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Abstract 
In markets with adverse selection, when average quality is low and frictions are small 
decentralized trade produces a greater surplus than predicted by the competitive model: under 
decentralized trade some high-quality units of the good trade whereas, due to the “lemons 
problem,” only low-quality units trade in the competitive equilibrium. This suggests a reason 
why these markets are often decentralized. Remarkably, under some conditions payoffs are 
competitive as frictions vanish, even though all qualities trade. 
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1 Introduction

Markets differ in the degree in which trade is centralized. Call markets,1 for example,

are highly centralized and all trade takes place at a single price (the market clearing

price). In contrast, in housing, labor, or used car markets, trade is highly decentral-

ized, and prices are determined by bilateral bargaining between buyers and sellers,

and may differ between trades. The competitive model abstracts away from these

institutional aspects, thus providing a model suitable, in principle, for the study of

both centralized and decentralized markets. Nonetheless, the assumption that prices

are market clearing seems more appropriate for highly centralized markets than for

decentralized ones, which raises the question of whether decentralized markets yield

competitive outcomes. Indeed, it has been shown that in markets for homogenous

goods decentralized trade tends to yield competitive outcomes when trading frictions

are small, whether bargaining is under complete information (see, e.g., Gale (1987)

or Binmore and Herrero (1988)) or under incomplete information (see, e.g., Serrano

and Yosha (1996) or Moreno and Wooders (1999)).2

We study a simple market with adverse selection, and show that when trading

frictions are small decentralized trade may produce superior outcomes (i.e., a greater

surplus) than predicted by the competitive model: in a decentralized market high-

quality units of the good trade when average quality is low while, due to the �lemons

problem,� only low-quality units trade in the competitive equilibrium. Thus, when

frictions are small the additional gains realized from trading these high-quality units

more than off-set the cost of the delay incurred for low-quality units under decen-

tralized trade. The superiority of decentralized trade when average quality is low

suggests why trade is often decentralized in markets with adverse selection.3

The market for lemons we study is a version of Akerlof�s (1970) where the traded

1Call markets are used to set opening prices on the NYSE among others.
2There are some exceptions to these conclusions; see Rubinstein and Wolinsky (1985).
3Of course, another reason why trade is decentralized in markets with adverse selection is that

the goods often differ in their observable characteristics. Heterogeneity in observable characteristics

(e.g., no two homes are identical) reduces the competitiveness of markets. In order to focus on the

effects of (heterogenous) unobservable quality, we assume that goods are identical in terms of their

observable characteristics.
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good is of either high or low quality. The proportion of high quality units in the market

(qH) determines the properties of the competitive equilibria: when the expected value

to a buyer of a randomly selected unit of the good (u(qH)) is above the cost of

high quality (cH) there are multiple competitive equilibria (see Figure 1a): there are

equilibria in which all units of both qualities trade, but there is also an equilibrium in

which all low quality and some high quality units trade, and there is an equilibrium

in which only low quality units trade. When it is below (i.e., when u(qH) < cH) then

there is a unique competitive equilibrium in which only low quality units trade (see

Figure 1b).

Figure 1 goes here.

In our model of decentralized trade, at each period every agent in the market has

a positive probability of meeting an agent of the opposite type. Once matched, the

buyer makes a take-it-or-leave-it price offer to the seller.4 If the seller accepts, then

they trade at the offered price and both agents exit the market. If the seller rejects

the offer, then both the buyer and the seller remain in the market at the next period.

Traders are impatient, and discount future gains to trade. The discounting of future

gains and the time-consuming nature of matching constitute trading �frictions.� We

consider both the stationary entry case, where the supply and demand curves in Fig-

ure 1 represent the (stationary) ßows of agents entering the market at each date, and

the one-time entry case, where the supply and demand curves in Figure 1 represent

the agents entering at the market open.

For the stationary entry case, we study the (stationary) equilibrium when frictions

are small. We show that the welfare properties of equilibrium are determined by the

proportion of the entering sellers with high quality units: when u(qH) ≥ cH , then

the surplus realized under decentralized trade is less than the surplus in the most

4Modeling a decentralized market requires specifying the trading rules. We chose this particular

trading rule because it simpliÞes the analysis and allows us to focus on evaluating the differences

between centralized and decentralized trade. Wilson (1980) studies the impact on market outcomes

of different price setting institutions, and Bester (1993) studies which pricing institutions may emerge

in markets with adverse selection.
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efficient competitive equilibrium (i.e., the competitive equilibrium at which all units

of both qualities trade), but greater than the surplus in the least efficient competitive

equilibrium (i.e., the competitive equilibrium at which only low-quality units trade).

When u(qH) < cH , then the surplus realized under decentralized trade is greater than

the surplus in the (unique) competitive equilibrium. Remarkably, decentralized trade

yields competitive payoffs as frictions vanish.

For the one-time entry case, the analysis of the inÞnite horizon version of the model

becomes very complex. As an example, we study a market that operates over two

periods. We show that the properties of the market equilibrium depend upon whether

the initial proportion of high quality units, qH , is above or below a critical threshold,

q∗. When qH > q∗ then all matched buyers and sellers trade at a price of cH . When

qH < q∗, then both high and low quality units trade with positive probability, and

there is trade at more than one price. As for the surplus, our results are illustrated

in Figure 2 which shows (i) the surplus at the competitive equilibria and (ii) the

surplus realized under decentralized trade as frictions vanish. The Þgure reveals that

if qH > q∗ then the surplus realized under decentralized trade is (asymptotically) the

same as the surplus in the most efficient competitive equilibrium. If u(qH) < cH ,

then the surplus realized under decentralized trade is (asymptotically) greater than

that realized in the competitive equilibrium. For intermediate values of qH , where

u(qH) > cH but qH < q∗, the surplus realized under decentralized trade is smaller

than the surplus in the most efficient competitive equilibrium, but greater than the

surplus in the least efficient competitive equilibrium.

Figure 2 goes here.

Taken together, our results for stationary and one-time entry show that when

average quality is low and frictions are small, then the gains realized are higher under

decentralized trade than in the competitive equilibrium. Further, when frictions are

small the gains to trade are higher under decentralized trade than in the least efficient

competitive equilibrium, whether average quality is high or low.

Following Akerlof�s (1970) seminal paper, the literature studying markets with

adverse selection has become too large for us to attempt to survey here (see, e.g.,
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Wilson (1980), Bond (1982), Kim (1985), Bester (1993), Gale (1996), etc.). In a

concurrent paper, Blouin (2001) studies a decentralized market for lemons in a model

which differs from ours in that (i) the probability of matching is set to one, (ii) it

assumes that average quality is low (i.e., that u(qH) < cH), and more signiÞcantly

(iii) it allows only one of three exogenously given prices to emerge from bargaining.5

Perhaps not surprisingly, Blouin obtains results quite different from ours: he Þnds,

for example, that each type of trader obtains a positive payoff (and therefore payoffs

are not competitive) even as frictions vanish. This result, which is at odds with

our Þnding when entry is stationary that payoffs are competitive as frictions vanish,

seems to be driven by the exogeneity of prices in Blouin�s model. (In our model, prices

are determined endogenously without prior constraints.) In addition, the ranking of

surplus under centralized and decentralized trade depends on how the three prices in

his model are chosen; since these prices do not seemly relate to economic primitives,

these results are inconclusive. For the one-time entry case Blouin (2001) obtains

results in a model with an inÞnite horizon. We do not provide a comparable analysis.

Our paper is organized as follows. In Section 2 we describe the lemons market we

study and its competitive equilibria. In Section 3 we introduce our model of decen-

tralized trade and establish results for one-time and stationary entry. We conclude

in Section 4 with a discussion. The proofs are presented in the Appendix.

2 A Market for Lemons

Consider a market for an indivisible commodity which can be of either high or low

quality. There is a continuum of buyers and sellers present in equal measures (that

we normalize to one). A proportion qH ∈ (0, 1) of sellers are endowed with a (single)
unit of high-quality good, whereas the remaining proportion qL = 1−qH of sellers are
endowed with a unit of low-quality good. A seller knows the quality of his good, but

prior to purchase quality is unobservable by buyers. We refer to the sellers endowed

with a unit of high (low) quality good as high (low) quality sellers. Preferences are

characterized by values and costs: the cost to a seller of a unit of the good when it

5This three-price set up was introduced by Wolinsky (1990).
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is of high (low) quality is cH (cL); the value to a buyer of a unit of the good when

it is of high (low) quality is uH (uL). Each type of good is valued more highly by

buyers than by sellers (i.e., uH > cH and uL > cL), and both buyers and sellers value

high quality more than low quality (i.e., uH > uL and cH > cL). Also we assume

that cH > uL, since otherwise the lemon�s problem doesn�t arise. Thus, we assume

throughout that uH > cH > uL > cL.

When a buyer and a seller trade at the price p, the buyer obtains a utility of u−p
and the seller obtains a utility of p− c, where u = uH and c = cH if the unit traded is
of high quality, and u = uL and c = cL if it is of low quality. A buyer or a seller who

does not trade obtains a utility of zero. For q ∈ [0, 1] we write u(q) = quH+(1−q)uL
for the expected value to a buyer of a randomly selected unit of the good when a

proportion q of all units are of high quality.

Properties of Competitive Equilibria

We begin by characterizing competitive outcomes, which we take to be the bench-

mark for centralized trade. In the competitive model the behavior of buyers and

sellers is described by aggregate supply and demand correspondences. Denote by p

the market price. If p > cτ then all τ -quality sellers supply a unit. Conversely, if

p < cτ then no τ -quality seller supplies. Hence, for τ ∈ {H,L}, aggregate supply of
the τ -quality good zτ : R+ ³ [0, 1] is given by

zτ (p) =


{qτ} if p > cτ

[0, qτ ] if p = cτ

{0} if p < cτ .

The aggregate demand, zB : R+ × [0, 1] ³ [0, 1], depends upon both the price

p ∈ R+ and the fraction of the units supplied that are of high quality6 µ ∈ [0, 1], and
6Since high and low quality sellers supply at different prices, the proportion of the units supplied

which are of high quality, µ, may differ from the proportion of sellers who own a unit of high quality

good, qH .
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is given by

zB(p, µ) =


{0} if p > u(µ)

[0, 1] if p = u(µ)

{1} if p < u(µ).

A competitive equilibrium (CE) is a collection e = (p, µ, zB, zH , zL) such that

(CE.1) zB ∈ zB(p, µ), zH ∈ zH(p) and zL ∈ zL(p),
(CE.2) µ = zH/(zH + zL) whenever zH + zL > 0, and

(CE.3) zB − zL − zH = 0.

In a CE traders behave optimally (CE.1), their expectations are rational (CE.2),

and the market clears (CE.3).

A competitive equilibrium provides an aggregate description of the Þnal allocation;

that is, it speciÞes a transaction price and volumes (i.e., measures) of trade of high

and low quality good. The surplus realized in a CE is given by

SC = zH(uH − cH) + zL(uL − cL).

Given values and costs, we denote by SC(qH) the set of surpluses that are realized

in the competitive equilibria of the market where a proportion qH of the sellers are

high quality � as we shall see, equilibrium may not be unique.

The properties of competitive equilibria are determined by the relation between

the expected value to a buyer of a randomly selected unit of the good, u(qH), and the

cost for high-quality sellers, cH . If u(qH) ≥ cH , then there are multiple competitive
equilibria (see Figure 1.a), whereas if u(qH) < cH , then there is a unique competi-

tive equilibrium (see Figure 1.b). Proposition 1 summarizes the properties of these

equilibria. This properties are well known, and are given without proof.

Proposition 1.

(P1.1) If u(qH) ≥ cH, then there are CE in which all sellers trade (at a price p ∈
[cH , u(qH)]), as well as a CE in which all low-quality sellers and some (but not all)

high-quality sellers trade (at a price p = cH), and a CE in which only low-quality

sellers trade (at the price p = uL). Thus,

qL(uL − cL) = inf SC(qH) < supSC(qH) = qH(uH − cH) + qL(uL − cL).
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(P1.2) If u(qH) < cH , then there is a unique CE. In this equilibrium only low-quality

sellers trade (at the price p = uL). Thus,

inf SC(qH) = supSC(qH) = qL(uL − cL).

A graph of the mapping SC(qH) is given in Figure 2.

3 A Decentralized Market for Lemons

Consider now a market for lemons in which trade is decentralized. The market op-

erates for a set of consecutive periods T , where T may be Þnite or inÞnite. (If T is

Þnite, we abuse notation slightly and write T = {0, 1, . . . , T}.) Each period t ∈ T a
measure qτt of τ -quality sellers and a measure q

B
t = q

H
t + q

L
t of buyers enter the mar-

ket; then, every buyer (seller) in the market meets a randomly selected seller (buyer)

with probability α, where α ∈ (0, 1). A matched buyer proposes a price at which to
trade. If the proposed price is accepted by the seller, then the agents trade at that

price and both leave the market. If the proposed price is rejected by the seller, then

the agents remain in the market at the next period. An agent who is unmatched in

the current period also remains in the market at the next period. Agents discount

utility at a common rate δ ∈ (0, 1]. An agent observes only the outcomes of his own
matches.

A strategy for a buyer is a sequence of price offers p = {pt}t∈T , where pt ∈ R+ is the
price offer made if matched at date t. A strategy for a seller is a sequence r = {rt}t∈T
of reservation prices, where rt ∈ R+ is the smallest price he accepts at date t.7 A
strategy distribution is a collection s = [(pBi;λBi)n

B

i=1, (r
Hi;λHi)n

H

i=1, (r
Li ;λLi)n

L

i=1], where

λBi > 0 is the proportion of buyers using the strategy pBi, λτ i > 0 is the proportion

of type τ ∈ {H,L} sellers using strategy rτ i, and nτ is the countable number of
7Price offers are �unconditional� since a buyer doesn�t know whether the seller he is matched

with is high or a low quality. Also, we consider only strategies in which a trader does not condition

his actions in the current match on the history of his prior matches, but this restriction is inconse-

quential. Since a trader only observes the outcomes of his own matches, his decision problem is the

same regardless of his history in prior matches � see Osborne and Rubinstein (1990), pp. 154-162.
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distinct strategies used by a positive measure of type τ ∈ {B,H,L} traders. Thus,PnB

i=1 λ
Bi =

PnH

i=1 λ
Hi =

PnL

i=1 λ
Li = 1.

Laws of Motion

Let [(pBi;λBi)n
B

i=1, (r
Hi;λHi)n

H

i=1, (r
Li ;λLi)n

L

i=1] be a strategy distribution. For τ ∈
{B,H,L} and k ≤ nτ let λτkt denote the proportion of traders following the k-th type

τ strategy out of the total measure of traders of type τ in the market at time t. This

proportion can be computed for t ∈ T as

λτkt+1 =
λτkt (1− αZτkt )Pnτ

l=1 λ
τ l
t (1− αZτ lt )

, (1)

where Zτkt denotes the probability of trade for a type τ agent following the k-th type

τ strategy who is matched at t. (If there is an initial period, 0 ∈ T, then we take
λτk0 to be given by the initial strategy distribution, i.e., λτk0 = λτk .) The probability

Zτkt can be computed as follows: Denote by I : R2+ → {0, 1} the indicator function
whose value is I(x, y) = 1 if x ≥ y, and I(x, y) = 0 otherwise. For sellers of type

τ ∈ {H,L}, this probability is given by

Z
τj
t =

nBX
i=1

λBit I(p
Bi
t , r

τj
t ). (2)

For buyers it is given by

ZBit =
X

τ∈{H,L}
µτt

nτX
j=1

λ
τj
t I(p

Bi
t , r

τj
t ), (3)

where for τ ∈ {H,L}, µτt is the proportion of type τ sellers out the �stock� of sellers
in the market at time t; i.e., µτt is the ratio

µτt =
Kτ
t

KH
t +K

L
t

, (4)

where Kτ
t , the stock of sellers of type τ ∈ {H,L} in the market at time t, is given by

Kτ
t = (1− α

nτX
j=1

λ
τj
t−1Z

τj
t−1)K

τ
t−1 + q

τ
t . (5)

Since the measure of buyers and sellers entering � and leaving � the market each

period are identical, the stock of buyers at t ∈ T is KB
t = K

H
t +K

L
t . Again, if there

is an initial period 0 ∈ T, then we take Kτ
0 = q

τ
0 for τ ∈ {B,H,L}.
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Value Functions

Given a strategy distribution [(pBi;λBi)n
B

i=1, (r
Hi;λHi)n

H

i=1, (r
Li ;λLi)n

L

i=1], the expected

utility at time t ∈ T of a buyer following the strategy pBi is

V Bit = α
X

τ∈{H,L}
µτt

nτX
j=1

λ
τj
t [I(p

Bi
t , r

τj
t )(u

τ − pBit ) + (1− I(pBit , rτjt ))δV Bit+1] + (1− α)δV Bit+1.

(6)

The expected utility of a seller of type τ ∈ {H,L} following the strategy rτj is

V
τj
t = α

nBX
i=1

λBit [I(p
Bi
t , r

τj
t )(p

Bi
t − cτ ) + (1− I(pBit , r

τj
t ))δV

τj
t+1] + (1− α)δV τjt+1. (7)

When T is Þnite, these expected utilities are computed using V τkT+1 = 0 for each

τ ∈ {B,H,L} and k ≤ nτ .

Equilibrium

A strategy distribution [(pBi;λBi)n
B

i=1, (r
Hi ;λHi)n

H

i=1, (r
Li;λLi)n

L

i=1] is a market equilib-

rium if for each t ∈ T, i ∈ {1, . . . , nB}, j ∈ {1, . . . , nτ} and τ ∈ {H,L}:
(ME.τ ) r

τj
t − cτ = δV τjt+1, and

(ME.B) p
B
i

t ∈ argmax
p∈R+

P
τ∈{H,L} µ

τ
t

Pnτ

j=1 λ
τj
t [I(p, r

τj
t )(u

τ−p)+(1−I(p, rτjt ))δV Bit+1].

Condition ME.τ ensures that the reservation price of each type τ seller makes him

indifferent between accepting or rejecting an offer of his reservation price. Condition

ME.B ensures that buyer price offers are optimal.

A straightforward implication of the deÞnition of market equilibrium is that

traders of the same type have identical expected utilities and that, as a direct con-

sequence, the reservation prices and probabilities of trade are the same for sellers of

the same type. Formally, we have:

Remark 1. For t ∈ T :
(R1.B) V Bit = V Bt for each i ≤ nB, and
(R1.τ ) V

τj
t = V τt , r

τj
t = r

τ
t and Z

τj
t = Zτt for each τ ∈ {H,L} and each j ≤ nτ .

We therefore restrict attention to strategy distributions in which all sellers of the same

type follow the same strategy (i.e., where nH = nL = 1). As we shall see, however,

allowing buyers to follow different strategies is necessary to guarantee existence of a

market equilibrium.
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3.1 One-Time Entry

In this section we analyze a decentralized market for lemons with one-time entry; i.e.,

such that qτ0 = q
τ > 0 = qτt for τ ∈ {H,L,B} and t > 0. Without loss of generality,

we normalize the measure sellers and buyers to be one; i.e., qH + qL = qB = 1. Also

we consider a market that operates for two periods; i.e., such that T = {0, 1}. (The
analysis of market that operates for a longer horizon is complex, as the proportion of

high quality sellers in the market is not stationary.)

Proposition 2 below establishes the basic properties of market equilibria. These

properties are determined by the relation between the initial proportion of high qual-

ity sellers qH , the threshold q∗ = (cH−cL)/(uH−cL), and the magnitude of the market
frictions (i.e., the discount factor δ and the matching probability α). The threshold

q∗, which is the solution to the equation q∗uH+(1−q∗)uL−cH = (1−q∗)(uL−cL), is
the proportion of high quality sellers that makes a buyer indifferent between offering

cH (when this offer is accepted by both types of sellers) or offering cL (when this offer

is accepted only by low quality sellers) in a one-shot take-it-or-leave it bargaining

game with a randomly selected seller.

Proposition 2. Consider a decentralized market for lemons for which T = {0, 1},
and qτ0 = qτ > 0 = qτ1 for τ ∈ {H,L,B}. In every market equilibrium we have

rHt = c
H > rLt for t ∈ {0, 1}. In addition:

(P2.1) If qH > q∗, then in the unique market equilibrium all buyers offer rHt at each

period. Thus, at each period all matched sellers trade.

(P2.2) If qH < q∗ and δ and α are near one, then in every market equilibrium

only price offers of rL0 and of less than r
L
0 are made by positive measures of buyers

at t = 0, and only price offers of rH1 and of rL1 are made by positive measures of

buyers at t = 1. Thus, at t = 0 only matched low-quality sellers trade with positive

probability (but less than one); and at t = 1, matched low-quality sellers trade with

probability one, and matched high-quality sellers trade with positive probability (but

less than one). Moreover, reservation prices, price offers (except for rejected price

offers), the probability of trade, and the expected utility of each trader are uniquely

determined.
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The implications of Proposition 2 are clear:

(P2.1) If high-quality sellers are abundant, then there is a unique equilibrium in

which buyers offer cH (a competitive equilibrium price) in both periods, and every

match ends with trade.

(P2.2) If high-quality sellers are scarce and frictions are small, then buyers �mix�

in both periods: In the Þrst period a positive proportion (less than one) of buyers offer

the low-quality-seller reservation price rL0 (and those matched with a low-quality seller

trade), and the remaining matched buyers offer prices below rL0 (and do not trade). In

the second period, a positive proportion (less than one) of buyers offer the reservation

price of high-quality sellers rH1 = c
H (and trade), while the remaining matched buyers

offer the reservation price of low-quality sellers rL1 = cL (and only those matched

with low-quality sellers trade). The exact equilibrium mixtures involved are provided

in the proof of Proposition 2. Equilibrium is essentially unique (and asymmetric);

speciÞcally, the prices at which trade occurs and the measures of trade at each of

these prices are uniquely determined.

Surplus

By Proposition 2, when frictions are small then traders� expected utilities are

uniquely determined. Hence, the surplus realized in a market equilibrium is a function

of the initial proportion of high-quality sellers in the market, and is given by

SD(qH) = V B0 + q
H
0 V

H
0 + qL0 V

L
0 .

Proposition 3 compares the surplus under centralized trade (i.e., the competitive

equilibrium surplus) and the surplus under decentralized trade, both when frictions

are non-negligible and also as frictions vanish. To simplify our notation, we write

�SD(qH) for limδ→1 limα→1 SD(qH) and limα→1 limδ→1 SD(qH), when both limits exist

and coincide.

Proposition 3. Consider a decentralized market for lemons for which T = {0, 1},
and qτ0 = q

τ > 0 = qτ1 for τ ∈ {H,L,B}, and assume that δ and α are near one.
(P3.1) If qH > q∗, then

inf SC(qH) < SD(qH) < �SD(qH) = supSC(qH).

12



(P3.2) If qH < q∗ and u(qH) > cH , then

inf SC(qH) < SD(qH) < �SD(qH) < supSC(qH).

(P3.3) If u(qH) < cH , then

inf SC(qH) = supSC(qH) < SD(qH) < �SD(qH).

By Proposition 3 whether the surplus under decentralized trade is greater or less

than the competitive equilibrium surplus depends upon the initial proportion of high

quality sellers in the market: As Figure 2 illustrates, when qH > q∗, the surplus

realized under decentralized trade coincides (as frictions vanish) with the surplus in

the most efficient CE, and is greater than the surplus in either of the other two CE.

When qH < q∗ and u(qH) > cH , the surplus realized under decentralized trade is less

than the surplus realized in the most efficient CE, but it is greater than the surplus

realized in the least efficient CE. When u(qH) < cH and frictions are small, the

surplus realized under decentralized trade is greater than the (unique) CE surplus.

Thus, for every value of qH , decentralized trade yields a greater surplus than the least

efficient CE surplus (in which only low-quality units trade).

3.2 Stationary Entry

In this section we study equilibrium in a decentralized market for lemons that operates

over an inÞnite number of periods, and where there is a constant ßow of agents of

each type entering the market each period, qτt = qτ > 0 for τ ∈ {H,L,B}. Again
without loss of generality we assume that qH + qL = qB = 1.

We shall restrict attention to equilibria in stationary strategies, i.e., to strategies

that are constant sequences. We can describe a stationary strategy for a buyer (seller

of type τ ∈ {H,L}) by a non-negative real number pB (rτ) indicating a price offer
(reservation price) at each date t ∈ T . A (stationary) strategy distribution is therefore
described by a collection s = [(pBi,λBi)n

B

i=1, r
H , rL], where each λBi is the proportion

of buyers following the ith buyer strategy pBi , and nB is the countable number of

distinct strategies used by buyers.

We study the stationary equilibria of this market. A stationary equilibrium is

a stationary strategy distribution that constitutes a market equilibrium (as deÞned
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above) and has the additional property that the measure of each type of trader in the

market is constant over time. Formally, a stationary equilibrium is deÞned as follows:

Stationary Equilibrium

A stationary strategy distribution [(pBi ,λBi)n
B

i=1, r
H , rL] is a stationary equilibrium

if there are stocks (KH , KL) ∈ R2+, such that for each i ∈ {1, . . . , nB} and τ ∈ {H,L}:
(SE.τ ) rτ − cτ = δV τ , and
(SE.B) pBi ∈ argmax

p∈R+

P
τ∈{H,L} µ

τ [I(p, rτ )(uτ − p) + (1− I(p, rτ ))δV Bi ],
(SE.K) αKτ

PnB

i=1 λ
BiI(pBi , rτ ) = qτ .

Conditions SE.τ for τ ∈ {H,L} and SE.B ensure that sellers and buyers behave

optimally. Condition SE.K, which is just equation (5) with the time subscript re-

moved, ensures that the measure of type τ sellers exiting the market each period

equals the measure of type τ sellers entering each period. A consequence of SE.K is

that the proportion of type τ sellers (µτ ), and the expected utility of type τ traders

(V τ ), which are computed using equations (4), (6), and (7) with the time subscript

removed, are stationary.

Properties of stationary Equilibrium

Given a stationary equilibrium, the (ßow) surplus is the sum of the expected

utilities of the ßow of agents entering every period, i.e.,

SF (qH) = V B + qHV H + qLV L.

When there is unique stationary equilibrium (see Proposition 4.3 below), it is mean-

ingful to express ßow surplus as a function of qH . The properties of stationary

equilibria are establish in Proposition 4.

Proposition 4. Assume that δ < 1 is near one.

(P4.1) If u(qH) ≥ cH , there is a stationary equilibrium in which all buyers offer

cH and all sellers accept offers of cH . Moreover, in this stationary equilibrium as

δ approaches one (i) the surplus approaches (from below) the surplus at the most

efficient competitive equilibrium, and (ii) each trader�s expected utility is the same as

in the competitive equilibrium in which all units trade at the price cH .
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(P4.2) If u(qH) < cH, there is a stationary equilibrium in which a positive proportion

of buyers offer cH (which all sellers accept), a positive proportion offer uL (which

only low-quality sellers accept), and a positive proportion offer less than uL (which

all sellers reject). Moreover, in this stationary equilibrium as δ approaches one (i)

the surplus approaches (from above) the surplus at the competitive equilibrium, and

(ii) each trader�s expected utility is the same the same as in the unique competitive

equilibrium.

(P4.3) If uH−cH > uL−cL, the stationary equilibria described in (P4.1) and (P4.2)
are unique (up to rejected price offers).

Proposition 4 establishes that the comparison of surplus under centralized and

decentralized trade is determined by the relation between the expected value to a

buyer of a randomly selected unit of the good, u(qH), and the cost for high-quality

sellers, cH . When u(qH) ≥ cH the surplus realized in a decentralized market with

stationary entry is smaller than the surplus in the most efficient competitive equilibria

(but greater than the surplus generated in the least efficient competitive equilibrium).

When u(qH) < cH and frictions are small (but not negligible), the surplus realized in

a decentralized market with stationary entry is greater than the competitive surplus.

By Proposition 4, whether u(qH) ≥ cH or u(qH) < cH , as frictions vanish each

trader obtains a competitive equilibrium payoff; when u(qH) ≥ cH then traders obtain
the same payoff as in the competitive equilibrium in which all units trade at the price

cH . When u(qH) < cH , then traders obtain the same payoff as in the (unique)

competitive equilibrium, with price uL. This last result is remarkable since in the

competitive equilibrium only low quality trades, while in the stationary equilibrium

high-quality units also trade.

When the gains to trade for high-quality units is greater than the gains to trade

for low-quality units (i.e., when uH−cH > uL−cL), the equilibria described in (P4.1)
and (P4.2) are unique except that the price offers below uL are not determined. This

multiplicity of equilibria is irrelevant since prices offers of this kind are rejected.

An interesting implication of Proposition 4 is that in a stationary equilibrium

the proportion of high-quality sellers in the market, µH , always satisÞes u(µH) ≥ cH :
when the measure of high quality sellers entering the market, qH , satisÞes u(qH) ≥ cH ,
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then in the stationary equilibrium we have µH = qH ; when u(qH) < cH , then the

proportion of high-quality sellers in the market adjusts so that u(µH) = cH . Thus, in

the later case, high quality sellers are present in the market in a higher proportion

than they enter the market.8

4 Discussion

An interesting implication of our results is that, based on the surplus generated,

neither centralized trade nor decentralized trade dominates the other: decentralized

trade performs better (i.e., generate a larger surplus) than predicted by the compet-

itive model when average quality is low and frictions are small, whereas centralized

trade may produce superior outcomes when average quality is high. An obvious ques-

tion to ask is how far is the surplus realized under these market structures from the

surplus that can be realized by an efficient mechanism (i.e., a mechanism that maxi-

mizes the surplus over all incentive compatible and individually rational mechanisms).

In our context, a mechanism is deÞned by a pair (p, Z), where p = (pH , pL) ∈ R2+ and
Z = (ZH , ZL) ∈ [0, 1]2, specifying, for each quality report τ ∈ {H,L} of a seller, a
money transfer pτ (from the buyer to the seller), and a probability Zτ that the seller

transfers the good to the buyer.9 An efficient mechanism is therefore a solution to

the problem

max
(p,Z)∈R2+×[0,1]2

qHZH(uH − cH) + qLZL(uL − cL)

subject to

pτ − Zτcτ ≥ pσ − Zσcτ for each τ , σ ∈ {H,L}, (IC.τ)

qHZHuH + qLZLuL − (qHpH + qLpL) ≥ 0, (IR.B)

8Bond (1982) provides a test of the �lemons problem� by comparing the average quality of traded

and non-traded goods. Our model predicts that the average quality in the stock of units that has

not yet traded is greater than the average quality in the ßow of units trading.
9By the Revelation Principle, we can restrict attention to �direct� mechanisms. Also note that

there is no need for buyers to report to the mechanism since they have no private information.
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pτ − Zτcτ ≥ 0 for each τ ∈ {H,L}. (IR.τ)

The constraint IC.τ guarantees that the mechanism is incentive compatible, i.e., it

is optimal for a type τ seller to report his type truthfully. The constraints IR.B

and IR.τ guarantee that participating in the mechanism is individually rational for

buyers and sellers; i.e., that no trader obtains a negative expected payoff.

It is straightforward to show that if u(qH) ≥ cH , then every efficient mechanism
satisÞes ZH = ZL = 1, and generates a surplus, S(qH), given by

S(qH) = qH(uH − cH) + qL(uL − cL).

When u(qH) < cH , however, then the efficient mechanism satisÞes ZL = 1 > ZH =

qL(uL − cL)/ ¡cH − cL − qH(uH − cL)¢ , and therefore generates a surplus of
S(qH) = qH(uH − cH) qL(uL − cL)

cH − cL − qH(uH − cL) + q
L(uL − cL).

Figure 3 below provides graphs of the mappings S(qH), �SD(qH), and SC(qH),

illustrating the relation between the surpluses in a market with one-time entry.

Figure 3 goes here.

As Figure 3 shows, when qH > q∗, we have �SD(qH) = supSC(qH) = S(qH) >

inf SC(qH); that is, the efficient surplus is realized both under decentralized trade

(as frictions vanish), and at the most efficient competitive equilibria (but not at the

other competitive equilibria). When u(qH) < cH , however, we have inf SC(qH) =

supSC(qH) < �SD(qH) < S(qH); that is, both centralized and decentralized trade

generate a surplus below the efficient surplus (although decentralized trade performs

better). For intermediate values, i.e., when qH < q∗ but u(qH) > cH , we have

supSC(qH) = S(qH) > �SD(qH) > inf SC(qH); that is, centralized trade may generate

the efficient surplus, whereas decentralized trade generates less than the efficient

surplus.10

10Gale (1996) studies the properties of the competitive equilibria of markets with adverse selection

where agents exchange contracts specifying a price and a probability of trade, and shows that even

with a complete contract structure, equilibria are not typically incentive-efficient.
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As for the surplus realized in a decentralized market with stationary entry, recall

that by Proposition 4 as frictions vanish the ßow surplus approaches the surplus real-

ized in the most efficient competitive equilibrium, supSC(qH), and therefore compares

with the surplus realized by an efficient mechanism as described above.

It�s natural to wonder whether the superiority of decentralized trade when average

quality is low is due to the fact that under decentralized trade units may trade at

different times, while in the competitive model all units trade at one time. (In the

literature studying the �mini-micro� foundations of competitive equilibrium, it is

common to compare the outcomes generated in a dynamic decentralized market to

those predicted by the static competitive model, thereby ignoring the role of time.) To

address this issue, consider a market for lemons with one-time entry which operates

over two periods. It is straightforward to extend the notion of competitive equilibrium

to this dynamic setting, allowing units to trade at each of the two periods and allowing

different prices at each period. (See Wooders (1998), for example, for a model of

dynamic competitive equilibrium in a homogenous goods market.) It can be shown

that when only low-quality units trade in the (unique) competitive equilibrium of

the static market (that is, when u(qH) < cH), then for discount factors near one the

dynamic competitive equilibrium has the same feature: only low-quality units trade.

Thus, for discount factors near one the competitive surplus is the same for both the

dynamic and the static market.11

For markets for lemons with stationary entry, Janssen and Roy (2000) have shown

that the only stationary dynamic competitive equilibrium is the repetition of the static

competitive equilibrium.12 Thus, time alone does not explain the difference in surplus

realized under centralized and decentralized trade.
11In fact, when u(qH) > cH then a dynamic competitive market may yield even less surplus than

the static competitive market.
12They also Þnd non-stationary equilibria, however, where all qualities trade although with delay.

The authors do not evaluate the surplus realized at these equilibria � they focus on the issue of price

volatility.
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5 Appendix: Proofs

Proof of Proposition 2: We begin by establishing a number of lemmas. Let

s∗ = [(pBi0 , p
Bi
1 ;λ

i)n
B

i=1, (r
H
0 , r

H
1 , 1), (r

L
0 , r

L
1 , 1)] be a market equilibrium. For p ∈ R+

deÞne

PBt (p) =
X

τ∈{H,L}
µτt [(u

τ − p)I(p, rτt ) + (1− I(p, rτt ))δV Bt+1];

i.e., PBt (p) is the expected utility to a buyer matched at time t when play proceeds

according to s∗, except that at time t the buyer proposes the price p. Note that by

ME.B we have for each i ≤ nB that PBt (p
Bi
t ) ≥ PBt (p). Hence p

Bi0
t 6= pBi00t implies

PBt (p
Bi0
t ) = P

B
t (p

Bi00
t ).

Lemma 1. For each t ∈ {0, 1} and i ≤ nB : pBit ≤ max{rHt , rLt }.
Proof: Suppose that pBit > max{rHt , rLt } for some i ≤ nB and t ∈ {0, 1}. Then
I(pBit , r

H
t ) = I(p

Bi
t , r

L
t ) = 1, and hence

PBt (p
Bi
t ) = u(µ

H
t )− pBit .

Let p = max{rHt , rLt }; then I(p, rHt ) = I(p, rLt ) = 1, and therefore

PBt (p) = u(µ
H
t )− p > u(µHt )− pBit ,

which contradicts ME.B. ¤

Lemma 2. For t ∈ {0, 1} : rHt = cH > rLt , and ZLt ≥ ZHt . Moreover, µH1 ≥ µH0 .
Proof: By ME.H and ME.L, we have rH1 = c

H > rL1 = c
L. Hence ZL1 ≥ ZH1 . Also

pBi1 ≤ cH for each i ≤ nB by Lemma 1, and therefore V H1 = 0 and V L1 ≤ α(cH − cL).
Thus, rH0 = cH by ME.H, and rL0 ≤ cL + δα(cH − cL) < cH by ME.L. Hence

ZL0 ≥ ZH0 . Finally

µH1 =
(1− αZH0 )µH0

(1− αZH0 )µH0 + (1− αZL0 )µL0
≥ (1− αZH0 )µH0
(1− αZH0 )µH0 + (1− αZH0 )µL0

= µH0 . ¤

Lemma 3. For each i ≤ nB and t ∈ {0, 1} , either pBit = cH , or pBit ≤ rLt .
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Proof: Since pBit ≤ cH and rLt < cH by lemmas 1 and 2, assume by way of contradic-
tion that rLt < p

Bi
t < cH for some i ≤ nB. Then I(pBit , rHt ) = 0, I(pBit , rLt ) = 1 and,

since µLt > 0 (because α < 1), we have

PBt (p
Bi
t ) = µ

L
t (u

L − pBit ) + µHt δV Bt+1 < µLt (uL − rLt ) + µHt δV Bit+1 = P
B
t (r

L
t ),

which contradicts ME.B. ¤

Lemma 4. For t ∈ {0, 1} :
(L4.1) pBi1 ∈ {cH , cL} for each i ≤ nB, and ZL1 = 1;
(L4.2) if µHt > q

∗, then pBit = cH for each i ≤ nB;
(L4.3) if µHt < q

∗ and rLt = c
L, then pBit ≤ cL for each i ≤ nB.

Proof: Since V L2 = 0, ME.L implies rL1 = cL. In view of Lemma 3, in order to

establish L4.1 we must show pBi1 ≥ cL. Suppose by way of contradiction that pBi1 < cL;

then (recall that V B2 = 0)

PB1 (p
Bi
1 ) = 0 < µ

L
1 (u

L − cL) = PB1 (rL1 ),

which contradictsME.B. Since pBi1 ∈ {cH , cL} for each i ≤ nB, we have I(pBi1 , rL1 ) = 1
for each i ≤ nB, and hence ZL1 = 1.
We prove L4.2. Assume µHt > q∗ for some t ∈ {0, 1}. If t = 1, then µH1 > q∗

implies

PB1 (c
L) = µL1 (u

L − cL) < u(µH1 )− cH = PB1 (cH).

Hence ME.B and L4.1 imply pBi1 = cH for each i ≤ nB. If t = 0, then µH1 ≥ µH0 > q∗
by Lemma 2, and therefore pBi1 = cH for each i ≤ nB. Thus, V L1 = α(cH − cL),
rL0 = c

L + αδ(cH − cL), and V B1 = α(u(µH1 )− cH). We have

PB0 (c
H) = u(µH0 )− cH ,

and

PB0 (r
L
0 ) = µ

L
0 (u

L − rL0 ) + µH0 δV B1 .

To establish that PB0 (c
H) > PB0 (r

L
0 ) it suffices to show, since V

B
1 ≤ α(uH − cH), that

u(µH0 )− cH > µL0 (uL − rL0 ) + µH0 δα(uH − cH). Note that µH0 > q∗ implies

(1− δα)[µH0 uH + µL0 cL − cH ] > 0.
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Adding µL0u
L to each side of this inequality and rearranging the result yields

µH0 u
H + µL0u

L − cH > µL0 (uL − (cL + δα(cH − cL))) + µH0 δα(uH − cH),

which is the desired inequality. Hence ME.B implies pBi0 6= rL0 for each i ≤ nB, and
Lemma 3 implies that either pBi0 = cH or pBi0 < rL0 for each i ≤ nB. Hence for each
i ≤ nB, either I(pBi0 , r

H
0 ) = I(pBi0 , r

L
0 ) = 1 or I(pBi0 , r

H
0 ) = I(pBi0 , r

L
0 ) = 0, and so

ZH0 = Z
L
0 . This implies

µH1 =
(1− αZH0 )µH0

(1− αZH0 )µH0 + (1− αZL0 )µL0
= µH0 .

Suppose that pBi0 < rL0 for some i. Then µH1 = µH0 > q∗ and δα < 1 implies

δα(u(µH1 )− cH) < u(µH0 )− cH . Hence

PB0 (p
Bi
0 ) = δV

B
1 = δα(u(µH1 )− cH) < u(µH0 )− cH = PB0 (cH),

which contradicts ME.B. Hence pBi0 = cH for each i ≤ nB.
We prove L4.3. Assume that µHt < q

∗ and rLt = c
L. We show that pBit < cH = rHt

for each i ≤ nB, which implies pBit ≤ rLt = cL for each i ≤ nB by Lemma 3, and

establishes L4.3. Suppose by way of contradiction that for some i ≤ nB we have

pBit = cH . Then µHt < q
∗ and µHt V

B
t+1 ≥ 0 implies

PBt (c
H) = u(µHt )− cH < µLt (uL − cL) + µHt δV Bt+1 = PBt (cL),

which contradicts ME.B. Hence pBit < cH = rHt for each i ≤ nB. ¤

Lemma 5. Assume that qH < q∗, and that α and δ are sufficiently close to 1 that (i)
qH

qH+(1−α)qL > q
∗, (ii) αδ(cH − cL) > uL − cL, and (iii) αδ(u(q∗)− cH) > u(qH)− cH .

Then

(L5.1) there are i0, i00 such that pBi01 = cH and pBi001 = cL.

(L5.2) µH1 = q
∗, and

(L5.3) pBi0 6= cH for each i ≤ nB, pBk0 = rL0 , and p
Bk0
0 < rL0 for some k, k

0.

Proof: We show that pBi1 = rL1 = cL for some i. Suppose not; then L4.1 implies

pBi1 = cH for each i ≤ nB and hence V B1 = α(u(µH1 ) − cH). Since rL1 = cL, we have
µH1 ≥ q∗ by L4.3 and thus V B1 ≥ α(u(q∗)− cH). By (iii) we have

PB0 (c
H) = u(µH0 )− cH < δα

¡
u(q∗)− cH¢ ≤ δV B1 ,
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and hence pBi0 6= cH for each i ≤ nB. Since pBi1 = cH for each i ≤ nB we have

rL0 = c
L + αδ(cH − cL). By (ii) we have uL − rL0 < 0 and

PB0 (r
L
0 ) = µ

L
0 (u

L − rL0 ) + µH0 δV B1 < δV B1 .

Hence pBi0 6= rL0 for each i ≤ nB. Lemma 3 therefore implies pBi0 < rL0 for each i ≤ nB.
Thus ZH0 = Z

L
0 = 0, and therefore µ

H
1 = µ

H
0 = q

H < q∗, which is a contradiction.

Next we show that pBi1 = rH1 for some i. Suppose not; then p
Bi
1 = cL for each i ≤

nB by L4.1. Thus, V B1 = αµL1 (u
L − cL), V L1 = 0, and rL0 = cL. Since µH0 = qH < q∗,

then pBi0 ≤ cL for each i ≤ nB by L4.3. For p < cL we have

PB0 (p) = δV
B
1 = δαµL1 (u

L − cL) < µL0 (uL − cL) + µH0 δV B1 = PB0 (c
L),

where PB0 (p) < P
B
0 (c

L) since µL0 ≥ µL1 (as µH0 ≤ µH1 by Lemma 2) and since V B1 ≥ 0.
Therefore pBi0 = cL for each i ≤ nB by ME.B. Hence ZH0 = 0, and ZL1 = 1. By (i)

we have

µH1 =
µH0

µH0 + (1− α)µL0
=

qH

qH + (1− α)qL > q
∗,

which implies by L4.2 that pBi1 = cH for each i ≤ nB, which is a contradiction.

Therefore pBi1 = rH1 for some i.

Since pBi1 = cL for some i and pBi1 = cH for some i, then by ME.B we have

PB1 (c
L) = µL1 (u

L − cL) = u(µH1 )− cH = PB1 (cH),

which implies µH1 = q
∗. This establishes L5.2.

We establish L5.3. Since pBi1 = cH for some i by L5.1 and since µH1 = q
∗ by L5.2,

we have V B1 = α(u(q∗)− cH). By Lemma 3 either pBi0 = cH or pBi0 ≤ rL0 . For p < rL0 ,
(iii) implies

PB0 (c
H) = u(µH0 )− cH = u(qH)− cH < δα(u(q∗)− cH) = δV B1 = PB0 (p).

Hence ME.B implies pBi0 6= cH for each i ≤ nB. Finally, we show pBi0 = rL0 for some

i and pBi0 < rL0 for some i. Clearly p
Bi
0 = rL0 for some i, for if p

Bi
0 < cL for all i,

then ZL0 = Z
H
0 = 0 and µH1 = µ

H
0 = q

H < q∗, which contradicts µH1 = q
∗. Suppose

pBi0 = rL0 for each i. Then

µH1 =
µH0

µH0 + (1− α)µL0
=

qH

qH + (1− α)qL > q
∗,
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by (i), which also contradicts µH1 = q
∗. ¤

Proof of Proposition 2: By Lemma 2, rHt = c
H > rLt for t ∈ {0, 1} .

In order to prove P2.1, we show that every market equilibrium satisÞes nB = 1,

pB10 = pB11 = cH , and rL0 = c
L+δα(cH−cL) > rL1 = cL, and therefore that equilibrium

is unique. Assume qH > q∗. Then µH0 = qH > q∗, and therefore by L4.2 we have

pBi0 = cH for each i ≤ nB, and by Lemma 2 and L4.2 again we have pBi1 = cH for

each i ≤ nB. Hence nB = 1. And since pBit = cH , we have Zτt = 1 for τ ∈ {H,L} and
t ∈ {0, 1}. Thus rL1 = cL by ME.L, and

rL0 = c
L + δαZH1 (c

H − cL) = cL + δα(cH − cL).

Assume that qH < q∗ and that α and δ are sufficiently close to 1 so that (i)
qH

qH+(1−α)qL > q
∗, (ii) αδ(cH − cL) > uL − cL, (iii) αδ(u(q∗)− cH) > u(qH)− cH , and

(iv) α > (q∗ − qH)/(q∗qL). In order to prove P2.2 we show that in every market
equilibrium pBi0 ∈ [0, rL0 ] ∀i ≤ nB, with

P
i∈{i|pBi0 =rL0 }

λBi = (q∗ − qH)/(αq∗qL) < 1,

and pBi1 ∈ {rH1 , rL1 } with
P

i∈{i|pBi1 =rH1 }
λBi1 = [1 − δα(1 − q∗)] uL−cL

δα(cH−cL) < 1, and

rL0 = c
L + [1 − δα(1 − q∗)](cH − cL) > rL1 = cL. Moreover, the probabilities of trade

are uniquely determined by equations (1) to (3), and are given by

ZH0 = 0 < Z
L
0 =

q∗ − µH0
αq∗µL0

=
q∗ − qH
αq∗qL

,

and

ZH1 = [1− δα(1− q∗)]
uL − cL

δα(cH − cL) < Z
L
1 = 1.

By Lemma 3 and L5.3 we have pBi0 ≤ rL0 for each i ≤ nB. Hence ZH0 = 0. Thus
by L5.2 we have

µH1 = q
∗ =

µH0
µH0 + (1− αZL0 )µL0

=
qH

qH + (1− αZL0 )qL
,

and therefore

ZL0 =
q∗ − µH0
αq∗µL0

=
q∗ − qH
αq∗qL

.

Because qH < q∗ and (iv) above we have 0 < ZL0 < 1. Hence p
Bi
0 = rL0 for some i and

pBi0 < rL0 for some i, and therefore ME.B implies

PB0 (r
L
0 ) = µ

L
0 (u

L − rL0 ) + (1− µL0 )δV B1 = δV B1 .
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Thus, uL − rL0 = δV B1 , and since p
Bi
1 ∈ {cH , cL} for each i ≤ nB by L4.1, we have

rL0 = c
L+ δV L1 = c

L+ δαZH1 (c
H − cL). Also V B1 = αµL1 (u

L− cL) = α(1− q∗)(uL− cL)
since µH1 = q

∗ by L5.2. Thus

uL − cL − δαZH1 (cH − cL) = δα(1− q∗)(uL − cL).

Rearranging yields

ZH1 = [1− δα(1− q∗)]
uL − cL

δα(cH − cL) ,

as the proportion of buyers offering pBi1 = rH1 . Finally, p
Bi
1 ∈ {cH , cL} is L4.1. Now,

rL1 = c
L follows from ME.L, and therefore rL0 is readily calculated as

rL0 = c
L + δαZH1 (c

H − cL) = [1− δα(1− q∗)](uL − cL). ¤

Proof of Proposition 3: Assume qH > q∗. Then by P2.1 the market equilibrium

satisÞes nB = 1 and

pB10 = pB11 = cH = rH0 = r
H
1 > r

L
0 = c

L + δα(cH − cL) > rL1 = cL.

Hence equations (1) to (5) yield µτt = q
τ for τ ∈ {H,L} and t ∈ {0, 1}, and Equation

(6) yields

V B1 = α(µH0 u
H + µL0u

L − cH) = α(qHuH + qLuL − cH),

and

V B0 = α(µH0 u
H + µL0u

L − cH) + (1− α)δV B1
= α(1 + (1− α)δ)(qHuH + qLuL − cH).

For sellers, Equation (7) yields V H1 = V H0 = 0, V L1 = α(c
H − cL), and

V L0 = α(c
H − cL) + (1− α)δV L1 = α(1 + (1− α)δ)(cH − cL).

Thus, the surplus is

SD(qH) = α(1 + (1− α)δ)[qH(uH − cH) + qL(uL − cL)],
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and therefore

�SD(qH) = qH(uH − cH) + qL(uL − cL).

Hence for δ and α near one we have

qL(uL − cL) = inf SC(qH) < SD(qH) < �SD(qH) = supSC(qH),

and therefore P3.1 holds.

Assume qH < q∗. We compute V B0 . By P2.2, p
B
1 = c

H = rH1 > r
L
1 is an optimal

price offer, and µH1 = q
∗; hence Equation (6) yields

V B1 = α(q∗uH + (1− q∗)uL − cH).

And since offering pB0 < r
L
0 is optimal by P2.2, Equation (6) again yields

V B0 = δV B1 = δα(q∗uH + (1− q∗)uL − cH).

For sellers, P2.2 and Equation (7) yield V H1 = V H0 = 0. For low-quality sellers, as

shown in the proof of Proposition 2, we have pBi1 ∈ {cH , cL} and P
i∈{i|pBi1 =rH1 }

λBi1 =

[1− δα(1− q∗)] uL−cL
δα(cH−cL) . Hence Equation (7) yields

V L1 = α(1− δα(1− q∗))
uL − cL

δα(cH − cL)(c
H − cL).

Also P2.2 we have pBi0 ≤ rL0 for i ≤ nB. Hence

V L0 = δV
L
1 = (1− δα(1− q∗))(uL − cL).

Hence the surplus is

SD(qH) = δα(q∗uH + (1− q∗)uL − cH) + qL(1− δα(1− q∗))(uL − cL)
= qL(uL − cL) + qH(uH − cH)αδ u

L − cL
uH − cL ,

and therefore

�SD(qH) = qL(uL − cL) + qH(uH − cH) u
L − cL
uH − cL .

Thus, for δ and α near one, we have SD(qH) < �SD(qH).
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If u(cH) > qH then inf SC(qH) = qL(uL − cL) and supSC(qH) = qL(uL − cL) +
qH(uH − cH). Thus

inf SC(qH) < SD(qH) < �SD(qH) < supSC(qH),

and therefore P3.2 holds.

If u(qH) < cH then inf SC(qH) = supSC(qH) = qL(uL − cL) and qH < q∗, and

therefore

inf SC(qH) = supSC(qH) < SD(qH) < �SD(qH).

Thus, P3.3 holds. ¤

Proof of Proposition 4: Assume that δ < 1 is sufficiently near one that

αδ(cH − cL) > (1− δ(1− α))(uL − cL).

(Since cH > uL the above inequality holds for δ = 1, so it also holds for δ near one.)

We prove P4.1. Assume that u(qH) ≥ cH . We show that nB = 1, pB = cH ,

rH = cH , and rL = cL + δα(cH − cL)/(1− δ(1− α)) is a stationary equilibrium. For
τ ∈ {H,L} let Kτ = qτ/α. Then µτ = qτ . Since all buyers offer pB = cH , the sellers�

expected utilities are, respectively, V H = 0, and

V L = α(cH − cL) + δ(1− α)V L = α(cH − cL)
1− δ(1− α) .

Hence SE.H and SE.L hold. Also I(pB, rH) = I(pB, rL) = 1 and therefore conditions

SE.K is satisÞed. For the given strategy distribution, since pB = cH = rH > rL the

buyers� expected utility is

V B = α(u(µH)− cH) + δ(1− α)V B = α(u(µH)− cH)
1− δ(1− α) ≥ 0.

Since µτ = qτ we need to show that

rH ∈ argmax
p

X
τ∈{H,L}

qτ [I(p, rτ )(uτ − p) + (1− I(p, rτ ))δα(u(q
H)− cH)

1− δ(1− α) ].

Clearly, the argmax satisÞes either p = cH , p = rL, or p < rL. With p = cH the value

of the objective function is u(qH) − cH ≥ 0; with p = rL the value of the objective

function is

qHδ
α(u(qH)− cH)
1− δ(1− α) + qL(uL − rL).
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This is clearly less than u(qH)−cH since uL−rL < 0 follows from δα(cH− cL) > (1−
δ(1−α))(uL−cL). Finally, for p < rL the value of the objective is δα(u(qH)−cH)/(1−
δ(1− α)) which is less than or equal to u(qH)− cH . Hence offering pB = rH = cH is
optimal, and therefore SE.B is satisÞed.

In order to complete the proof of P4.1 we compute the ßow surplus. Noticing

that µτ = qτ for τ ∈ {H,L}, we have

SF (qH) = V B + qHV H + qLV L

=
α(u(qH)− cH)
1− δ(1− α) + qL

α(cH − cL)
1− δ(1− α)

=
α

1− δ(1− α)(q
H(uH − cH) + qL(uL − cL)).

Thus SF (qH) < supSC(qH), and limδ→1 SF (qH) = supSC(qH). We also have limδ→1 V H =

0, limδ→1 V L = cH − cL, and limδ→1 V H = u(qH) − cH . Hence each type of trader
obtains the same payoff as in the competitive equilibrium in which the price is cH

and all units trade (see Proposition 1.1).

We prove P4.2. Assume now that u(qH) < cH . We show that the strategy dis-

tribution given by nH = 3, pB1 = cH , pB2 = uL, pB3 < uL, λB1 = (1 − δ)(uL −
cL)/[αδ(cH − uL)], λB2 = λB1(cH − u(qH))/[qH(cH − uL)], λB3 = 1 − λB1 − λB2 ,
rH = cH , and rL = uL is a stationary equilibrium. Note that since cH > uL > cL

then λB1 > 0; and since cH − u(qH) > 0 then λB2 > 0. Moreover, for δ sufficiently
close to one we have

λB1 + λB2 =
(1− δ)(uL − cL)
αδ(cH − uL)

µ
1 +

cH − u(qH)
qH(cH − uL)

¶
< 1,

and therefore λB3 > 0.

For the stocks given by

KH =
qH

λB1α
,

and

KL =
qL

(λB1 + λB2)α
,

conditions SE.K is satisÞed. Also, since pBi ≤ cH for i ≤ nB, we have V H = 0, and
therefore SE.H holds. As for low-quality sellers we have

V L = αλB1(cH − cL) + (1− αλB1)δV L = αλB1(cH − cL)
1− (1− αλB1)δ =

uL − cL
δ

,
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and therefore SE.L holds. For buyers, since

µH =
KH

KH +KL
=

qH

qH + qLλB1

λB1+λB2

=
cH − uL
uH − uL ,

we have u(µH) = cH = rH . Thus, since uL = rL, we have V B = 0, and therefore

SE.B holds.

In order to complete the proof of P5.2 we compute the (ßow) surplus.

SF (qH) = V B + qHV H + qLV L =
qL(uL − cL)

δ
.

Thus, we have both SF (qH) > SC(qH) and limδ→1 SF (qH) = SC(qH). We also have

limδ→1 V H = 0, limδ→1 V L = uL − cL, and limδ→1 V H = 0. Hence each type of trader
obtains the same payoff as the (unique) competitive equilibrium.

Proof of P4.3: In order to establish (P4.3) we Þrst prove a number of intermediate

facts. Let [(pBi,λBi)n
B

i=1, r
H , rL] be a stationary equilibrium.

Lemma 6. For p ∈ R+ we have

I(p, rH)(p− cH) + (1− I(p, rH))δV H ≥ I(p, rL)(p− cH) + (1− I(p, rL))δV H .

Proof: We show for any p that

(I(p, rH)− I(p, rL))(p− cH) ≥ (I(p, rH)− I(p, rL))δV H .

The inequality trivially holds for p such that I(p, rH) − I(p, rL) = 0. If I(p, rH) −
I(p, rL) = 1 then p ≥ rH . Hence p− cH ≥ rH − cH = δV H and the inequality holds.
If I(p, rH)− I(p, rL) = −1 then p < rH and hence p− cH < rH − cH = δV H and so
−(p− cH) > −δV H . ¤
For τ ∈ {H,L}, write Zτ =PnB

i=1 λ
BiI(pBi, rτ ).

Lemma 7: (L7.1) rH > rL, and (L7.2) V L − V H < cH − cL.
Proof: (L7.2) implies (L7.1) since cH − cL > δ(V L − V H) ⇐⇒ cH + δV H >

cL + δV L ⇐⇒ rH > rL. We establish (L7.2). We have that

V H = α
nBX
i=1

λBi[I(pBi, rH)(pBi − cH) + (1− I(pBi, rH))δV H ] + δ(1− α)V H ,
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and hence by Lemma 6 we have

V H ≥ α
nBX
i=1

λBi[I(pBi , rL)(pBi − cL + cL − cH) + (1− I(pBi , rL))δV H ] + δ(1− α)V H .

Rewriting yields

V H ≥ αZL(cL − cH) + α
nBX
i=1

λBiI(pBi , rL)(pBi − cL) + (1− αZL)δV H ;

i.e.,

V H ≥ α

1− δ(1− αZL) [Z
L(cL − cH) +

nBX
i=1

λBiI(pBi , rL)(pBi − cL)].

Since

V L = α
nBX
i=1

λBiI(pBi , rL)(pBi − cL) + (1− αZL)δV L

=
α

1− δ(1− αZL)
nBX
i=1

λBiI(pBi , rL)(pBi − cL),

we have

V H ≥ αZL(cL − cH)
1− δ(1− αZL) + V

L.

Since αZL

1−δ(1−αZL) < 1 for δ < 1 and since c
L − cH < 0, we have V H − V L > cL − cH

or V L − V H < cH − cL. ¤

Lemma 8: For each i ≤ nB, either pBi = rH or pBi ≤ rL.
Proof: Clearly pBi ≤ rH . For p = rL we have I(p, rL) = 1 and I(p, rH) = 0, and

thereforeX
τ∈{H,L}

µτ [(uτ − p)I(p, rτ ) + (1− I(p, rτ ))δV B] = µL(uL − p) + (1− µL)δV B.

For rL < p0 < rH we have I(p0, rL) = 1 and I(p0, rH) = 0, and thereforeX
τ∈{H,L}

µτ [(uτ − p0)I(p0, rτ ) + (1− I(p0, rτ ))δV B] = µL(uL − p0) + (1− µL)δV B

< µL(uL − p) + (1− µL)δV B.
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Hence p0 does not satisfy SE.B. Thus pBi /∈ (rL, rH) for i ≤ nB. This establishes the
claim. ¤

Lemma 9: (L9.1) rH = cH , and (L9.2) V H = 0.

Proof: We prove (L9.2), which implies (L9.1) since rH − cH = δV H by SE.H. By
Lemma 8 we have pBi ≤ rH for i ≤ nB; hence

V H =
α

1− δ(1− αZH)
nBX
i=1

λBiI(pBi, rH)(pBi − cH)

=
αZH(rH − cH)
1− δ(1− αZH) =

αδZHV H

1− δ(1− αZH) ;

i.e.,

(1− αδZH

1− δ(1− αZH))V
H = 0.

Since αZH

1−δ(1−αZH) < 1, we have V
H = 0. ¤

Lemma 10: (L10.1) Kτ > 0 and Zτ > 0 for τ ∈ {H,L}, (L10.2) ZH ≤ ZL, and

(L10.3) µH ≥ qH .
Proof: By SE.K we have αKτZτ = αKτ

PnB

i=1 λ
BiI(pBi, rτ ) = qτ > 0, and hence

Kτ > 0 and Zτ > 0 for τ ∈ {H,L}. Thus (L10.1) holds. As for (L10.2), it is a direct
implication of L7.1. Now by (L10.2) we have

µH =
KH

KH +KL
=

qH

αZH

qH

αZH
+ qL

αZL

=
qHZL

qHZL + qLZH
≥ qHZL

qHZL + qLZL
= qH .

Hence (L10.3) holds. ¤

Lemma 11: Assume that uH − cH > uL − cL. Then there is a �δ < 1 such that for
every 1 > δ > �δ either (i) nB = 1 and pB1 = rH , or (ii) there is i ≤ nB such that

pBi < rL.

Proof: Suppose by way of contradiction that for every �δ there is 1 > δ > �δ such that

pBi ∈ {rH , rL} for i ≤ nB, pBi = rH for some i, and pBi = rL for some i. Assume,

without loss of generality, that pB1 = rH and pB2 = rL. Then

V L = αλB1(rH − cL) + αλB2(rL − cL) + (1− α(λB1 + λB2))δV L.
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Since rH = cH by (L9.1) and since rL − cL = δV L by SE.L, we obtain

V L =
αλB1(cH − cL)
1− δ(1− αλB1) .

Therefore since uL ≥ rL (because pBi = rL for some i) and rL = cL + δV L, we have

cL + δ
αλB1(cH − cL)
1− δ(1− αλB1) ≤ u

L.

Rearranging yields

λB1 ≤ (1− δ)(uL − cL)
δα(cH − uL).

Note that the bound on λB1 can be made arbitrarily small by choosing δ sufficiently

close to 1. Furthermore, since

µH =
qHZL

qHZL + qLZH
=

qH

qH + qLλB1
,

then µH can be made arbitrarily close to 1 for δ sufficiently close to 1. Hence, using

uH − cH > uL − cL, there is a �δ < 1 such that δ > �δ implies

µHuH + µLuL − cH > uL − cL.

Since rL ≥ cL this implies for δ > �δ that

µHuH + µLuL − cH > uL − rL.

Furthermore, since pB1 = rH is an optimal offer we have

µHuH + µLuL − cH ≥ δV B.

Hence µL > 0 implies

µHuH + µLuL − cH > µHδV B + µL(uL − rL),

but this contradicts that pB2 = rL is an optimal price offer. ¤

Proof of P4.3: (A) Assume that u(qH) > cH and uH − cH > uL− cL. We Þrst show
that pBi ≥ rL for each i ≤ nB. We have

V B = α
X

τ∈{H,L}
µτ [I(pBi , rτ )(uτ − pBi) + (1− I(pBi, rτ ))δV B] + δ(1− α)V B

=
α

(1− δ(1− αPτ∈{H,L} µτI(pBi , rτ ))

X
τ∈{H,L}

µτI(pBi , rτ )(uτ − pBi).
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Assume that pBi < rL for some i ≤ nB. Then I(pBi , rH) = I(pBi, rL) = 0, and

therefore X
τ∈{H,L}

µτ [I(pBi , rτ )(uτ − pBi) + (1− I(pBi, rτ ))δV B] = 0.

But u(qH) > cH and µH ≥ qH , by L10.3, implies u(µH) > cH . Hence for p = rH = cH
we have I(p, rH) = I(p, rL) = 1, andX

τ∈{H,L}
µτ [I(p, rτ )(uτ − p) + (1− I(p, rτ ))δV B] = u(µH)− cH > 0.

Then pBi < rL does not satisfy SE.B. Hence by Lemma 8 we have pBi ∈ {rH , rL},
and therefore by Lemma 11 there is a �δ < 1 such that for every δ > �δ we have nB = 1

and pB1 = rH . Hence rH = cH and rL = cL + δα(cH − cL)/(1− δ(1− α)). ¤

(B) Assume that u(qH) < cH and uH − cH > uL − cL. First we show that µH > qH .
Since ZH > 0 (by L10.1) then pBi = rH for some i ≤ nB. For �p < rL, SE.B impliesX

τ∈{H,L}
µτ [(uτ − rH)I(rH , rτ ) + (1− I(rH , rτ ))δV B]

≥
X

τ∈{H,L}
µτ [(uτ − �p)I(�p, rτ ) + (1− I(�p, rτ ))δV B],

and since rH = cH > rL > �p, we haveX
τ∈{H,L}

µτ (uτ − cH) ≥ δV B.

Thus, since V B ≥ 0 andPτ∈{H,L} q
τ (uτ − cH) < 0, this implies µH > qH .

We now establish that pBi = rL for some i. We have

µH =
qHZL

qHZL + qLZH
> qH ,

which implies ZL > qHZL + qLZH . Since ZL ≥ ZH by (L10.2), we must have

ZL > ZH . Hence there is an i such that pBi = rL. By Lemma 11 there is a �δ < 1

such that for every δ > �δ we have pBi < rL for some i.

We have established that pBi = rH for some i, pBi = rL for some i, and pBi < rL

for some i. Assume without loss of generality that pB1 = rH , pB2 = rL, and pB3 < rL.
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Since pB3 < rL is an optimal price offer, we have

V B =
X

τ∈{H,L}
µτ [(uτ − rτ )I(pB3, rτ ) + (1− I(pB3 , rτ ))δV B] + δ(1− α)V B = δV B

and because δ < 1 this implies V B = 0. Since the expected payoff to a buyer is equal

for all three price offers we have

µH(uH − cH) + µL(uL − cH) = uL − rL = 0,

which implies µH = (cH − uL)/(uH − uL) and rL = uL. Hence

rL = cL + δ
αλB1(rH − cL)
1− δ(1− αλB1) = u

L,

which implies

λB1 =
(1− δ)(uL − cL)
δα (cH − uL) .

Furthermore, since

µH =
KH

KH +KL
=

qHZL

qHZL + qLZH
=

qH(λB1 + λB2)

qH(λB1 + λB2) + qLλB1
,

we have

λB2 = λB1
cH − u(qH)
qH(uH − cH) .

The proof of P4.1 established that λB1 > 0, λB2 > 0, and λB1 + λB2 < 1 for δ near

one. ¤
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Figure 2
Surplus (as frictions vanish) under centralized and decentralized trade 
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Figure 3
Efficient surplus and surplus under centralized and decentralized trade 
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