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Abstract 
 

This paper studies unemployed workers’ decisions to change occupations, and their 
impact on fluctuations in aggregate unemployment and its underlying duration distribution. We 
develop an analytically and computationally tractable stochastic equilibrium model with 
heterogenous labor markets. In this model three different types of unemployment arise: 
search, rest and reallocation unemployment. We document new evidence on unemployed 
workers’ gross occupational mobility and use it to calibrate the model. We show that rest 
unemployment is the main driver of unemployment fluctuations over the business cycle and 
causes cyclical unemployment to be highly volatile. The resulting unemployment duration 
distribution generated by the model responds realistically to the business cycle, creating 
substantial longer-term unemployment in downturns. Finally, rest unemployment also makes 
our model simultaneously consistent with procyclical occupational mobility of the unemployed, 
countercyclical job separations into unemployment and a negatively-sloped Beveridge curve. 
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1 Introduction
The Great Recession has revived an important debate about the extent and nature of unemploy-

ment across different labor markets.1 In this paper we construct and quantitatively assess an equi-

librium business cycle model, in which different types of unemployment arise in different labor

markets. We use this model to analyse how unemployed workers’ reallocation decisions change

with individual and aggregate conditions, creating labor market turnover and fluctuations in the

aggregate unemployment rate and the underlying duration distribution.

We build on Alvarez and Shimer (2011a), who study the relative importance of rest and search

unemployment. They consider a steady state economy with different industries, each characterised

by a competitive labor market.2 In our model we consider an out-of-steady-state economy, by in-

troducing aggregate productivity shocks. We distinguish between ‘search’, ‘reallocation’ and ‘rest’

unemployment, by including search frictions in labor markets. In addition, we study how dif-

ferences in workers’ productivities within an occupation affect their reallocation decisions when

unemployed, by considering an economy with several occupations. In our model workers’ occu-

pational productivities increase through learning-by-doing and are subject to shocks that are spe-

cific to the individual within an occupation. This approach builds on Kambourov and Manovoskii

(2009a), who show the importance of workers’ occupation-specific productivities for reallocation

decisions.3

Search unemployment in our model is caused by frictions that make it time-costly to find a

vacancy. Rest unemployment is caused by workers who chose to remain in their occupations, even

though currently there are no employment opportunities for them. Reallocation unemployment

is caused by frictions that make it time-consuming to find a different occupation with sufficiently

promising labor market conditions. The extent to which each type of unemployment arises depends

on the persistence and volatility of workers’ productivities within an occupation, the degree of

reallocation frictions across occupations and the aggregate state of the economy. The fluctuations

of aggregate unemployment are then determined by the cyclical characteristics of search, rest and

1See, for example, Şahin, et al. (2012) and Herz and Van Rens (2011) who measure the extent of mismatch;
and Elsby, et al. (2010) and Barnichon and Figura (2013), who measure the extent to which matching efficiency has
decreased during the Great Recession.

2See also Jovanovic (1987), Hamilton (1988) and Gouge and King (1997) who, as Alvarez and Shimer (2011a),
study search and rest unemployment. In these models the term search unemployment denotes the unemployment
experienced by workers who move across different industries.

3An important difference between our approach and that of Kambourov and Manovskii (2009a) and Alvarez and
Shimer (2011a) is that we consider idiosyncratic shocks to workers’ occupational productivities, and not sector-wide
(occupation or industry) shocks, as the main determinant of workers’ reallocation decisions. In Appendix C we provide
evidence that motivates this approach. Our evidence is consistent with Shimer (2007), who argues that occupational
mobility at business cycle frequencies is primarily for idiosyncratic reasons. It is also consistent with Kroft et al.
(2013), who show that the rise in long-term unemployment during and after the Great Recession is not driven by a
subset of occupations or industries, but occurs in all major occupations and industries. Jovanovic and Moffitt (1990)
and Auray et al. (2014) show that workers’ mobility decisions across industries are primarily driven by idiosyncratic
shocks and not by industry-wide shocks. Dvorkin (2013) shows that net mobility across industries cannot account for
the majority of the fluctuations in aggregate unemployment.
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reallocation unemployment.

We show that rest unemployment is the most important driver of aggregate unemployment

fluctuations. It is also able to rationalise the cyclical behavior of the labor market along many

other important dimensions. In a downturn, for example, a large proportion of workers who have

a low productivity in their occupation become rest unemployment, now facing no immediate job

prospects. Simultaneously, the existing pool of rest unemployed workers find it less profitable to

reallocate, further increasing the size of aggregate unemployment and decreasing the overall job

finding rate. In the calibration, these changes in rest unemployment lead to cyclical fluctuations

of the aggregate unemployment rate that are quantitatively in line with the data. Underlying these

fluctuations, the cyclical responses of the model’s aggregate job separation and job finding rates are

also quantitatively in line with the data. Moreover, the increase in rest unemployment in downturns

generates realistic cyclical changes in the unemployment duration distribution. The model also

preserves the main features for which the canonical Diamond-Mortensen-Pissarides (DMP) model

is empirically successful. That is, the changes in rest unemployment are able to generate a high

correlation between the job finding rate and labor market tightness and a strongly downward-

sloping Beveridge curve, similar to the empirical ones.

We also show that rest unemployment and occupational human capital accumulation can ratio-

nalise young and prime-aged workers’ unemployment and reallocation outcomes. Quantitatively,

the model can replicate these workers’ unemployment duration distributions, their average occu-

pational mobility rates, and the positive relationship between the two. Over the business cycle, the

model generates the empirical cyclical volatility of these workers’ job separation and job finding

rates.

A key aspect of our model is that workers with different productivities face different labor

markets within their occupations. Search frictions within these labor markets imply that there is a

non-trivial job separation decision. This results in a job separation productivity cutoff. Because job

separations are privately efficient in this setting, firms do not post vacancies on labor markets below

this separation cutoff. Reallocation decisions are also summarised by a reallocation productivity

cutoff.

The cyclical behavior of our model is determined by the relative position of the separation

and reallocation cutoffs, as well as the rate at which they vary with aggregate productivity. Only

when the separation cutoff is above the reallocation cutoff, search, rest and reallocation unem-

ployment coexist within an occupation. Search unemployment arises in those labor markets above

the separation cutoff. Rest unemployment arises in those labor markets between the separation

and reallocation cutoffs. Workers in labor markets below the reallocation cutoff, move to another

occupation in search for better employment opportunities. How the cutoffs vary with aggregate

productivity then further shapes the response of the three types of unemployment to aggregate

productivity shocks.

To quantitatively evaluate the relative importance of the three types of unemployment, we use
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the Survey of Income and Program Participation (SIPP) to generate new evidence on the gross oc-

cupational mobility patterns of the unemployed. We use these mobility patterns together with the

observed duration distribution of unemployment spells, averaged over the entire duration of our

sample, to estimate the main parameters of our model. Namely, the autocorrelation and variance of

workers’ productivity process within an occupation, and a reallocation cost that captures the extent

of reallocation frictions. The calibration yields a persistent productivity process with sizeable inno-

vations (relative to the aggregate productivity process), as well as significant reallocation frictions.

Together they imply that 68% of aggregate unemployment is accounted for by rest unemployment.

Search unemployment accounts for 22% and reallocation unemployment for the remainder 10%.

Rest unemployment is prominent in the calibration because it can reproduce a number of

observed unemployment and occupational mobility patterns in a mutually consistent way, while

search and reallocation unemployment by themselves cannot. First, rest unemployment is fully

able to reconcile the coexistence of large occupational mobility flows and the substantial propor-

tion of long-term unemployment among workers who find a job in their previous occupations.

Second, it allows the model to match the large proportion of unemployed workers who found a job

in their previous occupation, but change occupations after becoming unemployed a second time.

Third, rest unemployment can explain how unemployment incidence is concentrated in a subset of

workers.

Our model is related to the empirical work by Barnichon and Figura (2013), who highlight

the importance of worker heterogeneity across labor markets to understand unemployment fluc-

tuations. Taking as given observed vacancy and unemployment levels, they estimate a matching

function that incorporates (i) dispersion in local labor market conditions such that tight labor mar-

kets coexist with slack ones; and (ii) differences in workers’ levels of employability and search

intensity. They show that both dimensions explain well the fluctuations of the aggregate job find-

ing rate in the US. Our model captures these two dimensions as equilibrium outcomes through its

labor market structure and the existence of search, rest and reallocation unemployment. In addi-

tion, the large gross flows of occupational mobility among the unemployed observed in the data

implies that, in our model, workers’ reallocation decisions generate further job creation responses

that help rationalize the many labor market patterns described earlier.

Robin (2011), Chassamboulli (2013) and Murtin and Robin (2013) have also stressed that

differences in workers’ employability levels are an important driving force behind unemployment

fluctuations. These authors consider time-invariant heterogeneity in workers’ productivities.4 In

our model, workers’ productivities change over time and are affected by their reallocation choices.

Rest unemployment arises as an outcome of these reallocation choices and is the main driver of

unemployment fluctuations.

4Other studies have highlighted the importance of firm heterogeneity in explaining unemployment fluctuations.
Recent example are Kaas and Kircher (2012), Lise and Robin (2012), Moscarini and Postel-Vinay (2013) and Coles
and Mortensen (2012). Menzio and Shi (2011) highlight the role of heterogeneity in firm-worker matches.
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Wiczer (2013) develops a similar model to ours. He analyses the role of aggregate productiv-

ity and occupation-wide shocks on workers’ reallocation decisions and long-term unemployment.

Here, we do not consider shocks to occupations as a whole, but focus on idiosyncratic shocks to the

worker’s productivity within his occupation.5 These shocks are persistent and affect the worker’s

outcomes both in employment and unemployment, until the worker decides to switch occupa-

tions. Unlike in his model, the interaction between aggregate and idiosyncratic shocks is sufficient

to replicate the overall volatility of cyclical unemployment, while remaining consistent with the

cyclical behavior of long-term unemployment.

Rest unemployment in our model is closely related to the unemployment generated in mismatch

or stock-flow matching models. Shimer (2007), for example, defines mismatch unemployment as

those workers who remain attached to a local labor market even though there are currently no

jobs for them. In stock-flow matching models, as in Coles and Smith (1998), unemployed workers

wait for new jobs to arrive, as existing vacancies do not offer suitable employment opportunities.

Shimer (2007) and Ebrahimy and Shimer (2010) have shown that these types of unemployment

can generate sizeable fluctuations in aggregate unemployment. However, these types of models

typically do not consider workers’ reallocation and job separation flows, and when considered they

are assumed to be exogenous. In contrast, in our model these two margins are endogenous and play

a crucial role in determining rest unemployment and aggregate unemployment fluctuations.

The rest of the paper is organised as follows. In the next section we present our motivating

evidence on occupational mobility. In Sections 3-5 we develop the model and discuss implications

of the theory. Sections 6-8 contain our quantitative analysis and Section 9 concludes. Proofs are

relegated to the Appendix or to the Supplementary Appendix.

2 Occupational Mobility Through Unemployment
A key dimension of the paper is to link the gross occupational mobility of the unemployed

to individual and aggregate unemployment outcomes. We begin our analysis by studying unem-

ployed workers’ gross occupational mobility using the SIPP for the period 1986-2011. Our sam-

ple includes only workers that transition from employment to unemployment and back, without

any transitions into inactivity. We compare each worker’s occupation before and after unemploy-

ment, using ‘major’ (one-digit) occupational groups. We define workers who re-enter employment

in a different occupation as ‘occupational movers’ and workers who do not change occupations

as ‘occupational stayers’. In Appendix C we motivate our focus on gross occupational mobility

through unemployment and relate our findings to the literature on occupational mobility. In the
5As mentioned earlier, in Appendix C we motivate of this approach. In addition to Wiczer (2013), Pilossoph

(2012) considers a model with search frictions within aggregate industries in which workers reallocation’s decisions
are affected by preferences shocks, but workers choose to which industry to reallocate. Her model has two important
difference with our framework: it assumes exogenous separations and delivers countercyclical reallocations. See also
Mehrotra and Sergeyev (2013) and Dvorkin (2013) for a related approach. Lkhagvasuren (2012) considers a model
with search frictions within geographically distinct labor markets and endogenous mobility across these markets.
However, his focus is on steady-state analysis.
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Supplementary Appendix we provide further details of the sample used and the construction of our

occupational mobility measures.

We establish the following new facts. (i) The extent of occupational mobility is high, increases

with unemployment duration and decreases with age. (ii) A large proportion of occupational

movers and stayers change occupations after a subsequent unemployment spell. (iii) Occupational

mobility of the unemployed is procyclical. As mentioned earlier, our model will show that rest

unemployment is able to reconcile these patterns, while generating realistic cyclical fluctuations of

aggregate unemployment, job separations and long-term unemployment.

Table 1: Proportion of completed unemployment spells ending with an occupation change

Major Occupational Groups
all male female high school college

young (20 < age ≤ 30y) 0.53 0.54 0.51 0.54 0.53
prime (35 < age ≤ 55) 0.45 0.45 0.44 0.47 0.45
all working ages 0.50 0.51 0.49 0.52 0.49

The Extent of Occupational Mobility Table 1 describes the proportion of unemployed workers

who found a job in a different occupation for various demographic groups. It shows that work-

ers are, on average, equally likely to stay in their occupations or to change occupations after a

spell of unemployment.6 We also find that, across gender and educational levels, the proportion of

occupational movers is higher for young than for prime-aged workers.
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Figure 1: Extent of occupational mobility by unemployment duration

Figure 1 shows that the proportion of occupational movers increases moderately with unem-

ployment duration (though this relation becomes non-monotone close to 12 months duration). As

6As argued in more detail in Appendix C, we find that the extent of occupational mobility is high in all major
occupational categories and is not driven by a subset of them.
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a result, the proportion of workers who will be occupational stayers remains substantial, even at

long unemployment durations.

Repeat Mobility From all those occupational stayers that became unemployed once again, we

find that 38% of these workers change occupations after concluding their second unemployment

spell. This percentage is lower for prime-aged workers (35%) and higher for young workers (44%).

Likewise, from all those occupational movers that became unemployed once again, we find that

56% of these workers moved yet to another occupation. This percentage is also lower for prime-

aged workers (54%) and higher for young workers (62%).
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Figure 2: Moving average of the growth rate of output per worker and the log series of Cm

Business Cycle Patterns Finally consider the cyclical behavior of the proportion of occupational

movers in the outflow from unemployment, Cm. Figure 2 shows a (centered) 5-quarters moving

average of (log) Cm together with the growth rate of output per worker. It shows that the occupa-

tional mobility of the unemployed is procyclical, it tends to be higher when the economy is growing

faster. Its correlation with the growth rate of output per worker is 0.36. Table 2 confirms this ob-

servation. It shows the volatility and autocorrelation of the cyclical components of the (log) Cm,

as well as its correlations with the cyclical components of the job finding rate (f ), unemployment

rate (u), output (Y ) and output per worker (y) series.7

We now construct a model in which the option for unemployed workers to reallocate to different

occupations affects their individual unemployment outcomes. When aggregating these individual

unemployment outcomes, the model will produce implications for the cyclical behavior of key

unemployment statistics, such as those discussed above.

7Carrillo-Tudela, Hobijn and Visschers (2014) analyse data from the Current Population Survey, and likewise find
procyclicality in the occupational mobility of the unemployed. Details on the construction of Table 2 can be found in
the Supplementary Appendix.
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Table 2: Composition and outflow rates of movers/stayers over the business cycle

Cm f u y Y
Standard Deviation 0.028 0.097 0.129 0.009 0.016
Autocorrelation 0.850 0.928 0.966 0.695 0.871
Corr. w/ output/worker 0.256 0.453 -0.524 1.000 0.834
Correlation w/ u -0.255 -0.773 1.000 -0.524 -0.816

3 Model

3.1 Framework
Time is discrete t = 0, 1, 2, . . . There is a finite number of occupations indexed by o =

1, . . . , O. Within each occupation there is a mass of infinitely lived, risk-neutral workers. At any

time t, within an occupation workers differ in two components that are occupation specific: an id-

iosyncratic productivity, zt, and occupational human capital, xh.8 Workers’ z-productivities evolve

over time following a common first-order stationary Markov process, where F (zt+1|zt) denotes

its transition law and zt, zt+1 ∈ [z, z], z > 0 and z < ∞. The z-productivity realizations affect

a worker both in employment and in unemployment within his occupation. Workers accumulate

occupational human capital through learning-by-doing. In any period t an employed worker with

human capital level xh, increases his human capital to xh+1 with probability χ(xh+1|xh), where

χ(xh+1|xh) = 1 − χ(xh|xh), xh < xh+1, h = 1, . . . , H and xH < ∞. For simplicity, a worker’s

human capital does not depreciate with unemployment.9 Any unemployed worker receives b each

period.

There is also a mass of infinitely lived risk-neutral firms within an occupation. All firms are

identical and operate under a constant return to scale technology, using labor as the only input.

Each firm consists of only one job that can be either vacant or filled. The output of a worker

with current productivity zt and human capital xh in any firm is given by the production function

y(pt, zt, xh), where pt denotes aggregate productivity. We assume pt follows a first-order stationary

Markov process with pt ∈ [p, p], p > 0 and p < ∞. The production function is strictly increasing

in all of its arguments and it is continuous differentiable in the first two. All agents discount the

8A worker’s idiosyncratic productivity captures occupation match-specific, industry and location components that
determine this worker’s productivity in his occupation and are orthogonal to occupational human capital. For example,
it captures that the productivity of a chemical engineer working in the photo industry in Rochester, US, can differ from
the productivity of another, equally experienced, chemical engineer working in the oil industry in Texas, US. Further, a
worker’s idiosyncratic productivity can change over time as a result of the evolution of the occupation match-specific,
industry and location components.

9An implication of this assumption is that unemployed workers’ reallocation decisions will be determined by
the evolution of their z-productivities and not by the depreciation of their occupational human capital. This seems a
reasonable abstraction in light of Figure 1, which suggests that occupational human capital depreciation does not have
a prominent role in determining unemployed workers’ reallocation decisions. If it had, we would observe young and
prime-aged workers’ occupational mobility rates converge at long unemployment durations. This is because human
capital depreciation has a bigger impact on experienced workers relative to inexperienced workers, who have little
human capital. In this figure, however, the difference between young and prime-aged workers’ mobility rates hardly
varies with unemployment duration.
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future at rate β.

Matching A key assumption is that workers with different pairs (z, xh) do not congest each other

in the matching process. This assumption allows us to study business cycle behavior in a tractable

way. As a result, an occupation is segmented into many labor markets, one for each pair (z, xh).

Each labor market (z, xh) has the DMP structure. A constant returns to scale matching function

governs the meetings of unemployed workers and vacancies within each market. We assume that

all labor markets have the same matching technology. Each of these labor markets exhibits free

entry of firms, where posting a vacancy costs k per period.10 When the z-productivity of an unem-

ployed worker with human capital xh changes to z′, the relevant labor market for this worker would

become (z′, xh). Should an employed worker become unemployed the relevant labor market would

be the one associated with his current z-productivity and human capital level xh. Match break-up

can occur with an exogenous (and constant) probability δ, but can also occur if the worker and the

firm decide to do so. Once the match is broken, the firm has to decide to reopen the vacancy and

the worker stays unemployed until the end of the period. In what follows we will often refer to z

as the worker’s labor market conditions, keeping the dependence on human capital implicit.

Reallocation Unemployed workers can also reallocate and search for jobs in a different occu-

pation. The key assumption here is that workers do not know ex-ante the specific labor market

conditions they will face in a new occupation and need to spend time and resources to find this out.

A worker rationally expects that his labor market conditions in another occupation are drawn from

a distribution F (z). Reflecting the dominant importance of idiosyncratic factors in gross occupa-

tional mobility, we abstract from occupation-wide differences driving gross mobility and assume

that the ex-ante expected F (z) is the same for all occupations. In Appendix C we present evidence

that motivates this assumption.

In particular, after paying a cost c, a worker realizes his z-productivity in a new occupation as

a random draw from F (z), which we take to be the ergodic distribution associated with the afore-

mentioned Markov process F (zt+1|zt). After observing his new z-productivity, the worker must sit

out one period unemployed before deciding whether or not to reallocate once again. For simplicity,

we assume no recall of z-productivities once the worker has left his occupation. Reallocation also

involves the loss of a worker’s accumulated human capital. The worker starts with human capital

x1 in the new occupation. A worker’s z-productivity and occupational human capital then evolve

as described above. Without loss of generality, we assume that each occupation has a 1/(O − 1)

10Barnichon and Figura (2013) present evidence showing that the segmented labor market assumption provides
a better representation of the matching process, compared to the aggregate labor market approach typically found in
the search and matching literature (see Pissarides, 2001). One can obtain this labor market structure as an equilibrium
outcome of a competitive search model in which firm post wage contracts in different sub-markets, each to attract
unemployed workers with different productivities. Within a sub-market, a matching function then determines the
meetings of workers and firms.
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probability of being sampled.11 In Section 8.2 we further discuss the motivation behind assuming

random search across (o, z) pairs.

We highlight that our model exhibits positive gross mobility and zero net mobility across occu-

pational groups. Reallocations are driven by a stationary shock process to workers’ idiosyncratic

productivities within an occupation, its interaction with human capital accumulation and aggregate

productivity shocks.

Timing and state space The timing of the events is summarised as follows. At the beginning

of the period the new values of p, z and xh are realised. After these realisations, the period is

subdivided into four stages: separation, reallocation, search and matching, and production. Let Et
denote the joint productivity distribution of unemployed and employed workers over all occupa-

tions in period t. Let E jt denote this distribution at the beginning of stage j. The state space for

a worker currently characterised by (zt, xh) at the beginning of stage j is described by the vec-

tor Ωj
t = {est, ot, pt, zt, xh, E jt }, where est captures the worker’s employment status and ot his

occupational attachment.

We can show that the equilibrium decision rules have a relevant state space described solely

by {pt, zt, xh} and workers’ employment status. To keep notation complexity to a minimum,

we present the agents’ decision problems and the laws of motion of unemployed and employed

workers using this state space. Note that {pt, zt, xh} are sufficient statistics for the evolution of a

worker’s productivity within his current occupation, and hence without loss of generality we can

drop the occupational index, ot, from a worker’s labor market and from his decision problems. To

further simplify notation we leave implicit the time subscripts, denoting the following period with

a prime.

3.2 Agents Decisions
Worker’s Problem Consider an unemployed worker currently characterised by the pair (z, xh)

in occupation o. The value function of this worker at the beginning of the production stage is given

by

WU(p, z, xh) = b+ βEp′,z′
[

max
ρ(p′,z′,xh)

{
ρ(p′, z′, xh)

[
− c+

∫ z

z

WU(p′, z̃, x1)dF (z̃)
]
+ (1)

(1− ρ(p′, z′, xh))
[
λ(θ(p′, z′, xh))W

E(p′, z′, xh) + (1− λ(θ(p′, z′, xh))W
U(p′, z′, xh))

]}]
,

where θ(p, z, xh) denotes the ratio between vacancies and unemployed workers currently in labor

market (z, xh) and λ(.) the associated job finding probability. The value of unemployment consists

of the flow benefit of unemployment b, plus the discounted expected value of being unemployed

11Our assumptions imply each occupation has the same size, set of z-productivities and probability of being chosen.
One can make occupations differ in terms of their size, by changing the sampling distribution of occupations according
to the transition matrices reported in the Supplementary Appendix without affecting our results.

9



at the beginning of next period’s reallocation stage, where ρ(p′, z′, xh) takes the value of one when

the worker decides to reallocate and zero otherwise. The term−c+
∫ z
z
WU(p′, z̃, x1)dF (z̃) denotes

the expected net benefit of reallocating and sampling a new productivity z̃ in a different occupation.

It is through this term that expected labor market conditions in other occupations affect the value

of unemployment, and indirectly the value of employment, in the worker’s current occupation.

The reallocation decision is captured by the choice between the expected reallocation gains and

the expected payoff of remaining in the current occupation. The latter is given by the expression

within squared brackets in the second line of the above equation.

Now consider an employed worker currently characterised by the pair (z, xh) in occupation o.

The expected value of employment at the beginning of the production stage given wage w(p, z, xh)

is described by

WE(p, z, xh) = w(p, z, xh) (2)

+ βEp′,z′,x′
[

max
d(p′,z′,x′)

{(1− d(p′, z′, x′))WE(p′, z′, x′) + d(p′, z′, x′)WU(p′, z′, x′)}
]
,

where x′ = xh if this worker does not increase his human capital and x′ = xh+1 if he does. The

second term describes the worker’s option to quit into unemployment in next period’s separation

stage. The job separation decision is summarised in d(p′, z′, x′), such that it take the value of δ

when WE(p′, z′, x′) ≥ WU(p′, z′, x′) and the value of one otherwise.

Firm’s Problem Consider a firm posting a vacancy in labor market (z, xh) at the start of the

search and matching stage. The expected value of a vacancy solves the Bellman equation

V (p, z, xh) = −k + q(θ(p, z, xh))J(p, z, xh) + (1− q(θ(p, z, xh)))V (p, z, xh), (3)

where q(.) denotes firms’ probability of finding an unemployed worker and J(p, z, xh) denotes the

expected value of a filled job. Free entry implies that V (p, z, xh) = 0 for all those triples (p, z, xh)

that yield a θ(p, z, xh) > 0, and V (p, z, xh) ≤ 0 for all those (p, z, xh) that yield a θ(p, z, xh) ≤ 0.

In the former case, the free entry condition simplifies (3) to k = q(θ(p, z, xh))J(p, z, xh).

Now consider a firm employing a worker currently characterised by the pair (z, xh) at wage

w(p, z, xh). The expected lifetime discounted profit of this firm can be described recursively as

J(p, z, xh) = y(p, z, xh)− w(p, z, xh) (4)

+ βEp′,z′,x′
[

max
σ(p′,z′,x′)

{
(1− σ(p′, z′, x′))J(p′, z′, x′) + σ(p′, z′, x′)V (p′, z′, x′)

}]
,

where σ(p′, z′, x′) takes the value of δ when J(p′, z′, x′) ≥ V (p′, z′, x′) and the value of one

otherwise. Further, x′ = xh if the worker does not increase his human capital and x′ = xh+1 if he

does.
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Wages We assume that wages are determined by Nash Bargaining. Consider a firm-worker match

currently associated with the pair (z, xh) such that it generates a positive surplus. Nash Bargaining

implies that the wage, w(p, z, xh), solves

(1− α)
(
WE(p, z, xh)−WU(p, z, xh)

)
= α

(
J(p, z, xh)− V (p, z, xh)

)
, (5)

where α ∈ [0, 1] denotes the worker’s exogenous bargaining power.

In what follows we impose the Hosios (1991) condition, such that 1−α = η(θ(p, z, xh)), where

η(.) denotes the elasticity of the job finding probability with respect to labor market tightness.

This guarantees that firms post the efficient number of vacancies within labor markets. It will also

guarantee that our decentralised economy is efficient as shown below in Proposition 2.

3.3 Worker Flows
The evolution of the number of workers is a result of optimal vacancy posting, and separation

and reallocation decisions. Their evolution can be summarised by the following difference equa-

tions. The number of unemployed workers characterised by (z, xh) in occupation o at the beginning

of next period is given by

u′o(z, xh)dz =

∫ z

z

(1− λ(θ(p, z̃, xh)))(1− ρ(p, z̃, xh))uo(z̃, xh)dF (z|z̃)dz̃ (6)

+

∫ z

z

d(p, z̃, xh)eo(z̃, xh)dF (z|z̃)dz̃

+ (1h=1)

[∑
õ6=o

H∑
h=1

[ ∫ z

z

ρ(p, z̃, x̃h)uõ(z̃, x̃h)dz̃
]]dF (z)

O − 1
.

The first term refers to all those workers in labor markets (z̃, xh) that remained unemployed in

occupation o during the current period and changed to (z, xh) at the beginning of the next period.

Conditional on staying in occupation o, this term captures those workers that did not find a job.

This could be because no jobs were posted and λ(θ(p, z, xh)) = 0, or because they were unlucky

and did not meet any new vacancies when λ(θ(p, z, xh)) > 0. The second term refers to those

employed workers in labor markets (z̃, xh) that became unemployed and changed to (z, xh) at

the beginning of the next period. By assumption, these workers do not participate in either the

reallocation or matching stages and do not increase their human capital. The third term refers to

all those unemployed workers in different occupations that sampled z and o when reallocating.12

Since reallocation re-sets occupational human capital, the indicator function 1h=1 takes the value

of one when the labor market (z, xh) is associated with x1 and zero otherwise.

12To derive this term we have assumed that when a worker samples a new z in a different occupation, he arrives
to the new occupation at the start of the following period. This assumption is made purely for convenience. It is made
without a loss of generality since there are no decisions taken during the production stage and workers draw new z in
an i.i.d fashion.
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The number of employed workers characterised by (z, xh) in occupation o at the beginning of

the next period is given by

e′o(z, xh)dz = χ(xh|xh)
∫ z

z

λ(θ(p, z̃, xh))(1− ρ(p, z̃, xh))uo(z̃, xh)dF (z|z̃)dz̃ (7)

+ χ(xh|xh)
∫ z

z

(1− d(p, z̃, xh))eo(z̃, xh)dF (z|z̃)dz̃

+ (1h>1)
[
χ(xh|xh−1)

∫ z

z

(1− d(p, z̃, xh−1))eo(z̃, xh−1)dF (z|z̃)dz̃
]
.

The first term describes those unemployed workers in labor markets (z̃, xh) that found a job in their

same occupation o, did not increase their human capital and changed to (z, xh) at the beginning of

the next period. The second term describes those employed workers in occupation o that did not

transit to unemployment or increased their human capital, and changed to (z, xh) at the beginning

of the next period. The third term describes those employed workers in occupation o that increased

their human capital from xh−1 to xh, and changed to (z, xh) at the beginning of the next period.

The indicator function 1h>1 takes the value of one when the labor market (z, xh) is associated with

a value of xh > x1 and zero otherwise.

4 Equilibrium
We focus on equilibria in which the value functions and decisions of workers and firms in any

occupation only depend on {pt, zt, xh} and workers’ employment status. In this type of equilibria

outcomes can be derived in two steps. In the first step, decision rules are solved independently

of the distribution E , using (1)-(4). Once those decision rules are determined, we fully describe

the dynamics of E , using the workers’ flow equations, (6) and (7). Given this recursive structure,

we label this type of equilibrium ‘block recursive’, borrowing the term from the directed search

literature (see Menzio and Shi, 2011). We relegate all the proofs of this section to Appendix A.

Definition A Block Recursive Equilibrium (BRE) is a set of value functionsWU(p, z, xh),WE(p, z, xh),

J(p, z, xh), workers’ policy functions d(p, z, xh), ρ(p, z, xh) (resp. separation and reallocation de-

cisions), firms’ policy function σ(p, z, xh) (layoff decision), tightness function θ(p, z, xh), wages

w(p, z, xh), laws of motion of p, z and xh for all occupations, and laws of motion for the distribution

of unemployed and employed workers over all occupations, such that: (i) the value functions and

decision rules follow from the firm’s and worker’s problems described in (1)-(4); (ii) labor market

tightness θ(p, z, xh) is consistent with free entry on each labor market, with zero expected profits

determining θ(p, z, xh) on labor markets at which positive ex-post profits exist; θ(p, z, xh) = 0

otherwise; (iii) wages solve (5); (iv) the flow equations (6) and (7) map initial distributions of

unemployed and employed workers (respectively) over labor markets and occupations into next

period’s distribution of unemployed and employed workers over labor markets and occupations,
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according to the above policy functions and exogenous separations.

Existence Consider the labor market characterised by (z, xh) in occupation o. LetM(p, z, xh)
def
=

WE(p, z, xh) + J(p, z, xh) denote the joint value of the match and consider the operator T that

maps the value functions M(p, z, xh) and WU(p, z, xh) into the same function space, where T is

formally defined in Appendix A. To simplify the analysis that follows, we assume a Cobb-Douglas

matching function as it implies a constant elasticity of the job finding probability with respect to θ.

Abusing notation slightly, let such an elasticity be denoted by η.

A fixed point of the mapping T describes the problem faced by unemployed workers and firm-

worker matches currently in this labor market. Further, since the identity of the occupation does

not affect the value functions M(p, z, xh) or WU(p, z, xh), a fixed point of T also describes the

problem faced by agents in the decentralised economy. The task is to find a fixed point in two

dimensions (M(p, z, xh), WU(p, z, xh)), taking into account endogenous job separations and en-

dogenous reallocations. These reallocations involve workers randomly sampling (o, z) pairs, mak-

ing a decision to stay in an occupation with good enough labor market conditions for them. Thus,

in our model reallocating workers cannot direct their search towards a particular labor market.

However, the problem remains tractable because an unemployed worker does not carry his pre-

vious (o, z) pairs when reallocating. As a result, firms in a given labor market meet unemployed

workers who all have the same outside option. Together with free-entry and constant returns to

scale in production and matching, this means that tightness in any given labor market is pinned

down independently of the distribution of workers, E .

Assumption 1. F (z′|z) < F (z′|z̃), for all z, z′ if z > z̃.

In the proof of Proposition 1 we use this assumption to show that the operator T is a con-

traction that maps M(p, z, xh) and WU(p, z, xh) that are increasing in z into itself. Given this

result and the Banach’s Fixed Point Theorem, a unique fixed point (M(p, z, xh),W
U(p, z, xh))

of the mapping T exists. We can then derive all equilibrium value functions and decision rules

from this fixed point. We have the following: WE(p, z, xh) = M(p, z, xh) − J(p, z, xh) and

J(p, z, xh) = η(M(p, z, xh) −WU(p, z, xh)) = k/q(θ(p, z, xh)). This implies that WE(p, z, xh),

J(p, z, xh) and θ(p, z, xh) can be constructed from M(p, z, xh) and WU(p, z, xh). By completing

these steps we have existence and uniqueness of a block recursive equilibrium which are ‘inherited’

from the existence and uniqueness of the fixed point of the mapping T .

Proposition 1. A BRE exists and it is the unique equilibrium.

Using the mapping T and the insights of Proposition 2, below, we also show the more general

uniqueness proof.13

13To derive the properties of T and existence and uniqueness of a BRE we do not require the Hosios (1991)
condition to hold within labor markets. However, this condition in needed to prove efficiency and hence that the BRE
identified here is also the unique equilibrium in the class of recursive equilibria.

13



Efficiency The social planner, currently in the production stage, solves the problem of maximis-

ing total discounted output by choosing separations, reallocations, and vacancy creation decisions

for each pair (z, xh) across all occupations, at any period t. Namely,

max
{d(.),ρ(.),v(.)}

E
[
∞∑
t=0

βt
O∑
o=1

H∑
h=1

∫ z

z

[uo,t(z, xh)b+ eo,t(z, xh)y(pt, z, xh)− (cρ(.)uo,t(z, xh) + kvo,t(.))] dz

]
subject to initial conditions (p0, E0), and the laws of motion (6) and (7). The planner’s choices

depend on the entire state space {pt, zt, xh, Et}, where vo,t(pt, z, xh, Et) denotes the number of

vacancies posted in the labor market (z, xh) in occupation o at time t. Labor market tightness is then

given by θo,t(pt, z, xh, Et) = vo,t(pt, z, xh, Et)/(1 − ρ(pt, z, xh, Et))uo,t(z, xh). As with tightness,

the planner’s choice variables ρ(pt, z, xh, Et) and d(pt, z, xh, Et) are continuous choice variables in

[0, 1]: the planner can decide on the proportion of workers in labor market (z, xh) to separate or

reallocate.

Proposition 2. The equilibrium identified in Proposition 1 is constrained efficient.

We use the entire state space to show that the solution to the planner’s problem in the general

state space coincides with the solution to the decentralised economy problem in the space (p, z, xh).

Therefore, the planner’s decisions (when considering θ(.) instead of v(.)) only depend on (p, z, xh)

and not on E . The social planner’s value functions are linear in the number of unemployed and

employed on each labor market. The remaining dependence on p, z and xh is the same as the one

derived from the fixed point of T . The key remaining step is to ensure that a worker’s value of

reallocation coincides with the planner’s value of reallocating this worker. Given this, the outcome

at the matching stage is also efficient because we imposed the Hosios’ (1991) condition. It then

follows that the cyclical pattern of workers’ occupational mobility in the model is also efficient.

5 Implications
We now turn to explore the main implications of our theory: the occurrence of rest unemploy-

ment and the cyclicality of workers’ reallocations and job separations. To keep the intuition as

clear as possible we study a version of our model without occupational human capital accumula-

tion, setting xh = 1 for all h. This implies that, within an occupation, workers differ only by their

idiosyncratic productivity, z, and labor market segmentation is done along this dimension. Agents’

value functions are still given by equations (1)-(4), but now with state space (p, z).

Using this simplified framework, we show that the workers’ reallocation and job separation

decisions are characterised by reservation z-productivity cutoff functions. By studying the relative

position of these functions, we then explore the conditions under which rest unemployment arises.

By studying their slopes, we gain insights on the cyclical properties of separations and reallocations

in our model. All the proofs of this section can be found in Appendix B. In the calibration section,

we show that the same properties as derived below apply to the more general setup considered

there.
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Figure 3: Relative positions of the reservation productivities

5.1 Reservation Cutoffs for Separations and Reallocation
Lemma 1 (Separation cutoff function zs(p)). If δ + λ(θ(p, z)) < 1, for all p, z in equilibrium,

there exists a unique cutoff function zs(p) that depends only on p, such that d(p, z) = σ(p, z) = 1

if and only if z < zs(p), and d(p, z) = σ(p, z) = 0 otherwise.

The separation cutoff function zs is related to the one found in Mortensen and Pissarides (1994)

because it characterises endogenous separations. However, in our setup z refers to the worker’s

idiosyncratic productivity in an occupation, rather than to a match-specifc productivity with a firm.

This difference implies that when the worker becomes unemployed, his z-productivity is not lost or

is reset when re-entering employment in the same occupation. Instead, the worker’s z-productivity

continues to shape his outcomes in unemployment as well. It is only when the worker changes

occupation that he resets his z-productivity.

A worker decides to reallocate when the expected value of staying unemployed in his current

occupation falls below the expected value of reallocation. Assumption 1 guarantees that WU(p, z)

from equation (1) is increasing in z, and by Lemma 1 so is max{λ(θ(p, zr(p)))(WE(p, zr(p)) −
WU(p, zr(p))), 0}. Given that R(p) is constant in z, there exists a reallocation cutoff function
zr(p) such that workers reallocate if and only if z < zr(p) for every p, where zr(p) satisfies

WU(p, zr(p))+ max{λ(θ(p, zr(p)))(WE(p, zr(p))−WU(p, zr(p))), 0} (8)

= −c+

∫ z

z

WU(p, z̃)dF (z̃)
def
= R(p).

The relative position and the slopes of zr and zs are crucial for agents’ behavior and aggregate

outcomes in our model. Figure 3a, for example, shows the case in which zr > zs for all p. In

this case, having a job makes a crucial difference on whether a worker stays or leaves his current

occupation. In particular, when z ∈ [zs, zr), the match surplus generated by the worker-firm pair
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is enough to keep the employed worker attached to his occupation. For an unemployed worker

with a z in the same interval, however, the probability of finding a job is sufficiently small to

make reallocation the more attractive option, even though this worker could generate a positive

match surplus if he were to become employed. For values of z < zs, all workers reallocate. For

values of z ≥ zr, firms post vacancies and workers remain in their occupations, flowing between

unemployment and employment over time as in the canonical DMP model.

Figure 3b shows the opposite case, in which zs > zr. In this case, workers who quit into

unemployment, at least initially, do not reallocate, while firms do not create vacancies in labor

markets associated with values of z < zs. Workers with z-productivities between zs and zr are

rest unemployed: they face a very low – in the model, starkly, zero – contemporaneous job finding

probability, but still choose to remain attached to their occupations. The stochastic nature of the z-

productivity process, however, implies that these workers can face a positive expected job finding

probability for the following period.14 Only after the worker’s z-productivity has declined further,

below zr, a rest unemployed worker reallocates. Otherwise, the worker stays in his occupation for

possible improvements of his z-productivity. For values of z ≥ zs, the associated labor markets

function as in the canonical DMP model.

An unemployed worker is considered search unemployed when this worker is in a labor mar-

ket in which firms a currently posting vacancies. A worker is considered reallocation unemployed
only during the time he is trying to find another occupation in which his labor market conditions are

sufficiently good; i.e. obtain a z > zr. Once he finds an occupation where his z-productivity real-

ization lies above zr, he becomes search or rest unemployed, depending on whether z > zs and on

the relative position of zs and zr. An occupational mover is a worker who left his old occupation,

went through a spell of unemployment (which could encompass all three types of unemployment)

and has found a job in a different occupation. The distinction between reallocation unemployed and

occupational movers is made to be consistent with the way we measured occupational mobility in

Section 2.

5.2 The Occurrence of Rest Unemployment
The key decision that an unemployed worker makes, is whether to remain in his occupation,

waiting to see if his z-productivity improves, or to reallocate to another occupation, drawing a new

z-productivity immediately. Rest unemployment arises when the value of waiting is sufficiently

large. This decision is similar to an ‘optimal scrapping’ problem under uncertainty, where the

14Rest unemployed workers should be thought of as workers displaying the search activities that the BLS requires
to consider a worker as unemployed (e.g. contacting employment agencies, employment centres, checking union and
professional registers, or sending out resumes). After performing these activities, rest unemployment workers then
could find out that there are little (or starkly, no) appropriate jobs available for them, and hence they will face a con-
temporaneous job finding probability of zero. As shown below, the volatility in the z-productivity process generating
rest unemployment in our model can also rationalize that these workers keep paying attention to the conditions on their
specific labor markets, as they could improve, potentially within a short span of time. This is in contrast to settings with
permanent worker heterogeneity, where some unemployed could predict that aggregate productivity needs to recover
substantially, which in itself might take some time, before they become employable again.
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option value of waiting typically plays an important role in determining whether and when a firm

should upgrade technologies or close plants. As emphasised by, for example, Dixit and Pindyck

(1994), in these type of problems the option value of waiting becomes meaningful (i) when there

is enough uncertainty about the net returns of the investment and (ii) when the investment and/or

its cost is at least partially irreversible. In our model, the degree of uncertainty on the net returns

of reallocation crucially depend on the properties of the z-productivity process, while reallocation

frictions generate irreversible costs: a worker sinks in reallocation cost c and loses a period of time,

plus he looses his occupational human capital.15 The region [zr, zs], in which unemployed workers

prefer to wait in their occupations, corresponds generally to the real-options literature’s ‘region

of inaction’, in which agents choose to hold off investment (see, for example, Stokey, 2008, and

Bloom, 2009).

In addition to the option value associated with waiting in unemployment in one’s occupation,

the presence of search frictions in the model also implies that there is an option value associated

with waiting in employment in an existing match. Workers will remain employed at a lower output

value that they would in the absence of search frictions, because of potential future improvements

in their z-productivities, in the face of irreversible match destruction. This drives the separation

cutoff zs down, working against rest unemployment. We now explore under what conditions the

model creates predominantly labor hoarding in employment matches (as in Mortensen and Pis-

sarides, 1994), leading to no rest unemployment (Figure 3a); or inside occupations in unemploy-

ment (as in Alvarez and Shimer, 2011a), creating rest unemployment (Figure 3b).16

To do so, we analyse how the value of waiting in unemployment and in employment changes

with c, b and the persistence of the z-productivity, and how these changes determine the relative

position of zr and zs. The simplest setting that captures a motive for waiting is one in which

the z-productivity is redrawn randomly with probability 0 < (1 − γ) < 1 each period from cdf

F (z) and p is held constant. Time-variation in z is essential here because a worker can decide

to stay unemployed in his occupation, even though there are no jobs currently available for him,

when there is a high enough probability that his z-productivity will become sufficiently high in the

future. All other features of the model remain the same, with the exception of no human capital

accumulation, which we discuss later. In Appendix B we formulate the value functions for this

stationary environment.

In this setting, the expected value of an unemployed worker with productivity z, measured at

15These features are what makes occupational reallocation in our model different from, for example, investment
in general training, as in the Ben-Porath model. In that case, investment in general human capital is additive to the
existing stock of human capital and is repeated every period. These aspects make general training to a large extent
fungible across periods (and hence effectively reversible), reducing the importance of the option value of waiting in a
worker’s decision to undertake training.

16The presence of search frictions is in contrast with models that analyse rest unemployment assuming competitive
labor markets, like Alvarez and Shimer (2011a). In these models, workers do not face a value of waiting in employment
as a worker becomes employed if and only if his contemporaneous productivity is higher than the contemporaneous
flow benefit when not working. In Mortensen and Pissarides (1994), there is no value of waiting in unemployment, as
all unemployed workers face exactly the same conditions, which depend only on aggregate productivity.
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the production stage, is given by

WU(p, z) = γ
(
b+ βmax

{
R(p),WU(p, z) + max{λ(θ(p, z))(1− η)(M(p, z)−WU(p, z)), 0}

})
+ (1− γ)Ez[WU(p, z)]. (9)

Equation (9) shows that there are two ways in which an unemployed worker with a z-productivity

below zs can return to production. Passively, he can wait until his z-productivity increases ex-

ogenously. Or, actively, by paying c and sampling a new z in a different occupation. In the for-

mer case, max{.} = WU(p, zs(p)), while in the latter case max{.} = R(p). The difference

WU(p, zs(p)) − R(p), then captures the relative gain of passively waiting for one period over

actively sampling a new z immediately. If WU(p, zs(p)) ≥ R(p), then zs ≥ zr and there is rest

unemployment. If R(p) > WU(p, zs(p)), then zr > zs, and endogenously separated workers real-

locate immediately.

Changing c, b, or γ will affect the relative gains of waiting, in employment and in unemploy-

ment. In the following lemma we derive the direction of the change in WU(p, zs(p)) − R(p),

where we take fully into account the feedback effect of changes in c, b, or γ on the match surplus

M(p, z)−WU(p, z) that arises because of search frictions.

Lemma 2. Changes in c, b or γ imply

d(WU(p, zs(p))−R(p))

dc
> 0,

d(WU(p, zs(p))−R(p))

db
> 0,

d(WU(p, zs(p))−R(p))

dγ
< 0.

It is intuitive that raising the cost of reallocation directly increases the relative gains of wait-

ing. An increase in c, however, also leads to a larger match surplus because it reduces WU(p, z),

making employed workers less likely to separate and hence reducing rest unemployment. The

lemma shows that, overall, the first effect dominates. A rise in b lowers the effective cost of wait-

ing, while at the same time decreasing the match surplus by increasing WU(p, z), pushing towards

more rest unemployment. An increase in γ, decreases the gains of waiting by decreasing the prob-

ability of experiencing a z-shock without paying c and increasing the value of sampling a good

z-productivity. In Appendix B, we further prove that an increase in WU(p, zs(p))− R(p) leads to

an increase in zs(p) − zr(p) when zr(p) and zs(p) are interior: for a sufficiently large c, b and γ,

rest unemployment arises.

Rest Unemployment and Occupational Human Capital Occupational human capital accumu-

lation makes a worker more productive in his current occupation. This implies that workers are

willing to stay longer unemployed in their occupations because, for a given z, they can find jobs

faster and receive higher wages. At the same time, a higher x makes the employed worker less

likely to quit into unemployment, generating a force against rest unemployment. Taken together,

however, the first effect dominates as the next result shows.

Lemma 3. Consider a setting where p is fixed, z redrawn with probability (1− γ), and production
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is given by y = pxz. Consider an unexpected, one-time, permanent increase in occupation-specific

human capital, x, from x = 1. Then

d(WU(p, zs(p, x), x)−R(p))

dx
> 0 (10)

This result implies that the difference zs(p, x) − zr(p, x) becomes larger when human capital

increases and zr(p, x) and zs(p, x) are interior. Thus, more occupational human capital leads to

rest unemployment.

5.3 The Cyclicality of Reallocations and Separations
In Section 2 we documented that occupational mobility through unemployment is procyclical,

while it is well established that job separations are countercyclical (see also Table 5 below). In the

model, the cyclicality of workers’ reallocation and job separation decisions is characterised by the

slopes of the cutoff functions zr and zs with respect to p. As depicted in Figure 3, reallocations are

procyclical and job separations countercyclical when dzr/dp > 0 and dzs/dp < 0, respectively.

We now explore the conditions under which such slopes arise endogenously in our model. In

particular, we show that when search and rest unemployment coexist, reallocations tend to be

procyclical and job separations countercyclical.

Reallocations We start by investigating the impact of rest unemployment on the slope of zr.

Using equation (8) and noting that R(p)−WU(p, zr(p)) = 0, we obtain

dzr

dp
=

∫ z
zr

(
∂WU (p,z)

∂p
− ∂WU (p,zr)

∂p

)
dF (z)− ∂

∂p

(
λ(θ(p, zr))(WE(p, zr)−WU(p, zr))

)
∂WU (p,zr)

∂p
+ ∂

∂zr

(
λ(θ(p, zr))(WE(p, zr)−WU(p, zr))

) . (11)

Since reallocating workers must sit out one period unemployed, the term λ(θ(p, zr))(WE(p, zr)−
WU(p, zr)) captures the expected loss associated with the time cost of reallocation: by not reallo-

cating, the worker could match with vacancies this period. When zr > zs, λ(θ(p, zr))(WE(p, zr)−
WU(p, zr)) > 0 and is increasing in p and zr. Therefore, an increase in p in this case, increases

the loss associated with the time cost of reallocation and decreases dzr/dp. However, with rest

unemployment (zs > zr), λ(θ(p, zr))(WE(p, zr) − WU(p, zr)) = 0 and this effect disappears.

This follows as rest unemployed workers have a contemporaneous job finding rate of zero and

hence by reallocating, the worker does not lose out on the possibility of matching this period.

In this case, the cyclicality of reallocation purely depends on the remaining terms, in particular∫ z
zr

(
∂WU (p,z)

∂p
− ∂WU (p,zr)

∂p

)
dF (z). Thus, rest unemployment adds a procyclical force to realloca-

tions.

Now consider the impact of search frictions on the slope of zr. We focus on the more general

case of zr > zs, which includes the additional countercyclical force discussed above. To gain

analytical tractability we use the simplified setting of Section 5.2, where we set γ = 1 such that

workers’ z-productivities are permanent. This allows us to link wages and labor tightness to y(p, z)
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in closed form. We then analyse the effects of a one-time, unexpected, and permanent change in

p on zr.17 To isolate the role of search frictions, we compare this case with one without search

frictions in which workers (who are not currently reallocating) can match instantaneously with

firms and are paid y(p, z). In both cases we keep in place the same reallocation frictions. Let

zrc denote the reallocation cutoff in the case without search frictions. The details of both cases,

including the corresponding value functions, can be found in Appendix B.

Lemma 4. Consider a one-time, unexpected, permanent increase in p. With search frictions the

cyclical response of reallocations is given by

dzr

dp
=
β
∫ z̄
zr

(( Cs(p,z)
Cs(p,zr)

)
yp(p, z)− yp(p, zr)

)
dF (z)− (1− β)yp(p, z

r)

(1− βF (zr))yz(p, zr)
, (12)

where yi(p, z) = ∂y(p, z)/∂i for i = p, z and Cs(p, z) = βλ(θ(p,z))
(1−β)(1−β+βλ(θ(p,z)))

. Without search

frictions the cyclical response is given by

dzrc
dp

=
β
∫ z̄
zrc

(yp(p, z)− yp(p, zrc ))dF (z)− (1− β)yp(p, z
r
c )

(1− βF (zrc ))yz(p, z
r
c )

. (13)

The first term in the numerator of (12) and (13) relates to
∫ z
zr

(
∂WU (p,z)

∂p
− ∂WU (p,zr)

∂p

)
dF (z) in

equation (11), while the second term captures the opportunity cost of the reallocation time. The

proof of Lemma 4 shows Cs(p, z)/Cs(p, zr) is increasing in z and dzr

dp
> dzrc

dp
at zr = zrc . Thus,

the presence of search frictions also adds procyclicality to reallocations. Search frictions lead to

a steeper reallocation cutoff function because, in this case, an increase in p increases WU(p, z)

through both the wage and the job finding probability. In contrast, an increase in p in the frictionless

case only affects WU(p, z) through wages (with a proportionally smaller effect on w − b), as

workers always find jobs with probability one. The fact that Cs(p, z)/Cs(p, z
r) is increasing in z

for z > zr, reflects that the impact of output, y(p, z), on WU(p, z) is increasing in z. Indeed, from

the proof of Lemma 4 one obtains ∂WU (p,z)
∂p

/
∂WU (p,zr)

∂p
= Cs(p,z)yp(p,z)

Cs(p,zr)yp(p,zr)
> yp(p,z)

yp(p,zr)
for z > zr.18

In addition, (12) and (13) show that the cyclicality of reallocations in either case depends on the

production function y(p, z), in particular on the sign of yp(p, z)− yp(p, zr) for z > zr. In the proof

of Lemma 4 we show that with search frictions, reallocations will already be procyclical when the

17This approach follows Shimer (2005), Mortensen and Nagypal (2007a), and Hagedorn and Manovskii (2008).
Since the equilibrium value and policy functions only depend on p and z, analysing the change in the expected value of
unemployment and joint value of the match after a one-time productivity shock is equivalent to compare those values
at the steady states associated with each productivity level. This is because in our model the value and policy functions
jump immediately to their steady state level, while the distribution of unemployed and employed over occupations
takes time to adjust.

18One can get further intuition by considering the planners’ problem. The envelope condition implies that the
planner, at the optimum allocation, does not need to change labor market tightness at each z for a infinitesimal change
in p to still obtain the maximum net increase in expected output. At a given z, this means that an increase of dp creates
dWU (p, z) = βλ(θ(p,z))

(1−β)(1−β+βλ(θ(p,z)))yp(p, z)dp = Cs(p, z)yp(p, z)dp in additional life-time expected discounted
output for the planner. Since our economy is constrained efficient, the change in p also creates the same lifetime
expected discounted income for an unemployed worker with such z.
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production function is modular and zr is sufficiently close to zs. This follows because the opportu-

nity cost of reallocation becomes smaller as zr approaches zs from above. With rest unemployment

this opportunity cost is zero. If zr is substantially above zs, we will need sufficient complementar-

ities between p and z in the production function to obtain procyclical reallocations. Without search

frictions, in contrast, a supermodular production function is only a necessary condition to generate

procyclical reallocations.

Job Separations The main aspect of having endogenous separations and reallocations is that the

two can potentially interact. In particular, if zr > zs, workers separate endogenously to reallocate

and this could lead to reallocations and separations having the same cyclical behavior. For example,

in the setting of Lemma 4, we show (in the Supplementary Appendix) that dzs/dp depends directly

on dzr/dp. Namely,

dzs(p)

dp
= −yp(p, z

s(p))

yz(p, zs(p))
+

βλ(θ(p, zr(p)))

1− β(1− δ) + βλ(θ(p, zr(p)))

yp(p, z
r(p))

yz(p, zs(p))

(
1 +

yz(p, z
r(p))

yp(p, zr(p))

dzr(p)

dp

)
.

The second term makes explicit the interaction between separation and reallocation decisions when

there is no rest unemployment. It captures the change in the gains of reallocation, dR(p)/dp, and

shows that separations and reallocations can have the same cyclicality. When instead zs > zr,

workers separate into rest unemployment. In this case, R(p) has a smaller impact on the value

of unemployment at the moment of separation. This is because a reallocation would only occur

further in the future, and then only if a worker’s z-productivity would deteriorate below zr. Thus,

rest unemployment weakens any feedback of procyclical reallocation onto separations. Indeed, by

setting λ(.) = 0 in the previous expression we get that separations are always countercyclical.

6 Quantitative Analysis
We now analyse the quantitative implications of our theory. For this purpose we draw from the

evidence presented in Section 2 to calibrate our model. The calibration highlights the importance

of rest unemployment in enabling the model to be consistent with this evidence. Further, the cali-

bration also highlights the importance of rest unemployment as the main driving force behind the

cyclicality of the aggregate unemployment rate and the unemployment duration distribution.

6.1 Calibration Strategy
We set the model’s period to a week and the discount factor β to match a yearly real interest rate

of 4%.19 The production function is multiplicative and given by y = pxz, chosen to keep close to

19To keep the size of the simulation manageable we let workers exit the labor force after an average of 40 years.
Unemployed workers with the lowest occupational human capital level replace those that leave the labor force and are
allocated randomly across occupations and z-productivities. This feature implies that β = (1− d)/(1 + r), where the
exit probability, d, is chosen to match an average working life of 40 years and r is chosen so that β matches a yearly
real interest rate of 4%.
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a ‘Mincerian’ formulation. We set the number of major occupations O = 18.20 The evolution of a

worker’s idiosyncratic productivity within an occupation, zt, is modelled as an AR(1) process with

autoregressive parameter ρz and dispersion parameter σz. Workers’ occupational human capital is

parametrized by a three-level process, h = 1, 2, 3. We normalize x1 = 1 and set χ(xh+1|xh) such

that the next level is stochastically acquired after five years on average. Aggregate productivity, pt,

follows an AR(1) process with persistence and dispersion parameters given by ρp and σp. We add

a normalisation parameter znorm that moves the distribution of z-productivities downwards such

that the measured total productivity of our economy averages one.

This parametrisation yields a set Θ = {δ, k, b, ρp, σp, η, znorm, ρz, σz, c, x2, x3}, with 12 param-

eters, to estimate. To do so, we minimise the sum of squared distances between a set of simulated

moments from the model and their counterparts in the data, using the identity matrix as weighting

matrix.

Table 3: Targeted Moments. Data and Model Comparison

Moments Data Model Moments Data Model
ave. job finding rate 0.269 0.258 Unemployment Survival
matching function: η̂ 0.500 0.512 ≤ 4 months 0.373 0.395

Aggregate Productivity ≤ 8 months 0.130 0.133
y (normalised) 1 0.999 ≤ 12 months 0.055 0.047
ρy 0.691 0.689 Occ Mobility by Unemployment Duration
σy 0.009 0.009 1 month 0.519 0.405

Age-groups 3 months 0.556 0.536
uratey 0.067 0.074 6 months 0.582 0.584
uratep 0.040 0.043 9 months 0.614 0.625
ln(OccMoby/OccMobp) 0.134 0.146 12 months 0.610 0.640

Returns to Occupational Exp. Mobility in Subsequent Unemp. Spells
5 years 0.154 0.140 Occ Stay after Occ Stay 0.621 0.610
10 years 0.232 0.242 Employed with Us-spell within 3 years

proportion of empl. 0.1441 0.167

Targeted Moments We target 20 moments based on the aggregate long-run behavior of the econ-

omy. These are described in Table 3. The targeted moments are compared with the corresponding

moments from model simulations, where we generate ‘pseudo-SIPP panels’ for consistent mea-

surement.21 The first six parameters in Θ are shared with the standard DMP model and are in-

formed by similar moments.22 For example, the exogenous separation probability, δ, and vacancy

cost, k, are informed by the average aggregate unemployment and job finding rates obtained from
20The number of occupations we chose is the average number of occupations across the three versions of the SOC

we used in Section 2.
21Specifically, we consider many 3.5-4 year panels of individual worker data generated from a long simulated time

series. The model values reported in Table 3 are the averages over up to 2000 such panels.
22Note, however, that in our model the mapping between {δ, k, b, ρp, σp, η} and the corresponding data moments

is affected by endogenous job separations, rest and reallocation unemployment, and the endogenous shift of the distri-
bution of workers’ occupational productivities.
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the SIPP, while the persistence and standard deviation of the aggregate productivity process, ρp and

σp, are informed by the series of output per worker obtained from the BLS. The elasticity of the

matching function on each labor market, η, relates through aggregation to the empirical elasticity

of the aggregate job finding rate, η̂. We take the latter to be 0.5, in the range of Petrongolo and

Pissarides (2001). Further, we use several age-related moments to inform us about b, where the

link between these moments and b arises due to occupational human capital accumulation. The re-

turns to the latter, x2 and x3, are closely linked to the measured returns to occupational experience.

Given it is difficult to estimate returns to occupational experience accurately with the SIPP due to

the relative short nature of its panels, we use the OLS estimates for 1-digit occupations reported in

Kambourov and Manovskii (2009b).23

The crucial parameters in our calibration are ρz, σz and c. These are further informed by the

remaining set of 10 moments, most of them drawn from the evidence presented in Section 2. In par-

ticular, the relationship between unemployment duration and occupational mobility, as described

in Figure 1, informs us about ρz, σz and c. The slope of this relationship at long durations in-

forms us about ρz. Intuitively, as the unemployment durations increase, workers are more likely to

face labor market conditions close to the reallocation cutoff zr. The parameter ρz determines the

strength with which the mean reversion of the z-process pulls these workers across (or away from)

the reallocation cutoff. This implies a more positive (resp. negative) slope of the reallocation rate

at long unemployment durations. The level of this relationship at long durations, on the other hand,

inform us about σz. In this case, larger innovations in the z-process make it more likely that long-

term unemployed workers fall below the zr cutoff. The extent of duration dependence, captured

in the 3 unemployment survival moments, also informs us about ρz and σz.24 The overall level of

occupational mobility at all unemployment durations contains information on c, taking as given ρz
and σz. This follows as the parameters ρz and σz completely determine the transitions of workers’

z-productivities within an occupation. In combination with cutoffs zr and zs, these transitions di-

rectly imply an overall amount of occupational mobility of unemployment workers. From Lemma

2, we know that, given ρz and σz, the relative position of these cutoffs depend on c in a monotonic

way, allowing us to infer c.

We also target the difference between prime-aged and young workers’ occupational mobility

rates, ln(OccMoby/OccMobp). This moment contains further information about σz. When work-

ers’ z-productivities are more dispersed, human capital differences in output are less important

than z-productivity differences. In turn, this brings the job separation and occupational mobility

23We compute the aggregate unemployment rates from the SIPP by dividing the stock of unemployed workers in
a given period by the size of the labor force in the same period. We compute the series of output per worker for the
1986-2011 period to maintain consistency with the sample period used for the SIPP. See the Supplementary Appendix
for further details. To obtain the model’s counterpart of η̂, we estimate on simulated data a reduce form aggregate
matching function by OLS using a Cobb-Douglas specification. In the case of occupational human capital, we use the
OLS estimates because occupation selection occurs both in the model and in the data. In our model selection arises as
measured returns are a result of two opposing forces: human capital acquisition and z-productivity mean reversion.

24We use the cumulative survival rates at intervals of 4 months to reduce the seam bias found in the SIPP.
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patterns of young and prime-aged workers closer together. We also use the repeat mobility pat-

terns documented in Section 2, to capture the persistence of occupational attachment among the

selected group of occupational stayers. Note that this moment is the complement of the reported

38% of occupational stayers that after a subsequent unemployment spell changed occupation. This

moment further informs us about the persistence of the z-process, as captured by ρz, σz, and the

role of occupational human capital in creating additional attachment to occupations. Finally, we

add the empirical proportion of employed workers who will experience at least one unemployment

spell during the subsequent three years. Given a fixed number of spells, this moment shows the

extent of state dependence in unemployment and informs us about the importance of endogenous

separations and rest unemployment.

Table 4: Calibrated Parameters

δ k b c η ρp σp ρz σz zcorr x2 x3

0.0002 3.582 0.738 14.54 0.048 0.981 0.003 0.9992 0.0078 0.513 1.104 1.487

Parameters Table 4 reports the resulting parameter values implied by the calibration. The value

of b represents 74% of total average output, y, in line with Hall and Milgrom (2008), though esti-

mated using different information. The estimated value of c and the sampling process, imply that

upon starting a new job in a new occupation, a worker has paid on average a reallocation cost

of about 10 months of output. This suggests that reallocation frictions across major occupations

are important, and add to the significant lose in occupational human capital when changing oc-

cupation.25 Note that the parameter linked to the actual returns to occupational experience at 10

years, x3, is higher than the OLS returns. This occurs because the best z-productivities mean revert

over time, and at the same time, experienced workers find it still profitable to work at worse z-

productivities. In turn, this dampens the composite xz-productivity on which measurement of the

returns to occupational experience are based.

Our calibration implies that the process driving workers’ idiosyncratic productivities within an

occupation is, in relative terms (i.e. in the log), more persistent than the aggregate shock process

25Our data suggests that both the reallocation cost c and the loss of occupational human capital when reallocating,
should be incorporated in our estimation. This is because we find a substantial proportion of occupational stayers (1)
among young workers, which are typically associated with low levels of occupational human capital, and (2) we find
substantial occupational staying (around 45%) among those who moved occupations but subsequently have become
unemployed again. Since this occurs within the duration of a SIPP panel, the occupational tenure that these workers
have accumulated is low, yet they also display significant occupational attachment. The high value of c reported in
Table 4 is consistent with these features of the data as well as with the large proportion of unemployed workers that
change occupation, documented in Table 1. In our theory, c captures the costs associated of gathering information
and learning how the labor market operates once in the new occupation. However, given that in the data occupational
changes are typically accompanied by changes in industries (based in our own calculations) and, to a lesser extent, by
geographical location (see Papageorgiou, 2013), the estimated value of c should also be capturing the moving costs
associated with these changes. Indeed, Alvarez and Shimer (2011a) find large reallocation costs across industries,
while Kennan and Walker (2011) and Papageorgiou (2013) find large reallocation costs across geographical locations.
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driving the business cycle. However, its larger variance implies there is much more dispersion

across workers’ z-productivities than there is across values of p. The component of exogenous

separations, δ, is small, which implies that most separations in the calibration are endogenous.

Also note that the elasticity of the matching function within each labor market, η, is small, given

employed workers a high bargaining power. Note that this value is consistent with an elasticity η̂

of 0.5, when we aggregate across labor markets and occupations.26

6.2 Fit of the Model
Table 3 reports the fit between the simulated and the targeted moments. The simulated moments

are computed by aggregating across all labor markets and occupations. The model appears to fit the

data remarkably well, given the extent of over-identification. With only three parameters ρz, σz and

c, our model is able to reproduce very closely the main features that characterise gross reallocation

through unemployment, outlined in Section 2. In addition, the model captures the duration depen-

dence of unemployment very well, matching the empirical amount of long-term unemployment

and at the same time producing a large amount of occupational mobility.27 All this is achieved with

a large proportion of occupational stayers among the unemployed at all durations. A too-quick

conjecture that substantial occupational mobility is inconsistent with long-term unemployment is

wrong.28

The model is also able to match the proportion of employed workers that become unemployed

within a three-year window. This implies that the model can produce a concentration of unemploy-

ment incidence in line with the data. Furthermore, the proportion of those unemployed that were

occupational stayer after ending their last two unemployment spells is also closely matched. As we

will now argue, the prevalence of rest unemployment is the main reason why the model is able to

capture these moments very well.

26The existence of rest unemployment, see Section 6.3, generates the difference between η̂ and η. In downturns, for
example, more unemployed get absorbed into rest unemployment. As a result, the aggregate tightness and job finding
rate drop significantly. This implies that in labor markets close to zs, the job finding rates need not change by so much
to still achieve an aggregate elasticity of 0.5, which contributes to a much lower elasticity within these labor markets.

27The relative low proportion of occupational movers at one month of unemployment in the calibration is mainly
due to three aspects of the model. (i) A uniform time cost per sample of a z-productivity, suppresses very early
outflows into employment for occupational movers. (ii) Exogenous and immediate separations of workers with high
z-productivities, lead to a set of occupational stayers quickly moving in and out of unemployment. (iii) Since the
endogenous separation productivity cutoff is also a vacancy posting cutoff, this also induces sometimes too quick
rehiring upon a small positive z-shock. These forces over-emphasize occupational staying and de-emphasize occupa-
tional moving at the lowest unemployment spell lengths, but, importantly, the aforementioned effects diminish quickly
with unemployment spell duration.

28In terms of the implied job finding probabilities by unemployment duration, the model also generates a good fit
with the data. The job finding probabilities at 4, 8 and 12 months are (0.25, 0.25), (0.23, 0.22) and (0.23, 0.18), where
the first number of each pair refers to the model and the second to the data. Only considering occupational movers we
have (0.20, 0.24), (0.22, 0.21) and (0.21, 0.19); while for occupational stayers the corresponding numbers are (0.29,
0.28), (0.25, 0.23) and (0.24, 0.18).
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Figure 4: Reservation functions by occupational human capital

6.3 Rest Unemployment
In Lemmas 2 and 3 we have shown, in a simplified setting, that the relative positions of zs and

zr depend on the properties of the z-productivity process, c, b and xh. Figure 4 depicts the cutoff

functions generated by the calibrated model for each occupation, where zs(p, xh) and zr(p, xh) de-

note the separation and reallocation cutoffs for each p and xh. It shows that the estimated parameter

values yield zs > zr for all p and h = 1, 2, 3. That is, unemployed workers with z-productivities

above zs are search unemployed. Those workers with z ∈ [zr, zs] are rest unemployed, while

workers with z < zr reallocate. We find that rest unemployment is by far the most important type

of unemployment. On average, rest unemployment constitutes 68.6% of aggregate unemployment,

while search and reallocation unemployment account for 20.6% and 10.8%, respectively.29

In the calibration, as p and z evolve, workers transit between search, rest and reallocation un-

employment. Given the values for b and xh, the values of c, ρz and σz mainly determine the distance

between zs(p, xh) and zr(p, xh), the amount of workers that are search, rest and reallocation unem-

ployed and the time it takes workers to transit between these types of unemployment. As discussed

earlier, these parameters are informed by evidence on the extent of occupational mobility, duration

dependence and its relationship with occupational mobility, repeat mobility and the degree of con-

centration of unemployment spells among a subset of workers. Rest unemployment is prominent

in our calibration because it can reconcile all of these moments at the same time.30

29The relative sizes of the different types of unemployment are obtained by computing, for each p, xh and o,
the number of unemployed workers with z-productivities above the separation cutoffs, in between the separation
and reallocation cutoffs, and below the reallocation cutoffs. As mentioned in Section 5.1, the extent of reallocation
unemployment must not be confused with the extent of occupational mobility reported in Section 2. To construct
occupational mobility measures in the simulations, we follows the same procedure as we did with the SIPP; i.e. we
computed the number of workers that have lost their jobs, went through an unemployment spell and found a job in a
new occupation.

30Alvarez and Shimer (2011a) also show that rest unemployment explains a large proportion of aggregate unem-
ployment. However, our inference approach differs from theirs. They use wage data to evaluate the relative importance
of rest unemployment. Using wage data is useful for their estimation as their model generates a tight link between
wage dynamics at an industry level and reallocation unemployment (search unemployment in their terminology). Here
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In particular, suppose that zr > zs such that no workers are rest unemployed as depicted

in Figure 3a. In this case, the employed would have z-productivities in the range [zs, z̄]. Those

employed workers with z-productivities below zr would then face a high risk of a job separation

and an immediate reallocation. Once the reallocation process ends, these workers would have z-

productivities above zr, facing a strictly lower probability of a future job separation. Moreover,

those workers who stayed in their occupations after a spell of unemployment, would also have a low

probability of changing occupations after a subsequent unemployment spell. This is because, with

zr > zs, these workers would have z-productivities in the range [zr, z̄]. These features go against

the extent of unemployment incidence among employed workers and the repeat mobility patterns

documented in Table 3. In contrast, with zs > zr and prominent endogenous job separations, as

in the calibration, employed workers close to zs face a high risk of separating. Upon becoming

re-employed in the same occupation, these workers would still be close to zs, facing once again

a high job separation probability. Moreover, occupational movers are distributed over the entire

range of z-productivities above zs, facing a similar unemployment risk and subsequent reallocation

behavior as occupational stayers, as suggested by the data.

A key aspect of our model is that the z-productivity process determines the transitions of an

individual worker between employment, search, rest and reallocation unemployment. This is in

contrast to Alvarez and Shimer (2011a), where the overall size of employment, rest and reallocation

unemployment is determined, but not the individual transitions between these categories.31 This

difference implies that our model is suitable to analyse the relationship between unemployment

duration, occupational mobility and job finding probabilities as described earlier. We find that

rest unemployment allows the model to capture the positive relationship between unemployment

duration and occupational mobility and the negative relationship between unemployment duration

and job finding rates.

To illustrate this in more detail, consider a set of newly rest unemployed workers with the same

xh in the calibrated model. Figure 5 depicts a set of possible histories for these workers given they

separated endogenously at time t0. These workers will be in rest unemployment for as long as

their z-productivity remains between zr and zs. Since the estimated z-process is close to a random

we want to estimate the properties of workers’ z-productivity process. Our focus on gross mobility then implies that
the average wage process at an occupational level will make it very difficulty, if not impossible, to estimate the parame-
ters of this process. Further, individual wage data captures additional volatility that is orthogonal to the z-productivity.
Rather than extending our theory to capture this additional sources of volatility, we use those implications of our model
that can be associated with transition and duration data to estimate the z-productivity process.

31In Alvarez and Shimer (2011a) this feature arises because, in equilibrium, workers on islands with rest unem-
ployment are indifferent between work and rest; while on islands from which some workers are reallocating, workers
are indifferent between work, rest and reallocation. In our model, workers typically are not indifferent between search,
rest and reallocation. They will be indifferent between work, search and rest only if their z-productivities equal zs.
Similarly, workers will be indifferent between rest and reallocation if their z-productivities equal zr. However, given
z is continuous within an occupation these are zero probability events. Alvarez and Shimer (2011b) introduces union
coverage, minimum wage levels and seniority-based hiring to the setting of Alvarez and Shimer (2011a). In this case,
the indifferences mentioned above do not arise. Instead, the individual-specific seniority achieved within an industry
becomes a determinant of individual unemployment durations and reallocation choices.
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walk, these workers will be initially close to the zs productivity cutoff. This implies that small

positive shocks would already be sufficient to move these workers above zs, where they will face

a positive contemporaneous job finding rate; while only large negative shocks would take these

workers below zr soon after separation. Hence at short unemployment durations, workers face

relatively high job finding rates and, if re-employed, they will be most likely occupational stayers.

Those workers who stayed unemployed for longer (in Figure 5 until t′, for example) will have

typically experienced further negative idiosyncratic shocks. This implies that in the calibration

the distribution of z-productivities is stochastically decreasing with unemployment durations. As a

result, the likelihood of a reallocation increases with unemployment duration, while the job finding

rate decreases with unemployment duration. The latter occurs because as unemployment duration

increases workers become further removed from the nearest cutoff.

As workers become long-term unemployed, we find that the distribution of z-productivities

becomes close to stationary between the separation and reallocation cutoffs (for example, consider

t′′ in Figure 5). At these unemployment durations, workers leave rest unemployment at a slower

rate. The nearest cutoff is now typically further away: workers will then need a sequence of shocks

pushing them in the same directions until they cross either the zs or zr cutoff. Nevertheless, we

find that long-term unemployed workers remain attached to their old occupation for the time being

as they still hold enough hope for a successful return to employment in it. This hope reflects that

ultimately about 40% of workers return to employment in their previous occupation, even after a

one-year spell.32

As a result, rest unemployment also allows the model to be consistent with the fact that occu-

32Shimer (2008) shows that a random walk process with a drift, in combination with an exogenous threshold, can
match the duration dependence observed in the data. All unemployment spells start at this exogenous threshold, while
above this threshold all workers are employed. This is somehow similar to our model since, in our calibration, the z-
productivity process is close to a random walk and most of the unemployed are below the separation cutoff. However,
in our model, there is a second threshold, as reallocation is another key determinant of unemployment outcomes.
Furthermore, both separation and reallocation cutoffs are endogenous, and respond to business cycle conditions.
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Table 5: Logged and HP-filtered Business Cycle Statistics. Data and Model

Data: 1986-2011 Model
u v θ s f y Cm u v θ s f y Cm

σ 0.13 0.11 0.23 0.13 0.10 0.01 0.03 0.15 0.08 0.21 0.10 0.13 0.01 0.06
ρt−1 0.97 0.93 0.94 0.83 0.93 0.69 0.85 0.74 0.25 0.64 0.06 0.55 0.69 0.81

Correlation Matrix
u 1.00 -0.84 -0.96 0.67 -0.78 -0.52 -0.26 1.00 -0.61 -0.96 0.32 -0.80 -0.98 -0.77
v 1.00 0.95 -0.69 0.46 0.66 0.30 1.00 0.82 -0.38 0.67 0.68 0.6
θ 1.00 -0.72 0.47 0.63 0.30 1.00 -0.37 0.83 0.97 0.71
s 1.00 -0.67 -0.68 -0.32 1.00 -0.79 -0.39 -0.27
f 1.00 0.45 0.40 1.00 0.84 0.59
y 1.00 0.26 1.00 0.72

pational movers take longer to find jobs. This is because after separation into rest unemployment,

occupational movers would typically have spent a longer time in rest unemployment than occupa-

tion stayers. This is in contrast to models in which the longer unemployment durations of movers

are attributed, causally, to the time lost in transit between labor markets (see, for example, Garin,

Pries and Sims, 2011, and Pilossoph, 2012).

7 Aggregate Business Cycle Patterns
We now turn to analyse the business cycle patterns implied by our calibrated model. The main

results are summarised in Tables 5 and 6. These aggregate time series arise from the distributions

of employed and unemployed workers across all labor markets and occupations, combined with

agents’ decisions. We obtain the cyclical components of the (log) of these time series by using an

HP filter with smoothing parameter 1600.

Occupational Mobility and Job Separations The model is successful in creating procyclical

occupational mobility, as measured byCm and documented in Section 2. This arises because of the

mechanism described in Lemma 4. There we showed, in a simplified setting, that the presence of

search and rest unemployment can make dzr/dp positive and lead to procyclical reallocations. This

intuition also holds in the setting considered here. Figure 4 shows an upward sloping reallocation

cutoff for all three human capital levels in each occupation. Further, we find that the cyclical

component of Cm also has other properties that are consistent with the data. In both the calibrated

model and in the data, Cm has a larger standard deviation and is more persistent than output

per worker, y, and it exhibits less than half the volatility of unemployment. The model, however,

over-predicts the cyclical volatility of Cm.

The model is also successful in generating a countercyclical aggregate job separation rate,

s. Given the extent of rest unemployment, documented in the previous section, our theoretical

analysis suggested this was to be expected. Figure 4 shows that dzs/dp is negative for all three

human capital levels in each occupation. As well, the calibrated model creates substantial volatility

in the cyclical component of s. Moreover, when considering the semi-elasticity of the separation
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Figure 6: Unemployment decomposition

rate with respect to contemporaneous productivity, we find a strong negative relationship. In this

case, the model generates a semi-elasticity of -0.06, against -0.08 in the data.33

Job Finding The model generates a procyclical aggregate job finding rate, f , with a slightly

higher volatility than in the data. The presence of search unemployment implies that the model

generates a procyclical f partly for the same reasons as in the DMP model. However, rest unem-

ployment adds two additional forces, which also make f more volatile than in the DMP model.

First, countercyclical separations into rest unemployment imply that as p increases previously rest

unemployed workers will start facing a contemporaneous positive job finding probability, adding

to the positive relationship between p and f . Second, procyclical reallocations from rest unem-

ployment imply that as p increases, a larger share of unemployed workers decide to reallocate (and

decides to do so earlier) to find jobs in labor markets with better conditions, further increasing f .

The combination of these forces leads the model to generate a strong negative cyclical correlation

between f and u, f and s; and a positive cyclical correlation between f and y and f and Cm, as

observed in the data. The model also produces a high and positive cyclical correlation between θ

and f .

Aggregate Unemployment The aggregate unemployment rate in our model exhibits similar

cyclical properties as in the data. Figure 6a shows that rest unemployment is the main driver of

these fluctuations, exhibiting the highest response to changes in aggregate productivity. In the cal-

ibration, the cyclical behavior of rest unemployment is mainly determined by three factors: (i) the

steepness of the reservation functions zs and zr; (ii) the distribution of employed and unemployed

workers over z-productivities; and (iii) the values of ρz and σz, which determine how workers’ z-

33The coarseness of the grid, however, means that the autocorrelation of the cyclical component of s is low, and the
simulated correlations are not as high as in the data. The semi-elasticity, however, is less sensitive to this issue.
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Figure 7: Distribution of workers over z and aggregate productivities

productivity evolves over time. In Section 5.3 we have studied the steepness of zs and zr, relating

them to the presence of search and rest unemployment and the properties of the production func-

tion. Figure 7 shows a heat map representation of the distributions of unemployed and employed

workers over z-productivities implied by the calibration, where the (smoothed) reservation cutoffs

depicted in Figure 4 are superimposed. It shows that most of the unemployed are located between

zs(p, x1) and zr(p, x1), between zs(p, x3) and zr(p, x3), and just above zs(p, x1) and zs(p, x3).34

There is also an important mass of workers employed with z-productivities just above zs(p, x1)

and zs(p, x3), at risk of endogenous separations. Finally, as argued earlier, our calibration yields a

large ρz and σz.

These properties imply that a relative small decrease in aggregate productivity, leads to a large

increase in the inflow into rest unemployment of employed and search unemployed workers with

z-productivities close to the separation cutoffs. Figure 7b, for example, shows that the mass of

employed workers close to the separation cutoffs increases as p decreases. The same decrease

in aggregate productivity also leads to a large decrease in the outflow from rest unemployment.

Indeed, Figure 7a shows that as p decreases, rest unemployment increases because (i) the intervals

[zr(p, xh), z
s(p, xh)] widen and (ii) the density of unemployed workers at any given z within these

intervals increases. The increased density at a given z reflects that its distance to the reallocation

cutoff has now increased. This captures that in a recession, the mass of rest unemployed workers at

a given z-productivity includes those workers who would have reallocated in normal times, but now

preferred to ‘wait’ and subsequently experienced positive z-productivity shocks. Taken together,

these forces make rest unemployment very responsive to changes in p, as evidenced in Figures 6a

and 7a. Given the prominence of rest unemployment, aggregate unemployment likewise becomes

very responsive to changes in p.

34The small amount of unemployed worker with productivity between zs(p, x2) and zr(p, x2), and just above
zs(p, x2), arises because there is a smaller amount of workers who have the intermediate level of human capital.
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Figure 6 shows that search unemployment does not appear to respond as much as rest unem-

ployment to changes in p. This is due to a composition effect. Most of the search unemployed have

z-productivities that are closely above the separation cutoffs (see Figure 7a). Since these workers

generate small match surpluses, the job finding probabilities in their labor markets are responsive

to aggregate productivity for the same reasons as discussed by Hagedorn and Manovskii (2008).

Hence, an increase in aggregate productivity increases the job finding probability for these work-

ers substantially, lowering search unemployment. The same increase in aggregate productivity,

however, implies that those rest unemployed workers with z-productivities that are just below the

separation cutoffs, now become search unemployed and dampen the previous decrease in search

unemployment. The importance of the latter effect is govern by the steepness of zs and is sufficient

to generate the low response of search unemployment.

Figure 6 also shows that reallocation unemployment is procyclical, and has only a minor effect

in dampening the cyclicality of unemployment fluctuations. As discussed earlier, the small contri-

bution of reallocation unemployment is because the time spent in transiting between occupations

is small, typically less than a month, and these workers turn into rest or search unemployed before

finding a job in a new occupation.35

The Beveridge Curve Even though endogenous separations typically hamper the DMP model

from achieving a strong negative correlation between unemployment and vacancies (the Beveridge

curve), this does not happen in our model.36 The cyclical correlation between aggregate unemploy-

ment and vacancies is -0.61, relative to -0.84 in the data.37

The presence of rest unemployment is an important reason why the model can match to a

large extent the data. With a downward sloping and steep zs for each xh, changes in aggregate

productivity yield large changes in the amount of vacancies being creating on labor markets around

these cutoffs. As aggregate productivity decreases, more labor markets lie below zs for each human

capital level. In turn, no vacancies are created in those labor markets, and very few vacancies

are created in labor markets associated with z-productivities just above zs. This creates a large

overall decrease in vacancy creation during downturns. As aggregate productivity increases, the

opposite happens. In addition, as reallocating workers end up with z-productivities above zs in the

35Indeed, the same moments that point in favor of rest unemployment also imply that time spent in the actual
reallocation process should be relatively small. Replacing rest unemployment with reallocation unemployment would
create a too little occupational stayers at high unemployment durations.

36In the DMP model with endogenous job destruction (Mortensen ad Pissarides, 1994), productivity shocks shift
the Beveridge curve, reducing vacancy fluctuations and yielding, in some cases, a positively sloped v-u relation. See
Mortensen and Nagypal (2007b) for a discussion. Chassamboulli (2013) finds that time-invariant productivity differ-
ences across workers helps the DMP model with endogenous separations to generate a downward sloping Beveridge
curve.

37The discreteness of the grids for p and z creates some jumpiness in vacancies. For example, when aggregate
productivity moves one grid point up, it increases vacancies discretely, reducing their autocorrelation and the absolute
value of the v-u correlation. We find that increasing the grid size improves these statistics, and hence with more
computational power, we expect that these correlations can become even closer.
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Table 6: Semi-elasticities of the share of unemployed workers by duration

Unemp. Duration Mean Std. Deviation Semi-elas. wrt y Semi-elas. wrt u
Model Data Model Data Model Data Model Data

≤ 2m 0.53 0.47 0.080 0.071 4.17 3.78 −0.28 −0.24
≤ 4m 0.74 0.72 0.081 0.085 3.45 1.46 −0.24 −0.23
5− 8m 0.17 0.19 0.041 0.033 −2.14 −1.22 0.14 0.13
9− 12m 0.06 0.05 0.027 0.028 −0.93 −0.52 0.07 0.09

new occupations, firms respond by creating more vacancies in the corresponding labor markets.

Procyclical reallocations then also generates procyclical vacancy creation. Together, these forces

imply that vacancies become very responsive to aggregate productivity changes, as shown in Table

5, and exhibit a high negative correlation with the aggregate unemployment rate.

Unemployment by Duration In Section 6.3 we have argued that rest unemployment creates

duration dependence. Since dzr/dp > 0 and dzs/dp < 0 for all xh, the distance between the real-

location and separation cutoffs varies over the business cycle (see Figures 4 and 5). This generates

different implications for unemployment at different durations. Therefore, a good test of our the-

ory would be to compare the model’s business-cycle predictions for the unemployment duration

distribution with their empirical counterparts. We find that these predictions are remarkably well

in line with the data.

Table 6 evaluates the ability of the model to reproduce the shifts in the incomplete unemploy-

ment duration distribution with respect to changes in output per worker, y, and the unemployment

rate, u. It shows that the cyclical volatility of the shares of unemployed workers by duration (col-

umn std. deviation) is remarkably close to the data.38 Moreover, these shares exhibit nearly the

same degree of responsiveness with the business cycles as in the data. The model reproduces very

well the empirical movements of these shares with respect to the aggregate unemployment rate.39

In particular, as the unemployment rate increases by 10% (i.e. about half a percentage point), the

share of incomplete unemployment spells between five and eight months increases by 1.4 percent-

38The fact that the calibration matches well the mean shares of unemployed in the incomplete duration distribution
is almost implied by targeting the cumulative survival rate. The main statistics here are the share of workers with un-
employment spells between 0-4 months, 5-8 months and 9-12 months, since this division of durations also takes into
account the seam bias present in the SIPP. In Table 6, we have also added the share of workers with unemployment
spells between 0-2 months. This measure is not robust to seam bias, nor to any non-reporting of very short unemploy-
ment spells in the SIPP. As a result, we see that our model generates a measure of unemployment spells with very short
duration that does not quite match the one in the SIPP (overall 0.53 in the model vs. 0.45 in the data). To the extent
that the inclusion of unemployment spells that will be completed within a month simply shifts up the average share of
short spells (≤ 2 months), using the semi-elasticity instead of the elasticity is helpful. With this caveat, however, we
still find that the model makes predictions for the cyclical behavior of very short spells that are in line with the data.

39The semi-elasticities are constructed using the cyclical component of the series of the shares of unemployed
workers by durations, the aggregate unemployment rate and output per worker. Given the tight match of the respon-
siveness with respect to the unemployment rate, it is then not surprising that the model over-predicts the semi-elasticity
of the shares with respect to output. In the data, at times when productivity has recovered but unemployment is still
high, the share of long-term unemployment is also still high. This leads to a measured responsiveness lower in the data
than in the model, where, almost by construction, productivity and unemployment move much closer together.
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age points in the model, versus 1.3 percentage points in the data. At the same time, the increase

in the unemployment rate, increases the share of unemployment spells between nine and twelve

months by 0.7 percentage points, versus 0.9 in the data.

Once again rest unemployment is the mayor force behind these results. In Section 6.3, we

discussed how expected unemployment outflow rates and reallocation outcomes vary in the rest

unemployment interval [zr(p), zs(p)] as a function of the distance of the worker’s z-productivity

to the cutoffs. Long-term unemployed workers can be found in this entire interval, but typically

are at some distance from both cutoffs (where the ‘risk’ of leaving rest unemployment lowers the

probability of becoming long-term unemployed). When aggregate productivity falls, the distance

for the typical long-term unemployed worker to both cutoffs is substantially larger. As a result, at

low values of p, long-term unemployed will require a sequence of more and larger good shocks

to their z-productivities before becoming search unemployed in their previous occupation. They

would also require a sequence of more and larger bad shocks to their z-productivities before real-

locating. Hence, in a recession, the scope for remaining caught ‘in limbo’ between the separation

and reallocation cutoffs is high for long-term unemployed workers, resulting in a low outflow rate.

In contrast, workers who have just endogenously separated tend to be close to the separation

cutoff at all values of p. Since in recessions the reallocation cutoff is further away for these workers,

the separation cutoff is then the one that weighs most on their future outcomes when p decreases.

This implies that for workers who have just endogenously separated, the distance to the nearest

cutoff is not as responsive to aggregate conditions as for the long-term unemployed. Hence, in the

calibration, we observe that the outflow rate of long-term unemployed workers responds more to

changes in aggregate conditions relative to the outflow rate of short-term unemployed workers.

This mechanism then translates into a particularly strong increase in the share of long-term unem-

ployed in recessions, as shown in Table 6, stronger than the one predicted based on the decline of

the economy-wide average job finding rate alone.

Barnichon and Figura (2013) and Kroft et al. (2013) have argued that it is important to con-

sider the presence of negative duration dependence when accounting for the cyclical behavior of

unemployment. Kroft et al. (2013) also find that the increase in long-term unemployment is shared

across occupations. This is precisely what occurs in our model: aggregate conditions interact with

workers’ idiosyncratic productivities in their occupation, and also interact with the idiosyncratic

opportunities a worker would face if he decided to reallocate. As a result, unemployment fluctua-

tions are amplified and long-term unemployment increases in all occupations in a recession, which

results in realistic cyclical behavior of the duration distribution in the model.40

40Barnichon and Figura (2013) and Kroft et al. (2013) introduce, in reduced form, a negative relationship between
matching efficiency and unemployment duration and show that it is quantitatively important to explain the evolution
of the unemployment rate, whereas, for example, the occupational composition of unemployment is not. While in
their analyses, long-term unemployed workers exogenously enter the matching technology differently than short-term
unemployed workers, we build a model where negative duration dependence occurs endogenously due to the interplay
of job separation and reallocation choices of the economic agents in the economy.
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(b) Unemployment decomposition - Prime Age Workers

Figure 8: Unemployment decomposition and aggregate productivity by age groups

8 Additional Quantitative Implications
In this section we explore further the implications of occupational human capital accumulation

and our assumption of random search across occupations.

8.1 Occupational Human Capital
We now turn to gauge the importance of occupational human capital accumulation on workers’

degree of attachment to an occupation, in combination with the explicit time and resource cost of

reallocation. Lemma 3 shows, in a simplified setting, that high levels of occupational human capital

lead to more rest unemployment.41 Figure 4 shows that in our calibration rest unemployment arises

in each human capital level and that the difference zs(p, xh)−zr(p, xh) increases with xh. Figure 9

aggregates workers across human capital levels and divides them into young workers (20-30 years

old) and prime-aged workers (35-55 years old). This figure shows that for young workers (with

typically low levels of occupational human capital) and prime-aged workers (with typically higher

levels of occupational human capital), rest unemployment is the main type of unemployment and

is highly responsive to changes in aggregate productivity.

Given these properties, we analyse whether the presence of rest unemployed enables the model

to generate the observed patterns of young and prime-aged workers’ job separation and job find-

ing rates, their degree of occupational mobility and their unemployment duration distributions.

Since in the model young and prime-aged workers only differ in their accumulated occupational

human capital, this exercise allows us to show the importance of occupational human capital in de-

termining these workers’ observed unemployment and reallocation outcomes. We find that when
41Alvarez and Shimer (2009) consider human capital and rest unemployment in a steady state setting. They focus on

how the loss of human capital upon changing industries/sectors can generate the option to wait, instead of a mobility
cost. We build on this by considering cyclical patterns, incorporating rest unemployment also at young ages, and
estimating the importance of both the loss of occupational human capital and an fixed reallocation cost (orthogonal to
human capital).
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combined with the estimated time and resource costs of reallocation, occupational human capi-

tal accumulation successfully reproduces the empirical differences between these workers on the

aforementioned dimensions.

Table 7 presents the average separation and job finding rates for the two groups. In the data,

prime-aged workers face a lower risk of becoming unemployed than young workers. However,

upon becoming unemployed, they also face a lower probability of finding a job.42 In the model

the difference between young and prime-aged workers’ job separation rates occurs because the

mass of employed workers close to separation cutoff zs decrease with xh. The difference between

these workers’ job finding rates occurs because the increasing difference between zs and zr, as we

increase xh, yields a negative relation between the job finding rate and xh. Table 7 also shows that

the model reproduces well the observed cyclical volatilities, σ, of these transition rates.43

Table 7: Separation and Job Finding Rates among Young and Prime-aged Workers

mean f data f model s data s model
young (20-30yo) 0.288 0.302 0.011 0.018
prime (35-55yo) 0.234 0.239 0.006 0.011

σ f data f model s data s model
young (20-30yo) 0.107 0.080 0.133 0.093
prime (35-55yo) 0.100 0.090 0.127 0.113

In addition, the larger distance between zs(p, xh) and zr(p, xh) at higher human capital levels

implies that, while untargeted, the model can generate cumulative unemployment survival func-

tions that are close to the data. Figure 9a shows this feature. Furthermore, Figure 9b shows that the

model reproduces well the (untargeted) relationship between the change in occupational mobility

with unemployment duration for each of these age groups, described in Figure 1. Their occupa-

tional mobility patterns are close to the empirical ones (maximally deviating 3-4 percentage points)

for unemployment durations between 2 and 10 months. Thereafter, the relationship between oc-

cupational mobility and unemployment duration becomes non-monotone in the data, especially

for the young, while in the calibration it becomes flatter.44 Nevertheless, the model reproduce the

high levels of occupation stayers at long unemployment durations among young and prime-aged
42Gervais et al. (2014) consider learning about occupational fit over the life cycle in a (steady state) model with

search frictions, and successfully can explain the decrease in the separation rate. The presence of rest unemployment
can also explain the lower job finding rate of prime-aged workers, relative to young workers.

43The separation rate in the model results from targeting the unemployment stocks of the two age groups. This
rate does not perfectly coincide with the separation rate measured in the data, which considers only transitions from
employment directly into unemployment. The reason for this difference is that the unemployment stocks are influenced
by a positive net flow from employment to unemployment via non-participation, which typically is abstracted from in
models studying the business cycle. This means that the relative volatilities in the model are calculated over a baseline
separation rate that differs from the one in the data. When analysing the absolute volatilities of the separation rate
(which are close to the relative volatilities of the survival rate in employment), after HP filtering, the model does very
well: for young workers, we find that these cyclical volatilities are 0.0018 in the data vs 0.0016 in the model. For
prime-aged workers, we find 0.0013 vs 0.0013.

44Theoretically, the model can produce a non-monotone relationship between occupational mobility and unem-
ployment duration. This occurs when at the highest human capital levels workers become extremely attached to their
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workers. At a 12 months duration, both in the model and in the data, the remaining stock of young

unemployed has more than 30% of stayers, while for prime-aged workers it has close to 40% of

stayers.
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Figure 9: Unemployment duration and occupational mobility by age groups

Finally, the calibrated model captures well the empirical proportions of young and prime-aged

occupational stayers that did not change occupations after a subsequent unemployment spells, as

documented in Section 2. In the case of young workers, the model implies that 58% of unemployed

workers stayed in their occupations at the end of their second unemployment spell, while in the

data we observe 56%. For prime-aged workers the proportions are 62% in the model and 65% in

the data.

8.2 Random Search Across Occupations
The focus of our analysis has been on gross occupational mobility. This has been motivated

by the large size of gross flows across occupations and their cyclical patterns (see Appendix C for

details). This evidence suggests that gross occupational mobility is not driven by occupation-wide

shocks, but instead by idiosyncratic reasons (see also Shimer, 2007). Moreover, reallocating work-

ers are often changing occupations again after a subsequent unemployment spell. In Section 2 we

found that the proportion of recent occupational movers who move in subsequent unemployment

spell is as high as 56%.

In the model, repeat mobility across occupations appears to be better captured with random

search across (o, z) pairs, where a reallocating worker searches sequentially across (o, z) until he

finds ‘good enough’, rather than the best, labor market conditions; i.e. z > zr.45 Some workers

occupations, and these workers form a significant part of the long-term unemployed. However, with three levels of
occupational human capital in the calibration, and significant mobility even for the prime-aged, this behavior is not
exhibited.

45Given that we set the length of a sampling period to a week, assuming random search across occupations does
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who end up with z-productivities close to the reallocation cutoff will want to reallocate again upon

receiving negative z-shocks. Indeed, while we do not target the above repeat mobility moment, our

model generates a proportion of recent occupational movers who move in subsequent unemploy-

ment spell of 43%.

If, instead, workers would know from the outset the labor market conditions they will face

in all occupations, they would immediately direct their search to the labor markets with the best

conditions. As a result, reallocating workers would be in the best labor markets. With a persistent

z-productivity process, required to match the negative duration dependence in job finding rates,

this would translate, counterfactually, into a very low amount of repeat occupational mobility in

adjacent unemployment spells. It would also make it harder to match the extent of occupational

mobility. Further, reallocating workers would face a much lower probability of becoming endoge-

nously unemployed. This would make it more difficult for the model to be consistent with the

concentration of unemployment spells among a subset of workers as reported in Table 3.46

To formally evaluate how important is the random search assumption in our model, we re-

calibrated it allowing for search across occupations to be more directed. Using all the same targets

as before plus the repeat mobility of occupational movers, we allow reallocating workers to restrict

their search to the set of labor markets with the best conditions. To do so, we introduce an additional

parameter which controls how close are the labor market conditions available to the worker to

the best conditions. Specifically, without affecting the theoretical results developed earlier, we

truncate the distribution of z-productivities from below such that reallocating workers randomly

draw z-productivities from 1− F (zn), where n = 0, 1, ..., 100 represents an exogenous truncation

parameter such that z100 = z and z0 = z. Overall, this parameter is informed by our targeted repeat

mobility moments and the other moments that we use to estimate c, ρz and σz. We find that the

calibrated value of n = 99.95, implying that the calibration favors a nearly complete version of

random search across z-productivities. The performance of the model on the other dimensions we

have discussed up to now remains nearly intact.

9 Conclusions
We have presented a tractable equilibrium framework to study how unemployed workers’ real-

location and separation decisions determine the evolution of the aggregate unemployment rate and

the unemployment duration distribution over the business cycle. We emphasize the role of rest un-

employment in successfully explaining several important features underlying these unemployment

fluctuations.

not impose a significant time cost to a reallocating worker. In the calibration, a reallocating worker takes on average
less than a month to find an occupation with sufficiently good labor market conditions.

46Kambourov and Manovskii (2009a) also argued that assuming directed search across occupations might be un-
satisfactory. They find that around 70% of unemployed workers in the PSID found jobs in a different occupation to
the one they originally were trying to find a job. One potential way of reducing the strength of these trade-offs is
by assuming that preference shocks drive workers’ reallocation and job separation decisions. This seems somehow
unsatisfactory since one would need large preference shocks to explain the data (see Wiczer, 2013).
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Rest unemployment highlights the importance of the value of waiting for local labor market

conditions to improve when making reallocation decisions. This implies that it is not necessarily

optimal or socially desirable to reallocate workers when they face no immediate job prospects.

This is particularly relevant when reallocation frictions are associated at least partially irreversible

cost and there is enough uncertainty about the net returns to reallocation. Incorporating this insight

can further inform research that aims to measure the impact of mismatch across different labor

markets on unemployment fluctuations (see, for example, Şahin, et al., 2012 and Herz and Van

Rens, 2011), by emphasizing the role of expectations about the future evolution of tightness in

local labor markets, in addition to comparing contemporaneous labor market tightnesses.

In this paper we have focused on the model’s implications for transition and duration data in

several dimensions. However, our model also has implications for wage dynamics and wage dis-

persion. In particular, Bils et. al (2011) show that a version of the Mortensen and Pissarides (1994)

model of endogenous separations with heterogeneous reservations wages across workers has dif-

ficulty in explaining the observed cyclicality of unemployment and, at the same time, generating

realistic dispersion in wage growth across workers. Our model generates these two features at

the same time. Rest unemployment generates high unemployment volatility, while a disperse z-

productivity process translates into a disperse distribution of wage growth across workers. Further,

the variance of the aggregate wage distribution in our calibration is procyclical, as its empirical

counterpart (see Morin, 2012). Nash Bargaining, however, implies the procyclicality of average

wages in the model is close to that of output per worker and hence is too high compared to the

estimates presented in Hagedorn and Manovskii (2008). Nevertheless, these results suggest that

our model can potentially be used as a basis to study the relationship between occupational mobil-

ity, unemployment fluctuations and wages over the business cycle. We leave this topic for future

research.
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Appendix A
In this appendix we have collected the proofs of the results stated in Section 4. To keep notation

complexity to a minimum we make implicit the subscript h in xh, making it explicit only when

necessary.

Proof of Proposition 1 We divide the proof into two steps. In the first step we derive the operator

T and show it is a contraction. In the second step we construct the candidate equilibrium functions

from the fixed point value and policy functions of T , and verify these satisfy all equilibrium con-

ditions.

Step 1 LetM(p, z, x)
def
= WE(p, z, x)+J(p, z, x) denote the value of the match. We want to show

that the value functions M(p, z, x) and WU(p, z, x) exist. This leads to a two dimensional fixed

point problem. It is then useful to define the operator T that maps the value function Γ(p, z, x, n)

for n = 0, 1 into the same function space, such that Γ(p, z, x, 0) = M(p, z, x), Γ(p, z, x, 1) =

WU(p, z, x), as

T (Γ(p, z, x, 0)) = y(p, z, x) + βEp′,z′,x′
[

max
dT
{(1− dT )M(p′, z′, x′) + dTWU(p′, z′, x′)}

]
,

T (Γ(p, z, x, 1)) = b+ βEp′,z′
[

max
ρT
{(ρT

(∫
WU(p′, z̃, x1)dF (z̃)− c

)
+(1− ρT )(ST (p′, z′, x) +WU(p′, z′, x))}

]
,

where by virtue of the free entry condition and the definition of M(p, z, x),

ST (p′, z′, x) ≡ λ(θ(p′, z′, x))
(
M(p′, z′, x)−WU(p′, z′, x)

)
− θ(p′, z′, x)k.

Lemma A.1: T is (i) a well-defined operator mapping functions from the closed space of bounded

continuous functions Γ into itself, (ii) a contraction and (iii) maps functions M(p, z, xh) and

WU(p, z, xh) that are increasing in z into itself.

First we show that the operator T maps continuous functions into continuous functions. Note

that θ ∈ [0, 1], for all p, z, x and WU(p, z, x), M(p, z, x), λ(θ) and S(p, z, x) are continuous func-

tions. Since max{M(p′, z′, x′),WU(p′, z′, x′)} is also a continuous function, it follows that T maps

continuous functions into continuous functions. Moreover, since the domain of p, z, x is bounded,

the resulting continuous functions are bounded.

To show that T defines a contraction, consider two functions Γ,Γ′, such that ‖Γ− Γ′‖sup < ε.

Then it follows that ‖WU(p, z, x)−WU ′(p, z, x)‖sup < ε and ‖M(p, z, x)−M ′(p, z, x)‖sup < ε,

where WU ,M are part of Γ as defined in the text. Since ‖max{a, b}−max{a′, b′}‖ < max{‖a−
a′‖, ‖b − b′‖}, as long as the terms over which to maximize do not change by more than ε in
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absolute value, the maximized value does not change by more ε. The only maximization for which

it is nontrivial to establish this is max{
∫
WU(p, z, x1)dF (z) − c, S(p, z, x) + WU(p, z, x)}. The

first part can be established readily: ‖
∫ (

WU(p, z, x1) −WU ′(p, z, x)
)
dF (z)‖sup < ε. We now

show that this property holds for ‖S(p, z, x) +WU(p, z, x)− S ′(p, z, x)−WU ′(p, z, x)‖sup.

Consider first the case that M − W > M ′ − W ′, where M stands for M(p, z, x) and W

stands for WU(p, z, x). Then, we must have ε > W ′ −W ≥ M ′ −M > −ε. Construct M ′′ =

W ′+ (M −W ) > M ′ and W ′′ = M ′− (M −W ) < W ′. Since S(M −W ) = λ(θ)(M −W )− θk
and likewise S(M ′ −W ′), we have that

−ε < S(M ′ −W ′′) +W ′′ − S(M −W )−W ≤ S(M ′ −W ′) +W ′ − S(M −W )−W
≤ S(M ′′ −W ′) +W ′ − S(M −W )−W < ε

where S(M ′−W ′′) = S(M−W ) = S(M ′′−W ′) by construction. Note that the outer inequalities

follow because M −M ′ > −ε,W ′ −W < ε.

Likewise, consider the case where M ′ −W ′ > M −W ≥ 0. Then

ε > S(M ′ −W ′′) +W ′′ − S(M −W )−W > S(M ′ −W ′) +W ′ − S(M −W )−W
> S(M ′′ −W ′) +W ′ − S(M −W )−W > −ε

Hence ‖S(p, z, x)+WU(p, z, x)−S ′(p, z, x)−WU ′(p, z, x)‖sup < ε. It then follows that ‖T (Γ(p, z, x, 1))−
T (Γ′(p, z, x, 1)‖ < βε for all p, z, x, and ‖Γ− Γ′‖ < ε. Hence, the operator is a contraction.

It is now trivial to show that if M and WU are increasing in z, T maps them into increasing

functions. This follows since the max{M(p′, z′, x′),WU(p′, z′, x′)} is also an increasing function.

Assumption 1 is needed so higher z today implies (on average) higher z tomorrow. Since the value

of reallocation is constant in z, a reservation policy for reallocation follows immediately.

Step 2: From the fixed point functionsM(p, z, x) andWU(p, z, x) define the function J(p, z, x) =

max{(1 − α)[M(p, z, x) −WU(p, z, x)], 0}, and the functions θ(p, z, x) and V (p, z, x) from 0 =

V (p, z, x) = −k + q(θ(p, z, x))J(p, z, x). Also define WE(p, z, x) = M(p, z, x) − J(p, z, x) if

M(p, z, x) > WU(p, z, x), and WE(p, z, x) = M(p, z, x) if M(p, z, x) ≤ WU(p, z, x). Finally,

define δ(p, z, x) = δT (p, z, x), σ(p, z, x) = δT (p, z, x), ρ(p, z, x) = ρT (p, z, x) and w(p, z, x)

derived using (5) given all other functions.

Given 1−α = η and (5), (4) is satisfied, provided the separation decisions between the worker

and firm coincide, which is the case as the matches are broken up if and only if it is efficient

to do so according to M(p, x, z) and WU(p, x, z). Equation (2) is then satisfied by construction,

θ(p, z, x) satisfies the free entry condition and w(p, z, x) satisfies (5). Hence, the constructed value

functions and decision rules satisfy all conditions of the equilibrium, and the implied evolution of

the distribution of employed and unemployed workers will also be the same.

Uniqueness follows from the same procedure in the opposite direction, by contradiction. Sup-
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pose the block recursive equilibrium is not unique. Then a second set of functions exists that satisfy

the equilibrium conditions. Construct M̂ and ŴU from these. Since in any equilibrium the breakup

decisions have to be efficient and the reallocation and job application decisions are captured in T ,

M̂ and ŴU must be a fixed point of T , contradicting the uniqueness of the fixed point established

by Banach’s Fixed Point Theorem: hence, there is a unique BRE.

This completes the proof of Proposition 1.

Proof of Proposition 2 Recall that Ωj denotes the general state space and E j denotes the dis-

tribution of unemployed and employed workers over the different labor markets and occupations

at the beginning of stage j. Recall that we let next period’s values be denoted by a prime. The

planner’s problem can then be written in recursive form using the mapping T SP ,

T SPW SP (Ωp) = max
{d(p′,z′,x′h,Es′),ρ(p′,z′,x′h,Er ′),v(p′,z′,x′h,Em′)}

O∑
o=1

H∑
h=1

∫ z

z

(uo(z, xh)b+ eo(z, xh)y(p, z, xh))dz

+ βEp′,z′,x′h

[
−
(
c

O∑
o=1

H∑
h=1

∫ z

z

ρ(p′, z′, x′h, Er ′)uo(z′, x′h)dz′ + k
O∑
o=1

H∑
h=1

∫ z

z

vo(p
′, z′, x′h, Em′)dz′

)

+W SP (Ωp′)

]
subject to laws of motions

u′o(z, xh)dz =

∫ z

z

(1− λ(θ(p, z̃, xh, Em)))(1− ρ(p, z̃, xh, Er))uo(z̃, xh)dF (z|z̃)dz̃

+

∫ z

z

d(p, z̃, xh, Es)eo(z̃, xh)dF (z|z̃)dz̃

+ (1h=1)

[∑
õ6=o

H∑
h=1

[ ∫ z

z

ρ(p, z̃, x̃h, Er)uõ(z̃, x̃h)dz̃
]]dF (z)

O − 1
.

e′o(z, xh)dz = χ(xh|xh)
∫ z

z

λ(θ(p, z̃, xh, Em))(1− ρ(p, z̃, xh, Er))uo(z̃, xh)dF (z|z̃)dz̃

+ χ(xh|xh)
∫ z

z

(1− d(p, z̃, xh, Es))eo(z̃, xh)dF (z|z̃)dz̃

+ (1h>1)
[
χ(xh|xh−1)

∫ z

z

(1− d(p, z̃, xh−1, Es))eo(z̃, xh−1)dF (z|z̃)dz̃
]
,

and initial conditions p0 and E0. For each pair (z, xh) the social planner must decide whether to

(i) reallocate workers, ρ(.), (ii) break up job matches, d(.), and (iii) set the number of vacancies

for the unemployed, v(.), given aggregate productivity p and the values of z, and potentially the

distribution of workers over labor markets. With v(.) = θ(.)(1 − ρ(.))u(z, xh), we can substitute

the vacancy creation decision by a decision on labor market tightness.
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Note thatW SP is linear in u(z, xh) and e(z, xh), where u(z, xh) =
∑

o∈O uo(z, xh) and e(z, xh)

is analogously defined. Hence, T SP maps these linear functions into a function that is likewise

linear in these variables. Linearity ofW SP implies that we can defineWU(p, z, xh) andM(p, z, xh)

such that W SP can be written as

W SP (p,Ω) =
H∑
h=1

∫ z

z

(
WU(p, z, xh)u(z, xh) +M(p, z, xh)e(z, xh)

)
dz.

Hence we can write

T SPW SP (p,Ω) =

max
d(.),ρ(.),θ(.)

H∑
h=1

∫ z

z

(
u(z, xh)b+ βEp′,z′

[(∫ z

z

WU(p′, z̃, x1)dF (z̃)− c
)
ρ(p′, z′, xh)

+ (1− ρ(p′, z′, xh))
[
λ (θ(p′, z′, xh))M(p′, z′, xh)− θ(p′, z′, xh)k

+ (1− λ (θ(p′, z′, xh)))W
U(p′, z′, xh)

]∣∣∣∣p, z, xh
]
u(z, xh)

+ e(z, xh)y(p, z, xh) + β Ep′,z′,x′h

[[
(1− d(p′, z′, x′h))M(p′, z′, x′h)+

+ d(p′, z′, x′h)W
U(p′, z′, x′h)

]∣∣∣∣p, z, xh]e(z, xh)
)
dz,

where implicitly we have already used the notion that when W SP is linear in e(z, xh) and u(z, xh),

then decisions ρ(.), d(.), θ(.) are only functions of (p, z, xh). Further, we can completely isolate

the terms with u(z, xh) and e(z, xh) and take the maximization over the remaining terms such that

T SPW SP (p,Ω) =
H∑
h=1

∫ z

z

[
WU
max(p, z, xh)u(z, xh) +Mmax(p, z, xh)e(z, xh)

]
dz

where

WU
max(p, z, xh) =

max
ρ(p′,z′,xh),v(p′,z′,xh)

{
b+ βEp′,z′

[(∫ z

z

WU(p′, z̃, x1)dF (z̃)− c
)
ρ(p′, z′, xh)

+ (1− ρ(p′, z′, xh))
[
λ(θ(p′, z′, xh)

[
M(p′, z′, xh)−WU(p′, z′, xh)

]
− θ(p′, z′, xh)k +WU(p′, z′, xh)

]}
,

Mmax(p, x, z) =

max
d(p′,z′,x′h)

{
y(p, z, xh) + βEp′,z′,x′h

[ (
d(p′, z′, x′h)W

U(p′, z′, x′h) + (1− d(p′, z′, x′h))M(p′, z′, x′h)
) ]}

.

The maximized value depends only on p, z and xh, and hence T SP maps a value function that is
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linear in uo(z, xh) and eo(z, xh) into a value function with the same properties. Moreover, using the

definitions of WU
max and Mmax it follows that from the fixed point of the mapping T SP we can de-

rive a WU∗
max and M∗

max that constitutes a fixed point to T , and vice versa. Hence, the allocations of

the fixed point of T are allocations of the fixed point of T SP , and hence the equilibrium allocation

is the efficient allocation. This completes the proof of Proposition 2.

BRE gives the unique equilibrium allocation Here we show that in any equilibrium, decisions

and values are only functions of (p, z, xh). To do so, suppose there is an alternative equilibrium

in which values and decisions do not depend only on (p, z, xh), but also on a fourth factor – like

the entire distribution of workers over employment status and z-productivities, or its entire history

of observables, Ht. Consider the associated value functions in this alternative equilibrium, where

the relevant state vector of the alternative equilibrium is given by (p, z, xh, Ht). We now show that

such an equilibrium cannot exist.

First, suppose that in the alternative equilibrium all value functions are the same as in the

BRE, but decisions differ at the same (p, z, xh). This violates the property that, in our setting, all

maximizers in the BRE value funtions are unique, leading to a contradiction.

Next suppose that in the alternative equilibrium at least one value function differs from the

corresponding BRE value function at the same (p, z, xh). It is straightforward to show that the

expected values of unemployment must differ in both equilibria. Let WU(p, z, xh, Ht) denote the

value function for unemployed workers in the alternative (non-block recursive) equilibrium, and

let WU(p, z, xh) denote the corresponding value function in the BRE for the same (p, z, xh). In

Proposition 2, we showed that the BRE is constrained efficient. Since that proof did not rely on

the uniqueness of the BRE in the broader set of all equilibria, we can use the proved results of

Proposition 2 here.

In particular, it is crucial to note that the proof of Proposition 2 establishes that the social

planner’s problem is entirely linear in the distribution of workers across states, and hence that

WU(p, z, xh) is the best the unemployed worker with (p, z, xh) can do (without transfers), includ-

ing in the market equilibrium (from Proposition 1). Likewise, M(p, z, xh) is the highest value of

the joint value of a match, including in the market equilibrium. In addition, value functions must

be bounded from above and from below, and are continuous in their state variables. Hence there

exists a supremum of the difference between WU(p, z, xh) and the candidate market equilibrium’s

WU(p, z, xh, Ht), sup(WU(p, z, xh)−WU(p, z, xh, Ht)) = ku > 0. Similarly, sinceM is bounded

from below, there also exists a supremum for the difference between these two value functions,

sup(M(p, z, xh) − M(p, z, xh, Ht)) = km > 0. In what follows, we show that a difference in

unemployment values, or match values, arbitrarily close to ku > 0, resp. km > 0, cannot occur, as

it requires the difference in tomorrow’s values to be larger than ku, resp. km. In turn, this implies

that the alternative equilibrium cannot exist.

From the above definition of supremum, it follows that max{M(p, z, xh),W
U(p, z, xh)} −
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max{M(p, z, xh, Ht),W
U(p, z, xh, Ht)} < max{ku, km}. Since

M(p, z, xh) = y(p, xh, z) + βE[max{M(p′, x′h, z
′),WU(p′, x′h, z

′)}],

and likewise for M(p, z, xh, Ht) it follows that at any (p, z, xh, Ht),

M(p, z, xh)−M(p, z, xh, Ht)) < βmax{ku, km}. (14)

Consider first km ≥ ku. For (p, z, xh, Ht) achieving a match value difference (M(p, z, xh) −
M(p, z, xh, Ht) larger than βkm, then equation (14) leads to a contradiction with km > 0.

Consider, second, ku > km. Simplifying notation by dropping (p, xh, z) and using the prime

instead of (p, xh, z,Ht), we establish first an intermediate claim: that at any (p, z, xh, Ht), the

following holds:

λ(θ)(1− η)M + (1− λ(θ)(1− η))W < λ(θ′)(1− η)M ′ + (1− λ(θ′)(1− η))W ′ + ku. (15)

There are two cases. Case 1: (M ′−W ′) ≥M−W ; then λ(θ′) ≥ λ(θ). DefineK = (1−η)(λ(θ′)−
λ(θ))(M ′−W ′) ≥ 0. Combining this with λ(θ)(1−η)(M−M ′)+(1−λ(θ)(1−η))(W−W ′) ≤ ku,

it must be true that

λ(θ)(1− η)(M −M ′) + (1− λ(θ)(1− η))(W −W ′)−K ≤ ku, (16)

from which (15) follows.

Now consider case 2: suppose that (M − W ) > (M ′ − W ′); then λ(θ) > λ(θ′). From the

derivative of d
d(M−W )

(λ(θ(M −W ))(1− η)(M −W )) = λ(θ(M −W )), we can establish that, if

(M −W ) > (M ′ −W ′),

λ(θ)((M−W )−(M ′−W ′)) > λ(θ)(1−η)(M−W )−λ(θ′)(1−η)(M ′−W ′) > λ(θ′)((M−W )−(M ′−W ′)).

We can use this, because in any equilibrium (not only in the BRE) θ′ depends only on (M ′ −W ′)

and unchanging parameters. Using this, we can establish that

W + λ(θ)(M −W )− (W ′ + λ(θ)(M ′ −W ′)) < ku,

from which which (15) follows.

Finally consider a (p, z, xh, Ht) such that max{km, β−1ku} < WU(p, z, xh)−WU(p, z, xh, Ht) <

ku; such a (p, z, xh, Ht) exists by the definition of supremum. It is now straightforward to check

that the difference in tomorrow’s value (under the expectation sign), between WU(p, xh, z) and

WU(p, xh, z,Ht) will not exceed ku, since term-by-term, the difference is bounded by ku. However,

this also implies that today’s difference in the aforementioned values,WU(p, z, xh)−WU(p, z, xh, Ht),

cannot be more than βku > 0, which contradicts our premise.
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Appendix B
In this appendix we derive the results described in the Section 5 in which we restrict the state

space to (p, z). In Carrillo-Tudela and Visschers (2013) we provide a full characterisation of this

version. We first show that there exist a separation cutoff function zs. Then we use a steady state

version of the model to analyse the relative position and slopes of zr and zs.

Proof of Lemma 1 Consider the same operator T defined in the proof of Proposition 1, but now

the relevant state space is given by (p, z). Note that the value functions (1) - (4), describing the

worker’s and the firm’s problem, do not change, except for the fact that we are using a smaller state

space. It is straightforward to verify that the derived properties of T in Lemma A.1 also apply in

this case. We now want to show that this operator maps the subspace of functions Γ into itself with

M(p, z) increasing weakly faster in z than WU(p, z). To show this, take M(p, z) and WU(p, z)

such thatM(p, z)−WU(p, z) is weakly increasing in z and let zs denote a reservation productivity

such that for z < zs a firm-worker match decide to terminate the match. Using λ(θ)(M −WU)−
θk = λ(θ)(M −WU)− λ′(θ)(M −WU)θ = λ(θ)(1− η)(M −WU), we construct the following

difference

TΓ(p, z, 0)− TΓ(p, z, 1) = (17)

y(p, z)− b+ βEp′,z′
[
(1− δ) max{M(p′, z′)−WU(p′, z′), 0}−

max

{∫
WU(p′, z̃)dF (z̃)− c−WU(p′, z′), λ(θ)(1− η)

(
M(p′, z′)−WU(p′, z′)

)} ]
.

The first part of the proof shows the conditions under which TΓ(p, z, 0) − TΓ(p, z, 1) is weakly

increasing in z. Because the elements of the our relevant domain are restricted to have WU(p, z)

increasing in z, and M(p, z)−WU(p, z) increasing in z, we can start to study the value of the term

under the expectation sign, by cutting a number of different cases to consider depending on where

z′ is relative to the implied reservation cutoffs.

– Case 1. Consider the range of tomorrow’s z′ ∈ [z(p′), zr(p′, )), where zr(p′) < zs(p′. In this case,

the term under the expectation sign in the above equation reduces to −
∫
WU(p′, x1, z̃)dF (z̃) +

c+WU(p′, z′), which is increasing in z′.

– Case 2. Now suppose tomorrow’s z′ ∈ [zr(p′), zs(p′)). In this case, the term under the expecta-

tion sign becomes zero (as M(p′, z′)−WU(p′, z′) = 0), and is therefore constant in z′.

– Case 3. Next suppose that z′ ∈ [zs(p′), zr(p′)). In this case, the entire term under the expectation

sign reduces to

(1− δ)(M(p′, z′)−WU(p′, z′))−
∫
WU(p′, z̃)dF (z̃) + c+WU(p′, z′),

and, once again, is weakly increasing in z′, because by suppositionM(p′, z′)−WU(p′, z′) is weakly

increasing in z′, and so is WU(p′, z′) by Lemma A.1.
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– Case 4. Finally consider the range of z′ ≥ max{zr(p′), zs(p′)}, such that in this range employed

workers do not quit nor reallocate. In this case the term under the expectation sign equals

(1− δ)[M(p′, z′)−WU(p′, z′)]− λ(θ(p′, z′))(1− η)[M(p′, z′)−WU(p′, z′)]. (18)

It is easy to show using the free entry condition that d(λ(θ∗(p′,z′))(1−η)[M(p′,z′)−WU (p′,z′)])
d(M−W )

= λ(θ(p′, z′)),

and hence that the derivative of (18) with respect to z′ is positive whenever 1− δ − λ(θ) ≥ 0.

Given Assumption 1, the independence of z of x, p, and that the term under the expectation

sign are increasing in z′, given any p′, it follows that the integral in (17) is increasing in today’s z.

Together with y(p, z) increasing in z, it must be that TΓ(p, z, 1)− TΓ(p, z, 0) is also increasing in

z.

To establish that the fixed point also has increasing differences in z between the first and second

coordinate, we have to show that the space of this functions is closed in the space of bounded and

continuous functions. In particular, consider the set of functions F def
= {f ∈ C|f : X × Y →

R2, |f(x, y, 1) − f(x, y, 2)| increasing in y}, where f(., ., 1), f(., ., 2) denote the first and second

coordinate, respectively, and C the metric space of bounded and continuous functions endowed

with the sup-norm.

The next step in the proof is to show that fixed point of TΓ(p, z, 0)−TΓ(p, z, 1) is also weakly

increasing in z. To show we first establish the following result.

Lemma B.1: F is a closed set in C

Proof. Consider an f ′ /∈ F that is the limit of a sequence {fn}, fn ∈ F, ∀n ∈ N. Then there

exists an y1 < y such that f ′(x, y1, 1)− f ′(x, y1, 2) > f ′(x, y, 1)− f ′(x, y, 2), while fn(x, y1, 1)−
fn(x, y1, 2) ≤ fn(x, y, 1)−fn(x, y, 2), for every n. Define a sequence {sn}with sn = fn(x, y1, 1)−
fn(x, y1, 2)− (fn(x, y, 1)− fn(x, y, 2)). Then sn ≥ 0, ∀n ∈ N. A standard result in real analysis

guarantees that for any limit s of this sequence, sn → s, it holds that s ≥ 0. Hence f ′(x, y1, 1) −
f ′(x, y1, 2) ≤ f ′(x, y, 1)− f ′(x, y, 2), contradicting the premise.

Thus, the fixed point exhibits this property as well and the optimal quit policy is a reservation-z

policy given 1 − δ − λ(θ) > 0. Since y(p, z) is strictly increasing in z, the fixed point difference

M −WU must also be strictly increasing in z. Furthermore, since λ(θ) is concave and positively

valued, λ′(θ)(M −WU) = k implies that job finding rate is also (weakly) increasing in z. This

completes the proof of Lemma 1.

Stationary Model

We now derive the proofs of Lemmas 2, 3 and 4, using the stationary versions of (1) - (4) and

restricting the state space to (p, z). Note that p is fixed and does not change over time. However,

each period, with probability (1 − γ), the z-productivity of a worker is redrawn in an iid fashion

from F (.), the unconditional distribution of z in any occupation. The matching function within a
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labor market is assumed to be Cobb-Douglas, wages are determined through Nash Bargaining with

η = 1 − α and free entry of firms occurs at each labor market. In this environment, the expected

value of unemployment for a worker currently with productivity z in occupation o,

WU(p, z) = γ
(
b+ βmax

{
R(p),WU(p, z) + max{λ(θ(p, z))(1− η)(M(p, z)−WU(p, z)), 0}

})
+ (1− γ)Ez[WU(p, z)]. (19)

where the expected value of reallocation

R(p) = −c+

∫ z

z

WU(p, z̃)dF (z̃). (20)

The values of employment at wage w(p, z) for a worker currently with productivity z and a firm

employing this worker are given by

WE(p, z) = γ
[
w(p, z) + β[(1− δ)WE(p, z) + δWU(p, z)]

]
+ (1− γ)Ez[WE(p, z)], (21)

J(p, z) = γ
[
y(p, z)− w(p, z) + β[(1− δ)J(p, z))]

]
+ (1− γ)Ez[J(p, z)]. (22)

The joint value of a match is then

M(p, z) = γ
[
y(p, z) + β[(1− δ)M(p, z) + δWU(p, z)]

]
+ (1− γ)Ez[M(p, z)]. (23)

Proof of Lemma 2 We state the detailed version of this lemma as Lemma B.2. To simplify

the analysis and without loss of generality, in what follows we let δ = 0. Since we do not vary

aggregate productivity to proof this lemma, we let p = 1 and leave it implicit in the analysis. To

abbreviate notation defined W s ≡ WU(zs).

Lemma B.2: The expected values of sampling, waiting, job surplus and unemployment, and

the reallocation and separation reservation productivities, respond to changes in parameters as

follows

1. (i)d(W s−R)
dc

> 0, (ii) d(M(z)−WU (z))
dc

> 0 for all active labor markets; and (iii) zr − zs is

decreasing in c, strictly if zr > zs.

2. (i)d(W s−R)
db

> 0, (ii) d(M(z)−WU (z))
db

< 0 for all active labor markets; and (iii) zr − zs is

decreasing in b (while both zr and zs are increasing in b).

3. (i)d(W s−R)
dγ

< 0, (ii) there exists a cutoff zγ > max{zr, zs} such that for all z > zγ ,
d(M(z)−WU (z))

dγ
> 0 and dWU (z)

dγ
> 0; while d(M(z)−WU (z))

dγ
< 0 and dWU (z)

dγ
< 0 for zγ > z >

max{zr, zs}. In expectation, d(Ez [M(z)−WU (z)])
dγ

> 0 and dEz [WU (z)]
dγ

> 0. And (iii), if zr > zs

and R−W s is not too large, or if zs > zr, then zr − zs is increasing in γ.
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Proof. From (19) and (20) it follows that

(1− βγA(zr))(W s −R) = (1− βγ)c− βγ
∫
zr
λ(θ(z))(1− η)(M(z)−WU(z))dF (z), (24)

where A(zr) = F (zr) if zr > zs ≥ z, and A(zr) = 1 if zr ≤ zs. The net gain of waiting instead

of reallocating is that it saves the reallocation cost c, described in the first term on the RHS of

(24). On the other hand, the second term on the RHS captures the opportunity cost incurred if the

current z-productivity persist. In this case, the worker misses the opportunity to sample another z

in a different occupation and start applying for jobs when his z-productivity in the new occupation

is high enough.

We now consider the link between W s−R and zs− zr: the difference W s−R directly affects

the distance between zs and zr. An increase in the former often leads directly to an increase in the

latter. To see this formally, denote the parameter of interest generically by ω; for example, c, b or

γ. The reservation productivities for separation and reallocation then implicitly satisfy

M(ω, zs(ω))−W s(ω) = 0 (25)

λ(θ(ω, zr(ω)))(1− η)(M(ω, zr(ω))−W s) + (W s(ω)−R(ω)) = 0, (26)

where (26) only applies when R(ω) > W s(ω) since with the assumed process for z we have that

W s(ω) > R(ω) implies zr(ω) = z.

To obtain the derivatives of zs(ω) and zr(ω) wrt ω, we can take the derivative of (25)-(26),

where we make explicit the dependence on ω if and only if the derivative is taken with respect to

it.

dzs(ω)

dω
= − d

dω

[
zs − b+ β(1− γ)Ez[max{M(ω, z)−W (ω, z),W s(ω)−R(ω)}]

+ βγ(W s −R)

]
− βγd(W s(ω)−R(ω))

dω
(27)

dzr(ω)

dω
= − d

dω

[
zr − b+ β(1− γ)Ez[max{M(ω, z)−W (ω, z),W s(ω)−R(ω)}]

+ βγ(1− λ(θ)(1− η))(M(zr)−W s)

]
− 1− βγ(1− λ(θ))

λ(θ)

d(W s(ω)−R(ω))

dω
.

(28)

These equations imply that the sign of the derivative of zr−zs with respect to b or c is the opposite

of the sign of the corresponding derivatives of W s − R. This is because βγ < 1−βγ(1−λ(θ))
λ(θ)

and,

when taking derivatives, the differential terms within the squared brackets are identical.

We divide the proof into three sections. To simplify notation we consider the transformation

y = y(z), where y(.) is the common production function, and let Fy denote the cdf of y. Accord-

ingly, let yr = y(zr) and ys = y(zs).
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Comparative statics wrt c Consider the difference W s − R and values of c such that R ≥ W s.

In this case we have that

W s = (1− γ)(R + c) + γ(b+ βR),

W s −R = −γ(1− β)R + (1− γ)c+ γb.

Suppose towards a contradiction that d(W s − R)/dc < 0. The above equations imply that dR
dc
>

(1−γ)
γ(1−β)

> 0. We will proceed by showing that under d(W s − R)/dc < 0 both the expected surplus

(after a z-shock) and the surplus for active labor markets (those with productivities that entail

positive match surplus) decrease, which implies that the value of unemployment decreases, which

in turn implies dR
dc
< 0, which is our contradiction.

Consider an active labor market with WU(y) > R, the surplus on this labor market is given by

M(y)−WU(y) = γ(y − b+ β(1− λ(θ(y))(1− η))(M(y)−WU(y)))

+ (1− γ)(Ey[M(y)−WU(y)] + (y − E[y])), (29)

where Ey[M(y) −WU(y)] describes the expected surplus after a z-shock (after the search stage).

Note that d
d(M(y)−WU (y))

(λ(θ(y))(1− η)(M(y)−WU(y))) = λ(θ(y)), since (dropping the y argu-

ment for brevity) (1 − η)(M −WU) = (1−η)
η
J = 1−η

η
k
q(θ)

, and hence λ(θ)(1 − η)(M −WU) =
1−η
η
kθ. Moreover, dθ

d(M−WU )
= η

1−η
λ(θ)
k

. Putting the last two expressions together, we find that the

above derivative equals λ(θ). From (29), it follows that

0 <
d(M −WU)

d(Ey[M(y)−WU(y)])
=

1− γ
1− γβ(1− λ(θ))

< 1. (30)

Expected match surplus measured after the search stage is

Ey[M(y)−WU(y)] =

∫
yr
y − b+ β(1− λ(θ(y))(1− η))(M(y)−WU(y))dFy(y)

+

∫ yr

ys
y − b+ β(M(y)−R)dFy(y) +

∫ ys

y − b+ β(W s −R)dFy(y),

(31)

note that the (1−γ) shock integrates out. The third term of the expression above is decreasing in c,

by our contradiction supposition. The second term,
∫ yr
ys

[M(y) −WU(y)]dFy(y), can be rewritten

as

M −W s = γ(y − b+ β(M −W s +W s −R)) + (1− γ)(Ey[M(y)−WU(y)] + y − E[y]),

and rearranging yields

M −W s =
γ

1− γβ (y − b+ β(W s −R)) +
1− γ

1− γβEy[M(y)−WU(y)],

where γ
1−γβ (y−b+β(W s−R)) is decreasing. For the first term, note thatM(y)−WU(y) responds
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to c through Ey[M(y)−WU(y)], from (30). Combining all the elements (30), (31) and the last two

equations, we find that

dEy[M(y)−WU(y)]

dc
=

∫
yr

(1− γ)β(1− λ(θ(y)))

1− γβ(1− λ(θ))
dFy(y)

dEy[M(y)−WU(y)]

dc

+ (Fy(y
r)− Fy(ys))

(
γβ

1− γβ
d(W s −R)

dc
+

1− γ
1− γβ

dEy[M(y)−WU(y)]

dc

)
+ Fy(y

s)β
d(W s −R)

dc

⇐⇒ dEy[M(y)−WU(y)]

dc
= C · d(W s −R)

dc
< 0, (32)

where C is a positive constant. From this it follows that d[M(y)−WU (y)]
dc

< 0, by (30).

Next consider dWU

dc
, and dE[WU ]

dc
. For y ≤ yr,WU(y) = W s = (1−γ)E[WU ]+γ(b+βE[WU ]−

βc). For y > yr,WU(y) = (1−γ)E[WU ]+γ(b+β(λ(θ(y))(1−η)(M(y)−WU(y))+βWU(y))).

It follows that E[WU ] = Fy(y
r)(b+βE[WU ]−βc) +

∫
yr

(b+βλ(θ(y))(1− η)(M(y)−WU(y)) +

βWU(y))dFy(y). Combining the latter equation with

WU =
1− γ

1− βγE[WU ] +
γ

1− βγ (b+ βλ(θ(y))(1− η)(M(y)−WU(y))),

we have that(
1− βFy(yr)− β

1− γ
1− βγ (1− Fy(yr))

)
E[WU ]

= Fy(y
r)(b− βc) +

∫
yr

b+ βλ(θ(y))(1− η)(M(y)−WU(y))

1− βγ dFy(y)

Taking the derivative with respect to c, we find that both the first and second terms on the RHS

are negative, the latter because we have established that d(M(y)−WU (y))
dc

< 0. It then follows that
dE[WU ]
dc

< 0, which implies that dR
dc

= dE[WU ]
dc
− 1 < 0, which contradicts our premise.

Now consider values of c such that R < W s. Here there is rest unemployment. In this case,

W s = γ(b + βW s) + (1 − γ)E[WU ] and dW s

dc
= 0, since workers with productivities y ≤ ys will

never reallocate. Doing so implies paying a cost c > 0 and randomly drawing a new productivity,

while by not sampling a worker obtains (with probability 1− γ) a free draw from the productivity

distribution. Hence, d(R−W s)/dc = dR/dc. Noting that workers with y > ys prefer employment

in their current occupation, the above arguments implyWU is independent of the value of sampling

for any y. It then follows that dR
dc

= dE[WU ]
dc
− 1 = −1 < 0, which contradicts our premise.

Comparative Statics with respect to b. Here we proceed in the same way as in the previous

case. Once again consider the difference W s − R such that R ≥ W s. Writing W s and WU , for
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productivities above the separation cutoff, as

W s = (1− γ)E[WU ] + γ(b+ β(R−W s)) + γβW s (33)

WU(y) = (1− γ)E[WU ] + γ(b+ β(λ(θ)(1− η)(M(y)−WU(y)))) + γβWU(y), (34)

we find that W s − E[WU ] =
∫
yr

(W s −WU(y))dFy(y), which in turn implies

W s −R =
1

1− γβFy(yr)

(
−βγ

∫
yr
λ(θ)(1− η)(M(y)−WU(y))dFy(y) + (1− γβ)c

)
. (35)

That is, the difference between waiting one period to sample and sampling a new productivity now

is the forgone possibility of searching for a job in the new occupation next period, but on the other

hand, the sampling cost only has to be incurred next period with probability γ, and discounted at

rate β.

Next consider the relationship between M(y)−WU(y) and E[M(y)−WU(y)]. From (29) and

(30) , we find that

d(M(y)−WU(y))

db
=

1− γ
1− γβ(1− λ(θ))

dE[M(y)−WU(y)]

db
− γ

1− γβ(1− λ(θ))
. (36)

Note that d(M(y)−WU (y))
db

must have the same sign for all y, which is positive if and only if

dE[M(y)−WU(y)]

db
>

γ

1− γ .

Towards a contradiction, suppose d(W s−R)
db

< 0. Then, we have d(W s−R)
db

= d(W s−E[WU ])
db

, which

equals d
db

(
−
∫
yr

max{WU(y)−W s, 0}dFy(y)
)

. By the envelope condition, the effect dyr

db
disap-

pears. By the previous argument and (33) subtracted by (34), it follows that d(M(y)−WU (y))
db

> 0 and

by (36), dE[M(y)−WU (y)]
db

> 0.

Along the lines of (32), we find

dEy[M(y)−WU(y)]

db
= −1 +

∫
yr

β(1− λ(θ(y)))− γβ(1− λ(θ(y)))

1− γβ(1− λ(θ))
dFy(y)

dEy[M(y)−WU(y)]

db

−
∫
yr

γβ(1− λ(θ(y)))

1− γβ(1− λ(θ))
dFy(y)

dEy[M(y)−WU(y)]

db

+ (Fy(y
r)− Fy(ys))

(
γβ2

1− γβ
d(W s −R)

db
+
β(1− γ)

1− γβ
dEy[M(y)−WU(y)]

db

)
− (Fy(y

r)− Fy(ys))
γβ

1− γβ + Fy(y
s)β

d(W s −R)

db
(37)

=⇒ dEy[M(y)−WU(y)]

db
= C2 ·

d(W s −R)

db
− C3 < 0,

with C2, C3 are positive-valued terms. This is the desired contradiction.
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Next consider the case that W s > R. Then, equation (35) becomes instead

W s − E[WU ] = − βγ

1− βγ

∫
ys
λ(θ)(1− η)(M(y)−WU(y))dFy(y) (38)

Similarly, if we start from the premise that d(W s−R)
db

< 0, this will imply again by (36) that
dEy [M(y)−WU (y)]

db
> 0. Note that in this case, in equation (31) reduces to

Ey[M(y)−WU(y)] =

∫
ys
y − b+ βλ(θ(y))(1− η)(M(y)−WU(y))dFy(y), (39)

and (37) reduces to

dEy[M(y)−WU(y)]

db
= −1 +

∫
ys

β(1− λ(θ(y)))− γβ(1− λ(θ(y)))

1− γβ(1− λ(θ))
dFy(y)

dEy[M(y)−WU(y)]

db

−
∫
ys

γβ(1− λ(θ(y)))

1− γβ(1− λ(θ))
dFy(y)

dEy[M(y)−WU(y)]

db
, (40)

which again implies that dE[M−WU ]
db

< 0, a contradiction.

Comparative statics with respect to γ As in the previous cases we start with the case where

R > W s. Towards a contradiction, assume that d(W s−R)
dγ

> 0. From equation (35), we find that

d(W s −R)

dγ
=
βFy(y

r)

1− βγ (W s −R) +
1

1− βγFy(yr)

(
−
∫
yr
λ(θ)(1− η)(M(y)−WU(y)dFy(y)− βc

)
−
∫
yr
βγλ(θ)

d(M(y)−WU(y))

dγ
dFy(y) (41)

From our premise it follows that

−
∫
yr
βγλ(θ)

d(M(y)−WU(y))

dγ
dFy(y) ≥ βFy(y

r)

1− βγ (R−W s)

+
1

1− βγFy(yr)

(∫
yr
λ(θ)(1− η)(M(y)−WU(y))dFy(y) + βc

)
> 0 (42)

Now, let us look at the implications for dE[M(y)−WU (y)]
dγ

. We can rewrite (31), bringing tomorrow’s

continuation values to the LHS as

(1− β)Ey[M(y)−WU(y)] =

∫
yr
y − b− βλ(θ(y))(1− η)(M(y)−WU(y))dFy(y)

+

∫ yr

ys
y − b+ β(W s −R))dFy(y)

+

∫ ys

y − b+ β(W s −R)− β(M(y)−W s)dFy(y) (43)
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Taking derivatives with respect to γ, we find

(1− β)
dEy[M(y)−WU(y)]

dγ
=− β

∫
yr
λ(θ(y))

d(M(y)−WU(y))

dγ
dFy(y)

+

∫ yr

ys
β
d(W s −R)

dγ
)dFy(y)

+

∫ ys

β
d(W s −R)

dγ
− βd(M(y)−W s)

dγ
dFy(y) (44)

> 0

For y < ys it holds that

d(M(y)−W s)

dγ
=(1− γ)

dE[M(y)−WU(y)]

dγ
+ γβ

d(W s −R)

dγ

+ (y − b+ β(W s −R)− E[M(y)−WU(y)]). (45)

The first two terms on the RHS are positive, the last term on the RHS negative. In the RHS of (44)

all terms are positive, except for Fy(ys)(1−γ)dE[M(y)−WU (y)]
dγ

and Fy(ys)γβ
d(W s−R)

dγ
associated with

d(M(y)−W s)
dγ

. However, one can see that−Fy(ys)γβ d(W s−R)
dγ

is more than offset by β d(W s−R)
dγ

on the

same line, while we can bring Fy(ys)(1− γ)dE[M(y)−WU (y)]
dγ

to the LHS, to find that dE[M(y)−WU (y)]
dγ

is premultiplied by (1− Fy(ys)βγ) > 0. Hence, it follows that dE[M(y)−WU (y)]
dγ

> 0.

From M(y)−WU(y) = (1− γ)E[M(y)−WU(y)] + γ(y − b+ β(1− λ(θ)(1− η))(M(y)−
WU(y)), it follows that for y > yr

βγλ(θ)
dM(y)−WU(y)

dγ
=

βγλ(θ)

1− βγ(1− λ(θ))

((
y − b+ β(1− λ(θ)(1− η))(M(y)−WU(y))

− E[M(y)−WU(y)]
)

+ (1− γ)
dE[M(y)−WU(y)]

dγ

(46)

Integrating this term over all y > yr, we have

βγ

∫
yr
λ(θ(y))

d(M(y)−WU (y))

dγ
dFy(y) ≥

βγλ(θ(yr))

1− βγ + βγλ(θ(yr))

(∫
yr
(1− γ)dE[M(y)−WU (y)]

dγ
dFy(y)

+
1

γ

∫
yr
M(y)−WU (y)− E[M(y)−WU (y)]dFy(y)

)
> 0,

(47)

where the last inequality follows from the fact that M(y) − WU(y) − E[M(y) − WU(y)] is

increasing in y, and βλ(θ(y))
1−βγ+βγλ(θ(y))

similarly is increasing in y. Then
∫
yr
M(y)−WU(y)−E[M(y)−

WU(y)]dFy(y) is larger than zero. The LHS of (47) is positive, but this contradicts our premise in

(42).
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For the case that W s > R, we can derive directly that

(1− β)
dEy[M(y)−WU(y)]

dγ
=− β

∫
yr
λ(θ(y))

d(M(y)−WU(y))

dγ
dFy(y); (48)

with this in hand, we can derive from (46) that

−(1− β)dEy[M(y)−WU (y)]

dγ
=

∫
ys

(
βγλ(θ)

1− βγ(1− λ(θ))

((
y − b+ β(1− λ(θ)(1− η))(M(y)−WU (y))

− E[M(y)−WU (y)]
)
+ (1− γ)dE[M(y)−WU (y)]

dγ

))
dFy(y).

(49)

Isolating dE[M(y)−WU (y)]
dγ

on the LHS, we find

dEy[M(y)−WU(y)]

dγ

(
(1− β) +

Fy(y
s)βγλ(θ)(1− γ)

1− βγ + βγλ(θ)

)
=

−
∫
ys

(
βγλ(θ)

1− βγ(1− λ(θ))

(
y − b+ β(1− λ(θ)(1− η))(M(y)−WU(y))

− E[M(y)−WU(y)]
))
dFy(y) < 0. (50)

From (50), it follows that dEy [M(y)−WU (y)]

dγ
< 0, and therefore that, from (24) - for the case in which

W s > R- , the above equation, and equation (48), W s −R is decreasing in γ:

d(W s −R)

dγ
=
d(W s − E[WU ])

dγ
= − 1

1− β

∫
ys
γλ
d(M(y)−WU(y))

dγ
< 0. (51)

This complete the proof for Lemma B.1.

Proof of Lemma 3 Using the same setting as in Lemma B.1 we now introduce human capital x,

assuming it enters in a multiplicative way in the production function. Keeping the same notation

as in Lemma B.1, let p = 1 such that y = y(z) and total output is given by yx. As before, let

Fy denote the cdf of y. Normalize (without a loss of generality, for the results we are deriving

here) x = 1. If we have an incremental improvement in x that is occupational specific, the value

of sampling will stay constant, at R = Ey[WU(1, y)] − c, where now we denote WU(x, y) by the

productivity component that is enjoyed by every worker on the same labor market. However, the

value of W s(x) increases, since W s(x) = (1−γ)E[WU(x, y)] + γ(b+βmax{R,W s(x)} implies

that W s(x) is increasing in E[WU(x, y)].

Suppose that R > W s(x). The value of unemployment for the cases in which y ≥ yr(x) and

yr > y ≥ ys is given by

WU(x, y) = (1− γ)Ey[WU(x, y)] + γ(b+ βλ(θ)(1− η)(M(x, y)−WU(x, y)) + βWU(x, y))

W s(x) = (1− γ)Ey[WU(x, y)] + γ(b+ βR).
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When comparing the expected value of separating with the expected value of sampling (and hence,

a reset to x = 1), we see that the difference W s(x)− Ey[WU(1, y)] is given by

(W s(x)− Ey[WU(1, y)]) = (1− γ)(Ey[WU(x, y)] + C,

where C denotes those terms that do not depends on x. As a result, d(W s(x)−Ey [WU (1,y)])

dx
= (1 −

γ)dEy [WU (x,y)]

dx
. Rewriting E[WU(x, y)], usingWU(x, y) = (1−γ)E[WU(x, y)]+γ(b+β

(
λ(θ)(1−

η)(M(x, y)−WU(x, y))
)

+ βWU(x, y) we find

E[WU (x, y)] = (1− Fy(yr(x))(b+ βR) +

∫
yr

[
b+ βλ(θ)(M(x, y)−WU (x, y)) + βWU (x, y)

]
dFy(y),

from which it follows that

E[WU (x, y)]
(
1− β(1− γ)

1−βγ (1−Fy(yr(x)))
)
= (52)

Fy(y
r(x)(b+βR)+

βγ

1−βγ b(1−Fy(y
r(x))+

β

1−βγ

∫
yr(x)

[
λ(θ(x, y))(1−η)(M(x, y)−WU (x, y))

]
dFy(y).

In turn, (using the envelope condition, which implies that the term premultiplying dyr(x)/dx again

equals zero), this means

dEy[WU(x, y)]

dx
= (53)

β

(1− βγ)− β(1− γ)(1− Fy(yr(x)))

d

dx

(∫
yr

[
λ(θ(x, y))(1− η)(M(x, y)−WU(x, y))

]
dFy(y)

)
.

Let us now look at the behavior of the expected surplus, from

Ey[M(x, y)−WU (x, y)] =

∫ ȳ

y
(yx− b)dFy(y) +

∫
yr(x)

βλ(θ(x, y))(1− η)(M(x, y)−WU (x, y))dFy(y)

+

∫ yr(x)

ys(x)
β(M(x, y)−W s(x))dFy(y) + β

∫ yr(x)

(W s(x)−R)dFy(y).

(54)

The surplus for labor markets with y ≥ yr(x) and yr > y ≥ ys, respectively, behaves as

d(M(x, y)−WU(x, y))

dx
= (1− γ)

dEy[M(x, y)−WU(x, y)]

dx
+ (1− γ)(y − E[y]) + γy

+ βγ(1− λ(θ(x, y)))
d(M(x, y)−WU(x, y))

dx
(55)

d(M(x, y)−W s(x))

dx
= (1− γ)

dEy[M(x, y)−WU(x, y)]

dx
+ (1− γ)(y − E[y]) + γy

+ βγ
d(M(x, y)−W s(x))

dx
+ βγ

d(W s(x)−R)

dx
. (56)
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The derivative of
∫
yr
βλ(θ(x, y))(1− η)(M(x, y)−WU(x, y))dFy(y) wrt to x then equals

∫
yr

(
βλ(θ(x, y))(1− γ)

1− βγ(1− λ(θ(x, y)))

(
dEy[M(x, y)−WU (x, y)]

dx
+ y − E[y]

)
+

βλ(θ(x, y))γ

1− βγ(1− λ(θ(x, y)))y
)
dFy(y),

(57)

where we note that
∫
yr

βλ(θ(x,y))(1−γ)
1−βγ(1−λ(θ(x,y)))

dFy(y) ≤ βλ(θ(x,ȳ))(1−γ)
1−βγ(1−λ(x,ȳ))

(1− Fy(yr)) < 1− Fy(yr).
We now consider the behavior of the second line in (54). The derivative of β(W s(x) − R) is

given by

β(1− γ)
1− β + β(1− γ)Fy(yr(x))

× (58)∫
yr

(
βλ(θ(x, y))(1− γ)

1− βγ(1− λ(θ(x, y)))

(
dEy[M(x, y)−WU (x, y)]

dx
+ y − E[y]

)
+

βλ(θ(x, y))γ

1− βγ(1− λ(θ))y
)
dFy(y).

The derivative of β(M(x, y)−WU(x, y)) + β(W s(x)−R) with respect to x is then

β(1− γ)
1− βγ

(
dEy[M(x, y)−WU (x, y)]

dx
+ y − E[y]

)
+

βγ

1− βγ y +
(

1

1− βγ
β(1− γ)

1− β + β(1− γ)Fy(yr)
·∫

yr

(
βλ(θ(x, y))(1− γ)

1− βγ(1− λ(θ(x, y)))

(
dEy[M(x, y)−WU (x, y)]

dx
+ y − E[y]

)
+

βλ(θ(x, y))γ

1− βγ(1− λ(θ(x, y)))y
)
dFy(y)

)
.

(59)

We want to make sure that all terms premultiplying dEy [M(x,y)−WU (x,y)]

dx
+ y − E[y] on the RHS

do not add up to a number larger than 1. First, note that the terms premultiplying the derivative

of the expected surplus in (59) are larger than in (58). Hence if we can show that by replacing

the premultiplication term in (58) with the corresponding term in (59), we obtain that the entire

term premultiplying the derivative of the expected surplus on the RHS is less than one, we have

established this step of the proof. The contribution of these premultiplication terms in the second

term on the RHS of (54) is smaller than β(1− γ)(1− Fy(yr(x))). Hence, if(
β
d(M(x, y)−WU(x, y))

dx
+ β

d(M(x, y)−WU(x, y))

dx

)
Fy(y

r(x)) < 1− β(1− γ)(1− Fy(yr(x)))

(60)

we have established the desired property. Starting from collecting the terms premultiplying the

derivative of the expected surplus, dEy [M(x,y)−WU (x,y)]

dx
+ y − E[y], and substituting these into the

LHS of (60), we can develop

Fy(y
r)

(
β(1− γ)(1− β + β(1− γ)Fy(y

r(x)))

(1− γβ)(1− β + β(1− γ)Fy(yr(x)))
+

β(1− γ)(β(1− γ)(1− Fy(yr(x))))

(1− γβ)(1− β + β(1− γ)Fy(yr(x)))

)
=

β(1− γ)(1− β + β(1− γ))

(1− γβ)(1− β + β(1− γ)Fy(yr(x)))
Fy(y

r(x)) (61)

The RHS of (60) can be rewritten as 1 − β + βγ + β(1 − γ)Fy(y
r(x)). We will show that βγ +
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β(1−γ)Fy(y
r(x)) is larger than (61), from which the desired result follows (as the remaining term,

1− β, is larger than zero, and therefore means that the desired inequality is additionally slack).

βγ >
βγ(β(1− γ))

(
1− β + β(1− γ)

)
Fy(y

r(x))

(1− γβ)(1− β + β(1− γ)Fy(yr(x)))
(62)

β(1− γ)Fy(y
r(x)) >

β(1− γ)(1− γβ)
(
1− β + β(1− γ)

)
Fy(y

r(x))

(1− γβ)(1− β + βFy(yr(x)))
(63)

Adding up (62) and (63), we find that the RHS equals precisely the term in (61).

Bringing all terms involving dEy [M(x,y)−WU (x,y)]

dx
+y−E[y], it is now straightforward to see that

the remaining terms on the RHS premultiplying y, are positive. (Integrating terms y−E[y], will also

yield a positive term.) Hence, dEy [M(x,y)−WU (x,y)]

dx
> 0. It follows from (55) that d(M(x,y)−WU (x,y))

dx
>

0, and therefore, by (53), dEy [WU (x,y)]

dx
> 0, and subsequently, d(W s(x)−R)

dx
> 0.

Consider next the case that W s(x) > R. In this case again d(R−W s(x))
dx

= (1 − γ)dEy [WU (x,y)]

dx
.

In this case

(1− β)
dEy[WU(x, y)]

dx
=

∫
ys(x)

βλ(θ(x, y))
d(M(x, y)−WU(x, y))

dx
dFy(y) (64)

The surplus M(x, y)−WU(x, y) responds to changes in x is given by

d(M(x, y)−WU(x, y))

dx
= (1− γ)

dEy[M(x, y)−WU(x, y)]

dx
+ (1− γ)(Ey[y]− y)

+ γ(y + β(1− λ(x, y))

(
d(M(x, y)−WU(x, y))

dx

)
, (65)

while the expected surplus evolves according to

dEy[M(x, y)−WU(x, y)]

dx
=

∫
ys(x)

y + β(1− λ(x, y))
d(M(x, y)−WU(x, y))

dx
, (66)

Substituting (65) into (66), it follows that dEy [M(x,y)−WU (x,y)]

dx
> 0, from which in turn it follows

that (64) is also positive.

Finally, let us look at the implications for the cutoff in terms of productivities ys(x), yr(x).

Consider first the case that yr(x) > ys(x). The reservation quality for separation and reallocation

satisfy implicitly, respectively

M(x, ys(x))−W s(x) = 0 (67)

λ(θ(x, yr(x)))(1− η)(M(x, yr(x))−WU(x, yr(x))) + (W s(x)−R) = 0. (68)

We can see this defines yr(x), ys(x) as implicit functions of M(x, y) −W s(x) and W s(x) − R.
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The first term is given by

M(x, ys(x))−W s(x) = xys(x)− b+ β(1− γ)Ey[max{M(x, y)−WU(x, y),W s(x)−R}]
+ βγ(W s(x)−R) (69)

M(x, yr(x))−W s(x) = xyr(x)− b+ β(1− γ)Ey[max{M(x, y)−WU(x, y),W s −R}]
+ βγ(1− λ(θ(x, yr(x))(1− η)(M(x, yr(x))−W s(x)). (70)

Taking derivatives with respect to x (taking into account the implicit relationship ys(x), yr(x)), we
find

ys(x) + β(1− γ) d
dx

(
Ey[max{M(x, y)−WU (x, y),W s(x)−R}]

)
+ βγ

d(W s(x)−R)
dx

+ x
dys(x)

dx
= 0

(71)

λ(θ)

1− βγ(1− λ(θ))

(
yr(x) + β(1− γ) d

dx

(
Ey[max{M(x, y)−WU (x, y),W s(x)−R}]

)
+ x

dyr(x)

dx

)
+
d(W s(x)−R)

dx
= 0 (72)

Since d(W s(x)−R)
dx

> 0, this implies that

ys(x) + x
dys(x)

dx
≥ yr(x) + x

dyr(x)

dx
+

1− βγ
λ(θ)

d(W s(x)−R)

dx
, (73)

which implies that, evaluated at x = 1,

dys(x)

dx
− dyr(x)

dx
> yr(x)− ys(x).

This means that for yr > ys, more occupational human capital brings closer the two cutoffs. For

yr < ys, it holds in this simplified setting that yr jumps to the corner, yr = y, while ys is lowered

for an increase in x. This completes the proof of Lemma 3.

Proof of Lemma 4 To proof this lemma we use the equations (19) - (23), where we have assumed

no human capital accumulation. Further, to simplify we let γ = 1 such that the z-productivity does

not change. We also focus on the case in which zr > zs and without loss of generality let δ = 0.

In this environment, note that at labor markets whose z-productivity equals zr (the reservation

productivity for the reallocation decision) it holds that the value of reallocation equals the value of

staying and searching in the current occupation,∫ z̄

z

WU(p, z)dF (z)− c = WU(p, zr) + λ(θ(p, zr))(WE(p, zr)−WU(p, zr)). (74)

In a stationary environment, described by p, z, the value of unemployment for workers with z < zr

is given by WU(p, z) = WU(p, zr). This follows since over this range of z’s,
∫ z̄
z
WU(p, z)dF (z)−

c ≥ WU(p, z) + S(p, z) and unemployed workers prefer to reallocate the period after arrival. On
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the other hand, the value of unemployment for workers with z ≥ zr is given by

WU(p, z) =
b+ βλ(θ(p, z))(WE(p, z)−WU(p, z))

1− β .

Equation (74) can then be expressed as

β

∫ z̄

z

(
max{λ(θ(p, z))(WE(p, z)−WU(p, z)), λ(θ(p, zr))(WE(p, zr)−WU(p, zr))}

)
dF (z)

= λ(θ(p, zr))(WE(p, zr)−WU(p, zr)) + c(1− β).

Using ηλ(θ)(WE(p, z)−WU(p, z)) = (1−η)λ(θ)J(p, z) = (1−η)θ(p, z)k, we have thatR(p) =

WU(p, zr(p)) can be expressed as

(1− η)k

η

(
β

∫ z̄

z

max{θ(p, z), θ(p, zr)}dF (z)

)
− c(1− β) =

(1− η)k

η
θ(p, zr), (75)

where the LHS describes the net benefit of reallocating to a different occupation and the RHS

the benefit of staying in the same occupation. With this derivation we now analyse under what

conditions dzr/dp > 0 and compare it to the competitive case. The reservation z-productivity for

the competitive and search case, satisfies, respectively,

b+ β

∫ z̄

z

max{y(p, z), y(p, zrc )}
1− β dF (z)− y(p, zrc )

1− β − cc = 0

(1− η)k

η

(
β

∫ z̄

z

max{θ(p, z), θ(p, zr)}
1− β dF (z)− θ(p, zr)

1− β

)
− cs = 0.

With the Pissarides wage equation in hand,47

w(p, z) = (1− η)y(p, z) + ηb+ β(1− η)θ(p, z)k. (76)

Using the free-entry condition and the Cobb-Douglas specification for the matching function we

have that θ then solves

θ(p, z)η−1η(y(p, z)− b)− β(1− η)θ(p, z)k

1− β − k ≡ E(θ; p, z) = 0,

where differentiation implies that θ is increasing in both p and z,

dθ(p, z)

dj
=

θ(p, z)

w(p, z)− b
dyj(p, z)

dj
, for j = p, z.

To make precise the comparison with an economy in which occupations are segmented in many

competitive labor markets, consider the same environment as above, with the exception that work-

ers can match instantly with firms. As before, we assume free entry (without vacancy costs), and

constant returns to scale production. This implies that every worker will earn his marginal product

47A formal derivation of this equation can be found in the Supplementary Appendix.
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y(p, z). Importantly, we keep the reallocation frictions the same: workers who reallocate have to

forgo production for a period, and arrive at a random labor market in a different occupation at the

end of the period. In the simple case of permanent productivity (p, z), the value of being in a labor

market with z, conditional on y(p, z) > b, is W c(p, z) = y(p, z)/(1 − β), where to simplify we

have not consider job destruction shocks.

Block recursiveness, given the free entry condition, is preserved, so again, decisions are only

functions of (p, z). Unemployed workers optimally choose to reallocate, and the optimal policy is

a reservation quality, zrc , characterised by the following equation

β

∫
max{y(p, z), y(p, zrc )}dF (z) + (b− c)(1− β) = y(p, zrc ).

The LHS describes the net benefit of switching occupations, while the RHS the value of of staying

employed earning y in the (reservation) labor market.

Using these equations, the response of the reservation z-productivity, for the competitive, and

the frictional case, is then given by

dzrc
dp

=
βF (zrc )

yp(p,zrc )

yz(p,zrc )
+ β

∫ z̄
zrc

yp(p,z)

yz(p,zrc )
dF (z)− yp(p,zrc )

yz(p,zrc )

1− βF (zrc )

dzr

dp
=
βF (zr)yp(p,zr)

yz(p,zr)
+ β

∫ z̄
zr

θ(p,z)(w(p,zr)−b)
θ(p,zr)(w(p,z)−b)

yp(p,z)

yz(p,zr)
dF (z)− yp(p,zr)

yz(p,zr)

1− βF (zr)

These are the expression shown in Lemma 4, where note that θ(p,z)
(w(p,z)−b)

(1−η)k
η

= λ(θ(p,z))
1−β+βλ(θ(p,z))

by

virtue of (77) with δ = 0. This completes the proof of Lemma 4.

With this result at hand we now show two implications. First we show that search frictions

adds a procyclical force to reallocations. Choosing cc, cs appropriately such that zrc = zr, the

above expressions imply that dzr

dp
> dzrc

dp
if θ(p,z)

w(p,z)−b >
θ(p,zr)

w(p,zr)−b , ∀ z > zr. Hence we now need to

show that θ(p,z)
w(p,z)−b is increasing in z.

d
(

θ(p,z)
w(p,z)−b

)
dz

=
θyz(p, z)

(w(p, z)− b)2
− θ

(
(1− η) + (1− η)β θ

w(p,z)−bk

(w(p, z)− b)2

)
yz(p, z),

which has the same sign as η − (1− η)βk θ
w(p,z)−b and the same sign as

η(1− η)(y(p, z)− b) + η(1− η)βθk − (1− η)βθk

= (1− η)(η(y(p, z)− b)− (1− η)βθk).

But η(y(p, z)− b)− (1− η)βθk = y(p, z)−w(p, z) > 0 and have established that search frictions

within labor markets make reallocation more procyclical relative to the competitive benchmark,

given the same F (z) and the same initial reservation productivity zr = zrc .

Second, we show that impact of the production function on the procyclicality of reallocation.

Here we want to show that with search frictions, if the production function is modular or supermod-
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ular (i.e. ypz ≥ 0), there exists a c ≥ 0 under which reallocation is procyclical. With competitive

markets, if the production function is modular, reallocation is countercyclical, for any β < 1 and

c ≥ 0.

Note that modularity implies that yp(p, z) = yp(p, z̃), ∀z > z̃; while supermodularity implies

yp(p, z) ≥ yp(p, z̃), ∀z > z̃. Hence modularity implies

dzrc
dp

=
1

1− βF (zrc )

yp(p, z
r
c )

yz(p, zrc )

(
βF (zrc ) + β

∫ z̄

zrc

yp(p, z)

yp(p, zrc )
dF (z)− 1

)
< 0, ∀ β < 1.

In the case with frictions,

dzr

dp
=

1

1− βF (zr)

yp(p, z
r)

yz(p, zr)

(
βF (zr) + β

∫ z̄

zr

θ(p, z)(w(p, zr)− b)
θ(p, zr)(w(p, z)− b)

yp(p, z)

yp(p, zr)
dF (z)− 1

)
.

If we can show that the integral becomes large enough, for c large enough, to dominate the other

terms, we have established the claim. First note that yp(p,z)

yp(p,zr)
is weakly larger than 1, for z > zr by

the (super)modularity of the production function. Next consider the term θ(p,z)(w(p,zr)−b)
θ(p,zr)(w(p,z)−b) . Note that

lim
z↓y−1(b;p)

θ(p, z)

w(p, z)− b =
λ(θ(p, z))

1− β + βλ(θ(p, z))
= 0,

because θ(p, z) ↓ 0, as y(p, zr) ↓ b. Hence, fixing a z such that y(p, z) > b, θ(p,z)(w(p,zr)−b)
θ(p,zr)(w(p,z)−b) →

∞, as y(p, zr) ↓ b. Since this holds for any z over which is integrated, the integral term becomes

unboundedly large, making dzr/dp strictly positive if reservation zr is low enough. Since the in-

tegral rises continuously but slower in zr than the also continuous term θ(p,zr)
1−β , it can be readily be

established that zr depends continuously on c, and strictly negatively so as long as y(p, zr) > b and

F (z) has full support. Moreover, for some c̄ large enough, y(p, zr) = b. Hence, as c ↑ zr, dzr
dp

> 0.
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Appendix C
In this appendix we present evidence that motivates our focus on gross occupational mobility

through unemployment. We also relate our findings to the literature on occupational mobility.

A Gross Versus Net Occupational Mobility
Here we present evidence suggesting that occupational-wide shocks do not seem to be the

main driver behind gross occupational mobility of the unemployed or fluctuations in aggregate

unemployment.

This evidence is based on comparing net mobility flows across occupations (i.e. the mobility

generated as some occupations expand and others contract) with gross mobility flows. We find

that gross occupational flows are at least 9 times larger than net flows, in the median. To measure

the relative size of gross mobility flows we use Mo = min{Io,Oo}
|Io−Oo| , where Io denotes the inflow of

workers into an occupation o and Oo the outflow from that occupation. Our data can be divided

into three different sets of panels each sharing a coming occupational classification (see the Sup-

plementary Appendix for details). For each of the these sets, we rank each occupation by the size

of their Mo and compute the median value. The number reported above is the average of these

median values. This finding is consistent with Kambourov and Manovskii (2008). The measured

difference between gross and net mobility implies that if an occupation decreases its size by one

worker (through mobility involving an unemployment spell), it typically does so by losing 10 and

gaining back 9 workers. This suggests that idiosyncratic rather than occupation-wide conditions

are driving most of the occupational mobility of the unemployed.
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When considering the cyclical behavior of occupational mobility of the unemployed, we find

(over our sample period) that recessions are times where job separations are going up in all oc-

cupations, and job finding rates are going down in all occupations. This suggests that cyclical

patterns in net mobility are not driving cyclical patterns in gross mobility. Concretely, we find that

the occupational composition of the employment-to-unemployment (EU) and unemployment-to-

employment (UE) flows does not appear to vary substantially over the business cycle. Figures 10

to 13 present this evidence using the SIPP data, after applying David Dorn’s crosswalk procedure

to homogenize the different occupational classifications we use (see Dorn, 2009, and Autor and

Dorn, 2013). Figure 10 shows the the share of each major occupation (from which the worker has

separated) in the total EU flow over time. Figure 11 shows the same series but in a cumulative way,

such that the difference between each two consecutive series gives the evolution of the share of the

corresponding major occupation’s EU flows in the aggregate EU flow. Likewise for unemployment

outflows, Figure 12 shows the evolution of the proportion of each major (hiring) occupation’s UE

flow in the aggregate UE flow. Figure 13 again shows cumulatively the same series, such that the

overall proportions add up to 1.

Figure 10 to 13 imply a number of interesting observations. They show that there is hetero-

geneity in terms of the relative size of EU and UE flows flows across occupations. This reflects in

part that some occupations are bigger than others. We also observe an interesting time trend in the

EU and UE flows, reflecting the long run changes in the relative size of these occupations. As we

argued in the main text (see footnote 11), our model can be extended to incorporate these long run

changes in occupational size by changing the occupational sampling distribution without affecting

any of our results.
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Crucially for our paper, these figures imply that there are no substantial differences across

occupations in the cyclical variation of EU and UE flows. In particular, we generally do not observe

that a subset of occupations increase their relative importance substantially in the aggregate EU

flow, during the three recession covered in our sample. Likewise, we do not observe that a subset

of occupations increase their relative importance in the aggregate UE flows through the period

covered. Hence, this evidence shows that although EU flows increase in recession, the cyclical

pattern of EU flows is not driven by particular occupations. In turn, this suggests that shocks to

major occupational groups and hence net mobility of unemployed workers across occupations, do

not play an important role in explaining the cyclical movements of unemployment.
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An exception is the construction and extractive occupation category, which between 2008 and

mid-2009 showed a larger increase in its EU flow, reflected in the widening gap in Figure 11.

This episode seems isolated in terms of the period and the set of occupations studied. But, more

importantly, it involves only a 5 percentage points increase in its share in the unemployment in-

flows, which means its impact on the overall unemployment rate is limited. Other patterns, if any,

are of an even smaller magnitude. Our findings echo those of Kroft et al. (2013), who show that

the rise in long-term unemployment during and after the Great Recession is not driven by shifts

in occupational composition (see Figure A5 in the Appendix of their paper). It is also consistent

with Shimer (2007), who argues that occupational mobility at business cycle frequencies is pri-

marily for idiosyncratic reasons. Dvorkin (2013) shows that net mobility across industries cannot

account for the majority of the fluctuations in aggregate unemployment. Likewise, Jovanovic and

Moffitt (1990) and Auray et al. (2014) show that workers’ mobility decisions across industries not
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primarily driven by industry-wide shocks.
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B Occupational Mobility Through Unemployment
The focus of this paper is on aggregate and individual unemployment outcomes and the role

that occupational mobility can have in explaining these unemployment outcomes. This implies that

the relevant data is one that gives direct information about the occupational mobility of the unem-

ployed and not about overall occupational mobility. Interestingly, compared to employed workers,

there is little documentation of the characteristics and impact on aggregate fluctuations of unem-

ployed workers’ occupational mobility. In the case of employed workers, for example, Moscarini

and Thomsson (2007), Moscarini and Vella (2008) and Kambourov and Manovskii (2008), docu-

ment the extent of occupational mobility of employed workers and show that it is highly correlated

with job-to-job transitions. Further, the nature of reallocation between employed and unemployed

workers also seems to differ. While occupational mobility among the employed typically reflects

career progression, this is not the case among those workers that lost their jobs and became un-

employed (see Longhi and Taylor, 2011). Finally, we also think it is important to first understand

the extent to which unemployed workers’ decisions to stay or reallocate affect aggregate unem-

ployment fluctuations, as this can inform work that attempts measuring the impact of mismatch

unemployment (see Şahin, et al., 2012 and Herz and Van Rens, 2011).

In terms of our theoretical framework, the z-productivity, as we model it, can be thought of cap-

turing the component of the worker’s present value of currently being employed in his occupation

that is orthogonal to aggregate productivity. We consider the worker’s value of employment and
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unemployment in his occupation intrinsically linked, and hence z also captures the present value

of unemployment component orthogonal to aggregate productivity. This expected value can incor-

porate as well the expected value of any future job-to-job transition (though not entirely perfectly),

especially for those hires out of unemployment. Overall, the paper is focussed on the flows into and

out of unemployment, the resulting unemployment distribution of durations, and the occupational

mobility of the unemployed, over the business cycle. What is of first-order in what we are able to

capture is (1) the causes of the inflow into unemployment – having a low output and, in general,

the loss of any surplus of being employed in one’s occupation, (2) the causes of reallocation of

the unemployed – having a nonviable productivity in one’s occupation, that could be remedied by

moving to another occupation, and (3) the causes of outflows into employment – having a viable

productivity in one’s current occupation. We believe that the z-productivity process captures the

idiosyncratic (i.e. non-aggregate) component of these decisions very well in a parsimonious way,

without the need to model explicitly the details of what happens during employment spells.

In Table 1, in the main text, we show there is a large degree of occupational change among

unemployed workers. In earlier versions of this papers, we found that is shared across gender, and

across education levels. We further investigate whether this result is driven by mobility to or from a

few occupational categories. To do so, we compute transitions matrices for each of the three occu-

pation classifications used during the entire period we study. These matrices are reported in Tables

A.2 to A.4, in the Supplementary Appendix. On their diagonal, they show that, although there

is some heterogeneity across major occupations on the probability of becoming an occupational

mover/stayer, there is no subset of occupational groups that drives the extent of occupational mo-

bility we observe at an aggregate level. Workers in all occupational groups present large degrees of

mobility. Excluding executive, administrative and managerial, mobility statistics are not affected

much. There are generally significant bidirectional flows (i.e. flows from occupation i to j com-

pared to flows from j to i), indeed consistent with, as far as the transitions of the unemployed are

concerned, an apparent absence of a clear career progression path through occupational mobility.

We do observe that unemployed workers that were previously employed in a given major occu-

pational group tend to move with similar propensities to around five to seven different occupational

groups, depending on the group of departure, years considered and classification used. This gen-

erates a seeming pattern of clustering (top left and bottom right) in the transition matrices, which

appears to relate to educational differences among workers, with the lower-educated working in the

more manual occupations at the bottom right. However, the overall mobility rate in unemployment

across educational groups, or within these apparent clusters, appears to be remarkably similar.

This applies even to the variation of the occupational mobility rate with age across the different

education groups. As a result, this form of clustering by itself is not inconsistent with our model.

(By scaling costs and benefits we can allow a representative worker construct along the cluster-

dimension.) As mentioned in footnote 11, we can capture the movements of the transition matrix

perfectly in our model by adjusting the sampling distribution across occupations accordingly, with-
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out changing our results at all. For simplicity we assume a uniform sampling distribution across

occupations.

Our focus has also been on the mobility of workers across occupations rather than industries.

Using the SIPP we find that the main features that characterise workers’ occupational mobility are

very similar to those found when analysing their mobility across aggregate industrial categories.

Indeed, the correlation between occupational and industrial mobility is quite high. However, since

we are interested in understanding the role occupational productivity plays in shaping workers’ re-

allocation decisions, our focus on occupations is motivated by Kambourov and Manovskii (2009a)

as mentioned in the Introduction. Further, Kambourov and Manovskii (2009b) also show that in

the US the returns to occupational experience are far more important than returns to industry ex-

perience (see also Williams, 2009, for evidence based on UK data). Finally, we consider ‘major’

categories to make it clear that occupational reallocation involves the loss of human capital.

C Relationship with the Occupational Mobility Literature
In the context of (our) existing knowledge, the mobility patterns reported in Section 2 are in line

with and complement those documented in Murphy and Topel (1987) for mobility across industries

in the US using the CPS for the period 1970-1985. They show that the incidence of unemployment

is significantly higher for those workers who change industries and that mobility across indus-

tries is procyclical for these workers. Our results are also in line with Carrillo-Tudela, Hobijn and

Visschers (2014) who document the procyclicality of the proportion of occupational movers out

of unemployment in hires using the CPS for the period 1986-2011. There we find that on average

48.2% of all those unemployed workers who became employed at any given month changed their

major occupations. When constructing a similar measure for the SIPP we obtain 41.7%. These

comparisons are evidence that the extent of occupational reallocation through unemployed we find

in the SIPP is also present in the CPS.

Our evidence is also consistent with that of Kambourov and Manovskii (2009b), using the

PSID, Xiong (2008), using the SIPP, and Longhi and Taylor (2011), using the Labour Force Sur-

vey for the UK, who find that the extent of occupational mobility through unemployment is high

(though their focus is not on behavior over the business cycle). Fujita and Moscarini (2012), using

the SIPP, have found that those worker that experienced unemployment after being permanently

separated from their previous jobs are much more likely to make an (3-digit) occupational change

than those that were on layoff and recalled within 3 months. They also find that the likelihood of

experiencing occupational change in this context increases with unemployment duration. Faber-

man and Kudlyak (2012) with data from an on-line job-search website, find that workers apply

more to vacancies outside their usual occupational field as their spell duration increases.
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Supplementary Appendix

A Occupational Mobility Data

A.1 Data Construction
The Survey of Income and Programme Participation (SIPP) is a longitudinal data set based

on a representative sample of the US civilian non-institutionalized population. It is divided into

multi-year panels. Each panel comprise a new sample of individuals and is subdivided into four

rotation groups. Individuals in a given rotation group are interviewed every four months such

that information for each rotation group is collected each month. At each interview individuals

are asked, among other things, about their employment status as well as their occupations and

industrial sectors during employment in the last four months.48

There are several advantages of using the SIPP to other data sets like the Current Population

Survey (CPS) or the Panel Study of Income Dynamics (PSID), which also have been used to

measure labor market flows and/or occupational and sectoral mobility. The SIPP’s longitudinal

dimension, high frequency interview schedule and explicit aim to collect information on worker

turnover allows us to construct reliable measures of occupational mobility and labor market flows.

Further, its panel dimension allows us, compared to the CPS, to follow workers over time and

construct uninterrupted spells of unemployment that started with an employment to unemployment

transitions and ended in a transition to employment. It’s panel dimension also allows us to analyse

these workers’ occupational mobility patterns conditional on unemployment duration and their

post occupational (in) mobility outcomes as outlined in Section 2.49

We consider the period 1986 - 2011. To cover this period we use the 1986-1988, 1990-1993,

1996, 2001, 2004 and 2008 panels. Although the SIPP started in 1984, our period of study reflects

two considerations. The first one is methodological. Since 1986 the US Census Bureau has been

using dependent interviewing in the SIPP’s survey design, which helps to reduce measurement

error problems. The second reason is that such a period allows us to study the behaviour of unem-

ployment, labor market flows between unemployment and employment and occupational mobility

during two recessions, the Great Moderation period and the Great Recession.

For the panels 1986-1988 and 1990-1993 we have used the Full Panel files as the basic data

sets, but appended the monthly weights obtained from the individual waves. We have used the Full

Panel files as the individual waves do not have clear indicators of the job identifier. Since the US

Census Bureau does not provide the Full Panel file for the 1989 data set, which was discontinued

and only three waves are available, we opted for not using this data set. This is at a minor cost as the

48See http://www.census.gov/sipp/ for a detailed description of the data set.
49See Mazumder (2007), Fujita, Nekarda and Ramey (2007) and Nagypal (2008) for recent studies that document

labor market flows and Xiong (2008) and Moscarini and Fujita (2012) for studies that document occupational mobility
using the SIPP. To our knowledge there is no study that uses the SIPP to jointly study labor market flow, occupational
mobility and its cyclical patterns.
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1988 panel covers up to September 1989 and the 1990 panel collects data as from October 1989.

For the panels 1996, 2001, 2004, 2008 there are no Full Panel files, but one can easily construct the

full panel by appending the individual wave information using the individual identifier “lgtkey”.

In this case, the job identifier information is clearly specified.

Two important differences between the post and pre-1996 panels are worth noting. The pre-

1996 panels have an overlapping structure and a smaller sample size. Starting with the 1996 panel

the sample size of each panel doubled in size and the overlapping structure was dropped. To over-

come these differences and make the sample sizes somehow comparable, we constructed our pre-

1996 indicators by obtaining the average value of the indicators obtained from each of the over-

lapping panels. On the other hand, the SIPP’s sample design implies that in all panels the first and

last three months have less than 4 rotation groups and hence a smaller sample size. For this reason

we only consider months that have information for all 4 rotation groups. The data also shows the

presence of seams effects between waves. To reduce the seam bias we average the value of the

indicator over the four months that involve the seam. Our indicators are based on the employment

status variable at the second week of each month, “wesr2” for the 1986-1988 and 1990-1993 pan-

els and “rwkesr2” for the 1996-2008 panels. The choice of the second week is to approximate the

CPS reference week when possible.50

For the 1986-2008 panels, we consider all workers between 16 and 65 years of age who are

not in self-employment, government employment or in the armed forces. A worker is considered

employed if the individual was (1) with job/business - working, (2) with job/business - not on

layoff, absent without pay and (3) with job/business - on layoff, absent without pay. A worker is

considered unemployed if the individual was with (4) no job/business - looking for work or on

layoff. A worker is then considered out of the labor force (non-participant) if he/she was with (5)

no job/business - not looking for work and not on layoff. Under this classification we exclude those

workers that are still with a job but on layoff, miss those workers on layoff who were not recalled

and changed employers and include those workers that experienced a permanent separation and

where recall by their previous employers. Moscarini and Fujita (2012), using the SIPP for a similar

period, find that the latter two types of workers represent a small proportion of those workers

without a current job (on layoff or permanently separated).

The SIPP collects information on a maximum of two jobs an individual might hold simulta-

neously. For each of these jobs we have information on, among other things, hours worked, total

earnings, 3-digit occupation and 3-digit industry codes. If the individual did hold two jobs simul-

taneously, we consider the main job as the one in which the worker spent more hours. We break

a possible tie in hours by using total earnings. The job with the highest total earnings will then be

considered the main job. In most cases individuals report to work in one job at any given moment.

50See Fujita, et al. (2007) for a similar approach. We have also performed our analysis by constructing the labor
market status of a worker based on the employment status monthly recode variable for all panels and our results do
not change.
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In the vast majority of cases in which individuals report two jobs, the hours worked are sufficient

to identify the main job. Once the main job is identified, the worker is assigned the corresponding

two, three or four digit occupation.51

The SIPP uses the Standard Occupational Code (SOC). The 1986-1993 panels use the 1980

SOC classification, while the 1996 and 2001 panels use the 1990 SOC classifications. These two

classifications differ only slightly between them. The 2004 and 2008 panels use the 2000 SOC

classification, which differs more substantially from the previous classifications. Since we find

continuity in both the levels and cyclical patterns, we consider the full 1986-2011 period as our

benchmark. At each step, we calculate a separate set of statistics spanning the 1986-2001 panels for

robustness purposes, but have not find substantial differences, unless explicitly noted. We aggregate

the information on “broad” occupations (3-digit occupations) provided by the SIPP into “minor”

and “major” occupational categories.52

Using the derived labor market status indicators and main job indicators we measure occu-

pational mobility in two ways: (i) by comparing the reported occupation at re-employment with

the one performed immediately before the unemployment spell and (ii) by comparing the reported

occupation at re-employment with all those occupations the individual had performed in past jobs.

The results presented in the paper are based on the first method for two reasons. This distinction

only had a minor effect our results. In particular, for our repeat mobility statistics we find that the

proportion of repeat-unemployed workers who changed occupations in their initial spell is sensi-

tive to the definition of occupations held before the first occupational move in the data, ranging

from 46%-56%. A reason for this sensitivity is that we are purposefully very harsh in selecting

repeated spells of unemployment and the number of spells is somewhat small. Since we need to

assign the second spell to occupational move/stay, the spell needs to be complete; then, since short

spells are more likely to be stays, we require that at the beginning of the second spell, the worker

remains in sample for at least another year. This issue does not change much the proportion of

stayers in an unemployment spell following a spell with an occupational stay, and does not affect

overall mobility statistics.

For (time-averaged) statistics calculated over the full SIPP dataset (1986-2011) we want to

focus on the set of unemployment spells that we can assign the occupational mobility unambigu-

ously. For time series (cyclical patterns), we do not take into account occupations not immediately

preceding the unemployment spell, as the length of the available data history varies between the

start and end of a panel, and could create spurious patterns. Since the occupational data is collected

only when the worker is employed, this procedure is valid only for job changes (with an interven-

51For the 1990-1993 panels we correct the job identifier variable following the procedure suggested by Stinson
(2003).

52In any of these classifications we have not included the Armed Forces. The 1980 and 1990 classifications
can be found in http://www.census.gov/hhes/www/ioindex/pdfio/techpaper2000.pdf. The 2000 classification can be
found in http://www.bls.gov/soc/socguide.htm. Additional information about these classifications can be found at
http://www.census.gov/hhes/www/ioindex/faqs.html.
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ing unemployment spell) after the first observed employment spell. For these cases, we assume that

after an employment spell, the unemployed worker retains the occupation of the last job and stays

with it until he/she re-enters employment, were the worker might perform a new occupation. Under

this procedure we have allowed the unemployed worker to keep his/her occupation when he/she

undergoes an intervening spell of non-participation that leads back to unemployment. If this spell

of non-participation leads directly to employment, however, we do not count this change as it does

not involve an unemployment to employment transition. We also have allowed the worker to retain

his/her occupation if the employment spell is followed by a spell of non-participation that leads

into unemployment. In summary, the worker retains his/her occupation for transitions of the type:

E-U-E, E-U-NP-U-E, E-NP-U-E or combinations of these; and does not retain his/her occupation

for transitions of the type: E-NP-E, E-U-NP-E or combinations of these. For unemployment spells

that precede the first employment spell we have not imputed an occupation and left it as missing

to avoid over representing non-occupational movers in our sample.

We construct monthly time series for the unemployment rate, employment to unemployment

transition rate (job separation rate), unemployment to employment transition rate (job finding rate),

occupational mobility rates and the other measures described in the main text. Since there are

months for which the SIPP does not provide data and we do not take into account months with

less than 4 rotation groups, we have breaks in our time series. To cover the missing observations

we interpolate the series using the TRAMO (Time Series Regression with ARIMA Noise, Missing

Observations and Outliers) procedure developed by Gomez and Maravall (1999).53 The periods

with breaks are between 1989Q3-1989Q4, 1995Q4-1996Q1, 1999Q4-2000Q4, 2003Q4-2004Q1

and 2007Q4-2008Q2. To construct the occupational mobility rates, however, we left out the last 8

months of each panel. Not doing so would have biased downward this measure towards the end of

the panel, as occupational stayers have a higher outflow rate than occupational movers.

A.2 Occupational Mobility Measures
We construct our measure of occupational mobility as the proportion of the unemployment

outflow that starts employment in a different occupation than the one held before becoming unem-

ployed. In particular, we compute the number of workers that became unemployed sometime in the

past and found a job at time t in the future, Ujobt. We then computed the number of workers that

became unemployed sometime in the past and found a job at time t in a different occupation, Umt.

Our measure of occupational mobility is then the ratio Cmt = Umt/Ujobt, where we measure

it in the period in which the worker left unemployed. We use this measure to compute Table 1

and the repeat mobility statistics. We also computed the proportion of unemployed workers with

n months of unemployment duration that eventually will find a job in a different occupation. We

use this proportion to compute Figures 1 and 2 and Table 2. We also computed the outflow rate

of occupational movers, Pmt, which equals to UEmt/Umt, where UEmt+1 denotes the number

53See also Fujita, et al. (2007) for a similar procedure using the SIPP.
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of unemployed workers at month t that found a job in a different occupation the following month,

t+ 1. Pst is the analogous outflow rate for stayers. Further, we obtain ft = Ujobt/Ut.

Given the interpolated series, we seasonally adjust them using the Census Bureau X12 program.

The cyclical components of these series are obtained by de-trending the log of each of these series

based on quarterly averages and using the HP filter with smoothing parameter 1600. The same filter

is applied to the simulated series in the quantitative section of the paper. Our working series are

not adjusted for time aggregation error. The main reason for this choice is that when using the now

‘standard’ method to correct for time aggregation bias proposed by Shimer (2012) and extended

by Elsby et al. (2009) and Fujita and Ramey (2009), one can only get closed form solution for

the adjusted job finding and separation rates when only considering changes between two states

(for example, employment and unemployment). Correcting for time aggregation when taking into

account for occupational changes then becomes extremely cumbersome. Using Fujita and Ramey’s

(2009) extension, however, we find that time aggregation has little effect on the cyclical behaviour

of the aggregate job finding and separation rates in the SIPP.54 We use a similar procedures to

construct Table 2. In particular, in that table output refers to the seasonally adjusted series of non-

farm business output provided by the BLS. Output per worker is constructed using this output

measure and the seasonally adjusted employment series from the CPS obtained from the BLS

website, http://www.bls.gov. Both series are for the 1986-2011 period to keep in line with the

sample period we consider in the SIPP. We seasonally adjust all series using the Census Bureau

X12 program. Their cyclical components are obtained by de-trending the log of each of these series

based on quarterly averages and using the HP filter with smoothing parameter 1600.

B Omitted Theoretical Material

B.1 Derivation of the ‘Pissarides wage equation’
To derive this equation we use the stationary setting described in Appendix B of the paper and

associated value functions (19) - (23). Given that an employed worker value in steady state is

WE(p, z) = w(p, z) + β(1− δ)WE(p, z) + βδWU(p, z),

then

WE(p, z)−WU(p, z) = w(p, z)−b−βλ(θ(p, z))(WE(p, z)−WU(p, z))+β(1−δ)(WE(p, z)−WU(p, z)),

or

WE(p, z)−WU(p, z) =
w(p, z)− b

1− β(1− δ) + βλ(θ(p, z))
.

54Fujita et al. (2007) arrived to a similar conclusion when analysing aggregate job finding and separations rates
using the SIPP for the period 1983-2003.
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From the combination of the free entry condition and the Hosios condition, we have

η
w(p, z)− b

1− β(1− δ) + βλ(θ(p, z))
= (1− η)k/q(θ(p, z)). (77)

Moreover, from the value of the firm, we have

k

q(θ(p, z))
=
y(p, z)− w(p, z)

1− β(1− δ)
Solving the latter equation for w(z) gives

w(p, z) = y(p, z)− k

q(θ(p, z))
(1− β(1− δ)).

Substituting this in (77), we find

η(y(p, z)− b)− k

q(θ(p, z))
(1− β(1− δ))− βθ(p, z)(1− η)k = 0.

If we replace the middle term with y(p, z)− w(p, z), we get the desired wage equation,

w(p, z) = (1− η)y(p, z) + ηb+ β(1− η)θ(p, z)k.

B.2 Derivation of the slope of zs for the case zr(p) > zs(p) for all p
Note that R(p) = b+βθ(p,zr(p))k(1−η)/η

1−β . The derivative of this function with respect to p equals

βk(1− η)

(1− β)η

θ

w(p, zr(p))− b

(
yp(p, z

r(p)) + yz(p, z
r(p))

dzr(p)

dp

)
. (78)

Since w(p, zr(p)) − b = (WE(p, zr(p)) − WU(p, zr(p)))(1 − β(1 − δ) + βλ(θ(p, zr(p)))) and
θβk(1−η)
(1−β)η

= βλ(θ(p, zr(p)))(WE(p, zr(p))−WU(p, zr(p)), we find that (78) reduces to

βλ(θ(p, zr(p)))

1− β(1− δ) + βλ(θ(p, zr(p))

(
yp(p, z

r(p)) + yz(p, z
r(p))

dzr(p)

dp

)
. (79)

From the cutoff condition for separation, we find (1−β)R(p) = y(p, zs(p)). Taking the deriva-

tive with respect to p implies the left side equals (79) and the right side equals yp(p, zs(p)) +

yz(p, z
s(p))dz

s(p)
dp

. Rearranging yields the equation in the text.
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