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Abstract

We estimate the impact of a carbon tax on manufacturing plants using panel data from the UK
production census. Our identification strategy builds on the comparison of outcomes between plants
subject to the full tax and plants that paid only 20% of the tax. Exploiting exogenous variation in
eligibility for the tax discount, we find that the carbon tax had a strong negative impact on energy
intensity and electricity use. No statistically significant impacts are found for employment, revenue or
plant exit.
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1 Introduction

The rise of climate policy on government agendas around the world has stirred a
renewed interest in the optimal design of large-scale regulation of environmen-
tal externalities. Climate change — the “ultimate commons problem” (Stavins,
2011) — is caused by anthropogenic emissions of greenhouse gases (GHG) such
as carbon dioxide (CO,) and is expected to have severe ecological and economic
consequences (IPCC, 2007). Mitigating climate change will require substantial
abatement of GHG emissions from all core economic sectors (Pacala and Socolow,
2004). The choice of appropriate policy instruments for each of these sectors is
essential for minimizing the overall economic costs of mitigation with given tech-
nologies (static efficiency), and for stimulating technological innovations that will
further reduce mitigation costs in the future (dynamic efficiency). This paper evalu-
ates the performance of one such instrument, a tax designed to curb industrial CO,
emissions, in a panel of manufacturing plants.

Manufacturing is a major contributor to GHG emissions around the world.!
Since most manufactured goods are tradable, there is a risk that regulated firms will
lose international competitiveness, shed part of their labor force or even exit. These
concerns have been fueling vehement opposition towards regulation and left their
mark on the design of the policies implemented so far. Command-and-control poli-
cies have long been the predominant form of environmental regulation in the man-
ufacturing sector, and their impacts have been studied extensively in the context
of air pollution.> On theoretical grounds, economists have favored market-based
instruments such as taxes and tradable permit schemes because they are more ef-
ficient in both the static and dynamic senses (e.g. Montgomery, 1972; Tietenberg,
1990; Milliman and Prince, 1989). However, empirical evidence on the impacts
of market-based environmental regulation on manufacturing is scarce, especially

when it comes to carbon emissions.?> For example, the European Union Emissions

Together with primary industry, the manufacturing sector accounts for almost 40% of GHG
emissions worldwide (IEA, 2010). Total carbon emissions from the business sector in 2000 were
estimated at 60.3 MtC (NAO, 2007).

The literature has examined the effects of air quality regulation on air pollution (Henderson,
1996; Greenstone, 2004), industrial activity (Becker and Henderson, 2000; Greenstone, 2002), plant
births and deaths (Henderson, 1996; Levinson, 1996; List et al., 2003), plant-level productivity
(Berman and Bui, 2001; Gray and Shadbegian, 2003), foreign direct investment (Hanna, 2010) and
market structure (Ryan, 2010).

30ne reason for this is that most existing cap-and-trade programs regulate emissions from elec-
tric generators only — such as the much-studied SO, trading implemented under the US Acid Rain
Program (see e.g. Ellerman et al., 2000) — and do not cover manufacturing emissions in significant



Trading Scheme (EU ETYS), the largest cap-and-trade system for carbon emissions
worldwide, is overdue for a microeconometric evaluation (Martin et al., 2013b).
While carbon taxes have been implemented in various EU countries, their rigorous
evaluation has proven difficult, be it because of the lack of suitable microdata or
because of the lack of a compelling identification strategy.*

This paper fills the void by analyzing the Climate Change Levy (CCL) package
— the single most important climate change policy that the UK government has
unilaterally imposed on the business sector so far (HM Government, 2006). The
package consists of a carbon tax — the CCL — and a scheme of voluntary agreements
available to plants in selected energy intensive industries. Upon joining a Climate
Change Agreement (CCA), a plant adopts a specific target for energy consumption
or carbon emissions in exchange for a highly discounted tax liability under the
CCL. While the CCL package is still in place today, our analysis focuses on the
first three years following its introduction in 2001, thereby avoiding overlap with
the EU ETS. During the period of analysis, the CCL added 15% to the energy
bill of a typical UK business (NAO, 2007) and the discount granted under a CCA
amounted to 80% of the tax rate.

Given its scope and institutional context, the CCL package provides a unique
opportunity to study the effects of a carbon tax in an industrialized economy. We
use longitudinal data on manufacturing plants to estimate the impact of the CCL on
energy use, emissions and economic performance. Our identification strategy is to
compare changes in outcomes between fully-taxed CCL plants and CCA plants. A
naive difference-in-differences (DiD) estimator would likely be biased because the
plants that were eligible for CCA participation could self-select their tax regime.
However, plants were only eligible if they emitted pollutants subject to environ-
mental regulation pre-dating the CCL. The variation in eligibility across plants can
hence be exploited to instrument for the tax rate. We implement this idea in an
IV framework where the reduced form is a DiD regression of plant outcomes on
eligibility. For this approach to be consistent, it must be true that differences be-
tween eligible and non-eligible plants are not systematically related to changes in
outcome variables over the treatment period. While this assumption is not testable,

we show that there are no significant trend differences between eligible and non-

ways. The RECLAIM program for NOyx emissions in California is an exception (Fowlie, Holland,
and Mansur, 2012).

4See Bjorner and Jensen (2002) for an early microeconometric evaluation of industrial energy
taxes in Denmark.



eligible firms in the pre-treatment period. In addition, we exploit the panel structure
of the dataset to control for pre-trends directly in the regression.

Firms in the control group were not only entitled to a tax discount, but they
also faced a reduction target for energy consumption or carbon emissions. Al-
though these targets could have placed binding constraints on the plant’s produc-
tion choices, the fact that massive over compliance occurred right from the start
suggests otherwise. In fact, a large degree of flexibility was built into both the
target negotiation process and the compliance review. If targets were nonetheless
stringent, then our estimate represents a lower bound on the full price effect of the
tax differential between the two groups of plants.

With this approach, we find robust evidence that the CCL had a strong negative
impact on energy intensity, particularly at larger and more energy intensive plants.
An analysis of fuel choices at the plant level reveals that this effect is mainly driven
by a reduction in electricity use and translates into a negative impact on CO; emis-
sions. In contrast, we do not find any statistically significant impacts of the tax on
employment, revenue (gross output) or total factor productivity (TFP). In addition,
we examine extensive-margin adjustments and find no evidence that the CCL ac-
celerated plant exit. While the regression-based test we use does not have much
power to detect small negative impacts on these outcomes, our results do not sub-
stantiate worries about devastating effects of the CCL on the competitiveness of
UK manufacturing, which gave way to a costly exemption scheme.’

Over the past two decades, carbon taxes and their effects on industrial compet-
itiveness have been a matter of political debate in many industrialized countries.
By conducting the first ex-post analysis of the causal impact of such a tax on man-
ufacturing, our study provides much-needed empirical evidence on the impacts of
large-scale regulation aimed at pricing pollution. It does so in the context of cli-
mate change — an area where regulatory stringency is bound to increase in the
near future — and with a focus on manufacturing, the principal engine of growth in
the emerging economies and still a cornerstone of employment in post-industrial
economies.

The remainder of the paper is structured as follows. Section 2 describes the
CCL package in detail and reviews previous research on the tax. Section 3 de-

scribes the research design and econometric framework. Section 4 describes the

3 A study commissioned by the UK government estimates the annual tax revenue lost due to the
tax discount at £366 million or 44% of the actual CCL revenue in 2003 (Cambridge Econometrics,
2005).



data sources and summarizes the dataset used for the analysis. Section 5 reports
the main results and presents several robustness checks. Section 6 examines het-
erogeneous impacts, aggregate effects and estimates the impact of the CCL on exit.

Section 7 concludes.

2 Background

2.1 The Climate Change Levy and Climate Change Agreements

Since the 1990s the UK has adopted a series of increasingly ambitious targets for
climate policy. In addition to a 12.5% reduction of GHG emissions from 1990
levels to be achieved under the Kyoto Protocol, the Blair administration promised
to reduce CO, emissions by 19% by 2010 and by 60% by 2050.° When the CCL
package was implemented in 2001, it constituted the single-most important policy
aimed at achieving these goals.’

The CCL is a per unit tax payable at the time of supply to industrial and com-
mercial users of energy. It was first announced in March 1999 and came into effect
in April 2001. Taxed fuels include coal, electricity, natural gas, and non-transport
liquefied petroleum gas (LPG). For each fuel type subject to the CCL, Table 1 dis-
plays the tax rates per kilowatt hour (kWh) equivalent, the average energy price in
Pound Sterling paid by manufacturing plants in 2001 and the implicit carbon tax.
Energy tax rates vary substantially across fuel types, ranging from 6.1% on coal to
16.5% on natural gas.®

While the tax establishes a meaningful price incentive for energy conservation
overall, it is immediately seen that carbon contained in gas and electricity is taxed

at almost twice the rate as carbon contained in coal.” Other fuel types were tax-

®With the passing into law of the Climate Change Bill in November 2008, the commitment to
reduce GHG emissions in the UK by at least 80% until 2050 has become legally binding.

"For example, the revised UK Climate Change Programme (HM Government, 2006) designated
the CCL package as the top contributor of carbon savings (6.6 MtC towards an overall reduction
goal of 20.8 MtC by 2010). As we explain in Section 2.3 below, such projections are highly sensitive
to the assumed trajectory of baseline emissions.

8Tax rates were constant from 2001 until 2006 and adjusted for inflation only in April 2007.

David Pearce attributed this perverse effect to historical ties between the governing Labour
Party and the coal industry, which had suffered from the “dash for gas” over the 1990s and suc-
cessfully lobbied for a lower tax rate on coal. Mineral oil was exempt from the tax because it was
already covered by the rather unpopular ‘Fuel Duty Escalator’, a policy of automatic increases in the
taxes on diesel and gasoline. Residential energy use was not taxed for fear of a possible regressive
effect (Pearce, 2006).



Table 1: Taxation of energy and carbon content by fuel type

Unit tax  Fuel price  Taxrate Implicit carbon tax

Fuel type [li(e\;‘\’f ] [ l;g%le] [Percent] [Tonp(?fu (r;g;bon ]
Electricity 0.43 4.25 10.1 31
Coal 0.15 2.46 6.1 16
Natural gas 0.15 0.91 16.5 30
LPG 0.07 0.85 8.2 22

Notes: Fuel prices and taxes are measured in Pence per kilowatt hour (kWh) equivalent. Average fuel prices in 2001 are
based on the QFI sample (see Section 4 for details). Carbon prices taken from Pearce (2006).

exempt precisely because of their low carbon content, such as electricity generated
from renewable sources and from combined heat and power. Hence, rather than a
pure carbon tax the CCL is a tax on energy with non-uniform rates, shaped by a
mixed bag of fiscal and regulatory goals.

Similar to other European governments that had introduced energy taxes dur-
ing the 1990s, the UK government set up a scheme of negotiated agreements, the
CCAs, in order to mitigate possible adverse effects of the CCL on the competitive-
ness of energy intensive industries. By participating in a CCA, facilities in certain
energy intensive sectors can reduce their tax liability by 80% provided that they
adopt a binding target on their energy use or carbon emissions.

Defined either in absolute terms or relative to output, these targets were ne-
gotiated at two levels. In an ‘umbrella agreement’, the sector association and the
government — represented at the time by the Department for Environment, Food,
and Rural Affairs (DEFRA) — agreed upon a sector-wide target for energy use or
carbon emissions in 2010 and on interim targets for each two-year compliance pe-
riod. At a lower level, ‘underlying agreements’ stipulate a specific reduction to be
achieved by a ‘target unit’, i.e. a facility or group of facilities in a sector with an
umbrella agreement. DEFRA originally negotiated 44 umbrella agreements with
different industrial sectors, including the ten most energy intensive ones.'°

While the primary objective of both the CCL and the CCAs is to enhance the
efficiency of energy use in the business sector, the two instruments represent funda-
mentally different approaches. The levy provides a price signal at roughly 15% of
energy prices faced by the typical business in 2001 (NAO, 2007). If energy demand

10See online appendix A for more details.



is price sensitive, the increased relative price of energy should lead to a reduction
in energy consumption. In terms of CO, emissions, this effect could be offset in
part by a shift towards more carbon-intensive fuels.

In contrast, the CCA combines a very diluted price signal of 0.2-15% = 3% of
energy prices faced by the typical business with quantity regulation, mostly in the
form of efficiency targets. This target affects the plant only if it places a binding
constraint on the trajectory of energy use during the remaining economic lifetime
of the plant. If this is not the case, the plant faces weaker incentives for energy
conservation than it would under the full tax rate. Moreover, since most targets
are specified in terms of energy units rather than carbon emissions, there is no

guarantee that even a stringent energy target leads to emission reductions.

2.2 How stringent are the targets negotiated in the CCAs?

In theory, an omniscient government can choose a combination of tax discount and
reduction targets so as to induce at least as much abatement as under the full tax rate
(Smith and Swierzbinski, 2007). In reality, however, the government is unlikely
to have perfect information about firm-specific abatement cost, especially if firms
worry that sharing this information with the government weakens their bargaining
position in the target negotiations. What is more, the government might not have
been willing to drive a hard bargain for fear of jeopardizing international compet-
itiveness and exacerbating distortions in marginal abatement cost (de Muizon and
Glachant, 2003; Smith and Swierzbinski, 2007). A closer inspection of the nego-
tiation, monitoring and enforcement of CCA targets yields a number of reasons to
believe that the targets did not place binding constraints on firm behavior.

First, the government may have “double counted” carbon savings from the CCA
scheme (ACE, 2005). On average, CCA targets were supposed to improve energy
efficiency by 11% between 2000 and 2010. This figure is well above the 4.8%
improvement the government expected to occur under a “business as usual” (BAU)
scenario (AEAT, 2001). However, alternative BAU scenarios were much closer
to the CCA target, projecting energy efficiency of all UK industry to improve by
9.5% (DG Transport and Energy, 1999) or even 11.5% when taking into account
the effect of the CCL (DTI, 2000).

Second, there was massive overcompliance with CCA targets. Combined an-
nual carbon savings in all CCA sectors were substantially larger than the 2010

target throughout the first three compliance periods. At the end of the first compli-



ance period in 2002, CCA sectors reported savings of 4.5 MtC — almost twice the
target amount of 2.5 MtC to be achieved by 2010.!! Consistent with this, the pro-
portion of compliant target units was high, rising from 88% in the first compliance
period to 98% and 99% in the second and third compliance periods, respectively
(AEAT, 2004; 2005; 2007). CCA participants that did not meet their target could
attain compliance by buying emission allowances on the UK Emissions Trading
Scheme (UK ETS), a carbon market that was operational between 2002 and 2006.
Allowance prices in this market remained below the implicit carbon tax rates given
in Table 1.!2

Third, the lower bound on compliance cost is zero. This is because facilities
were re-certified for the reduced tax rate even if they had missed their target, pro-
vided that the sector as a whole met its target. In 2004, this was true of approxi-
mately 250 non-compliant target units (NAO, 2007).

Finally, a large degree of flexibility in both the target negotiations and the com-
pliance review further limited the stringency of CCA targets. For instance, CCA
sectors could choose their own baseline year for the target indicator. More than
two thirds of all sectors chose a baseline year prior to 2000 (in some cases going
as far back as 1990), allowing them to count carbon savings unrelated to the CCA
towards target achievement (NAO, 2007). Furthermore, targets could be adjusted
ex post to reflect a more energy intensive product mix, declining output, or other
‘relevant constraints’.!3 Because of this, and for the reasons given above, it appears
unlikely that the negotiated CCA targets placed binding constraints on energy use
by the average CCA company.'4

""Most of this (2.6 MtC) was due to a dramatic decline in steel production. But even without steel
and three other sectors that adopted absolute targets there was substantial overcompliance, with
estimated carbon savings of 3 MtC (3.9 MtC and 4.3 MtC, respectively, in subsequent compliance
periods; see NAO, 2007).

12The allowance price fluctuated between £7 and £15 per ton of carbon (£2 and £4 per ton of
CO, equivalent) for most of the period (Smith and Swierzbinski, 2007). This price was conditioned
primarily by marginal abatement costs of 32 ‘direct participants’ in the UK ETS who had bid emis-
sion reductions in exchange for government incentives. Trading activity in the UK ETS increased
in March 2003 and March 2005 when some CCA firms bought allowances to meet their interim
targets, yet this demand was not strong enough to put upward pressure on the permit price.

B3In addition, performance in some sectors was measured against a ‘tolerance band’ in lieu of a
fixed target. In some instances, fast growing companies that belonged to a sector with an absolute
target successfully bargained for a relative target (and vice versa) as this made it easier to achieve
compliance (NAO, 2007).

4There is, however, a sizable number of plants that are not signing up for a CCA despite being
eligible. This is likely due to costs of joining a CCA other than those associated with meeting
specific energy consumption targets. For example, CCA participants need to comply with more
elaborate monitoring requirements and pay their sector association for the cost of negotiating the



2.3 Previous evaluations of the CCL package

Several evaluations of the CCL package were conducted at different stages of its
implementation. In the 2000 Regulatory Impact Assessment, the government pro-
jected that the CCL instrument alone would achieve carbon savings of at least 2
MtC in 2010 against BAU projections (HMCE, 2000). This estimate was based
on a model of business energy use maintained by the Department of Trade and In-
dustry (DTI). An interim evaluation study, commissioned by DEFRA at the end of
the second commitment period in 2004, finds evidence that the announcement of
the CCL package in March 1999 reduced energy demand in the service and public
sectors, but not in manufacturing (Cambridge Econometrics, 2005). The authors
of the study identify this “announcement effect” as a structural break in an error
correction model of quarterly energy demand (see Agnolucci et al., 2004, for more
details). A series of simulation studies uses a macroeconometric model of the UK
economy to assess the CCL package. An important result is “that the energy (and
therefore carbon) saving and energy-efficiency targets would have been met with-
out the CCAs” (Cambridge Econometrics, 2005, p. 7), which confirms the conclu-
sion drawn above on the lack of target stringency. Since model simulations of the
CCL package give rise to much smaller carbon savings than official estimates com-
puted for the first compliance period (AEAT, 2004), Ekins and Etheridge (2006, p.
2079) conclude that “the CCL package as implemented [...] achieved a greater car-
bon reduction than a no-rebate CCL would have done by itself”. They attribute
this to managers becoming aware of more cost-effective efficiency enhancement
projects as they started to benchmark their energy use. To be sure, the existence
of such an “awareness effect” depends on whether the official carbon savings were
real and not just a consequence of AEAT’s (2001) pessimistic BAU scenario. In
another simulation study on the impact of the CCAs on output and employment,
a large effect of the CCAs on sectoral energy demand — averaging a 9.1% reduc-
tion in sectoral energy use by 2010 — is built into the model rather than estimated
(Barker et al., 2007).

These assessments of the CCL package highlight two fundamental challenges
in policy evaluation, namely (i) to determine a valid baseline against which to mea-
sure the impact of a policy and (i) to attribute any measured impact to this policy

in a causal fashion. In studies that use simulated trajectories of energy use as a

agreements. Appendix B has a more elaborate discussion of this along with a detailed analysis of
CCA take-up.



baseline against which to measure the impact of the CCL package, the validity of
the results critically depends on the counterfactual baseline being true. In econo-
metric studies based on time series data at the sector level, it is difficult to discern
the effects of the policy from that of unobserved aggregate shocks.!?

The present study is the first evaluation of the Climate Change Levy package to
use longitudinal business microdata. We address the baseline problem by compar-
ing changes in actual firm behavior under two types of policy regimes, thus purging
the effect of aggregate shocks. Moreover, we identify the causal effect of the tax by
exploiting exogenous variation in the eligibility rules for the tax rebate. The next

section explains our research design in detail.

3 Research design

3.1 Econometric model

We seek to estimate the effect of the CCL by comparing plants that pay the full
tax rate with plants that pay just 20% of the tax by virtue of being in a CCA. We

consider the estimation equation
vie = 0Ty +xy B+ &, + i+ € (1

where y;; is an outcome variable (for expositional purposes, think of energy use),
T is the treatment dummy indicating that a plant pays the full rate of the tax, x;;
is a vector of strictly exogenous covariates (including a constant), & and 1); are un-
observed year and plant effects, respectively, and €;; is a random disturbance term.
Three fundamental issues need to be addressed. First, while the CCA plants in the
control group receive a tax discount they are also subject to an energy consump-
tion or efficiency target which might affect their choices. Second, participation in a
CCA is voluntary but not every plant is eligible. This creates a selection endogene-
ity in the control group. Finally, the tax might have heterogeneous impacts among
the group of treated plants.

Estimation of equation (1) recovers the full effect of the CCL if — as previous

research has suggested — CCA targets did not impose binding constraints on firm

ISWhen the CCL package was introduced, energy markets in the UK had been undergoing im-
portant changes that entailed significant and prolonged adjustments to prices, notably declining
electricity prices and increasing prices of gas and coal.



behavior. If the converse is true, the estimated o falls short of the true price effect as
control plants choose lower-than-optimal levels of energy so as to comply with their
CCA target. Hence, the estimated parameter o can be regarded as a conservative
estimate of the impact of the CCL. Figure G.1 in the online appendix illustrates
this point.'6

In order to estimate o consistently, one needs to address the issue of non-
random selection of plants into the control group. As we document in Section
4.2 below, CCA plants are, on average, older, larger and more energy intensive
than CCL plants. Clearly, plants using large amounts of energy receive a larger
absolute discount on their CCL liability which gives them a stronger incentive to
join a CCA. In turn, as there are fixed costs of participating in a CCA, plants with
low levels of energy use may find it more profitable not to join.!” This is illus-
trated in Figure G.2a of the online appendix. In principle, selection effects can be
addressed by adding further control variables, but selection might in part be driven
by factors not directly observable to us. For instance, given two plants that initially
use the same amount of energy, the plant with the steeper marginal abatement cost
schedule has a stronger incentive to join the CCA (cf. Figure G.2b in the online
appendix for an illustration).

Thanks to having panel data we can control for selection based on time-invariant
unobserved heterogeneity 1); across plants by taking first differences of equation
(1).'® This yields

Ayir = AT + AX:,ﬁ +AE, + Agyr. (2)

Least-squares estimation of equation (2) provides an unbiased estimate of the treat-
ment effect a if Ag; — the short-term deviation from a plant’s idiosyncratic trend
in energy consumption — is exogenous to the decision to join a CCA. This is not

true if plants take into account their future energy consumption when deciding on

16The stringency of CCA targets — though relevant for the interpretation of the estimated effect
as a lower bound on the full tax effect — does not affect the consistency of the estimation procedure.
For example, if the targets were more stringent than the full-rate tax then our method would lead
to a negative coefficient on CCA participation. This would still be a lower bound on the tax effect,
albeit not a meaningful one.

"In personal communications, representatives of CCA sector associations pointed out multiple
sources of fixed costs to us. The main cost drivers are payments to consultants or staff for doing the
necessary energy accounting and administrative work as well as administrative fees charged by the
sector associations.

8n our data we face the practical issue that some smaller plants are not sampled consecutively.
In order not to throw away information on those plants we define the dependent variable in equation
(2) as Ayiy = yir — yir—1 for t <2000 and Ay; = yi — yinooo for £ > 2000 and transform the RHS
accordingly. See online appendix C for details.

10



CCA participation. Plants expecting to expand their energy consumption may per-
ceive the CCA target as a binding constraint and therefore rather not join a CCA,
whereas plants that expect a reduction in consumption will take the opportunity to
reduce their tax liability provided that the cost of joining the CCA is not too large.
As aresult, plants might select themselves into treatment and control groups based
on time-varying unobserved shocks to the outcome variable, causing bias in the
estimate of o.

To address this issue, we adopt an instrumental variable approach based on
eligibility rules for CCA participation. Econometrically, we perform a two-stage
least squares estimation of equation (2) using the eligibility indicator AZ;; as an
instrumental variable for AT;; . We also consider a reduced-form or “intent-to-treat”

regression of the outcome on the instrument variable
Ayir = GAZjy + A B+ & + A&y 3)

3.2 Instrumental variable

Eligibility for CCA participation was granted to plants engaged in polluting ac-
tivities regulated under the PPC act (listed in Appendix B.1). An eligible plant is
comprised of at least one installation dedicated to the PPC activity, such as a blast
furnace or cement kiln. The discounted rate of the CCL applies to all energy use
at this installation.!® We define the instrumental variable Z; as an indicator vari-
able that equals O for all plants containing at least one eligible installation, and 1
otherwise. The instrument is relevant because the eligibility of a plant for CCA
participation ought to be correlated with its tax regime.

Furthermore, the validity of using AZ as an instrument for A7 in equation (2)
rests on the identifying assumption that eligibility is orthogonal to shocks Ag;; that
occurred after 2000. This assumption deserves a careful assessment. For instance,
one might worry that plants could self-select into PCC activities in order to be-
come eligible for the CCA. Since the entire CCL package was conceived and im-
plemented in a mere two years, and eligibility rules were established only a year
before implementation (in the 2000 Financial Act) it appears unlikely that firms

switched technologies in the short run just because of the CCA discount.

In addition, energy use at non-eligible installations on the same site is also taxed at the lower
rate, up to a maximum of one ninth of the primary energy use at the eligible installation. Hence,
it was not possible to dodge the tax by adding an installation with the sole objective to make the
entire plant eligible for the discount.

11



Moreover, if PPC regulated and non-regulated plants are subject to different
trends in the outcome variables, the resulting I'V estimates will be biased. In the em-
pirical analysis to follow, we investigate this possibility by looking at pre-treatment
trends but find no evidence of such differences. A visual examination of time series
plots of various outcome variables (shown in Figure 1 below) suggests no system-
atic differences in trends between eligible and non-eligible firms before 2001. The
corresponding statistical test results are reported in panel B of Table 2 and fail to
reject the hypothesis of common trends. Furthermore, our panel dataset allows us
to directly control for differential trends in the outcome regressions. As we discuss
in Section 5.3 below, this does not lead us to reject the hypothesis that outcomes in
PPC firms and non-PPC firms followed a common trend before the introduction of
the CCL. Also, the point estimates of the tax effect hardly change when controlling
for pre-trends.

Finally, the exclusion restriction also rules out the possibility that mandatory
public disclosure of PPC pollution in the European Pollution Emissions Register
(EPER) had a direct effect on the outcome variables. While this assumption is
untestable, we are not aware of any evidence that EPER reporting requirements
affected firm behavior in the UK.2? Moreover, the fact that pollution emissions in
2001 were published only in 2004 rules out any direct effects operating through the
demand side.

It is worth noting that the exclusive focus on pollution intensity when eligibil-
ity was first determined left many energy intensive industries ineligible for the tax
discount. For instance, textile wet processing was an eligible activity thanks to its
high pollution emissions, but not so dry processing which, although energy inten-
sive, emits no pollution regulated under PPC. Similarly, both the production and the
recycling of glass containers are very energy intensive processes. However, since
only the former is pollution intensive, glass container recycling was not eligible for
CCA participation.?! This institutional ‘glitch’ induces exogenous variation in the
probability of treatment even within narrowly defined, energy intensive industrial

sectors.

20In the context of the US Toxic Pollution Inventory, studies have found no significant effects of
public disclosure rules alone on pollution abatement, stock market returns or housing prices (Bui
and Mayer, 2003; Bui, 2005).

210ther examples include tyre production vs. recycling (retreading), mining and processing of
minerals using mechanical and thermal energy, and heat-treating of metals. Eligibility rules for
CCA participation were amended to include such low-pollution, energy intensive processes, but the
first amendment occurred only after the end of our study period, in 2006.

12



3.3 Heterogeneity of the treatment effect

So far the treatment effect o was implicitly assumed to be homogeneous across
plants. For the case of heterogeneous responses to treatment, Imbens and Angrist
(1994) have shown that, under certain conditions, the IV estimator identifies the
average treatment effect on “compliers", i.e. on the subset of the treated for which
a change in the instrument induces a change in treatment status. Although “com-
pliers” need not be representative of all treated plants, an instrument based on a
strict eligibility rule identifies the average treatment effect on the treated (ATT),
simply because non-eligible plants cannot receive treatment (there are no "always-
takers"). This result was first derived by Bloom (1984) and can be applied to our
setting with only minor modifications to the interpretation.

Recall that the treatment we consider is to pay the full tax rate, and that the
instrumental variable indicates whether or not a plant is eligible for an exemption
from treatment. All ineligible plants must pay the full tax rate, so that only eligible
plants are able to escape the treatment (i.e. there are no “never takers"). In online
appendix D, we show that the IV estimator identifies the average treatment effect
on the non-treated plants (the ATNT), i.e. those that apply for a tax discount when
given the opportunity. We shall refer to this sub-population in a more intuitive way
as the group of “tax concerned” plants.

As we explain in more detail below, we measure eligibility using data from the
EPER database. These data cover all facilities with PPC emissions above certain
reporting thresholds, whereas eligibility for a tax discount was granted regardless
of the amount of emissions. In online appendix D we show that this has no effect on
the interpretation of our estimates as long as firms below and above the reporting
threshold do not differ systematically with respect to their treatment response and

their probability of being tax concerned.

4 Data

The compilation of a dataset suitable for the micro-econometric evaluation of the
CCL required a major effort in terms of data collection, cleaning and matching.
The result is a unique dataset that matches publicly available information on CCA
participation and EPER coverage to production data from two confidential business

datasets.
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4.1 Data sources

The core dataset is the Annual Respondents Database (ARD) which is maintained
by the Office for National Statistics (ONS) and can be accessed by approved re-
searchers through the UK Data Service’s secure access program.”> The ARD is an
annual production survey that covers about 10,000 plants in the manufacturing sec-
tor.>> During the sample period, all plants with 250 employees or more (in some in-
dustries: 100 or more) had to report annually whereas smaller plants were included
on a random basis (Barnes and Martin, 2002). The ARD provides information on
the plant’s age, number of employees, gross output (revenue), variable cost, capital
stock, materials, and energy expenditures (inclusive of CCL payments).

Detailed information on energy use is taken from the Quarterly Fuels Inquiry
(QFI), a quarterly survey among a panel of about 1,000 manufacturing plants man-
aged by the ONS on behalf of DTI. The survey collects data on expenditures and
quantities for all relevant fuel types, including medium fuel oil, heavy fuel oil, gas
oil, liquefied petroleum gas (LPG), coal (graded, smalls), hard coke, natural gas,
and electricity. We have data for the period from 1993 to 2004. The majority (83%)
of the observations in the QFI can be matched to the ARD without difficulty be-
cause both surveys use the same underlying government business register IDBR as
their sampling frame. However, due to random sampling in the ARD we do not
have ARD data for all QFI plants.?*

We gathered information on CCA participation from both the DEFRA and HM
Revenue and Customs (HMRC) websites. Lists of facilities in the original sector
agreements were downloaded from DEFRA’s website. The agreements stipulate
the certification periods and the sector targets along with the details on the calcu-
lation of the units of energy used and carbon emissions. They also contain a list of
all facilities initially covered by the CCAs. Seven agreements lack sufficient infor-

mation on the facilities covered by the CCA and thus had to be excluded from the

220ffice for National Statistics, Annual Respondents Database, 1973-2009: Secure Access [com-
puter file]. 3rd Edition. Colchester, Essex: UK Data Archive [distributor], June 2012. SN: 6644.

ZHere and in the remainder of the paper a “plant” corresponds to an ARD reporting unit. This
is the lowest aggregation level for which production data is available. In 70% of all cases a re-
porting unit is indeed a business unit at a single mailing address — a ‘local unit’. Larger business
units are allowed to report on several local units combined so as to reduce compliance costs. The
information linking local units to reporting units is obtained from the Interdepartmental Business
Register (IDBR), which in addition provides information on plant births and deaths as well as on
employment, location and industry. For more details see Criscuolo, Haskel, and Martin (2003).

24For more details on the QFI and its combination with ARD data see Martin (2006).
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analysis.”> The HMRC website provides, sector by sector, the list of facilities that
have joined the CCA along with the date of publication.?® The lists are regularly
updated and facilities that have resigned from the CCA are removed. We merged
the DEFRA and HMRC lists to obtain a complete list of facilities that pay the
reduced rate of the CCL. We match this information to the ARD and QFI by com-
bining information on a plant’s postcode and the UK Company Register Number
(CRN).

To construct the instrumental variable, we downloaded publicly available data
from the European Pollution Emissions Register (EPER) which covers all Euro-
pean facilities regulated under the IPPC directive whose emissions exceed the re-
porting thresholds. The 2001 EPER file contains reporting thresholds and pollu-
tion discharges into air and water for 50 pollutants and covers 2,397 facilities in
56 sectors of activity in the UK. We construct the instrumental variable NEPER as
a dummy variable that equals one if a facility is not on the EPER list, i.e. it does
not report emissions of any of the pollutants regulated under PPC legislation. A
value of zero is assigned otherwise. Just like the treatment variable 7', this variable
is zero for all plants before 2001 and does not vary between 2001 and 2004. To
match EPER facilities to plants in our dataset we use the same algorithm that we

used for matching CCA participation data.

4.2 Descriptive statistics

Our regression sample comprises 6,886 and 1,079 plants in the ARD and QFI
datasets, respectively.?’ Table G.1 in the online appendix reports descriptive statis-
tics. We calculate energy intensity as the share of energy expenditures in either
gross output or variable costs (the sum of expenditures on materials, energy and
wages), finding a substantial amount of dispersion between plants. For example,
the energy expenditure share in gross output of a plant at the 90th percentile is seven

times larger than that of a plant at the 10th percentile. We report both quantities

23The craft baking sector and the meat processing sector do not contain a list of facilities. Another
five sectors lack facility addresses, namely the NFU poultry meat production sector, the pig farming
sector, the egg production sector, the British Poultry Meat Federation farms sector, and the British
poultry meat federation processing sector.

26The date of publication is the date from which the CCA is applicable.

27To limit the effect of outliers we dropped 441 observations in the ARD and 119 observations in
the QFI sample for which growth in the outcome variables were in the top and bottom 1%. We omit
SIC sector 23, “Production of Fuels (cookeries, refineries)”, as it is exempt from the CCL based on
“The Climate Change Levy (Use as Fuel) Regulations 2001 No. 1138.
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Table 2: Descriptive statistics in 2000 by tax regime and eligibility

Q)] (2) (3) “4) (5) (6)
Plants subject to Plants subject to Diff. Plants eligible Plants not eligible Diff.

a 3% tax a 15% tax for a 3% tax for a 3% tax
A. Levels (CCL=0) (CCL=1) (NEPER=0) (NEPER=1)
Energy share in gross output -3.881 -4.386 -3.731 -4.340 ok
In(EE/GO) 696 3,841 238 4,299
Energy expenditure 6.457 4.655  HFxx 7.184 4.807  Fx*
In(EE) 696 3,841 238 4,299
Electricity 16.311 15.068  *** 17.516 15.193  ***
In(El) 149 368 52 465
Employment 5.660 4.723  HFEx 5.872 4.811  ***
In(L) 696 3,841 238 4,299
Age 20.112 17.658  *** 19.046 17978 -
696 3,841 238 4,299
B. Differences
Energy share in gross output -0.004 0.000 - 0.012 -0.001 -
Aln(EE/GO) 696 3,841 238 4,299
Energy expenditure 0.030 0.025 - 0.037 0.025 -
Aln(EE) 696 3,841 238 4,299
Electricity 0.012 -0.008 - -0.003 -0.002 -
Aln(El) 149 368 52 465
Employment -0.017 -0.022 - -0.017 -0.021 -
Aln(L) 696 3,841 238 4,299

Notes: Summary statistics for the year 2000 (panel A) and the difference in growth rates between year 1999 and 2000 (panel B) by CCL and
NEPER status. For each variable, we report the mean and the number of observations in the row below the variable mean. We report the
natural logarithm for all variables except age. Columns 3 and 6 report significance levels of a t-test of differences in group means with
unequal variance, at <1% (**¥), <5% (*¥*), <10% (*). Among the 4,537 ARD plants, 3,743 are not eligible for the 3% reduced tax rate and
pay the 15% carbon tax, and 556 are not eligible for the 3% tax rate but nevertheless benefit from the reduced rate.

consumed and expenditures paid for the fuel variables, after aggregating up some
of the variables available in the QFI to obtain the categories liquid fuels (oil, petrol,
and LPG), solid fuels (coal and coke) and natural gas (firm contract, interruptible
contract, tariff). Moreover, we compute the share of natural gas in the consumption
of both gas and electricity, and total CO, emissions (in thousands of tonnes) on the
basis of the fuel mix.

The regression sample starts in 1999, because this is the first year for which
energy expenditure data are available in the ARD, and covers the first two target
periods that lasted from 2001 until 2004. This window of analysis avoids possible
complications due to (i) an overlap with the EU ETS which affected approximately
500 CCA plants from 2005 onwards, (ii) adjustments of CCA targets for the third
compliance period, and (iii) new entry of sectors in 2006 following changes in the
eligibility rules.

Table 2 displays the means of the main variables in the pre-treatment year 2000
(panel A) and the differences between year 2000 and 1999 (panel B), broken down
by treatment and eligibility status.?® The treatment variable CCL takes a value of

Z8See Table G.3 in the online appendix for further outcome variables not reported here.
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one if a plant pays the full tax rate and a value of zero if the plant participates
in a CCA. Panel A shows that participation in CCAs is not random: CCA plants
are, on average, older, larger and more energy intensive. For most of these plant
characteristics, a ¢-test of equal group means for CCL and CCA plants rejects at
the 1% significance level. Given this strong correlation between treatment status
and observable plant characteristics, we cannot rule out that unobservable plant
characteristics also influence selection.

We address selection in levels by differencing out fixed unobserved plant char-
acteristics in equation (2). To mitigate bias from selection on changes in the out-
come variables, we instrument the difference regression using eligibility which is
presumably exogenous to innovations in the outcome variables. This assumption is
more credible if we find that eligible and non-eligible plants do not follow system-
atically different trends in terms of the outcome variables ahead of the treatment.
We examine this in Figure 1 by plotting average changes in the main outcome vari-
ables with respect to the year 2000, both for eligible and non-eligible plants, as well
as by treatment status.”” This shows that trends were closely aligned when treat-
ment was imminent. More formally, panel B of Table 2 reports the pre-treatment
growth rates by treatment and eligibility status, along with the results of a #-test for
group equality. The test never rejects at the 5% level, suggesting that differential
pre-trends in outcome variables were not important. This mitigates concerns about
changes in the outcome variables being confounded with unobserved attributes of
eligible firms. Finally, selection bias might also arise if attrition rates are systemat-
ically related to treatment status. We investigate this in Section 6.3 below, finding

no significant impact of the CCL on plant exit relative to CCA plants.

5 Results

5.1 Determinants of CCL status

Table 3 reports the results from various regressions of CCL status on NEPER and
other plant characteristics. Each regression is run in both the ARD and the QFI
samples. Columns 1 and 4 report the marginal effects from a probit regression of
CCL on NEPER in the cross section for the year 2001. The coefficients imply that
a value of NEPER=1 increases a plant’s chances of paying the tax in full by 28.4%

2See Figure G.3 in the online appendix for the remaining outcome variables.
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Table 3: Determinants of CCL status

(1) @ 3) “) ©) (6)

Dependent variable Probability that a plant is subject to a 15% carbon tax (CCL=1)
Sample ARD sample QFI sample
Time period 2001  2000-2004 2001 2001  1998-2004 2001
Method Probit OLS Probit Probit OLS Probit
Not eligible for a 3% 0.284%**  (.392%** 0.440%**  (.345%**
carbon tax (NEPER=1) 0.040 -0.044 0.090 -0.060
In(Gross output) 0.033%%** 0.033
0.012 0.082
In(Capital) | -0.038*** -0.23 1%
0.010 0.069
In(Energy expenditure) -0.043 %% -0.105%*
0.007 0.044
In(Employment) -0.023%* 0.147%*
0.010 0.044
Sector controls yes yes yes yes yes yes
R-squared 0.296 0.816 0.384 0.280 0.690 0.359
Observations 4,027 16,876 3,975 436 4619 424

Notes: Probit results report the marginal effect on the probability of being subject to the full-rate CCL. All
regressions additionally include age, age squared, and regional trends. Standard errors in parenthesis are robust to
heteroskedasticity and autocorrelation (except probit models), and in addition pooled OLS's standard errors are
clustered at the plant level. Asterisks indicate statistical significance at 10% (*), at 5% (**) and at 1% (¥**).

in the ARD sample and by 44% in the QFI sample. The results from the first-stage
regression underlying the IV estimation of equation (2) in first differences are re-
ported in columns 2 and 5. They corroborate that there is a robust positive and
statistically significant relationship between the treatment variable and the instru-
ment. Columns 3 and 6 display the results from a probit regression of CCL status in
2001 on various plant level controls evaluated at their 2000 levels. The coefficient
estimates show that the simple correlations between CCL status and plant charac-
teristics we found in Table 2 persist after controlling for sectoral differences. In
particular, plants that were larger in terms of their capital and energy inputs prior to
treatment were more likely to participate in a CCA. The coefficients on energy and
gross output suggest that the same is true of more energy intensive plants. In online
appendix B.2, we present further evidence pointing to size and energy intensity as
the main determinants for take up among eligible plants. This is consistent with
the notion that the 80% discount on the energy tax rate would allow only large and
energy-intensive plants to accumulate enough tax savings to cover the fixed costs

of CCA participation.
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5.2 Treatment effect of the CCL

Table 4 summarizes the regression results for various outcome variables from the
ARD (panel A) and the QFI (panel B). Columns 1 to 3 report, respectively, the
OLS estimate of the treatment coefficient & in equation (2),the OLS estimate of
the coefficient & in the reduced-form equation (3), and the average treatment effect
on CCL plants obtained via IV estimation of equation (2).

The first two rows in panel A of Table 4 report the results for energy intensity
measured as the share of energy expenditures in either gross output and variable
costs, respectively. We find that the CCL caused plants to decrease their energy
intensity relative to CCA plants. The point estimates from the IV regressions are
-0.181 for the former measure and -0.211 for the latter. The effects are both eco-
nomically and statistically significant. The importance of controlling for selection
is evident from the sizable differences between the OLS and IV estimates. In par-
ticular, OLS estimation leads to an upward bias when estimating the effect of the
CCL on the growth in energy intensity. This is because the OLS estimator does
not correct for the self-selection of energy intensive plants into the low-tax regime,
which we found in Table 3 above. As we show in Section 6.1 below, this type of
plant responded more strongly to the CCL, causing bias towards zero in the OLS
estimates.

In rows 3 and 4, we break down the effect on energy intensity by looking at its
components. The IV point estimates of -0.095 for energy expenditure and 0.086 for
gross output suggest that CCL plants both reduced energy and increased gross out-
put so as to achieve the reductions in energy intensity reported in row 1. However,
the point estimates are imprecise and lack statistical significance at conventional
levels. This reflects the fact that both variables lump together prices and quanti-
ties, which are likely to move in opposing directions and thus attenuate the effect
of higher energy prices.>® Furthermore, we obtain a positive but not statistically
significant point estimate for employment of 0.082.

We derive an estimate of the CCL impact on TFP from an augmented equation
(1) which includes the production factors capital, labor, materials, and energy. This
amounts to estimating a production function where the treatment variable captures

the impact of the CCL on otherwise unexplained differences in TFP3! The coef-

30 As firms pay a higher after-tax price for energy but likely demand less of it, energy expenditures
can go up or down. Moreover, the effect on revenue is dampened because the higher marginal cost
tends to raise product prices while also reducing physical output.

31This controls for production function endogeneity arising from fixed unobserved heterogeneity
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Table 4: Impact of the CCL on plant outcomes

(€] @ ©) 4
Dependent variables OLS RF v P(l);’nst'é
A. ARD variables
Energy share in gross output -0.023* -0.058***  -0.181** 16,876
Aln(EE/GO) (0.013) (0.022) (0.071) 6,886
Energy share in var. costs -0.026** -0.067***  -0.211*%** 16,876
Aln(EE/VCost) (0.013) (0.022) (0.071) 6,886
Energy expenditure -0.019 -0.030 -0.095 16,876
Aln(EE) (0.013) (0.019) (0.062) 6,886
Gross output 0.004 0.027 0.086 16,876
Aln(GO) (0.011) (0.017) (0.054) 6,886
Employment 0.010 0.026 0.082 16,876
Aln(L) (0.011) (0.017) (0.054) 6,886
Total factor productivity 0.001 0.000 0.001 16,810
Aln(GO)~inputs (0.0006) (0.011) (0.033) 6,851
B. QFI variables

Electricity -0.033 -0.069%** -0.226%* 4,587
Aln(El) (0.022) (0.031) (0.109) 1,079
Natural gas -0.053 0.052 0.165 3,748
Aln(Gas) (0.037) (0.044) (0.156) 908
Natural gas share -0.027%* 0.021 0.071 4,587
A(Gas/(Gas+EL)) (0.012) (0.023) (0.079) 1,079
Solid fuels 0.174* 0.101 0.460 1,563
Aln(So) (0.096) (0.156) (0.654) 445
Solid fuels share -0.033 0.006 0.021 4,587
A(So/kWh) (0.022) (0.008) (0.026) 1,079
Total kWh -0.105%**  -0.004 -0.015 4,587
Aln(kWh) (0.027) (0.037) (0.118) 1,079
CO2 -0.073***  -0.026 -0.084 4,587
Aln(CO2) (0.022) (0.030) (0.095) 1,079

Notes: The estimates come from 39 separate regressions. Columns 1 and 3 report the OLS and IV
estimates, respectively, of the coefficient on the treatment variable in equation (2). Column 2 reports the
OLS coefficient on the instrumental variable in the reduced-form equation (3). Column 4 reports the
number of observations and plants. Dependent variables are first-differenced from 1997 until 2000 and
differenced at various intervals thereafter (A). All regressions include age, age squared, as well as
dummies for year, region and 3-digit industry code. In panel A, the total factor productivity regressions
also control for labor, capital stock, and for expenditures on materials and energy. Robust standard errors
reported in parenthesis are clustered at the plant level. Asterisks indicate statistical significance at 10%
(*), at 5% (**) and at 1% (***).
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ficients reported in row 6 are positive but small in magnitude and lack statistical
significance. We thus cannot reject the hypothesis that the CCL had no effect on
plant-level TFP.

The evidence in panel A clearly shows that the CCL led to substantial reduc-
tions in plant-level energy intensity compared to the CCA. While the other coef-
ficients are estimated less precisely, the point estimates are consistent with firms
substituting labor for energy and increasing output prices in response to the energy
price increase. In online appendix E we show that all the qualitative results in Panel
A — including the stronger response of energy intensity than energy expenditures
— can be generated by a simple equilibrium model with neo-classical production
functions that exhibit a sufficiently large degree of substitutability between labor
and energy.

The CCL package was not part of any harmonized carbon tax scheme for Eu-
rope but a unilateral policy measure. As such, it may have had a detrimental effect
on the competitiveness of UK industry. On the basis of the positive but insignificant
point estimates we obtain for employment and gross output, however, we cannot
reject the hypothesis that the CCL did not cause firms to shed jobs or lose revenue
relative to CCA firms. While it seems plausible that the CCL lowered profits we
cannot estimate this effect directly for lack of pertinent data. However, if profit
losses were substantial they might have induced firms to shut down some plants.
We examine this possibility in Section 6.3 below.

From a climate-policy perspective, it is important to know whether reductions
in energy expenditures in CCL plants actually occurred, whether they corresponded
to reductions in energy consumption and whether they lowered carbon emissions.
For example, instead of consuming less of all fuel types CCL plants might sub-
stitute towards fuels that are cheaper but also more polluting, such as coal. More
detailed information on energy use is needed to address this issue, as the energy ex-
penditures variable lumps together changes in the fax-inclusive price and quantity
of energy, as well as the effects of substitution between different fuel types.

Panel B of Table 4 reports results from regressions using guantity changes in
energy consumption by fuel type which are available in the QFI sample. Although
this sample is smaller than the ARD sample, we find economically and statistically
significant evidence that the CCL caused plants to decrease their electricity use

by 22.6%. For natural gas, solid fuels, and solid fuels as a share of total kWh

across plants (Griliches and Mairesse, 1995).
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consumed we obtain positive point estimates of the treatment effect.’> However,
the coefficients are not estimated with enough precision to support conclusions
about interfuel substitution.

The significant decrease in electricity consumption among CCL plants trans-
lates into a decrease in carbon dioxide emissions ceteris paribus, but this could be
offset by an increase in the consumption of other fuel types. The last row of Table
4 shows the impact of the CCL on total CO, emissions, calculated as the sum of
emissions across fuel types. The CCL is associated with a significant decrease in
total CO, emissions of 7.3% in the OLS regression. The point estimate increases
slightly when going from OLS to IV, yet statistical significance is lost. We conjec-
ture that this is due to the noisy estimates of the tax response for fuels other than
electricity. In the absence of a larger sample that would enable us to estimate this
effect with more precision, there are two possible ways of quantifying the effect
of the CCL on carbon emissions. On the one hand, one can choose to disregard
statistically insignificant coefficients altogether and conclude that the unchecked
decrease in electricity consumption translates into a decrease in CO, emissions of
equal magnitude. On the other hand, a more cautious interpretation of the results
is to use the point estimate of -0.084 from the IV estimation which accounts for
the possibility that some CCL plants switched into dirtier fuels such as coal. We
thus conclude that the CCL — though not designed as a pure carbon tax — caused
plants paying the full rate to reduce CO, emissions by between 8.4% and 22.6%
compared to plants that paid the reduced rate.

In further regressions, reported in online appendix F, we interact the treatment
indicator with year dummies so as to recover the time profile of the treatment re-
sponse following the introduction of the CCL. This can reveal possible time delay
in plants’ responses to the treatment, or whether the treatment effect dies off after a
while. We find that the tax has the largest effect on the ARD outcome variables in
the first two years of treatment. While the negative impact of the CCL on electric-
ity use is statistically significant from 2002 onwards, the point estimates for natural

gas and coal are usually not statistically significant at the 5% level.>?

32We report natural gas use as a share of gas and electricity only, as other fuels are less frequently
used. The regressions on solid fuels are conditional on a plant using solid fuels in at least one
period. In contrast, the solid fuels share is computed for all plants and takes the value of zero for
plants that do not use it.

3 A positive and significant point estimate is obtained for gas consumption in 2001. However,
this result proves not robust to controlling for endogenous attrition of gas consuming plants in
the logarithmic specification, which could generate this result in a spurious manner. See online
appendix F for details.
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5.3 Robustness checks
5.3.1 Balanced sample

Our sample is an unbalanced panel for a number of reasons: random sampling of
smaller plants in the ARD, plant births and deaths, and missing responses from
some plants in some years. As the set of plants in the sample changes slightly
from year to year, the time profile of the treatment effect might reflect — at least
in part — the changes in sample composition rather than the dynamic response to
the CCL. Another potential problem with the unbalanced panel is that the results
could be dominated by potentially more extreme responses of exitors. To address
these concerns, we estimate the model with time interactions in a subset of “stayer”
plants with observations in all years after 1999. The results are summarized in
Tables G.4-G.6 in the online appendix. Since the sample size drops by about half in
both samples, some of the estimated treatment effects lose statistical significance.
However, the qualitative findings remain similar to the ones estimated on the full

sample.

5.3.2 Controlling for pre-treatment trends

Our identification strategy relies on the (untestable) assumption that differences be-
tween eligible and non-eligible plants are not systematically related to changes in
outcome variables over the treatment period. In Section 4.2, we have shown that
pre-treatment trends did not differ across these groups in a statistically significant
way, meaning that our estimates are unlikely to confound the impact of the treat-
ment with pre-existing differences. To corroborate this, we include a time-invariant
eligibility dummy in equation (2) so as to directly control for unobserved trends in
the outcome variables, separately by eligibility status.’* Tables G.7 and G.8 in
the online appendix show that this yields qualitatively similar results, albeit less
statistically significant ones in later years. Since the coefficients on the eligibility
dummy are statistically insignificant for all outcome variables except solid fuels,

we do not include them in our preferred specification.

34Like sector and region dummies, this dummy is interacted with year differences to account for
time intervals of varying length in the sample. See online appendix C for details.
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5.3.3 Common support regression

Despite our 1V strategy there might be concern that results are driven by a fun-
damental heterogeneity between treated (eligible) and non-treated (non-eligible)
plants. Therefore, as a robustness test we restrict the control group to a common
support which is identified by the predicted probability of a plant in the control
group to receive treatment.> We construct this common support sample by drop-
ping plants that do not belong to the central 80% of the propensity score distri-
bution, while also balancing the covariates between the treatment and the control
group.3® The results estimated on the common support sample are reported in Table
G.9. For the ARD variables in panel A this leads to slightly larger point estimates,
suggesting that heterogeneity within the treated group is not a major problem. In
the smaller QFI dataset, about half of the sample needs to be dropped, but this

entails no qualitative change to the results.

6 Heterogeneous impacts, aggregate effects, and plant

exit

6.1 The impact of the CCL in different subsamples

Our discussion so far has focused on the average effect of the CCL on non-treated
plants. It is useful to know how this effect varies across plants with certain charac-
teristics. For example, the tax impact may differ from the ATNT in industries that
are very energy intensive because the levy imposes a higher cost burden on these in-
dustries. Moreover, as the political cost of job losses is high, policy-makers might
be interested in the tax impact on small firms which are responsible for the bulk
of total employment. Finally, the impact of the CCL on competitiveness may be
particularly high for firms in sectors with high import penetration, as foreign com-
petition prevents them from passing compliance cost on to their customers through

higher output prices.

33See Blundell et al. (2004) for a framework that combines propensity score matching with a
differences-in-differences estimator.

36Propensity scores are computed as the predicted values of a probit regression of CCL status on
plant characteristics for the year 2000. We restrict the sample to the common support and verify
that covariates in the resulting sample are balanced. Gross output, capital, materials, employment,
the squares of these variables, as well as energy expenditures, are all balanced at the 1% confidence
level.
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Table 5: CCL impact in different sub-samples (IV coefficients)
(1 (@) 3) ) (%) (6)

Energy intensity Trade intensity Size

Dependent variables low high low high low high
Energy share in gross output  -0.159  -0.195**  -0.115 -0.196* -0.225 -0.141
Aln(EE/GO) (0.159)  (0.081)  (0.098)  (0.100)  (0.190)  (0.087)
Energy expenditure 0.071 -0.154**  -0.081 -0.089 -0.292* 0.030
Aln(EE) (0.131)  (0.072)  (0.088)  (0.084)  (0.172)  (0.077)
Employment 0.216 0.047 0.102 0.063 -0.082 0.119
Aln(L) (0.146)  (0.054)  (0.090)  (0.068)  (0.108)  (0.089)
Electricity -0.247 -0.233* -0.321 -0.107 -0.059 -0.286%*
Aln(El) (0.235)  (0.138)  (0.252)  (0.110)  (0.175)  (0.161)
ARD sample obs. 8,040 8,836 8,096 7,871 10,145 6,702

plants 3,276 3,610 3,201 3,213 4,905 1,971
QFI sample obs 2,001 2,586 1,994 2,318 2,122 2,274

plants 470 609 461 552 513 450

Notes: The table reports the estimated treatment effect on various plant-level outcomes and in different sub-samples,
obtained from 24 separate IV regressions of equation (2). Energy and trade intensity samples are split according to the
median defined at the 3-digit and 4-digit sector level, respectively, in 1999 or 2000. Size is defined based on employment
at the respondent unit, those with 250 employees or less in 2000 or 1999 qualified as small. Robust standard errors
reported in parenthesis are clustered at the plant levels. Asterisks indicate statistical significance at 10% (*), at 5% (**)
and at 1% (¥*%).

To shed light on this, we estimate the impact of the CCL separately: (i) for
plants with more vs. less than 250 employees, (ii) for plants with high vs. low en-
ergy intensity and (iii) for plants with high vs. low trade intensity.?” The first two
columns of Table 5 report the IV coefficients for the split by energy intensity, de-
fined as the share of energy expenditures in gross output. Results for the low- and
high-intensity groups are reported in the odd and even-numbered columns, respec-
tively. The I'V point estimates for energy intensity and energy expenditures indicate
that the average effects reported in Table 4 are due to a strong response by plants in
energy intensive sectors. The point estimates in this group are -0.195 for energy in-
tensity and -0.154 for energy expenditures, both are statistically significant at 5%.
In contrast, the point estimates for the low-intensity group lack statistical signif-
icance. The point estimates for electricity consumption are similar in magnitude
across groups but lack statistical significance in the low-intensity group.

In columns 3 and 4 of Table 5 we split the sample according to the trade inten-

3TThe splitting points for energy and trade intensities are defined at the 3-digit and 4-digit sector
level, respectively, based on pre-treatment averages across plants in the sector. After sorting sectors
in the order of decreasing intensity, we assign sectors to the high intensity group until approximately
50% of plants are assigned to this group. The remaining sectors are assigned to the low intensity

group.
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sity in 4-digit NACE sectors, which is computed as the value of imports and exports
to non-EU countries over the total market size within the EU27.3® This measure
has been used by the EU Commission to gauge the competitiveness impact of the
EU ETS on manufacturing firms. To the extent that trade intensity measures the
degree of competition from non-regulated countries, it picks up the (lack of) ability
of firms to pass on the cost of the CCL to their customers. The point estimates
for the ARD variables obtained in the trade intensive group closely follow those
obtained in the full ARD sample. In contrast, the impact on energy intensity is not
statistically significant in the low-intensity group. We do not find any significant
impact on employment in either of the two groups. This gives rise to two inter-
pretations: first, that trade intensity might not be a good criterion for identifying
adverse effects on competitiveness; or second, that the hypothesis which states that
there are no such effects should not be rejected.

The last two columns of Table 5 report the results for the employment split.
While the point estimates for energy expenditures in small plants and electricity
use in large plants are negative and statistically significant at the 10% level, no

clear pattern emerges from this comparison across size groups.

6.2 Aggregate effects of a carbon tax

While the micro-level approach allows for better identification of the causal im-
pacts of the tax, from a policy point-of-view the aggregate implications of the tax
matter. In this section, we compute the effect of a counterfactual carbon tax similar
to the CCL but without the reduced tax rate. This exercise allows us to compare our
results to studies assessing the impact of energy price changes on fuel consumption
at the aggregate level.

Taking into account heterogeneous treatment effects at the plant level, the ag-
gregate effect of the CCL on aggregate variable Y is given by

Yi(e® —1)Yi2000

Ay = 4)
Y. Yi2000

where the plant specific treatment effect o; is weighted by the share of plant i in the

aggregate Y. To be able to compute Ay, we assume a homogenous treatment effect

38Data on trade intensity were taken from the Impact Assessment accompanying the “Commis-
sion Decision determining a list of sectors and subsectors which are deemed to be exposed to a sig-
nificant risk of carbon leakage pursuant to Article 10a (13) of Directive 2003/87/EC”, of September
4,2009. NACE is the statistical classification system of economic activities in the European Union.

27



equal to the IV estimate among all tax concerned plants i, a; = &ary7. For tax
unconcerned plants, we assume that treatment effects are zero because plants that
do not apply for a tax discount are less likely to change their energy consumption
in response to the tax itself. Finally, while all CCA plants are tax concerned by
definition, there may be tax concerned plants in the non-eligible group. We predict
the probability p; that plant i is of the tax concerned type, using the probit models
reported in columns 3 and 6 of Table 3. In computing the aggregate impact Ay, we
weight each plant’s impact by p; and its share in the aggregate prior to treatment,

1.€.

. i (pY;

Ay = (%1 Li (pi¥i2000)
Y. Yi 2000

According to this back-of-the-envelope calculation, had the CCL been applied to

)

all plants without rebates, it would have decreased aggregate energy expenditures
in manufacturing by at least 5.6% and aggregate electricity consumption by at least
13.4%.%

What do these estimates imply for the price elasticity of aggregate energy de-

1.15
1.03

than CCA plants, the implicit price elasticity of energy expenditures can be com-

—0.052
0.117

CCL is on the buyers of energy, this implies an upper bound on the price elasticity

mand? Given that, on average, CCL plants pay — 1 =11.7% more for energy

puted as Ngg = | | = 0.44. Under the assumption that the incidence of the

of energy demand equal to Ng = | —0.44 — 1| = 1.44.40 The elasticity of elec-
tricity demand can be computed in a similar fashion. Given that the CCL raised
the electricity price by 2:—‘2‘2 = 10.1% for the average manufacturing plant (cf. Ta-

ble 1), the tax differential between CCL plants and non-CCL plants is approxi-

mately 4% = 7.9%. Hence the elasticity of electricity demand is given by

—0.119
0.079

sample.

| = 1.51, which is slightly larger than the elasticity recovered in the ARD

Both numbers are at the upper end of elasticity estimates obtained in compa-

rable studies. For example, Bjorner and Jensen (2002) estimate the energy price

FRespectively, Agr = [exp(—0.095) — 1]-0.62 = —5.62% and Ag; = [exp(—0.226) — 1]-0.66 =
—13.35%.

40This assumption seems plausible given that fuel suppliers can easily switch between CCL and
CCA firms. To test this, we employ the IV regression framework to estimate the causal impact of
the introduction of the CCL on fuel prices exclusive of the tax. The results, reported in Table G.10
of the online appendix, suggest that producer prices of electricity and natural gas did not respond to
the introduction of the CCL. The point estimates for less commonly used solid and liquid fuels are
negative and larger in magnitude. This could indicate that suppliers of these fuels assumed part of
the tax incidence, but the estimates are not very precise.
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elasticity at 1.37 in the pooled cross-section and 0.50 in a fixed-effects specifica-
tion.*! The reader should bear in mind, however, that we recover an estimate of
a tax-induced price elasticity. Davis and Kilian (2011) argue that this is struc-
turally different from elasticity estimates based on other kinds of price variation
because taxes may be perceived as more persistent and hence induce larger behav-
ioral changes. They also point to a possible additional effect of media coverage
that accompanies the introduction of such taxes. Since the CCL was promoted as
the UK’s flagship regulation for mitigating climate change, there was ample scope
for such an effect of the CCL, and our comparatively large estimates do not speak
against this possibility.

Finally, notice that the IV point estimates are too large if we are underesti-
mating the share of compliers Pr(CCL = O[NEPER = 0). This possibility could
arise because we were not able to match all CCA facilities when information on
the business address or name was missing or wrong. In this case, the intent-to-
treat (ITT) parameter, or reduced-form coefficient, reported in column 5 of Ta-
ble 4, can provide a lower bound because it does not depend on the quality of
the CCA match. The ITT point estimates for energy expenditures and electric-
ity are -0.030 and -0.069, respectively. This translates into elasticity estimates of
]w — 1| = 1.25 for energy demand and \%| = 0.84 for elec-
tricity demand which are both somewhat lower than the bounds derived using the

simple approximation to the aggregate impact of the CCL.

6.3 The CCL and plant exit

The analysis so far has focused on how paying the full rate of the CCL affects
various outcome variables in surviving plants. Rather than adjusting energy use
and production at the intensive margin, there is a concern that firms might respond
to the CCL by closing down plants altogether or by re-locating to non-regulated
countries (“pollution havens”). After all, the substantial tax rebates granted un-
der the CCA are intended to prevent such extensive-margin adjustments by energy

intensive firms.*?

410Our OLS estimate in the difference equation implies an upper bound on the elasticity of 1.09
but — as we have argued above — this is biased towards zero if contracting firms select into CCAs.

421 oss of international competitiveness and carbon leakage have been used with some success
by industry to lobby against carbon taxes or carbon pricing more generally (see Martin, Mudls,
de Preux, and Wagner, 2013a, for the case of permit auctions in the EU ETS). Virtually all European
governments that levy taxes on energy use or carbon emissions (i.e. Denmark, Finland, Germany,
Netherlands, Sweden and the UK) have also granted exemptions or partial tax rebates to industries
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We examine this by constructing a dummy variable EXIT which equals 1 in
the year of exit (defined as the year following the last reported year) and O other-
wise. To avoid recording data set attrition as plant exit, we construct EXIT based
on the Interdepartmental Business Register (IDBR), which contains the universe of
business establishments in the UK and serves as the sampling frame for the ARD
and QFI data sets. If exit occurs in year ¢, the plant is removed from the sample
in subsequent years. Note that we cannot estimate the effect of the CCL on plant
exit decisions by substituting EXIT;; for the outcome variable in equation (2) be-
cause we do not know whether plants that exited in pre-treatment periods would
have received treatment or not.*> Instead, we propose an IV estimator that exploits
variation in pre-sample employment size. We define a dummy SMALL; which in-
dicates that employment at the plant was below the median in 1997. Using data

from 1998 onwards, we estimate the probit regression
Pr(EXIT; = 1) = ® (aCCL;y; + SMALLj 1997 +x;, B) . (6)

This allows for fixed differences in the exit propensity between small and large
plants and, since employment size and treatment status are strongly correlated (see
Table 2), SMALL may also, to a large extent, control for fixed heterogeneity be-
tween treatment and control groups. Moreover, we use the interaction of SMALL;
with a post-treatment dummy Iy;-5000) to instrument for CCL;. The idea behind
this is (i) to use the fact that size influenced the decision to participate in a CCA
and (ii) to rely on variation in size prior to our sample period so as to preserve the
exogeneity of the instrument. The estimated coefficient & has the interpretation of
a local average treatment effect (LATE).

Since all the information needed to estimate equation (6) is available from

carrying a high tax burden.

“If we assigned all plants that exit prior to treatment to the control group, the estimated treat-
ment effect would be biased. To see this, recall that the differences-in-differences estimator of an
exogenous treatment 7 is identified from the sample equivalent of the expression

o = EN|L=1T;=1]-E[Y|T;=1,T;, =0]
—E[Yit|Ti:0’Tit: 1]+E[Y[[|]—;’:O,T}[:O]

where T;; indicates the treatment period and 7; = 1 indicates that a plant belongs to the treat-
ment group. In the case of exit, by construction we have no exit in the treatment group, i.e.
E[EXIT,|T;=1,T, =0] = 0. As a consequence, even in the case of an exogenous exit proba-
bility p > 0 which is constant across plants and time periods (i.e. o = 0), this estimator is upwardly
biased, since d=p —0— (p —p) = p > 0. This problem is aggravated in the IV estimator as we
would falsely assign NEPER = 1 to some exiting plants that would have been listed in EPER had
they survived until 2001.
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Table 6: Exit regressions

() @ 3 “4)

Probit RF FS v
Plants subject to a 15% carbon tax () 059%** 0.000 0.018%%*%* -0.007
(CCL=1) or SMALL * 1{t>2000} (0.005) (0.002) (0.001) (0.084)
SMALL 0.036%** 0.037%#** -0.001***  (0.037%**

(0.001) (0.001) (0.000) (0.001)
Observations 679,240 679,240 679,240 679,240

Notes: The table reports the results of probit (column 1) and IV probit (column 4) regressions of exit at the local
unit level, along with reduced-form and first-stage regressions (columns 2 and 3, respectively). SMALL is a
dummy indicating that employment at the plant was below the median in 1997. Coefficients in columns 1 and 4
are reported in terms of marginal effects w.r.t the probability of exit, evaluated at the mean of the explanatory
variables. The sample period ranges from 1998 to 2004. All regressions include year dummies, age and age
squared. Standard errors are clustered at the local unit level. Asterisks indicate statistical significance at 10% (*),
at 5% (**) and at 1% (***).

the IDBR, we implement these regressions at the local unit level (see footnote 23
above). Table 6 reports the results from probit and IV probit models, along with the
corresponding reduced-form (RF) and first-stage (FS) results. In each of the exit
regressions, the coefficient on SMALL is positive and significant, confirming the
already well-documented empirical regularity that smaller firms are more likely to
exit. The simple probit model yields a positive and significant coefficient estimate
on CCL which implies a 5.9% increase of the exit probability at the average CCL
plant. Notice that this effect is not necessarily causal. In fact, the positive coeffi-
cient is consistent with a reverse-causality explanation according to which, plants
that anticipate to exit in the near future do not sign a CCA because the tax savings
this generates over the remaining lifetime of the plant do not cover the fixed costs
of certification to be paid upfront. Once we instrument for CCL status, the point
estimate becomes statistically insignificant, as foreshadowed by the insignificant
coefficient estimate on the instrument obtained in the reduced form. The first-stage
regression coefficients show that our instrument is strongly correlated with CCL
status. In sum, we find no evidence that the CCL had an impact on plant exit de-
cisions. This finding is robust to the inclusion of industry controls and to splitting
the sample by either energy or trade intensity as in Section 6.1 above.**

Our analysis has focused on exit decisions at the local unit level whereas the

bulk of the variables used in Section 5 are only available at a slightly higher level

4Table G.11 in the online appendix reports reduced-form and first-stage results for the robustness
checks. The coefficient estimates for the full sample with 2-digit sector dummies — reported in
columns 1 and 2 — are virtually identical to the ones in Table 6. When the sample is split by energy
or trade intensity — columns 2 through 5 — the coefficient estimates for the reduced form remain
unchanged and the first-stage estimates change only in insignificant ways.
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Table 7: CCL impact on employment at local units

(M ) 3) “4) ) (6) (M
All Energy intensity  Trade intensity Size
low high low high small  large

Plants subjecttoa 15%  -0.011  -0.027 0.013  -0.008 0.012  -0.120 0.056
carbon tax (CCL=1) (0.045)  (0.117) (0.042)  (0.064) (0.074) (0.074) (0.057)
Plants not eligible fora ~ 0.003 ~ 0.006 0.001  -0.004 0.016** 0.000 -0.014

3% carbon tax (0.005)  (0.008) (0.005) (0.007) (0.008) (0.006) (0.010)
(NEPER=1) * year diff

Observations 972,213 467,629 480,847 444,149 410,646 917,447 29,759
Plants 207,971 102,970 100,207 92,157 90,671 186,281 6,682

Notes: Columns display IV estimates of the impact of the CCL on log employment at the local unit level for different
samples. The dependent variable is first-differenced from 1996 until 2000 and differenced at various intervals
thereafter. NEPER is a dummy variable that equals one if a facility is not on the EPER list. Energy and trade intensity
samples are split according to the median defined at the 3-digit and 4-digit sector level, respectively, in 1999 or 2000.
Size is defined based on employment at the respondent unit, those with 250 employees or less in 2000 or 1999
qualified as small. All regressions include age, age squared, year dummies, a full set of region-by-year and 3-digit
sector-by-year dummies. Robust standard errors reported in parenthesis are clustered at the plant level. Asterisks
indicate statistical significance at 10% (*), at 5% (**) and at 1% (***).

of aggregation (the ‘reporting unit’ or ‘plant’). Since employment (and only em-
ployment) is available at both levels of aggregation, we re-estimate a version of
equation (2) using employment data at the local unit level in order to verify that
the results obtained at the reporting unit level are robust. Table 7 reports estimates
of the CCL impact on employment in the full sample and when the sample is split
according to energy and trade intensities, or size (defined as above at the reporting
unit level). Our preferred specification includes a trend coefficient for the treatment
group (NEPER*year diff) because we find it to be statistically significant for the
high trade intensity group.*> As before, we do not find evidence of a detrimental

effect of the CCL on employment, regardless of which way the data are cut.

7 Conclusion

There is a growing consensus that climate policy should aim to regulate GHG emis-
sions efficiently across a broad range of economic sectors. While curbing industrial
emissions must be an integral part of any such policy, there is surprisingly little em-
pirical evidence on the impacts of large-scale regulations of industrial GHG emis-
sions — let alone using market-based instruments. In this paper we have provided
the first micro-econometric evaluation of a carbon tax on the manufacturing sec-

tor. Unlike simulation-based evaluations, our approach does not require making

431f we had a panel of year-to-year changes only (i.e. year diff=1), the trend would be the coeffi-
cient on a time-invariant NEPER dummy. See online appendix C for details.
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assumptions about counterfactual — “baseline” — trends in the outcome variable of
interest. Instead, we compare changes in outcomes both over time and between
plants that were subject to different tax rates. The “baseline” is hence given by the
contemporaneous outcomes of plants that faced lower tax rates by virtue of being
in a CCA. Our estimates of the impact of the CCL are thus purged of confounding
factors that affect plant performance at the level of the economy, the region and the
sector. Since we also control for self-selection into CCAs by exploiting exogenous
variation in CCA eligibility rules, we interpret our estimates as the causal effect of
the CCL on plant outcomes.

We find robust evidence that the price incentive provided by the CCL led to
larger reductions in energy intensity and electricity use than the energy efficiency
or consumption targets agreed under the CCA. The tax discount granted to CCA
plants has been justified as a means of preventing energy intensive firms from losing
competitiveness in international product markets due to the unilateral implementa-
tion of the tax and to the lack of international harmonization. Although this has
been widely argued, we find no discernible impact on employment, gross output or
productivity across groups, and we cannot reject the hypothesis that the CCL had
no impact on plant exit.

Our results show that the introduction of a moderate tax on energy encourages
electricity conservation and helps to reduce energy intensity in the manufacturing
sector. This is in contrast to previous research that attributed substantial carbon
savings to the CCA scheme on the basis of comparisons with counterfactual base-
line emissions (Ekins and Etheridge, 2006; Barker et al., 2007; AEAT, 2004).46
While our research design arguably produces a more credible estimate of the effect
of the CCL, it is clear that this effect is additional to any effect the CCA targets
may have had on firm behavior.

Our study constitutes a first step towards building an evidence base that informs
policymakers about the impacts of climate change policies on industry. As more
such policies are being implemented across countries, and as business microdata
are becoming more abundant and easier to access, we expect that researchers will

exploit the variation in policies and institutional settings to make important contri-

46This finding contrasts as well with results obtained by Bjorner and Jensen (2002) who in-
vestigate the consequences of a similar policy package in Denmark and obtain a positive effect of
negotiated agreements on energy efficiency. Apart from institutional differences between the British
and the Danish policy packages, the discrepancy might be owed to differences in the research de-
sign as these authors do not control for selection into negotiated agreements based on time-varying
unobservables.
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butions to this evidence base. In the context of climate change policy in the UK,
there are several issues that deserve attention in future research. First, it seems
important to gain a better understanding of how plants achieved the substantial
reductions in energy use that we measure. This will require gathering more qual-
itative information on the key drivers of energy conservation — be they technical,
economic or managerial. This information could lead to the design of more sophis-
ticated policy instruments. From a political economy point-of-view, an analysis of
the bargaining over CCA targets and of compliance behaviour of individual CCA
facilities will provide valuable insights regarding the design of negotiated agree-
ments. Finally, given the long-term nature of climate change, an important open
question is whether a moderate energy tax such as the CCL can stimulate much-

needed innovation to bring about substantial carbon reductions in the future.
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Online Appendix

A Further background on the CCL package

The CCL and CCAs constitute the single-most important policy package that the
UK has implemented unilaterally in order to achieve not only the Kyoto’s objec-
tives but also the more ambitious goals established by the Blair administration.
By official estimates, combined carbon savings from the CCL and CCAs would
amount to 6.6 megatonnes of carbon (MtC) in 2010, making these policies the top
contributors towards a total reduction of 20.8 MtC projected by the UK Climate
Change Programme 2006 (HM Government, 2006).!

The CCL is a per unit tax payable at the time of supply to industrial and com-
mercial users of energy. Energy tax rates vary substantially across fuel types, rang-
ing from 6.1% on coal to 16.5% on natural gas. In parallel, the UK government
set up a scheme of negotiated agreements, the CCAs, in order to mitigate possible
adverse effects of the CCL on the competitiveness of energy intensive industries.
By participating in a CCA, facilities in certain energy intensive sectors can reduce
their tax liability by 80% provided that they adopt a binding target on their energy
use or carbon emissions. The CCL was first mentioned in the 1999 Budget speech,
yet the criteria defining the CCL and CCAs were legally established only in the
Financial Act in 2000, a year before the policies were implemented.

Targets were negotiated at two levels. In an ‘umbrella agreement’, the sector
association and the government — represented by the Department for Environment,
Food, and Rural Affairs (DEFRA) — agreed upon a sector-wide target for energy
use or carbon emissions in 2010 and on interim targets for each two-year ‘milestone
period’ (i.e. 2002, 2004, 2006, 2008).2 At a lower level, ‘underlying agreements’
stipulate a specific reduction to be achieved by a ‘target unit’, i.e. a facility or group
of facilities in a sector with an umbrella agreement. DEFRA originally negotiated
44 umbrella agreements with different industrial sectors, including the ten most
energy intensive ones (aluminium, cement, ceramics, chemicals, food and drink,
foundries, glass, non-ferrous metals, paper, and steel).> While most sector associ-

!Only the second phase of the EU ETS is expected to bring larger carbon savings.

%Sector definitions used in the umbrella agreements rarely coincide with common economic
classification systems.

3Since 2008 CCAs are administered by the newly created Department of Energy and Climate
Change (DECC).



ations have chosen relative targets for energy, absolute targets were negotiated for
the aerospace, steel, supermarkets and wall coverings sectors. Carbon targets were
negotiated for the aluminium and packaging (including metal packaging) sectors.

DEFRA hired the consultancy AEA Technology plc. (AEAT) for independent
advice on and practical assistance with the negotiation of the targets.* AEAT had
previously conducted assessments of the potential for energy efficiency improve-
ments in a number of energy intensive sectors which had been commissioned by
DEFRA’s Global Atmospheric Division (GAD). The 1999 GAD assessment com-
prised a “business as usual” scenario and an “all cost effective” scenario. In the
latter, firms were assumed to implement all efficiency enhancing measures — in-
cluding operational changes, low-cost retro-fit measures, major plant investments,
and combined heat and power — which were cost effective without placing restric-
tions on the availability of management time and capital. Sector targets were set in
such a way that they would, on average, close 60% of the gap between the “business
as usual” and “all cost effective” scenarios (AEAT, 2001).

At the end of each milestone period, the sector associations reported to DEFRA
whether the sector-wide target had been met. Only if a sector-wide target had been
missed did DEFRA verify compliance at the target unit level. A facility that was
found in non-compliance was not re-certified for the reduced rate in the following
milestone period. If the facility missed the 2010 target it faced the threat to re-
pay all rebates on the levy it had accumulated in previous periods. However, CCA
participants that did not meet their target could attain compliance by buying emis-
sion allowances on the UK Emissions Trading Scheme (UK ETS), a carbon market
that was operational between 2002 and 2006. Conversely, excess carbon or energy
reductions could be sold in the UK ETS or ring-fenced (banked) for use towards
future targets. All transfers of permits from the relative sector to the absolute sector
are subject to approval by the authority according to a gateway mechanism which
only allows such transfers provided that there is no net aggregate flow of permits
from the relative sector to the absolute sector. Smith and Swierzbinski (2007) note
that the Gateway was open since the beginning of the scheme due to surplus al-
lowances from so-called direct participants who opted into the UK ETS.

Revenue from the CCL is, to a large extent, recycled back into industry in the
form of a 0.3% reduction of the employers’ share of National Insurance Contri-
butions (NIC). A small part of the revenues are diverted to the Carbon Trust, an
institution set up by the government to foster research and development into en-
ergy efficiency schemes and renewable energy resources. Since all firms benefitted
from the NIC reduction and from the Carbon Trust, the revenue recycling did not
differentially affect CCL and CCA firms. Therefore, we only exploit the policy-
induced variation in energy prices to identify the tax effect.

4To be precise, the CCAs were handled by a consultancy owned by AEA Technology called
ETSU (now Future Energy Solutions).
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B CCA eligibility, participation, costs and revenues

B.1 Eligibility

In order to be eligible for a CCA, a plant must carry out at least one qualifying
activity. These qualifying activities were listed in Part 1 of Schedule 1 to the
PPC Regulations 2000, which transpose the European IPCC directive into national
law. Specifically, the regulations apply to Energy Industries (Combustion Activi-
ties, Gasification, Liquefaction and Refining Activities), Production and Process-
ing of Metals (Ferrous Metals, Non-Ferrous Metals, Surface Treating Metals and
Plastic Materials), Mineral Industries (Production of Cement and Lime Activities
Involving Asbestos, Manufacturing Glass and Glass Fibre, Production of Other
Mineral Fibres, Other Mineral Activities, Ceramic Production), Chemical Industry
(Organic Chemicals, Inorganic Chemicals, Chemical Fertiliser Production, Plant
Health Products and Biocides, Pharmaceutical Production, Explosives Production,
Manufacturing Activities Involving Carbon Disulphide or Ammonia, Storage of
Chemicals in Bulk), Waste Management (Disposal of Waste by Incineration, Dis-
posal of Waste by Landfill, Disposal of Waste other than by Incineration or Land-
fill, Recovery of Waste, Production of Fuel from Waste), Other Activities (Paper,
Pulp and Board Manufacturing Activities, Carbon Activities, Tar and Bitumen Ac-
tivities, Coating Activities, Printing and Textile Treatments, The Manufacture of
Dyestuffs, Printing Ink and Coating Materials, Timber Activities, Activities Involv-
ing Rubber, The Treatment of Animal and Vegetable Matter and Food Industries,
Intensive Farming).

B.2 Participation and take up

This subsection examines participation in the CCA more closely, as this is the
principal source of variation we are using in the analysis. Table B.1 presents the
underlying statistics pertaining to CCA participation separately for each 2-digit
industry. Column 1 displays the proportion of plants that participate in a CCA while
column 2 reports the proportion of plants that are eligible for CCA participation
according to the EPER list (NEPER=0). Due to the size thresholds applied in
the construction of this variable, some eligible plants are not on the EPER list
and hence, the take-up rate reported in column 3 is not a simple ratio between the
numbers reported in the first two columns. For instance, 31% of the plants in sector
15 participated in a CCA although only 5% are eligible according to the EPER list.
This means that most of the plants in this industry are too small to be on the EPER
list. The reported take-up rate of 89% is based on a formula that includes both
CCA plants erroneously reported as ineligible as well as eligible plants that pay the
CCL:
#{CCA =1}

#{CCA =1} +#{CCA=0,EPER =1}

It is evident that take-up rates vary widely across industries. Although CCA

TUI =

(B.1)
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participation comes with the benefit of a lower liability, not all eligible plants
choose to participate. We conjecture that the principal economic reason for this
is that the benefits of participating fall short of the costs. As reported in column
4, some sectors (18, 29, 30, 33, 36 and 37) that are eligible on the basis of their
PPC coverage do not have umbrella agreements in any of the 4-digit sub-sectors.”
Presumably this happens if the costs of arranging such an agreement outweigh the
benefits for the members of a sector. Yet even when a sector agreement is in place,
participation may be too costly for some plants. On the one hand, the necessary
administrative effort relating to measurements, negotiation, and certification con-
stitutes a fixed costs of participation, as does the membership fee in the sector
association that administers the sector CCA. On the other hand, compliance with
the CCA target may be costly as well.

Equation (B.1) is imprecise in that it neglects eligible plants that are neither in
a CCA nor on the EPER list. Because of the size threshold in the definition of the
EPER variable, these are likely to be low-emission plants in the same industries
as the EPER plants. We identify “small” plants in each 4-digit industry as those
smaller than a minimum size s which we take to be the smallest EPER plant. We
use both employment and gross output as a measure of size, denoted by s. Using
this notation, we propose two ways in which to account for small eligible plants in
the estimation of the take-up rates.

1. We assume that all the plants below the sector’s threshold, s < s, are eligible,
leading to an estimated take-up rate given by

#{CCA=1|s <s}

TU2 =
#{s <s}

(B.2)

This will likely underestimate the true take-up rate as not all the firms below
the threshold are eligible.

2. We assume that the proportion of eligible plants are identical on either side
of the size threshold and calculate the take-up rate as

#{CCA =1|s < s}

#{s <s}- #—{iﬁ’;’;l} '

TU3 = (B.3)

Notice that this implies that the take-up rate can be larger than 100%.

Table B.2 reports the estimated take-up rates following definitions (B.2) and (B.3)
at the 2-digit SIC level. In general, these take-up rates are much lower than the
take-up rates computed previously. Many of them are zero which is consistent with

>These sectors have positive CCA participation rates nonetheless. We have looked at those
cases and found that this happens when the main SIC code of a plant does not coincide with that
of the industry association they are associated with. For instance, plants active in the furniture
industry (SIC 31) or in the orthopedic industry (SIC 32) are part of the Foundry CCA, or the Surface
Engineering CCA, respectively.



the notion that the fixed cost of joining a CCA are relatively higher for small firms
and thus may outweigh the benefits.

Next, we examine the determinants of CCA take up in more detail. To this
end, we estimate partial correlations of plant characteristics with CCA participa-
tion after controlling for eligibility. The first two columns of Table B.3 report the
results of this exercise, which point to both size and energy intensities as the main
determinants of take up among eligible plants. The remaining two columns report
regressions of the proportion of eligible firms on the proportion of CCA firms in
a 4-digit industry, controlling for the same characteristics. Again, energy intensity
and size are principal determinants of CCA participation. Table B.4 shows the re-
sults of similar regressions where the sample is restricted to eligible plants only.
Energy intensity remains the most important determinant of take up both at the
plant level and at the 4-digit sector level. In sum, these results are consistent with
a cost-benefit reasoning driving take-up rates, as larger and more energy-intensive
plants benefit most from the 80% discount on the energy tax rate.

C Estimation equations

Baseline model with linear sector and region trends Consider the level equa-
tion for energy consumption (y;;)

yir = const + 0Ty + SiBs+1- S Bs+ M+ & +vir (C.1)

where Tj; is the treatment indicator (being subject to the CCL from 2001), S; is a
vector of sector dummies (region dummies are analogous), 1); is a plant fixed effect
in the level of energy consumption, & is a year effect and v;, is the disturbance.
Relabeling the year 2000 so that 7 = 0 and normalizing &y = 0 yields

yio = const + S\Bs +Mi +vio
and the level-r difference is given by
Yie = Yio = 0Ty +1 - SiBs + & +vie — vio.
Similarly, we derive the pre-treatment difference

Yio —Yi—-1 = S/ﬁs—ﬁ—l +Vvio—Vi-1.

vi
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Table B.3: Determinants of CCA participation

@) @ (©) ©)
Plant level 4-digit SIC level
EPER 0.028 0.238%** 2.755%* 0.324*
(0.272) (0.032) (1.357) (0.195)
In(employment) -0.010 -0.010 -0.085**  -0.073**
(0.012) (0.011) (0.040) (0.036)
In(employment) 0.002 0.347*
* EPER (0.051) (0.188)

In(energy intensity) — 0.110***  (.107*** 0.135%** (. 136%**
(0.007) (0.007) (0.028) (0.025)

In(energy intensity) -0.019 0.042
* EPER (0.033) (0.125)
In(gross output) 0.039%**  (0.040%** 0.087*  0.132%**
(0.012) (0.012) (0.049) (0.047)
In(gross output) 0.033 0.558%*
* EPER (0.071) (0.253)
In(material) 0.038%**  (.037*** 0.017 -0.042
(0.007) (0.007) (0.039) (0.036)
In(material) -0.022 -0.956%**
* EPER (0.053) (0.291)
constant -0.018 -0.034 0.100 0.169
(0.042) (0.042) (0.223) (0.179)
R2 0.211 0.211 0.432 0.387
Observations/Sectors 4,309 215

Table B.4: Determinants of CCA participation among eligible plants

M 2 3) “4)
Firm-level
In(energy intensity) ~ 0.078***  (0.095%**  (.095%%* (.091%**
(0.028) (0.027) (0.027)  (0.033)

In(gross output) 0.082%**  0.089**  0.072

(0.021) (0.042)  (0.071)

In(employment) -0.009  -0.008

(0.050)  (0.050)

In(capital) 0.016

(0.053)

constant 0.876%** 0.029 0.014 0.010

(0.108) (0.250) (0.269)  (0.271)

R2 0.028 0.086 0.086 0.086
Observations 255

4-digit SIC level
In(energy intensity) ~ 0.095**  0.099%*  0.104*** 0.106**
(0.039) (0.039) (0.039)  (0.049)

In(gross output) 0.079%**  0.116* 0.125
(0.021) (0.059)  (0.111)

In(employment) -0.049  -0.050
(0.074)  (0.075)

In(capital) -0.008
(0.081)

constant 0.898***  -0.023 -0.108  -0.107
(0.154) (0.297) (0.337) (0.339)

R2 0.047 0.144 0.148 0.148

Sectors 98

viil



Based on this, we obtain the stacked equations used in the regression:

Yio — Vi1 0 S —&1 Vi) — Vi1
Yil = Yio T; Si &1 Vil — Vio
yo—yio |=al| Ti | +Bs| 25 |+ & + | vi—vio
Yi3 — Yio T; 3S; & Vi3 = Vio
Yid — Yio T; 4S; &4 Via — Vio
(C.2)

Time-varying treatment effect Suppose now that the effect of the treatment (o)
is allowed to vary in each post-treatment period as in

Vit = const—l—atTit+S§ES+I-S§ﬁS+ni—I—§t+vit. (C.3)
Then the difference equation is given by
Yie = yio = 04Ty +1 - SBs + & +vir — vio

and the stacked equations take the form

Yio — Yi—1 0 S -6 Vio — Vi—1

Yil = Yio o T; Si &1 Vil = Vio

yo—yo |=| ®T; | +Bs| 285 |+ & + 1 vi—vio

Vi3 = Yio o3 T; 3S; &3 Vi3 —Vio

Yid — Yio oy T; 4S; &4 Via —Vio
(C4)

Unobserved trends in the treatment group Suppose there is an unobserved lin-
ear trend (0) that differs systematically between treated and non-treated plants, i.e.

yir = const + Ty + S)Bs+1 - SiBs + Ni+ 8t - Ty + & + vig (C.5)

The stacked differenced equations take the form

Yio — Vi—1 0 Si T; —&1 Vio — Vi1
Yit = Yio T; Si T; &1 Vil — Vio
yo—Yo |=a| T [+Bs| 25 |+6| 2T; |+ & +1 vi—vio
Yi3 = Yio T; 3S; 3T; & Vi3 = Vio
Yi4 = Yio T; 4S; 4T; &4 Vid = Vio

(C.6)

In the IV estimation, we use Z; and 7Z; as instrumental variables for 7; and ¢7;,
respectively.

X



D Average treatment effect on the non-treated

This appendix formally shows that our IV estimator identifies the average treatment
effect on the non-treated plants (ATNT). Following the programme evaluation lit-
erature, we write the outcome y for plant i as

yi=CCL;(Z;)-yi(1) +[1 = CCL; (Z;)] - yi (0)

where y; (1) is the realization of an outcome variable (e.g. energy consumption) if
plant i pays the full tax rate and y; (0) if it receives a discount. CCL; (Z;) is plant i’s
treatment status if the instrumental variable takes on the value Z;.

D.1 Perfectly observed eligibility

Consider first the case of an instrument Z = NPPC that perfectly tracks eligibility
for the tax discount; i.e. NPPC; = 1 if firm i is not regulated by the PPC act. The
numerator of the IV estimator becomes

E{yi|Zi: 1}—E{yi|Zi:0}. (Dl)
Since CCL; (1) = 1 and Z; is independent of y; (1) we have that
E{yilzi=1} =E{yi(1)} = E{yi(1)|Z; = 0} (D.2)
and

E{y,’|Zl’ = 0} = E{yi(l) |CCL,' = I,Zi = O}PI’(CCL,‘ = 1|Zi = O)
+E{y;(0)|CCL; = 0,Z; = 0} Pr (CCL; = 0|Z; = 0).(D.3)

Using both expressions, we can re-write equation (D.1) as

E{yl"Zi = 1}—E{y,~\Zi = 0} :E{yi (1) — Vi (0) ’CCLZ' = O,Zi = O}PI‘(CCLi = O‘Zi = 0)
The denominator becomes

E{CCL;(1)|Z; =1} —E{CCL; (0)|Zi=0} = 1—Pr(CCL; =1|Z; =0)
Pr (CCL,' = O|Z,' = 0) .

Hence the IV estimator identifies
E{yi(1) =i (0)|CCL; = 0,Z; = 0} = E {y: (1) —y; (0) |CCL; = 0}

1.e. the average treatment effect for the plants that choose to pay the discounted tax
rate when eligible. Given that all treated plants with Z; = 1 pay the full CCL rate,



this corresponds to the average treatment effect on the non-treated.®

D.2 Imperfectly observed eligibility

In practice we do not observe NPPC but only Z; = NEPER;. What does this imply
for the IV estimator? The numerator becomes

E{yilZi=1} —E{yi|Zi=0} = E{i|lZi=1,Zi=1}Pr(Z;=1|Z;=1)
+E{yilZi=1,Zi=0}Pr(Z;=0|Z;=1)
—E{yi|Zi:O,Zi:O}
= E{yi(1)}Pr(Z;=1|Z;=1) (D.4)
—E{yi|Zi=0}[1-Pr(Z;=0[Zi=1)]
= (E{yi(1)} —E{yilZi=0})Pr(Z; =1|Z;=1)

where the second equality follows because firms with Z; = 1 are always taxed and

E{yi(1)|Zi=1,Zi=1} =E{yi(1)}

because of independence. Moreover, we assume that there are no systematic differ-
ences between non-treated plants in EPER in terms of outcomes or “tax concerned-
ness” compared to non-treated plants not in EPER, i.e.

E{yilZi=0,Z;=0} =E{yi|Zi=1,Z;=0} = E{y;|Z = 0} (D.5)

Pr(CCL; =0|Z; =0,Z; =0) =Pr(CCL; = 0|Z; = 1,Z; = 0) =Pr (CCL; = 0|Z; = 0)
(D.6)
Using (D.2), (D.3) and D.5 we can re-write (D.4) to get

E{yi‘ZiZI}—E{yi’ZiZO} = E{yi(l)—yi(())’CCL,‘ZO,ZZ‘:O} (D7)
Pr(CCL; =0|Z;=0)-P(Z;=1{Z;=1).

Regarding the denominator, note that using (D.6) we can write
E{CCL|Zi=1} = 1-Pr(Z =0|Z;=1)Pr(CCL;=0|Z;=0)
= 1-[1-Pr(Z=1Z=1)]Pr(CCL; =0|Z; = 0)

1 —-Pr(CCL; =0|Z; = 0)
+Pr(Z; =1|Z; = 1) Pr(CCL; = 0|Z; = 0) (D.8)

6Similarly, Bloom (1984) showed that the Wald estimator identifies the average treatment effect
on the treated (ATT) even in the presence of heterogeneous treatment effects, provided that there
are no “always takers”. In our application, there are no “never takers” because plants not eligible
for the tax discount cannot escape treatment (paying the CCL).
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and

E{CCLi|Zi=0} = Pr(CCL;=1|Z;=0)
1 —Pr(CCL; =0|Z; = 0) (D.9)

so that

E{CCL;i|Zi=1} —E{CCL{|Z; =0} = Pr (Z; = 1|Z; = 1) Pr (CCL; = 0|Z; = 0)
(D.10)
Upon dividing equation (D.7) by (D.10) we again obtain the ATNT.
Finally, consider an alternative instrumentZ! = Z; - CCL;, which perfectly pre-
dicts eligibility for all plants that do not pay the full levy. By definition of Z we
have that

P(Z/=1|CCL;=0,:=0)=0 = P(Z,=1,CCL;=0,Z=0) =0
P(Z =0|CCL;=0,Z;=0) =1 = P(Z =0,CCL; =0,Z; = 0) #0.
It follows that P (CCL; = 0|Z; = 1,Z; =0) = 0 and P (CCL; = 0|Z/ = 0,Z; = 0) #

0. We do not use the alternative instrument Z~l’ because it violates condition (D.6)
and hence would not identify the ATNT.

E Energy price effects in Cournot oligopoly

This appendix develops a simple equilibrium model capable of generating the firm
responses to energy price increases which we observe in the data. We focus on an
oligopoly setting where N identical firms compete in quantities.

Technology

Firms produce output using a (short-run) CES production

o—1 o—1

q=f(z1,22) = (0621"+(1—0€)Z2" )Gl o€ (0,1)U(l,e0)  (E.D)

with factors energy (z;) and labor (z2).” This technology exhibits constant returns
to scale and gives rise to the linear homogenous cost function

c(wi,wa,q) = q- (Oc"w}_(r +(1— a)cwé_c) =o (E.2)
= q-c(w). (E.3)

"Recall the three limiting cases for CES: for ¢ — 0 the technology is Leontief, for ¢ — 1we get
Cobb-Douglas and for o — oo the technology is linear.
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The conditional demand functions are given by

21(#,q) = q(“c( )> , zﬁwq)zq(w) . (B4

wi

Cournot-Nash Equilibrium

Firm i chooses its output g; taking as given output choices g_; by all other firms so
as to maximize the profit function

7i(qi,q-i) = p(Q)qi — c(W)q; (E.5)

where inverse-demand is assumed to be a linear function

p=a—-bQ=a—b) g (E.6)
i
In Cournot-Nash equilibrium, firms produce output g = ?&i(&)) , market price is
given by p = a+1\1[\:f§W) and firm revenue by
- -2
2
a“+ (N —1)ac(w) —Nc(w
pg— @ N = Dacl) —NeG) )
(N+1)°D
Energy expenditures are given by
-0 - —\\O
wi % (a—c(w)) (ac(w))
= E.8
w1zl bINT 1) (E.8)
and as a share in revenue
-0 —\\1—0
o
WA _ (e p). (@) (E.9)
Pq a+Nc(w)

Numerical simulations

We simulate the model for N = 10 firms with substitution elasticity o = 2 and en-

ergy share parameter @ = 0.2, 1.e. ¢ = (0.2z1_1 + O.8z2_1)2. Figure E.1 shows how
the various variables of interest change as the energy price w; increases from 0 to 1,
while holding the wage rate fixed at w, = 0.5. The energy price responses apparent
in the figure are qualitatively very similar to our empirical findings: As the energy
price w; increases (i) firms substitute labor for energy and reduce energy consump-
tion, (ii) both revenue and total costs increase, (iii) energy expenditures decrease
(though they initially increase for very low values of wy), (iv) energy expenditures
also falls was a share of revenue, and (v) the elasticity of the energy expenditure
share in revenue is larger (in absolute terms) than that of energy expenditures.
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Figure E.1: Cournot oligpoly (N = 10) with high substitutability (¢ = 2)

(a) Revenue, Costs and Profits
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Figure E.2: Cournot oligopoly (N = 10) with low substitutability (¢ = %)

(a) Revenue, Costs and Profits (b) Energy Expenditures
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Which of our assumptions are critical for these results? The results for energy
expenditures critically depend on the high degree of substitutability between input
factors (a 1% increase in the relative energy price decreases the energy-to-labor
ratio by 2%). If substitution possibilities are more limited, energy expenditures
increase with energy prices, as is displayed in Figure E.2 for 0 = 0.5. A larger
factor share of energy works in the same direction.

In contrast, our assumptions about market structure seem to play only a limited
role. Figure E.3 shows that increasing the number of firms to N = 10,000 does
not change the qualitative results obtained in Figure E.1 (except that profits are
much closer to zero). The monopoly case (N = 1) constitutes an exception, since
revenue falls with w; and hence observations (ii) and (v) are not true anymore.
This is because the monopolist fully internalizes the effect of reduced output on
profits and therefore reduces output by less than the oligopolists. The resulting
price increase does not offset the effect of the output reduction on revenue.
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Figure E.3: Near-competitive Cournot oligpoly (N = 10,000) with high substi-
tutability (o = 2)
(a) Revenue, Costs and Profits (b) Energy Elasticities
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F The treatment effect over time

The time profile of the treatment effect is of interest because it can reveal a possible
time delay in plants’ responses to the treatment, or whether the treatment effect dies
off after a while. We estimate the time profile by interacting the CCL variable with
dummy variables for post-treatment years 2001-2004 and substituting them for the
simple treatment dummy in the regression equation (2).

Table F.1 displays the annual treatment coefficients for the ARD variables. For
energy intensity the negative CCL impact is present from 2001 onwards. The dif-
ferences in point estimates for different years are well within the margins of sam-
pling error. The coefficients on energy expenditures, gross output and employment
have the same signs as in Table 4 in the main text, and they are statistically signifi-
cant in 2001, the first year of treatment.® The point estimates in later years always
have the same sign but lack statistical significance. Again, there is no statistically
significant effect of the CCL on TFP.

Table F.2 displays the time profile of treatment effects in the energy quantity
regressions based on QFI data. The effect on electricity consumption is always
negative but becomes statistically significant only after 2001. For natural gas we
find a significant positive effect in 2001. However, one concern with this result is
that there are a number of plants reporting no consumption of natural gas at least in
some of our sample years. Because we are looking at differences in logs in Table
F.2, plants that reduce their consumption of gas all the way to zero drop out of
the sample, causing left-censoring. If such non-marginal adjustments are more fre-
quent among treated firms than untreated firms, they can result in the estimation of
a spurious positive effect. To guard against this possibility, we transform the con-

8The point estimate for employment is statistically significant at the 10% level, the others at 5%.
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Table F.1: CCL impact by year - ARD outcome variables

(€] () 3) “4)
. Obs./
Dependent variables Year OLS RF v Plants
Energy share in gross 2001 -0.025* -0.073%**  -0.194*** 16,876
output (0.014) (0.020) (0.056) 6,886
2002 -0.013 -0.053* -0.172%%*
Aln(EE/GO) (0.017) (0.028) (0.085)
2003 -0.012 -0.041 -0.155
(0.021) (0.034) (0.111)
2004 -0.048%* -0.055 -0.206
(0.024) (0.040) (0.143)
Energy share in var 2001 -0.020 -0.072%%*  -0.192*** 16,876
costs ' (0.013) (0.020) (0.056) 6,886
2002 -0.022 -0.067** -0.216%*
Aln(EE/VCost) (0.016) (0.028) (0.086)
2003 -0.023 -0.057* -0.209*
(0.019) (0.034) (0.112)
2004 -0.049%* -0.070* -0.265*
(0.023) (0.039) (0.141)
2001 -0.022 -0.039%** -0.099%%* 16,876
Energy expenditure (0.014) (0.019) (0.050) 6,886
2002 -0.007 -0.009 -0.049
Aln(EE) (0.017) (0.027) (0.078)
2003 -0.013 -0.018 -0.084
(0.019) (0.029) (0.094)
2004 -0.038* -0.056 -0.191
(0.023) (0.037) (0.132)
2001 0.003 0.034%* 0.094%* 16,876
Real gross output (0.009) (0.015) (0.040) 6,886
2002 0.005 0.044%* 0.124*
Aln(Real GO) (0.014) (0.021) (0.063)
2003 0.000 0.023 0.072
(0.017) (0.025) (0.084)
2004 0.009 -0.001 0.014
(0.021) (0.034) (0.121)
2001 0.012 0.028* 0.079** 16,876
Employment (0.013) (0.015) (0.039) 6,886
2002 0.002 0.032* 0.095
Aln(L) (0.013) (0.019) (0.058)
2003 0.002 0.040 0.113
(0.016) (0.033) (0.100)
2004 0.024 -0.004 0.011
(0.020) (0.032) (0.112)
Total factor 2001 0.003 0.010 0.028 16,810
h (0.007) (0.009) (0.025) 6,851
productivity
2002 0.001 0.005 0.009
Aln(GO) (0.008) (0.014) (0.041)
2003 -0.003 -0.010 -0.033
(0.010) (0.015) (0.050)
2004 0.005 -0.013 -0.046

(0.011) (0.019) (0.068)

Notes: Column 1 displays the OLS coefficient on the treatment variable interacted with dummies for
post-treatment years. Column 2 displays the OLS coefficient on the instrumental variable (and year
interactions) in the reduced form, and column 3 displays the 2SLS coefficient on the treatment variable
(and year interactions). Column 4 reports the number of observations and plants. Dependent variables
are first-differenced from 1997 until 2000 and differenced at various intervals thereafter (A). All
regressions include age, age squared, and control for year, region and 3-digit industry effects. The total
factor productivity regressions also control for labor, capital stock, and for expenditures on materials
and energy. Robust standard errors reported in parenthesis are clustered at the plant level. Asterisks
indicate statistical significance at 10% (*), at 5% (**) and at 1% (***).
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Table F.2: CCL impact by year - QFI outcome variables

M (@) 3 “
. Obs./
Dependent variables Year OLS RF v
Plants
2001 -0.022 -0.012 -0.039 4,587
Electricity (0.019) (0.033) (0.096) 1,079
2002 -0.034 -0.096***  -0.320%**
Aln(El) (0.025) (0.036) (0.137)
2003 -0.037 -0.119%**  -.0.407**
(0.035) (0.046) (0.186)
2004 -0.051 -0.093 -0.386%*
(0.0406) (0.058) (0.230)
2001 0.009 0.111%* 0.308%* 3,748
Natural gas (0.036) (0.050) (0.155) 908
2002 -0.092%* -0.004 0.006
Aln(Gas) (0.045) (0.063) (0.186)
2003 -0.088 0.008 0.051
(0.057) (0.080) (0.270)
2004 -0.098 0.058 0.204
(0.076) (0.104) (0.425)
2001 -0.007 -0.006 -0.017 4,587
Solid fuels share (0.004) (0.009) (0.027) 1,079
2002 -0.001 0.017 0.052
A(So/kWh) (0.005) (0.015) (0.047)
2003 -0.004 0.003 0.021
(0.006) (0.011) (0.036)
2004 0.001 0.026%* 0.088*
(0.007) (0.014) (0.052)
2001 -0.077***  0.040 0.116 4,587
Total kWh (0.025) (0.042) (0.127) 1,079
2002 -0.138%**  -0.007 -0.037
Aln(kWh) (0.034) (0.057) (0.169)
2003 -0.123***  -0.108* -0.317*
(0.044) (0.056) (0.183)
2004 -0.083 0.039 0.059
(0.054) (0.069) (0.239)
2001 -0.052*** 0.030 0.086 4,587
CO2 emissions (0.020) (0.036) (0.107) 1,079
2002 -0.094%**  -0.037 -0.134
Aln(CO2) (0.026) (0.040) (0.118)

2003 -0.084%*  _0.119%*  -0.370%*
(0.035) (0.048) (0.171)

2004 -0.071 -0.011 0.112
(0.045) (0.057) (0.195)

Notes: Column 1 displays the OLS coefficient on the treatment variable interacted with dummies for
post-treatment years. Column 2 displays the OLS coefficient on the instrumental variable (and year
interactions) in the reduced form, and column 3 displays the 2SLS coefficient on the treatment
variable (and year interactions). Column 4 reports the number of observations and plants. Dependent
variables are first-differenced from 1997 until 2000 and differenced at various intervals thereafter (A).
All regressions include age, age squared, and control for year, region and 3-digit industry effects.
Robust standard errors reported in parenthesis are clustered at the plant level. Asterisks indicate
statistical significance at 10% (¥), at 5% (**) and at 1% (**%*).
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sumption variable in ways that avoid dropping observations with zero consumption
values. Specifically, we consider the transformations # and log(1+y).
2

(+yo0)

Table F.3 summarizes the results when applying these transformations to both
natural gas and electricity consumption. While the electricity results are virtually
identical to the specification in log differences reported in the previous table, the
impact of the CCL on natural gas consumption is not significant anymore, and
the point estimates are not robust either. The same pattern emerges in Table F.4,
which summarizes the results of estimating the same specifications in the balanced
sample. We thus conclude that the positive effect on gas in Table F.2 is spurious
and not robust when controlling for extensive-margin adjustments to the fuel mix.
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Table F.3: CCL impact by year - Natural gas robustness checks

()] (2 3 “)
. Obs./
Dependent variables Year OLS RF v Plants
2001 -0.072 0.074 0.217 4,587
Natural gas ratio (0.045) (0.074) (0.225) 1,079
2002 -0.208***  -0.001 0.023
(Gas -Gas )*2/(Gas +Gas,) (0.062) (0.087) (0.275)
2003 -0.173%* 0.049 0.161
(0.076) (0.099) (0.344)
2004 -0.174* 0.041 0.155
(0.092) (0.113) (0.424)
2001 -0.022 -0.012 -0.037 4,587
Electricity ratio (0.018) (0.032) (0.094) 1,079
2002 -0.032 -0.092%**  .0.307**
(E1-EL)*2/(E1 +E1) (0.025) (0.035) (0.132)
2003 -0.037 -0.115%**  -0.391**
(0.034) (0.044) (0.178)
2004 -0.048 -0.090 -0.372%*
(0.044) (0.055) (0.219)
2001 -0.681%* -0.018 -0.052 4,587
Natural gas +1 (0.279) (0.598) (1.728) 1,079
2002 -1.279%**  -0.032 -0.044
Aln(Gas + 1) 0.417) (0.689) (2.185)
2003 -0.935% 0.256 0.748
(0.494) (0.712) (2.473)
2004 -0.804 -0.075 -0.096
(0.604) (0.777) (2.892)
2001 -0.022 -0.012 -0.039 4,587
Electricity +1 (0.019) (0.033) (0.096) 1,079
2002 -0.034 -0.096***  -0.320%**
Aln(El1+ 1) (0.025) (0.036) (0.137)
2003 -0.037 -0.119%**  -0.407**
(0.035) (0.046) (0.186)
2004 -0.051 -0.093 -0.386*

(0.046) (0.058) (0.230)

Notes: Column 1 displays the OLS coefficient on the treatment variable interacted with dummies for
post-treatment years. Column 2 displays the OLS coefficient on the instrumental variable (and year
interactions) in the reduced form, and column 3 displays the 2SLS coefficient on the treatment variable
(and year interactions). Column 4 reports the number of observations and plants. Dependent variables are

first-differenced (A) from 1997 until 2000 and differenced at various intervals thereafter (“i”” subscript in
the gas ratio). All regressions include age, age squared, and control for year, region and 3-digit industry
effects. Robust standard errors reported in parenthesis are clustered at the plant level. Asterisks indicate
statistical significance at 10% (*), at 5% (**) and at 1% (***).

XX



Table F.4: CCL impact by year - Natural gas robustness checks in balanced sample

()] (2 3 “)
. Obs./
Dependent variables Year OLS RF v Plants
2001 -0.106%* 0.094 0.267 2,748
Natural gas ratio (0.054) (0.097) (0.294) 480
2002 -0.267%**  -0.066 -0.168
(Gas -Gas )*2/(Gas +Gas,) (0.070) (0.111) (0.288)
2003 -0.227***  -0.009 -0.031
(0.082) (0.122) (0.349)
2004 -0.198%** -0.035 -0.112
(0.098) (0.131) (0.398)
2001 -0.005 -0.023 -0.067 2,748
Electricity ratio (0.021) (0.036) (0.105) 480
2002 -0.023 -0.071* -0.207*
(E1-EL)*2/(E1 +E1) (0.026) (0.039) (0.121)
2003 -0.044 -0.112%* -0.340%*
(0.034) (0.045) (0.163)
2004 -0.073* -0.131%* -0.424%%*
(0.043) (0.054) (0.203)
2001 -0.762%* 0.252 0.720 2,748
Natural gas +1 (0.334) (0.800) (2.305) 480
2002 -1.659***  -0.340 -0.893
Aln(Gas + 1) (0.489) (0.940) (2.504)
2003 -1.194%* 0.008 -0.034
(0.553) (0.966) (2.820)
2004 -1.023 -0.296 -0.913
(0.665) (0.998) (3.087)
2001 -0.005 -0.024 -0.069 2,748
Electricity +1 (0.022) (0.037) (0.106) 480
2002 -0.025 -0.074* -0.218%*
Aln(El1+ 1) (0.027) (0.041) (0.126)
2003 -0.046 -0.118%* -0.357**
(0.035) (0.047) (0.170)
2004 -0.077* -0.139%* -0.448%%*

(0.045) (0.057) (0.214)

Notes: Column 1 displays the OLS coefficient on the treatment variable interacted with dummies for
post-treatment years. Column 2 displays the OLS coefficient on the instrumental variable (and year
interactions) in the reduced form, and column 3 displays the 2SLS coefficient on the treatment variable
(and year interactions). Column 4 reports the number of observations and plants. Dependent variables are

first-differenced (A) from 1997 until 2000 and differenced at various intervals thereafter (“i”” subscript in
the gas ratio). All regressions include age, age squared, and control for year, region and 3-digit industry
effects. Robust standard errors reported in parenthesis are clustered at the plant level. Asterisks indicate
statistical significance at 10% (*), at 5% (**) and at 1% (***).

XX1



G Additional Tables and Figures

Figure G.1: Target vs. Tax Effect
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Notes: The graph shows energy usage at CCA plants vs. CCL plants after normalizing the energy
price paid by CCA plants to zero. The CCA plant chooses A if its target is not binding, whereas the
CCL plant chooses C. The difference between A and C identifies the full effect of the energy price
differential 7 resulting from higher taxes at CCL plants. If the CCA target is at an intermediate point
such as B, comparing CCL and CCA plants provides a meaningful lower bound for the impact of
the tax. If the target is at B’ this lower bound is consistent but not helpful to identify the decrease

in energy consumption from A to C due to the tax.
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Figure G.2: Selection into Climate Change Agreements

(a) based on size (b) based on (unobserved) abatement cost
Marginal Revenue Marginal Revenue
Plant 2 Plant 2
Plant 1
Plant 1
N : , &\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\W‘
0 " ! E-T E, Energy 0 E-T E, Encrgy

Notes: Consider two plants that are given the same absolute energy reduction target T. In sub-figure
(a), marginal revenue cost curves are identical except for the fact that plant 1 uses less energy than
plant 2. Upon joining a CCA, plant 1 saves the striped area in taxes and abatement cost whereas
plant 2 saves the sum of the striped and grey areas. It is easy to control for size, but unobservable
factors such as the slope of the marginal revenue cost curve also influence the incentives to join a
CCA. In sub-figure (b) plant 1 is assumed to differ not in size but in abatement technology. Cheaper

abatement options make CCA participation less attractive for plant 1 than for plant 2.
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Table G.3: Differences in pre-treatment outcomes (levels and growth rates)

(1 2 (3) “4) ) (6)

Plants subject Plants subject Plants eligible Plants not
toa3% toa 15% for a3% eligible for a
carbon tax carbon tax Diff. carbon tax 3% carbon tax Diff.
A. Levels (CCL=0) (CCL=1) (NEPER=0) (NEPER=0)
Energy share in var.
costs -3.723 -4.252  kxx -3.575 -4.204  F*k*
In(EE/VCost) 696 3,841 238 4,299
Natural gas 16.867 15268 *** 17.926 15516 ***
In(Gas) 123 301 38 386
Natural gas share 0.519 0.439  ** 0.425 0.466 -
(Gas/(Gas+El)) 149 368 52 465
Solid fuels 5.827 5224 % 6.416 5212 *#*
In(So) 60 138 32 166
Solid fuels share 0.046 0.083 ** 0.066 0.073 -
(So/kWh) 149 368 52 465
Total kWh 17.487 16.085 *** 18.614 16.252  ***
In(kWh) 149 368 52 465
Co2 16.599 15251 *** 17.787 15.400 ***
In(CO2) 149 368 52 465
Gross output 10.338 9.041  *** 10.915 9.147 *%*
In(GO) 696 3,841 238 4,299
Employment 5.660 4.723  Axx 5.872 4.811 ***
In(L) 696 3,841 238 4,299
Capital stock 9.945 8.396 *** 10.511 8.530 ***
In(K) 696 3,820 238 4,278
Materials 9.772 8.430 *H* 10.402 8.538  Hx*
In(M) 696 3,841 238 4,299
B. Differences
Energy share in var.
costs -0.007 -0.017 - -0.002 -0.016 -
AIn(EE/VCost) 696 3,841 238 4,299
Natural gas 0.071 0.047 - 0.159 0.044 -
Aln(Gas) 123 298 38 383
Natural gas share -0.023 0.002  * -0.017 -0.004 -
A(Gas/(Gas+El)) 149 368 52 465
Solid fuels -0.033 0.013 - -0.279 0.050 *
Aln(So) 57 130 29 158
Solid fuels share 0.000 0.001 - 0.002 0.001 -
A(So/kWh) 149 368 52 465
Total kWh -0.029 0.004 - -0.003 -0.005 -
Aln(kWh) 149 368 52 465
co2 -0.009 0.000 - 0.001 -0.003 -
Aln(CO2) 149 368 52 465
Gross output 0.034 0.025 - 0.024 0.026 -
Aln(GO) 696 3,841 238 4,299
Employment -0.017 -0.022 - -0.017 -0.021 -
Aln(L) 696 3,841 238 4,299
Capital stock 0.029 0.017 - 0.020 0.019 -
Aln(K) 696 3,820 238 4,278
Materials 0.042 0.045 - 0.050 0.044 -
Aln(M) 696 3,841 238 4,299

Notes: Summary statistics for the year 2000 (panel A) and the difference in growth rates between year 1999 and 2000
(panel B) by CCL and NEPER status. For each variable, we report the mean and the number of observations in the row
below the variable mean. We report the natural logarithm for all variables. Columns 3 and 6 report significance levels of a
t-test of differences in group means with unequal variance, at <1% (***), <5% (**), <10% (*).
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Table G.4: CCL impact in a balanced sample

(€)) @ 3) 4
Dependent variables OLS RF v P(l);)nstg
A. ARD variables
Energy share in gross output -0.025 -0.056%* -0.220* 6,841
Aln(EE/GO) (0.019) (0.031) (0.124) 1,506
Energy share in var. costs -0.035%* -0.073%* -0.287%%* 6,841
Aln(EE/VCost) (0.019) (0.031) (0.1206) 1,506
Energy expenditure -0.036** -0.045* -0.176%* 6,841
Aln(EE) (0.019) (0.026) (0.105) 1,506
Gross output -0.012 0.011 0.043 6,852
Aln(GO) (0.0106) (0.023) (0.088) 1,510
Employment -0.002 0.002 0.008 6,852
Aln(L) (0.015) (0.021) (0.080) 1,510
Total factor productivity -0.007 -0.004 -0.016 6,843
Aln(GO)~inputs (0.009) (0.014) (0.054) 1,512
B. QFI variables

Electricity -0.032 -0.079** -0.234* 2,748
Aln(El) (0.025) (0.036) (0.121) 480
Natural gas -0.077* 0.008 0.025 2,086
Aln(Gas) (0.043) (0.045) (0.130) 360
Natural gas share -0.029***  (0.033 0.096 2,748
A(Gas/(Gas+El)) (0.011) (0.029) (0.088) 480
Solid fuels 0.082 -0.063 -0.250 636
Aln(So) (0.100) (0.136) (0.5406) 115
Solid fuels share 0.002 0.008 0.023 2,761
A(So/kWh) (0.004) (0.008) (0.023) 482
Total kWh -0.110%**  -0.020 -0.060 2,761
Aln(kWh) (0.032) (0.044) (0.123) 482
CcO2 -0.078***  -0.036 -0.105 2,761
Aln(CO2) (0.025) (0.035) (0.099) 482

Notes: The estimates come from 39 separate regressions. Columns 1 and 3 report the OLS and IV
estimates, respectively, of the coefficient on the treatment variable in equation (2). Column 2 reports the
OLS coefficient on the instrumental variable in the reduced-form equation (3). Column 4 reports the
number of observations and plants. Dependent variables are first-differenced from 1997 until 2000 and
differenced at various intervals thereafter (A). All regressions include age, age squared, as well as
dummies for year, region and 3-digit industry code. In panel A, the total factor productivity regressions
also control for labor, capital stock, and for expenditures on materials and energy. Robust standard errors
reported in parenthesis are clustered at the plant level. Asterisks indicate statistical significance at 10%
(*), at 5% (**) and at 1% (***).
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Table G.5: CCL impact by year in a balanced sample - ARD

1 () 3) “4)
. Obs./
Dependent variables  Year OLS RF v
Plants
2001 -0.014 -0.034 -0.123 6,841

Energy share in gross 0.019)  (0.030)  (0.100) 1,506

output 2000 0021 -0.073%  -0.250%*
Aln(EE/GO) 0.022)  (0.034)  (0.123)
2003 0024  -0057  -0248
0.026)  (0.039)  (0.160)
2004 0047 0063 -0.306
0.029)  (0.049)  (0.217)
2000 0016 0036 -0.132 6.841

Energy share in var.

costs (0.019)  (0.030)  (0.101) 1,506

2002 -0.028  -0.093*** -0.320%*

Aln(EE/VCost) 0.021)  (0.033)  (0.125)
2003 -0.035  -0.084%*  -0.355%*

(0.025)  (0.038)  (0.164)

2004 -0.067%*  -0.085%  -0.419*

(0.029)  (0.048)  (0.220)

2001 -0.021 -0.015 -0.055 6,841
Energy expenditure (0.019) (0.027) (0.091) 1,506
2002 -0.022 -0.051%* -0.181*
Aln(EE) (0.021) (0.030) (0.106)
2003 -0.040*  -0.043 -0.208

(0.024)  (0.033)  (0.137)
2004 -0.068%* -0.075*  -0.340*
0.027)  (0.043)  (0.195)

2001 -0.007 0.019 0.068 6,852
Gross output (0.012) (0.019) (0.064) 1,510
2002 -0.002 0.022 0.068
Aln(GO) (0.017)  (0.024) (0.084)
2003 -0.017 0.013 0.040
(0.021)  (0.028) (0.115)
2004 -0.023 -0.013 -0.037
(0.026)  (0.037) (0.164)
2001 0.000 -0.006 -0.016 6,852
Employment (0.012)  (0.016) (0.054) 1,510
2002 0.004 0.005 0.014
Aln(L) (0.016)  (0.020) (0.073)
2003 -0.012 0.013 0.039
(0.020)  (0.026) (0.108)
2004 0.000 -0.003 0.001
(0.025)  (0.034) (0.152)
Total factor 2001 -0.002 0.012 0.040 6,843
. (0.008)  (0.013) (0.043) 1,509
productivity
2002 -0.002 -0.003 -0.012
Aln(GO) (0.010)  (0.017) (0.058)
2003 -0.006 -0.012 -0.051
(0.012)  (0.016) (0.068)
2004 -0.017 -0.017 -0.080

Notes: Column 1 displays the OLS coefficient on the treatment variable interacted with dummies
for post-treatement years. Column 2 displays the OLS coefficient on the instrumental variable (and
year interactions) in the reduced form, and column 3 displays the 2SLS coefficient on the
treatment variable (and year interactions). Column 4 reports the number of observations and
plants. Dependent variables are first-differenced from 1997 until 2000 and differenced at various
intervals thereafter (A). All regressions include age, age squared, and controls for year, region and
3-digit industry effects. The total factor productivity regressions also control for labor, capital
stock, and for expenditures on materials and energy. Robust standard errors reported in parenthesis
are clustered at the plant level. Asterisks indicate statistical significance at 10% (*), at 5% (**) and
at 1% (***).
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Table G.6: CCL impact by year in balanced sample - QFI

Q) @ 3 (C))
. Obs./
Dependent variables  Year OLS RF v
Plants
2001 -0.005 -0.024 -0.069 2,748
Electricity (0.022) (0.037) (0.1006) 480
2002 -0.025 -0.074* -0.218*
Aln(El) (0.027) (0.041) (0.126)
2003 -0.046 -0.118%* -0.357**
(0.035) (0.047) (0.170)
2004 -0.077* -0.139%* -0.448**
(0.045) (0.057) (0.214)
2001 -0.026 0.128***  (0.366%* 2,086
Natural gas (0.043) (0.049) (0.169) 360
2002 -0.102%* -0.040 -0.100
Aln(Gas) (0.050) (0.059) (0.147)
2003 -0.126%* -0.063 -0.184
(0.060) (0.072) (0.183)
2004 -0.074 -0.050 -0.178
(0.077) (0.089) (0.247)
2001 -0.002 -0.009 -0.026 2,748
Solid fuels share (0.004) (0.011) (0.030) 480
2002 0.005 0.014 0.039
A(So/kWh) (0.004) (0.010) (0.028)
2003 0.005 0.010 0.034
(0.005) (0.012) (0.036)
2004 0.003 0.026%* 0.083
(0.006) (0.015) (0.052)
2001 -0.072%* 0.038 0.105 2,748
Total kWh (0.028) (0.052) (0.154) 480
2002 -0.141***  -0.034 -0.095
Aln(kWh) (0.037) (0.053) (0.139)
2003 -0.117** -0.099 -0.277
(0.047) (0.067) (0.186)
2004 -0.106* 0.002 -0.018
(0.056) (0.071) (0.208)
2001 -0.047** 0.021 0.057 2,748
CO2 emissions (0.022) (0.042) (0.122) 480
2002 -0.092***  -0.038 -0.110
Aln(CO2) (0.027) (0.040) (0.108)
2003 -0.083** -0.101* -0.290*
(0.036) (0.055) (0.160)
2004 -0.093** -0.038 -0.139

(0.044) (0.054) (0.156)

Notes: Column 1 displays the OLS coefficient on the treatment variable interacted with dummies for
post-treatment years. Column 2 displays the OLS coefficient on the instrumental variable (and year
interactions) in the reduced form, and column 3 displays the 2SLS coefficient on the treatment variable
(and year interactions). Column 4 reports the number of observations and plants. Dependent variables
are first-differenced from 1997 until 2000 and differenced at various intervals thereafter (A). All
regressions include age, age squared, and control for year, region and 3-digit industry effects. Robust
standard errors reported in parenthesis are clustered at the plant level. Asterisks indicate statistical
significance at 10% (*), at 5% (**) and at 1% (***).
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Table G.7: Effects of CCL with NEPER plants trend - ARD sample

(O] @ 3 “
. Obs./
Dependent variables  Year OLS RF v
Plants
Energy share in gross 2001 -0.023* -0.068** -0.149** 16,876
output (0.014) (0.029) (0.063) 6,886
2002 -0.009 -0.041 -0.052
Aln(EE/GO) (0.017) (0.052) (0.136)
2003 -0.006 -0.023 0.034
(0.021) (0.071) (0.203)
2004 -0.041* -0.031 0.060
(0.024) (0.093) (0.289)
NEPER  -0.016* -0.006 -0.018
*year diff — (0.009) (0.021) (0.017)
2001 -0.021 -0.045* -0.098* 16,876
Energy expenditure (0.014) (0.025) (0.055) 6,886
2002 -0.005 -0.020 -0.046
AIn(EE) (0.017) (0.046) (0.121)
2003 -0.009 -0.036 -0.080
(0.020) (0.062) (0.180)
2004 -0.035 -0.079 -0.186
(0.023) (0.084) (0.261)
NEPER  -0.009 0.006 0.000
*year diff — (0.008) (0.019) (0.016)
2001 0.003 0.023 0.051 16,876
Gross output (0.009) (0.020) (0.045) 6,886
2002 0.004 0.021 0.005
Aln(GO) (0.014) (0.037) (0.100)
2003 -0.003 -0.012 -0.114
(0.017) (0.053) (0.157)
2004 0.006 -0.048 -0.246
(0.021) (0.071) (0.228)
NEPER  0.007 0.012 0.017
*year diff  (0.007) (0.015) (0.012)
2001 0.011 0.027 0.060 16,876
Employment (0.013) (0.022) (0.048) 6,886
2002 0.001 0.030 0.043
Aln(L) (0.013) (0.038) (0.104)
2003 0.000 0.037 0.032
(0.017) (0.062) (0.175)
2004 0.022 -0.008 -0.102
(0.020) (0.077) (0.239)
NEPER  0.006 0.001 0.008

*year diff  (0.007) (0.018) (0.015)

Notes: Column 1 displays the OLS coefficient on the treatment variable interacted with dummies for
post-treatment years. Column 2 displays the OLS coefficient on the instrumental variable (and year
interactions) in the reduced form, and column 3 displays the 2SLS coefficient on the treatment variable
(and year interactions). Column 4 reports the number of observations and plants. Dependent variables
are first-differenced from 1997 until 2000 and differenced at various intervals thereafter (A). NEPER is a
dummy variable that equals one if a facility is not on the EPER list. All regressions include a time-
invariant eligibility dummy interacted with year differences (NEPER*year difference), age, age squared,
and control for year, region and 3-digit industry effects. Robust standard errors reported in parenthesis
are clustered at the plant level. Asterisks indicate statistical significance at 10% (¥*), at 5% (**) and at
1% (#%%),
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Table G.8: Effects of CCL with NEPER plants trend - QFI sample

Dependent variables

Electricity

Aln(El)

Natural gas

Aln(Gas)

Total kWh

Aln(kWh)

CO2 emissions

Aln(CO2)

5 7)) 3) @
Obs./
Year OLS RF v Plants
2001 -0.020 -0.020 -0.050 4,587
(0.020) (0.040) (0.100) 1,079
2002 -0.030 -0.112%* -0.350%%*
(0.030) (0.050) (0.170)
2003 -0.030 -0.144%* -0.453%*
(0.040) (0.070) (0.250)
2004 -0.040 -0.130 -0.450
(0.050) (0.090) (0.320)
Neppr | 0-022%% 0,010 0.000
*year diff  (0.010) (0.020) (0.010)
2001 0.010 0.123** 0.320** 3,748
(0.040) (0.050) (0.150) 908
2002 -0.095%** 0.020 0.040
(0.050) (0.080) (0.220)
2003 -0.090 0.050 0.110
(0.060) (0.110) (0.370)
2004 -0.100 0.120 0.300
(0.080) (0.150) (0.590)
Neper 0010 -0.010 -0.010
*year diff (0.020) (0.030) (0.020)
2001 -0.077*%**  0.029 0.082 4,587
(0.025) (0.048) (0.133) 1,079
2002 -0.140***  -0.034 -0.138
(0.035) (0.078) (0.224)
2003 -0.125%**  -0.151* -0.473
(0.045) (0.091) (0.290)
2004 -0.086 -0.019 -0.162
(0.056) (0.115) (0.379)
Neper 0007 0.014 0.015
syeardiff  (0.013) (0.023) (0.020)
2001 -0.051*%**  0.020 0.059 4,587
(0.020) (0.040) (0.109) 1,079
2002 -0.093***  -0.060 -0.213
(0.026) (0.052) (0.154)
2003 -0.082%* -0.154** -0.491%*
(0.036) (0.070) (0.242)
2004 -0.069 -0.059 -0.284
(0.045) (0.083) (0.287)
Neppr 0005 0.012 0.011
syeardiff  (0.011) (0.016) (0.014)

Notes: Column 1 displays the OLS coefficient on the treatment variable interacted with dummies for
post-treatment years. Column 2 displays the OLS coefficient on the instrumental variable (and year
interactions) in the reduced form, and column 3 displays the 2SLS coefficient on the treatment
variable (and year interactions). Column 4 reports the number of observations and plants. Dependent
variables are first-differenced from 1997 until 2000 and differenced at various intervals thereafter (A).
NEPER is a dummy variable that equals one if a facility is not on the EPER list. All regressions
include a time-invariant eligibility dummy interacted with year differences (NEPER*year difference),

age, age squared, and control for year, region and 3-digit industry effects. Robust standard errors
reported in parenthesis are clustered at the plant level. Asterisks indicate statistical significance at
10% (*), at 5% (**) and at 1% (**%*).
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Table G.9: CCL impact in a common support sample

Q) (@] 3) “
Dependent variables OLS RF v Obs./
Plants
A. ARD variables
Energy share in gross output -0.026* -0.072%**  -0.221%** 15,549
Aln(EE/GO) (0.013) (0.022) (0.071) 6,277
Energy share in var. costs -0.030%%* -0.080%**  -0.247*** 15,549
Aln(EE/VCost) (0.013) (0.022) (0.070) 6,277
Energy expenditure -0.022%* -0.038* -0.116* 15,549
Aln(EE) (0.013) (0.020) (0.061) 6,277
Employment 0.011 0.031%* 0.094* 15,549
Aln(L) (0.011) (0.018) (0.054) 6,277
Gross output 0.004 0.034%* 0.105%* 15,549
Aln(GO) (0.011) (0.018) (0.054) 6,277
Total factor productivity 0.001 0.003 0.008 15,529
Aln(GO)~inputs (0.006) (0.011) (0.034) 6,273
B. QFI variables

Electricity -0.033 -0.063* -0.202* 3,318
Aln(El) (0.023) (0.033) (0.110) 590
Natural gas -0.057 0.064 0.199 2,731
Aln(Gas) (0.038) (0.047) (0.164) 509
Natural gas share -0.029%* 0.026 0.082 3,318
A(Gas/(Gas+El)) (0.013) (0.024) (0.081) 590
Solid fuels 0.118 0.161 0.706 1,111
Aln(So) (0.096) (0.163) (0.680) 255
Solid fuels share -0.004 0.003 0.011 3,318
A(So/kWh) (0.004) (0.008) (0.026) 590
Total kWh -0.114***  0.001 0.003 3,318
Aln(kWh) (0.028) (0.039) (0.122) 590
co2 -0.080***  -0.021 -0.067 3,318
Aln(CO2) (0.022) (0.032) (0.098) 590

Notes: The estimates come from 39 separate regressions. Columns 1 and 3 report the OLS and IV
estimates, respectively, of the coefficient on the treatment variable in equation (2). Column 2 reports
the OLS coefficient on the instrumental variable in the reduced-form equation (3). Column 4 reports
the number of observations and plants. Dependent variables are first-differenced from 1997 until 2000
and differenced at various intervals thereafter (A). All regressions include age, age squared, year, 3-
digit industry code and region-by-year dummies. The TFP regressions also control for labor, capital
stock, and for expenditures on materials and energy. Robust standard errors are in parenthesis.
Asterisks indicate statistical significance at 10% (¥*), at 5% (**) and at 1% (***).
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Table G.10: Fuel price regressions

M
Dependent variables OLS
Electricity price -0.004
Aln(EIP) (0.012)
Gas price -0.010
Aln(GasP) (0.021)
Liquid price -0.025
Aln(LiP) (0.058)
Solid price -0.043
Aln(SoP) (0.030)

@
RF

-0.015
(0.017)
0.028
(0.041)
-0.070
(0.070)
-0.075%
(0.044)

3)
v

-0.048
(0.054)
0.089
(0.126)
0.416
(0.443)
-0.339%
(0.186)

(4)

Obs./

Plants
4,587
1,079
3,748
908
438
131
1,563
445

Notes: The estimates come from 12 separate regressions. Columns 1 and 3 report the OLS and IV
estimates, respectively, of the coefficient on the treatment variable in equation (2). Column 2 reports
the OLS coefficient on the instrumental variable in the reduced-form equation (3). Column 4 reports
the number of observations and plants. Dependent variables are first-differenced from 1997 until
2000 and differenced at various intervals thereafter (A). All regressions include age, age squared, as
well as dummies for year, region and 3-digit industry code. Robust standard errors reported in
parenthesis are clustered at the plant level. Asterisks indicate statistical significance at 10% (*), at

5% (**) and at 1% (¥+%),
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