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This paper proposes a method for probabilistic load flow in networks with wind generation, where the
uncertainty of the production is non Gaussian. The method is based on the properties of the cumulants
of the probability density functions (PDF) and the Cornish Fisher expansion, which is more suitable for
non Gaussian PDF than other approaches, such as Gram Charlier series. The paper includes examples and
Cornish–Fisher expansion series
1. Introduction

The great proliferation of wind energy in power networks has in
creased the uncertainty of power system operation and manage
ment. This uncertainty affects both the long and medium term
system planning, and the day ahead operation. In both cases, to
have an assessment of the values of the system variables under
these uncertain conditions is important for the Transmission Sys
tem Operator. This is why the importance of probabilistic tools
for power system analysis is increasingly growing. For long term
studies, to consider the uncertainty in power planning may lead
to a less expensive network. For the daily operation, an adequate
assessment of the system variables may lead to a better manage
ment of congestions and other important advantages.

Among these tools, probabilistic power flow is one of the best
known. To study all possible combinations of generation and load
is impractical due to the great size of real networks, and this is why
analytical methods should be used to adequately assess the vari
ability of the grid magnitudes. From the first proposals in the sev
enties [1,2], a great deal of literature can be found about this
subject. In these references, it was mainly the uncertainty of the
load what was considered.

The most straightforward method of solving this problem is
Monte Carlo simulation. This technique involves repeated simu
lation with values obtained from the PDF of the random vari
representation, a great
in real systems. This
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makes this approach unpractical. One of the alternatives to this
is the convolution of the PDF of the random variables involved,
when they are independent of each other, and linearly related.
Although this reduces the computational burden, it is still a for
midable task to obtain the PDF of a single line when several
random power injections are considered. Fast Fourier Transform
(FFT) techniques were proposed to reduce the computational
burden [3], but this method is linked to the convolution tech
nique, and does not solve the problem efficiently. Recently,
the use of cumulants and the approximation of resultant PDF
by orthogonal series (Gram Charlier expansion series) have
been proposed [4]. It has interesting properties, and is compu
tationally inexpensive.

Probabilistic load flow has been applied mostly to consider the
uncertainty of load. The uncertainty of load is not very high, and
it is frequently modeled using Gaussian probabilistic density
functions. Wind energy proliferation, however, rends this ap
proach insufficient, since the variability of wind power produc
tion is much higher, and usually the PDF are not Gaussian. Long
term planning studies must consider PDF based on Weibull distri
butions, while short term operation analysis need to use PDF
whose properties are still under study. Ref. [5] proposes the use
of FFT and convolution in distribution networks, and makes esti
mates, under simplified conditions, of the PDF for short term
wind power prediction. For large transmission networks it seems
that the approach based on cumulants is very appropriate due to
the low computational requirements. However, for non Gaussian
PDF, Gram Charlier expansion series have serious convergence

problems, and alternative tools have to be proposed. In this paper,
an approach using Cornish Fisher expansion is presented. This
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method has better convergence properties, without more compu
tational burden.
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The method is applied to next day operation of systems with
great wind penetration. Usually, the system operators of these net
works use the output of a short term wind power prediction pro
gram to forecast the next day grid constraints and congestions.
However, these predictions have a lower accuracy than load fore
casts, and their uncertainty should be also taken into account, for
instance for the available interconnection capacity between sys
tems. Therefore, a tool able to assess the probability of surpassing
the allowed line capacity is very practical for an adequate
operation.

The paper is structured as follows: first, a short view of short
term wind power prediction, and the uncertainty associated to
its output, is given. Then, the theoretical foundations of the Cor
nish Fisher expansion series and the necessary definitions are
introduced. The method is applied to a test grid, and its results
are compared to those obtained using Gram Charlier expansion
series. A summary with the main conclusions ends the paper.

2. Short term wind power prediction: uncertainty

2.1. Short term wind power prediction

Short term wind power prediction programs are tools that pro
vide an estimate of the future power production of a wind farm, or
a group of wind farms, in the next hours. For this purpose, they use
meteorological forecasts coming from a Numerical Weather Pre
diction (NWP) tool, and sometimes real time SCADA data from
the wind farms, namely, wind power production and other values,
such as measured wind speed. Data of the wind farms, such as
rated power, type and availability of wind turbines, etc. are also
necessary. The output of these programs is the hourly average
wind farm production for the next hours. Typically, predictions
are issued for the next 48 hours, but longer time horizons are pos
sible, sometimes at the price of a poorer accuracy.

These prediction tools are less accurate than load prediction
programs and their accuracy decreases with the time horizon. An
example of this accuracy for a typical wind farm is given in
Fig. 1, where the output from the prediction program SIPREOLICO
[6] is compared to persistence. Persistence is a prediction method
that consists of assuming that the future prediction, for the entire
time horizon considered, is the current production of the wind
farm.

The figure represents the Normalized Mean Average Error, de
fined as

NMAEðkÞ 1
Pn

PN
t 1

eðt þ k=tÞj j

N
ð1Þ

where
Fig. 1. NMAE of a typical wind farm, for a prediction tool and persistence.
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d p(t + k) is the production of the wind farm at time (t + k), while
t þ k=tÞ is the power predicted at time t for time (t + k). Pn is the
minal power of the wind farm, and N is the number of predictions
amined along the considered time. It can be seen that the wind
wer prediction accuracy allows for much uncertainty, and that
e actual value may differ widely from the predicted one.

2. Uncertainty of short term wind power prediction

The predictions provided by a short term wind power predic
n program are uncertain, and this uncertainty must be modeled

r an adequate assessment of these predictions.
The uncertainty, and hence its probability density function,

anges with the range of the wind farm power output, since this
lue is bounded between zero and the rated power. Besides, the
wer curve of a wind turbine or wind farm is nonlinear. If we as
me that the wind speed forecasts have Gaussian uncertainty,
en the probability density functions of the power predictions will
t be Gaussian. The shape of these probability density functions is

so affected by the time lag elapsed between the prediction and
e operation times. A sample of an heuristical PDF of the uncer
inty of short power prediction is given in Fig. 2. This function
ows the uncertainty of a wind power prediction made with a

e horizon of 7 hours when the forecasted power was 0.2 p.u.
It is not within the purposes of this paper to propose a model for

is uncertainty and a reasonable assumption will be used as an
proximation. Due to the bounded nature of the power produced
a wind far, a Beta PDF will be used, as proposed in [7]. Heuristic
F, as shown in [8] supports this assumption, although this is still
open field for research. In our case, the mean of the distribution

ill be the predicted power at the time of interest, while the stan
rd deviation r will depend on the level of power injected, with
spect to the wind farm rated power. This dependence has been
tained heuristically for some wind farms, and the results are
own in Fig. 3, where the value of standard deviation is normal
ed to the rated power of the wind farm. Although there are wide
riations, an approximation by a quadratic curve (shown in the
cture) may provide realistic results.

All these values have been obtained from real production of
ree months of a wind farm whose rated power has been normal
ed to 1. Predictions have been made with the prediction tool SIP
OLICO [6].
Fig. 2. Sample PDF of the uncertainty of wind power prediction.



3. Theoretical background

A short introduction of probability theory is given here for a

And the cumulants of order r, jr, are finally defined as

Let x1 and x2 be two independent variables, with PDF fx1 ðx1Þ and

families of CDF. In practice, however, this is a difficult problem, still

Fig. 3. Relation between standard deviation and mean for the uncertainty of
predictions.
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better understanding of the method. For more details, Refs. [9] or
[12] can be consulted.

3.1. Moments and cumulants

For a random variable x with probability density function (PDF)
f(x), the cumulative density function (CDF) F(x), is defined as

FðxÞ
Z 1

1
f ðxÞdx ð3Þ

For a given PDF, the moment of order n, where n is an integer, is
defined as:

mn E½xn�
Z 1

1
xnf ðxÞdx ð4Þ

m1 g is the mean of the random variable.
Central moments, or moments about the mean are defined as

ln E½ðx gÞn�
Z 1

1
ðx gÞnf ðxÞdx ð5Þ

l2 r2 is the variance of the random variable.
The moment generating function, /(s), associated to a random

variable x is defined as

/ðsÞ E½esx�
Z 1

1
esxf ðxÞdx ð6Þ

It can be easily shown (see [9]) that

/ðnÞð0Þ E½xn� mn ð7Þ

where (n) indicates the n derivative. Hence, /(s) could be expanded
as a MacLaurin series as:

/ðsÞ
X1
n 0

1
n!

/ðnÞð0Þsn
X1
n 0

mn

n!
sn ð8Þ

The cumulant generating function, w(s), is defined as:

wðsÞ ln /ðsÞ ð9Þ
jr
dnwð0Þ

dsn ð10Þ

From the series expansions of moment and cumulant generat
ing functions, it can be written the following relation between mo
ments and cumulants:

X1
n 0

mn

n!
sn exp

X1
r 0

jr

r!
sr

( )
ð11Þ

If the exponential is expanded in its Taylor series, and the terms
of powers of s are equaled, the relations between moments and
cumulants can be found as (12).

jrþ1 mrþ1

Xr

j 1

r

j

0
B@

1
CAmjjr jþ1 ð12Þ

A similar expression between cumulants and central moments
can be written [10].

3.2. Properties of cumulants
fx2 ðx2Þ. Then, the PDF of the random variable z, where z x1 + x2 is
given by

fzðzÞ fx1 ðx1Þ � fx2 ðx2Þ ð13Þ

where � indicates convolution. Then, it can be easily demonstrated
that the cumulants of order r of the random variable z, jz,r, are given
by

jz;r jx1 ;r þ jx2 ;r ð14Þ

In general, when z is a linear combination of J random variables,
x1,. . ., xj, z

PJ
j 1ajxj, then

jz;r

XJ

j 1

ar
j jxj ;j ð15Þ

A generalization of Eq. (15) that can be applied to dependent
variables can be found in [10].

3.3. Gram Charlier series expansion

In theory, it is possible to obtain the PDF, or the CDF of a random
variable, if its moments, or cumulants, are known, at least for some
open, and different proposals have been made to solve it, only with
partial success. One of these proposals is the Gram Charlier series.

Let consider the series expansion of a CDF F(x) with mean g 0
and r 1 in terms of a base function r(x), where r(x) is a function
N(0,1). This expansion can be written as:

FðxÞ
X

cjU
ðjÞðxÞ ð16Þ

where r(j)(x) is the jth derivate of r(x). This equation can be written
in terms of the Tchebycheff Hermite polynomials (see Appendix A)
as

FðxÞ
X1
j 0

cjHjUðxÞ ð17Þ

Multiplying by Hr(x) and integrating from 1 to1, we have in
virtue of the orthogonal relationship between Tchebycheff Her
mite polynomials
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tion. This has been calculated for all the lines in the transmission
network of the Peninsular Spanish power system, for 72 repre
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Fig. 4. Comparison between AC and DC load flows in the Spanish peninsular
transmission grid.
From these equations, the values of cr, may be obtained as functions
of the central moments. The first four terms are:

c1 1 c2 0

c3
1
3!

l3 c4
1
4!
ðl4 3Þ

It must be remarked that central moments can be easily ob
tained from cumulants [12].

Eq. (17) is the Gram Charlier series of Type A. It can be demon
strated that this infinite series converge if the integralZ 1

1
e

x2
4 f ðxÞdx

converges, and if f(x) tends to zero as jxj tends to infinity, where
f(x) is the PDF, i.e. the derivative of F(x). This limits the valid dis
tributions only to a reduced number of the most common distri
butions. From the statistical viewpoint, however, the important
question is not whether an infinite series can represent a fre
quency function, but whether a finite number of terms can do
so to a satisfactory approximation. It is possible that even when
the infinite series diverges its first few terms will give an approx
imation of an asymptotic character. Actually, the series in the
Charlier form may behave irregularly in the sense that the sum
of k terms may give a worse fit than the sum of (k 1) terms.
In many statistical inquiries we are more interested in the tails
of a distribution than its behavior in the neighborhood of the
mode, and it is here that the Gram Charlier series appears partic
ularly inadequate [11 13].

3.4. Cornish Fisher expansion

Cornish Fisher expansion is related to the Gram Charlier series
[14]. This approach provides an approximation of a quantile a of a
cumulative distribution function F(x) in terms of the quantile of a
normal N(0,1) distribution r and the cumulants of F(x). The theo
retical deduction of this expansion is quite complex, and can be
found in [12] or [14], for instance.

Using the first five cumulants, the expansion is given by (19).

xðaÞ � nðaÞ þ 1
6
ðn2ðaÞ 1Þj3 þ

1
24
ðn3ðaÞ 3nðaÞÞj4

1
36
ð2n3ðaÞ 5nðaÞÞj2

3 þ
1

120
ðn4ðaÞ 6n2ðaÞ þ 3Þj5

1
24
ðn4ðaÞ 5n2ðaÞÞj2j3 þ

1
324
ð12n4ðaÞ 53n2ðaÞÞj3

3 ð19Þ

where x(a) F 1(a), n(a) r 1(a) and jr is the cumulant of order r
of the cumulative distribution function F.

Although the convergence properties of Cornish Fisher series
are difficult to demonstrate [15], and are somehow related to
Gram Charlier series, their behavior for non Gaussians PDF is bet
ter than the latter, as will be shown below.

4. Probabilistic load flow formulation

4.1. Probabilistic load flow
Probabilistic power flow is a tool that provides the probability
Pf

a0i

w
po
de
er
of a system variable taking a value. These variables may be node
voltages, power through lines, or any other. The aim of this pro
gram is to estimate the risk of line overloading and congestion
for the next hours. For this purpose the DC load flow equations
provide a good estimate of the power flows. Fig. 4 shows the rel
ative error in % of power flows in lines between AC and DC solu
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e lines in the studied case is around 220 MW. Beyond this
wer, the error is less than 5% between DC and AC power
ws.
Therefore, for large powers (with risk of overload, or conges

on) the errors are small enough, so DC load flow can be consid
ed as an adequate approximation, at least as a first approach.
The well known DC load flow equations are:

d P

X 1Tt
d X 1TtB0 1P A P ð20Þ

here Pf is the vector of power flows through lines, P is the vec
r of net nodal power injections, B0 is the susceptance matrix
hose terms are Bij 1/Xij, and Bii

P
i–j1=Xij, d is the vector

nodal voltage angles, X 1 is a diagonal matrix whose terms
e the inverse of the branch reactances, T is the branch node
cidence matrix, and A X 1TtB

0 1 is the coefficient matrix that
lates the line power flows to the nodal power injections. This
tablishes the linear relation between power flows and nodal
wer injections.
These coefficients are obtained assuming that the load or gener

ion changes are compensated in the slack node. A generalization
this expression may be made if it is considered that the changes
the wind power production or load will be compensated by sev
al power plants, instead of only the slack node. This consider
ion is reasonable in situations where the changes in generation
ay be high as it happens with wind energy, where expected vari
ions from the expected production are usually high. Under these
sumptions, the linear relation between branch flows and injected
wer is given by the coefficient matrix A0, whose terms are given
Eq. (21)

A0 P

j aij

X
r

kjrair ð21Þ

here aij is th term (i, j) of the coefficient matrix A, kjr is the part of
wer injection in node j that the regulating generator r assumes, as
fined previously, for example (kjr 1/R). R is the number of gen
ators that compensate the injection in node j.



4.2. Computational procedure

power ranges of the predictions are low with respect to the wind
farm nominal values, the PDF of the injected powers have been
modeled as beta functions, as previously described. The frequency

Fig. 6. PDF of the power injected by the wind farm connected to node 117.
The proposed method begins from a deterministic evaluation of
line flows, using wind power predictions. Then, the probabilistic
load flow follows, which provides the CDF of the lines of interest.
It must be remarked that the deterministic prediction is the ex
pected value of the predicted power.

Hence, the following steps should be followed to find the CDF of
the line flows.

1. Solve a DC load flow with the expected value of the wind power
injected to the system. This gives the mean (expected value) of
line power flows.

2. Calculate the moments and cumulants of the CDF of the wind
power injections, using (4) and (12).

3. Use Eq. (15) to find the cumulants of the random variables of
the power flows through the lines of interest. Coefficients aij

are obtained from Eq. (21).
4. Use the Cornish Fisher expansion (19) to find the value of the

CDF of the power in the lines of interest.

5. Case study

In order to verify the better convergence properties of this
method, its results are compared with Monte Carlo simulation
and Gram Charlier expansion series. The method has been applied
to the IEEE RTS96 system [16], modified to include two wind
farms. The grid, with the changes from the original system is
shown in Fig. 5. These wind farms may represent, in reality, groups
of wind farms connected to the transmission network. In the fig
ure, both the rated power (Pn) and the predicted power (P) for a
certain time are written.

The lines of interest, where the PDF of the power flows are to be
found are the lines 17 16 and 17 22, marked in the same figure.

Although the power predicted is 300 and 200 MW, these values
are the expected values of the PDF of the injected power. Since the
Fig. 5. IEEE-RTS96 system with wind farms connected.
5

distribution for a Monte Carlo sampling of 10,000 samples, are
shown in Figs. 6 and 7. Base power is 100 MW. The two random
variables are considered independent.

6. Results

For this case, the results obtained using the Gram Charlier ser
ies and the Cornish Fisher expansion are compared to the results
from Monte Carlo simulation. The purpose of this paper is to prove
the better convergence properties of the Cornish Fisher expansion,
when non Gaussian functions are involved. Computation times be
tween Gram Charlier and Cornish Fisher are equivalent, and it has
been demonstrated in other publications, as [4], the smaller com
putation times of Gram Charlier series method compared to
Monte Carlo method, so a comparison of computation times will
not be made here.
Fig. 7. PDF of the power injected by the wind farm connected to node 122.



The number of Monte Carlo samples is 10,000. With this num
ber of samples there is a 95% probability that the greatest error in
the mean of the power in the considered branches is smaller than

where lan
n;j is the central moment of order n of branch j found ana

lytically, while lMC
n;j is the same moment obtained by Monte Carlo

method. NB is the number of branches in the grid.

si

Ch
M
is

Co

Fig. 10. CDF obtained with Monte Carlo simulation and with Cornish Fisher
expansion (dotted line). Line 116-117.

Table 1
Values of en for the power flows in the branches of the grid considered.

Moment 1 2 3 4 5

Error (%) 0.5230 0.1535 1.8661 0.7126 2.0679

Fig. 8. CDF obtained with Monte Carlo simulation and with Gram–Charlier
expansion series (dotted line). Line 117–122.
3.95%.
The method obtains a very good approximation to the moments

of power flows through lines. Let the error in the approximation of
the central moment of order n be defined in the following way:

en
1

NB

XNB

j 1

lan
n;j lMC

n;j

��� ���
lMC

n;j

��� ��� 100
Fig. 9. CDF obtained with Monte Carlo simulation and with Gram–Charlier
expansion series (dotted line). Line 116-117.
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Then, the value of this error for all the branches in the grid con
dered is given in Table 1.

Figs. 8 and 9 show the CDF of the lines of interest, using Gram
arlier expansion series, in comparison with the results using

onte Carlo. It can be seen that the behavior of the Gram Charlier
poor for both lines.
Figs. 10 and 11 show the CDF for both lines obtained using the

rnish Fisher expansion, in comparison with the result obtained
g. 11. CDF obtained with Monte Carlo simulation and with Cornish Fisher
pansion (dotted line). Line 117-122.

ble 2
mparison of the results for the 90% values of the lines of interest.

nes Absolute error (p.u.) Relative error (%)

7-122 0.1283 1.9974
6-117 0.0655 3.8884



using Monte Carlo. It can be observed that the fitting in this case is
very good.

Another numerical comparison given here is the difference be

during a sabbatical leave from the Universidad Carlos III de Madrid
in the Ecole Superieure d’Electricité (Supélec), France. The stay has

Fig. 12. Beta distribution for different values of parameters a and b.

7

tween the values given by Monte Carlo method and Cornish Fisher
expansion for a quantile of 90%. This is shown in Table 2.

The accuracy of these results allows to consider Cornish Fisher
expansion more adequate for the problem conditions (non Gauss
ian PDF of the wind power uncertainties), instead of the
Gram Charlier expansion series. More examples have been run
with identical result. Only when the PDF of the injection power
are Gaussian, are the results comparable.

7. Conclusion

The operation of power systems with high wind power penetra
tion must consider the uncertainty of short term wind power pre
diction, and therefore new analysis tools must be used to deal with
it. System Operators usually work with expected values for the in
jected power, but due to the relatively low accuracy of the predic
tions, actual values may differ widely from those expected and the
system variables may be also very different from those planned.

In relation with this problem, it has been shown that the Cor
nish Fisher expansion represents an interesting method for per
forming probabilistic load flows in networks with wind power,
where the PDF of the power injections are non Gaussian. Under
these conditions, other methods like Gram Charlier series are less
adequate because of their worse convergence properties. Although
the convergence of Cornish Fisher series have not been obtained
theoretically, empirical results show that they fit better the non
Gaussian nature of the PDF involved.

The next developments of this work will be centered on the
modeling of prediction uncertainty, the consideration of depen
dence between random variables and other ways of building the
resulting PDF from the moments.
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Appendix A. Tchebycheff–Hermite polynomials
A distribution u(x) that is N(0,1) can be written as

uðxÞ 1
2p
p e

1
2x2

If we call D d
dx, the successive derivatives with respect to x are:

DuðxÞ xuðxÞ
D2uðxÞ ðx2 1ÞuðxÞ
D3uðxÞ ð3x x3ÞuðxÞ

The result will be a polynomial in x multiplied by u(x). We then
define the Tchebycheff Hermite polynomial Hr(x) by the identity

ð DÞruðxÞ HrðxÞuðxÞ

Hr(x) is of degree r in x and the coefficient of xr is unity. By conven
tion H0 1, the following recurrence equation gives the value for
r > 0.

HrðxÞ xHr 1ðxÞ ðr 1ÞHr 2ðxÞ

The polynomials have an important orthogonality property,
namely, thatZ 1

1
HmðxÞHnðxÞuðxÞdx 0 m–n

n! m n

Appendix B. Beta distribution

The analytical expression of beta probability density function is
f ðx; a; bÞ 1
Bða; bÞ x

a 1ð1 xÞb 1

where B(a,b) is the beta function, and a and b are parameters re
lated to the mean, g, and the variance, r2, in the following way:

g
a

aþ b
r2 ab

ðaþ bÞ2ðaþ bþ 1Þ

The beta distribution has been represented in Fig. 12.
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