
From Continuous Behaviour to Discrete

Knowledge

Agapito Ledezma, Fernando Fern�andez and Ricardo Aler

Universidad Carlos III de Madrid. Avda. de la Universidad, 30, 28911, Legan�es,
Madrid. Spain

fledezma, ffernand, alerg@inf.uc3m.es

Abstract. Neural networks have proven to be very powerful techniques
for solving a wide range of tasks. However, the learned concepts are un-
readable for humans. Some works try to obtain symbolic models from
the networks, once these networks have been trained, allowing to under-
stand the model by means of decision trees or rules that are closer to
human understanding. The main problem of this approach is that neural
networks output a continuous range of values, so even though a symbolic
technique could be used to work with continuous classes, this output
would still be hard to understand for humans. In this work, we present a
system that is able to model a neural network behaviour by discretizing
its outputs with a vector quantization approach, allowing to apply the
symbolic method.

1 Introduction

Neural networks (NN) are very useful to solve a wide range of tasks, such as
classi�cation, prediction, optimization, etc. In this work, we begin with a NN that
is able to control a robot. There are many ways to learn such a NN, from typical
algorithms, like backpropagation [1], to reinforcement learning approaches [2]
or evolutionary computation [3]. However, it is very diÆcult to interpret the
results in order to extract general conclusions on the correctness of the learned
knowledge, its possible drawbacks, or to improve it.

The ability to transform a procedural description of the reasoning process of,
for instance, a given control skill into a declarative representation allows to more
easily share knowledge, or to reason about other control behaviors. Speci�cally,
one of our goals is the study of automatic ways of extracting knowledge (models)
from non-symbolic representations, such as NN's. This has been already studied
by some authors by analyzing the internal structure of the NN [4]. We propose
an alternative that consists on modeling their behavior by observing how they
\solve problems": what output they generate in response to some inputs. So,
the modelling task is mapped to a symbolic classi�cation task, where a classi�er
must learn to assign the right action (output of the neural network) to any state
(input of the network) [5].

Nevertheless, NN output is continuous, while symbolic supervised learning
algorithms, like C4.5 [6], typically work with discrete classes. Thus, a mapping

1

Cita bibliográfica
Published in: Artificial Neural Nets Problem Solving Methods, Springer 2009; p. 217-224 (Lecture Notes In Computer Science; Vol. 2687)

from the initial set of continuous values to a �nite (and preferable small) set is
required. In this work, we apply a vector quantization technique, the Generalized
Lloyd Algorithm (gla) [7], to do this map and to automatize this process, that
in other case would have to be done by hand.

In this paper, Section 2 presents our learning approach to symbolic modeling.
Section 3 describes the gla algorithm. Section 4 describes the way in which
experiments were de�ned, and presents the obtained results. Finally, Section 5
discusses the main conclusions achieved and further research.

2 Automatic acquisition of models

The behaviour of a reactive robot can be characterized by its response, (out-
puts), to the sensorial information that it receives, (inputs). So this behaviour
can be considered as a relationship between inputs and outputs. In terms of a
classi�cation task, this allows to de�ne a class for every possible output. Then,
the task of modeling (generating a declarative representation of a robot behav-
ior) can be translated into a classi�cation task using symbolic methods, where
the relationship between the inputs and the outputs must be learnt. In a previ-
ous work we presented results for discrete tasks in which the outputs belonged
to a �nite set of values[5]. However, the assumption of having a �nite set of ac-
tions is false in many domains. Thus, the work above was extended to apply two
di�erent approaches. First, to discretize the output by hand and to use a typical
symbolic classi�er (like c4.5 [8]). And second, to use a symbolic algorithm that
is able to deal with continuous outputs (like regression trees [9,10]). Both ap-
proaches obtain very good results, preseted in [11]. However, the �rst approach
has as main problem of the discretization step, that must be done by hand. The
problem of the second approach is, given that the output of the regression tree
is continuous, it is harder to interpret it, so the goal of the work, to model and
to understand the behaviour, may not be achieved. In this work we follow the
�rst approach, but we look for an automatical way to discretize the output. This
approach is based on vector quantization methods [12], particulary the gla.

In this work, we use a NN that controls a robot, and a technique that gener-
ates rules, such as c4.5, to model the network, i.e. to model the robot behaviour.
The general framework is described in Figure 1 which shows the interrelation be-
tween the robot r1, the modeler r2 that tries to learn and reason about a model
of r1, the classi�cation technique c used for modeling its behavior, and the ob-
tained classi�er m (model of r1). This classi�er m should model the behavior of
robot r1, in such a way that if one presents the same set of input patterns (sen-
sory data) to both r1 and m the error between the output provided by r1 and m
should be minimal. Furthermore, a vector quantization (VQ) step is introduced
to discretize the r1 outputs. Next section describes brie
y this technique.

3 Generalized Lloyd Algorithm (gla)

The Generalized Lloyd Algorithm [7] is a clustering technique that consists of a
number of iterations, each one recomputing the set of more appropriate partitions

2

r 1

a1
prediction of

outputclassifier

reasoning

r 2Output of

: m

Inputs to r 1

r 1

agent
r 2

r1

c

Inputs to r2

Attributes
Inputs=

Class
Output=

Output of

agent

Discrete output of r 1

model of

V.Q.

Fig. 1. Architecture of the modeling of robots behavior.

of the input states (vectors), and their centroids. The algorithm is shown in
Figure 2. It takes as input a set T of M input states, and generates as output
the set C of N new states (quantization levels).

There are two design decisions to be made when using such a technique. The
�rst one is how to choose the initial set of clusters, given that the solution is
highly dependent on it. The second one is what to do with empty cells obtained

Generalized Lloyd Algorithm (T;N)

1. Begin with an initial codebook C1.
2. Repeat:

(a) Given a codebook (set of clusters de�ned by their centroids) Cm = fyi; i =
1; : : : ; Ng, redistribute each vector (state) x 2 T into one of the clusters in
Cm by selecting the one whose centroid is closer to x (nearest neighbour
rule).

(b) Recompute the centroids for each cluster just created, R, to obtain the new
codebook Cm+1, using equation (1):

cent(R)[i] =
1

kRk

kRkX

j=1

xj [i] (1)

where xj 2 R, xj [i] is the value of component (attribute) i of vector xj , and
kRk is the cardinality of R.

(c) If an empty cell (cluster) was generated in the previous step, an alternative
code vector assignment is made (instead of the centroid computation).

(d) Compute the average distortion for Cm+1, Dm+1.
Until the distortion has only changed by a small enough amount since last itera-
tion.

Fig. 2. The Generalized Lloyd Algorithm.

3

in step 2(c), given that empty cells are useless. Both topics are solved by using
only one cell initial prototype, and increasing this value in di�erent iterations.
Empty cells are eliminated and replaced by other ones that result from splitting
non-empty ones. All these mechanisms are explained in depth in [13].

4 Experimental Setup and Results

This section describes the experimental sequence needed to obtain a symbolic
model m from an agent r1 (which is considered as a black box) that can be used
by an agent r2. To do so, we have carried out three phases: a robot training
phase for r1, a training phase for obtaining a model m of r1, to be used by r2
and the test of model m in a robot simulator.

4.1 Robot Trainning

During robot training (r1), Uniform Coevolution was used to obtain a NN that
controls the movement of the robot based on a Braitenberg scheme [14]. The
robot moves in a bi-dimensional world, where there are obstacles with di�erent
shapes. Its goal is to move to a goal position in an eÆcient way, as shown in
Figure 4.1(a). The robot has �ve sensors shown in �gure 4.1(b). Three of them
(the proximity sensors) inform the robot how close obstacles are. The next two
measure how far the target location is, and what the angle to that location is.
The robot has two wheels that can move at di�erent speeds v1 and v2, so the
robot can turn. However, for experimental purpose, the speed of wheel v1 is �xed,
therefore the NN can only control the wheel v2. The aim of the neural network
learned by Uniform Coevolution is to control r1, that is, to map its sensors into
v2 speed. We refer the reader to [3] for details about Uniform Coevolution.

(a)Environment View (b) Robot Architecture

Fig. 3. Robot and Environment

4

4.2 The Modelling Task

Once the controller for r1 has been learned, the knowledge that tries to model the
behaviour of r1 is obtained by a rule modeler after applying the Lloyd algorithm
to discretize the outputs. The detailed steps for training r2 are as follows:

1. The robot r1, being controlled by the (co)evolved neural network is run
several times. At every instant, the readings of the �ve sensors (inputs) r(ti)
and the wheel velocities (outputs), c(ti) are logged to produce a trace of
the reactive behaviour of the robot. From this trace it is straightforward to
obtain a set of examples T so that r2 can learn and model r1.

2. Each instance ti of the set T is composed by the input, r(ti), and the output,
c(ti). From the set T , we extract all the c(ti) values, generating the set
Tc of possible outputs. This set is used as input of the generalized Lloyd
algorithm to obtain a reduced set of values T̂c. Last all the c(ti) values in T
are discretized based on T̂c, obtaining T̂ .

3. The Set T̂ is used to train r2, which generates modeling knowledge. This
knowledge will be obtained using C4.5 [15], a decision tree generator, that
will generate a set of rules that models the robot behaviour. That is, r2
knowledge should predict the output of r1, no matter whether it is the right
or the wrong output. Of course, we are also interested in modeling r1's
mistakes, if any.

In this domain, the learning task is the prediction among a range of classes,
based on 5 attributes (sensors data). The number of instances are 976 corre-
sponding to six simulations of r1. The classes have been obtained \ad-hoc" for
the �rst experiment, visualizing the distribution of the data, and selecting 11
di�erent values.

The gla has been also used to obtain the classes using di�erent number of
discretization levels (2, 4, 8, 16, 32 and 64). To determine how closely r2 knowl-
edge models r1 behaviour, we carry out ten-fold cross-validation. The closeness
of the performance of both r1 and r2 is measured as the number of examples in
which the predictions of r2 di�er to the behaviour of r1 for the same sensorial
input, taking into account that, in each case, both outputs are discretized fol-
lowing the \ad-hoc" classes or the ones generated by gla. Classi�cation results
are summarized in table 4.2 for the \ad-hoc" solution, and the seven solutions
obtained by di�erent executions of gla, for di�erent number of discretization
levels or classes.

Approach \ad-hoc" gla 2 gla 4 gla 8 gla 16 gla 32 gla 64

Accuracy 89.9% 98.90% 97.30% 93.30% 88.80% 81.80% 70.50%
Table 1. Classi�cation results

While the number of classes is increasing, the accuracy decreases. This is
because while the number of classes to di�erentiate increases, the classi�cation

5

problem is harder to solve. However we will show later that this is not a problem,
and that a high accuracy does not imply a good model.

4.3 Testing the Obtained Models

Last, and once the 7 models mi (the hand made solution, and the 6 models with
di�erent number of outputs generated with gla) have been generated, we tested
them in a robot simulator, SimDAI [16], and we compared the performance of
our model against the robot controlled by the NN in terms of average time
consumed and average distance covered to reach the goal. In total there were
50 trials (robot motion) with r1 and the 7 models mi. Each trial begins from
di�erent places in a bi-dimensional world and consists in reaching the goal in an
eÆcient way.

Figure 4 shows average distance covered by each model (including the original
one) to achieve the goal for the 50 trials, while Figure 5 shows the time spent
in running such a distance. The original model and the model using \ad-hoc"
classes obtain similar results, showing that the last approach is successful.

0

500

1000

1500

2000

2500

3000

0 10 20 30 40 50 60 70

D
is

ta
nc

e

Number of Classes

Original Behaviour
hand-made classes

VQ obtained classess

Fig. 4. Covered distance.

When we use the models obtained by discretizing the classes with gla, we
observe that with only 2 and 4 di�erent classes, results are worse than previous
solutions, as well as when the number of classes is very high (32 and 64 classes).
In the �rst case, it is because the number of di�erent classes or actions that
the robot can execute is very low, so although the modelling task was very
succesful (as shown in Table 4.2), the learned model is not good. In the second
case, despite the fact that the model with 32 classes displays similar results for
average distance with original model, the average time is much worse. This is duel.

6

200
400
600
800

1000
1200
1400
1600
1800
2000

0 10 20 30 40 50 60 70

T
im

e

Number of Classes

Original Behaviour
hand-made classes

VQ obtained classess

Fig. 5. Covered time.

to this model sometimes generates trials where the robot is blocked and does not
move, covering a low distance, but without achieving the goal in the maximum
time set (time < 2000). When 8 and 16 classes are used to discretize the network
output, the model obtained behaves very similarly to the ones obtained by the
original model and by the model with classes discretized by hand.

5 Conclusions

Results show that our approach is quite good when modeling simple neural
agents evolved by means of coevolution in a goal-seeking obstacle-avoiding robot
domain. In this paper we have used a machine learning technique, c4.5, to ob-
tain the modeling knowledge after applied the Lloyd algorithm to automatically
obtain a small discretized set of classes.

To discretize the data is needed when using classi�cation techniques that
require a �nite set of classes and when requiring the outputs are easily under-
standable by humnas. In this work, we have used two approaches to do this
quanti�cation. The �rst one is to do it by hand, so the set of classes is obtained
after an extensive analysis of the data, locating the quanti�cation levels in those
places where clusters were visually identi�ed. However, this process can not be
always done by hand. For instance, if we had a NN with several outputs, multi-
dimensional data should have to be quanti�ed, requiring an automatic method.
In this work, we have used a vector quantization method that computes the
quantization levels, allowing to design a model that obtains results very simi-
lar to the results obtained by the original model and the model designed with
classes computed by hand (which is very good because of the extensive analysis
required to generate this approach).

In the future we want to extend our approach with the following ideas. First,
to test our approach with other obstacle con�gurations. Second, to make some

7

agents learn models of other agents so that they can cooperate together. Last, in
this experiments, the acquisition of models of other agents is o�-line. However,
it would be very interesting that an agent could learn about other agents by
observing them on-line.

References

1. D. E. Rumelhart, G. E. Hinton, and R. J. Williams, \Learning representations by
back{propagating errors," Nature, vol. 323, pp. 533{536, 1986.

2. Leslie P. Kaelbling, Michael L. Littman, and Andrew W. Moore, \Reinforcement
learning: A survey," Int. J. of Arti�cial Intelligence Research, pp. 237{285, 1996.

3. Antonio Berlanga, Araceli Sanchis, Pedro Isasi, and Jos�e M. Molina, \A general
coevolution method to generalize autonomous robot navigation behavior," in Pro-
ceedings of the Congress on Evolutionary Computation, La Jolla, San Diego (CA)
USA, July 2000, pp. 769{776, IEEE Press.

4. Jude W. Shavlik and Geo�rey G. Towell, Machine Learning. A Multistrategy Ap-
proach., vol. IV, chapter Re�ning Symbolic Knowledge using Neural Networks, pp.
405{429, Morgan Kaufmann, 1994.

5. Ricardo Aler, Daniel Borrajo, In�es Galv�an, , and Agapito Ledezma, \Learning
models of other agents," in Proceedings of the Agents-00/ECML-00 Workshop on
Learning Agents,, Barcelona, Spain, June 2000, pp. 1{5.

6. J. R. Quinlan, \Induction of decision trees," Machine Learning, vol. 1, no. 1, pp.
81{106, 1986.

7. S. P. Lloyd, \Least squares quantization in pcm," Unpublished Bell Laborato-
ries Technical Note. Portions presented at the Institute of Mathematical Statistics
Meeting Atlantic City, New Jersey, September 1957. Published in the March 1982
special issue on quantization of the IEEE Transactions on Information Theory,
1957.

8. J. Ross Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann, San
Mateo, CA, 1993.

9. L. Breiman, J.H. Friedman, K.A. Olshen, and C.J. Stone, Classi�cation and Re-
gression Tress, Wadsworth & Brooks, Monterey, CA (USA), 1984.

10. J. Ross Quinlan, \Combining instance-based and model-based learning," in Pro-
ceedings of the Tenth International Conference on Machine Learning, Amherst,
MA, June 1993, pp. 236{243, Morgan Kaufmann.

11. Antonio Berlanga Agapito Ledezma and Ricardo Aler, \Extracting knowledge from
reactive robot behaviour," in Proceedings of the Agents-01/Workshop on Learning
Agents,, Montreal, Canada, 2001, pp. 7{12.

12. Allen Gersho and Robert M. Gray, Vector Quantization and Signal Compression,
Kluwer Academic Publishers, 1992.

13. Fernando Fern�andez and Daniel Borrajo, \VQQL. Applying vector quantization
to reinforcement learning," in RoboCup-99: Robot Soccer World Cup III, number
1856 in Lecture Notes in Arti�cial Intelligence, pp. 292{303. Springer Verlag, 2000.

14. V. Braitenberg, Vehicles: experiments on synthetic psychology, MIT Press, Mas-
sachusets, 1984.

15. J. Ross Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann, 1993.
16. L. Sommaruga, I. Merino, V. Matell�an, and J.M. Molina, \A distributed simula-

tor for intelligent autonomous robots," in In Proccedings of Fourth International
Symposium on Intelligent Robotic Systems, 1996, pp. 393{399.

8

