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Abstract

We provide a model of strategic interaction between the Internal
Revenue Service (IRS) and the firms, that analyzes the impact of the
increasing financial sophistication, and respectively, of the book prof-
its reporting and its audit, on tax compliance and fiscal control. In
this simple framework we describe basic scenarios in which decreasing
IRS audit rates and weaker fiscal discipline appear endogenously, that
is, when growing financial sophistication is paralleled by changes in
the information on book profits available to the tax authority, or by
changes in the distribution of the book profits. In contrast to other
views, these scenarios involve simple explicative mechanisms that do
not rely on the idea of relative changes in the IRS resources or in the
applied penalties.
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1 Introduction

Starting with the early 1990’s, both policy makers and the accounting liter-
ature began to signal that, in the United States, the government tax receipts
have been increasing much less than the size and profitability of firms. This
evolution generated growing concern regarding the possibility of an increase
in tax sheltering; it also raised questions about its causes.

The growing gap between the book income and the taxable income can
be interpreted as indirect empirical evidence of the expanding tax sheltering
activity. The increasing discrepancy began in 1992 and evolved indepen-
dently of the business cycle fluctuations (Slemrod [12]). For instance, the
ratio of book income to tax income of the companies with assets greater
than $1 billion grew from 1 to 1.4 between 1991 and 1996 (Desai [3]). As
already mentioned, this trend can be simply explained by the increase of
corporate tax shelters; nevertheless, there are other appealing alternative
explanations. First, it could be due to a change in the size of the items
that normally account for this difference (the foreign operations, the dif-
ferent methodology of computing depreciation, the employee stock options
compensation, etc.). Second, the increasing divergence could stem from an
increased level of book profits manipulation.

However, for the 1990’s decade, Desai [3] quantifies the contribution of
the items that presumably create the gap between the book and the tax
income, and shows that less than half of the aggregate gap is explained
by these sources of distinction. The author claims that, although it is not
possible to disregard fraudulent book profit reporting as one of the sources
of this discrepancy, the micro analysis suggests that the breakdown in the
relationship between tax and book income is more consistent with increas-
ing levels of tax sheltering. He concludes that firms became more fiscally
aggressive during this decade, and mentions as possible causes either lower
probabilities of detection, or lower perceived penalties.

A 1999 report of the U.S. Department of Treasury [14] identifies several
directions in which the phenomenon of tax sheltering evolves. An important
trend is given by the increasing financial sophistication, i.e. the availability
of software and low-cost technologies to carry out complicated transactions,
the growing complexity of financial markets, the development of financial
innovations, the increasing supply of tax specialists, etc. The expanding
financial sophistication provides more opportunities for firms to avoid taxes
without breaking the law. More and more firms can reduce tax liabilities to
non-natural levels, while they perceive very low probabilities of detection,
since they are aware that their tax avoidance activities cannot be proven
illegal. Such a trend can be kept under control mainly through improved
regulations, and not through changes in the probabilities of control, or in
the system of penalties.

Another important trend identified in the report is that there are more
and more corporations resorting to fraud (that is, tax behavior that can be
proven illegal by an Internal Revenue Service (IRS) audit). In the authors’
view, such abusive tax behavior is closely related to the changes in the IRS
audit probabilities. Lower rates of fiscal audit lead to a decrease in the
perceived risk of the taxpayer to be audited, hence, to more aggressive tax
positions of the firms. Indeed, there is significant evidence for the decrease in
the rates of the fiscal audit, especially among the companies with large levels
of assets. A relevant example is that the IRS audit rates for the group of
companies with assets greater than $100 million decreased from 59 percent
in 1990 to only 35 percent in 1997. The overall audit rate decreased as well,
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although not that drastically, from 2.9 percent in 1992 to 2.0 percent in
1998. The study further suggests that the decline in the overall audit rates
is a consequence of the relative contraction of the IRS resources with respect
to the size dynamics of the economy.

Nevertheless, for the 1990’s decade, evidence of a decline in the IRS re-
sources can be found only after 1996 (Slemrod [12], Steuerle [13]). Moreover,
there is no evidence of changes in the system of penalties applied by the IRS
during the decade, that we are aware of. We do not discard the idea that a
decline in the IRS budget or in the applied penalties contribute to the in-
creasing fiscal aggressiveness of the corporations; however, we are motivated
to consider alternative mechanisms that can replicate the observations that
the fiscal audit rates decrease, while the fiscal discipline weakens. The start-
ing point is provided by the same report of the U.S. Department of Treasury
[14]. It argues that, due to the growing financial sophistication, more and
more firms, which in the absence of any tax avoidance activities would be
characterized by high tax liabilities, are assimilated instead to the firms with
low liabilities, since they are able to conceal due taxes by means of transac-
tions without any business purpose that the IRS cannot prove illegal. Such
a phenomenon may further induce a decrease in the fiscal discipline in the
market, in the sense that more corporations, which cannot achieve such low
levels of tax liabilities within the margins of the law, will resort to fraud.

In the present paper we try to assess the impact the increasing finan-
cial sophistication may have on the corporate fiscal discipline, and on the
probability of fiscal control. We provide a stylized framework in which an
immediate result is that, in equilibrium, increasing financial sophistication
induces, ceteris paribus, a decrease in the level of fiscal discipline in the mar-
ket. However, contrary to the empirical evidence, it also induces an increase
in the total rate of the fiscal control. If besides the effects of the expanding
financial sophistication, we also consider the impact that the accounting re-
porting and its audit may have on tax compliance and control, then we can
provide simple scenarios such that decreasing IRS audit rates and weaker
fiscal discipline appear both endogenously and simultaneously.

In contrast to the mechanisms suggested by the report [14] and described
above, our model is based on the following premises. First, the IRS max-
imizes the expected net revenue without facing a budget constraint, and
therefore, by assumption, the change in the rates of the fiscal audit cannot
appear as a consequence of a contraction in the IRS resources. Second, we
consider in our analysis an exogenous and constant penalty function. Third,
we account for the level of financial sophistication exclusively by the scale
at which it allows the companies to avoid taxes without breaking the law.
Hence, in our model, changes in the financial sophistication are assimilated
to changes in the distribution of firm types. Finally, we assume that the tax
administration has access to both tax and book profit reports, as well as to
the results of a (possible) audit of the latter.

The theoretical literature on tax evasion is substantial (for a compre-
hensive survey, see Andreoni et al [2]), but most of it concentrates on the
individual taxpayer, and relatively little has been done to analyze the be-
havior of the firm. Nevertheless, studying the firm is relevant, given that
firms face different circumstances than the individuals. An important fact
is that, besides taxes, the firm also reports the level of book profits. Book
and tax profits are correlated, but they represent different concepts and are
computed using different methodologies. Book profits should give outsiders
a good idea about the performance of the firm, whereas taxes collect equi-
tably revenues for the budget and can be used by the state as an instrument
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for encouraging or discouraging certain activities (Hanlon and Shevlin [7]).
In the case of public corporations, both tax and book profit reports can be
subject to manipulation by the firm. In order to deter these types of manip-
ulative behavior, the tax report can be audited by the IRS, while the book
profit report can be audited by the Securities and Exchange Commission
(SEC).

Mills and Sansing [10] provide a game theoretical model in which the IRS
takes advantage of the correlation between the book and tax profit levels
in its audit decisions. The authors abstract from the fact that, in reality,
the firm also has incentives to manipulate the report on book profits, and
assume that the IRS knows with certainty the real value of the book profits.
They show that, in equilibrium, the higher is the difference between the
book profits and the reported taxes, the higher is the probability of a fiscal
audit. Mills [9], and Mills and Sansing [10] find empirical evidence that
supports the above theoretical result.

However, there is empirical evidence that firms can also misreport their
level of book profits, mainly for other purposes than tax evasion (see Er-
ickson et al [4]). A theoretical paper that takes into account the possibility
of manipulating both reports is Goerke [5]. He analyzes the trade-off be-
tween overreporting book profits and underreporting taxes, and shows that,
in some cases, firms have incentives to pay extra taxes if this allows them to
inflate the reported value of their book profit. Nevertheless, tax overreport-
ing is marginal with respect to the growing phenomenon of underreporting.
For instance, Rice [11] finds in a US sample, that more than two thirds of
the firms underreported their tax liabilities, while only 6 percent actually
overreported.

The contribution of the present paper is two-folded. It represents a first
attempt to model the strategic interaction between the IRS and the firms,
taking into account the influence of the accounting reporting and of the
audit activity of the SEC, on the behavior of the players. Additionally, the
paper provides a simple framework to analyze the impact of the increasing
financial sophistication on tax compliance and control. In this setup we
can depict straightforward scenarios in which decreasing IRS audit rates
and weaker fiscal discipline appear both endogenously and simultaneously
(although we do not rule out the existing explanations of the coexistence of
these two phenomena). For example, if growing financial sophistication is
paralleled by changes in the information on book profits available to the tax
authority (i.e. an increase in the audit rate of the SEC), or changes in the
distribution of the book profits, then a decrease in the total fiscal audit rate
can appear at the same time with an increase in the tax aggressiveness of
firms.

The rest of the paper is organized as follows. In Section 2, we provide
three versions of the model. The first assumes away the role of the SEC
audit; the second one takes as given the SEC probability of audit. Finally,
the third version assigns an objective function to the active SEC. Section
3 studies the comparative statics of the equilibrium in each of the models,
and Section 4 discusses the results and concludes. The proofs are relegated
to the Appendix.

2 The model

Within an audit class, firms can be of three types, given by their level of book
profits and taxes. The book profit B can take two values, B ∈ {B1, B2},
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B2 > B1, with probabilities 1 − q and q. We understand by B the level
of profits computed for financial reporting purposes that comply with the
Generally Accepted Accounting Principles (GAAP). The level of taxes is
T ∈ {0, 1}. For a given firm, we interpret T as the minimum level of tax
liabilities that the firm can achieve by transactions that do not break the
current tax legislation. More precisely, if the firm is audited by the IRS,
these transactions cannot be proved illegal, given the current tax law and
the level of book-tax conformity this legislation induces. We assume that
when the firms are characterized by low book profits, they can always reduce
their taxes to the minimal value within the audit class, which we normalize
to 0. In the group of firms characterized by high book profits, we assume
that a percentage p can reduce their taxes to T = 0 by transactions that
could not be proved illegal by an IRS audit. The rest of the firms have a
tax liability T = 1.

The fact that a fraction p of high book profits firms can reduce their
taxes to T = 0 can be explained in the following way. In order to save
on taxes, firms can exploit discontinuities and loopholes in the tax law, by
undertaking a series of transactions that do not have an underlying busi-
ness purpose, but the avoidance of taxes. The increasing complexity of the
financial markets and the financial innovations, the greater supply of tax
experts, and the availability of software and low-cost technologies to carry
out complicated transactions breed opportunities for firms to lower their
taxes without breaking the law. Whether the individual firm can exploit
these opportunities or not depends on the particular circumstances it faces.
The tax laws and procedures are updated frequently, while tax avoidance re-
quires planning and time-consuming operations, therefore some of the firms
(in our model, the fraction 1 − p of the high book profit firms) will not be
able to take advantage of the law at the same scale as others (the fraction p
of the high book profit firms).

We understand by financial sophistication all the previously mentioned
factors that create opportunities for reducing taxes in a legal way. As argued
in the introduction, the expanding financial sophistication may have as effect
a simple rescaling to the left of the range of values for the tax liabilities, but
also a change in the distribution of these liabilities, in the sense that more
and more firms with large amounts of income, are assimilated to the firms
with low liabilities. We capture the latter effect through the parameter p.
Throughout the paper, an increase in p will always be associated to the
phenomenon of expanding financial sophistication.

We do not model here the process by which firms lower their tax liability,
or the costs that these transactions might cause to the firm. We assume
that firms perfectly understand the circumstances they face, and know what
procedures they can undertake to reduce taxes. Therefore, in our model
firms know their type, given by (B, T ). Note that the type (B2, 1) cannot
reduce the tax liabilities below T = 1 without breaking the law. The only
possibility to lower its taxes is by evasion, in which case an IRS audit would
identify the illegal tax shelter. We further assume that the tax authority
knows the distribution of the accounting profits and tax liabilities, but does
not know the true type of each firm. The SEC knows only the distribution
of the accounting profits.

The timing and the information structure of the game played by the
firms, the IRS and the SEC is as follows. After the firm observes its type,
it gives a report (x, y), where x ∈ {B1, B2} and y ∈ {0, 1}. The model
assumes that there is no overlapping between audit classes, in the sense that
the firms of an audit class can never report taxes lower than the normalized
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zero level, or profits higher than B2.1 The SEC can observe and audit only
the accounting report x, while the IRS can see the report (x, y) and can audit
the tax report y. In ours setup, if the SEC audits the report x, the IRS has
access to the result of the audit before it makes its decision. Furthermore,
any audit conducted by the SEC or by the IRS leads to full disclosure of the
corresponding true value.

An important assumption related to the information structure is that
the IRS has access to the information reported to the SEC, but not the
other way round. This is motivated by the following facts. On the one
hand, in the US the book profit reports are quarterly. They are public, and
any of them can be subject to a SEC audit, whose result is public as well.
(Note that we simplify the model by combining all the relevant quarterly
book profit reports in a single variable x.) Moreover, the firm must also
give financial accounting details when it files its tax return to the IRS. On
the other hand, the tax reports and audits are yearly. Therefore, we assume
that the results of a SEC audit are available to the IRS before the latter
institution makes its own audit decisions. An implicit assumption is that, if
a SEC audit discloses the real value of any quarterly book profit level, then
the IRS can use the information as a perfect indicator of the value of the
current year book profits. The tax liability of a firm is not publicly disclosed
and it is very difficult to estimate; hence we assume that the SEC does not
know the taxable income of the firms.2

The tax sheltering decisions are not made in an instant of time, at the
end of the year, but throughout the year by means of time-consuming oper-
ations. Thus, it seems reasonable to assume that, by the time the SEC audit
becomes public, these decisions have been already taken, and therefore the
report y on taxes cannot be modified by the firm after a SEC audit. Hence,
in our model the firm decides jointly the report (x, y), under uncertainty
with respect to whether there will be a SEC audit of x or not.

We consider that the firm is risk neutral and maximizes the following
payoff . When there is no audit, the payoff equals reported accounting profits
less reported taxes, π = x− y. If only the IRS audits, then π = x− T − F ·
1{T>y}, where F is the fine that the IRS applies for evasion. If only the SEC
conducts the audit, then π = B−y. Finally, when both institutions perform
the audit, π = B−T−F ·1{T>y}. This payoff function is the simplest way to
convey the idea that the management of the firm has incentives to overreport
book profits and to underreport tax liabilities. On the one hand, firms have
substantial incentives to inflate their book earnings, because the higher the
reported book profits, the higher is the market value of the firm and the
bonus to the managers that accrues from good performance (Erickson et al.
[4]). On the other hand, saving on taxes decreases one of the most significant
costs of a firm. There is increasing evidence that firms put more and more
emphasis on the activity of their tax departments, while low tax liabilities
are considered a measure of performance [14].

If the fiscal audit reveals that taxes were underreported, the IRS applies
a fine F.3 Because of the strong assumption of non-overlapping audit classes,
the firms with low taxes will never have incentives to evade, hence they will

1We consider that the SEC and the IRS identify the audit class the firm belongs to,
based on parameters like the size, the type of business etc. If the firm reports profits and
taxes that do not characterize its audit class, it will prompt for sure the corresponding
audit.

2For a detailed discussion, see Hanlon [6], and Hanlon and Shevlin [7]
3Generally, the fine is proportional to the amount evaded. Since we have a discrete

model with only 2 levels of taxes, this is achieved in a trivial way.
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never be fined by the IRS. A SEC audit discloses the real book profits to
the financial markets and the shareholders. Therefore, when there is a SEC
audit, the firm’s payoff will depend on the real book profits. We neglect any
possible fine paid to the SEC, because we are interested mainly in how the
extra information provided by the SEC audit can influence the interaction
between the IRS and the firms. Furthermore, before the Sarbanes-Oxley
Act of 2002, that increased the penalties for accounting fraud, it was rather
typical for the SEC to avoid applying a fine or to minimize it, given that
the firm committed to take remedial measures.4

We assume that B1 < B2 − 1. This assumption matches the empirical
evidence that, in general, large profit firms do no have incentives to report
lower profits in order to pay less taxes (see Erickson et al [4]). It also makes
the equilibrium analysis more tractable. If this condition holds, the book
profits report does not play any role in the IRS decision, in the absence
of the SEC audit. This stems from the fact that, when this condition is
fulfilled, the IRS sees in equilibrium only one accounting report (x = B2).

We consider that the IRS is risk neutral. If it does not audit, the IRS
gets y, where y is the reported tax income. When it does audit, it gets the
true amount of due taxes, plus a fine F if the firm underreported taxes. We
assume that the IRS applies the following audit technology. Based on the
information it has (the reports and the SEC audit), the IRS divides into
subclasses the firms within an audit class. We take the view that auditing
a relevant subclass implies a certain specialization of the IRS personnel.
Thus, we assume that, for each informational subclass, the IRS chooses
independently the probability of audit, by maximizing the expected net
revenue. Greater probability of audit requires greater effort, which means
higher costs. Finally, like in Reinganum and Wilde[8], we do not impose
a fixed budget for the IRS, hence the tax authority can conduct as many
audits as it desires.

Let the cost of audit be c(ρ), where ρ is the probability of audit. Assume
that the continuously differentiable cost function c : [0,∞) → [0,∞) satisfies
the following properties:

(i) c′(0) = 0; c′(ρ) > 0, ρ > 0; c′′(ρ) > 0, ρ ≥ 0;
(ii) c′−1([0, 2]) ⊆ [0, 1];
(iii) c′−1(2) > 1

2 .

The first property states the convexity of the cost function. Since there
are obvious time constraints on the activity of the specialized teams of IRS,
it is reasonable to think that auditing more firms in the same amount of
time gives rise to increasing marginal costs. The last two properties are
technical.

2.1 A model without the SEC (model A)

We study the effect of introducing the SEC audit by considering the bench-
mark model where this institution does not exist. The timing is the fol-
lowing. Nature chooses the type that is revealed to the firm, then the firm
submits the pair of reports (x, y). The IRS sees the reports and audits the
tax liabilities; finally, payoffs are realized.

4We are aware of the fact that, although the SEC does not apply a fine, the payoff
can decrease below the value B − y (respectively, B − T − F · 1{T>y}). This can happen
if the financial markets react to the lie of the firm, or if the shareholders penalize the
management. We abstract from these considerations for the reasons explained above.
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2.2 The passive SEC (model B)

In this version of the model the SEC is not an active agent. The timing of
the game is as follows: nature chooses the levels of accounting and taxable
profits that give the firm type. The firm submits the pair of reports (x, y).
The value of σ is realized, where σ is the exogenous probability of a SEC
audit. Given the result of the SEC audit, the IRS makes its own audit
decisions. Payoffs are realized.

2.3 The active SEC (model C)

In this case, the SEC probability of audit is endogenous. The SEC is the
institution that supervises the well functioning of the security market, and
is concerned primarily with promoting the disclosure of important market-
related information, maintaining fair dealing, and protecting against fraud.
We assign the SEC the truth-telling objective function, −ν · (B−x)2− 1

2σ2,
where 1

2 · σ
2 is the quadratic cost of auditing and ν is a rescaling constant.

The timing of the game is the same as in model B, with the SEC deciding
the probability σ of inspecting after seeing the report x.

3 Results

3.1 Solving model A

The condition B1 < B2 − 1 together with the fact that there is no audit of
the book income report, implies that, for all types, x = B2. Also, whenever
T = 0, the firm will report truthfully y = 0. Therefore, in equilibrium, only
two types of reports appear: (x, y) = (B2, 0) and (x, y) = (B2, 1).

The IRS will not audit the report (B2, 1). The report (B2, 0) can be filed
by any type of firm, and the IRS maximizes ρ · q·(1−p)·α

1−q·(1−p)+α·q·(1−p) · (1 + F )−
c(ρ), where α is the probability that the type (B2, 1) reports (B2, 0). The
solution of the above maximization problem, for any given (F, q, p) ∈ (0, 1)3
and α ∈ [0, 1], has the form:

ρ0(F, q, p, α) = c′
−1
(

(1 + F ) · q · (1− p) · α
1− q · (1− p) + q · (1− p) · α

)
(1)

We define the function ρ0 : (0, 1)3 × [0,∞) → R, given by equation
(1), and the function g1 : (0, 1)3 × [0,∞) → R, g1(F, q, p, α) = (1 + F ) ·
ρ0(F, q, p, α). Consider the following relations:

g1(F, q, p, α) = 1 (2)

g1(F, q, p, 1) ≤ 1 (3)
The firm of type (B2, 1) compares B2 − 1 with B2 − ρ0 · (1 + F ), hence

equation (2) and 0 < α < 1 are the conditions for a mixed equilibrium
strategy. Inequality (3) represents the condition for the existence of a pure
equilibrium strategy α = 1. It is trivial to prove that there is no equilibrium
with α = 0.
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3.2 Solving model B

By the same argument as in model A, and since the SEC does not apply
any fine, in equilibrium there are only two types of reports: (x, y) = (B2, 0)
and (x, y) = (B2, 1). All types with T = 0 declare x = 0. Denote α the
probability that type (B2, 1) reports (B2, 0).

The IRS will never audit a report (B2, 1), and it will not audit a firm
whose book income was disclosed to be B1 after a SEC audit. The IRS solves
two independent maximization problems, for any given (F, q, p) ∈ (0, 1)3 and
α ∈ [0, 1], with the solutions:

ρ1(F, p, α) = c′
−1
(

(1 + F ) · (1− p) · α
p + (1− p) · α

)
(4)

ρ2(F, q, p, α) = c′
−1
(

(1 + F ) · q · (1− p) · α
1− q · (1− p) + q · (1− p) · α

)
(5)

The audit rate of the IRS when the report is (B2, 0) and the SEC audit
revealed B = B2 is ρ1, and the audit rate of the IRS when the report is
(B2, 0) and the SEC did not perform an audit is ρ2. Note that, within
the group of firms that have not been audited by the SEC, the audit rate
of the IRS has the same expression as in model A. Define the functions
ρ1 : (0, 1)2 × [0,∞) → R and ρ2 : (0, 1)3 × [0,∞) → R, given by equations
(4) and (5).

Also define g2 : (0, 1)4 × [0,∞) → R, g2(F, q, p, σ, α) = (1 + F ) · [σ ·
ρ1(F, q, p, α) + (1− σ) · ρ2(F, q, p, α)]. Consider the following relations:

g2(F, q, p, σ, α) = 1 (6)

g2(F, q, p, σ, 1) ≤ 1 (7)
As in the previous model, equation (6) and 0 < α < 1 are the mixed

equilibrium conditions. Inequality (7) is the condition for a pure equilibrium
α = 1, and there is no equilibrium with α = 0.

3.3 Solving model C

The discussion is identical to the previous case, with σ given by the solution
of the SEC maximization problem. The SEC payoff does not depend on the
behavior of the IRS, therefore the IRS decisions are irrelevant to the problem
of the SEC. Note that in equilibrium the only type that lies about the book
profits is (B1, 0), in which case the SEC loses (B2−B1)2 if it does not audit.
Irrespective of whether it audits or not the other types, the SEC always get
zero revenues. Hence, the SEC audits the report (B2) with probability σ,
where σ is the solution to:

max
σ∈[0,1]

−ν · (B2 −B1)2 · (1− σ) · (1− q)− 1
2
· σ2.

Like in model B, α = 0 cannot be a solution. The mixing equilibrium
solution is obtained when equation (6) is satisfied, and α = 1 when inequality
(7) is true, with σ given by σ(q) = ν · (B2 − B1)2 · (1 − q). In order σ(q)
to be a probability, we impose the condition that the constant ν to be such
that ν · (B2 −B1)2 < 1.
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3.4 Comparative statics

Recall that p is the probability that a high book profit firm is able to shelter
its tax liabilities up to the minimal level T = 0, such that a fiscal control
cannot prove it illegal. The scalar α represents the rate of evasion (and the
average evasion) among the firms of type (B2, 1). In all three models, the
equilibrium value of α will be denoted by α∗. The total rate of evasion is
given by β = q · (1 − p) · α, which also represents the total level of evaded
taxes, relative to the size of the economy. The equilibrium value of β will be
denoted by β∗, in any of the three models. In the analysis that follows, the
scalars α∗ and β∗ are interpreted as measures of the tax aggressiveness of
the firms, in the sense that they are indicators of an abusive tax behavior,
which the IRS could theoretically control through better enforcement.

In the following paragraphs, we define the total rate of the fiscal audit.
Before that, it is important to notice that the total rate of the fiscal control
in an audit class is different from the risk of being audited that the firms
within the class perceive. The latter is given by a convex combination of the
conditional probabilities of being audited inside the informational subclasses
to which the IRS assigns a given firm, based on their reports and the existing
SEC audit results. The weights in the convex combination are given by
the probabilities with which the individual firm expects to be assigned to
the respective subclasses. The total rate of the fiscal audit is a convex
combination of the same conditional probabilities of audit, but the weights
are given by the sizes of the corresponding informational subclasses.

In model A, the type (B2, 1) chooses the probability α to evade, when
facing the risk of being audited ρ0; however, the total audit rate applied by
the IRS is given by the function ρ3 : (0, 1)3 × [0, 1] → R:

ρ3(F, q, p, α) = ρ0(F, q, p, α) · [1− q · (1− p) + q · (1− p) · α] (8)

In the versions B and C of the model, the perceived risk of fiscal control
of a firm (B2, 1) that evades is given by σ · ρ1 + (1 − σ) · ρ2 (with the
corresponding analytical form for σ in model C); the total rate of the fiscal
audit is given by the function ρ4 : (0, 1)4 × [0, 1] → R:

ρ4(F, q, p, σ, α) = (1− σ) · ρ2(F, q, p, α) [1− q · (1− p) · (1− α)]+
+σ · ρ1(F, p, α) · [q · p + q · (1− p) · α] (9)

The equilibrium values of ρ3 and ρ4 are obtained by plugging in the
corresponding equilibrium value α∗. We shall denote by ρ∗ the equilibrium
value of ρ3 in model A, respectively the equilibrium value of ρ4 in model B
or model C. It is also useful to recall that the probability of a fiscal control
perceived by a firm (B2, 1) which evades depends in equilibrium only on the
penalty value F (as the equations (2) and (6) show). With these observations
at hand, the intuition of the first proposition is straightforward: an increase
in financial sophistication induces, ceteris paribus, an increase in the tax
aggressiveness of firms and in the total rate of the fiscal audit.

Proposition 1 In any of the models A, B, C, an increase in p induces,
ceteris paribus and up to a maximum threshold, an increase in α∗ within
the interval (0, 1), and respectively an increase in both β∗ and ρ∗. Above the
maximum threshold, we have that α∗ = 1, while β∗ and ρ∗ are decreasing in
p.
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The proof of the proposition is an immediate consequence of Lemma 1
and Lemma 2, (i)-(ii) in the Appendix, and it is left to the reader. The result
of interest is the first part of the proposition, which describes the effect of
increasing p up to the maximum threshold. In the following analysis, we shall
focus on the regions where α∗ ∈ (0, 1), since on the regions where α∗ = 1,
the values of β∗ and ρ∗ will depend in a trivial way on the parameters of the
model. Moreover, on those regions where the values of the parameters are
such that α∗ equals 1, all firms susceptible of evasion actually do it, which
means that neither α∗ nor β∗ reflect changes in the tax aggressiveness of
firms.

The message of Proposition 1 is simple. When the financial sophistica-
tion expands, the effect is that relatively more firms with high book profits
are assimilated to the firms with low liabilities, since they are able to conceal
large amounts of due taxes by means of transactions that the IRS cannot
prove illegal. Under these circumstances, the firms with large book profits
that cannot achieve such low levels of tax liabilities within the margins of the
law will find it easier to ‘hide’ when underreporting, hence they will evade
with higher probability. Moreover, these companies may resort to fraud to
such an extent that their total evasion can increase, offsetting the effect
that they are relatively fewer. Indeed, in our model, because of the constant
penalties, the risk of fiscal control perceived by a firm (B2, 1) that evades re-
mains constant in equilibrium.5 Suppose by contradiction that q · (1−p) ·α∗

decreases. Because the percentage 1− q of the firms that inflate their book
profits does not change (nor the audit rate of the SEC, in models B and C),
then a decrease in (1 − p) · α∗ would invariably lead to lower probabilities
of fiscal control, at all informational subclasses that an evading firm (B2, 1)
can be assigned to. This would further imply that the risk of fiscal control
perceived by an evading firm (B2, 1) cannot remain constant in equilibrium,
which provides the contradiction. Hence, we obtain that an increase in p
can only induce, ceteris paribus, an increase in β∗.

There is a stronger version of Proposition 1 for model A: as far as the
penalty function does not change, there does not exist any scenario such
that the total audit rate of the IRS has different monotonicity than the tax
aggressiveness of the firms. This result is stated in the next proposition.

Proposition 2 Consider the economy in model A, characterized by the vec-
tor of parameters e = (F, q, p) ∈ (0, 1)3. There cannot be found two vectors
e1 = (F, q1, p1) and e2 = (F, q2, p2), such that a shift from e1 to e2 induces
in equilibrium the following effect: either α∗ or β∗ moves in an opposite
direction than ρ∗ (as far as α∗ remains within the interval (0, 1)).

The proof of the second proposition is given in the Appendix. The main
difference between model A and models B or C is the inclusion of the audit
activity of the SEC. In the B model, the SEC audit rate is exogenously given.
An intuitive result that can be easily proved (see Lemma 2,(iii).2-3) is that
an increase in the audit rate of the SEC induces, ceteris paribus, a decrease
in the total rate of the IRS audit and strengthens the fiscal discipline in the
market (in the sense that α∗ and β∗ decrease).

We know from Proposition 1 that an increase in p determines, ceteris
paribus, an increase in the total rate of the fiscal audit and weakens the

5Note that, in our setup, constant penalties imply that in equilibrium the firms which
evade perceive the same risk of being audited. This contradicts the view expressed in
the report [14], i.e. that there is necessarily a causal relationship from lower overall fiscal
audit rates to lower perceived risk of being audited.
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fiscal discipline in the market. These remarks raise the following question:
as far as the penalty does not change, is it possible that the increasing audit
rates of the SEC have stronger effect on the total rate of the fiscal audit, but
weaker on the fiscal discipline, with respect to the effect that the increasing
financial sophistication has? The next proposition positively answers to this
question, in an open set of values for the parameters of model B.

Proposition 3 Consider the economy in model B, characterized by the vec-
tor of parameters e = (F, q, p, σ) ∈ (0, 1)4. There exists a non-empty open
set U∗ ⊂ (0, 1)3 such that for all (F, q, σi) ∈ U∗, i ∈ 1, 2 with σ2 > σ1, there
can be found 1 > p2 > p1 > 0, such that a shift from e1 = (F, q, p1, σ1) to
e2 = (F, q, p2, σ2) induces in equilibrium the following effect: α∗ increases
within the interval (0, 1), and ρ∗ decreases. Depending on the choice of the
function c(·), it can also be obtained that β∗ increases while ρ∗ decreases.

We provide a proof for Proposition 3 in the Appendix. In the same
model B, suppose now that there is an increase in 1 − q (or equivalently,
a decrease in q). A possible scenario for the decrease in q is that the type
of business associated to the audit class experiences new entry, and there
is a higher probability that a new entrant is of low profitability within the
audit class (hence, q decreases and the distribution of profits becomes more
skewed to the right).

The firms with low real book profits will manipulate this information and
declare high book profits. Therefore, if q decreases, this determines, ceteris
paribus, some pressure on the IRS to decrease the conditional probability of
control at the informational subclass represented by the reports (B2, 0), in
the absence of the audit results from SEC. However, if the penalty function
does not change, then the risk of fiscal control perceived by the firms remains
the same in equilibrium. Under these circumstances, a firm (B2, 1) will
increase its probability of evasion α∗, given that the SEC does not react to
the decrease in q and keeps the audit rate constant (see Lemma 2,(iv).2).
Analogously with the case of an increase in p, there are two opposite effects
on β∗ when q decreases, ceteris paribus. There is the direct effect of a
decrease in q, doubled by an indirect effect given by the increase in α∗. It
can be proved that, contrary to the case of an increase in p, the direct effect
of a decrease in q can be dominant on the monotonicity of β∗, no matter
what the choice of the cost function c(·) would be (see Lemma 3).

If the SEC audit results are available, the IRS will increase the probabil-
ity of control at the corresponding informational subclass of reports (B2, 0).
This effect can be offset by the decrease in the conditional probability of con-
trol at the informational subclass represented by the reports (B2, 0), when
audit results from SEC are not available. Therefore, with a decrease in q,
the total rate of the fiscal audit will generally have opposite monotonicity
with respect to α∗, but the same with respect to β∗. However, the next
proposition shows that the change in the distribution of book profits given
by a decrease in q can have stronger effect on the total rate of the fiscal au-
dit, but weaker on β∗, with respect to the effect that the increasing financial
sophistication has. (Again, the latter result is not valid for any function c(·)
with the properties (i) to (iii), but it depends on this choice.)

Proposition 4 Consider the economy in model B, characterized by the vec-
tor of parameters e = (F, q, p, σ) ∈ (0, 1)4. The following assertions hold:
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(i) There exists a non-empty open set of vectors e such that a decrease in
q induces in equilibrium the following effect: α∗ increases within the
interval (0, 1), and ρ∗ decreases.

(ii) Depending on the choice of the function c(·), it can be obtained that there
exists a non-empty open set U∗ ⊂ (0, 1)3 such that for all (F, qi, σ) ∈
U∗, i ∈ 1, 2 with q1 > q2, there can be found 1 > p2 > p1 > 0, such
that a shift from e1 = (F, q1, p1, σ) to e2 = (F, q2, p2, σ) induces in
equilibrium the following effect: both α∗ and β∗ increase within the
interval (0, 1), and ρ∗ decreases.

A proof of this proposition is provided in the Appendix. Consider now
that the audit rate of the SEC is sensitive to increasing levels of manipulative
behavior from the low book profit firms, as in model C. In this case, a
decrease in q induces an increase in the audit rate of the SEC. An analogous
of Proposition 3 can be stated for model C.

Proposition 5 Consider the economy in model C, characterized by the vec-
tor of parameters e = (F, q, p) ∈ (0, 1)3. There exists a non-empty open set
U∗ ⊂ (0, 1)2 such that for all (F, q) ∈ U∗, i ∈ 1, 2 with q2 < q1, there
can be found 1 > p2 > p1 > 0, such that a shift from e1 = (F, q1, p1)
to e2 = (F, q2, p2) induces in equilibrium the following effect: α∗ increases
within the interval (0, 1), and ρ∗ decreases. Depending on the choice of the
function c(·), it can also be obtained that β∗ increases while ρ∗ decreases.

Propositions 3 to 5 show that introducing the activity of SEC in the
models B and C generates different results with respect to model A (see
also Proposition 2). More important, these propositions depict two basic
scenarios in which both the decreasing IRS audit rates and the weaker fiscal
discipline appear endogenously, that is, if growing financial sophistication is
paralleled by changes in the information on book profits available to the tax
authority, or changes in the distribution of the book profits. These scenarios
involve simple explicative mechanisms that do not rely on the idea of relative
changes in the IRS resources or in the applied penalties.

4 Discussion and concluding remarks

The paper presents a simple model of tax compliance where firms decide
jointly on the book income and taxable income reports. We take into account
the firms’ incentives to manipulate both reports, as well as the influence that
the disclosure of the real value of book profits by a SEC audit has on the
tax compliance game. In this framework, we study the impact of increasing
financial sophistication on fiscal discipline and on the audit rate of the IRS.

We prove that, as far as no changes in the applied penalties are assumed,
increasing financial sophistication by itself cannot replicate the empirical evi-
dence that the audit rates of the IRS have decreased while tax aggressiveness
has increased. The tax aggressiveness referred to in this paper represents
abusive fiscal behavior that can be proven illegal by an IRS audit. If we
take into account a possible increase in the audit rates of the SEC, that
parallels the increase in financial sophistication, then the above mentioned
result appear for a range of parameters. The same can happen when there
is a shift in the distribution of the firms, in the sense that there is a decrease
in the proportion of large book profit firms.
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Contrary to the claims of the US Treasury report [14], the mechanisms
presented in this paper do not rely on the idea of relative changes in the IRS
resources or in the applied penalties. The channel by which the fiscal aggres-
siveness increases is different from the one suggested by the report. Both
the low probabilities of fiscal control and the weaker fiscal discipline appear
endogenously, from the way the agents and the tax authority strategically
react to the structural changes induced by the financial sophistication and
the accounting audit, within the economic environment.

Although it is very simple, the model provides useful insights in studying
the corporate tax evasion. First, we show that if the IRS takes into account
the auditing activity of the SEC, then there is some degree of substitution
between the audit of the SEC and of the IRS. When the audit rate of the SEC
increases, the IRS will decrease its equilibrium audit rate. This effect occurs
because the disclosure of the real book profits helps the IRS to better identify
the type of firm.6 For the same reason, the tax aggressiveness of the firms
will decrease when the SEC audits more. This raises new questions, related
to the possible cooperation between the SEC and the IRS. By coordinating
their audit, the two institutions might improve efficiency and curb evasion.
However, a comprehensive research should be based on a detailed account
of the costs and benefits generated by the activity of each of these two
organizations.

The increase in the SEC enforcement cases during the 1990’s may sug-
gest that its audit rate has increased7. However, we should look at the data
cautiously, because this is an absolute change that might not be significant,
given that the size of the economy has also increased. Moreover, these num-
bers reflect only the cases where some enforcement action was taken against
the firms, and not the total audit activity. The increase in enforcement
cases may simply mean that the audit activity is constant, but there is more
accounting fraud or the SEC applies a more severe enforcement policy, in
the sense that, ceteris paribus, it is more likely to penalize a given type of
misconduct. Therefore, for the time being, we consider that we do not have
adequate data to test the substitution effect between the IRS audit activity
and the one of the SEC.

Second, the crucial prediction of our model is that the increase in finan-
cial sophistication has a magnifying effect on the corporate tax compliance.
On the one hand, it offers more opportunities for firms to decrease their
taxes in such a way that an IRS audit could not prove that the underlying
transactions are illegal. On the other hand, it encourages those firms that,
because of the particular circumstances they face cannot resort to this type
of methods, to undertake more pure evasion. This happens because, as the
distribution of the tax liabilities changes, for those firms doing fraud it is
easier to go undetected among those that can legally decrease their taxes.
The pure evasion of such firms can increase in total amount, despite the fact
that they may be relatively fewer. This conclusion has interesting policy
implications. Given the magnifying effect that the financial sophistication
has, it may be better to act directly upon it in order to curb evasion. That
is, the government should keep up with the technological changes by in-
vesting resources in improving regulation and outlawing those transactions
than only serve the purpose of concealing taxes. In this way, both legal tax

6A caveat is that, although ex-post it is always better that the IRS uses the information
given by the SEC, this is not always ex-ante efficient. If audit costs are quadratic, for
some values of the parameters the IRS would be better off if it can commit to ignore any
information on the book profit report.

7See the annual reports on the SEC web page: www.sec.gov.

14



avoidance and pure evasion would decrease.
We are aware of certain particular features and limitations of our setup.

The small number of types and the strong assumption B1 < B2−1 determine
the property that, in equilibrium, smaller firms do only overreporting of
the accounting profits, while the larger ones do only underreporting of tax
liabilities. The model ignores the system of penalties of the SEC, as well
as the firms’ cost of undertaking transactions that reduce their taxes. The
empirically documented fact that there is a change in the distribution of
the tax liabilities as an effect of the expanding financial sophistication, is
reflected in our model by the following assumption: a fraction p of the high
book profit firms can reduce their due taxes to the same level as the low
book profit firms. In this way, an increase in the financial sophistication is
translated in the increase in p. However, we do not investigate the possible
mechanisms that are beneath such an assumption, like the hypothesis that
firms with larger amounts of income find it easier to tax avoid more income.

Despite its limitations, the present paper is a first step in modelling the
phenomenon of corporate tax evasion, that allow for the influence of the
financial reporting on the behavior of the firms and of the IRS. Moreover,
it suggests several directions for future research. An interesting empirical
question is whether the scenario presented in Proposition 4 fits the case of
certain businesses. As an example, the IT-Web business sector experienced
massive entry in the 1990’s and in the aftermath of the dot.com bubble
crush it was discovered that largely overreporting of the book profits was as
widespread as tax avoidance activities (see [1]). We can also think of various
relevant questions that can be addressed by expanding the present model.
For example, it would be interesting to see how the stringency of the level of
the accounting disclosure standards, that varies from country to country, and
the conformity between book income and taxable income induced by these,
influence the tax compliance and the audit rates of the IRS. More stringent
disclosure standards means more information available to the IRS. Another
important application is studying the incorporation and listing decisions
of companies when they take into account both the taxation system and
the financial disclosure standards. Finally, it also raises the question of
competition between countries. Although international tax competition has
been widely studied, we have no knowledge of a model that constructs the
competition on two dimensions: taxes and accounting standards.
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A Appendix

Lemma 1 Consider the set U = {(F, q) ∈ (0, 1)2 : g1(F, q, 0, 1) > 1} 6= ∅.
Then, the following assertions hold:

(i) For every fixed (F, q) ∈ U , there is a unique scalar pmax(F, q) in the
interval (0, 1) such that:

1. For every p ∈ (0, pmax(F, q)), inequality (3) is not fulfilled and
equation (2) has a unique positive solution, denoted by α(F, q, p),
which belongs to the interval (0, 1).

2. For p = pmax(F, q), inequality (3) is fulfilled with equality and
equation (2) has the scalar α(F, q, pmax(F, q)) = 1 as unique pos-
itive solution.

3. For every p ∈ (pmax(F, q), 1), inequality (3) is strictly fulfilled and
equation (2) has a unique positive solution, denoted by α(F, q, p),
which belongs to the interval (1,∞).

4. The function of p, f(F, q, p) = min(α(F, q, p), 1) : (0, 1) → R
is continuous, it is bounded by the interval [0, 1], it is strictly
increasing on the interval (0, pmax(F, q)] and it is constant and
equal with 1 on the interval [pmax(F, q), 1).
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5. The function of p, f3(F, q, p) = ρ3(F, q, p, f(F, q, p)) : (0, 1) → R
is continuous , it is bounded by the interval [0, 1], it is strictly in-
creasing on the interval (0, pmax(F, q)] and it is strictly decreasing
on the interval [pmax(F, q), 1).

(ii) For every fixed (F, q) ∈ (0, 1)2\U , equation (2) does not have solution
in the interval [0, 1) and inequality (3) holds, for every p ∈ (0, 1).

Proof. The fact that the set U is not empty can be easily checked using
the continuity and the property (iii) of the cost function c(·).

(i) Note that for any (F, q, p) ∈ U×(0, 1), the solution to the equation (2) is

α(F, q, p) =
(

c′( 1
1+F )

1+F−c′( 1
1+F )

)
·
(

1
q·(1−p) − 1

)
. Also define pmax(F, q) =

1− c′( 1
1+F

)

(1+F )·q . The rest trivially follows.

(ii) Take some (F, q) ∈ (0, 1)2\U . Suppose ∃ p0 ∈ (0, 1) and α0 ∈ [0, 1) such
that g1(F, q, p0, α0) = 1. From g1(F, q, p0, α) strictly increasing in α,
we have g1(F, q, p0, 1) > 1. From the decreasing strict monotonicity of
g1(F, q, p, 1) with respect to p, we obtain that g1(F, q, 0, 1) > 1, which
provides the contradiction.
Since g1(F, q, 0, 1) ≤ 1 and g1(F, q, p, 1) is decreasing in p on [0, 1],
then inequality (3) is fulfilled for every p ∈ (0, 1).

Lemma 2 Consider the set U = {(F, q, σ) ∈ (0, 1)3 : g2(F, q, 0, σ, 1) > 1} 6=
∅ (U ′ = {(F, q) ∈ (0, 1)2 : g2(F, q, 0, σ(q), 1) > 1} 6= ∅ with σ = σ(q) for
model C). Then, the following assertions hold (assertions (i) and (ii) also
hold for the set U ′ in model C, substituting (F, q, σ) with (F, q), and σ with
σ(q)):

(i) For every fixed (F, q, σ) ∈ U , there is a unique scalar pmax(F, q, σ) ∈
(0, 1) such that:

1. For every p ∈ (0, pmax(F, q, σ)), inequality (7) is not fulfilled and
equation (6) has a unique positive solution, denoted by α(F, q, p, σ),
which belongs to the interval (0, 1).

2. For p = pmax(F, q, σ), inequality (7) is fulfilled with equality and
equation (6) has the scalar α(F, q, pmax(F, q, σ), σ) = 1 as unique
positive solution.

3. For every p ∈ (pmax(F, q, σ), 1), inequality (7) is strictly ful-
filled and equation (6) has a unique positive solution, denoted
by α(F, q, p, σ), which belongs to the interval (1,∞).

4. The function of p, f(F, q, p, σ) = min(α(F, q, p, σ), 1) : (0, 1) →
R is continuous, it is bounded by the interval [0, 1], it is strictly
increasing on the interval (0, pmax(F, q, σ)] and it is constant and
equal with 1 on the interval [pmax(F, q, σ), 1).
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5. The function of p, f4(F, q, p, σ) = ρ4(F, q, p, f(F, q, p, σ)) : (0, 1) →
R is continuous , it is bounded by the interval [0, 1], it is strictly
increasing on the interval (0, pmax(F, q, σ)] and it is strictly de-
creasing on the interval [pmax(F, q, σ), 1).

(ii) For every fixed (F, q, σ) ∈ (0, 1)3\U , equation (6) does not have solution
in the interval [0, 1) and inequality (7) holds, for every p ∈ (0, 1).

(iii) For every (F, q, σi) ∈ U, i ∈ {1, 2} such that σ1 < σ2, we have:

1. pmax(F, q, σ1) < pmax(F, q, σ2).

2.
{
∀p ∈ (0, pmax(F, q, σ2)), f(F, q, p, σ2) < f(F, q, p, σ1);
∀p ∈ [pmax(F, q, σ2), 1), f(F, q, p, σ2) = f(F, q, p, σ1).

3.
{
∀p ∈ (0, pmax(F, q, σ1)], f4(F, q, p, σ2) < f4(F, q, p, σ1);
f4(F, q, pmax(F, q, σ2), σ2) < f4(F, q, pmax(F, q, σ1), σ1).

(iv) For every (F, qi, σ) ∈ U, i ∈ {1, 2} such that q1 < q2, we have:

1. pmax(F, q1, σ) < pmax(F, q2, σ).

2.
{
∀p ∈ (0, pmax(F, q2, σ)), f(F, q2, p, σ) < f(F, q1, p, σ);
∀p ∈ [pmax(F, q2, σ), 1), f(F, q2, p, σ) = f(F, q1, p, σ).

Proof. The fact that the set U (respectively U ′) is different from null can be
easily checked using the continuity and the property (iii) of the cost function
c(·).

(i) Consider a fixed (F, q, σ) ∈ U .
The function g2(F, q, p, σ, 1) is continuous and strictly decreasing in p
and g2(F, q, 0, σ, 1) > 1, g2(F, q, 1, σ, 1) = 0. Then, it exists a unique
scalar pmax(F, q, σ) such that g2(F, q, pmax(F, q, σ), σ, 1) = 1.
Moreover:
g2(F, q, p, σ, 1) > 1, if p ∈ (0, pmax(F, q, σ))
and
g2(F, q, p, σ, 1) < 1, if p ∈ (pmax(F, q, σ), 1).

1. Fix some p ∈ (0, pmax(F, q, σ)). The function g2(F, q, p, σ, α) is
strictly increasing and continuous in α. Moreover, we have that
g2(F, q, p, σ, 1) > 1 and g2(F, q, p, σ, 0) = 0. Therefore, it exists
a unique solution in (0, 1) to the equation g2(F, q, p, σ, α) = 1,
denoted by α(F, q, p, σ).

2. For p = pmax(F, q, σ), we have that g2(F, q, pmax(F, q, σ), σ, 1) =
1, hence α(F, q, pmax(F, q, σ), σ) = 1.

3. Fix some p ∈ (pmax(F, q, σ), 1). The function g2(F, q, p, σ, α) is
strictly increasing and continuous in α. Moreover, we have that
g2(F, q, p, σ, 1) < 1 and lim

α→∞
g2(F, q, p, σ, α) = (1+F )·c′−1(1+F ),

which is greater than 1 when g2(F, q, 0, σ, 1) > 1. Therefore,
it exists a unique solution to the equation g2(F, q, p, σ, α) = 1,
denoted by α(F, q, p, σ), which belongs to the interval (1,∞).
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4. The only non-trivial part to be proved about the function f is
that it is strictly increasing on the interval (0, pmax(F, q, σ)]. De-
fine the function k(p) = (1 − p) · α(F, q, p, σ) on the interval
(0, pmax(F, q, σ)] and suppose that it exists p1 < p2 such that
k(p1) ≥ k(p2). Then, the following inequalities hold:

1
p1

k(p1)
+1

> 1
p2

k(p2)
+1

and q
1−q

k(p1)
+q· p1

k(p1)
+1

> q
1−q

k(p2)
+q· p2

k(p2)
+1

.

These inequalities imply that:
g2(F, q, p1, σ, α(F, q, p1, σ)) > g2(F, q, p2, σ, α(F, q, p2, σ)), which
provides the contradiction with the definition for α(F, q, p, σ).
Since the above defined function k(p) is strictly increasing on the
interval (0, pmax(F, q, σ)], then the function α(F, q, p, σ) is strictly
incresing on the same interval.

5. The only non-trivial part to be proved about the function f4
is that it is strictly increasing on the interval (0, pmax(F, q, σ)].
First, we will prove that ρ1(F, p, α(F, q, p, σ)) is strictly decreasing
and the function ρ2(F, q, p, α(F, q, p, σ)) is strictly increasing on
the same interval.
Suppose that it exists p1 < p2 such that ρ1(F, p1, α(F, q, p1, σ)) ≤
ρ1(F, p2, α(F, q, p2, σ)). Then 1

p1
k(p1)

+1
≤ 1

p2
k(p2)

+1
, thus we have

that p1

k(p1) ≥ p2

k(p2) . Also note that 1−q
q·k(p1) > 1−q

q·k(p2) , because
the function k(p) is strictly increasing on the definition domain
(0, pmax(F, q, σ)]. The above inequalities imply that:

1
1+

q·p1
k(p1)

+ 1−q
q·k(p1)

< 1
1+

q·p2
k(p2)

+ 1−q
q·k(p2)

.

Hence, ρ2(F, q, p1, α(F, q, p1, σ)) < ρ2(F, q, p2, α(F, q, p2, σ)).
Use also that ρ1(F, p1, α(F, q, p1, σ)) ≤ ρ1(F, p2, α(F, q, p2, σ)),
and obtain that:
g2(F, q, p1, σ, α(F, q, p1, σ)) < g2(F, q, p2, σ, α(F, q, p2, σ)), which
provides the contradiction.
We have proved that ρ1(F, p, α(F, q, p, σ)) is strictly decreasing
on the interval (0, pmax(F, q, σ)]. This implies that the function
ρ2(F, q, p, α(F, q, p, σ)) is strictly increasing on the same interval.
The function of p, f4(F, q, p, σ) can be written under the following
form:
(q · p + q · k(p)) · 1

1+F + (1− σ) · (1− q) · ρ2(F, q, p, α(F, q, p, σ)).
It is easy to check that for fixed (F, q, σ) ∈ U , this function is
strictly increasing on the interval (0, pmax(F, q, σ)].

(ii) Take some (F, q, σ) ∈ (0, 1)3\U . Suppose ∃ p0 ∈ (0, 1) and α0 ∈ [0, 1)
such that g2(F, q, p0, σ, α0) = 1. From g2(F, q, p0, σ, α) strictly increas-
ing in α, we have that g2(F, q, p0, σ, 1) > 1. From the decreasing
strict monotonicity of g2(F, q, p, σ, 1) with respect to p, we obtain that
g2(F, q, 0, σ, 1) > 1, which provides the contradiction.
Since g1(F, q, 0, σ, 1) ≤ 1 and g1(F, q, p, σ, 1) is decreasing in p on [0, 1],
then inequality (7) is fulfilled for every p ∈ (0, 1).

(iii) Consider (F, q, σi) ∈ U , i ∈ {1, 2} such that σ1 < σ2.
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1. For the fixed (F, q) considered above, the implicit function theo-
rem can be applied to pmax(F, q, σ), for all σ ∈ (σ1, σ2). There-
fore, pmax(F, q, σ) is differentiable with respect to σ on the inter-
val (σ1, σ2) and:
∂pmax

∂σ (F, q, σ) = −
∂g2
∂σ
∂g2
∂p

(F, q, pmax(F, q, σ), σ, 1),∀σ ∈ (σ1, σ2).

The partial derivative ∂g2

∂p (F, q, pmax(F, q, σ), σ, 1) exists and it is

negative. Note that ∂g2

∂σ (F, q, pmax(F, q, σ), σ, 1) can be written as
(1 + F ) · [ρ1(F, pmax(F, q, σ), 1)− ρ2(F, q, pmax(F, q, σ), 1)], which
is greater than zero for every σ ∈ (σ1, σ2). Hence, the function
pmax(F, q, σ) is strictly increasing on the interval (σ1, σ2) and by
continuity it is on the compact [σ1, σ2]. Then, pmax(F, q, σ1) <
pmax(F, q, σ2), for every (F, q, σi), i ∈ {1, 2} fixed as above.

2. Fix now some p ∈ (0, pmax(F, q, σ1)). We can apply the implicit
function theorem and prove that for the fixed (F, q, σi) ∈ U ,
i ∈ {1, 2} and p ∈ (1, pmax(F, q, σ1)), the function α(F, q, p, σ)
is differentiable with respect to σ on the interval (σ1, σ2) and:
∂α
∂σ (F, q, p, σ) = −

∂g2
∂σ
∂g2
∂α

(F, q, p, σ, α(F, q, p, σ)) < 0,∀σ ∈ (σ1, σ2).

Hence, f(F, q, p, σ2) < f(F, q, p, σ1), and this is fulfilled for every
p ∈ (0, pmax(F, q, σ1)). The properties of f when p belongs to the
interval [pmax(F, q, σ1), pmax(F, q, σ2)), or p ∈ [pmax(F, q, σ2), 1),
are trivial to prove.

3. Fix now some p ∈ (0, pmax(F, q, σ1)). Write f4(F, q, p, σi) as the
sum of the following two terms:
[q · p + q · (1− p) · α(F, q, p, σi)] · 1

1+F , and respectively,
(1− σi) · (1− q) · ρ2(F, q, p, α(F, q, p, σi)).
Since σ1 < σ2 and α(F, q, p, σ2) < α(F, q, p, σ1), it is easy to see
that f4(F, q, p, σ2) < f4(F, q, p, σ1), and this is fulfilled for every
p ∈ (0, pmax(F, q, σ1)].
Notice as well that f4(F, q, σi, pmax(F, q, σi)) is given by:
q · 1

1+F + (1− σi) · (1− q) · ρ2(F, q, pmax(F, q, σi), 1).
Since σ1 < σ2 and pmax(F, q, σ1) < pmax(F, q, σ2), it is easy to
see that:
f4(F, q, pmax(F, q, σ2), σ2) < f4(F, q, pmax(F, q, σ1), σ1).

(iv) 1. Consider (F, qi, σ) ∈ U , i ∈ 1, 2 such that q1 < q2. Notice that
(F, q, σ) ∈ U,∀q ∈ [q1, q2].
Applying the implicit function theorem, we obtain:
∂pmax

∂q (F, q, σ) = −
∂g2
∂q

∂g2
∂p

(F, q, pmax(F, q, σ), σ, 1),∀q ∈ (q1, q2). This

is positive ∀q ∈ (q1, q2).
Hence, the function pmax(F, q, σ) is increasing on (q1, q2) and by
continuity with respect to q, pmax(F, q1, σ) < pmax(F, q2, σ).

2. Fix some p ∈ (0, pmax(F, q1, σ)). On the interval (q1, q2), by ap-
plying implicit function theorem, we obtain:
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∂α
∂q (F, q, p, σ) = −

∂g2
∂q

∂g2
∂α

(F, q, p, σ, α(F, q, p, σ)) < 0,∀q ∈ (q1, q2).

Hence, α(F, q, p, σ) is decreasing on (q1, q2) and by continuity
with respect to q, α(F, q1, p, σ) > α(F, q2, p, σ). This is fulfilled
for every p ∈ (0, pmax(F, q1, σ)).
The properties of f when p is in the interval [pmax(F, q2, σ), 1),
or [pmax(F, q1, σ), pmax(F, q2, σ)), are trivial to prove.

Proof of Proposition 2. Note that as far as α∗ belongs to (0, 1), then:

α∗ = α(F, q, p) =
c′( 1

1+F
)

1+F−c′( 1
1+F

)
·
(

1
q·(1−p) − 1

)
β∗ = q · (1− p) · α(F, q, p) =

c′( 1
1+F

)

1+F−c′( 1
1+F

)
· (1− q · (1− p))

ρ∗ = 1
1+F ·

(
1 +

c′( 1
1+F

)

1+F−c′( 1
1+F

)

)
· (1− q · (1− p)).

The conclusion immediately follows.

Proof of Proposition 3. Consider the set U∗ = U , where U is defined
as in Lemma 2, and take (F, q, σi) ∈ U, i ∈ {1, 2} with σ2 > σ1. Lemma
2,(i).5 implies that the function of p, f4(F, q, p, σ1) has the property that it
is strictly increasing and bounded on the interval (0, pmax(F, q, σ1)]. Denote
by l1(0) the right limit in 0 of this function.

Define p∗ = 0 if f4(F, q, pmax(F, q, σ2), σ2) ≤ l1(0). If the opposite in-
equality is true, then define p∗ < pmax(F, q, σ1) as the unique point such that
f4(F, q, p∗, σ1) = f4(F, q, pmax(F, q, σ2), σ2). If f4(F, q, pmax(F, q, σ2), σ2) >
l1(0), then such a point exists and it is unique in (0, pmax(F, q, σ1)) with this
property. This is because, from Lemma 2,(i).5, the function f4(F, q, p, σ1)
is strictly increasing and continuous on (0, pmax(F, q, σ1)], and from Lemma
2,(iii).3, f4(F, q, pmax(F, q, σ2), σ2) < f4(F, q, pmax(F, q, σ1), σ1). Consider
any two points p1 < p2 such that p∗ < p1 < pmax(F, q, σ1) and p∗ < p2 <
pmax(F, q, σ2) and 0 < α(F, q, p1, σ1) < α(F, q, p2, σ2) < 1. It is always
possible to find such two points, using the properties described in Lemma
2,(i).4 and (iii).1-2. However, from Lemma 2,(i).5 and (iii).3 and the defi-
nition of p∗, for any two points (p1, p2) with p∗ < p1 < p2 < pmax(F, q, σ2),
we have that f4(F, q, p2, σ2) < f4(F, q, p1, σ1). This proves the first part of
the proposition, since α(F, q, p, σ) is just α∗ and f4(F, q, p, σ) is nothing else
but ρ∗.

If c(ρ) = ρ2, then β∗ and ρ∗ are the same up to an expression that
depends on the constant F . Therefore, when c(·) is quadratic, it is impossible
to obtain that β∗ and ρ∗ have different monotonicity with respect to the
parameters of the model. We define the set U|c(ρ)=ρ2 = {(F, q, σ) ∈ (0, 1)3 :
g2|c(ρ)=ρ2(F, q, 0, σ, 1) > 1} as the corresponding set of Lemma 2 computed
for c(·) quadratic.

The set U = {(F, q, σ) ∈ (0, 1)3 : g2(F, q, 0, σ, 1) > 1} is defined as in
Lemma 2, for the actual cost function c(·). On the set U ∩ U|c(ρ)=ρ2 , both
β∗ and ρ∗ have the properties of f4 described in Lemma 2. Consider p∗

previously defined. For σ1 < σ2 fixed and close enough, where (F, q, σi) ∈
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U ∩ U|c(ρ)=ρ2 , i ∈ {1, 2} (we assume for the moment that this open set is
not empty), remember that p∗ is the unique point such that 0 < p∗ <
pmax(F, q, σ1) and f4(F, q, p∗, σ1) = f4(F, q, pmax(F, q, σ2), σ2). Define p∗∗

as the unique point such that 0 < p∗∗ < pmax(F, q, σ1) and q · (1 − p∗∗) ·
α(F, q, p∗∗, σ1) = q · (1− pmax(F, q, σ2)).

If p∗ < p∗∗, then there exist two points p1 < p2 such that p∗ < p1 <
pmax(F, q, σ1), p∗∗ < p2 < pmax(F, q, σ2) and q · (1 − p1) · α(F, q, p1, σ1) <
q · (1 − p2) · α(F, q, p2, σ2). From the construction of p∗, p∗∗, p1, p2 and
the properties of f4 described by Lemma 2, one can easily obtain that
f4(F, q, p2, σ2) < f4(F, q, p1, σ1). Therefore, for the fixed and close enough
σ1 < σ2, the condition p∗ < p∗∗ is sufficient to find p1 < p2 such that β∗

increases while ρ∗ decreases (notice that β∗ is just q · (1 − p) · α(F, q, p, σ)
and ρ∗ is just f4(F, q, p, σ)).

It remains to give an example of an actual function c(·) and (F0, q0, σi), i ∈
{1, 2} in an open ball of the corresponding set U∩U|c(ρ)=ρ2 with the property
that p∗ < p∗∗. The assumption of nicely behaved functions implies that this
latter property holds for σ′1 < σ′2 in the interval (σ1, σ2), F in a neighbor-
hood of F0 and q in a neighborhood of q0. In this way we can construct the
open set U∗ ⊂ U ∩ U|c(ρ)=ρ2 of parameters (F, q, σ) such that the statement
of the first statement of the proposition is valid for both β∗ and α∗.

Consider the function c(ρ) = A·ργ , where A = 2
γ ·((1−w1)·1+w1 ·2

1
γ−1 ),

with γ = 3
2 and w1 = 1

10 . The properties (i) to (iii) of the function c(·) are
all fulfilled. Consider the points (F0, q0, σi) ∈ U ∩ U|c(ρ)=ρ2 , i ∈ {1, 2}, with
F0 = 0.8, q0 = 0.3, σ1 = 0.7 and σ2 = 0.75. The points (p∗, p∗∗) are
such that p∗ < 0.368 and 0.375 < p∗∗. Therefore, p∗ < p∗∗. An example
of a pair of points (p1, p2) constructed as suggested before is (0.37, 0.432).
(For the corresponding shifts in σ and p, β∗ increases in equilibrium from
approximately 0.1682 to 0.1698, ρ∗ decreases from approximately 0.2275 to
0.2264. The indicator α∗ increases as well, remaining though within the
interval (0, 1) if the shift in σ is the first one, followed only after by the
increase in p).

The condition p∗ < p∗∗ always insures the construction of (p1, p2) with
the desired properties in the way we presented before. However, it is possible
that (p1, p2) with the desired properties can also be found in other regions
than (p∗, pmax(F, q, σ1))× (p∗∗, pmax(F, q, σ2)).

Lemma 3 Consider the set U = {(F, q, σ) ∈ (0, 1)3 : g2(F, q, 0, σ, 1) > 1}
(U ′ = {(F, q) ∈ (0, 1)2 : g2(F, q, 0, σ(q), 1) > 1} for model C). The set U0 =
{(F, q, σ) ∈ U : ∃I interval ⊆ (0, pmax(F, q, σ)] with ∂

∂q (q · α(F, q, p, σ)) >

0} (U0 = {(F, q) ∈ U : ∃I interval ⊆ (0, pmax(F, q, σ(q))] with ∂
∂q (q ·

α(F, q, p, σ(q))) > 0} for model C) is open and it is not empty.

Proof. Note that ∂
∂q (q · α) has the analytical form:

α ·

(
1− (1−σ)·t1·q

(1−σ)·t1·q·(1−q+q·p)+σ·t2·p·
(

1−q+q·(p+(1−p)·α)
q·(p+(1−p)·α)

)2

)
+ t3

(1+F )·(1−p)·
(

(1−σ)·t1·q·(1−q+q·p)+σ·t2·p·
(

1−q+q·(p+(1−p)·α)
q·(p+(1−p)·α)

)2
) , where
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t1 =
(
c′−1

)′ (
(1 + F ) · q·(1−p)·α

1−q+q·(p+(1−p)·α)

)
;

t2 =
(
c′−1

)′ (
(1 + F ) · (1−p)·α

(p+(1−p)·α)

)
;

t3 = ∂σ
∂q ·
[
c′−1

(
(1 + F ) · q·(1−p)·α

1−q+q·(p+(1−p)·α)

)
− c′−1

(
(1 + F ) · (1−p)·α

(p+(1−p)·α)

)]
for model C, and t3 = 0 for model B. Notice that in both models t3 ≥ 0.

It remains to see that for big enough σ, the term

α ·

(
1− (1−σ)·t1·q

(1−σ)·t1·q·(1−q+q·p)+σ·t2·p·
(

1−q+q·(p+(1−p)·α)
q·(p+(1−p)·α)

)2

)
is greater than zero

(notice that, if (F, q, σ0) ∈ U then (F, q, σ) ∈ U for σ > σ0; make for
instance σ ↗ 1; for any (F, q) such that it exists σ0 with (F, q, σ0) ∈ U , and
any suitable choice of p, see that α will converge to a strictly positive value,
while the second term converges to 1).

Proof of Proposition 4.

(i) Write f4(F, q, p, σi) as the sum of the following two terms:

[1− q + q · p + q · (1− p) · α(F, q, p, σ(q))] · 1
1+F , and respectively,

−σ · (1− q) · ρ1(F, p, α(F, q, p, σ)). The derivative with respect to q is:
1

1+F ·(1−p)· ∂
∂q (α·q)+σ ·ρ1+(−σ ·(1−q)· ∂

∂qρ1−(1−p)· 1
1+F ). It is easy

to check that choosing a vector (F, q, σ) within the set U0 insures that
∂
∂q (α · q) is greater than zero even when p → pmax(F, q, σ). However
p → pmax(F, q, σ) determines that (−σ · (1− q) · ∂

∂qρ1 − (1− p) · 1
1+F )

goes to a positive number. The rest of the details are left to the reader.

(ii) Consider the set U as defined in Lemma 2. Consider as well the open
set U1 = {(F, q, σ) ∈ U : ∂β∗

∂q > 0; ∂ρ∗

∂q > 0,∀p ∈ (0, pmax(F, q, σ)]}, and
assume that is not empty. For q1 > q2 fixed and close enough, where
(F, qi, σ) ∈ U1, i ∈ {1, 2}, we define p∗ as the unique point such that
0 < p∗ < pmax(F, q2, σ), f4(F, q1, p

∗, σ) = f4(F, q2, pmax(F, q2, σ), σ)
and p∗∗ is the unique point such that 0 < p∗∗ < pmax(F, q2, σ) and
q1 · (1− p∗∗) ·α(F, q1, p

∗∗, σ) = q2 · (1− pmax(F, q2, σ)). Analogously to
the proof of the second statement of Proposition 3, it can be proved
that the condition p∗ < p∗∗ is sufficient to find p1 < p2 such that β∗

increases while ρ∗ decreases. Moreover, α∗ can only increase with a
decrease in q and an increase in p. It remains to give an example of an
actual function c(·) and (F0, qi, σ0), i ∈ {1, 2} in an open ball of the
corresponding U1 with the property that p∗ < p∗∗. The assumption
of nicely behaved functions implies that this latter property holds for
q′1 > q′2 in the interval (q2, q1), F in a neighborhood of F0 and σ in
a neighborhood of σ0. In this way we can construct the open set U∗

with the desired property. Finally, consider the example c(ρ) = A · ργ ,
where A = 2

γ ·((1−w1) ·1+w1 ·2
1

γ−1 ), with γ = 3 and w1 = 1
10 and the

points (F0, qi, σ0) ∈ U0, i ∈ {1, 2}, with F0 = 0.9, σ0 = 0.8, q1 = 0.3
and q2 = 0.27. Then (F0, qi, σ0) ∈ U1 and p∗ < 0.107(3) < p∗∗.
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Proof of Proposition 5. A decrease in q induces an increase in σ.
Lemma 2,(iii) shows that, if σ increases in model B, then ρ∗ decreases;
moreover, Proposition 4,(i) shows that a decrease in q alters ρ∗ in a similar
way. Therefore, if q decreases in model C, ρ∗ can only decrease. The increase
in σ puts a downward pressure on α∗, while the decrease in q puts an upward
pressure on it. We leave to the reader the exercise to specify an open set
U∗ of vectors (F, q) such that the indirect effect given by the increase in σ
is dominant with respect to the direct effect induced by the decrease in q.
Moreover, the set U∗ should be constructed in such a way that the properties
of α(F, q, p) and f4(F, q, p) for a decrease in q will be exactly the same with
the ones of α(F, q, σ, p) and f4(F, q, σ, p) in the proof of Proposition 3 for an
increase in σ. Then, the proof of the first statement of this proposition will
be analogous with the one of the first statement of Proposition 3.

Regarding the second statement of the proposition, consider the function
c(ρ) = A ·ργ , where A = 2

γ ·((1−w1) ·1+w1 ·2
1

γ−1 ), with γ = 3
2 and w1 = 1

10 .
Consider as well the points (F0, qi), i ∈ {1, 2}, with F0 = 0.8, q1 = 0.3 and
q2 = 0.25. Choose the rescaling scalar ν such that σi = 1−qi. In this way σi
are exactly the ones in Proposition 3. The corresponding points p∗ and p∗∗

are such that p∗ < 0.299 and p∗∗ > 0.302. The rest of the proof is analogous
to the one of Proposition 3.
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