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Summary Thisarticleanalyzesthefractional Dickey—Fuller (FDF) test for unit rootsrecently
introduced by Dolado, Gonzalo and Mayoral (2002 Econometrica 70, 1963-2006) within
a more general setup. These authors motivate their test with a particular analogy with the
Dickey—Fuller test, whereaswe interpret the FDF test as aclass of testsindexed by an auxiliary
parameter, which can be chosen to maximize the power of the test. Within this framework, we
investigate optimality aspects of the FDF test and show that the version of the test proposed
by these authors is not optimal. For the white noise case, we derive simple optimal FDF tests
based on consistent estimators of the true degree of integration. For the serial correlation case,
optimal augmented FDF (AFDF) tests are difficult to implement since they depend on the
short-term component. Hence, we propose a feasible procedure that automatically optimizesa
prewhitened version of the AFDF test and avoids this problem.
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1. INTRODUCTION

In a recent paper, Dolado, Gonzalo and Mayoral (2002, hereinafter DGM) have introduced a
fractional Dickey—Fuller (hereafter FDF) test for testing the null of unit root against the alternative
of fractional integration. In DGM’s simplest framework, y; denotes a fractionally integrated
process whose true order of integration isd,

A% = (1- L)% = eiliso) 1)

where ¢, are independent and identically distributed (i.i.d.) random variables with zero mean
and finite variance, L is the lag operator and the fractional difference operator is defined as in
DGM.

DGM considered testing the null hypothesisd = 1 versus either asimple alternative (d = da)
or acomposite aternative (d < 1) by means of the t-statistic of the coefficient of A%y, _; of the
regression of Ay; on A%y, ;. That is, DGM considered the OL S estimation of the model

Ay = ¢A%y g +u, t=1,...,T, ()
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and proposed the FDF test statistic, which is the t-ratio associated with the OL S estimate a of ¢,
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where T denotesthe sample size. DGM established thistest based on an analogy with the Dickey—
Fuller (hereafter DF) test, and they interpreted d; as ‘the true value of d under the alternative
hypothesis’. By contrast, we argue that the parameter d, in (2) has a very concrete statistical
meaning, since it defines a class of tests indexed by dj, as it is emphasized in expression (3)
by writing explicitly the input value d; as an argument of the test statistic. This interpretation
of dy will alow us to derive simple and asymptotically more powerful implementations of the
FDF test. In Section 2, we will see that maximizing the power of the FDF test is achieved by
maximizing the correlation between Ay, and A%y,_;. Hence, weinterpret d; as‘aparameter that
determines the power of the FDF test’ and the optimal d; is the value that maximizes the power
of the FDF test. Theimportant difference with DGM isthat d; is not some arbitrary value derived
from DGM’s analogy with the DF test, but a parameter that the researcher should choose to
maximize the correlation between Ay; and A%y;_;, and hence to maximize the power of the FDF
test.

Although the optimal d; isprecisely defined under the alternative hypothesis (asthe parameter
that maximizes the correlation between Ay, and A%y, ;), it is not identified under the null
hypothesis since in this case Ay, and A%y,_; are uncorrelated for any di. This fact hampers
the use of dy = dy, where d; is the argument that maximizes the squared sample correlation
between Ay, and A%y,_;, as we will discussin Section 4. Instead of following this approach,
we will directly pursue optimal implementations of the FDF test. When ¢; is white noise,
we will show that there is a simple optimal selection for d; as a function of the true d.
However, in the seria correlation case the optimal value of d; also depends on the short-term
component. In order to arrive at an optimal implementation, we will propose afeasible procedure
that automatically optimizes a prewhitened version of the augmented FDF (AFDF) test. This
test procedure is based on an algorithm that avoids the lack of identification of the auxiliary
parameter under the null hypothesis, because it employs differentiated versions of the original
series.

Theplanof thearticleisasfollows. Section 2 studiesin detail the casewherethedatagenerating
process (DGP) is given by (1) where ¢; is white noise and derive optimal FDF tests both in a
local aternative framework and in a fixed aternative framework where a consistent estimator
for d is available. Sections 3 and 4 consider the seria correlation case. Section 3 introduces the
prewhitened AFDF (PAFDF) test and derives the asymptotic local power of both tests, the AFDF
and the PAFDF. Section 4 proposes the automatic optimal implementation of the PAFDF test.
Section 5 reports a brief Monte Carlo exercise to compare the finite sample performance of the
considered tests. Finally, Section 6 concludes. For simplicity, we have followed the notation in
DGM as close as possible.

t(di) =

(©)

2. OPTIMAL FDF TESTS: THE WHITE NOISE CASE

DGM’s FDF test depends on the choice of the parameter d; to run regression (2), but thereis not
an obvious selection of such value. Sincethe choice of d; hasimportant implications on the power



properties of thetest, asit is clear from several simulation resultsin DGM's paper, in this section
we will derive optimal selections for d; in the white noise case. We first derive the value of d;
that maximizes the asymptotic power of t(d;) against local aternatives. The following theorem
establishes the asymptotic distribution of the class of test statistics t(d;) under the sequence of
local alternatives d = 1 — 8/+/T for all values of d; > 0.5. We consider this range because
the asymptotic null distribution of t(d,) is the standard normal only for these values of di, and
therefore power comparisonsareanalytically tractable. Notethat thisanalysisincludesthe cased;
= 1 that would not make sense under DGM’sanalysissinced; = 1isthe valueof d under the null
hypothesis. DGM'’s theorem 4 also studies local alternatives but, following their interpretation,
they just consider thecased; =d = 1 —§/4/T.

Theorem 1. Under the assumption that the DGP is a fractional white noise defined as
Alis/ﬁy‘ = 6‘1([>0) with § >0,

where g isi.i.d. with finite fourth moment, for d,; > 0.5, the asymptotic distribution of the test
statistic t(d1) is given by

t(dy) > N(=sh(dh), 1),
where

_ I(dy)
"= T

and I represents the gamma function.

The proof of the theorem is in the Appendix. Note that the non-centrality parameter of the
Gaussian asymptotic distribution of t(d,) is a positive function h(d;), d; > 0.5. It achieves a
maximum at d; = dj ~ 0.69145, h(d}) ~ 1.2456, and satisfies that h(0.5) = 0 and h(1) =
1, in agreement with theorem 4 of DGM where the drift of the distribution of t(d;) for d; =
1—68/+/T — 1isobtained. In addition, as d; tends to infinity, h(d;) tends to zero, see the plot
of the function h(d,) in Figure 1. This theorem is remarkable because it shows that there exists
a unique optimal d; independent of & for testing against local hypotheses. Hence, since the
optimal d; is a fixed number greater than 0.5, the asymptotic null distribution of the t-statistic
evaluated at d; isthe standard normal (cf. theorem 2 in DGM). Note that the asymptotic relative
efficiency of the original DGM’s FDF test with respect to thislocally optimal implementation is
0.81.

In Figure 1, we have added a horizontal line at 1 = h (1), which is the non-centrality
parameter for DGM’s original proposal, d; = d = 1 —8/+/T — 1. Note that employing any
value of d; between 0.5578 and 1 leads to an FDF test with more asymptotic local power than
DGM'’s original proposal. Also note that, as d; approaches 0.5, h(d;) tends to zero and has
a vertical asymptote, reflecting the infinite efficiency loss incurred by choosing d; = 0.5. In
particular, since h(0.5) = O, the test cannot detect root-T alternatives when d; = 0.5. However, it
is simple to check that for the d; = 0.5 case the test can detect local aternatives converging
to the null at the rate T-Y/2 log T. For the cases where d; is below 0.5, the asymptotic
null distribution is no longer the standard normal, hence power considerations become rather
intricate.
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Figure 1. Asymptotic efficiency of the FDF tests: plots of h(d;) and h(1) = 1. The point (1, 1) corresponds
to DGM proposal.

We now consider a complementary criterion to select optimally d; in a fixed aternative
framework where da € (0.5, 1). Since the asymptotic null distribution of the t(d;) statistic is
the standard normal for any d; > 0.5, maximizing the power for this range of values for d;
is equivalent to finding the value of d; that maximizes the probability limit of t(d1)?, properly
standardized. In addition, recall the basic relation of simple regression theory,

R?(dy)

2 _
Hd)"=To— REG)

@
where R3(d;) denotes the squared sample correlation between Ay, and A%y, _;, that is,

2
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Equation (4) establishesamonotonicincreasing rel ation between R?(d;) and t(d1)?, whichimplies
that maximizing the probability limit of T~1t(d1)? is equivalent to maximizing the probability
limit of R(d1)?, defined as p?(dy).

Therefore, under the aternative hypothesis the optimal d; is the argument that maximizes
p2(d,), that is, the squared population correlation between Ay, and A%y, _;. Denote this optimal
dy by

R¥(dy) =

ds = d}(d) = argmax p2(ch).
1



Since d; does not appear on the variance of Ay,

(T’l Y. AytAdlyt—l)z
T Y (M%)’
(limr—o T L, Cov(Ay, A“lytfl))2
limr oo T-1 30, Var(Ady )

Then, using that A%y, = &, the objective function can be written as

di(d) = argmax plimy_,
1

= argmax
dy

2
(IimT_,OO T-1y 0, Cov (Al ey, Adl‘dst_l))
limr oo T-1 Y00, Var(Ah—dg_y)

Next, we calculate these expressions starting by the denominator. Using that A%—9g_; =
Yi_omi(dh — d)er 1,

T t-2 00
Jim T~ 12 Var (A% % _y) = = lim T~ YN i —dyP =) mi(dh—d)’ < o0
- t=2 i=0 i=0
if
dy —d > —0.5, (5

and in this case, Y 72 7i(dy — d)? = I'(2d; — 2d + 1)/ T'(d — dy — 1)%. Note that the prewous
condition (5) is satisfied for any d; > 0.5. Regarding the numerator, using that A'~9g =
Yo mi(L—d)eei,

T 00
Jim T1Y Cov(AM e, A% e q) = > mi(1— d)ma(ch — d).
- t=2 i=
Hence,
di(d) = ag nzjax L(d, dy)
where

(72, (1 = d)mi_a(dy — d))®

L(d. ) = [(2d, — 2d + 1)/ T(d — dy — 1)2°

©)

In agreement with the previous results, when d = 1 — §/+/T the optimal selection of d; is
dj = dj (d) ~ 0.69. For ageneral d, we have not been able to find an explicit expression for the
numerator of equation (6). However, we can approximate d; = dj (d) numerically with any level
of precision, and in Figure 2, we report the di (d) for some valuesof d and atruncationat i = 10°
intheinfinite sumin (6). Figure 2 showsthat d} isalways below the trued. Figure 2 also indicates
that the relation between d; and d |smtldly linear for theranged; > 0.5. InFigure 2, we have
added the regression line of d; (d) ond. Thisfit is given by d* 7(d) = —0.031 + 0. 719d using a
truncationati = :LAO5 in thelnfl nite sumin (6). The standard error of this regression estimation is
0.0004. Notethat d; (d) — d > —0.5, so that the condition (5) isalways satisfied. In addition, and
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Figure 2. Plots of the points (d, d: (d)), and the linesd; = di(d) and d; = d* = 0.69.

in agreement with the previous results, dA{ (2) isvery closeto df, the discrepancy can be attributed
to the numerical error in the approximation.

In particular, for the simple alternative case, we can use d; = —0.031 + 0. 719da, and for the
more interesting composite alternative case, we can employ asd;

di(dr) := —0.031 + 0. 7190, )
where aT isaconsistent estimator of d that satisfies
T (dr — d) = 0,(2) for somet > 0, )

and |dr| < K for some K < oo . Note that condition (8) holds for parametric estimators of d
as required by DGM, and also for many semiparametric estimators. The use of consistent (at a
power rate) estimatorsfor d canbeeasily justified using similar techniquesto Robinson and Hualde
(2003, proposition 9). The previous condition (8) holds for many semiparametric estimators for
an appropriate choice of the bandwidth parameter (see Robinson 1995a,b, Velasco 1999a,b).

In addition, note that contrary to DGM’s discussion, trimming is not necessary since d is
alowed to be equal or larger than 1, although these values are not optimal for any case under
the DGP of Theorem 1. The following lemma justifies this implementation of the FDF test. The
proof is omitted since it is similar to the proof of theorem 5in DGM.

Lemma 1. Under the null hypothesis (d = 1), the t-ratio statistic associated to the parameter ¢
in the regression

Ay = ¢A% @y yu, 9)

where d}(&) isgiven by (7) and asatisﬁes(s) , isasymptotically distributed as N (0, 1).



3 OPTIMAL FDF TESTS: THE SERIAL CORRELATION CASE

The analysis in the previous section imposes that the DGP is A%y, = ¢, where ¢, iswhite noise.
Practically, it is more appropriate to assume that ¢ is serialy correlated, so that the DGP of y; is
given by

a (L) A% = &lp-0), (10)

where we assume that o (L) = 1 — ;L — --- — apL P isapolynomial in the lag operator with
al itsroots outside the unit circle and ¢ has finite fourth moment. Note that in this situation, the
FDF test is not valid because it cannot control the type | error. In order to control the type
| error, DGM proposed the use of the AFDF test that is based on the t-statistic associated
to the coefficient of the regressor A%y,_; in a regression of Ay, on A%y,_; and p lags of
Ayt

AV = ¢A"Y 1 oAy apAYpF U, t=1,...,T, (11)

where regression (2) has been augmented by adding the lags of Ay .

DGM showed that the AFDF test can properly control the type | error when the DGP is an
ARFIMA(p, 1, 0), pisknown and p lags of Ay; areincluded in the augmented regression. DGM
also showed that the test is consistent. However, DGM did not consider the behaviour under local
alternatives. The next theorem complements DGM by studying this case. Introduce the following
notation. Define k = (k4,..., kp) With ke = Zj’ik j*lcj,k, k=1,..., p, where ¢; denotes
the coefficient of Li in the expansion of L (L). Also, denote the Fisher information matrix for
o under Gaussianity by ® = [®j], Puj = Y oo CiCirk—j. fOr k. j =1,..., p. Finally, call
K (d1) = (k1 (dy), k2(d1), ..., kp(d1)), where kg (d1) = Zfik wj(di —1)cjx, fork=1,...,
p.

Theorem 2. Under the assumption that the DGP is an ARFIMA (p,d,0) model defined by (10),
the asymptotic distribution of the t-ratio test statistic t(d;), for testing ¢ = 0in (11), for any d;
> 0.5, under local alternatives (d = 1 — §/+/T, § > 0), isgiven by

t(d) =g N (=du(d, @, p), 1),
where
(Zim @ -1 -« (@) o)

(S50 (@~ 17— @y ot (@)

w(dy, &, p) =

The proof of this theorem is in the Appendix. The importance of this result resides in the
fact that the non-centrality parameter w.(d;, «, p) depends on the serial correlation parameters «r.
Hence, a simple expression for the optimal d; (the analogous of d; ~ 0.69) cannot be derived
in this case, and optima AFDF tests cannot be simply implemented. In order to recover the
optimal selectionsobtained in Section 2, the natural approach would beto employ apre-whitening
procedure to attempt to get back to the white noise framework by filtering (pre-whitening) the
serial correlation of theoriginal series. The main ideaisto perform the augmented regression (11)
where both the dependent variable and the independent variable, whose significance is tested,
have been pre-whitened.



Table 1. Optimal dj for PAFDF tests.
p 0 1 2 3 4 5

d; 0.691 0.846 0.901 0.927 0.942 0.951
Optimal di for ARFIMA(p, d, 0) for the PAFDF test.

The prewhitened augmented FDF (PAFDF) test consists of two steps:

(1) Fit an AR(p) to the differenced series Ay;. Call @(L) to the estimated filter and denote
the prewhitened series by ¥, that is, ¥ = @(L)y;. Note that the prewhitened series ¥; are,
asymptotically, purely fractional under the null hypothesis and under local alternatives,
since the short-term dependence has been eliminated.

(2) The PAFDF test isthe t-test statistic associated to ¢ in

A = 9AYY 1+ 1Ay + - HapAyp g, t=1,...,T. (12)

Notethat, in spite of employing thefiltered series ¥, thep lags of Ay still need to beincluded
in order to control the size of the text, see Agiakloglou and Newbold (1994) and Breitung and
Hassler (2002) for asimilar approach in arelated context.

It is straightforward to show that the asymptotic null distribution of the PAFDF test is the
standard normal and that the test is consistent. The next theorem, that is stated without proof,
establishes the asymptotic behaviour of the PAFDF test under local alternatives.

Theorem 3. Under the assumption that the DGP is an ARFIMA (p,d,0) model defined by (10),
withd = 1 — §/+/T, § > 0, theasymptotic distribution of the t-ratio test statistic t(d;) for testing
¢ =0in (12), isgiven by

t(d) —a N(=8u(ds, p), 1),
where

(I pam @ -1
(Spm @ -17) "

The drift expression, w(ds, p), is easily obtained using similar arguments as the corresponding
drift expression in Theorem 2. It is simple to see that both drifts coincide when «(L) = 1. The
important point is that, contrary to the noncentrality parameter of Theorem 2, (d1, p) depends
only on p, and not on the serial correlation parameters «. In Table 1, we give the expressions for
the optimal d; for p=0,1,2,...,5.

So far, we have studied the asymptotic local properties of the AFDF and PAFDF tests. For
fixed alternatives, the main practical problem is that the analogous of d; (d) does not exist. For
instance, consider an ARFIMA (1,d,0) with autoregressive parameter denoted by «. For this case,
we could employ the AFDF test with one lag of Ay;. For this test, the optimal d; turns out to
be —0.027 + 0.86d when o = 0, whereas it equals 0.020 + 0.59d, when « = 0.6. Hence, it is
different for each value of «. For the PAFDF test, asimilar situation occurs. Despite the fact that
asymptotic local power of the PAFDF test does not depend on the seria correlation parameters,
for fixed alternatives the optimal selection of d; asafunction of d still dependson « .

u(dy, p) =



Hence, both the AFDF and the PAFDF tests present the problem that their optimal
implementations depend on the DGP for fixed alternatives. Therefore, optimal expressions of
d; asafunction of d are of limited practical interest. In order to overcome this problem, in the
next section we introduce an agorithm that automatically selects the optimal d; for either the
AFDF and the PAFDF tests. The only drawback of thisalgorithm isthat it can be computationally
involved because in order to estimate the relation between the optimal d; and d, the data need to
be fractionally differenced a number of times and a corresponding optimization problem has to
be solved. However, in Section 5 we will show by simulations that there are significant empirical
power improvements associated to the use of this agorithm.

4. AUTOMATIC OPTIMAL IMPLEMENTATION OF THE AFDF
AND PAFDF TESTS

In the previous section, we have seen that the optimal selections of d; as a function of d hardly
haveany practical use, sincethey depend ontheserial correlation parametersfor fixed alternatives,
for both the original AFDF test and the PAFDF test. In practice, anatural selection for d; is

g 2
d: = arg max t(dy)”,

where D; = [d, d] isany closed interval that belongsto theinterior of D = [0.5, o). Thischoice
for d; comes intuitively from the discussion in Section 2 where we saw that maximizing the
power entailed maximizing the value of the squared t-statistic. This choice is behind the spirit of
some empirical applications, such asHeravi and Patterson (2005), who report the AFDF test for a
grid of values of d;. However, this selection for d; should be carefully considered. Note that our
previous theory, as well as DGM'’s, is only valid when d; is either a fixed value or a consistent
estimator of afixed value (see DGM’s theorems 2 and 5). The problem is that under the null dy
does not converge to a fixed limit, but to a random variable. The underlying reason is that the
optimal value of d; isnot identified under the null hypothesis, as commented in the I ntroduction.
Therefore, the established theory is not applicablefor t(d;) since critical valuesfrom the standard
normal distribution cannot be employed. Hence, for practical purposes, tests based on t(d;) are
of limited interest.

An aternative to using d; isto employ a consistent estimator of the optimal d;. Note that, as
commented above, this optimal d; depends on the DGP. The important point to redize is that,
despite the optimal d; not being identified under the null hypothesis, it is identified (and hence
it can be consistently estimated) under the alternative. However, in practice the researcher does
not know whether the data have been generated under the alternative or under the null. Therefore,
in order to obtain consistent estimators of the optimal d;, we need to design a procedure that
guarantees that the employed data are generated under the aternative and, at the same time, it
does not alter the short term properties of the data. We propose to fractionally difference the
given sequence y; by an amount § > 0, so that we can be sure that the data behave under the
alternative (except when d = 1 + §) without altering the short-term behaviour of the data. Given
that the relation between the optimal d; and the true d is linear (thisis true for the ARFIMA (p,
d, 0) process, at least), by considering several values of §, we can approximate with any degree
of accuracy the relationship between any d — § value and the corresponding optimal d. Finaly,
we can extrapolate this relation at § = 0 so that we consistently estimate the optimal d; for the
data at hand. It is simple to show that, when the data are generated under the null, the projected



value for dy converges to a fixed value (that would be d; when there is no serial correlation),
and, hence, employing critical values from the standard normal guaranteesthat thetypel error is
properly controlled. In addition, when the data are generated under the alternative, this procedure
estimates consistently the optimal d; for the given data

In practice, the procedure consists of the following steps.

(1) Selectasetof 0 <68y <82 < < 8qwithq > 2. Note that for ARFIMA(p, d, 0) processes
g = 2 isenough given that the optimal relation is linear.
(2) For each §;, obtain

d1(8)) = argmax t; (ch)”.
il

where t} (d;) denotes the t-statistic associated to the coefficient ¢ in the regression (11),
where the input seriesy; is replaced by the fractional differenced series Ay, .

(3) Usethepairs(s;, d1(5;)) tofit asimple polynomial model (typically linear) by OLSor other
estimation procedure and denote the fitted model by d;(5).

(4) The proposed t-test uses the original y; and employs

d; = max(d(0), 0.5) (13)
in the augmented regression (11).

Notethat thefitted 5{(0) convergesto aconstant both under thenull (theoptimal d, inthelocal
alternative case) and under the alternative (the optimal d; in the fixed alternative case). However,
this optimal d; could be below 0.5. In order to retain the asymptotic null standard distribution,
we need to assure that the input d; is greater than 0.5 and this is the reason for the truncation in
(13). Then, it can be justified, as in the white noise case, that the asymptotic null distribution of
the t-statistic that employs (13) as d; is the standard normal. Note that an additional feature of
the previous algorithm is that it avoids the pre-estimation of d, and, therefore, the introduction of
the bandwidth parameter necessary for obtaining the semiparametric estimator of d.

The previous a gorithm has been presented for the original AFDF test, but asimilar algorithm
can be employed to derive optimal implementations of the prewhitened AFDF. The differenceis
that in Step 2 the t-statistic is now associated to the coefficient ¢ in the regression (12). In the
next section, we will study the finite sample properties of these tests.

5. SIMULATIONS

In this section, we comment on the results of asmall Monte Carlo study. We consider two DGPs,
apure fractionally integrated Gaussian process and a Gaussian ARFIMA(1, d, 0). Tables 2 and
3 report the results for the first DGP for anominal level of 0.05 and two samples sizes, 100 and
500, respectively. The number of replicationsis 50,000 for Table 2, and 10,000 for Table 3. The
parameter d takes values from 0.5 to 1 with increments of 0.05 in Table 2, and it takes values
from 0.8 to 1 with increments of 0.025 in Table 3. These tables report the results of the FDF test
with five selections for di, namely dy = d, FDF(d), di = dl(d) —0.031 + 0.719d, FDF(d}
(d)), d1 = dj ~ 0.69, FDF(d}), dy = dsp, FDF(dsp) and d = d}(dsp) = —0.031 + 0.719dsp,
FDF(d; (dsp) where dsp denotes Robinson's (1995b) semiparametric estimator. Regarding the
first and second selections of d, they represent unfeasible implementations of the FDF test that
assume that the true d isknown and ignore the sampling error associated with the estimation of d.



Table 2. Size and size-adjusted power. White noise case. T = 100.

Test\d 05 055 06 065 07 075 08 08 09 095 1
FDF(d) 100 999 996 982 936 821 642 430 245 119 527
FDF(d; (d)) 100 100 999 997 978 910 757 527 300 136 552
FDF(d;) 100 997 992 974 933 843 690 489 286 134 550
FDF(dsp) 999 997 989 967 O9L1 801 628 420 239 116 665
FDF(d; (Esp)) 100 100 999 996 970 900 734 502 286 130 6.87
LM 999 997 991 971 921 815 646 446 258 126 453
W 100 999 995 978 927 815 637 430 247 118 1082

Monte Carlo size (d = 1) and (size-adjusted) power (d < 1). Percentage of rejections based on 5% nominal level. Series
follow a FI(d) with Gaussian errors. Sample size is 100. The number of replications is 50,000.

Table 3. Size and size-adjusted power. White noise case. T = 500.

Test\ d 0.8 0.825 0.85 0.875 0.9 0.925 0.95 0.975 1
FDF(d) 99.9 99.3 96.4 88.6 73.0 514 29.0 132 4.86
FDF(d;«(d)) 100 99.9 99.4 96.8 86.3 64.7 37.3 157 5.14
FDF(dy+) 100 99.8 9.1 95.2 84.3 63.3 36.7 15.6 513
FDF(dsp) 99.9 99.3 96.9 87.9 78.0 50.6 30.9 117 6.25
FDF(d:- (dsp)) 100 99.9 98.8 95.0 84.5 62.2 355 14.3 5.60
LM 100 99.9 99.1 93.9 83.9 62.5 35.8 151 5.50
w 100 100 100 97.0 84.7 63.1 35.8 135 7.21

Monte Carlo size (d = 1) and (size-adjusted) power (d < 1). Percentage of rejections based on 5% nominal level. Series
follow a Fl(d) with Gaussian errors. Sample size is 500. The number of replications is 10,000.

In addition, we report two feasible parametric tests: the Lagrange Multiplier (LM) test considered
by Robinson (1991, 1994) and Tanaka (1999) and the Wald (W) test derived from the resultsin
Fox and Tagqu (1986). Notethat the W test isapplied to the differenced series. These tablesreport
the size results (d = 1) and size-adjusted power instead of raw power (d < 1) since the W test
presents severe size distortions.

These two tables indicate that the proposed optimal implementation of the FDF test in some
cases can improve up to 30% the size-adjusted power with respect to DGM’soriginal proposal, for
both the unfeasible and the feasible versions of the test. Also note that theloss of empirical power
of the FDF(d;) and the LM testsis larger as the aternative is further from the null, reflecting the
local character of these tests. The W test presents severe size distortions, especially for n = 100.
From these tables, we can conclude that the advantage of the optimal implementation of the FDF
test with respect to W is to better control the size, whereas compared to LM it offers a superior
empirical power.

In Tables 4 and 5, we consider the case where the DGP is a Gaussian ARFIMA(1, d, 0) with
autoregressive parameter o = {—0.5, 0, 0.3, 0.6, 0.8}. In these tables, we only report the results
for one negative value for «; because for other negative values of «; the results were similar,
contrary to the @1 > O case where finite sample power depends greatly on «;. In addition, the
most relevant empirical case is when o3 > 0. The parameter d takes values from 0.5 to 1 with
increments of 0.05. As above, we use 0.05 as the nominal level, and consider same sample sizes



Table 4. Size and size-adjusted power. Seria correlation case. T = 100.
ag d 05 055 06 065 07 075 08 08 09 09 1
AFDF(dsp) 986 974 937 877 790 633 444 289 165 87 947
Auto-AFDF 100 999 983 9.0 873 743 567 389 218 115 844
05 PAFDF(ds) 993 981 954 895 791 643 466 302 178 95 913
Auto-PAFDF 999 994 986 962 885 752 569 399 230 119 807
LM 993 981 952 895 798 661 494 332 199 105 509
W 995 985 958 897 789 637 466 308 184 100 1441
AFDF(ds) 97.3 939 875 767 626 467 318 202 121 71 981
Auto-AFDF 985 953 899 796 663 522 366 245 148 81 955
00 PAFDF(dsp) 956 908 832 726 594 449 312 201 121 71 970
Auto-PAFDF 986 953 899 812 674 538 382 261 159 92 878
LM 931 879 801 697 577 448 325 222 141 86 4.06
W 0966 923 847 739 605 466 335 228 143 88 1362
AFDF(ds) 839 737 621 503 375 264 186 120 86 60 994
Auto-AFDF 912 846 750 634 493 370 266 186 126 85 965
03 PAFDF(ds) 842 757 649 525 397 281 189 125 84 61 843
Auto-PAFDF 927 859 772 653 522 392 280 187 119 83 726
LM 795 715 618 517 415 319 234 167 115 77 204
W 944 893 817 716 599 473 350 241 156 93 3.35
AFDF(dsp) 400 309 240 186 137 110 86 70 60 54 870
Auto-ADGM 495 392 308 243 179 138 104 84 69 55 1012
06 PAFDF(ds) 588 411 390 288 217 155 110 81 64 55 466
Auto-PAFDF 59.7 496 402 321 248 187 150 121 89 6.3 7.25
LM 434 361 292 232 180 139 105 82 64 55 111
W 881 809 725 622 503 386 281 193 128 82 044
ADGM (&sp) 131 118 113 108 106 103 9.6 8.9 7.7 6.4 4.68
Auto-AFDF 143 108 80 57 49 43 41 41 43 44 952
08 PAFDF(ds) 202 170 146 130 119 111 103 91 79 65 439
Auto-PAFDF 242 203 183 169 147 138 128 107 87 66 59
LM 29 23 21 24 31 44 58 69 72 64 375
W 525 451 379 316 263 218 175 137 104 75 135

Monte Carlo size (d = 1) and (size-adjusted) power (d < 1). Percentage of rejections based on 5% nominal level. Series
follow an ARFIMA(1,d,0) with Gaussian errors. The autoregressive parameter is« 1. The number of lags of Ay; included
in the augmented regression is 1. Sample sizeis 100. The number of replicationsis 50,000.

and number of replications. These tables report the results for six feasible tests. The first four
are related to the AFDF test. In particular, they are: DGM’s initial proposal of the augmented
FDF test that usesd; = dsp, AFDF(dsp) the automatic optimal implementation of the AFDF test
discussed in Section 4, Auto-AFDF, the prewhitened AFDF that employsd; = dsp, PAFDF(dSp),
and the automatic optimal implementation of the PAFDF test, Auto-PAFDF. These tables also
include the previously mentioned LM and W testswith p = 1.



Table 5. Size and size-adjusted power. Serid correlation case. T = 500.

a; d 05 055 06 065 07 075 08 08 09 095 1
AFDF(@s) 100 100 100 999 998 991 963 879 589 210 848
Auto-AFDF 100 100 100 997 985 967 937 925 733 205 7.67

05 PAFDF(@s) 100 100 100 100 100 999 985 887 580 225 7.17
Auto-PAFDF 100 100 100 100 100 100 997 974 757 308 7.06

LM 100 100 100 100 100 100 998 954 706 285 565
W 100 100 100 100 100 100 999 960 706 282 791
AFDF(ds) 100 100 100 100 998 988 924 725 379 132 877
Auto-AFDF 100 100 999 996 989 981 970 858 534 219 7.83
00 PAFDF(ds) 100 100 100 100 998 981 912 700 387 141 7.98
Auto-PAFDF 100 100 100 100 100 996 976 871 557 233 660
LM 100 100 100 100 100 995 957 802 488 195 547
W 100 100 100 100 100 997 967 809 479 184 7.81
AFDF(@sr) 100 100 100 999 990 925 756 486 243 102 867
Auto-AFDF 100 100 999 998 994 981 888 647 361 160 7.41
03 PAFDF(@ds) 100 100 100 997 985 914 699 399 176 76 7.84
Auto-PAFDF 100 100 100 100 996 988 892 656 362 163 6.09
LM 100 100 100 998 987 940 807 573 324 143 462
W 100 100 100 100 993 946 791 517 264 114 836
AFDF(dsp) 996 984 928 821 654 441 285 164 99 63 882
Auto-AFDF 999 993 975 934 826 644 446 268 156 86 699
06 PAFDF(ds) 999 989 951 854 692 494 312 186 104 69 540
Auto-PAFDF 999 992 987 956 875 700 513 327 188 93 602
LM 986 962 906 813 682 525 369 236 146 82 429
W 100 997 981 923 792 592 383 233 136 83 643
AFDF(ds) 421 288 186 121 101 93 95 96 87 71 559
Auto-AFDF 581 425 291 201 138 99 67 55 50 49 694

08 PAFDF(ds) 804 708 609 516 431 354 283 221 156 098 447

Auto-PAFDF 858 763 658 542 444 355 284 217 154 95 583
LM 222 175 150 147 162 185 200 192 153 101 597
W 952 909 846 765 670 555 435 309 202 114 460

Monte Carlo size (d = 1) and (size-adjusted) power (d < 1). Percentage of rejections based on 5% nominal level. Series
follow an ARFIMA(1,d,0) with Gaussian errors. The autoregressive parameter is« 1. The number of lags of Ay included
in the augmented regression is 1. Sample size is 500. The number of replicationsis 10,000.

Similarly to the white noise case, we report size-adjusted power. For all employed tests,

we have correctly controlled for the serial correlation by including one lag in the augmented
regression. Regarding the automatic tests note that, in order to stabilize the fit of dj(s), we
consider positive and negative values for §. The reason for including negative values for § is
that the function dj (d) is smooth for d > 1. Note that under the aternative many of these
fractionally differenced series with § < O will have memory less than 1. The only potential



problem isthat for some particular §; the fractionally differenced series A% y; has memory equal
to 1, rendering inconsistent d(5;). Note that this can happen for at most one 8; (when d =
1+ ;). In order to control the possible distortion caused by this single point, we can either
use robust estimation procedures (such as LAD) instead of OLS or use a number of §'s that
increase with the sample size. In these simulations, we have followed the first option and use
LAD-linear regression. The chosen set of possible values for d; is [0.2, 1.2]. A Fortran code
with the program is available from the authors. In these simulations, we have chosen g = 8 and
8§ €{0.5,04,0.3,0.2,0.1,-0.1, 0.2, —0.3} .

The main conclusions from Tables 4 and 5 are the following. Compared to the white noise
case, thereisasignificant loss of power for any value of «;. Itisalso especially notablethat power
ishigher when the serial correlation is negative, and decreases fast for positive ;. For the AFDF
tests, the main effect of pre-whitening is to help controlling the type | error. It is aso apparent
that the automatic optimal implementations for both the AFDF and the PAFDF tests improve,
sometimes substantially, the empirical power. For instance, compared to DGM'siinitial proposal,
the automatic PAFDF test improves power by around 40% for moderate seria correlation (¢ =
0.3) when d equals0.85 or 0.9. Note also that the LM test presentslow power for alternatives avay
from the null. Thisis especially notable for the strong serial correlation cases, « = 0.6, 0.8. The
W test cannot properly control the type | error for moderate sample sizes, similarly to the white
noise case, hence, the size-corrected power figures should be interpreted with care. However, for
large samples, it presentsthe highest empirical power, as could be anticipated, givenitsparametric
nature. Similarly to the white noise case, these simulations indicate that the automatic optimal
implementation of the PAFDF test presents some advantage over the existing simpler parametric
tests, in terms of power with respect to the LM, and in terms of size with respect to the W.

6. CONCLUSIONS

This article has provided a new interpretation for the FDF test that has led to the development of
more powerful tests. In particular, the input value d; that needs to be used in the FDF test is not
interpreted as ‘ the true value of d under the alternative hypothesis' asDGM do, but asan auxiliary
parameter that maximizes the power of the FDF test. Contrary to DGM'’s arbitrary selection of
d;, we have addressed the issue of optimally selecting the value of d; .

For the white noise case, in alocal aternative framework, we have proved that the FDF test is
consistent against local aternativesfor any d; > 0.5, and derived the optimal selection for ds. In
the context of fixed alternatives, we have defined the true optimal d; using acriterion based on the
population-squared correlation between the dependent and independent variables of regression
(2). Inthis framework, we have derived optimal FDF tests that are consistent against alternatives
that converge to the null at the parametric rate, and where d; can be based on semiparametric
estimators of d.

For the serial correlation case, it is also possible to establish optimal selections for d; as
a function of the long memory parameter. However, these optimal expressions are of limited
practical use since they depend on the short memory parameters. For practical purposes, we have
proposed an automatic approach that optimizesthe PAFDF test. The test procedureis based on an
algorithm that fractionally difference the series by various degrees, so it avoids the use of these
optimal rulesand it also avoids the lack of identification of the auxiliary parameter under the null
hypothesis. This algorithm automatically optimizes the AFDF and the PAFDF tests, and, as an



additional feature, it avoids the introduction of the bandwidth parameter necessary for estimating
semiparametrically d.

We finish with a suggestion for further research. In this article, we have considered the
case where the number of lags in the augmented regression is correctly set by the researcher.
An aternative, which should be appealing for applied researchers, consists of applying a data
based information criterion to select automatically the lag length. However, note that a routine
application of typical criteria, such as AIC, does not guarantee the delivery of tests with good
power properties, since these criteria are typicaly designed for an estimation framework, rather
thanfor atesting problem, (seee.g. Ng and Perron 2001). Another possibility isto consider testing
the significance of the lags sequentially. A careful analysis of the asymptotic properties and the
finite sample behaviour of these tests procedures when an automatic lag selection is employed
merits further research.
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APPENDIX

For simplicity, in this Appendix we assume that the variance of ¢ isone.

Proof of Theorem 1. We begin by introducing some notation. Let

-1
Ayi = A e dg = &+ Y mi(—Or)er i,
i1

where 61 1= —STfl/z, and JT]_(—QT) =0T, 772(—91') = 050‘[(1 + 91’) ~ — 0.55T71/2, andin
general 7 j(—67) ~ — |~ 8T Y2, where the symbol ~ means that as the sample size tends to
infinity the ratio of the LHS and the RHS tends to one. Also,

t—2

Aty = Ao g1y = &1 + Zﬂi (=n7)et-1-i,
=1

where nt =1 —d; — §T~Y2, sothat ma(—n7) = n7 &~ 1 — d1, wo(—n7) = 0597 (1 + n7) ~
0.5(1 — d1)(2 — d;) and so on.
First, consider the numerator of t(d;) scaled by T~%/2,

.
Qr(dy) =T Z Ay Aty g

t=2

=772 ; (Et + > (}_—8> Et—i> (81—1 + [iz:ni(_nT)Et—l—i> (A1)
t=2 G VT i=1

82 T t-1 , t—2
+ Til/zﬁ Z (Z 7 (=0%)ei | | &1+ Zﬂi (=nm)et1-i (A2)
=2 \i=1 i=1
where | isthefirst derivative of 7 and 6* is some point between 0 and 6 1. Notethat |/ (—6)| <

Citlogi by lemma 1 of Delgado and Velasco (2005). Since (14) is Op (1) asit is showen next,
itis straightforward to show that (15) isop (1).



The leading term (14) of Qr(d;) can be written as

= —5T~ 12 (81 1t Z . (|njr)?) = 1) 43
T t—2

I Z & <6:71 + Z i (*HT)SFH) (A4
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Thelast two terms, (18) and (19), in the previous expression are o, (1) using similar reasoning
to that in the proof of theorem 4 in DGM. Theterm (16) is

T

_s —2
? Z ( ; 0+ l)”l(_ﬂT)"?thpl) —p —38K(dy)

t=2

where

LA (R e mdi - 1)
K(d1)=T“jgo$Z(Z 11 )X et

t=2 \i=0

Usingastandard central limit theorem for martingal edifference sequences, theterm (17) converges
indistributionto aN (0, V) where

2
1 =
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because 1 — d; < 0.5. Hence, Qr(dy) —a N(—3K (1), 370 i (dy — 1)2).
Second, consider the denominator of t(d;) scaled by T~/2. It is straightforward to show that

Ty (A — pA%y, 1) —, 1, and, given the above expression for A%y 3, by a law of
large numbers it is easy to wethat theplim of T-1 Y[ ,(A%y, ;)2 isgiven by

2
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Direct calculationslead to K (d;) = 1/d; and to

S ri(dy — 17 = LG 1)
;ﬂ(l )

'(dy)?
Hence, using
o0 o0
Jim X:Wi(—'ﬁ)2 = Zﬂi (d - 1)°
RG] i=o
we derive that

t(di) —a N (=8h(dy), 1).

Proof of Theorem 2. Inorder to derivethe noncentrality parameter of the asymptotic distribution
of t(dy), the key ideaisto use the basic equation of multivariate regression

Rr
J1-R2
where Rr denotes the sample partial correlation coefficient between Y; := « (L)Ay; and X; :=
A%y, 4 giventhe p lags of Ay, Z == (Ze1, .. -, Zyp) With Zy = Ay, k=1,..., p. Note

that the denominator in (20) tendsto 1 in probability under local aternatives for which the DGP
isgiven by

t(d) = VT A7)

Ay = a(L)_lAMﬁst Lisop,

and where the operator A%~ can be written as

S/NT _ s 1
AY _lfﬁJ(L)Jr?HT(L),
where J(L) = Y52, j7'LJ and Hr(L) = 352, hr jLI, with |hrj] < Cj~* log? j, j >
1, uniformly in T. Then, we can write the series involved in t(d;) in terms of the i.i.d.
variables ey, asfollows: Y; = AYYTg, X, = [ (L) A%IL]AY, = AU=IANT g and Z; ¢ =
(L) IAT kg k=1,..., p.

Next, we obtain the residuals Y; and X{ of projecting Y; and X;, respectively, on the vector
Z.. Itissimpleto show that Y;* = A%YTg,, plus aterm due to the estimation of the projection on
Z; that contributes to the drift of t(d,) at asmaller order of magnitude because it is orthogonal to
theresiduals X{. In order to study X, note that

L
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whereas
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Then, the (population) least-squares projection coefficients of X, onto Z;, are given by &1 «,
and, therefore, X; = A% L — i’ (dy) @ a(L) et p, Where erp = (g1-1, ..., &r—p) , plus
smaller order terms. Next, we have that T¥2 Y"1, Y;* X; converges in distribution to a normal
variate with mean equal to

.
lim % Z E[-83 (L) e - {A% Ley — & (d) @ ter(L) ey p}]
t=1
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and variance Y52 7j(dh — 1)? — «’(c)® "« (ch). Note also that plim;_ T2 ()2 =
Var [e;] = 1. Therefore, plimy_ .. T-1 Y"1, (X;)? is given by
Var (A% e — «/ (dh) (L) ey p)

= Var(A%ILe) + Var (' ()@ (L) et p) — 2Cou(A% Ly, 1 (dr) D Ler(L) Ly p)

= iﬂj (dp — )% + & (dy) @k (dy) — 2’ (dy) D~ (dy)
=0

= Z”J (dp — 1)? — & (chy) @k (dh),
=0

and the theorem follows.



