jt � mjn�2; tP 0; t 6¼ m

�
: ð1Þ

We assume that the derivative is bounded in every set Kn to prevent shocks for
which V ðq; kÞ would vanish at m since forward rates can fall before m and increase
after m. For example, when n ¼ 2, a feasible shock such as kðtÞ ¼ kðt � mÞ is a simple
polynomial of degree one and if this shock occurs, any coupon will lose all of its
value at m if the parameter k has no upper bounds. This is the Fong and Vasicek
(1984) case where k is the maximum derivative that the shock can achieve. Note that
all the above are convex sets.
Integrating (1) between t and m, we can see all that feasible shocks obey the fol-

lowing relationship:

kðmÞ � kðtÞ6 k jt � mjn�1; 06 t < m;

kðtÞ � kðmÞ6 k jt � mjn�1; m < t6 T ;
ð2Þ

where now we have bounded the variation of the shocks between instants t and m.
For the case n6 1 let us consider the following set of shocks which bound the vari-

ation between two instants (greater and smaller than m), where k ðk > 0Þ is a param-
eter on this bound:

Kn ¼ kðtÞ; kðt2Þ
n

� kðt1Þ6 k½ðt2 � mÞn�1 þ ðm� t1Þn�1�;

06 t1 < m < t26 T
o
: ð3Þ

The case n ¼ 1 is a limit case. For n6 1, the derivative is not bounded as in (1),
but the variation of the shocks between two instants (greater and smaller than m)
is bounded as in (3). The shocks belonging to K1 permit any derivative on the shocks,
but bound the absolute variation of the shocks between any two instants by the
parameter 2k. 5

Theorem 1. For all k 2 Kn; n > 0; we have

V ðq; kÞ � RC
RC

P k0ðm� DÞ � k
n
Mn; ð4Þ

where D is the Macaulay duration of the q portfolio, k0 depends on shock k and is given
by Lemma 2 in Appendix A, and Mn is the dispersion measure,

Mn ¼
Z T

0

cðt; 0Þ
C

jt � mjn dt: ð5Þ

5 The set K ¼ fkðtÞ; jkðt2Þ � kðt1Þj 6 k; 06 t1 < m < t26 T } is quite close to the set considered in
Balb�aas and Ib�aa~nnez (1998) and is included in K1.
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Proof. See Appendix A. �

If we now immunize against parallel shocks, D ¼ m, we obtain

V ðq; kÞ � RC
RC

P
�k
n

Mn

and therefore, any dispersion measure is an immunization risk measure. 6

From the proof of Theorem 1, each dispersion measure is a weighting of how the
worst shock with k0 ¼ 0 impacts the interest rates with which each coupon has to be
compounded. 7 The weights equal the present value of the coupons. Minimizing a
dispersion measure minimizes such effects. Now, if we consider this worst shock then
immunization is not feasible, and we can see again the connection between the ‘‘weak
immunization condition’’ and the strategies minimizing dispersion measures. Mini-
mizing any dispersion measure minimizes the effect of the worst shock (for the asso-
ciated set of shocks) that prevents immunization.
For the case n6 0, Appendix A shows that the sets K�

n contain worst shocks such
that the effect of these shocks on interest rates between t and m is �1 for t < m and
þ1 for t > m. Compounding this effect implies the value of any coupon at m is zero.
Therefore, although some dispersion measures are correct mathematically, they do
not make economic sense since they are associated with unrealistic shocks and worst
shocks. This fact will be used in the following section to choose among dispersion
measures.

3. Choosing a dispersion measure

We have shown that each dispersion measure is derived from a different set of
shocks and its corresponding subset of worst shocks. Consequently, we will consider
the most appropriate dispersion measures to be those implied by the most reasonable
sets of shocks and the associated subset of worst shocks. We will undertake this anal-
ysis by looking at each set of shocks (Eq. (1) for n > 1 and Eq. (3) for n6 1) and
worst shocks (Eq. (A.5) in Appendix A for all n).
A number of general dispersion measures, Mn, can be eliminated because they do

not make economic sense. For example, Footnote 11 (in Appendix A) shows that
for n6 0 the sets Kn give rise to absurd worst shocks and risk immunization measures
that are not dispersion measures. Therefore, they do not make economic sense. Eq.
(A.5) demonstrates that dispersion measures with 0 < n < 1 are also implied by un-
realistic worst shocks. Furthermore, if twists on the term structure result from rea-
sonable shocks, then (3) implies that these twists should not be allowed unless the
parameter k is large enough. It is hard to explain why the parameter k should be

6 Note that measure M1 is denoted by ~NN in Balb�aas and Ib�aa~nnez (1998).
7 Eq. (A.5) in Appendix A provides the general form of the subset of worst shocks, K�

n , for all n.
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so large. Therefore, we do not consider measures such that 0 < n < 1 to be suitable
risk immunization measures. Finally, Eq. (A.5) shows that when n > 2 the associated
worst shocks are not reasonable as they are too large when t is far from m. Therefore,
the appropriate dispersion measures are those that are between the linear and the
quadratic, i.e., 16 n6 2.
Balb�aas and Ib�aa~nnez (1998, pp. 1586–1587) made three arguments that are relevant

to this discussion regarding the favorable properties of shocks in K1 rather than in
K2. These arguments are also valid comparing K1 with Kn, 1 < n < 2. Note however,
as n tends to 1, the sets Kn and K1 become quite similar and the dispersion measures
tend to the linear measure. Therefore, these arguments become weaker as n tends to 1
and imply that measures close to the linear are developed from more reasonable
shocks than those close to the quadratic one.
For 1 < n < 2, the dispersion measures share properties of both the linear and

quadratic dispersion measures. They do not constrain the derivative of the shock
so much as the quadratic measure at t close to m. On the other hand, they will permit
more variations than the linear measure if t is far from m. Both the linear and the
quadratic measures do, however, share an advantage over the measures between
them; the sets K1 in (3) and K2 in (1), from which these measures are deduced, do
not depend on the parameter m.
To bring more light to the problem, we now present a simple example to see which

portfolios minimize the dispersion measures. For simplicity, we consider an investor
planning period of five years, m ¼ 5, and assume a flat term structure on the interest
rates, r ¼ 10%.
Let us consider the set of coupon bonds presented in Table 1. The first column in

Table 1 indicates the bond number, the second its maturity, the third its coupon (as a
percentage), the fourth its coupon periodicity (in months), the fifth its bond dura-
tion (in years), and the last five columns correspond to its dispersion measures
for n ¼ 0:5; 1; 1:5; 2 and 2.5. In Table 1 we give the duration matching portfolios.
The first column is the portfolio number, the second is the first bond in the portfo-
lio, the third is the second bond in the portfolio, the fourth is the first bond per-
centage and the last five columns correspond to the dispersion measures given
for n ¼ 0:5; 1; 1:5; 2 and 2.5. The portfolios are arranged according to their M1

measure.

Table 1

Set of bonds

Bond

no.

Maturity

(years)

Coupon

(%)

Coupon

(monthly)

Duration

(years)

M0:5 M1 M1:5 M2 M2:5

1 4 10 12 3.4823 1.1840 1.5176 2.1307 3.2713 5.4159

2 5 10 12 4.1610 0.5043 0.8389 1.4539 2.5982 4.7497

3 6 10 12 4.7759 1.1231 1.4588 2.0755 3.2231 5.3809

4 7 10 12 5.3328 1.3555 2.0201 3.1025 4.9093 8.0007

5 8 10 12 5.8368 1.5168 2.5281 4.3060 7.4515 13.051

6 9 10 12 6.2928 1.6398 2.9878 5.5957 10.672 20.606
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As Bierwag et al. (1993) showed, a bullet portfolio does not always minimize the
M2 measure. However, this simple example satisfies the conditions for a bullet port-
folio to minimize the M2 measure. We can see the smaller the n, the greater the pos-
sibility that the optimal portfolio includes a maturity matching bond (Bond 2). This
is because the portfolios that include Bond 2 are closer to the optimal portfolio. As n
increases, there is a greater possibility that the optimal portfolio is a bullet portfolio.
This example suggests the following interesting result. The linear measure, ceteris
paribus, could be the border between the optimal portfolio including a maturity
matching bond and a bullet portfolio. Measures lower than linear are minimized
by portfolios that include a maturity matching bond; measures greater than linear
by a bullet portfolio. Both portfolios minimize the ~NN linear measure. This result is
not robust since, for instance, it depends on the convexity property noted in Bierwag
et al. (1993), but it is illustrative of the linear measure.
Let us now focus on the M2 and the M1 measures and compare Portfolios 1 and 3

in Table 2. Although Bond 2 has the minimumM2 andM1 measures in Table 1, Port-
folio 3 which includes Bond 2, minimizes theM1 measure but has a highM2 measure.
An explanation for this could be as follows. Bond 2 in Portfolio 3 has a lower dura-
tion than Bond 3 in portfolio 1. Therefore, Portfolio 3 must invest more money in
the second bond, Bond 4, to match the duration with m. Since M2 is a quadratic dis-
persion measure, this second bond has a large impact on M2, while the M1 linear
measure does not grow as fast in this second bond. Furthermore, the M2 measure
of Bond 2 is 80.61% of Bond 3. The M1 measure of Bond 2, however, is only
57.51% of Bond 3. Consequently, Bond 2 is more appropriate to minimize M1 and
Bond 3 to minimize M2.

4. Empirical results on the Spanish Bond Market

This section provides some empirical evidence for the theoretical results of Section
2 and the discussion in Section 3. We present a study of immunization strategies on

Table 2

Matching-duration portfolios

No. 1st bond 2nd bond % (1st) M0:5 M1 M1:5 M2 M2:5

1 3 4 59.77 1.2166 1.6846132 2.4887 3.9014 6.4348

2 3 5 78.88 1.2063 1.6846172 2.5465 4.1160 7.0007

3 2 4 28.40 1.1137 1.6846198 2.6342 4.2528 7.0773

4 3 6 85.23 1.1994 1.6846211 2.5954 4.3233 7.0773

5 2 5 49.93 1.0112 1.6846342 2.8817 5.0279 8.9059

6 2 6 60.64 0.9511 1.6846482 3.0839 5.7759 10.990

7 1 4 17.98 1.3246 1.9297429 2.9277 4.6146 7.5358

8 1 5 35.54 1.3985 2.1690124 3.5328 5.9657 10.3377

9 1 6 46.00 1.4301 2.3115433 4.0018 7.2680 13.6187
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the Spanish Bond Market in recent years. The evolution of interest rates in Spain has
been marked by the process of convergence of this variable inside the framework of
the European Union. In the early 1990s, Spain had higher rates than expected for the
date of integration at 1999 and therefore during the study period (1993–1998) inter-
est rates generally declined. For instance, at the beginning of 1993 the 3-year yield-
to-maturity was around 12% while this rate equaled 4.5% at the end of 1998, with the
interest rates still falling. However, the period 1994–1995 saw a turn in this trend,
and yields increased from approximately 8% to 11.5%.

4.1. The data

Data on bid–ask bond prices are from the Bank of Spain. From these data, Nav-
arro and Nave (1997) estimated a term structure of interest rates. We use this term
structure to compute discount factors. 8 Bond maturities range from 1, 2 and 6
months to 1, 2, 3, 4, 5, 6, 10, 14 and 15 years. We have monthly data for the period
from 16 April 1993 to 18 December 1995. This corresponds to approximately 30
overlapping periods within which to conduct immunization strategies. However,
given the importance of maturity matching (m-m) bonds in immunization strategies,
we only consider 12 periods for which there is an m-m bond available. While 12 pe-
riods are insufficient for a complete empirical study, we believe that it is sufficient to
demonstrate basic evidence of the theoretical results discussed earlier. We leave a
more fundamental empirical study for further research. Given the recent period of
study, we are also obligated to choose a planning period of m ¼ 3 years, shorter than
the standard of 5 years. The bonds are all coupon bonds for average and long ma-
turities, and the coupon is usually paid annually. The coupon reflects the level of in-
terest rates, and bonds issued in 1993 have a coupon around 12%, whereas bonds
issued in 1995 have a coupon around 8%.

4.2. The tests

We conduct 12 tests of periods ranging from 16 April 1993 to 18 December 1995
for a planning period of m ¼ 3 years. Each portfolio is rebalanced every time that
one of the bonds in the portfolio pays a coupon. Given that the coupon is annual
and that a portfolio contains two bonds, each portfolio is rebalanced approximately
twice a year.
We consider three groups of strategies. In the first group, we test the strategies de-

veloped in Section 2. We test the matching-duration strategies that minimize the dis-
persion measures M0:5,M1, M1:5, M2 and M2:5, a reasonable coverage of the spectrum
of strategies for 0 < n < 1.

8 We are very grateful to Professors Navarro and Nave for providing us with several databases and

comments regarding the empirical test.
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In the second group, we test the matching-duration strategies that include an m-m
bond and that minimize the dispersion measures M0:5, M1, M1:5, M2 and M2:5. In
other words, we test portfolios that minimize these dispersion measures, but are con-
strained to matching-duration and the inclusion of a m-m bond. The purpose of the
latter group is twofold, first to see if there is an improvement over the first group
after including a m-m bond, and second, to see which of the first group strategies
usually includes a m-m bond. Note that there are no theoretical arguments to include
a m-m bond, only strong empirical evidence (see Bierwag et al., 1993).
The third group of strategies corresponds to a bullet, a maturity matching bullet

(m-m-bu) and a maturity matching barbell (m-m-ba). These have been considered in
prior studies, as in Bierwag et al. (1993), and again, we are interested in a comparison
between these and group one strategies. Furthermore, in light of the example in
Table 2, all of these almost minimize the M1 measure, and therefore, we would also
like to test whether they beat it.
As performance measures we have included the mean square error (MSE), and the

frequency with which a strategy return was the closest to the promised one or target.
We have also included the mean return for illustrative purposes. Given only 12 over-
lapping periods, we do not report statistical tests.

4.3. The results

Tables 3–5 contain the results of the empirical study. In Table 3, Group 1, the M1

strategy has the best performance among all strategies. The M0:5 strategy has the
worst performance. Usually, theM0:5 includes a m-m bond, but its poor performance
reflects that it is derived from an unreasonable set of changes on interest rates. All of
the measures greater than linear perform well and, in this respect, are nearly indistin-
guishable. Note that these strategies for 9 or 10 periods had the same outcome imply-
ing that the portfolio minimizing these measures at each rebalancing period was the
same. Therefore, although they are derived from different sets of shocks, they could
have similar empirical performance. This means that a very unreasonable measure,
as derived from a large n, sayM100, could yield empirical performance as good asM2.
In Table 4, Group 2, the best strategy is the M1 m-m. The order of performance is

the same as Table 3, and the overall performance is slightly worse than in Table 3,
where portfolios were not constrained to include a m-m bond. If we compare columns
from Tables 3 and 4 we note the following. Columns M0:5 andM0:5 m-m are the same
for each period. Therefore, the portfolio minimizingM0:5 always includes a m-m bond
at each rebalancing date. Columns M1 and M1 m-m are the same for seven periods.
This implies that for each rebalancing date in these periods, they were minimized
by the same portfolio. Consequently, the portfolio minimizing M1 almost always in-
cludes a m-m bond. Measures greater than linear also can include a m-m bond. 9

9 Perhaps, an m-m bond is frequently included in the strategies because for each rebalancing date the

duration of this bond is close to the planning period (63 years), something that would probably fail for an

initial planning period of 5 years.
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Finally, Table 5, Group 3, shows that the portfolio with the best empirical behav-
ior is M1. The m-m-bu portfolio also performs well which confirms previous empir-
ical results regarding the use of these strategies in US and Canadian markets. The
bullet does not perform as well as expected and does not come close to the portfolio
minimizing the M2 measure. This is probably because the convexity property con-
necting both strategies in Bierwag et al. (1993) fails.

Table 4

Group 2 of strategies

Initial date Target M0:5 m-m M1 m-m M1:5 m-m M2 m-m M2:5 m-m

16.04.93 39.057 38.641 38.921 38.860 38.852 38.852

16.07.93 32.099 31.991 31.917 31.915 31.915 31.915

31.08.93 28.179 27.988 28.027 28.022 28.004 28.004

03.12.93 26.932 26.520 26.804 26.780 26.780 26.780

17.01.94 23.870 24.197 23.946 23.754 23.734 23.734

01.03.94 25.376 25.505 25.261 25.323 25.323 25.323

17.06.94 32.060 31.829 31.958 31.970 31.970 31.970

01.08.94 30.682 30.552 30.655 30.730 30.735 30.735

01.09.95 34.997 34.634 35.047 35.016 35.024 35.016

06.11.95 33.452 33.403 33.491 33.469 33.469 33.469

01.12.95 31.862 31.808 31.886 31.875 31.875 31.875

18.12.95 30.284 30.228 30.349 30.353 30.353 30.353

Mean return 30.738 30.608 30.689 30.672 30.670 30.669

Return closest

to target

2/12 5/12 5/12 4/12 5/12

MSE 0.0604 0.0108 0.0127 0.0140 0.0139

Table 3

Group 1 of strategies

Initial date Target M0:5 M1 M1:5 M2 M2:5

16.04.93 39.057 38.641 38.921 38.860 38.852 38.852

16.07.93 32.099 31.991 31.897 31.893 31.893 31.893

31.08.93 28.179 27.988 28.000 28.000 28.000 28.000

03.12.93 26.932 26.520 26.804 26.780 26.780 26.828

17.01.94 23.870 24.197 23.850 23.808 23.808 23.824

01.03.94 25.376 25.505 25.261 25.323 25.323 25.323

17.06.94 32.060 31.829 32.059 32.049 32.048 32.048

01.08.94 30.682 30.552 30.655 30.730 30.735 30.735

01.09.95 34.997 34.634 35.000 35.081 35.081 35.081

06.11.95 33.452 33.403 33.491 33.472 33.472 33.472

01.12.95 31.862 31.808 31.861 31.870 31.870 31.870

18.12.95 30.284 30.228 30.349 30.353 30.353 30.353

Mean return 30.738 30.608 30.679 30.685 30.685 30.690

Return closest

to target

2/12 7/12 3/12 3/12 4/12

MSE 0.0604 0.0106 0.0131 0.0135 0.0123
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The intuition developed in Section 3 generally agrees with the following conclu-
sions for m ¼ 3 years:

1. The matching duration portfolio that minimizes the linear measure shows the best
empirical performance. Furthermore, this portfolio usually includes a maturity
matching bond.

2. Portfolios minimizing measures lower than linear (the M0:5 measure) include a
maturity matching bond, but they do not perform well empirically. These port-
folios can be very different from those minimizing the linear measure.

3. Portfolios minimizing measures greater than the linear one perform well but not
as well as the one minimizing the linear measure. This relatively good perfor-
mance can be explained by the fact that these portfolios almost minimize the lin-
ear measure. The measure M2:5, although not so appealing theoretically, performs
well because the portfolio minimizing M2:5 usually minimizes the M2 measure.

5. Conclusions

The measures M2 and ~NN play an important role in the immunization literature.
This motivates an extension of the analysis of the theoretical properties and effective-
ness of more general dispersion measures. Such alternatives may represent viable op-
tions for minimizing the immunization risk. This paper develops a generalized cash
flow dispersion measure as an immunization risk measure that includes previously
examined quadratic and linear measures. It therefore sets up a tool to be used in em-
pirical testing. Each new measure is derived from a different set of shocks (changes
on the term structure of interest rates) and depends on the corresponding subset of
worst shocks.

Table 5

Group 3 of strategies

Initial date Target M1 M1 m-m bullet m-m-bu m-m-ba

16.04.93 39.057 38.921 38.921 38.699 38.786 38.750

16.07.93 32.099 31.897 31.917 32.018 31.898 31.980

31.08.93 28.179 28.000 28.027 27.999 28.005 27.955

03.12.93 26.932 26.804 26.804 26.738 26.779 26.493

17.01.94 23.870 23.850 23.946 23.530 23.742 24.167

01.03.94 25.376 25.261 25.261 25.240 25.363 25.466

17.06.94 32.060 32.059 31.958 32.028 31.953 31.751

01.08.94 30.682 30.655 30.655 30.688 30.688 30.558

01.09.95 34.997 35.000 35.047 35.148 35.050 34.613

06.11.95 33.452 33.491 33.491 33.465 33.471 33.288

01.12.95 31.862 31.861 31.886 31.875 31.879 31.722

18.12.95 30.284 30.349 30.349 30.365 30.345 30.188

Mean return 30.738 30.679 30.688 30.650 30.663 30.578

Return closest

to target

6/12 3/12 3/12 3/12 0/12

MSE 0.0106 0.0108 0.0308 0.0169 0.0635
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We show that the set of shocks and worst shocks that give rise to measures be-
tween linear and quadratic are the most reasonable. Amongst them, the linear mea-
sure has the best properties. The set of shocks that gives rise to the linear measure
bounds the variation of the shocks by a constant and has an economic meaning.
In that sense, this set is more reasonable than sets of shocks that bound the deriva-
tive of the shocks. Furthermore, numerical examples suggest that the linear measure,
ceteris paribus, could be the border between the optimal portfolio including a matu-
rity matching bond and a bullet portfolio. Measures lower than the linear one are
minimized by portfolios that include a maturity matching bond and measures greater
than the linear one by a bullet portfolio. Both portfolios minimize the ~NN linear mea-
sure.
For all measures, their associated worst shocks are parallel shifts plus a specific

twist of term structure of interest rates around 2m. Minimizing each measure mini-
mizes the effect of the worst shock that makes immunization infeasible. We therefore
relate these results to factor analysis of the term structure where parallel, steepness
and curvature factors are found. The property that worst shocks containing just a
parallel shift plus a steepness shift around 2m can be studied empirically and used
to design immunized bond portfolios. 10

Finally, a short empirical study on the Spanish Bond Market in the mid-1990s
supports the findings that the portfolio minimizing the linear measure has the best
performance and generally includes a maturity matching bond. Furthermore, matu-
rity-constrained duration-matched portfolios, as suggested in Bierwag et al. (1993)
and others, both perform well empirically and confirm previous empirical results
for US and Canadian markets.
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Appendix A

The set K is a subset of the vector space of real-valued functions defined on ½0; T �.
The elements of K could be additive shocks, polynomial shocks, differentiable shocks
(as in Fong and Vasicek, 1984), or more general shocks.

10 In related works, Fung and Hsieh (1996) empirically study what they call extreme yield curve event

risks and Au and Frishling (1996) also define the maximum potential change of a portfolio.
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The q portfolio value at m, included the coupons paid before m, is given by

V ðq; kÞ ¼
Z T

0

cðtÞ exp
Z m

t
ðgðsÞ

�
þ kðsÞÞds

�
dt ðA:1Þ

and the price of this portfolio is equal to

C ¼
Z T

0

cðtÞ exp
�
�
Z t

0

gðsÞds
�
dt:

Denoting the return of the zero coupon bond with m years to maturity by

R ¼ exp
Z m

0

gðsÞds
� �

ðA:2Þ

and the coupon’s present value by

cðt; 0Þ ¼ cðtÞ exp
�
�
Z t

0

gðsÞds
�
; ðA:3Þ

we have

V ðq; kÞ ¼ R
Z T

0

cðt; 0Þ exp
Z m

t
kðsÞds

� �
dt: ðA:4Þ

The function V ðq; kÞ is convex in k, positive, and all the bonds produce the same
return under the null shock (k ¼ 0).
We will say that a portfolio is immunized for set K if its return is at least R, i.e.,

V ðq; kÞ
C

PR for all k 2 K:

Following the approach of Balb�aas and Ib�aa~nnez (1998), let us now define the set of
worst shocks K�

n for each Kn, n 2 ð�1;þ1Þ, as those feasible shocks such that any
bond looses most value at m when one of these worst shocks occurs. If we observe
(A.4), these worst shocks are given by the highest fall of the instantaneous forward
interest rate before m, and by the highest rise after m. Thus, the sets of worst shocks
are given by

K�
n ¼

k0 � kðm� tÞn�1 if 06 t < m;
k0 þ kðt � mÞn�1 if m < t6 T ;
where k0 is any real number

8<
:

9=
; ðA:5Þ

for any n 2 N . The property K�
n � Kn is obvious from (2) and (3).

Lemma 2. For any n 2 ð�1;þ1Þ and for any k 2 Kn there exists k� 2 K�
n such that

k�ðtÞ6 kðtÞ if 06 t < m;
k�ðtÞP kðtÞ if m < t6 T ;

ðA:6Þ

where k� is given by (A.5), and if n > 1 then

k0 ¼ kðmÞ ðA:7Þ
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and if n6 1 then

ft1; t2g ¼ arg minfk½ðt2 � mÞn�1 þ ðm� t1Þn�1� � ½kðt2Þ � kðt1Þ�;
06 t1 < m < t26 T g; ðA:8Þ

k0 ¼ kðt2Þ � kðt2 � mÞn�1: ðA:9Þ

Note that from (A.5) and for the significant particular cases n ¼ 1 and n ¼ 2, the
worst shocks are given by step functions and degree one polynomials, respectively.

Proof of Lemma 2. Consider first the case n > 1.
If 06 t < m, we have from (2)

kðtÞP kðmÞ � kðm� tÞn�1

and given k�ðtÞ definition in (A.5), then

kðtÞP k�ðtÞ
if k0 ¼ kðmÞ.

If t > m we have from (2)

kðtÞ6 kðmÞ þ kðt � mÞn�1

and given (A.5), then

kðtÞ6 k�ðtÞ
if k0 ¼ kðmÞ. Therefore, for n > 1, (A.6) holds if (A.7) holds.
Consider now the case n6 1, and note that (A.8) provides the values t1 and t2

(t1 < m < t2) such that (3) is closest to being violated. Once we know t1 and t2, k0
is given by (A.9) or it could also be defined as k0 ¼ kðt1Þ þ kðm� t1Þn�1. Eq. (A.9)
guarantees that k�ðt2Þ ¼ kðt2Þ, and therefore, that k�ðtÞP kðtÞ if t > m and that
k�ðtÞ6 kðtÞ if t < m, since k� verifies (A.5).
If 06 t < m, we know from (A.5)

k�ðtÞ ¼ k0 � kðm� tÞn�1

and from (3) that

k�ðtÞ ¼ kðt2Þ � kðt2 � mÞn�1 � kðm� tÞn�1

¼ kðtÞ � ½k½ðt2 � mÞn�1 þ ðm� tÞn�1� � ½kðt2Þ � kðtÞ��
6 kðtÞ

if (A.8) and (A.9) hold.
If t > m, we have from (A.5)

k�ðtÞ ¼ k0 þ kðt � mÞn�1
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and from (3) that

k�ðtÞ ¼ kðt2Þ � kðt2 � mÞn�1 þ kðt � mÞn�1

¼ kðtÞ þ ½k½ðt � mÞn�1 þ ðm� t1Þn�1� � ½kðtÞ � kðt1Þ��
� ½k½ðt2 � mÞn�1 þ ðm� t1Þn�1� � ½kðt2Þ � kðt1Þ��

P kðtÞ

if (A.8) and (A.9) hold. Therefore, for n6 1 (A.6) holds if (A.8) and (A.9) hold. �

Proof of Theorem 1. For n > 0, 11 from Lemmas 2 and (A.4), it immediately follows
that for any k 2 Kn there exists a k� 2 K�

n such that

V ðq; kÞP V ðq; k�Þ:
Since V ðq; kÞ is Gateaux differentiable with respect to the k variable and noting that a
convex functional is always bounded from below by its tangent plane (see Luen-
berger, 1969), we have that for each k� 2 K�

n ,

V ðq; k�Þ � RC
RC

P
Z T

0

cðt; 0Þ
C

Z m

t
k�ðsÞdsdt

¼
Z T

0

cðt; 0Þ
C

ðk0ðm� tÞ � k
n
j t � m jnÞdt

¼ k0ðm� DÞ � k
n
Mn: �
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