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Abstract

In this paper we analyze the behavior of Verblunsky parameters for hermitian linear func-
tionals deduced from canonical linear spectral transformations of a quasi-definite hermitian
linear functional. Some illustrative examples are studied.
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1 Introduction and preliminary results.

Spectral transformations appear in the literature related to bispectral problems, self-
similar reductions, and factorization of matrices (see [1], [12], [18], [21]). They are
connected with perturbations of linear functionals in the linear space of polynomi-
als with complex coefficients, Jacobi matrices as a representation of the multiplica-
tion operator in terms of orthogonal polynomial bases, and LU/QR factorizations
of such matrices.

The extension to other contexts has been started in [2] where polynomial perturba-
tions of bilinear functionals have been considered. In such a situation, the represen-
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tation of the multiplication operator with respect to an orthogonal polynomial basis
is a Hessenberg matrix.

In the case of bilinear functionals with respect to probability measures supported on
the unit circle some linear spectral transforms have been introduced in the literature.
In particular, polynomial and rational perturbations have been considered in [6], [7],
[9], and [11] where explicit expressions for polynomials orthogonal with respect to
the perturbed measure have been obtained in terms of the orthogonal polynomials
with respect to the initial probability measure.

Later on, following the ideas of the spectral transformations associated with the
spectral measures of Jacobi matrices (see [1], [18], [21]), in [3], [4], [13] some
analog problems have been considered, mainly from the point of view of the Hes-
senberg matrices and their LU and QR factorization, respectively.

Suppose L is a linear functional in the linear space A of the Laurent polynomials
(A = span{z"},cz) such that £ is Hermitian, i. e. ¢, = (L,7") = (L,z7") = C_,,
n € 7. Then, in the linear space P of polynomials with complex coeflicients, a
bilinear functional associated with £ can be introduced as follows (see [5], [10])

(P(2),9@); = (£ p(aE™) )
where p,q € P.

In terms of the canonical basis {7"},5, of P, the Gram matrix associated with this
bilinear functional is

Co C1 *++ Cp
C_1 €y Cpq -

T=|: = " , 2)
CnCopy1 - Cp

1.e., a Toeplitz matrix [8].

The linear functional is said to be quasi-definite if the principal leading submatrices
of T are non-singular. If such submatrices have a positive determinant, then the lin-
ear functional is said to be positive definite. Every positive definite linear functional
has an integral representation

(L, p(2) = fT p(2)do(2), 3)

where o is a nontrivial probability Borel measure supported on the unit circle (see
[5], [8], [10], [17]), assuming ¢y = 1.



If £ is a quasi-definite linear functional then a unique sequence of monic polyno-
mials {®,},-, such that

<(Dn’ (Dm>L = knén,m’ (4)

can be introduced, where k, # O for every n > 0. It is said to be the monic orthog-
onal polynomial sequence associated with L.

Let o be a non trivial probability measure supported on the unit circle T = {z € C :
|zl = 1}. Then there exists a sequence {¢,},o of orthonormal polynomials

(D) =k, 7"+ o, K, >0,

such that
f @n(€)pm(€®)do(6) = Sy m,n > 0. (5)

The corresponding monic polynomials are then defined by

@) = 2,

n

These polynomials satisfy the following recurrence relations (see [5], [8], [17],

[19])

(Dn+] (Z) = Z(Dn(Z) + (D,H_](O)(D:;(Z), n= 07 1? 25 (6)
D), =D(2) + D1 (02P4(2), n=0,1,2,..., (7)

Here @;(z) = 7'®,(1/7) is the reversed polynomial associated with @,(z) (see [17]),
and the complex numbers {®,(0)},>, are called reflection (or Verblunsky) parame-
ters. Notice that |®,(0)| < 1 for every n > 1.

It is well known that given a probability measure o supported on the unit circle,
there exists a unique sequence of Verblunsky parameters {®,(0)},~; associated with
o. The converse is also true, i.e., given a sequence of complex numbers {D,(0)},>1,
with ©,(0) € D, there exists a nontrivial probability measure on the unit circle such
that those numbers are the associated Verblunsky parameters.

The family of Verblunsky parameters provides a quantitative information about the
measure and the corresponding sequence of orthogonal polynomials.

The measure o can be decomposed into a part that is purely absolutely continuous
with respect to the Lebesgue measure ;’—ﬁ and a singular measure. We denote w = o,
and thus

do(0) = w(@);l—i + do4(0).



Definition 1 [17],[19] Suppose the Szegd condition,

do
Jﬂmgww»——>—w, (8)
T 2
holds. Then, the Szegd function, D(z), is defined by
1 i0
D) = exp|— f € T oa(w(0))de). )
4 ) €? -z

The Szegd condition (8) is equivalent to Yo, |®,(0)]> < oco.

On the other hand, the measure o is said to be of bounded variation if

D 19,41(0) = @, (0)] < oo
n=0

holds.

The Christoffel function associated with a nontrivial probability measure o, sup-
ported on the unit circle, is defined as follows. Let introduce

A,({) = min {flzr(eie)lzda(é), degm < n,such that 7(0) = 1} :
Notice that 4, is a decreasing function in #, and thus we can define

Aeo(§) = 1im 4,({) = inf 4,({)

:inf{ f In(e®)*do(0), meP,suchthat n(l) = 1}.

There is a relation between the Christoffel function and the family of Verblunsky
parameters associated with a given probability measure o

Theorem 2 [17] Let o be a nontrivial probability measure supported on the unit
circle, and let {®,(0)},51 be the corresponding family of Verblunsky parameters.
Then,

() IflZ1 > 1,2.() = 0.

(i) Iflg] = 1, A(Q) = o({Z)).



(iii) If Yooy |@,(0))* = oo, then A() = 0 for all £ with |{| < 1.

@) If 3,7 |D,(0)* < oo, then Aoo(0) > O for all £ with || < 1.

We also have

() =

1
K., Q)

where K, (z,y) is the n-th reproducing kernel polynomial associated with {¢,},,,
defined by

n

n._ D.(V)D:
Ki(z,y) = Z ¢ Mepj(2) = Z w

j=0 j=0 J
with k; = ||®,|I* = (k;(0))2. There is a direct formula to compute K,(z, y),
Theorem 3 (Christoffel-Darboux Formula) For anyn > 0 and z,y € C withyz # 1,

@ @) 1(2) = i1 (V)Pnr1(2)
1-yz '

Ku(z,y) = Z ©,0)¢,(2) =
j=0

The functions

q;(0) = f ('Dj(Z)da(z), tegT, j=0, (10)
T2

are called functions of second kind associated with 0. We also denote

(I).
0t = fT t 19D 402) = () g0

For a class of perturbations of the measure o, some properties of the perturbed mea-
sure 0 have been studied ([3], [6], [12], [14]), such as the corresponding families
of orthogonal polynomials, and necessary and sufficient conditions for the definite
(quasi-definite) positiveness of the new measure &, assuming the definite (quasi-
definite) positiveness of 0. Three canonical cases have been studied.

(i) Ifdé = |z—al*do, |z| = 1, then the so-called canonical Christoffel transformation
appears.

(i) If do = do + mé(z — z0), |zol = 1, m € R,, then the so-called canonical Uvarov
transformation appears.

(it)) If do = ﬁdo, |zl = 1, and |a| > 1, then a special case of the Geronimus

transform appears.



In this work, we analyze these transformations from the point of view of the fam-
ilies of Verblunsky parameters. We get explicit expressions for the Verblunsky pa-
rameters associated with ¢ in terms of the parameters associated with o-. We also
study if the measure ¢ is of bounded variation, provided that o is.

The structure of the manuscript is as follows. In section 2 we analyze the behavior
of the Verblunsky parameters when a Christoffel canonical transform of a probabil-
ity measure supported on the unit circle is considered. Section 3 is focussed on the
Uvarov transformation in a more general framework than one analyzed in [20]. A
particular example of the Geronimus transform for the Lebesgue probability mea-
sure is studied.

2 The Christoffel transformation.

Let a be a complex number. Consider the Hermitian bilinear functional

P Dy ={z-a@)p,z-a)g),, p,q€DP. (11)

If L is quasi-definite, then necessary and sufficient conditions for £ to be quasi-
definite have been studied in [14].

Proposition 4 [14]
(i) Lc is quasi-definite if and only if K, (a, @) # 0 for every n € IN.

(i) If {5,,},,;0 denotes the sequence of monic orthogonal polynomials with respect to
Lc, then

ey _ 1 (DnJrl(a’)
D,(z) = —a (®n+1(Z) - mKn(Z, CV))- (12)

Lc is said to be the canonical Christoffel transformation of the linear functional L.

Proposition 5 Let {®,(0)},>1 be the Verblunsky parameters associated with {®,,(2)},>0,
the monic orthogonal polynomial sequence with respect to L. Then, the Verblunsky
parameters associated with {®(z2)},0, are given by

—_— _ d)nﬂ(a)(bfl(a) _ (Dn+l(0)
(Dn(o) - Q’ann(a, a,) 0% i

A
=

(13)

Proof. From (12), the evaluation in z = 0 yields



q)n+l (a') -

6n(O) = _a_l
K.(a,a) H

(Dn+1 (0) -

‘Pj(O)SOj(OZ)] :
Applying the Christoffel-Darboux formula, we get

(Dn+1(a/)
K, (a,a)
_ Pun(@@(@)  D,11(0)
B ak, K, (a, ) a

®A0>=—a*(®mgan—

¢Z(O)w2(a)) (14)

(15)

since ®;(0) = 1. [ |
Another way to express (15) is

[a®@y(@) + Pps1 ()P ()] P (@) D,(0)

Cn(0)= ak, K, (a, o) a
| @i 1 <Dn+1(0)+d>n(a)<1>2(a)
|k, K, (a, @) @ K, K, (2, )’

i.e., there is a linear relation between both families of Verblunsky parameters.

Notice that, if |@| # 1, from the Christoffel-Darboux formula, we deduce

_ #n@)g(@) — lePPeu(@)¢n(@)

Ky(a, @) = [aP ;
_ D) = |l |D ()
k(1 —|al?) ’

and the expression for the Verblunsky parameters {&5:,(0)},,2 1 in terms of @, («) and
@ () is therefore given by

~ D, (@P;(@)(1 =) ©,01(0)
QwFMWMWHWmMW a
_ [a®u(@) + @1 (0P (@)]P;(@)(1 = [af)  D,.1(0)
B a[|D; (@) — [, (a)?] a
_ 1 (@0,(@)®;(@) + i (0IP;(@)P)(1 = la)
Ca |0;(@)2 - |aP|®, ()]
19,1 (0@ + [P D1 (0)| D, ()
a |0:(@) — [P |D,(a)P




Thus,

D, ()@ (@)(1 = |af’) + @1 (O)[P(@) = D, ()]]

®,(0) =
© D () * — || D, (a)]?

As a conclusion, 6,1(0) can be expressed as

@,(0) = A(; n)®,,1(0) + B(a; n),

with
~allo, () - (@)
Alas) = |©2(@) - |aP|®, (@)
T N1 — 12
Blasm) = @, ()@ (@)(1 - |af?)

0y (@) ~ laPI®, (@)

On the other hand, if |a| = 1, we have

D1 (D@, (2) = Pni1 (@)Pn11(2)

Kn(Z, a) = 1—az
01 (@)1 (2) — &' ni @)y, (2)
-« ’

and applying L"Hospital’s rule, we obtain

K@, @) = 1im K, (z, @) = @91 (2)¢,1(2) = @ prs1 (@)1 2),

= 0P 1 (@)@, (@) = " Pn1 (@)@, ().

Therefore
B.(0)= kn+}1 D, 1(a)D; (@) i B ®n+1(0)’
ak,[a®, (@)D, (@) — @Dy (@)D, | (@)] @
_ D1 (@)Di(@)(1 = D1 (0)]%) )

ala®, (@)D, (@) — &" D,y (@)D, ()] @
with @ (@) = o' [(n + DD, (@) — (P, )"(@)].

Theorem 6 ([15], [16]) Suppose S5 1B, (O < 0o and 35 |,1(0) — @,(0)] <
oo, Then, for any 6 > 0,

sup |D) (2)] < o0
n;d<arg(z)<2m—o6



and away from z = 1, we have that lim,_,., ®},(z) exists, is continuous, and equal to
D(0)D(2)~". Furthermore, du, = 0 or else a pure mass point at 7 = 1.

Proposition 7 Suppose Yoo |@,(0)* < oo and Y72 |®,,41(0) — ©,(0)| < co. Then,
forla| <1, a #1,

(i) X0 [0,O0)F < oo.

(i) 220 | Dps1(0) — D,(0)] < co.
Proof.

(1) We denote
@%@
T ek, K@)

Let assume || = 1. Notice that ®,,,;(@) = @""'®’ (@) and, from Theorem 6,
lim,,_, ®*(a) = D(0)D(a)™"!, where D is the Szeg function defined in (9). This
also implies that 1/K,(a, @) = O(1/n). For || < 1, notice that ®,(a) and @ (@)
are O(a”) and 1/K.(a,a) = A(a@) > 0, where A is the Christoffel function
associated with o. _

Then t,,, is O(1/n). Since ", |D,(0)]* < oo and t,,,; is O(1/n), then Do |D,(0)]> <

Q.

(ii) Since Y7 |®,+1(0) — ,(0)| < co, we only need to prove that

[Se]
Z |tn+1 - tnl < 00.
n=0

Notice that, from the recurrence relation
O, () - D (a) = D,y (0)aD,(a).

Then O], (a) — @, ()| = O(|D,.1(0)]) and therefore

(D;,,,(@) - D, ()D,, ()| _(|D,,1(0)
‘ k, K, (e, @) ‘0( n ) (1o
On the other hand,
1 1\ 0@ (@] (1
(Kn+l(a’ a) - Kn(aa Q)) kn - 0(;) (17)

Thus, from (16) and (17) we get

S (LG TN

n2



and, therefore,

M

|tn+l - tnl < oo.

(=]

n=

[
3 The Uvarov transformation.
3.1 The bilinear functional {p, q) ;,, :={p,q), + mp(@)q(@).
Now consider the bilinear functional
P Dr, =P+ mpla)g(a), p,qeP, (13)

with m € R and |a| = 1. Thus, L is also hermitian. This transformation of £ is a
particular case of the Uvarov transformation (see [12]).

We have
Proposition 8 [/2]
(i) Ly is quasi-definite if and only if 1 + mK,_(a,a) # 0 for everyn > 1.

(i) If{U,},0 denotes the sequence of monic orthogonal polynomials with respect to
Ly, then
m®,(a)

Un(@) = ©u(2) = 7 K, (@, Q)Kn—l(z, ). (19)

Thus, it follows

Proposition 9 Let {®,(0)},5, be the Verblunsky parameters associated with {®,,(2)},>0,
the monic orthogonal polynomial sequence with respect to L. Then, the Verblunsky
parameters associated with {U,(2)},>o, are given by

m®,(a)®; (@)

Un(0) = ©,(0) - K, (1 +mK,_(a,a))

(20)

Proof. From (19), evaluating at z = 0, we obtain

10



B . mD,©)
Un(0)=P,(0) = T— K, (@) K,-1(0, @), (2D

_ mq)n(a) T /N %
=0(0) - 7 K (@ a)%—l(“)%—l(o)’ (22)
m®,(a)P;, ()

kn—l(1 + mKn—l(a" Q’)) .

=0,(0) - (23)

Using a formula for the Verblunsky parameters associated with & given by Simon
in [17], this result was also proved in [20], as follows,

Theorem 10 Suppose o is a nontrivial probability measure on the unit circle and
0 < v < 1. Let & be the probability measure formed by adding a mass point
=€ eTtoo asfollows

do = (1 —y)do + ydy.

Then the Verblunsky parameters associated with & are

(1 = @, ()"
(I =y +Kud. 0

®,(0) = ®,(0) + Pn1(D)@,(0). (24)

Notice that in the above definition the probability character is preserved. Further-
more, K, /K,_; = 1 —|®,(0)]%, so (20) is equivalent to the expression (24). There is
also an analog of Proposition 7 for the Uvarov transformation on [20], which has
been proved in a more general case with m masses.

In addition, observe than (23) also reads

B m[a®,_ (@) + ©,(0)D,_,(a)]D,_,(a)
Un(0) = ,(0) - k(1 + mK (@) ;

or, in other words,
U,(0) = Ay(a; n)®,(0) + By(a; n),

with
m|®:_ ()
A 5 = 1 - - )
vl == e mKy (@ @)
ma®d,_(0)d*  («a
B ()P, (@)

kn—l(1 + mKn—l(aa CZ))

11



3.2 The bilinear functional {p, q)LU =(p,q), + mp(a)g(@!') + mp(&‘l)@.

Now consider the bilinear functional
(P, s, =P @)+ mpl@)g@™") + mp@ @), p.geP,  (25)
with m € C and || # 1. Thus, L is also hermitian.

Proposition 11 [3] The bilinear functional associated with L is quasi-definite if
and only if

1+ mK,(a,a! mK,(a, a
A = ( ) (@, @) 0.
mK,(a ', a") 1+mK,(@a"', a)

foralln > 0.
Assuming the conditions of the above proposition we get

Proposition 12 /3] The orthogonal polynomial sequence corresponding to Ly,
{Vn(z)}nzo’ is given by

V(@) = @, (2)—mlA,@p(@)+ B, @p(@ K1 (2, @) =m[C, D, () +D, (@ 1K, 1 (2, ).

(26)
where
—[1 + mK,_ (@
An: [ +mK, 1(0( 7a)] (27)
An—l
mK,_(a, )
LS G 28
A (28)
-mK,.(@',a™)
C,= 29
A (29)
1 K, a!
Dn: + mK, l(a’a ) (30)
An—l

with An—l = |m|2Kn—l(d'_l’ @_I)Kn—l(a’a CY) - |1 + mKn—l(a', a'_l)lz-

Notice that D, = —A,. Then, the Verblunsky parameters {V,(0)},; are

V,(0) = @,(0) — m[A, D, () + B,®,(@ g}, (0)¢g:_ (@)
— m[C,D,(@) + D,®,(@ "Hlp:_; (0’ _ (@). (31)

Assuming that 3°°°, |®,(0)]> < oo, we now study the behavior of V,(0) when n —
0. If |a| < 1, then we know that lim,,_,, K, (@, @) < oo and lim,_,., K,(@',a"!) =

12



o0. Notice that, from [17]

Kn(&_19 a) | |2n Kn(a9 d’_l)
_— = .
K,(a ', a™) K. (a,a)
Thus
: Kn(dl_l s a’) . 2n Kn (a/a d/_l)
Iim ———— = lim |a|"——=
n—eo Ky(@ @) noe K.(a,a)

Since K, (o, @ ") is O(@™) and |a| < 1, we get

~—1
lim M - 0.
n—eo Ky(a !, ah)

Kp-1(@a™h)

X, 1@ e’ since Kn(C_Z_l, CZ) = Kn(a, C_Z_l).

‘We obtain the same result for
Therefore, if we divide by K,_;(@™',@"") in the numerator and denominator of A,,,
and take the limit when n — oo, then we observe that the numerator becomes 0,
and only |[m|*K,_ (e, @) survives on the denominator. Hence, A, = 0 when n — oo.

The same fact occurs with B, and D,. In a similar way, we obtain that C, ~

k) 48T 0

As a conclusion, when n — oo

D, . _
Vu(0) ~ @,(0) + #g)m%_l(())soﬁ_](a) (32)
=0,(0) + %@_ 100D, () (33)

kn— 1 Kn— 1 (a’ a’)
D,(a)P;_, ()

=d,(0 .
©)+ K1 K,-i(a, @)

(34)

Notice than (34) has the same form as (13). Therefore,
Proposition 13 Suppose Y72 |©,(0)]> < o0 and 372 |®,41(0) — @,(0)| < o0. Then,
(D) oo [Va(0)* < oo

(1) Xnto Var1(0) = V,(0)] < oo

13



4 Examples.
4.1 The case do = % +mé(z — )+ mé(z—a").

Proposition 14 Let dG = ‘21—701 +mdé(z—a)+mé(z—a'). Then, the sequence of monic
orthogonal polynomials with respect to & is given by

~1 -1

_“_Z) (35)
— az

1-— a—nzn

1
Vi(2) = 2" = m[A,d" + B,a™"] ( ) — m[C,a" + D,a™"] ( 1

1—alz

where

A, = _(1 + nm)/dn(a/)’

_ n—1
m
o™,
T 2
Cn = _lal_Z(n_l)Bn’
Dn = _Am

B, =

2
-2(n— -1
and d (@) = |mPle>00 [ S5 o[ =11+ nmf

Proof. It is well known that in this case ®@,(z) = ¢,(z) = 7" as well as ®,(0) = 0,
n > 1. Then, from (26), we get

Vn(z) = Zn - m[Ana/n + Bnd’_n]Kn—l(Z’ d,_]) - m[Cna’n + Dn&_n]Kn—l(Za a)

1 _ —-n_n 1 _ Ahn
= —mA" + Ba "] —2 | - m[C,a" + Dya " [ —22 .
1-a'z I -az

The values of A, B,,C,,, D,,, and d,(«) follow from (28) - (30) since K,_(a, @) =
il K@ a™) = i lel™, and K, (@', @) = Ky(@.@) =0, ®

Now we obtain a necessary and sufficient condition for the existence of {V,(z)},>0-
The condition in Proposition 11 becomes

l+mn+1) mY}_,la*

2 —_
2 Yo lal 1+ in(n + 1)

2 [ 2
= L4 (m i)+ 1)+ P+ 1) - 2 [Z |cx|2k} :

2n
lar* | -

14



with |a| < 1. Notice that this expression is # 0 if and only if

Im|*
|a,|2n

. 2
[Z |a|2’<} # 1+ (m+m)n+ 1)+ mP(n + 1),
k=0

1.e.

|m|2 (|a|2n+2 _

12
o\ aP =1 ) # 1+ (m+m)n+1)+mPn+ 1>
alt\ ||t —

If m € R, the above condition becomes

[m(n+1)+ 11>

2
m2 |a,|2n+2 -1
el \ la? =1 )~

so we need

2n+2_1
min+ 1)+ 1 % m(m_

W 1), for every n > 0.
a —

lar]

Corollary 15 The Verblunsky parameters associated with {V,(2)},s0 are given by
V.(0)=—-(m[A,a" + B,a™"] + m[C,a" + D,&a™")). (36)
Proof. It follows immediately by evaluating (35) at z = 0. [

Now we give an estimate for V,(0) when n — co. Suppose |a| < 1. We have

Vau(0) = —=(mA,, + mC,)a" — (mB, + mD,)a™".

But
o" n—1
~(mA, + mCya’ = 2o m + almf® + mPla) 20 ) ja|,
i@ k=0
_ -1
a2 m+ niml) + im0 o
- — - ,
Im|* 3120 |l — |al*~2[1 + nm|?
n |m|2
1-|al?
lmp>_’
1-|a?
= al’l
On the other hand,

15



a1
a1

1 1—|a|?n ’
|m|2m|zm% — 1+ nmf?

~|m? ~ (m + nlm|*)

~a"(mB, + mD,)=a"

_|mp?
T

~ (m + nlmf)

~

e
1-|af?

n — 2 _ 2
a (1+ (i + nlmP)(1 = |o] )),

TR m?

|m]?

n

© (1 + (1~ 1aP)).

|

~ —

As a conclusion,

Vu(0) ~ Ni(a)na”,

1-laf?
a2 *

where N, (@) = —

4.2 The case do = =2 + m§(z — @) + mS(z — @), m # 0.

lz—al? 27

This is an example of a Geronimus canonical transformation in the sense that the
Christoffel transform of this hermitian linear functional is the Lebesgue measure.
Proposition 16 Let do = |z—1a|2 g—g +md(z—a)+mo(z—a"), with |a| < 1. Then, the
sequence of monic orthogonal polynomials with respect to & is given by

a"(1 = |a)’[mP(A =)' 2)"" + i+ mP(1 = |o)]

ImPla|=>+2(1 = |al?)* = [1 + m(1 — al)I? ’
(37)

Vn(Z) — Zl’l _ azn—l _

forn> 1.

Proof. It is well known that the sequence of monic orthogonal polynomials with

1 db e o
respect to ol 2x 1S 8lven by

O,(z) =" — """, la| < 1,n > 1.
Then, from (26) we have
Vi(2) = "—a"' =mB,a™"(1-1a|)K,-1(z, @ ") - mD,a"(1-|a)K,-1(z, @). (38)

since ®,(a) = 0, n > 1, and (@) = a (1 — |af*). Notice that in this case
ko = ||®ol> = —, aswellask, = 1,n > 1.

-2
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We also have K,,_;(z, @) = o

and, as a consequence,
~—1 ~—1 1 2
K, (o,0) =K,_((a,a ) =K,.1(@,a) = o - I —lal.
0

On the other hand, from the Christoffel-Darboux formula we get

Qi (@)D} (z) — Dy(@ )Py (2)

=—1
K, .(z,a™ )= (1 -a2) )
B _(a,—n _ C_l’(l’_n+l)(Zn _ a,Zn—l)
- (1-a'2) ’
_ =@ = e (A = laP)
B l-alz ’

(@ '2"'(1 = laP).
As a consequence,

K@ ',a")= D@ Hdp@") - D@ HPu@ ")

(I-aa) ’
B —(CZ_" _ C_ZCZ_"H)(C_Z_n _ CZC_Z_nH)
(1 —lal™) ’

_ a1 = ey
- L—lal
= a1 = laP),

since @;(z) = 1 — az. Therefore

_ m(1 —|al)
" mPlal 22 (1 = [a)? |1+ m(1 — o)

and

b - 1+ m(1 - |aP)
" mPlal" 221 - )2 - 1+ m(1 - o)

Then, (38) becomes

imP(1 = lol*Y’a™(@'2)" " + m[1 + m(1 —|aP)la™"(1 ~ |a)?
ImPlal=>*2(1 = |al?)* = |1 + m(1 - |aP)P?

Vn(Z) — Zn _ a,Zn—l

17



which is equivalent to (37).

The existence of {V,(2)},>0 is determined by

l+m(1=laP) @ —|eP)

mla| 21 = o) 1+ m(1 - |af)

1+ (m+m)(1 - o) + ImP(1 = |a*)* = |mPle]™"**(1 = |a?)* £ 0
In other words,

1+ (m+m)(1 = o) + |mP(1 ~ |a)?
Im>(1 - |al?)? ’
1+ (m+ )1 = |a) + ImP(1 = |of*)?
Im>(1 - |al?)? ’
| In Lrmem(i—loPy+imf(1-laP)?

Im>(1-|af?)?
nxl-—
2 In|a]

|a,|—2n+2

(-2n+2)In|a|#1In

In particular, if m € R and |a|*> = 1, the above condition becomes

1
29

in(1+2)

m

14— m
n#* n2

1e. )
In(1+2)

IN.
In2 ¢

Corollary 17 The Verblunsky parameters associated with {V,(2)},>0 are

a”'(1 = |al?)*[im + 2lmP(1 = |o*)]
mP(1 =[P = [1+ m(1 - aP)P

a™"(1 = |al)’[m + lmP(1 - |o*)]
Imle|~2+2(1 — |a?)? — |1 + m(1 — |/

Vi(0)=-«a

Vu(0) =— n>2.

Proof. It follows immediately evaluating (37) at z = 0.

Finally, we obtain an estimate for V,(0) when n — oo,

18



From (37), the coefficient of z*! is

allmPlal2(1 = |af*)? = |1 + m(1 - |a»)]
[m?|la|=2+2(1 — |a?)? = |1 + m(1 — |a]?)]?
a'(1 -l [ImP*(1 — ||l ">
ImPla|22(1 = |a?)? = |1 + m(1 - |a|?)]*’
_mPPele (1 - |o?)? - all + m(1 — |a)]?
~mPlal" 21 — Ja?)? = |1 + m(1 — o))’
_mlPa(1 —|a?)? - alal®|1 + m(1 — o)
mPla( - |e)? - 1 + m(1 - o)’
1

~ —

[0

On the other hand, the independent term is

B m(l + m(1 — |a/|2))(1 - |a|2)2a” 1

~ mPlal (1 = [aP)? = 1 + m(1 = [aP)P [al?”’
m(l + m(1 — |a|2)) "

T ImPlep

9

1
=- (1 + m(1 - |a|*)a"
la|*m

In other words,

Vu(0) ~ Na(a)”,

where Ny(a) = 1 — L2m

mle*
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