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rmal stability of the grain structure in the W-2V and W-2V-0.5Y2O3 alloys 
produced by hot isostatic pressing
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s:
d ODS W-2V-0.5Y2O3 alloys have been produced following a powder metallurgy route.

icrostructure and microhardness have been studied after isothermal treatments in vacuum.
ys exhibit a duplex grain size population: a submicron-sized grain and a coarse grained one.

3 addition inhibits growth of the coarse grains for T < 1973 K.
3 nanoparticles enhance the microhardness of W-2V-0.5Y2O3.
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 W-2V and ODS W-2V-0.5Y2O3 alloys have been produced following a powder metallurgy route consisting of mechanical alloying and a 
t high isostatic pressing HIP at 1573 K. The grain microstruc-ture and microhardness recovery of the alloys have been studied in samples 

 to isothermal treatments in vacuum in temperature range 1073–1973 K. Both alloys exhibit a duplex grain size distri-bution consisting of a 
-sized grain and a coarse-grained population. It has been found that the Y2O3 addition inhibits growth of the coarse grains at T < 1973 K. 
 grain growth, with activa-tion enthalpy of 1.9 and 2.49 eV for W-2V and W-2V-0.5Y2O3, respectively, was observed at T ≥ 1573 K. It resulted 
te constant for grain growth is 30 times higher in W-2V-0.5Y2O3 than in W-2V. The considerable enhancement of the microhardness in the 

Y2O3 appears to be associated to dispersion strengthening.
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ten-base alloys are being considered prime candidate
 for making plasma facing components (PFCs) in the 
sion reactors, in particular for the construction of a He-
vertor of the future demonstration fusion reactor (DEMO) 
 and efficient operating condition of these tungsten PFCs 

new tungsten alloys with enhanced mechanical proper-
tion hardening, dispersion strengthening and grain 
nt are the traditional approaches applied for developing 
gsten alloys [2–5]. It has been found that the Y2O3 

can induce a relative improvement of the mechanical 

elect
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of th
ther
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s of the W-Ti and W-V alloys, attributable to oxide 
n strengthen-ing (ODS) and grain refinement induced by 
der metallurgy processing of these alloys [5,6]. In 
r, the transmission
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microcopy (TEM) analyses have already established that 
 dispersion and the grain structure of these ODS W-V 

ve ultrafine characteristics [7]. The mechanical behav-ior 
lloys at high temperature, therefore, will depend on the 

stability of their microstructure. Although the ultra-fine 
structure is rather unstable it is expected that the 
n of the stable nanoparticles enhances the microstruc-
ility by inhibiting the recovery, recrystallization and grain 

ith the aim of evaluating the stability of the ODS nanos-
 tungsten alloys, the evolution of the grain microstructure 
ohardness recovery of the powder metallurgy W-2V and 
 Y2O3 alloys have been studied in samples subjected to 

al treatments in temperature range 1073–1973 K.

imental
and ODS W-2V-0.5Y2O3 (wt%) alloys, hereafter referred
and W2V0.5Y, were produced following a powder metal-

te consisting of mechanical alloying and subsequent high

1



Fig. 1. SEM
areas of the

Fig. 2. Qua
frequency h
resolution o
contrast images showing the structure of duplex grain sizes in (a) W2V y (b) W2V0.5Y.
low magnification pictures. The black patches in the images consist of pure V in agreem

ntitative analysis of an EBSD pattern for the W2V alloy: (a) reconstructed EBSD image,
istogram and its theoretical probability density function for an untextured cubic polycry
f the BSE detection system.
The insets correspond with enlarged ECC images from representatives
ent with the energy dispersive analyses.

(b) boundary disorientation mapping, and (c) boundary disorientation
stal. The uncolored patches correspond to grains having sizes below the
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Fig. 4. Grai
quantitative
ntitative analysis of an EBSD pattern for the W2V0.5Y alloy: (a) reconstructed EBSD
istogram and its theoretical probability density function for an untextured cubic p
f the BSE detection system.

ressing (HIP) for 2 h at 1573 K and 200 MPa, following the 
e described elsewhere [8].
es of the alloys were vacuum sealed in respective quartz

and subjected to isothermal annealing for 1 h at a
perature in the range 1073–1973 K, followed by water

g. After the suitable surface polishing, the microstructure
mples was examined by electron channeling contrast

usin
the E
anal
grain
betw

T
ples
(ECCI) in a MEB JEOL J8M6500 field emission scanning
microscope (SEM). In some cases, electron backscatter
n (EBSD) patterns from the samples were also acquired

approach
the spatia
dimensio

n microstructure of the W2V0.5Y alloy heat treated at 1573 K. (a) reconstructed EBSD
analyses from the EBSD (striped bars) and ECC (grey bars) images.
, (b) boundary disorientation mapping, and (c) boundary disorientation
stal. The uncolored patches correspond to grains having sizes below the

M-6300 scanning electron microscope. The images from 
 patterns were reconstructed using the MTex v3.2.5 data 
software [9]. The applied criterion for discriminating the 
undaries was a crystallographic misorientation >5◦ 

adjacent crystalline domains.
xperimental distributions of the grain sizes in the sam-
e determined from the ECC images using an improved 

 of the Jhonson–Saltykov stereological method to obtain 
l grain size distribution of the 3D microstructure from 2D 
nal grain size measurements [10]. Vickers microhardness

image, (b) ECC image and (c) grain size distributions obtained from
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microstructure

hipped samples
shows the microstructure of the W2V and W2V0.5Y alloys 
-HIP condition. The HIP treatment appears to produce V 
on to the powder particles surfaces giving rise to the 
 of V pools, which correspond with the black patches 

by SEM electron channeling images like those shown in 
e EDS-SEM analyses of the W2V0.5Y alloys did not reveal 
ence of Y2O3 indicating that it should be very finely 
. The SEM ECC images shown in Fig. 1 reveal that the 
cture of both alloys exhibit intermingled grains having 
tly two different sizes, i.e. a duplex grain size distribu-
prised of two grain families: one of coarse grains with 
er than 1 �m, and a second submicron-sized family. This 
ain size structure, along with the fact that the ECC images 
 coarse grains appear not to show contrast differences 
le to a subgrain substructure, indicate that discontinu-
mical recrystallization could have occurred during the 
olidation. Also, it should be noted that the volumetric 
f submicron-sized grains in the W2V0.5Y alloy is clearly 
an the fraction of coarse grains, but the opposite occurs in 
alloy.
 and 3 show reconstructed EBSD images for the W2V and 
 alloys, and the respective quantitative analyses of grain 
raphic orientations along with the corresponding 
 disorientation distributions. Figs. 2b and 3b show the 
the boundary disorientations, and Figs. 2c and 3c the 
ding frequency histograms along with the Mackenzie 
 disorientation distribution function, which gives the 

cal probability density of observing a particular boundary 
ation angle in a cubic polycrystalline with their grains 
 oriented, i.e. in an untextured cubic material [11]. Here, 
disorientation corresponds to the lowest angle crystallo-
ly related solution of a misorientation, according to the 
 given in Ref. 12. The reasonable agreement of this theo-

stribution with the experimental histograms of boundary 
ation confirms the expected absence of any crystallo-
exture in these alloys. Nevertheless, a clear deviation of 
rimental frequencies respect to the theoretical ones for 
tations � < 15◦ is observed for both alloys. This deviation, 
re significant in the W2V0.5Y alloy, is attributed to the 

 of a high fraction of subgrains, or incidental dislocation 
es. A fraction of the low-angle boundaries induced by 
ion during the mechanical alloying may have resulted in 
red subgrains during the HIP consolidation. Also, it 
hat the Y2O3 addition produces a more recovery resistant 
reducing the dislocation mobility, and therefore the 

recovery.

nealed samples
C images did not reveal any significant effect on the grain 
cture of both alloys after annealing at T ≤ 1473 K, but a 
hange in the size distribution of the submicron grains 

 after annealing at 1573 K, as the SEM image shown in Fig. 
e size distributions represented in Figs. 5 and 6, reveal. 
 distributions represented in Figs. 5 and 6 were 
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Fig. 5. Duplex grain size distribution for the W2V alloy.

ges. The agreement is very satisfactory as the histograms 
ted in Fig. 4 reveal considering that the images analyzed 
nd to different zones of the sample.
itial duplex size distribution for both alloys, which are 
ized by respective bimodal log-normal distributions, is 
ly retained after heat treatments at T ≤ 1473 K without 
eptible grain growth, as the histograms in Figs. 5 and 6 
e heat treatments at T ≥ 1573 K induced normal growth of 
icron grains, until the bimodal distributions in both alloys 
 monomodal at 1973 K. It is worthy of notice that: (1) the 
raction of the submicron grains is significantly higher in 
 than in W2V; (2) the volume fraction of the coarse grain 
n in W2V0.5Y is lower than the corresponding to submi-
ns, ∼30 against 70%; and (3) the micron-sized grains in 
 alloy appear not to coarsen for heat treatments at 1973 K 
do in W2V. The above results confirm that the oxide dis-
hibits significantly the grain growth of the coarse grains.

ding to the classic approach for the kinetics of normal grain 
duced by isothermal treatments, the grain size would be 

[13]:

Ko exp
(

− Q

kBT

)
t (1)

 is the initial size, D the size at time t, Q the activation 

 for isothermal growth, T temperature, kB the Boltzmann 
and Ko a constant. The fits of the experimental data of the 
n-sized grain distributions to Eq. (1) result in an activa-
alpy Q and rate constant Ko for submicron grain growth of
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Fig. 6. Duplex grain size distribution for the W2V0.5Y alloy.

6 eV (183 ± 6 kJ/mol) and 4.7 × 10−11 m2/s for W2V, and 
1 eV (240 ± 11 kJ/mol) 1.4 × 10−9 and m2/s for W2V0.5Y. 
ation energy for grain growth is associated to the one for 
ndary diffusion and should be equal to the corresponding 
 enthalpy in ideal grain growth. The activation enthalpy 
 grain boundary self-diffusion reported for pure tungsten 
 range 377–468 kJ/mol. Moreover, an activation enthalpy 
rowth of 211 ± 13 kJ/mol has been reported for pure tung-
 grain size above 10 �m [14]. The above implies that the 
n-sized grain structure in W2V is quite more unstable that 
grain structure in pure tungsten. Although the Y2O3 addi-
uces a considerable increase of the activation enthalpy 
cron grain growth, the submicron-sized grain structure is 
ble at 1573 K. However, Y2O3 addition inhibits the growth 
rse grains at 1973 K.

ohardness measurements

shows the effect of the thermal treatments on the micro-
 values. The values for W2V0.5Y are between 2.5 and 3 
her than the corresponding values for W2V. This enhance-
ears to be attributable to dispersion strengthening rather 
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