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Multiparticle biased diffusion-limited aggregation with surface diffusion:
A comprehensive model of electrodeposition
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We present a complete study of the multiparticle biased diffusion-limited aggregation~MBDLA! model
supplemented with surface diffusion~SD!, focusing on the relevance and effects of the latter transport mecha-
nism. By comparing different algorithms, we show that MBDLA1 SD is a very good qualitative model for
electrodeposition in essentially the whole range of current intensitiesprovidedone introduces SD in the model
in the proper fashion. We have found that the correct procedure involves simultaneous bulk diffusion and SD,
introducing a time scale arising from the ratio of the rates of the two processes. We discuss in detail the
different morphologies obtained and compare them to the available experimental data with very satisfactory
results. We also characterize the aggregates thus obtained by means of the dynamic scaling exponents of the
interface height, allowing us to distinguish several regimes in the mentioned interface growth. Our asymptotic
scaling exponents are again in good agreement with recent experiments. We conclude by discussing a global
picture of the influence and consequences of SD in electrodeposition.

PACS number~s!: 05.40.2a, 05.70.Ln, 68.35.Fx, 81.15.Pq
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I. INTRODUCTION

Quasi-two-dimensional~quasi-2D!electrochemical depo
sition ~ECD! @1–9# has become one of the most widely stu
ied pattern forming processes since its recognition as a p
digm of nonlocal, nonequilibrium growth processes@1,2#.
Within this general context, a great deal of work has be
devoted in the past fifteen years to experimental and theo
ical studies of quasi-2D ECD. A first group of work dea
mainly with pattern formation, its main results concerni
‘‘phase diagrams’’ of morphologies@10,11#, ECD as a La-
placian growth process@12–16#, dynamic morphological
transitions@17,18#, etc. All these studies aim to understa
the principles underlying the rich variety of morphologi
observed, ranging from dendritic to fractal. In addition to th
line of research, there is a second one@19–24# whose main
interest is the existence of universality and scale invaria
in the roughness of the deposits produced@1,2#. From all this
and related research, it is now believed that complex st
tures with different morphologies arise from quasi-2D EC
due to the interplay of different transport mechanisms, s
as cation diffusion, electromigration, fluid convection, a
surface diffusion@3–9#. However, the combined effect of a
these factors leads to a very complex process, and it is
coming increasingly apparent that ECD is not well und
stood yet. In particular, the detailed role of surface diffus
~SD! is still an open question that hinders our understand
of both the morphologies and the scaling of ECD aggrega

Much of the work mentioned in the above paragraph
been motivated by the quest to find a universal model to h
understand ECD phenomena. The first model formula
with that purpose was the famous computer algorithm kno
as diffusion limited aggregation~DLA! @12#, in which a par-
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ticle diffuses on a lattice and attaches to the growing agg
gate at the place where it first hits. It is not difficult to o
serve ~see @1,2# and references therein!that this simple
model represents the zero concentration, quasistatic lim
ECD. Therefore, its validity as a general description of EC
is rather restricted because it does not include most of
effects involved in the process. However, DLA has playe
seminal role as a source of inspiration both for continu
approaches@25–27#—which predict some high-current prop
erties but take into account neither the influence of the
plied voltage nor the electrolyte concentration—and for m
sophisticated computer models, basically modifications
DLA ~see, e.g.,@28–30# and also the paragraph below
which are more or less phenomenological and concentrat
changes in morphology, thus being unable to explain
underlying mechanisms yielding those patterns.

In this paper, we report the results of detailed numeri
studies of multiparticle biased diffusion-limited aggregati
~MBDLA! @ 16,23# supplemented with SD. MBDLA is a
model in the family of multiparticle DLA models@1,30–33#,
in which a finite number of random walkers, possibly wi
constant concentration, is introduced instead of the sin
walker of DLA. Thus, the excluded volume interactio
among the walkers leads to several of the effects neglecte
DLA. As its main ingredient, MBDLA includes, in addition
a preferential bias~which had been first studied in the con
text of single-particle, DLA models by Meakin@34#! of the
walkers toward the cathode to mimic the electric field: In th
form, the model was successfully introduced in@16# to study
the influence of the applied electric field on the composit
of magnetic, amorphous CoP alloys grown by ECD at co
stant current. The main virtue of MBDLA is that it is
mesoscopic model embedded on a two-dimensional sq
lattice, but it reproduces the mean fractions of Co and P
161 ©2000 The American Physical Society
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two-cation species ECD, as well as the qualitative morph
ogy of the product electrodeposits. In fact, the agreem
between MBDLA and ECD experiments@35# is quantitative,
as the electrical current intensity and the experiment time
be directly related to the simulation parameters@16#. There-
fore, we are confident that MBDLA is a good starting po
to study the relevance of SD in ECD and, specifically,
influence on the shape of the aggregates and their dyna
scaling. Scaling properties of MBDLA without SD wer
briefly reported in@23#.

The report of our results is organized as follows. We d
scribe our model in Sec. II, where a brief introduction to t
physics and chemistry of ECD is followed by a detailed a
count of the rules governing MBDLA. Section III reports o
numerical results, such as morphological patterns and rou
ness scaling. After physically showing that SD has to
included, we introduce three different rules for SD, whi
are carefully considered and compared to experiments
lowing us to identify the proper way to introduce SD in th
model. Finally, we conclude in Sec. IV with a discussion
our results, which will allow us to suggest a reasonably
proximate picture of ECD phenomena. A few technical d
tails about one of the rules for SD are given in an Append

II. THE MODEL

A. Basic facts about ECD

Prior to describing in detail what MBDLA is, and in orde
to motivate and to better understand the model rules, we
briefly summarize the basic physics and chemistry of EC
by collecting the equations commonly accepted to govern
main features~see, e.g.,@5,6# for further details!. Generally
speaking, ECD experiments involve two species, named
ions and anions, moving in an incompressible viscous flu
In very many cases, ECD takes place in quasi-2D cells w
parallel electrodes. The cations move toward the cathode
the anions toward the anode. The basic equations for
concentrations of both species are as follows:

]C

]t
52“•Jc , ~1a!

]A

]t
52“•Ja , ~1b!

Jc52Dc“C1mcEC1vC, ~1c!

Ja52Da“A2maEA1vA, ~1d!

whereC and A are the cation and anion concentrations,
spectively,Dc,a the cationic and anionic diffusion coeffi
cients,mc,a their mobilities,v the fluid velocity field, andE
the electric field along the cell. The latter is related to cat
and anion concentrations via the Poisson equation

“•E52¹2f52e~zcC2zaA!/«, ~2!

wheref is the applied potencial,ezc and2eza are the cat-
ion and anion electric charges, respectively, and« is the
dielectric permittivity of the fluid. Generally speaking, ma
ter balance across the interface leads to an interface velo
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proportional to the flux of cations and therefore, in the a
sence of any other limiting process, proportional to the c
rent density as well. In addition, except for the region clo
to the cathode, we may assume electroneutrality@5#, which
in turn implies that the cation mean velocity is constant. T
incompressible Navier-Stokes equations determine the ve
ity v of the solvent. Fluid convection is always present
ECD experiments, but in many instances it can be sm
enough to be safely neglected, as has been shown in a
experiments@36,37#.

When the cations arrive at the cathode, they are redu
irreversibly and an aggregate of neutral particles begins
grow. The particles on the surface aggregate are transpo
along it due to local chemical potential gradients. The res
ing particle current conserves the number of particles on
surface and is given approximately by~see@38# for a detailed
discussion!

Js}2“sk, ~3!

whereJs is the particle current along the surface,k the in-
terface local curvature at each site, and“s the gradient taken
along the surface. Roughly speaking, SD tends to reduce
interface local curvature. Finally, we note that the mean c
centration of charge carriers in the bath is constant as
cations are formed at the anode upon arrival of the ani
@7#.

B. Definition and rules of MBDLA

In this section we will define MBDLA through its evolu
tion rules, for which we take into account the physical equ
tions presented in the previous section. At this point, we
not consider SD, whose need will be justified in the ne
section, and consequently we postpone the discussion o
rules to implement SD as well. Thus, MBDLA is acellular
automatondefined on a two-dimensional square lattice
horizontal dimensionLx and vertical dimensionLy ~with lat-
eral periodic boundary conditions and reflective bound
condition at the top; for the conditions at the bottom, s
below!, in which a number of random walkers~cations!are
randomly distributed with concentrationc. The bottom of the
lattice is chosen to be the cathode. We do not consider
anion dynamics, but we implicitly introduce it by the cre
ation of particles and by charge electroneutrality@39#.

The initial condition evolves in time as follows. At ever
time step a walker is chosen and moved to one of its f
neighboring sites with probabilities taken from a finite d
ference scheme of Eqs.~1a! and ~1c! @40#: probability 1/(4
1p) to move either left, right, or upward, and probabili
(11p)/(41p) to move down, i.e., toward the cathode. Th
parameterp is referred to as thebias; in galvanostatic con
ditions it can be quantitatively related to the electric curre
density in the physical system as shown in@16#. Let us stress
here that our present choice for the probabilities is differ
from that reported in@16# and@23#, but we have checked tha
the results hardly differ from those presented in this pap
The main reason for this new selection is that, with the n
rules, the biasp ranges from 0 tò , that is, from pure mul-
tiparticle DLA to ballistic deposition, whereas the rules
the mentioned references allow for a range inp from 0 to
0.25, and the ballistic deposition limit cannot be reach



th
cl
p

re
iti

ga
t

he
d

ttic

rg
ar

a
In
lk
di

n
e

ift

n

a
fo
rs
it
o

tio

-

e

u
er
av

e
g,
n
o
th

-o
e
de
th

e
be
w

es

f

the
D
In
or-
s a
ros
of
di-
es
s
the
in
nce
ore,
d by

ic
ns.
a

in
lly,

ot
will

ec-
-
n
nt,

ry

on-

l-
eri-
e
we

ith

o
our

s-
in

B-
e

ag-

ect
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~althoughp50.25 already; is rather close, see@16,23#!. After
a destination site has been chosen, the particle moves if
node of the lattice is empty; if not, we select another parti
and repeat the destination selection procedure. Once the
ticle has been moved, if the new position has any nea
neighbor site belonging to the aggregate, the present pos
of the walker is added to the aggregate~the cathode or bot-
tom boundary at the initial stage! with probability s ~and is
able to diffuse over the aggregate surface if that aggre
position has just one nearest neighbor belonging to it; see
following section!; otherwise it stays there~and is able to
move again!with probability 12s. We terms the sticking
probability; it is related to the chemical activation energy t
cation needs to stick to the aggregate. As particles are ad
to the aggregate, others are created at the top of the la
keeping the mean cation concentrationc constant, which in
fact simulates an infinitely high system~experimentally this
means that the distance between electrodes is much la
than their lateral dimension!; consequently, the flux of p
ticles is constant at every stage of the simulation.

As we have already pointed out, the model parameters
related to the physical factors influencing the problem.
deed, the choice of jump probabilities for the random wa
ers in the bath provides a recurrence relation which is a
cretized version of the continuous equations~1a! and ~1c!.
Therefore, the drift velocitymcE is proportional to thebias
p. When a finite number of walkers is considered with co
centrationc, we must take into account the excluded volum
so the effective diffusion coefficient and the effective dr
velocity in the simulations are proportional to 12c ~in a
mean field approach! @41#. It is important to note that whe
c→0, i.e., the bath is formed by one particle alone~as in
DLA!, the aggregate develops tall branches which grow
the expense of short ones due to screening effects. There
in the low-current limit a morphological instability appea
that is not always present in ECD experiments. The fin
concentration and the hard core interaction among rand
walkers simulate the cationpressureon the aggregate, soc is
an essential ingredient in the understanding of the forma
of electrodeposits and to prevent these instabilities~of La-
placian character!from dominating the whole growth pro
cess.

One important task is the definition of the simulation tim
step. In @16#, comparison with the experiments in@35# al-
lowed a demonstration that the physical time and the sim
lation time measured in number of Monte Carlos trials w
simply proportional to each other. For this reason, we h
stuck to the definition of the time step in@16# as a Monte
Carlo trial, i.e., the time needed for a particle to jump, eith
if the particle does jump or if it does not. Notwithstandin
we have tried other time steps definitions, such as the Mo
Carlo step being defined as the mean time for every rand
walker to jump at least once, but the results are basically
same. Some authors define the time step for the solid
solid growth models as the mean time needed to complet
aggregate layer, but, as we will show below, ECD electro
posits do not grow with constant velocity, and therefore
mean interface height does not grow linearly with time. W
thus believe that, in the ECD context, this time unit would
rather artificial and hence we have not used it. In fact, as
will show below, the work reported in this paper provid
at
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further evidence in favor of our choice~see the discussion o
the experiments in@24# in Sec. III B below!.

III. NUMERICAL RESULTS

A. Morphologies

We begin the summary of our results by discussing
morphologies generated by MBDLA with and without S
and the influence of the different rules for SD on them.
addition, we want to compare our computer generated m
phologies to the available experimental data. We take a
reference the comprehensive experimental work of Trigue
et al. @11#, who reported a systematic experimental study
different growth regimes at constant applied voltage con
tions. Their work gave rise to a diagram of morphologi
divided into different regions in which similar morphologie
were obtained as a function of the applied voltage and
electrolyte concentration. It is important to realize that,
galvanostatic conditions, there is no linear corresponde
between voltage and electric current of ions, and theref
comparison between our morphologies and those reporte
these authors can only be qualitative. No similar taxonom
work has been performed for constant current conditio
Although the diagram in@11# is quite complex, it encloses
full variety of morphologies under the labelcompact. Some
authors@19,21# have studied electrodeposit systems with
this regime, and hereafter we will also refer to them. Fina
a recent work by Schilardiet al. @24# provides exhaustive
information on the asymptotic ECD regimes, which have n
been considered anywhere else; hence, their research
also be compared to ours throughout the paper.

As we have already mentioned, from the model persp
tive we can compare the biasp with the electric current den
sity @16,42#, andc with the electrolyte concentration, eve
though the two latter magnitudes are not exactly coincide
i.e., an electrolyte concentration equal to 0.1M does not
meanc50.1. We will see below that the results are not ve
sensitive to the specific value ofc insofar as it is not very
small, and thus the difference between actual and model c
centrations is not very relevant. The sticking probabilitys
and the diffusion parameters, namely,l, l, andr ~or equiva-
lently td), cannot be directly tuned in an experiment, a
though it is reasonable to expect that changes in the exp
mental conditions will correspondingly modify thes
parameters. How much they are modified is something
will learn through our computer simulations.

1. Bias vs sticking probability without SD

Figure 1 shows a diagram of morphologies obtained w
0<p<5 and 0.01<s<0.5 without SD, with a particle con-
centrationc50.05. We have included these results for tw
reasons: First, there has been no previous report to
knowledge on MBDLA morphologies, except for a brief di
cussion in@16#; and, second, we need to discuss them
order to understand later what is the effect of SD on M
DLA morphologies. It is clear from Fig. 1 that increasing th
bias or decreasing the sticking probability yields denser
gregates, the ones obtained forp50 ands51 ~bottom right!
being multiparticle DLA-like as expected~compare to
@31,32#!. This phenomenon is related to the stabilizing eff
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164 PRE 62CASTRO, CUERNO, SA´ NCHEZ, AND DOMÍNGUEZ-ADAME
of the parametersp and s, which can be theoretically dem
onstrated@43#. Indeed, the higher the value ofp, the larger
the flux of particles reaching the interface in the directi
perpendicular to the cathode. This reduces the probability
a cation to stick laterally to a branch and the screening
fects due to the Laplacian field. On the other hand, the e
tric field combined with the reduction of the sticking pro
ability tends to fill the interface valleys. This first resu
namely, the fact that increasing the electric current lead
denser aggregates, is similar to the results reported
Trigueroset al. @11#, who observed densification of the a
gregates with increasing applied voltage. In particular,
can qualitatively compare the morphological changes
tained by varying the biasp for a fixeds50.5 in Fig. 1 with
those provided by experimental voltage variations~see Fig. 2
in @11#!. We conclude that high voltages~or, in general,
high-density currents!yield denser aggregates. So the biap
is an essential ingredient in any realistic ECD model.

As a second step in our study, we have monitored ot
relevant quantities which in turn can be experimentally m
sured, in order to obtain additional information aside fro
qualitative morphological comparisons. Figure 2 shows
local concentration of particles in the bath, still without S
at equal time intervals. We have plotted the concentra
profiles in the stationary regime, i.e., after the instability o
curs ~see below!. Thus, the mean number of attached
ticles per unit time~or, equivalently, the mean interface v
locity! is constant. Le´ger et al. @8,9# have reported
experimental evidence consistent with this stationary beh
ior ~see, e.g., Fig. 5 in@9#!. We thus see that MBDLA agree
well with their findings, i.e., the stationary concentration
particles in the bulk approximately obeys the equation@9,43#

C~z!5ca1~c02ca!e2(z2z0)u/Dc, ~4!

FIG. 1. Morphologies obtained with MBDLA without surfac
diffusion for 2563400 systems with a cation concentrationc
50.05. Other parameters are as indicated in the figure.

FIG. 2. Concentration profiles for a 5123300 system with pa-
rametersp51, s51, andc50.1 without surface diffusion. Dashe
lines represent the simulation data and solid lines the best fi
those data to Eq.~4!. The heightz is given in lattice spacings.
or
f-
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to
by

e
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e
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n
-
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v-

f

wherez is the vertical coordinate,z0 is the interface mean
position,ca is the concentration at the anode,c0 is the con-
centration at the interface,u5mcE, andDc is the bulk dif-
fusion coefficient. As shown in Fig. 2, this function provide
a good fit of our data. In Fig. 3, we plot a fit of Eq.~4!
~dashed line!to the simulation results, showing a good co
lapse of the bulk particle density outlines for different time
The small deviations close to the aggregate are due to
interface roughness. The ratioD/u is called diffusion length.
In our fits, this length turns out to be about 15 lattice sp
ings, that is, about two or three times the lateral width of
branches for the chosen parameters. This result provides
other check of the physical validity of our model, as we c
compare the length obtained from the fit with that taken fro
Ref. @9#. In this paper, the diffusion length is of order 0
mm, about twice the typical branch lateral width~of order 1
mm!, so we may conclude that the diffusion length obtain
from our model is physically consistent.

The inset in Fig. 3 shows the mean concentration fr
position z0 vs time, demonstrating that, in the stationa
state, MBDLA leads to a constant velocity of the advanci
front, as in the experiments.

2. Physical relevance of SD

The previous subsection shows that MBDLA without S
successfully reproduces some ECD experiments, in part
lar, under galvanostatic conditions with not very small ele
tric current density. However, within the MBDLA model it i
impossible to understand the unexpected compactificatio
aggregates in low-voltage experiments@11,19,21#or the co-
lumnarlike growth found in other situations. Unfortunate
MBDLA aggregates are always ramified at low bias. In@16#,
a phenomenological explanation of compactification w
proposed by noticing that the reduction ofs leads to more
compact aggregates. Therefore, it was proposed there thp
ands should be related by a monotonic function, the simpl
case being that of a linear relationship. With this procedu
reducing the bias leads to a corresponding decrease in
sticking probability, and hence to compact aggregates at
bias. However, this is anad hocassumption that cannot b
experimentally tested, whereas its theoretical justification
not very clear. Besides that, this approximation does not
produce other morphologies, such as those reported
López-Salvanset al. @18# and Kahandaet al. @21#. In view of
this, it became increasingly clear that there was some cru
ingredient missing in MBDLA, and the most obvious cand
date was, of course, SD.

of

FIG. 3. Collapsed concentration profiles using the values oz0

obtained from Eq.~4!. Inset: the mean concentration front positio
z0 vs time.
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At this point, it is instructive to consider carefully th
work by Kahandaet al. @21#. According to their results, a
the absolute value of the overpotential decreases, the ag
gate becomes denser, and it is formed by several colu
that are thicker at the top than at the bottom. We interp
this as a hint of the relevance of SD: If, when a partic
arrives at the top of a column, it diffuses along the aggreg
interface, and if the diffusion length is shorter than the c
umn perimeter, the particle will not reach the base of
pillar or another column, with the result of a characteris
inverted triangle structure. The onset of similar triang
structures has also been reported by Pastor and Rubio@19#.
We thus came to the conclusion that it was necessar
include SD in MBDLA in order to shed further light on th
nontrivial coupling of the different transport mechanisms

3. Implementation of SD in MBDLA

We have implemented SD in MBDLA in three differen
ways, all of them starting when a particle in thebulk ~the
electrolytic solution!sticks to the aggregate but has just o
neighbor. We first tried two simple irreversible rules~other
similar rules yield equivalent results, so we do not inclu
them here for brevity!, named rulesA andB, and a reversible
one, named ruleC.

Rule A.The newly incorporated particle always jumps
the same direction, either left or right, parallel to the catho
until it reaches a site with at least two neighbors or co
pletesl jumps. This rule is similar, but not identical, to th
one studied in@44# for ballistic deposition with surface dif
fusion.

Rule B.In this second rule, we allow the particle to pe
form a random walk over the aggregate surface until it
creases its coordination number, with a constant probab
l to be permanently stuck to its current position~this is the
so calledmortal random walker@45#!.

The last rule is characterized by Arrhenius-like jum
probabilities and, what is more important, bysimultaneous
bulk diffusion and SD.

Rule C.This rule allows several particles to diffuse simu
taneously. When a particle arrives at a coordination 1 site
sticks and jumps to one of its two nearest neighbors on
aggregate with probabilitypn5exp@2E01(n21)Ea#, where
E0,a are adimensional activation energies, andn is the coor-
dination number of the target position. If the particle’s ne
position has two or three neighbors, it attaches to the ag
gate irreversibly. Otherwise, welabel the particle as a SD
particle, and we allow it to take further steps. Thus, we ha
two kinds of diffusing particles: particles in the bulk, distrib
uted homogeneously with concentrationc, and particles tha
diffuse over the aggregate surface. With probabilityr we
choose a bulk particle that evolves with its characteris
rules, and with probability 12r a particle on the surface tha
jumps to one of its nearest neighbors as we have just
scribed for the first jump. This rule is close in spirit to th
collective diffusion rules employed in studies of kinet
roughening in molecular beam epitaxy~MBE! @46#, and in
particular to MBE models beyond the solid-on-solid appro
mation @47,48#.

The main difference between rulesA andB with respect
to rule C is that the latter introduces a characteristic tim
scaletd5r 21, while in the other cases diffusion is instant
re-
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neous; thus, the diffusing particle is not affected by the ov
all particle dynamics. As we will show below, ruleC is the
only one that actually reproduces the influence of SD on
aggregate scaling and morphology. In this respect, it is
portant to point out that we have found that Arrhenius-li
probabilities alone are not enough to model SD: variants
rule C with those probabilities and without the characteris
time, i.e., SD kept instantaneous, lead once again to res
similar to those of ruleB. All the results presented wer
obtained withE053 andEa51. We have chosen these va
ues to have jump probabilities smaller than 1, but other s
of parameters yield similar results, which we omit for bre
ity. Finally, another interesting point is that the probabiliti
in rule C allow one to trivially introduce temperature in th
model by simply identifyingE0,a→E0,a8 /kBT.

Rule A, by definition, introduces a diffusion lengthl, but
if l @1 the particle jumps essentially always lead to an inc
ment of its coordination, as may be seen in Fig. 4, wh
some morphologies are shown for different values ofl. The
inverted triangle structure typical of the experiments by K
handaet al. @21# is reproduced with this simple rule. Neve
theless, the tops of the pillars are unrealistically flat; anot
problem is that decreasingp does not yet lead to a compa
aggregate regime. RuleA is therefore not appropriate. In th
case of ruleB, the diffusion length is introduced indirectly b
means of the attachment probabilityl ~see the Appendix for
details!. The mean diffusion length can be shown to be gi
by l D51/(2l1/2). Morphologies obtained with this rule ar
plotted in Fig. 5. Once again, and in spite of the fact that r
B allows the particles to diffuse randomly over the agg
gate, the columns developed during the growth turn out co
pletely flat at the top, and the option of ruleB was excluded
as well.

FIG. 4. Morphologies obtained with MBDLA with surface dif
fusion rule A and parameterss51 and c50.1. The size of the
system is 2563400 pixels.

FIG. 5. Morphologies obtained with MBDLA with surface dif
fusion rule B and parameterss51 and c50.1. The size of the
system is 2563400 pixels.
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These pitfalls~and similar ones found by using Arrheniu
like jump probabilities, which we skip for brevity! led us to
the conclusion that instantaneous SD~or limited mobility
rules, in the terminology of@46#! is a too drastic approxima
tion for ECD. Taking into account that the main distinctiv
feature of MBDLA is its nonlocal character, interactions
particles diffusing along the surface with newly deposit
particles are expected to be relevant. Guided by these id
we propose ruleC, which incorporates this coupling by in
troducing time scales for both bulk diffusion and SD.
sample of the aggregates generated by MBDLA with ruleC
is shown in Fig. 6. The difference from the other two rules
immediately apparent from the plot: This more realistic ru
does induce the creation of pillars as we pointed out abo
this time similar to those reported by Kahandaet al. @21# and
Pastor and Rubio@19#, which are rough at the top. Moreove
the compactification of the aggregates at low currents
pears naturally, as can be noted by following the sequenc
aggregates appearing on the same row~same value ofr ):
decreasing the current leads initially to less dense aggreg
until further reduction of the current gives rise to more co
pact aggregates. Remarkably, there is no need to chang
sticking probability by hand as in MBDLA without SD o
with rules A and B. This allows us to eliminate one mod
parameter, the sticking probability, which we take to bes
51 from now on.

So far, we have seen that, while simple SD rules prov
good results in some solid-on-solid simulation models,
complex dynamics of Laplacian systems does not allow
particles to instantaneously diffuse; rather, we must all
several particles to interact before they become permane
stuck to the aggregate. Roughly speaking, the flux of p
ticles arriving at the aggregate defines a characteristic t
tp ~typically inversely proportional to the flux, i.e., top).
Once the particles have arrived at the aggregate, they dif
until they reach a site with coordination larger than 1,
equivalently, until the particle meets another diffusing p
ticle, thus forming a dimer on the interface that cannot mo
anymore. A large flux of particles arriving at the interfa
~large p) will increase the probability of formation of thos
dimers, and the particles can hardly diffuse. The situatio
not so simple whenp is small. On one hand, the depositio
mean timetp is large, but on the other hand, the particl
hardly experience the applied electric current, so the pr
ability of attachment to a column wall before getting to t
bottom of the aggregate increases. Thus the Laplacian in
bility is amplified, leading to a compact structure formed
columns and grooves. This kind of instability has been

FIG. 6. Morphologies obtained with MBDLA with surface dif
fusion rule C and parameterss51 and c50.1. The size of the
system is 2563400 pixels.
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served in low-current galvanostatic experiments@19#. The
aggregate is therefore denser but if the diffusion time is
long enough the interface is unstable. It is remarkable t
this simple picture in terms of time scales allows to und
stand the relevance of SD in ECD experiments.

A final important remark we would like to make is tha
when the diffusion probabilityr is about 0.99, we have ob
served some evidence of what could be a morpholog
transition~and the subsequent change in the branches! simi-
lar to those reported by Lo´pez-Salvanset al. @17#. However,
as we want to concentrate in this paper on MBDLA with S
as a generic model for all regimes of ECD experiments,
postpone a more careful study of this possibility to futu
work, where we will pursue the appearance of this pheno
enon for different model parameters~such asp or r ).

4. Electrolyte concentration

To conclude the analysis of MBDLA parameters, w
show the effect of the electrolyte concentrationc. Figure 7
exhibits the morphological changes in patterns with differ
c values ranging from 0.01 to 0.1 for different biasp without
SD. Note that whenc→0 the low-current limit is exactly the
DLA growth model@25#. Therefore, we should keep a fini
value of c in order to diminish the unavoidable DLA cha
acteristic instability. The results contained in the figure allo
us to conclude that, insofar asc is not very small, the mor-
phologies obtained with MBDLA do not depend strongly o
the concentration, and therefore the fact that there is no
rect correspondence between physical and simulated con
trations is not a drawback of the model.

B. Dynamic scaling

The previous subsection shows that inspection of the m
phologies is a valuable method to check the validity a
relevance of the model rules. Indeed, the unrealistically
aggregates obtained with diffusion rulesA andB disqualify
them and motivate the investigation of the more realis
noninstantaneous ruleC for SD. However, in order to exploi
the main virtues of MBDLA with SD and to compare wit
other relevant models and experiments, we must take s
quantitative criteria, for example, the analysis of the interfa
surface roughening. To this end, let us define some funct
related to the height of the aggregate at spatial positionx at
time t, given by the scalar fieldh(x,t). We will also review
their basic features before discussing MBDLA properties

The global width~or roughness!W(L,t) is nothing but
the rms fluctuation of the height variableh(x,t) around its

FIG. 7. Morphologies obtained with MBDLA without surfac
diffusion for parameterss51 and r 51. Other parameters are a
indicated.
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mean valueh̄L(t)5(1/L)(xh(x,t):

W2~L,t !5
1

L K (
x

@h~x,t !2h̄L~ t !#2L , ~5!

where angular brackets stand for the ensemble average.
erally speaking, in many growth models, starting fro
h(x,0)50 the width satisfies the dynamic scaling hypothe
of Family and Vicsek@49#:

W~ l ,t !;H tb if t!Lz,

La if t@Lz. ~6!

The roughness exponenta, the dynamic exponentz, and
their ratio ~growth exponent!b5a/z identify the universal-
ity class the model belongs to.

In the study of kinetic roughening the height-height co
relation function is frequently used@2#:

C2~ l ,t !5
1

L K (
x

@h~x1 l ,t !2h~x,t !#2L , ~7!

where@50,51#

C~ l ,t !;H tb if t! l z,

t (a2a loc)/zl a loc if t@ l z, ~8!

anda loc is the so called local roughness exponent. Anot
important function related to the height variableh is the
power spectrum,

S~k,t !5^ĥ~k,t !ĥ~2k,t !&, ~9!

where ĥ(k,t)5L21/2(x@h(x,t)2h̄L(t)#exp(ikx).S(k,t) dis-
plays a behavior consistent with the scaling form@52#

S~k,t !5k2(2a11)s~kt1/z!, ~10a!

where

s~u!5H u2u if u@1,

u2a11 if u!1. ~10b!

The exponentu takes different values depending on the ty
of scaling exhibited by the model. For instance, for the
called intrinsic anomalous scaling@52# we have u5a
2a loc , whereasu[0 for Family-Vicsek scaling~including
super-roughening, i.e.,a>1). Note that this impliesa
5a loc .

To apply these ideas to MBDLA characterization, a fe
remarks are in order. Although, in some cases, MBDLA d
velops ramified aggregates leading to multivalued interfac
i.e., interfaces with overhangs, it has been demonstrated@53#
that the interface of the active zone in DLA simulations~the
aggregate sites with larger probability of arrival! corresponds
to that constructed by taking the topmost siteh(x,t) at every
horizontal positionx. This constructiondoes notensure that
the measured exponents are free of interpretation@54#, but
the exponents are consistent with theoretical and experim
tal data @55#. The reduction of the sticking probabilitys
en-

s

-

r

o

-
s,

n-

yields denser aggregates, and overhangs do not appear a
stage of the simulation for lows values. Besides that, if SD
is present the aggregates are also more compact. In all t
cases the functionh(x,t) is identical to the aggregate outlin
and consequently the results do not have any interpreta
problem.

The main scaling features of MBDLA without SD wer
already reported in@23#. Therefore, here we will briefly sum
marize them to facilitate comparison with results includi
SD, and refer the reader to@23# for the details. Without SD,
MBDLA displays three temporal regimes: At early times t
global widthW(L,t) featuresb50.5, this value being sim-
ply due to shot noise. This stage corresponds to time
which the lateral correlation length is of the order of t
lattice spacing. After this noisy transient, short and lar
length scales are governed by different dynamics because
bulk Laplacian field produces nonlocal effects~screening or
shadowing among branches!. Consequently, the local and th
global roughness exponentsa loc anda are different and the
interface is not self-affine. The growth exponentb is larger
than that of noise (b.1/2) because some isolated branch
begin to grow independently from each other, which can
understood as a signature of Laplacian instability. As a c
sequence, the interface width grows rapidly as compa
with the noise fluctuations. At later times, branches spr
by lateral growth and impinge upon each other. Eventua
the system reaches an asymptotic regime characterize
the Kardar-Parisi-Zhang~KPZ! universality class@56# expo-
nents (a51/2, b51/3, z53/2). The KPZ equation is the
paradigmatic growth model without SD, and it is given b
the stochastic partial differential equation@56#

]h

]t
5n¹2h1

l0

2
~¹h!21h~x,t !, ~11!

wheren andl0 are constants andh(x,t) is a Gaussian white
noise with

^h~x,t !&50, ~12a!

^h~x,t !h~x8,t8!&52Dd~x2x8!d~ t2t8!. ~12b!

As mentioned above, the definition of the interface fun
tion h(x,t) neglecting overhangs might cast some dou
@54# on the validity of the exponents reported in@23#. To
confirm our results, we have measured the excess velo
produced by tilting the initial substrate and imposing helic
dal boundary conditions@2#. The inset in Fig. 8 shows tha
this mean velocity is well fitted by a parabola, as expec
for KPZ behavior. It is important to stress that identical r
sults are obtained using the jump rules in@23#.

Interestingly, Schilardiet al. @24# report experiments with
large currents~equivalent to the large values of the biasp) in
excellent agreement with our model. They observe the sa
three time regimes: An initial transient with a behavior th
could not be measured due to the resolution of the exp
mental device, a second transient withb.1 characterized by
the growth of isolated branches, and a third asymptotic
gime at which the interface is characterized by KPZ exp
nents. A plot of the mean interface velocity vs time is al
given, showing a crossover from the unstable regime to
stable one in accordance with MBDLA predictions, as can
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seen in Fig. 8. The global width crosses over from the ins
bility ( b.0.5) toW(L,t);t1/3 at the time pointed out by the
arrow. Note that MBDLA cannot yieldb larger than 1, be-
cause of its discrete growth rules. This would mean that
interface width grows faster than the interface mean hei
Finally, the evolution of the morphology during the expe
ment is also the same in MBDLA and in the experiment,
seen by comparing Fig. 9, taken from@24#, and Fig. 10,
obtained in our simulations.

We now consider the scaling behavior of MBDLA1 SD
for the different diffusion rules. As we pointed out in th
preceding section, large values of the diffusion lengthl ~rule
A) generate flat aggregates. This means thatb→0 asl→`
at early times. Figure 11 shows the lack of universality in

FIG. 8. Interface mean height vs time with parametersp54, s
51, andc50.05 without surface diffusion. The arrow shows t
end of the unstable regime. Inset: mean excess velocity, in arbi
units, for the same parameters for different boundary tiltsm. Circles
stand for simulation and the solid line is the best fit to a parab
The dashed line represents the expected linear growth of KPZ t

FIG. 9. In situ lateral micrographs showing the interface evo
tion from t50 to t560 min for Ag ECD atj 51 mA cm22 in (5
31023)MAg2SO411022MH2SO410.5MNa2SO4. Taken from
@24# with kind permission from the authors.
-

e
t.

s

e

growth exponentb: It can be seen in this plot thatb de-
creases withl as we expected. The same happens with ruleB:
As in the case of ruleA, the growth exponentb depends
strongly on the attachment probability,l ~rule B). As de-
picted in Fig. 11, the dependence is similar to that of mo
A since the diffusion length is proportional tol21/2.

The scaling behavior in MBDLA with SD given by ruleC
is more complicated. We can recognize three different kin
of behavior, which we summarize as follows.

0.05<r<0.25. The characteristic diffusion time is long
and particles diffuse rather fast along the surface~let us re-
call that they are picked with probability 12r at every
Monte Carlo trial!without much interaction with particles
arriving from the bulk, thus yielding compact aggregat
except if p&0.05, because then the Laplacian field crea
pillars and grooves. After a short transient the global wid
grows slowly and, independently of the applied current,
roughness exponents are compatible with those of

ry

.
e.

FIG. 10. Sequence of snapshots of the evolution of an aggre
grown with MBDLA without SD. Parameters arep50.75, s51,
r 51 ~i.e., no surface diffusion!. Times ~in our units, see text!are
~top to bottom!353106, 17.53106, 8.753106, 5.253106, 3.5
3106, and 1.753106.

FIG. 11. Dependence of the growth exponentb on (s) diffu-
sion lengthl ~rule A) and (h) attachment probabilityl ~rule B).
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Edwards-Wilkinson universality class, whose defining eq
tion is @57#

]h

]t
5n¹2h1h~x,t !. ~13!

Figure 12 shows the global width collapse obtained by r
caling the simulation time. The plot not only shows t
Edwards-Wilkinson growth exponent, but also ther indepen-
dence of the results over a wide range of simulation par
eters. Note that the collapsing time step is the one defined
MBDLA without SD divided by the characteristic diffusio
time td5r 21. Figure 13 shows the collapsed power spe
trum usinga51/2 andz52 ~and consequentlyb51/4) con-
sistent with Eq.~10! with u50 for Edwards-Wilkinson ex-
ponents. It is important to note that this kind of dynam
scaling has been observed in two-dimensional ECD exp
ments@58#. Finally, we have to mention that the restrictio
r .0.05 is due only to the extremely long computation
times needed to study the model for such small values or.

0.3<r<0.7. For largep, the interface is compact an
grows with constant velocity. The scaling is similar to that
the preceding case. Whenp→0, initially the interface is
rough and the growth exponentb is in the range 0.35–0.40
~see Fig. 14!. Some experiments have reported similar in
faces at early stages of growth@20#: Specifically, they ob-
tained exponents consistent with the linear MBE grow
model universality class (a53/2, b53/850.375, andz
54) that is, their interfaces could be described by the eq
tion @59#

]h

]t
52K¹4h1h~x,t !. ~14!

Note that for this modela.1, so the interfaces generate
with Eq. ~14! are super-rough. In our case this short regi

FIG. 13. Collapsed power spectrum withp52, s51, r 50.1,
andc50.05 using the Edwards-Wilkinson universality class exp
nents at six equally spaced times from 83106 to 33107. Dashed
line has slope 2a1152.

FIG. 12. Global width vst/td for r 50.05, 0.1, 0.15, 0.2, and
0.25, withp50.5, s51, andc50.05. The dashed line is a guide
the eye, with slope 0.25.
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ceases when the mean interface heighth̄(t) is about 8 to 10
monolayers and the global widthW(L,t) is about 1. This is
compatible with the referred experiments referred to exc
that we do not observe the super-rough power spectrum.
tually, in our case the tail ofS(k) presents a time shift a
large wave vectors~Fig. 15!, which is incompatible@60# with
the behavior obtained for Eq.~14!. However, the basic phe
nomena, such as the value of the effectiveb and the onset of
the instability, are in good agreement with the experimen
After this transient, the aggregates are still compact and
velop some grooves~see Fig. 6!. When these grooves appe
the growth exponentb rises dramatically due to the larg
slopes produced between grooves. Figure 16 summarize
this by showing the variation ofb with time.

0.85<r . Finally, when the diffusion time is short, thre
completely different situations are found as a function of
current p. For very largep, cations become ballistically
driven to the aggregate and the unstable transient tend
dissappear~in fact, thep→` limit is the ballistic depostion
discrete model, which is well known to belong to the KP
universality class@1,2#!. Whenp*1 the aggregate grows a
MBDLA without SD with similar parameters, except that
this case the aggregate mean density rises. That is, we
cessively detect a noisy initial transient, the instability as
ciated with the growing branches, and the KPZ asympto
limit due to the lateral growth of the branches. The interfac
within the unstable regime~an example of which is shown in
Fig. 17! are not self-affine but present intrinsic anomalo
scaling @51,52#. Figure 18 shows the power spectrum for
50.85, p54, ands51. Figure 19 shows the collapse of th
power spectrum and Fig. 20 the collapse of the height-he
correlation functionC( l ,t), achieved in both cases fora
51.78, a loc50.49, z52.51, andb50.71.

For intermediatep values~between 0.25 and 1, for almos
every r ), the aggregate is formed by several compact t
branches which grow vertically and parallel to one anoth

-

FIG. 14. Global width vst/td for r 50.35, 0.40, 0.45, 0.55, and
0.60, withp50.5, s51, andc50.1. Dashed line is a guide to th
eye.

FIG. 15. Power spectrum of an interface withr 50.5, p50.5,
s51, andc50.1 at times 107,23107,33107,43107, and 53107.
Power spectra are anomalous at short scales. Dashed line
guides to the eye.
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In this case, the notions of a rough surface or dynamic s
ing are meaningless. Finally, for smallp some compact
branches grow at the expenses of the others, so typically
or two branches grow more than the others. As in the cas
parallel branches, it is meaningless to talk about interf
roughening.

IV. DISCUSSION AND CONCLUSIONS

Our first conclusion is that MBDLA is a simple compu
tational model that incorporates in a natural way some of
basic mechanisms involved in ECD experiments. The or
nal model@16,23#was already known to be in good agre
ment with some experiments@35#. In this paper, we have
provided much more evidence showing that MBDLA e
plains some of the morphological changes due mainly to
applied electric current and, what is more important, it p
dicts the recently observed KPZ scaling behavior in the hi
current limit ~for which SD is not too relevant! @24# and
observed also at low currents@21#. Before this regime is
reached, there is an unstable transient within which MBD
interfaces present intrinsic anomalous scaling. We beli
this type of scaling occurs because SD is not able to c
municate to different portions of the interface fast enough
that they grow independently from one another. This
analogous to the anomalous scaling occurring in the non
ear surface diffusion equation studied in@61#. In our case, the
different portions feature a value of the roughness expon
a loc'0.5, similarly to the interface subject to columnar d
order studied in@51,52#.

Secondly, the main point of our paper is that, as we h
seen, MBDLA without SD cannot explain low-current e
periments in which the characteristic dense branching ag
gates of high-current experiments are replaced by com
and columnlike aggregates. Our working hypothesis was
the latter kind of pattern is due to the competition betwe
the Laplacian field of the cations in dissolution and the

FIG. 16. Evolution of growth exponentb with time for compact
aggregates with grooves. Solid line:p50.1 andr 50.45; dashed
line: p50.1 andr 50.5; and dot-dashed line:p50.1 andr 50.7.

FIG. 17. Dynamic evolution of the heighth(x,t) with p54, r
50.85, s51, and c50.1. Snapshots are taken at times 1
3107,2.13107, and 33107.
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current on the interface. Thus, our ECD model, which
wanted to improve so as to explain, at least qualitatively,
complete ECD phenomenology, should incorporate a n
rule for the diffusion of the adatoms attached to the agg
gate. Hence, we have tried out some SD rules similar
those often used in growth models for molecular beam e
taxy @46#. We have verified that instantaneous diffusi
rules, namely, rules that ‘‘freeze’’ the bulk particles whi
the most recently attached particle finds its way through
surface, do not lead to correct results in the low-current lim
and produce very unrealistic, flat-topped morphologies.
have thus been forced to conclude that the nonlocal chara
of MBDLA demands a diffusion rule that couples the over
cation dynamics, this is the rule we have namedC. It intro-
duces a characteristic diffusion timetd5r 21 which com-
petes with the time scale related to the net flux of partic
arriving to the interface~which, in fact, is proportional to the
applied electric current density!. With this SD rule, the mor-
phologies at low, medium, and high currents are compat
with those observed by Trigueroset al. @11# for low, me-
dium, and high applied voltages, respectively. This diffusi
time td cannot be controlled from the experimental point
view, but fortunately there are wide ranges of paramet
over which the simulated morphologies hardly chan
which means that the description of the experiments p
vided by MBDLA with SD is robust and does not need
uncontrollable parameter to be tuned. We have also c
pared MBDLA with SD with the experiments reported b
Pastor and Rubio@20,19#, which characterize the produ
interfaces by the MBE exponents. MBDLA seems to rep
duce the latter behavior for very short times and short len
scales, as can be seen in Figs. 14 and 15, but these resul
not too significant, as they are not as accurate as we wo
need to make any strong claim, and could be due to
appearance of a characteristic short length scale. There

FIG. 18. Intrinsic anomalous power spectrum withp54, r
50.85, s51, andc50.1. Lines correspond to interfaces at tim
33106, 63106, 93106, 1.23107, 1.53107, 1.83107, 2.13107,
2.43107, 2.73107, and 33107.

FIG. 19. Collapsed power spectrum for the five later curves
Fig. 18 usinga51.78, z52.51, b50.71, anda loc50.49. Dashed
lines show the slope values expected from Eq.~10! for those expo-
nent values.
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difficulty in this respect, as MBDLA scaling is intrinsicall
anomalous, whereas the results in@20,19#support standard
super-rough scaling. With the data presently at hand we h
to conclude that MBDLA with SD does not describe all t
aspects of the very-low-current regime quantitatively, but
fact that it does describe most of them and, above all,
compactification of the aggregates, makes us confident
MBDLA with SD is a very goodgeneralmodel for ECD.

To conclude, we note that the model presented has
basic ingredients of ECD phenomena, diffusion, electro
gration, and surface diffusion, but for this reason, we have
pay a big price in terms of computational time. MBDL
without SD is a very time-consuming model, and the diff
sion rules make the analysis and the simulations an exe
in patience. It has certainly been an improvement to find t
SD ruleC allows us to skip the sticking probability param
eter, thus reducing the parameter space, but even the
averages of relevant quantities over large ensembles ar
quired, a great amount of computational resources will
needed. Of course, this disadvantage can be removed
careful reprogramming of the algorithm, but that is anoth
line of research. As our goal was to identify the most imp
tant factors involved in ECD, we do believe that, despite
computing limitations of the model, MBDLA with SD is a
powerful tool to repoduce some unclear features of this k
of growth experiment, and has helped us to understand w
are the most relevant transport properties and how t
couple in different parameter regions. We hope that t
work suggests further experiments to find out whether M
DLA with SD is the complete, general model for ECD or
there are still regions that need separate modeling.
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APPENDIX: SURFACE DIFFUSION RULE B

In rule B, surface diffusion starts when a particle has fi
arrived at the aggregate and has attached to it~with probabil-
ity s). The particle jumps with equal probability to one of i
two nearest neighboring sites on the aggregate until it
creases its coordination number. The particle has an a
tional probabilityl of being permanently attached. This kin
of particle is usually termed a mortal random walker@45#.
The random walk is performed between two absorb
boundaries, namely, two sites with higher coordination~2 or
3!. One could try to determinea priori the total numberN of
jumps the particle has to perform in each realization, dra
ing such a number from the probability for the particle
takeN steps on a flat line if it avoids stickingN21 times and
‘‘dies’’ at the Nth jump. This probability is easily calculate
to be given by

PN~l!5l~12l!N21. ~A1!

However, the absorbing boundaries disallow this proced
In any case, we have compared the simulation results
allowing the particle to perform an actual mortal rando
walk, and to perform a simple random walk ofN steps given
by Eq. ~A1!. The two results are hardly different. Thus, w
can approximately calculate from Eq.~A1! the mean and
variance of the maximum number of jumps, given by

N̄5
1

l
, ~A2!

sN5
A12l

l
. ~A3!

For a flat interface, the particle mean position would be 0
its variance would be

sN5N̄1/2/251/~2l1/2!, ~A4!

which provides the characteristic diffusion lengthl D
51/(2l1/2).
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