
Authorized licensed use limited to: Univ Carlos III. Downloaded on September 15, 2009 at 04:03 from IEEE Xplore. Restrictions apply.

ABSTRACT JP>LANNTING iN DYNAMiC ENVlIRONMIENTS

DAVID CAMACHO, DANIEL BORRAJO, JOSE M. MOLINA, RICARDO ALER

Computer Science Department, Universidad Carlos III Madrid
Avda. Universidad nO 30, 28911 Leganes (Spain)

{dcamacho, dborrajo, molina }@ia.uc3m.es, aler@infuc3m.es

Abstract

Solving problems in dynamic and
heterogeneous environments where information
sources change its format representation and the
data stored along the time is a very complex
problem. In previous work we have presented a
system called MAPWeb (MultiAgent Planning in
the Web) that tries to solve those problems by
integrating artificial intelligence planning
techniques within the MultiAgent framework.
Basically, MAPWeb allows cooperative work
between planning agents and Web agents. The
purpose of MAP Web is to find solutions to travel
problems. In order to give detailed solutions,
MAP Web uses information gathering techniques
to retrieve travel information that is made
available by many different companies.
However, Web access to the information sources
is quite time expensive. In this paper, we try to
minimize the number of Web queries by using
caching techniques based on relational databases.
Experimental results show that the reduction in
Web access time is quite important, while
maintaining the number of solutions found.

Keywords
Multiagent Systems, Intelligent Agents,
Planning, System Architecture.

1 Introduction

Currently, there is a vast (and increasingly
growing) amount of information stored in
Internet, especially since the development of the
Web. This information is difficult to handle
because it is heterogeneous, dynamic and
distributed in nature. However, there are very
few approaches that try to integrate a set of
different and specialized information sources and
reuse the data retrieved to solve problems [1, 2].
This is especially true if the goal of the system is
to solve complex problem solving tasks, like
rmding complete travel plans by gathering
information available on the Web.

In order to use Web information to solve
complex problems, a framework called MAP Web
(MultiAgent Planning in the Web) has been
developed and applied to solve travelling
problems [6]. The key aspects of MAP Web are:

0-7803-7087-2/01/$10.00 © 2001 IEEE

2331

Solving complex problems requires using
intelligent software components. MAPWeb
integrates AI planning techniques with
information gathering techniques. It
actually divides the planning problem into
two processes: abstract planning
(performed by an AI planning system) and
plan completion and validation (performed
by Web gathering agents). This makes the
planning problem more tractable, at least in
some domains. On the other hand, using AI
planning makes our approach very flexible.
MAPWeb is a Muitiagent System (MAS)
[3, 9, 11]. This is very appropriate for our
purposes because of MAS flexibility. First,
it is easy to divide the task into different
agents, each one containing the most
appropriate skills. Thus, MAPWeb has
Planner Agents and WebAgents. Second, it
faces the heterogeneity of Web sources by
having different specialized Web agents.
Third, the Web is a dynamic environment
(Web sources are added/removed daily).
To face this problem, MAPWeb takes
advantage of the flexibility of MAS
approaches for adding/removing agents to
the agent society (besides the flexibility
offered by classical AI planning)

However, MAP Web (and any Web
gathering system) must send many Web queries
in order to access the desired information. This
is usually costly in terms of time. Besides, in
some cases a Web source might be temporally
unavailable. In order to improve MAPWeb
performance, learning techniques can be used
in two ways: adding CBR skills to the
Planner Agents to store abstract plans [8] and
adding caching skills to the WebAgents to store
previous Web queries. In this paper we focus
on the second aspect and show that the time
cost can be decreased without significantly
reducing the number of solutions found.

This paper is divided into 5 sections.
Section 2 describes the MAPWeb architecture
from a Multiagent perspective. Section 3
describes the caching skills of. the WebAgents.
Section 4 evaluates MAP Web caching skills.
And finally, section 5 summarizes the
conclusions of the paper.

Cita bibliográfica
Published in: IEEE International Conference on Systems, Man, and Cybernetics, 2001, vol. 4, p. 2331 - 2336

Authorized licensed use limited to: Univ Carlos III. Downloaded on September 15, 2009 at 04:03 from IEEE Xplore. Restrictions apply.

2 MAPWeb Architecture

MAPWeb is structured into several layers
whose purpose is to isolate the user from the
details of problem solving and Web access. Each
of these layers is implemented by a set of
heterogeneous agents, which have different skills
to solve the user problems. This multi-layer
architecture can be seen in Fig. 1.

Fig. 1: MAPWeb system architecture.

MAPWeb deploys this architecture using a
set of heterogeneous agents. Next, each of these
types of agents will be described:

UserAgents: They pay attention to user
queries and display to the users the
solution(s) found by the system. When an
UserAgent receives problem queries from
the users, it gives them to the PlannerAgent
and when it answers back with the plans, the
User Agent provides them to the user.
PlannerAgents: They receive a user query,
build an abstract representation of it, and
solve it by means of planning. Then, the
PlannerAgent fills in the information details
by querying the WebAgents. The planner
that has been used by the Planner Agent is
Prodigy4.0 [10].
WebAgents: Their main goal is to fill in the
details of the abstract plans obtained by the
PlannerAgents. They obtain that information
from the Web.

The way these agents cooperate is as
follows. First, the user interacts with the
UserAgent to input his/her query. The query
captures information like the departure and
returns dates and cities, one way or return trip,
maximum number of transfers, and some
preference criteria. This information is sent to
the PlannerAgent, which transforms it into a
planning problem. This planning problem retains
only those parts that are essential for the
planning process, which is named the abstract
representation of the user query. Prodigy4.0
provides several abstract solutions to the user
query. The planning operators in the abstract
solutions require to be completed with actual
information that can be retrieved from the Web.
To accomplish this, the PlannerAgent sends

2332

information queries to specialized WebAgents
which return several records for eve~
information query. Then, the PlannerAgent
integrates and validates the solutions and
returns the data to the UserAgent, which in turn
displays it to the user. MAPWeb agents use a
subset of the KQML speech acts [7].

3 Caching techniques in the
WebAgents

In this paper we have used caching techniques
to reduce the number of actual Web queries.
Caching has been implemented as a new skill,
for the WebAgents. MAPWeb caching follows
the typical caching schema:

Whenever an actual Web query is
successful, a record is stored in the cache
memory of the WebAgent. Cache
memories have been implemented as local
relational databases for each one of the
Web Agents.
Whenever a WebAgent is asked to carrv
out a query by the PlannerAgent, it fIrst;
looks up its local database. If a record i:;
found, then it is marked as if it were a
new entry and it is returned to the
Planner Agent. If not successful, then it
queries the Web directly.
The cache memories have been limited in
size. When the cache is full, old entries
are removed by following a LRU policy
(Least Recently Used: the oldest entries
are deleted). As explained before,
successful entries are automatically made
young, This guarantees that useful entries
will not be removed.

4 Experimental Evaluation
The purpose of this section is to compar,e

the standard MAPWeb with a modified version
where the WebAgents have extended caching
~lli. '

Subsection 4.1 describes the domain th2.t
has been used to prove MAP Web. Subsection
4.2 explains the topology that has been used irr
the experiments. Subsection 4.3 describes the
experimental setup. And finally, Section 4.4
shows the actual results.

4.1 Problem Domain: e-Tourism

An e-tourism system must provide the us~:r
services such as:

Inform how to go from the origin to the
destination town using different means (If
transport.
Lodging at destination.

Authorized licensed use limited to: Univ Carlos III. Downloaded on September 15, 2009 at 04:03 from IEEE Xplore. Restrictions apply.

Informing about possibilities for vIsItmg
around town (renting a car, local transport,
etc ...).
Returning to the initial (or other) town.

MAP Web has the abilities enumerated above
[4, 5]. However, in this paper, we will focus on
the logistics problem of providing the user with
plans to move from one place to another place.

Moving from place to place involves long
range travels that can be achieved by means of
airplanes, trains, or buses. It also involves taking
local transport means (taxi, subway, bus, etc ...)
to move between airports,bus stations, or train
stations. In order to represent and provide
solutions to the user, we have defined an e­
tourism domain that uses different planning
operators like: [Travel-by-airplane, Travel-by­
train, Travel-by-bus, Move-by-Iocalbus, Book­
hotel-room, etc ...] .

4.2 MAPWeb Topology

Due to the heterogeneous nature of the
agents that implement MAPWeb, it is possible to
build different topologies. Those topologies
could be used to study the performance system
within a particular problem. In this paper a very
simple topology was used (see Fig. 2).

. This topology includes a single
Planner Agent and four specialized WebAgents.
Two of them offer information supplied by
airplane companies (Iberia I and Avianca2

)

whereas the other two are meta-searchers
(Amadeus3 and 4Airlines4

). A meta-searcher is a
Web information source that is able to look in
several information sources.

This topology employs only one reasoner
agent that uses its planning skills to solve the
problem given by the UserAgent and the
WebAgents like softbots or searchers to validate
and complete the solutions found. This topology
should be analyzed like a monolitic planning
application, which uses a set of distributed
WebAgents in parallel.

I Iberia airlines: http://www.iberia.com
2 Avianca airlines: http://www.avianca.com
3 Amadeus: http://www.amadeus.net
4 4Airlines: http://www.4airlines.com

2333

Jberia_WebAgent

A vianca_ WebAgent

UserAgent PlannerAgent W
E
B "-_-'---1 Amadeus_ WebAgent

, , , , , , , , , ,

4Airlines_ WebAgent

: I I

! :. N"W.b.ccoss .!
: .. --------------------------~~:

Request Time

Fig. 2: Agents configuration and different
characteristics measured in MAP Web.

4.3 Experimental Setup

Two different configurations have been
tested, with and without caching skills for the
WebAgents. This caching skill allows us to
evaluate how the modified system performs in
three main aspects:

Number 0/ Web queries: this is the number
of queries to the Web carried out by all the
WebAgents to retrieve information for a
user problem.
Time response: this is the time between the
user request for a problem and the system
returning the solutions.
Number 0/ solutions: this is the total
number of solutions found by the system.
This is useful to show that the number of
solutions with and without caching is about
the same.

The later characteristics are displayed in
Fig. 2. In order to evaluate the WebAgents
performance (with and without caching), a set
of 35 user queries was tested. Each one of them
was tried with 0, 1, and 2 transfers.

4.4 Experimental Evaluation

Figs 3 and 4 display the average number
of solutions (plans) per user query found for the
non-caching and caching configurations,
respectively. The number of abstract solutions
is the number of abstract solutions found by the
planner and validated by the WebAgents,
whereas the number of specific solutions
represent the number of actual solutions that
could be validated and completed by the
WebAgents. As it could be expected, when the
number of transfers increases, the number of
solutions increases as well.5 Also, we can see

5 A transfer is a point in the trip where the
traveler can change plane, the means of
transport, etc.

Authorized licensed use limited to: Univ Carlos III. Downloaded on September 15, 2009 at 04:03 from IEEE Xplore. Restrictions apply.

that the nwnber of solutions for the non-caching
and caching configurations is about the same
(not many solutions are lost by using caching).

N° of Solutions / user query

10000.00~--------

j
1000.00

-8 100.00 ., -+-ABSTRACT Sol •.
'5 --- SPECIFIC SoI8

I 10,00

1,00

0,10 +--~--~--~

W of Transfers

Fig. 3: Nwnber of Abstract and Specific
solutions found by MAP Web without caching.

N" of Solutions I User Query

10000,00

i
1000,00

100,00 __ ABSTRACT Sol •.

10,00 __ SPECIFIC Sol •.
'0
~ 1,00

0,10

N' of Tronof

Fig. 4: Nwnber of Abstract and Specific
solutions found by MAP Web with caching.

Fig. 5 shows the nwnber of queries with
and without caching. The nwnber of queries is
the same for the two experiments; the only
difference between the two configurations is the
number of Web accesses that the WebAgents
(with caching skills) will fmally perform.

Number of Web Queries/ user query

1~r-------------,

321, 809524

.,,!~ 100 +------:-::;;o~==-__l r-:;;--;:;:-::-::-~I : I __ Oueries I
~ 10~-~~-----~

N"Tranofers

Fig. 5: Number of queries between the
PlannerAgent and the WebAgents.

Figs 6 and 7 display the response time with
and without caching, respectively. The reduction
of the request time in MAPWeb is related with
the successful queries that the WebAgents have
stored in their local databases. By comparing
Fig. 7 with Fig. 6, we can see that request time
grows more slowly with caching. This is because
it is possible to fmd more stored information in
the agent.

Aver.".·> MAPW.b Roqu •• t Tim.

,--------._-----------
3500 t------------/--;i',TI'9O""',:21 ... ," m-1

/ l! 2500 t----------/-7"'------1

! :~~ "---------:7f./hrrmm~----I r ~1J49.070557

NGTt.n.t.n

!-.-Request Time I

Fig. 6: Request time by MAP Web without
caching.

Awrage -> MAPWeb Requealllme

N'Transfera

Fig. 7: Request time by MAP Web with caching.

Request times are related to the hit ratio
obtained by the WebAgents when they find the
requested information in their own local
databases. Table 1 shows the total number of
actual Web queries with and without caching,
and the hit ratio when using caching. Only 1
transfer problems are considered. On average,
the nwnber of Web queries was reduced by
25%.

N° Web Iberia Avianca 4Airlines Amad.
Access WebAgent WebAgent WebAgent WebAg

No Caching 60 60 60 60
With Caching 39 53 47 40

Hit ratio 35% 12% 22% 330/.
Table 1: Average of Web quenes cached by

WebAgents.

Table 2 shows the different answer time
by the WebAgents when the caching techniques
are used. This table shows how the performance
of the slower agents (Amadeus-WebAgent)
could be improved through the caching
technique, and how the agents that have a lower
hit ratio of success (Avianca-WebAgent) do not
improve very much their request time.

~~s ent

)

Request Time Iberia Avianca 4Airlines Amadeus
WebAeent WebAeent WebA2ent WebA2ent

No Caching 884 sec 964 sec 156,4 sec 1440,5 sec
With Caching 39 sec 84,6sec 50,lsec 56,3 sec

Table 2: Average of request tune for different
WebAgents in the MAP Web Topology.

Figs. 8, 9 10, and 11 show the number of
solutions found for each of the 35 user queries
(on the x-axis). There are no important

2334

Authorized licensed use limited to: Univ Carlos III. Downloaded on September 15, 2009 at 04:03 from IEEE Xplore. Restrictions apply.

differences between the two configurations of
MAP Web. These figures show that the caching
techniques allow the system to gain efficiency
without loo sing possible solutions.

!~~~~~~n~~1
1 3 5 7 • 11 tl fi 17 19 21 ~ ~ v ~ ~ ~ ~

Uoa-Q.,..y

! S<Abot--II-9>la.c1

Fig. 8: Number of solutions found by MAP Web
for 0 transfers flights without caching.

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

UsorQuery

1-+-_. Scfs. -ll-Specifte. Scfs·1

Fig. 9: Number of solutions found by MAP Web
for 0 transfers flights with caching.

1=

.. lOO))-~ 1000
"0 I-.,

100 '5 !Z: 10

1
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

UsorQlery

i-+-SoIlIbot -+-SoI·Ccnc.i

Fig. 10: Number of solutions found by MAP Web
for 1 transfer flights without caching.

100000

10000 .
~ 1000

-+-SoIAbst ;g
100

___ Sol.Cone
'0
!I!:

10

Fig. 11: Number of solutions found by MAP Web
for 1 transfer flights with caching.

2335

5 Conclusions

Planning in real domains is a complex
task. We present here a solution that separates
abstract planning from the actual data, that is
obtained from the Web. In order to give
detailed solutions, for a particular travel
domain, MAPWeb implements two different
steps. First, it uses abstract planning to build a
skeletal solution for the problem. And second,
it uses information gathering techniques to
retrieve travel information from Web sources.
However, Web access to the information
sources is quite time and computational
expensive. In this paper, we show how it is
possible to minimize the number of Web
queries by using caching techniques based on
relational databases, and therefore, to find
solutions in a more efficient way. Experimental
results show that the reduction in Web access
time is quite important, while maintaining the
number of solutions found.

Acknowledgments

The research reported here was carried out
as part of the research project funded by
CICYT T AP-99-0535-C02.
(http://decsai.ugr.es/\simlcv/SEPINtap99-
0535-c02-0 1.htrnl)

References
1. Ambite lL., Knoblock C.A. Planning by
rewriting: Efficiently generating
high-quality plans. In proceedings of the
Fourteenth National Conference on Artificial
Intelligence. 1997.
2. Ambite lL., Knoblock c.A. Agents for
information gathering. IEEE Expert: Intelligent
Systems and their Applications.
September/October (1997).
3. Brenner W., Zarnekow R., Wittig H..
Intelligent Software Agents. Foundations and
Applications. Springer-Verlag, 1998. ISBN: 3-
540-63411-8.
4. Camacho D., Borrajo D., MoliTIa lM ..
TravelPlan: A Multiagent System to Solve Web
Electronic Travel Problems. Fourth
International Conference on Autonomous
Agents (Agents 2000). Workshop Agent-based
Recommender Systems (WARS 2000).
Barcelona" Spain. June, 2000.
5. Carnacho D., MoliTIa lM., Borrajo D .. A
Multiagent Approach for Electronic Travel
Planning. Second International Bi-Conference
Workshop on Agent-Oriented Information
Systems (AOIS-2000), Austin, Texas, USA.
August 2000. AAAI Press.

Authorized licensed use limited to: Univ Carlos III. Downloaded on September 15, 2009 at 04:03 from IEEE Xplore. Restrictions apply.

6. Camacho D., Molina J.M .• Borrajo D., Aler
R.. MAP WEB: Cooperation between Planning
Agents and Web Agents. Information &
Security: An International Journal. Volume 7.
2001
7. Finin T., Fritzson R, McKay D., McEntire R
KQML as an agent communication language. In
Proceedings of the International Conference on
Information and Knowledge Management. ACM
Press, New York. 1994.
8. Hullen J., Bergmann R, Weberskirch F.
WebPlan: Dynamic Planning for Domain­
Specific Search in the Internet. Workshop Planen
und Konfigurieren (PuK-99). 1999.
9. Hunhs M.N., Singh M.P. Readings in Agents.
San Francisco California, Morgan Kaufmann.
1997.
10. Veloso M., Carbonell J., Perez A., Borrajo
D., Fink E., Blythe J. Integrating planning and
learning: The Prodigy architecture. Journal of
Experimental and Theoretical AI. Vo!. 7, pages
81-120,1995.
1l. Wooldridge M. , Jennings N.R Intelligence
Agents: .Theory and Practice. Knowledge
Engineering Review. October, 1994.

2336

