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Summary This article analyzes the fractional Dickey–Fuller (FDF) test for unit roots recently
introduced by Dolado, Gonzalo and Mayoral (2002 Econometrica 70, 1963–2006) within
a more general setup. These authors motivate their test with a particular analogy with the
Dickey–Fuller test, whereas we interpret the FDF test as a class of tests indexed by an auxiliary
parameter, which can be chosen to maximize the power of the test. Within this framework, we
investigate optimality aspects of the FDF test and show that the version of the test proposed
by these authors is not optimal. For the white noise case, we derive simple optimal FDF tests
based on consistent estimators of the true degree of integration. For the serial correlation case,
optimal augmented FDF (AFDF) tests are difficult to implement since they depend on the
short-term component. Hence, we propose a feasible procedure that automatically optimizes a
prewhitened version of the AFDF test and avoids this problem.
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1. INTRODUCTION

In a recent paper, Dolado, Gonzalo and Mayoral (2002, hereinafter DGM) have introduced a
fractional Dickey–Fuller (hereafter FDF) test for testing the null of unit root against the alternative
of fractional integration. In DGM’s simplest framework, yt denotes a fractionally integrated
process whose true order of integration is d,

�d yt = (1 − L)d yt = εt 1{t>0}, (1)

where ε t are independent and identically distributed (i.i.d.) random variables with zero mean
and finite variance, L is the lag operator and the fractional difference operator is defined as in
DGM.

DGM considered testing the null hypothesis d = 1 versus either a simple alternative (d = dA)
or a composite alternative (d < 1) by means of the t-statistic of the coefficient of �d1 yt−1 of the
regression of �yt on �d1 yt−1. That is, DGM considered the OLS estimation of the model

�yt = φ�d1 yt−1 + ut , t = 1, . . . , T , (2)
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and proposed the FDF test statistic, which is the t-ratio associated with the OLS estimate φ̂ of φ,

t(d1) =
√

T
∑T

t=2 �yt�
d1 yt−√∑T

t=2

(
�yt − φ̂�d1 yt−1

)2 ∑T
t=2

(
�d1 yt−1

)2
, (3)

where T denotes the sample size. DGM established this test based on an analogy with the Dickey–
Fuller (hereafter DF) test, and they interpreted d1 as ‘the true value of d under the alternative
hypothesis’. By contrast, we argue that the parameter d1 in (2) has a very concrete statistical
meaning, since it defines a class of tests indexed by d1, as it is emphasized in expression (3)
by writing explicitly the input value d1 as an argument of the test statistic. This interpretation
of d1 will allow us to derive simple and asymptotically more powerful implementations of the
FDF test. In Section 2, we will see that maximizing the power of the FDF test is achieved by
maximizing the correlation between �yt and �d1 yt−1. Hence, we interpret d1 as ‘a parameter that
determines the power of the FDF test’ and the optimal d1 is the value that maximizes the power
of the FDF test. The important difference with DGM is that d1 is not some arbitrary value derived
from DGM’s analogy with the DF test, but a parameter that the researcher should choose to
maximize the correlation between �yt and �d1 yt−1, and hence to maximize the power of the FDF
test.

Although the optimal d1 is precisely defined under the alternative hypothesis (as the parameter
that maximizes the correlation between �yt and �d1 yt−1), it is not identified under the null
hypothesis since in this case �yt and �d1 yt−1 are uncorrelated for any d1. This fact hampers
the use of d1 = d1, where d1 is the argument that maximizes the squared sample correlation
between �yt and �d1 yt−1, as we will discuss in Section 4. Instead of following this approach,
we will directly pursue optimal implementations of the FDF test. When ε t is white noise,
we will show that there is a simple optimal selection for d1 as a function of the true d.
However, in the serial correlation case the optimal value of d1 also depends on the short-term
component. In order to arrive at an optimal implementation, we will propose a feasible procedure
that automatically optimizes a prewhitened version of the augmented FDF (AFDF) test. This
test procedure is based on an algorithm that avoids the lack of identification of the auxiliary
parameter under the null hypothesis, because it employs differentiated versions of the original
series.

The plan of the article is as follows. Section 2 studies in detail the case where the data generating
process (DGP) is given by (1) where ε t is white noise and derive optimal FDF tests both in a
local alternative framework and in a fixed alternative framework where a consistent estimator
for d is available. Sections 3 and 4 consider the serial correlation case. Section 3 introduces the
prewhitened AFDF (PAFDF) test and derives the asymptotic local power of both tests, the AFDF
and the PAFDF. Section 4 proposes the automatic optimal implementation of the PAFDF test.
Section 5 reports a brief Monte Carlo exercise to compare the finite sample performance of the
considered tests. Finally, Section 6 concludes. For simplicity, we have followed the notation in
DGM as close as possible.

2. OPTIMAL FDF TESTS: THE WHITE NOISE CASE

DGM’s FDF test depends on the choice of the parameter d1 to run regression (2), but there is not
an obvious selection of such value. Since the choice of d1 has important implications on the power
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properties of the test, as it is clear from several simulation results in DGM’s paper, in this section
we will derive optimal selections for d1 in the white noise case. We first derive the value of d1

that maximizes the asymptotic power of t(d1) against local alternatives. The following theorem
establishes the asymptotic distribution of the class of test statistics t(d1) under the sequence of
local alternatives d = 1 − δ/

√
T for all values of d 1 ≥ 0.5. We consider this range because

the asymptotic null distribution of t(d1) is the standard normal only for these values of d1, and
therefore power comparisons are analytically tractable. Note that this analysis includes the case d 1

= 1 that would not make sense under DGM’s analysis since d 1 = 1 is the value of d under the null
hypothesis. DGM’s theorem 4 also studies local alternatives but, following their interpretation,
they just consider the case d1 = d = 1 − δ/

√
T .

Theorem 1. Under the assumption that the DGP is a fractional white noise defined as

�1−δ/
√

T yt = εt 1{t>0} with δ ≥ 0,

where ε t is i.i.d. with finite fourth moment, for d 1 ≥ 0.5, the asymptotic distribution of the test
statistic t(d1) is given by

t(d1)
w→ N (−δh(d1), 1),

where

h(d1) = �(d1)

d1
√

�(2d1 − 1)
,

and � represents the gamma function.

The proof of the theorem is in the Appendix. Note that the non-centrality parameter of the
Gaussian asymptotic distribution of t(d1) is a positive function h(d 1), d 1 > 0.5. It achieves a
maximum at d 1 = d∗

1 � 0.69145, h(d∗
1) � 1.2456, and satisfies that h(0.5) = 0 and h(1) =

1, in agreement with theorem 4 of DGM where the drift of the distribution of t(d1) for d1 =
1 − δ/

√
T → 1 is obtained. In addition, as d1 tends to infinity, h(d1) tends to zero, see the plot

of the function h(d1) in Figure 1. This theorem is remarkable because it shows that there exists
a unique optimal d1 independent of δ for testing against local hypotheses. Hence, since the
optimal d1 is a fixed number greater than 0.5, the asymptotic null distribution of the t-statistic
evaluated at d∗

1 is the standard normal (cf. theorem 2 in DGM). Note that the asymptotic relative
efficiency of the original DGM’s FDF test with respect to this locally optimal implementation is
0.81.

In Figure 1, we have added a horizontal line at 1 = h (1), which is the non-centrality
parameter for DGM’s original proposal, d1 = d = 1 − δ/

√
T → 1. Note that employing any

value of d1 between 0.5578 and 1 leads to an FDF test with more asymptotic local power than
DGM’s original proposal. Also note that, as d1 approaches 0.5, h(d1) tends to zero and has
a vertical asymptote, reflecting the infinite efficiency loss incurred by choosing d 1 = 0.5. In
particular, since h(0.5) = 0, the test cannot detect root-T alternatives when d 1 = 0.5. However, it
is simple to check that for the d 1 = 0.5 case the test can detect local alternatives converging
to the null at the rate T−1/2 log T . For the cases where d1 is below 0.5, the asymptotic
null distribution is no longer the standard normal, hence power considerations become rather
intricate.
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Figure 1. Asymptotic efficiency of the FDF tests: plots of h(d1) and h(1) = 1. The point (1, 1) corresponds
to DGM proposal.

We now consider a complementary criterion to select optimally d1 in a fixed alternative
framework where dA ∈ (0.5, 1). Since the asymptotic null distribution of the t(d1) statistic is
the standard normal for any d 1 ≥ 0.5, maximizing the power for this range of values for d1

is equivalent to finding the value of d1 that maximizes the probability limit of t(d1)2, properly
standardized. In addition, recall the basic relation of simple regression theory,

t(d1)2 = T
R2(d1)

1 − R2(d1)
, (4)

where R2(d1) denotes the squared sample correlation between �yt and �d1 yt−1, that is,

R2(d1) =
(∑T

t=2 �yt�
d1 yt−1

)2

∑T
t=2 (�yt )2 ∑T

t=2

(
�d1 yt−1

)2 .

Equation (4) establishes a monotonic increasing relation between R2(d1) and t(d1)2, which implies
that maximizing the probability limit of T−1t(d1)2 is equivalent to maximizing the probability
limit of R(d1)2, defined as ρ2(d1).

Therefore, under the alternative hypothesis the optimal d1 is the argument that maximizes
ρ2(d1), that is, the squared population correlation between �yt and �d1 yt−1. Denote this optimal
d1 by

d1 = d∗
1 (d) := arg max

d1

ρ2(d1).
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Since d1 does not appear on the variance of �yt,

d∗
1 (d) = arg max

d1

plimT →∞

(
T −1 ∑T

t=2 �yt�
d1 yt−1

)2

T −1
∑T

t=2

(
�d1 yt−1

)2

= arg max
d1

(
limT →∞ T −1 ∑T

t=2 Cov
(
�yt , �

d1 yt−1
))2

limT →∞ T −1
∑T

t=2 Var
(
�d1 yt−1

) .

Then, using that �d yt = ε t , the objective function can be written as(
limT →∞ T −1 ∑T

t=2 Cov
(
�1−dεt , �

d1−dεt−1
))2

limT →∞ T −1
∑T

t=2 Var
(
�d1−dεt−1

) .

Next, we calculate these expressions starting by the denominator. Using that �d1−dεt−1 =∑t
i=0 πi (d1 − d)εt−1−i ,

lim
T →∞

T −1
T∑

t=2

Var
(
�d1−dεt−1

) = lim
T →∞

T −1
T∑

t=2

t−2∑
i=0

πi (d1 − d)2 =
∞∑

i=0

πi (d1 − d)2 < ∞

if

d1 − d > −0.5, (5)

and in this case,
∑∞

i=0 πi (d1 − d)2 = �(2d1 − 2d + 1)/�(d − d1 − 1)2. Note that the previous
condition (5) is satisfied for any d 1 ≥ 0.5. Regarding the numerator, using that �1−dεt =∑t

i=1 πi (1 − d)εt−i ,

lim
T →∞

T −1
T∑

t=2

Cov
(
�1−dεt , �

d1−dεt−1
) =

∞∑
i=1

πi (1 − d)πi−1(d1 − d).

Hence,

d∗
1 (d) = arg max

d1

L(d, d1)

where

L(d, d1) =
(∑∞

i=1 πi (1 − d)πi−1(d1 − d)
)2

�(2d1 − 2d + 1)/�(d − d1 − 1)2
. (6)

In agreement with the previous results, when d = 1 − δ/
√

T the optimal selection of d1 is
d∗

1 = d∗
1 (d) � 0.69. For a general d, we have not been able to find an explicit expression for the

numerator of equation (6). However, we can approximate d∗
1 = d∗

1 (d) numerically with any level
of precision, and in Figure 2, we report the d∗

1 (d) for some values of d and a truncation at i = 105

in the infinite sum in (6). Figure 2 shows that d∗
1 is always below the true d. Figure 2 also indicates

that the relation between d∗
1 and d is essentially linear for the range d∗

1 ≥ 0.5. In Figure 2, we have
added the regression line of d∗

1 (d) on d. This fit is given by d̂∗
1 (d) = −0.031 + 0. 719d using a

truncation at i = 105 in the infinite sum in (6). The standard error of this regression estimation is
0.0004. Note that d̂∗

1 (d) − d > −0.5, so that the condition (5) is always satisfied. In addition, and
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Figure 2. Plots of the points (d, d∗
1 (d)), and the lines d1 = d̂∗

1 (d) and d 1 = d∗ ≡ 0.69.

in agreement with the previous results, d̂∗
1 (1) is very close to d∗

1, the discrepancy can be attributed
to the numerical error in the approximation.

In particular, for the simple alternative case, we can use d 1 = −0.031 + 0. 719dA, and for the
more interesting composite alternative case, we can employ as d1

d̂∗
1 (d̃T ) := −0.031 + 0. 719d̃T , (7)

where d̃T is a consistent estimator of d that satisfies

T τ
(
d̃T − d

) = op(1) for some τ > 0, (8)

and |d̃T | ≤ K for some K < ∞ . Note that condition (8) holds for parametric estimators of d
as required by DGM, and also for many semiparametric estimators. The use of consistent (at a
power rate) estimators for d can be easily justified using similar techniques to Robinson and Hualde
(2003, proposition 9). The previous condition (8) holds for many semiparametric estimators for
an appropriate choice of the bandwidth parameter (see Robinson 1995a,b, Velasco 1999a,b).

In addition, note that contrary to DGM’s discussion, trimming is not necessary since d1 is
allowed to be equal or larger than 1, although these values are not optimal for any case under
the DGP of Theorem 1. The following lemma justifies this implementation of the FDF test. The
proof is omitted since it is similar to the proof of theorem 5 in DGM.

Lemma 1. Under the null hypothesis (d = 1), the t-ratio statistic associated to the parameter φ

in the regression

�yt = φ�d̂∗
1 (d̃) yt−1 + ut , (9)

where d̂∗
1 (d̃) is given by (7) and d̃ satisfies (8) , is asymptotically distributed as N (0, 1).
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3 OPTIMAL FDF TESTS: THE SERIAL CORRELATION CASE

The analysis in the previous section imposes that the DGP is �d yt = ε t , where ε t is white noise.
Practically, it is more appropriate to assume that ε t is serially correlated, so that the DGP of yt is
given by

α (L) �d yt = εt 1{t>0}, (10)

where we assume that α (L) = 1 − α1L − · · · − αp L p is a polynomial in the lag operator with
all its roots outside the unit circle and ε t has finite fourth moment. Note that in this situation, the
FDF test is not valid because it cannot control the type I error. In order to control the type
I error, DGM proposed the use of the AFDF test that is based on the t-statistic associated
to the coefficient of the regressor �d1 yt−1 in a regression of �yt on �d1 yt−1 and p lags of
�yt

�yt = φ�d1 yt−1 + α1�yt−1 + · · · + αp�yt−p + ut , t = 1, . . . , T , (11)

where regression (2) has been augmented by adding the lags of �yt .
DGM showed that the AFDF test can properly control the type I error when the DGP is an

ARFIMA(p, 1, 0), p is known and p lags of �yt are included in the augmented regression. DGM
also showed that the test is consistent. However, DGM did not consider the behaviour under local
alternatives. The next theorem complements DGM by studying this case. Introduce the following
notation. Define κ = (κ 1, . . . , κ p)′ with κk = ∑∞

j=k j−1c j−k, k = 1, . . . , p, where cj denotes
the coefficient of Lj in the expansion of 1/α (L). Also, denote the Fisher information matrix for
α under Gaussianity by � = [

�k, j
]
, �k, j = ∑∞

t=0 ct ct+|k− j |, for k, j = 1, . . . , p. Finally, call
κ (d1) = (κ1 (d1) , κ2 (d1) , . . . , κp (d1)), where κk (d1) = ∑∞

j=k π j (d1 − 1) c j−k, for k = 1, . . . ,
p.

Theorem 2. Under the assumption that the DGP is an ARFIMA (p,d,0) model defined by (10),
the asymptotic distribution of the t-ratio test statistic t(d1), for testing φ = 0 in (11), for any d 1

≥ 0.5, under local alternatives (d = 1 − δ/
√

T , δ ≥ 0), is given by

t(d1) →d N (−δμ(d1, α, p), 1) ,

where

μ(d1, α, p) =
(∑∞

j=1 π j (d1 − 1) j−1 − κ ′ (d1) �−1κ
)

(∑∞
j=0 π j (d1 − 1)2 − κ ′ (d1) �−1κ (d1)

)1/2 .

The proof of this theorem is in the Appendix. The importance of this result resides in the
fact that the non-centrality parameter μ(d1, α, p) depends on the serial correlation parameters α.
Hence, a simple expression for the optimal d∗

1 (the analogous of d∗
1 � 0.69) cannot be derived

in this case, and optimal AFDF tests cannot be simply implemented. In order to recover the
optimal selections obtained in Section 2, the natural approach would be to employ a pre-whitening
procedure to attempt to get back to the white noise framework by filtering (pre-whitening) the
serial correlation of the original series. The main idea is to perform the augmented regression (11)
where both the dependent variable and the independent variable, whose significance is tested,
have been pre-whitened.
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Table 1. Optimal d∗
1 for PAFDF tests.

p 0 1 2 3 4 5

d∗
1 0.691 0.846 0.901 0.927 0.942 0.951

Optimal d∗
1 for ARFIMA(p, d, 0) for the PAFDF test.

The prewhitened augmented FDF (PAFDF) test consists of two steps:

(1) Fit an AR(p) to the differenced series �yt. Call α̂(L) to the estimated filter and denote
the prewhitened series by ỹt , that is, ỹt = α̂(L)yt . Note that the prewhitened series ỹt are,
asymptotically, purely fractional under the null hypothesis and under local alternatives,
since the short-term dependence has been eliminated.

(2) The PAFDF test is the t-test statistic associated to φ in

�ỹt = φ�d1 ỹt−1 + α1�yt−1 + · · · + αp�yt−p + ut , t = 1, . . . , T . (12)

Note that, in spite of employing the filtered series ỹt , the p lags of �yt still need to be included
in order to control the size of the text, see Agiakloglou and Newbold (1994) and Breitung and
Hassler (2002) for a similar approach in a related context.

It is straightforward to show that the asymptotic null distribution of the PAFDF test is the
standard normal and that the test is consistent. The next theorem, that is stated without proof,
establishes the asymptotic behaviour of the PAFDF test under local alternatives.

Theorem 3. Under the assumption that the DGP is an ARFIMA (p,d,0) model defined by (10),
with d = 1 − δ/

√
T , δ ≥ 0, the asymptotic distribution of the t-ratio test statistic t(d1) for testing

φ = 0 in (12), is given by

t(d1) →d N (−δμ(d1, p), 1),

where

μ(d1, p) =
(∑∞

j=p+1 π j (d1 − 1) j−1
)

(∑∞
j=p π j (d1 − 1)2

)1/2 .

The drift expression, μ(d1, p), is easily obtained using similar arguments as the corresponding
drift expression in Theorem 2. It is simple to see that both drifts coincide when α(L) = 1. The
important point is that, contrary to the noncentrality parameter of Theorem 2, μ(d1, p) depends
only on p, and not on the serial correlation parameters α. In Table 1, we give the expressions for
the optimal d∗

1 for p = 0, 1, 2, . . . , 5.
So far, we have studied the asymptotic local properties of the AFDF and PAFDF tests. For

fixed alternatives, the main practical problem is that the analogous of d∗
1 (d) does not exist. For

instance, consider an ARFIMA (1,d,0) with autoregressive parameter denoted by α. For this case,
we could employ the AFDF test with one lag of �yt. For this test, the optimal d1 turns out to
be −0.027 + 0.86d when α = 0, whereas it equals 0.020 + 0.59d, when α = 0.6. Hence, it is
different for each value of α. For the PAFDF test, a similar situation occurs. Despite the fact that
asymptotic local power of the PAFDF test does not depend on the serial correlation parameters,
for fixed alternatives the optimal selection of d1 as a function of d still depends on α .
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Hence, both the AFDF and the PAFDF tests present the problem that their optimal
implementations depend on the DGP for fixed alternatives. Therefore, optimal expressions of
d1 as a function of d are of limited practical interest. In order to overcome this problem, in the
next section we introduce an algorithm that automatically selects the optimal d1 for either the
AFDF and the PAFDF tests. The only drawback of this algorithm is that it can be computationally
involved because in order to estimate the relation between the optimal d1 and d, the data need to
be fractionally differenced a number of times and a corresponding optimization problem has to
be solved. However, in Section 5 we will show by simulations that there are significant empirical
power improvements associated to the use of this algorithm.

4. AUTOMATIC OPTIMAL IMPLEMENTATION OF THE AFDF
AND PAFDF TESTS

In the previous section, we have seen that the optimal selections of d1 as a function of d hardly
have any practical use, since they depend on the serial correlation parameters for fixed alternatives,
for both the original AFDF test and the PAFDF test. In practice, a natural selection for d1 is

d1 = arg max
d1∈D1

t(d1)2,

where D1 = [d, d] is any closed interval that belongs to the interior of D = [0.5, ∞). This choice
for d1 comes intuitively from the discussion in Section 2 where we saw that maximizing the
power entailed maximizing the value of the squared t-statistic. This choice is behind the spirit of
some empirical applications, such as Heravi and Patterson (2005), who report the AFDF test for a
grid of values of d1. However, this selection for d1 should be carefully considered. Note that our
previous theory, as well as DGM’s, is only valid when d1 is either a fixed value or a consistent
estimator of a fixed value (see DGM’s theorems 2 and 5). The problem is that under the null d1

does not converge to a fixed limit, but to a random variable. The underlying reason is that the
optimal value of d1 is not identified under the null hypothesis, as commented in the Introduction.
Therefore, the established theory is not applicable for t(d1) since critical values from the standard
normal distribution cannot be employed. Hence, for practical purposes, tests based on t(d1) are
of limited interest.

An alternative to using d1 is to employ a consistent estimator of the optimal d1. Note that, as
commented above, this optimal d1 depends on the DGP. The important point to realize is that,
despite the optimal d1 not being identified under the null hypothesis, it is identified (and hence
it can be consistently estimated) under the alternative. However, in practice the researcher does
not know whether the data have been generated under the alternative or under the null. Therefore,
in order to obtain consistent estimators of the optimal d1, we need to design a procedure that
guarantees that the employed data are generated under the alternative and, at the same time, it
does not alter the short term properties of the data. We propose to fractionally difference the
given sequence yt by an amount δ > 0, so that we can be sure that the data behave under the
alternative (except when d = 1 + δ) without altering the short-term behaviour of the data. Given
that the relation between the optimal d1 and the true d is linear (this is true for the ARFIMA(p,
d, 0) process, at least), by considering several values of δ, we can approximate with any degree
of accuracy the relationship between any d − δ value and the corresponding optimal d1. Finally,
we can extrapolate this relation at δ = 0 so that we consistently estimate the optimal d1 for the
data at hand. It is simple to show that, when the data are generated under the null, the projected
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value for d1 converges to a fixed value (that would be d∗
1 when there is no serial correlation),

and, hence, employing critical values from the standard normal guarantees that the type I error is
properly controlled. In addition, when the data are generated under the alternative, this procedure
estimates consistently the optimal d1 for the given data.

In practice, the procedure consists of the following steps.

(1) Select a set of 0 < δ1 < δ2 < < δq with q ≥ 2. Note that for ARFIMA(p, d, 0) processes
q = 2 is enough given that the optimal relation is linear.

(2) For each δ i, obtain

d1(δi ) = arg max
d1

t∗
δ (d1)2,

where t∗δ (d1) denotes the t-statistic associated to the coefficient φ in the regression (11),
where the input series yt is replaced by the fractional differenced series �δyt .

(3) Use the pairs (δi , d1(δi )) to fit a simple polynomial model (typically linear) by OLS or other
estimation procedure and denote the fitted model by d̃∗

1 (δ).
(4) The proposed t-test uses the original yt and employs

d1 = max(d̃∗
1 (0), 0.5) (13)

in the augmented regression (11).

Note that the fitted d̃∗
1 (0) converges to a constant both under the null (the optimal d1 in the local

alternative case) and under the alternative (the optimal d1 in the fixed alternative case). However,
this optimal d1 could be below 0.5. In order to retain the asymptotic null standard distribution,
we need to assure that the input d1 is greater than 0.5 and this is the reason for the truncation in
(13). Then, it can be justified, as in the white noise case, that the asymptotic null distribution of
the t-statistic that employs (13) as d1 is the standard normal. Note that an additional feature of
the previous algorithm is that it avoids the pre-estimation of d, and, therefore, the introduction of
the bandwidth parameter necessary for obtaining the semiparametric estimator of d.

The previous algorithm has been presented for the original AFDF test, but a similar algorithm
can be employed to derive optimal implementations of the prewhitened AFDF. The difference is
that in Step 2 the t-statistic is now associated to the coefficient φ in the regression (12). In the
next section, we will study the finite sample properties of these tests.

5. SIMULATIONS

In this section, we comment on the results of a small Monte Carlo study. We consider two DGPs,
a pure fractionally integrated Gaussian process and a Gaussian ARFIMA(1, d, 0). Tables 2 and
3 report the results for the first DGP for a nominal level of 0.05 and two samples sizes, 100 and
500, respectively. The number of replications is 50,000 for Table 2, and 10,000 for Table 3. The
parameter d takes values from 0.5 to 1 with increments of 0.05 in Table 2, and it takes values
from 0.8 to 1 with increments of 0.025 in Table 3. These tables report the results of the FDF test
with five selections for d1, namely d 1 = d, FDF(d), d1 = d̂∗

1 (d) = −0.031 + 0.719d, FDF(d∗
1

(d)), d 1 = d∗
1 � 0.69, FDF(d∗

1), d1 = d̂S P , FDF(d̂S P ) and d1 = d̂∗
1 (d̂S P ) = −0.031 + 0.719d̂S P ,

FDF(d∗
1 (d̂S P ), where d̂S P denotes Robinson’s (1995b) semiparametric estimator. Regarding the

first and second selections of d1, they represent unfeasible implementations of the FDF test that
assume that the true d is known and ignore the sampling error associated with the estimation of d.
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Table 2. Size and size-adjusted power. White noise case. T = 100.

Test \ d 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

FDF(d) 100 99.9 99.6 98.2 93.6 82.1 64.2 43.0 24.5 11.9 5.27

FDF(d∗
1 (d)) 100 100 99.9 99.7 97.8 91.0 75.7 52.7 30.0 13.6 5.52

FDF(d∗
1) 100 99.7 99.2 97.4 93.3 84.3 69.0 48.9 28.6 13.4 5.50

FDF(d̂S P ) 99.9 99.7 98.9 96.7 91.1 80.1 62.8 42.0 23.9 11.6 6.65

FDF(d∗
1

(
d̂S P

)
) 100 100 99.9 99.6 97.0 90.0 73.4 50.2 28.6 13.0 6.87

LM 99.9 99.7 99.1 97.1 92.1 81.5 64.6 44.6 25.8 12.6 4.53

W 100 99.9 99.5 97.8 92.7 81.5 63.7 43.0 24.7 11.8 10.82

Monte Carlo size (d = 1) and (size-adjusted) power (d < 1). Percentage of rejections based on 5% nominal level. Series
follow a FI(d) with Gaussian errors. Sample size is 100. The number of replications is 50,000.

Table 3. Size and size-adjusted power. White noise case. T = 500.

Test \ d 0.8 0.825 0.85 0.875 0.9 0.925 0.95 0.975 1

FDF(d) 99.9 99.3 96.4 88.6 73.0 51.4 29.0 13.2 4.86

FDF(d1∗ (d)) 100 99.9 99.4 96.8 86.3 64.7 37.3 15.7 5.14

FDF(d1∗ ) 100 99.8 99.1 95.2 84.3 63.3 36.7 15.6 5.13

FDF(d̂S P ) 99.9 99.3 96.9 87.9 78.0 50.6 30.9 11.7 6.25

FDF(d1∗ (d̂S P )) 100 99.9 98.8 95.0 84.5 62.2 35.5 14.3 5.60

LM 100 99.9 99.1 93.9 83.9 62.5 35.8 15.1 5.50

W 100 100 100 97.0 84.7 63.1 35.8 13.5 7.21

Monte Carlo size (d = 1) and (size-adjusted) power (d < 1). Percentage of rejections based on 5% nominal level. Series
follow a FI(d) with Gaussian errors. Sample size is 500. The number of replications is 10,000.

In addition, we report two feasible parametric tests: the Lagrange Multiplier (LM) test considered
by Robinson (1991, 1994) and Tanaka (1999) and the Wald (W) test derived from the results in
Fox and Taqqu (1986). Note that the W test is applied to the differenced series. These tables report
the size results (d = 1) and size-adjusted power instead of raw power (d < 1) since the W test
presents severe size distortions.

These two tables indicate that the proposed optimal implementation of the FDF test in some
cases can improve up to 30% the size-adjusted power with respect to DGM’s original proposal, for
both the unfeasible and the feasible versions of the test. Also note that the loss of empirical power
of the FDF(d∗

1) and the LM tests is larger as the alternative is further from the null, reflecting the
local character of these tests. The W test presents severe size distortions, especially for n = 100.
From these tables, we can conclude that the advantage of the optimal implementation of the FDF
test with respect to W is to better control the size, whereas compared to LM it offers a superior
empirical power.

In Tables 4 and 5, we consider the case where the DGP is a Gaussian ARFIMA(1, d, 0) with
autoregressive parameter α1 = {−0.5, 0, 0.3, 0.6, 0.8}. In these tables, we only report the results
for one negative value for α1 because for other negative values of α1 the results were similar,
contrary to the α1 > 0 case where finite sample power depends greatly on α1. In addition, the
most relevant empirical case is when α1 > 0. The parameter d takes values from 0.5 to 1 with
increments of 0.05. As above, we use 0.05 as the nominal level, and consider same sample sizes
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Table 4. Size and size-adjusted power. Serial correlation case. T = 100.

α1 d 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

AFDF(d̂S P ) 98.6 97.4 93.7 87.7 79.0 63.3 44.4 28.9 16.5 8.7 9.47

Auto-AFDF 100 99.9 98.3 96.0 87.3 74.3 56.7 38.9 21.8 11.5 8.44

-0.5 PAFDF(d̂S P ) 99.3 98.1 95.4 89.5 79.1 64.3 46.6 30.2 17.8 9.5 9.13

Auto-PAFDF 99.9 99.4 98.6 96.2 88.5 75.2 56.9 39.9 23.0 11.9 8.07

LM 99.3 98.1 95.2 89.5 79.8 66.1 49.4 33.2 19.9 10.5 5.09

W 99.5 98.5 95.8 89.7 78.9 63.7 46.6 30.8 18.4 10.0 14.41

AFDF(d̂S P ) 97.3 93.9 87.5 76.7 62.6 46.7 31.8 20.2 12.1 7.1 9.81

Auto-AFDF 98.5 95.3 89.9 79.6 66.3 52.2 36.6 24.5 14.8 8.1 9.55

0.0 PAFDF(d̂S P ) 95.6 90.8 83.2 72.6 59.4 44.9 31.2 20.1 12.1 7.1 9.70

Auto-PAFDF 98.6 95.3 89.9 81.2 67.4 53.8 38.2 26.1 15.9 9.2 8.78

LM 93.1 87.9 80.1 69.7 57.7 44.8 32.5 22.2 14.1 8.6 4.06

W 96.6 92.3 84.7 73.9 60.5 46.6 33.5 22.8 14.3 8.8 13.62

AFDF(d̂S P ) 83.9 73.7 62.1 50.3 37.5 26.4 18.6 12.0 8.6 6.0 9.94

Auto-AFDF 91.2 84.6 75.0 63.4 49.3 37.0 26.6 18.6 12.6 8.5 9.65

0.3 PAFDF(d̂S P ) 84.2 75.7 64.9 52.5 39.7 28.1 18.9 12.5 8.4 6.1 8.43

Auto-PAFDF 92.7 85.9 77.2 65.3 52.2 39.2 28.0 18.7 11.9 8.3 7.26

LM 79.5 71.5 61.8 51.7 41.5 31.9 23.4 16.7 11.5 7.7 2.04

W 94.4 89.3 81.7 71.6 59.9 47.3 35.0 24.1 15.6 9.3 3.35

AFDF(d̂S P ) 40.0 30.9 24.0 18.6 13.7 11.0 8.6 7.0 6.0 5.4 8.70

Auto-ADGM 49.5 39.2 30.8 24.3 17.9 13.8 10.4 8.4 6.9 5.5 10.12

0.6 PAFDF(d̂S P ) 58.8 41.1 39.0 28.8 21.7 15.5 11.0 8.1 6.4 5.5 4.66

Auto-PAFDF 59.7 49.6 40.2 32.1 24.8 18.7 15.0 12.1 8.9 6.3 7.25

LM 43.4 36.1 29.2 23.2 18.0 13.9 10.5 8.2 6.4 5.5 1.11

W 88.1 80.9 72.5 62.2 50.3 38.6 28.1 19.3 12.8 8.2 0.44

ADGM(d̂S P ) 13.1 11.8 11.3 10.8 10.6 10.3 9.6 8.9 7.7 6.4 4.68

Auto-AFDF 14.3 10.8 8.0 5.7 4.9 4.3 4.1 4.1 4.3 4.4 9.52

0.8 PAFDF(d̂S P ) 20.2 17.0 14.6 13.0 11.9 11.1 10.3 9.1 7.9 6.5 4.39

Auto-PAFDF 24.2 20.3 18.3 16.9 14.7 13.8 12.8 10.7 8.7 6.6 5.90

LM 2.9 2.3 2.1 2.4 3.1 4.4 5.8 6.9 7.2 6.4 3.75

W 52.5 45.1 37.9 31.6 26.3 21.8 17.5 13.7 10.4 7.5 1.35

Monte Carlo size (d = 1) and (size-adjusted) power (d < 1). Percentage of rejections based on 5% nominal level. Series
follow an ARFIMA(1,d,0) with Gaussian errors. The autoregressive parameter is α1. The number of lags of �yt included
in the augmented regression is 1. Sample size is 100. The number of replications is 50,000.

and number of replications. These tables report the results for six feasible tests. The first four
are related to the AFDF test. In particular, they are: DGM’s initial proposal of the augmented
FDF test that uses d1 = d̂S P , AFDF(d̂S P ), the automatic optimal implementation of the AFDF test
discussed in Section 4, Auto-AFDF, the prewhitened AFDF that employs d1 = d̂S P , PAFDF(d̂S P ),
and the automatic optimal implementation of the PAFDF test, Auto-PAFDF. These tables also
include the previously mentioned LM and W tests with p = 1.
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Table 5. Size and size-adjusted power. Serial correlation case. T = 500.

α1 d 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

AFDF(d̂S P ) 100 100 100 99.9 99.8 99.1 96.3 87.9 58.9 21.0 8.48

Auto-AFDF 100 100 100 99.7 98.5 96.7 93.7 92.5 73.3 29.5 7.67

-0.5 PAFDF(d̂S P ) 100 100 100 100 100 99.9 98.5 88.7 58.0 22.5 7.17

Auto-PAFDF 100 100 100 100 100 100 99.7 97.4 75.7 30.8 7.06

LM 100 100 100 100 100 100 99.8 95.4 70.6 28.5 5.65

W 100 100 100 100 100 100 99.9 96.0 70.6 28.2 7.91

AFDF(d̂S P ) 100 100 100 100 99.8 98.8 92.4 72.5 37.9 13.2 8.77

Auto-AFDF 100 100 99.9 99.6 98.9 98.1 97.0 85.8 53.4 21.9 7.83

0.0 PAFDF(d̂S P ) 100 100 100 100 99.8 98.1 91.2 70.0 38.7 14.1 7.98

Auto-PAFDF 100 100 100 100 100 99.6 97.6 87.1 55.7 23.3 6.60

LM 100 100 100 100 100 99.5 95.7 80.2 48.8 19.5 5.47

W 100 100 100 100 100 99.7 96.7 80.9 47.9 18.4 7.81

AFDF(d̂S P ) 100 100 100 99.9 99.0 92.5 75.6 48.6 24.3 10.2 8.67

Auto-AFDF 100 100 99.9 99.8 99.4 98.1 88.8 64.7 36.1 16.0 7.41

0.3 PAFDF(d̂S P ) 100 100 100 99.7 98.5 91.4 69.9 39.9 17.6 7.6 7.84

Auto-PAFDF 100 100 100 100 99.6 98.8 89.2 65.6 36.2 16.3 6.09

LM 100 100 100 99.8 98.7 94.0 80.7 57.3 32.4 14.3 4.62

W 100 100 100 100 99.3 94.6 79.1 51.7 26.4 11.4 8.36

AFDF(d̂S P ) 99.6 98.4 92.8 82.1 65.4 44.1 28.5 16.4 9.9 6.3 8.82

Auto-AFDF 99.9 99.3 97.5 93.4 82.6 64.4 44.6 26.8 15.6 8.6 6.99

0.6 PAFDF(d̂S P ) 99.9 98.9 95.1 85.4 69.2 49.4 31.2 18.6 10.4 6.9 5.40

Auto-PAFDF 99.9 99.2 98.7 95.6 87.5 70.0 51.3 32.7 18.8 9.3 6.02

LM 98.6 96.2 90.6 81.3 68.2 52.5 36.9 23.6 14.6 8.2 4.29

W 100 99.7 98.1 92.3 79.2 59.2 38.3 23.3 13.6 8.3 6.43

AFDF(d̂S P ) 42.1 28.8 18.6 12.1 10.1 9.3 9.5 9.6 8.7 7.1 5.59

Auto-AFDF 58.1 42.5 29.1 20.1 13.8 9.9 6.7 5.5 5.0 4.9 6.94

0.8 PAFDF(d̂S P ) 80.4 70.8 60.9 51.6 43.1 35.4 28.3 22.1 15.6 9.8 4.47

Auto-PAFDF 85.8 76.3 65.8 54.2 44.4 35.5 28.4 21.7 15.4 9.5 5.83

LM 22.2 17.5 15.0 14.7 16.2 18.5 20.0 19.2 15.3 10.1 5.97

W 95.2 90.9 84.6 76.5 67.0 55.5 43.5 30.9 20.2 11.4 4.60

Monte Carlo size (d = 1) and (size-adjusted) power (d < 1). Percentage of rejections based on 5% nominal level. Series
follow an ARFIMA(1,d,0) with Gaussian errors. The autoregressive parameter is α1. The number of lags of �yt included
in the augmented regression is 1. Sample size is 500. The number of replications is 10,000.

Similarly to the white noise case, we report size-adjusted power. For all employed tests,
we have correctly controlled for the serial correlation by including one lag in the augmented
regression. Regarding the automatic tests note that, in order to stabilize the fit of d̃∗

1 (δ), we
consider positive and negative values for δ. The reason for including negative values for δ is
that the function d∗

1 (d) is smooth for d ≥ 1. Note that under the alternative many of these
fractionally differenced series with δ < 0 will have memory less than 1. The only potential
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problem is that for some particular δ j the fractionally differenced series �δ j yt has memory equal
to 1, rendering inconsistent d1(δ j ). Note that this can happen for at most one δ j (when d =
1 + δ j ). In order to control the possible distortion caused by this single point, we can either
use robust estimation procedures (such as LAD) instead of OLS or use a number of δ′s that
increase with the sample size. In these simulations, we have followed the first option and use
LAD-linear regression. The chosen set of possible values for d1 is [0.2, 1.2]. A Fortran code
with the program is available from the authors. In these simulations, we have chosen q = 8 and
δ ∈ {0.5, 0.4, 0.3, 0.2, 0.1, −0.1, −0.2, −0.3} .

The main conclusions from Tables 4 and 5 are the following. Compared to the white noise
case, there is a significant loss of power for any value of α1. It is also especially notable that power
is higher when the serial correlation is negative, and decreases fast for positive α1. For the AFDF
tests, the main effect of pre-whitening is to help controlling the type I error. It is also apparent
that the automatic optimal implementations for both the AFDF and the PAFDF tests improve,
sometimes substantially, the empirical power. For instance, compared to DGM’s initial proposal,
the automatic PAFDF test improves power by around 40% for moderate serial correlation (α =
0.3) when d equals 0.85 or 0.9. Note also that the LM test presents low power for alternatives away
from the null. This is especially notable for the strong serial correlation cases, α = 0.6, 0.8. The
W test cannot properly control the type I error for moderate sample sizes, similarly to the white
noise case, hence, the size-corrected power figures should be interpreted with care. However, for
large samples, it presents the highest empirical power, as could be anticipated, given its parametric
nature. Similarly to the white noise case, these simulations indicate that the automatic optimal
implementation of the PAFDF test presents some advantage over the existing simpler parametric
tests, in terms of power with respect to the LM, and in terms of size with respect to the W.

6. CONCLUSIONS

This article has provided a new interpretation for the FDF test that has led to the development of
more powerful tests. In particular, the input value d1 that needs to be used in the FDF test is not
interpreted as ‘the true value of d under the alternative hypothesis’ as DGM do, but as an auxiliary
parameter that maximizes the power of the FDF test. Contrary to DGM’s arbitrary selection of
d1, we have addressed the issue of optimally selecting the value of d1 .

For the white noise case, in a local alternative framework, we have proved that the FDF test is
consistent against local alternatives for any d1 ≥ 0.5, and derived the optimal selection for d1. In
the context of fixed alternatives, we have defined the true optimal d1 using a criterion based on the
population-squared correlation between the dependent and independent variables of regression
(2). In this framework, we have derived optimal FDF tests that are consistent against alternatives
that converge to the null at the parametric rate, and where d1 can be based on semiparametric
estimators of d.

For the serial correlation case, it is also possible to establish optimal selections for d1 as
a function of the long memory parameter. However, these optimal expressions are of limited
practical use since they depend on the short memory parameters. For practical purposes, we have
proposed an automatic approach that optimizes the PAFDF test. The test procedure is based on an
algorithm that fractionally difference the series by various degrees, so it avoids the use of these
optimal rules and it also avoids the lack of identification of the auxiliary parameter under the null
hypothesis. This algorithm automatically optimizes the AFDF and the PAFDF tests, and, as an
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additional feature, it avoids the introduction of the bandwidth parameter necessary for estimating
semiparametrically d.

We finish with a suggestion for further research. In this article, we have considered the
case where the number of lags in the augmented regression is correctly set by the researcher.
An alternative, which should be appealing for applied researchers, consists of applying a data
based information criterion to select automatically the lag length. However, note that a routine
application of typical criteria, such as AIC, does not guarantee the delivery of tests with good
power properties, since these criteria are typically designed for an estimation framework, rather
than for a testing problem, (see e.g. Ng and Perron 2001). Another possibility is to consider testing
the significance of the lags sequentially. A careful analysis of the asymptotic properties and the
finite sample behaviour of these tests procedures when an automatic lag selection is employed
merits further research.
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APPENDIX

For simplicity, in this Appendix we assume that the variance of ε t is one.

Proof of Theorem 1. We begin by introducing some notation. Let

�yt = �−θT εt 1{t>0} = εt +
t−1∑
i=1

πi (−θT )εt−i ,

where θ T := −δT−1/2, and π 1(−θ T ) = θ T , π 2(−θ T ) = 0.5θ T (1 + θ T ) ≈ − 0.5δT −1/2, and in
general π j (−θ T ) ≈ − j−1 δT −1/2, where the symbol ≈ means that as the sample size tends to
infinity the ratio of the LHS and the RHS tends to one. Also,

�d1 yt−1 = �−ηT εt−11{t>1} = εt−1 +
t−2∑
i=1

πi (−ηT )εt−1−i ,

where ηT = 1 − d 1 − δT −1/2, so that π 1(−ηT ) = ηT ≈ 1 − d 1, π 2(−ηT ) = 0.5ηT (1 + ηT ) ≈
0.5(1 − d 1)(2 − d 1) and so on.

First, consider the numerator of t(d1) scaled by T−1/2,

QT (d1) = T −1/2
T∑

t=2

�yt�
d1 yt−1

= T −1/2
T∑

t=2

(
εt +

t−1∑
i=1

(
1

i
−δ√

T

)
εt−i

) (
εt−1 +

t−2∑
i=1

πi (−ηT )εt−1−i

)
(A1)

+ T −1/2 δ2

2T

T∑
t=2

(
t−1∑
i=1

π ′
i (−θ∗)εt−i

) (
εt−1 +

t−2∑
i=1

πi (−ηT )εt−1−i

)
(A2)

where π ′
i is the first derivative of πi and θ∗ is some point between 0 and θ T . Note that

∣∣π ′
i (−θ∗)

∣∣ ≤
C i−1 log i by lemma 1 of Delgado and Velasco (2005). Since (14) is Op (1) as it is showen next,
it is straightforward to show that (15) is op (1).
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The leading term (14) of QT (d1) can be written as

= −δT −1
T∑

t=2

(
ε2

t−1 +
t−2∑
i=1

πi (−ηT )ε2
t−i−1

(i + 1)

)
(A3)

+T −1/2
T∑

t=2

εt

(
εt−1 +

t−2∑
i=1

πi (−ηT )εt−1−i

)
(A4)

−δT −1
T∑

t=2

εt−1

(
t−2∑
i=1

πi (−ηT )εt−1−i

)
(A5)

−δT −1
T∑

t=2

t−2∑
i=1

1

(i + 1)
εt−i−1

(
t−2∑

j=1, j �=i

π j (−ηT )εt−1− j

)
. (A6)

The last two terms, (18) and (19), in the previous expression are op (1) using similar reasoning
to that in the proof of theorem 4 in DGM. The term (16) is

−δ

T

T∑
t=2

(
ε2

t−1 +
t−2∑
i=1

1

(i + 1)
πi (−ηT )ε2

t−i−1

)
→p −δK (d1)

where

K (d1) = lim
T →∞

1

T

T∑
t=2

(
t−2∑
i=0

πi (−ηT )

i + 1

)
=

∞∑
i=0

πi (d1 − 1)

i + 1
.

Using a standard central limit theorem for martingale difference sequences, the term (17) converges
in distribution to a N (0, V) where

V = lim
T →∞

1

T

T∑
t=2

E

(
εtεt−1 +

t−2∑
i=1

πi (−ηT )εtεt−1−i

)2

= lim
t→∞ E

(
t−2∑
i=0

πi (d1 − 1)εtεt−1−i

)2

=
∞∑

i=0

πi (d1 − 1)2 < ∞

because 1 − d 1 < 0.5. Hence, QT (d1) →d N (−δK (d1),
∑∞

i=0 πi (d1 − 1)2).
Second, consider the denominator of t(d1) scaled by T−1/2. It is straightforward to show that

T −1 ∑T
t=2(�yt − φ̂�d1 yt−1) →p 1, and, given the above expression for �d1 yt−1, by a law of

large numbers it is easy to see that the p lim of T −1 ∑T
t=2(�d1 yt−1)2 is given by

lim
T →∞

1

T

T∑
t=2

E

(
εt−1 +

t−2∑
i=1

πi (d1 − 1)εt−1−i

)2

=
∞∑

i=0

πi (d1 − 1)2.
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Direct calculations lead to K (d 1) = 1/d 1 and to

∞∑
i=0

πi (d1 − 1)2 = �(2d1 − 1)

�(d1)2
.

Hence, using

lim
T →∞

∞∑
i=0

πi (−ηT )2 =
∞∑

i=0

πi (d1 − 1)2

we derive that

t(d1) →d N (−δh(d1), 1) .

Proof of Theorem 2. In order to derive the noncentrality parameter of the asymptotic distribution
of t(d1), the key idea is to use the basic equation of multivariate regression

t(d1) =
√

T
RT√

1 − R2
T

, (A7)

where RT denotes the sample partial correlation coefficient between Yt := α (L)�yt and Xt :=
�d1 yt−1 given the p lags of �yt, Zt := (Zt,1, . . . , Zt,p)′ with Z t,k = �yt−k , k = 1, . . . , p. Note
that the denominator in (20) tends to 1 in probability under local alternatives for which the DGP
is given by

�yt = α(L)−1�δ/
√

T εt 1{t>0},

and where the operator �δ/
√

T can be written as

�δ/
√

T = 1 − δ√
T

J (L) + 1

T
HT (L) ,

where J (L) = ∑∞
j=1 j−1L j and HT (L) = ∑∞

j=1 hT , j L j , with |h T, j | ≤ C j−1 log2 j , j ≥
1, uniformly in T . Then, we can write the series involved in t(d1) in terms of the i.i.d.
variables ε t, as follows: Yt = �δ/

√
T εt , Xt = [

α (L) �d1−1L
]
�yt = �d1−1�δ/

√
T Lεt and Zt,k =

α(L)−1�δ/
√

T Lkεt , k = 1, . . . , p.
Next, we obtain the residuals Y∗

t and X∗
t of projecting Yt and Xt, respectively, on the vector

Zt. It is simple to show that Y ∗
t = �δ/

√
T εt , plus a term due to the estimation of the projection on

Zt that contributes to the drift of t(d1) at a smaller order of magnitude because it is orthogonal to
the residuals X∗

t . In order to study X∗
t , note that

plim
T →∞

1

T

T∑
t=1

Xt Zt,k = E
[
�d1−1Lεt · α(L)−1εt−k

]
=

∞∑
j=k

π j (d1 − 1) c j−k = κk (d1) , k = 1, . . . , p,
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whereas

plim
T →∞

1

T

T∑
t=1

Zt,k Zt, j = E
[
α(L)−1εt−k · α(L)−1εt− j

]
=

∞∑
t=0

ct ct+|k− j | = �k, j , k, j = 1, . . . , p.

Then, the (population) least-squares projection coefficients of Xt onto Zt are given by �−1 κ ,
and, therefore, X∗

t = �d1−1Lεt − κ ′ (d1) �−1α(L)−1εt,p, where εt,p = (
εt−1, . . . , εt−p

)′
, plus

smaller order terms. Next, we have that T 1/2 ∑T
t=1 Y ∗

t X∗
t converges in distribution to a normal

variate with mean equal to

lim
T →∞

1

T

T∑
t=1

E
[−δ J (L) εt · {

�d1−1Lεt − κ ′ (d1) �−1α(L)−1εt,p
}]

= −δ

( ∞∑
j=1

π j (d1 − 1) j−1 − κ ′ (d1) �−1κ

)
,

and variance
∑∞

j=0 π j (d1 − 1)2 − κ ′(d1)�−1κ(d1). Note also that plimT →∞ T −1 ∑T
t=1(Y ∗

t )2 =
Var [εt ] = 1. Therefore, plimT →∞ T −1 ∑T

t=1(X∗
t )2 is given by

V ar
(
�d1−1Lεt − κ ′ (d1) �−1α(L)−1εt,p

)
= V ar (�d1−1Lεt ) + V ar (κ ′(d1)�−1α(L)−1εt,p) − 2Cov(�d1−1Lεt , κ

′(d1)�−1α(L)−1εt,p)

=
∞∑
j=0

π j (d1 − 1)2 + κ ′ (d1) �−1κ (d1) − 2κ ′ (d1) �−1κ (d1)

=
∞∑
j=0

π j (d1 − 1)2 − κ ′ (d1) �−1κ (d1) ,

and the theorem follows.
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