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Wavelet Packets Transform processing
and Genetic Neuro-Fuzzy classification
to detect faulty bearings
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Abstract
A great investment is made in maintenance of machinery in any industry. A big percentage of this is spent both in work-
ers and in materials in order to prevent potential issues with said devices. In order to avoid unnecessary expenses, this
article presents an intelligent method to detect incipient faults. Particularly, this study focuses on bearings due to the fact
that they are the mechanical elements that are most likely to break down. In this article, the proposed method is tested
with data collected from a quasi-real industrial machine, which allows for the measurement of the behaviour of faulty
bearings with incipient defects. In a second phase, the vibrations obtained from healthy and defective pieces are pro-
cessed with a multiresolution analysis with the purpose of extracting the most interesting characteristics. Particularly, a
Wavelet Packets Transform processing is carried out. Finally, these parameters are used as Genetic Neuro-Fuzzy inputs;
this way, once it has been trained, it will indicate whether the analyzed mechanical element is faulty or not.
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Introduction

Machinery is a fundamental part of any industry; there-
fore, any breakdown could imply an inoperative period
of time and thus economic loss. Consequently, mainte-
nance plans are a fundamental part of protocols in engi-
neering. Analyzing critical components involves getting
to know their internal state, which, in turn, allows for
an early detection of incipient faults. One of the most
critical elements in any industrial machine is rolling
bearing, which means that anticipating any potential
fault or breakdown is essential. In this sense, by know-
ing the normal state of the machinery, its monitoring
could help to prevent a breakdown since any machinery
would show a signal before failing. As a result, condi-
tion monitoring allows for the detection of incipient
faulty mechanical elements, which is why this method is
such a widely explored research field.1–8 An important

aspect of this work is that the experimental laboratory
bench used to collect data includes a radial load due to
the fact that this is the most important force for which
rolling bearings are designed.

The fault diagnosis procedure is composed of two
essential phases: the first one consists of signal process-
ing that allows for the extraction of failure patterns,
and in the second one, a signal classification is done by

1Escuela Politécnica Superior de Ingenierı́a, Universidad de La Laguna,

Santa Cruz de Tenerife, Spain
2Department of Mechanical Engineering, Universidad Carlos III de

Madrid, Madrid, Spain

Corresponding author:

Angela Hernández, Escuela Politécnica Superior de Ingenierı́a,
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analyzing the previously collected data. The most effi-
cient way of detecting a bearing fault is by the study of
its vibration signature,9–11 owing to the fact that when
a rolling bearing has a fault, it shows a non-stationary
feature.1,2,12–14 According to the vast majority of
authors, the vibration signal is usually processed in
three different domains:12,13 first, techniques based on
time domain with statistical parameters analysis;15 sec-
ond, methods based on frequency domain as Fourier
Transform (FT) and its variation;3,16 and, finally, oth-
ers based on time-frequency analysis, such as Wavelet
Transform (WT),17 which is the most widely used tech-
nique to analyze non-stationary parameters. The
method based on frequency domain like power spectra
density or demodulation analyzing has been useful for
detecting bearing faults; nevertheless, it is not so ade-
quate in an incipient stage. Other techniques are
required because when there are early faults, its spectral
amplitude is quite low. In this sense, the WT method is
more effective owing to its adequate energy concentra-
tion properties and to the fact that it provides with the
proper signal processing both for stationary and for
non-stationary signals. Because of this appropriate
behaviour, WT has been extensively used for bearings
and also for general rotating machinery,18 gears,19

shafts20 and structural elements.21

One of the disadvantages of WT computation is the
high number of critical parameters to select. The most
critical ones are the mother wavelet form and its decom-
position level. Furthermore, its incapability to decompose
the high frequency bands through the multiresolution
analysis (MRA)22 has been a big handicap until a few
years ago. Wavelet Packets Transform (WPT) establishes
improvements over MRA,23 due to its ability to decom-
pose all the frequency bands. The coefficients obtained
from WPT contain reliable information about failures;2

therefore, they can be used directly as features. However,
other information related to the WPT coefficients can be
also used as features, as Shen et al.24 have demonstrated,
in order to calculate statistical parameters, or in Feng and
Schlindwein,25 where a crack indicator is obtained from
the energy of the WPT.

A signal-processing phase is essential in a
bearing-fault diagnosis system as well as a subsequent
classification system. It could be thought that a visual
comparison between the vibration signals of a faulty
bearing and the one of a regular bearing makes it possi-
ble to detect its health condition. However, many
times, the differences between both kinds of signals are
almost imperceptible, and fault identification has to be
reliable and fast. For that reason, an automated classi-
fication process of diagnosis is necessary. Several
researchers have developed intelligent method for this
classification phase. Artificial neural networks (ANN)
have been widely used22,26–28 since they utilize a useful
learning process for pattern recognition or data

classification. Other classifying techniques are those
based on fuzzy inference. One of the most extended
method is the Adaptive Neuro-Fuzzy Inference System
(ANFIS),1,3,12 which can also be trained and used as a
diagnosis classifier. This technique has similar learning
properties to ANN; in addition to this, it also offers the
possibility of expressing the results by rules. This pro-
cess involves the choice of several parameters such as
membership functions or fuzzy logic operators. With
the purpose of making the classification process faster
and more accurate, genetic algorithms (GA) are used
since they allow for establishing an automatic feature
selection.20,29 In order to summarize the advantages of
all these methods, a Genetic Neuro-Fuzzy (GNF) tech-
nique is proposed in this work for detecting incipient
faults in rolling bearings (Figure 1).

This article presents a bearing-fault diagnosis tech-
nique using an intelligent algorithm. The learning phase
intends to process characteristic parameters obtained
from WPT which provide information about the inter-
nal state of the piece and therefore, to indicate if it is
faulty or healthy. This process would determine if the
next preventive scheduled maintenance could be
extended when the system is healthy or make it sched-
uled ahead of time if the analyzed piece shows failure
indications. In section 1 of this article, a test laboratory
bench is presented where different faulty ball bearings
are subjected to test and then their vibration signals are
measured. In section 2, the methodology to process the
signals of each mechanical element is shown. The intel-
ligent technique used to analyze the processed signals in
the previous section is presented in section 3. Finally,
the results and discussion are shown in section 4.

Experimental data: test bench

The data to test the intelligent system have been
obtained from the test lab bench presented in Figure 2.

Figure 1. Flowchart of the proposed method.
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In this bench, developed by the UNED Mechanical
Department, FAG 7206 B single ball bearings were
tested to prove the suitability of the automated diagno-
sis method proposed by Castejón et al.22 The test bench
has axial and radial pneumatic cylinders for the load,
the bearing assembly, a B&K 4383 accelerometer with
an 8.5 kHz bandwidth, a photo tachometer device for
revolutions per minute (RPM) measurement and a
transmission pulley directly connected to a three-phase
electric motor by a V-belt. Additional devices are a
B&K NEXUS amplifier and a DAS-1200 Keithley
acquisition card. The sampling rate was set at 5000Hz,
and each acquired signal had 5120 points.

Four sets of experiments were performed with the
experimental system: under normal conditions (healthy
bearings), inner race faults, outer race faults and ball
fault. A 2mm long pit was artificially made in the inner
or outer race with an electric pen and multiple slots in
the surface were performed to simulate the flacking
phenomenon for the rolling ball. Figure 3 shows raw
data acquired from all bearing conditions under study.

In this point, it is necessary to highlight that the liter-
ature and the catalogues of bearing manufacturers con-
sider incipient defects to those whose equivalent surface
is between 2 and 5mm2.30

The radial and axial loads were 215 and 200N,
respectively.

For this study, a total of 196 measurements were
obtained, 49 for each condition at 600 rpm.

Vibration processing methodology

WPT is especially efficient to locally analyze non-
stationary signals.31 It obtains correlation coefficients
between a signal and a selected mother wavelet func-
tion. It consists of the application of the discrete WT in
a recursive way until it reaches the selected decomposi-
tion level, according to the scheme shown in Figure 4.

WhereW(k, j) represents the coefficients of the signal
in each packet, k is the decomposition level and j is the
position of the packet within the decomposition level.
Then, each correlation vector W(k, j) has the structure
of the equation (1)

W k, jð Þ= w1 k, jð Þ, . . . ,wn k, jð Þ, . . . ,wN k, jð Þf g ð1Þ

where wn(k, j) is the coefficient at position n for the
packet.

In order to obtain an efficient number of patterns
that describe the dynamic behaviour of the mechanical
element to be the input of the intelligent classification
system, the energy of each packet has been calculated.
The calculation allows reducing considerably the num-
ber of inputs by substituting the coefficients of each
package by a single value without losing information
about the condition of the bearing.

The concept of energy used in wavelet analysis in
packages is closely linked to the well-known notions

Figure 2. Bearing Test bench: UNED Lab.

Figure 3. Raw data acquired from the test bench from each bearing conditions.
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derived from the Fourier Theory. The energy of the
wavelet packets is obtained from the sum of the squares
of the coefficients of each package according to
equation (2)

Ek, j=
X
n

W k, jð Þj j2 ð2Þ

In this work, the relative energy of each packet
related with the energy of the signal is used as input
pattern as equation (3)

ek, j =
Ek, jP
j

Ek, j
ð3Þ

As an example, in Figure 5, the relative energy cor-
responding to inner race fault bearing data is shown.

The level of decomposition in the example is 3 and the
mother wavelet selected is Daubechies 6 (DB6). Owing
to the goodness of the results in this area,32 it has been
decided to use in this study the level of decomposition
3 and the mother wavelet DB6.

Previous studies with traditional features in time
domain and frequency domain such as power spectral
density (PSD) or kurtosis were done obtaining good
results in severe faults and laboratory conditions,33 but,
if incipient faults have been studied, the amplitude of
the spectra is too low to discriminate between signal
and noise.

Patterns used to feed the classification system will be
the relative energy of each packet. Each packet repre-
sents a part of a signal at a specific band frequency.
When a fault occurs in a rotatory mechanical element,
changes in the energy in certain frequency bands
appear. These changes can be clearly presented to the
identification system in terms of the energy of the
wavelet packet for a better tuning of the condition
monitoring system.

Artificial intelligence technique

The main purpose of this work is to build an intelligent
system that is able to detect whether the element of the
rotary motion drive is faulty or not. Extensive research
has been developed in the field of fault diagnosis using
several techniques;22,28,34–37 however, for this study, a
method based on training is the most appropriate one.
Particularly, a Neuro-Fuzzy technique38,39 whose struc-
ture is similar to the one proposed by Jang and
colleagues40,41 has been chosen. As it is shown in
Figure 6, a three-layer Neuro-Fuzzy is used in which
the first layer represents the membership functions, and
their inputs are the GNF inputs, whereas their outputs

Figure 4. Decomposition tree at level 2 for wavelet packet analysis.

Figure 5. WPT relative energies for inner race fault bearing.
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are expressed by equation (4). N1 being the input num-
ber, in this work, N1=8, N2 is the number of nodes of
the intermediate layer, Ui stands for the ith input, mij

and sij stand for the centre and the width of the mem-
bership function, respectively, and, finally, Pij would be
the output neuron with ith input and output connected
to jth node of the intermediate layer.

Pij=exp
� Ui � mij

� �2
sij

2

 !
j=1, 2, . . . ,N2

i=1, 2, . . . ,N1
ð4Þ

The level 3 discrete wavelet transform (DWT)
decomposition applied to the signal provides an eight
characteristic coefficient vector, as it was explained in
previous sections. This vector will be the input data of
the GNF; therefore, the system will have eight inputs.

The rule system is represented by the second layer,
whose outputs are obtained by equation (5)

li =min p1j, p2j, . . . , pN1j

�� �� j= 1, . . . ,N2 ð5Þ

In the third layer, the defuzzification process is
achieved and the global system output is reached by
equation (6). N3 represents the GNF output number; in
this work, there are two outputs, and each one is the
estimated value of kth output given by jth node

Yk =

PN2
j= 1

svjklj

PN2
j= 1

lj

k= 1, . . . ,N3 ð6Þ

As the presented equations show, the described
Neuro-Fuzzy system depends on several parameters:
the centre (mij) and width (sij) of the membership

function, the estimated system outputs (svjk) and the
number of nodes of the intermediate layer (N2). This
set of values will be obtained through a three-phase
learning algorithm. The first two phases will provide
initial values to several parameters and will optimize
the number of nodes of the hidden layer, that is, the
number of rules. Finally, the third one resets the para-
meters obtained in the previous one.

Unsupervised learning phase

The aim of this first phase is to provide initial values to
the centre of the membership function (mij) and the
estimated system outputs (svjk). For that, a Kohonen’s
self-organizing42 feature map algorithm is applied. The
initial weight vector of self-organizing map is obtained
through the mean between the maximum and minimum
of the input given by the user. Its dimension will be
the input numbers (N1) plus output numbers (N2) as
equation (7) shows

Wj = w1jw2jw3j . . .wN1 +N3j

� �
j= 1, 2, . . . ,N2 ð7Þ

Moreover, the inputs to the self-organizing map are
expressed as follows

V = U1U2 . . .UN1
Y1Y2 . . . YN3

ð Þ ð8Þ

where the vector (U1, U2,., UN1) corresponds to the
input vector to the GNF system, and (Y1, Y2,., YN3)
is the desired output vector.

Particularly, in this work, a monodimensional
Kohonen self-organizing map is utilized to achieve the
winner node that allows to update the weight in
equation (9). As it is known, this learning algorithm is
a typical unsupervised learning algorithm. Once the

Figure 6. Structure of the Neuro-Fuzzy system.
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winner node is obtained, that is, after the application
of the unsupervised learning algorithm has been con-
cluded, an assignment of the centre of the membership
functions (mij) and the estimated system outputs (svjk)
will carry out

mij =wij; j= 1, 2, . . . ,N2; i= 1, 2 ð9Þ

The values for the estimated outputs are chosen
using the rest of components of the same vector as

svjk =wN1 + k, j; k= 1, 2; j= 1, 2, . . . ,N2 ð10Þ

It is important to highlight that this is an initial
assignment of values for these parameters because they
will be updated in new phases of the learning algorithm.
However, this initial assignment is an important step in
order to achieve better results for the algorithm.

The number of nodes in the hidden layer is related
with the number of rules; therefore, this one should be
optimized previously, hence the necessity of an optimi-
zation process in order to obtain a minimum number
of rules.

GA phase

In the previous section, each rule related with a node of
the intermediate or hidden layer, that is, N2, was
obtained. Moreover, values for mij, y njk were fixed. In
addition, values for the parameters sij, are necessary;
consequently, a GNF system is built. In this phase, the
purpose is to determine adequate values for the para-
meter svjk and to achieve a reduced number of nodes
on the hidden layer. The GA43,44 is an algorithm based
on the biological paradigm of genetic evolution where
it is necessary to specify the content corresponding to
an individual from basic information, known as gene.
Particularly, in this work, a vector is established as the
individual, and the vector components are the genes.
Thus, the components of each vector (individual) con-
sist of a representation of the different hidden nodes by
a Boolean value and the sij values. That is, each indi-
vidual is a vector as equation (11) shows

V =
0 _ 1 0 _ 1 0 _ 1 . . .
s21 s22 . . . s2N2

. . .
s11 s12 . . . s1N1

sN11 sN12 . . . sN1N2

� �
ð11Þ

As it is shown in equation (11), the first N2 compo-
nents of vector V are binary values where if there is a 1,
it means that this rule is considered in the whole GNF
system, whereas if there is a 0 value, it means this rule is
eliminated. The last N1 3 N2 values correspond to the
values of sij. The values sij associated to hidden nodes
with zero values will not be considered in the

implementation of the final result; however, they have
been included in equation (8); thus, several individuals
are created. Taking into consideration the error
between the real output values and the individual out-
put values, a fitness function is defined. Moreover, each
individual is a possible trained GNF system and the
values obtained in equations (9) and (10) are taken for
all individuals in this learning phase. This way, individ-
ual satisfactory values for sij and an adequate set of N2

rules (nodes on the hidden layer) are obtained after the
GA is applied.

Supervised learning phase

In this last training phase, the target is to improve the
selection of mij, sij and svjk parameters of the GNF sys-
tem chosen in previous phases. Owing to the similarity
between this system and a neural network built on three
layers, the standard learning algorithms adapted to the
mathematical expressions of these particular nodes can
be applied. The nodes on the input layer have the same
mathematical expression as the neurons in a Radial
Basis Neural Network.45 In fact, the least mean squared
learning algorithm could be applied as usual in a typical
radial basis network. This algorithm intends to mini-
mize a criterion function. In this case, the error func-
tion between the outputs of the GNF system and the
real outputs of the available patterns is considered, as
equation (12) shows

E=
1

2

XN3

k= 1

Yk � Sk ð12Þ

where Sk= kth output of the GNF system and
Yk= kth real output.

The initial parameters of the GNF system (mij, sij,
svjk and N2) were fixed in the previous phases of the
learning algorithm; thus, this phase only changes these
values in order to minimize the error function.

With the data collected in the laboratory, all these
phases are applied. The input data are the eight charac-
teristic coefficients of the vector of each measurement,
and the output will determine whether the mechanical
element is faulty or not. Specifically, this system has
two outputs, so that depending on which one is acti-
vated, it indicates the case. When the first output is
activated (1) and the second one is inactive (0), the sig-
nal corresponds to a healthy element; if the first one is
inactive (0) and the second one is activated (1), it means
that the energy vector comes from an element of rotary
motion drive that has a fault.

In each phase, several trials were carried out, so that
the parameters that provide an adequate error value
were chosen.

6 Advances in Mechanical Engineering



Results and discussion

In the laboratory, vibration signals of healthy and
faulty mechanical elements were measured and a signal
processing was accomplished, particularly a WPT, as it
was explained in previous sections. Images of the data
used and the first processing corresponding with the
spectra PSD can be seen in Castejón et al.22 and the
energy of the wavelet packet decomposition can be
tested in Gómez et al.46 The application of the discrete
WT recursively allows for obtaining an adequate num-
ber of patterns which describe the dynamic behaviour
of the signal. In this study, the level of decomposition
is 3 and the mother wavelet selected is DB6; therefore,
after this process, there are 1872 data sets, which means
1872 characteristic energy vectors. The data set
obtained from the signal processing phase is used in the
classification one as input vectors. Particularly, each
input vector is composed of eight characteristic coeffi-
cients corresponding to each measurement, as it was
previously mentioned. The training process was carried
out indicating the system if each input vector was com-
ing from a faulty bearing or from a healthy one. In
addition, 25% of this set is reserved in order to test the
generalization capability of the system; therefore, the

training process was carried out with 1404 vectors.
Once the training phase is completed, the output will
determine whether the mechanical element is faulty or
not.

One trial was chosen as it was the one with the best
results, that is, the one with minimum error function.
As it could be tested in Figures 7 and 8, the error
between the estimated output and the provided system
output is really small, it is around 1025, and even the
generalization error is the order of 1026. By analyzing
the graphs, it can be observed that both error curves
seem to continue descending. Nevertheless, after 1000
epochs, the results are satisfactory and the relation
between computing time and the error level is ade-
quate. Therefore, even though lower error would be
reached, this will not provide quite better results.

In this moment, it is necessary to point out that both
outputs are complementary; this means that two values
must make 1. This was made in this way due to the
characteristics of the system. Given that only one out-
put should be activated, output equal 1, to indicate if
the mechanical element is faulty or not, the other one
has to be inactive, equal 0. This behaviour is shown in
Table 1, where the outputs provided by the system are
shown. For this reason, in Figures 7 and 8, only one

Figure 7. Evolution of quadratic error in training pattern.

Figure 8. Evolution of quadratic error in test pattern.
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output is drawn, since similar results were obtained to
the other output.

Table 1 shows a result comparison. Table 1 presents
several examples of response systems over some inputs.
It is important to note that in order to check the GNF
system, the inputs correspond to those data that were
reserved for the test, that is, the shown inputs are
unknown to the system. The first four data sets corre-
spond to energy characteristic vector of faulty mechani-
cal elements, whereas the three remaining are of
healthy elements. The table allows contrasting the out-
put provided by the GNF system with those that
should be. As it can be tested, the trained system
reaches a great generalization and it provides the ade-
quate output. Therefore, the GNF system, after being
trained, is able to indicate whether an element of rotary
motion drive is faulty or not.

Conclusion

In this article, an automatic fault detection technique
based on a GNF system has been developed. The DWT
decomposition applied over the vibration signal mea-
surements has provided characteristic information
about the state of the elements of rotary motion drives.
The characteristic vector contains information about
whether the mechanical element is faulty or not. Using
these vectors as inputs of the GNF has automated the
detection process, thus the GNF system could be used
for early fault detection at incipient level; therefore, an
automatization of the whole maintenance process in
real industries could be achieved.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with
respect to the research, authorship, and/or publication of this
article.

Funding

The author(s) disclosed receipt of the following financial sup-
port for the research, authorship, and/or publication of this
article: This work was supported by Spanish Government
(MAQ-STATUS DPI2015-69325-C2) and (DPI2015-69
1808271602) of Ministerio de Economı́a y Competitividad
and with European Funds of Regional Development

(FEDER).

ORCID iD

Angela Hernández https://orcid.org/0000-0002-8090-0388

References

1. Lei Y, He Z, Zi Y, et al. Fault diagnosis of rotating

machinery based on multiple ANFIS combination with

GAs. Mech Syst Signal Pr 2007; 21: 2280–2294.
2. Hu Q, He Z, Zhang Z, et al. Fault diagnosis of rotating

machinery based on improved wavelet package trans-

form and SVMs ensemble. Mech Syst Signal Pr 2007; 21:

688–705.
3. Lou X and Loparo KA. Bearing fault diagnosis based on

wavelet transform and fuzzy inference. Mech Syst Signal

Pr 2004; 18: 1077–1095.
4. Gomez M, Castejon C and Garcia-Prada J. Incipient

fault detection in bearings through the use of WPT

energy and neural networks. In: Dalpiaz G, Rubini R,

D’Elia G, et al. (eds) Advances in condition monitoring of

machinery in non-stationary operations. Berlin, Heidel-

berg: Springer, 2014, pp.63–72.
5. Huang H, Ouyang H, Gao H, et al. A feature extraction

method for vibration signal of bearing incipient degrada-

tion. Meas Sci Rev 2016; 16: 149–159.
6. Caesarendra W, Tjahjowidodo T, Kosasih B, et al. Inte-

grated condition monitoring and prognosis method for

incipient defect detection and remaining life prediction of

low speed slew bearings. Machines 2017; 5: 11.
7. Zhou L, Duan F, Mba D, et al. A comparative study of

helicopter planetary bearing diagnosis with vibration and

acoustic emission data. In: Proceedings of the 2017 IEEE

Table 1. Comparison between output values of the Genetic Neuro-Fuzzy system and desired output.

Input GNF output Desired output State of piece

[0.0118 0.0064 0.0035 0.0024 0.0136 0.0116 0.0066 0.0050] 0.0016
0.9984

0
1

Faulty

[0.0046 0.0047 0.0052 0.0028 0.0059 0.0097 0.0042 0.0063] –0.0007
1.0007

0
1

Faulty

[0.0020 0.0035 0.0037 0.0026 0.0040 0.0038 0.0041 0.0063] –0.0010
1.0010

0
1

Faulty

[0.0732 0.0592 0.6486 0.1427 0.0977 0.1343 0.4191 0.2632] –0.0000
1.0000

0
1

Faulty

[0.0083 0.0150 0.0484 0.0175 0.1877 0.1323 0.0888 0.0790] 1.0003
–0.0003

1
0

Healthy

[0.0099 0.0115 0.0500 0.0182 0.1559 0.0856 0.1061 0.0492] 1.0009
–0.0009

1
0

Healthy

[0.0142 0.0160 0.0684 0.0227 0.1635 0.1567 0.1114 0.0886] 1.0005
–0.0005

1
0

Healthy

8 Advances in Mechanical Engineering



international conference on prognostics and health man-

agement (ICPHM), Dallas, TX, 19–21 June 2017,

pp.246–251. New York: IEEE.
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