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1. INTRODUCTION

This paper proposes a testing procedure for choosing significant variables in nonparametric regres-
sion. The test only needs a smooth nonparametric estimator of the regression function depending
on the explanatory variables which are significant under the null hypothesis. In contrast to other
alternative procedures, it is able to detect contiguous alternatives converging to the null at the para-
metric rate n~1/2. The asymptotic null distribution of the test depends on certain features of the
data generating process and, therefore, an asymptotic test is difficult to implement except in rare
circumstances. We propose resampling procedures, in order to estimate the critical values of the
test, based on wild bootstrapping of the nonparametric residuals. The method can also be applied
to test other restrictions on the nonparametric regression curve, like partial linearity, monotonicity
or additivity; and also restrictions on other nonparametric curves, like conditional independence.

There is a large literature on consistent specification testing, consistent in the direction of general
alternatives, based on two leading methodologies. On one hand, there have been proposed tests
based on some distance between the fitted nonparametric regression, using some smoother, and the
parametric fit under the null hypothesis, see e.g. Eubank and Spiegelman (1990), Hirdle and Mam-
men (1993), Horowitz and Hardle (1994), Gozalo (1993), Hong and White (1995) and Zheng (1996)
among others. On the other hand, other authors have proposed tests based on a comparison between
the empirical integrated regression and the estimated parametric integrated regression function un-
der the specification in the null, see e.g. Brunk (1970), Hong-zhy and Bin (1991), Sue and Wei
(1991), Stute (1997), Andrews (1997) and Delgado et al (1998) among others. These tests are based
on a marked empirical process and, in general, their null asymptotic distribution depends on certain
features of the data generating process and, unlike the tests based on smoothers, asymptotic critical
values are difficult to compute. Related to this method are Bierens’ tests (see e.g. Bierens (1982,
1990) and Bierens and Ploberger (1997)). The first testing methodology resembles the goodness-
of-fit tests of distribution functions based on the distance between nonparametric and parametric
estimates of the probability density curve (see e.g. Rosenblatt (1975)). The second type of tests
resembles the tipical goodness-of-fit tests of distribution functions based on some distance between
the empirical distribution function and the fitted distribution function under the specification on
the null (see e.g. Kolmogorov (1933), Cramer (1928), Smirnov (1936) and v. Mises (1931)).

The two methodologies discussed above, which have been developed for specification testing

of parametric regresion functions, are applicable to test different restrictions on nonparametric



regression curves. Significance testing is a relevant example of restrictions to be tested, since
the “curse of dimensionality” motivates to reduce the number of explanatory variables in the
regression curve as much as possible. Given a random vector (Y, W), where Y is scalar and
W= (X2, X = (X(l),X("’),...,Xm)l and Z = (Z(l),Z(Q),...,Z(P))I are R? — valued and

RP — valued respectively, we want to test
Ho:E(Y |W)=m(X) as.,

where m (-) = E(Y|X =-). The alternative hypothesis, Hy, is the negation of Hy. Fan and Li
(1996) have proposed a significance test inspired in the first methodology discussed above. That is,

the null hypothesis can alternatively be written as,
. y 2 A G
Ho: E{|E(Y | W) -m(X)¢(W)} =0,

where ( is a suitable weight function which does not change sign in the support of W. The test statistic
is an estimator of the above expectation, which employes smoothers to estimate the nonparametric
expectations, and the weight function ( involves the density function of X and W. in order to
avoid the stochastic denominators in the resulting statistics. So, this testing procedure requires to
estimate two nonparametric regression curves with g and p+ ¢ regressors respectively, and to choose
two different bandwidth numbers for each regression, one converging to zero faster than the other.
The resulting test statistic has the form of a degenerate U — statistic converging to a standard
normal under Hp. In this paper, we propose to apply the second methodology, which only requires
to estimate E (Y | X) using smoothers. Hereforth, for two vectors v and w of equal dimension,
“v < w” means that each coordinate of v is less or equal to the corresponding coordinate of w and

1(A) is the indicator function of the event A. Notice that,
Hy :E[Y —m(X)|W]=0a.s.
& Hy: E{[Y —m(X)]1(W <w)} =0, Vw=(z,2/) e W, (1)
where W is the support of V. The expectation in (1) can also be written as,
/w E(Y|X =z,Z=2)dFy (z,2) - /w m(z)dFw (z, 2), (2)
—oo -

where Fyyr is the distribution function of W and, hereforth, for a vector v and some function g,
Y g(u)du= [ 1(u<v)g(u)du. Hence, (2) is the difference between the integrated regression

funcion of Y given W and the integrated regression function of Y given X. Only under Hy, this



difference will be equal to zero for all w € W. Let f (-) be the marginal density function of X. Since

f(x) > 0 Vz, the hypothesis Hp in (1) can also be written as
Ho: E{f(X)[Y —m((X)]1(W <w)} =0, Vw e W. (3)

The reason of writing Hp in this form is purely technical, in order to avoid the random denominator
in the conditional expectation. The same feature has been used by Powell et al (1989), Robinson
(1989), Zheng (1996) and Fan and Li (1996) among others.

We propose tests statistics based on functions of estimates of the expectation in (3). In next
section we present the test statistics, and we show that the resulting asymptotic tests has non trivial
power under contiguous alternatives converging to the null at the parametric rate n~1/2, However,
asymptotic tests cannot be implemented except in exceptional circumstances, since the asymptotic
distribution of the statistic under the null depends on unknown features of the underlying distribution
function of (Y, ). In section 3, we propose consistent bootstrap tests, easy to implement. A Monte
Carlo study, in section 4, illustrates the properties of the proposed bootstrap tests in practice.
Finally, in section 3, we propose the extension of this testing methodology to test other restrictions
on nonparametric curves, discussing in detail a test for partial linearity and a test for conditional

independence.
2. NONPARAMETRIC SIGNIFICANCE TESTING.

Given independent observations {(Y;,1¥;) .7 = 1,...,n} of (Y, W), where W; = (X,.Z;), the ex-

pectation in (3) can be consistently estimated, when U; = Y; — m(X;) and f (X;) are known, by
1 n
n(w)=— D U; i S w),
T, (w) ~ §=1 FX)UL (W, < w) (4)

which is a marked empirical process, with marks f (X;) (Yi — m(X;)).
Applying a Central Limit Theorem argument, under Hy, /nT;, has a normal limiting finite di-
mensional distribution, with covariance structure,
Q (wlaw2) = Cov (Tn (wl) A4S (wQ))
E{f(X)?0* (W)1(W < min (wy, w2)) },

I

where w; € RP*9, j = 1,2 and 02 (-) = Var (Y | W = -). The tighness of the process follows using

similar arguments as Stute (1997). Then,

VnT, (w) converges weakly to To, (w) on D (R%*?),



where T3, is a Gaussian process centered at zero and with covariance structure Q.

Since m(X;),t¢ = 1,...,n are unknown, they are estimated by the kernel regression estimator,

1 1
m )(; =T }(1},3
) f(&)"""f; o
J#i
where
1 n
f(Xz):m; ij
Jj#i

is the estimator of the density function of X evaluated at X;, f (X;), and

) Xi — X;
Ky =K ('—h—J) .

where K (u) = []%_, k (u;). k is an univariate kernel and k is a bandwidth number. So a feasible

version of T}, is given by,

[

T (w) = y FXD U1 (W; < w) (3)

7
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1
n
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Z};‘;I‘ij(yi“yj)l(wisw)-
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The test statistic is based on some continuous functional of \/Ef“n. For instance, we can use a
Cramer-v.\Mises statistic of the form

Co=n [ Tu(w)dFiwn(w)= 3 T (W02,
i=1

RPHO

where Fiy, is the empirical distribution function of W. Kolmogorov-Smirnov statistics can also be
constructed in a similar way.

Next, we provide first order asymptotic expansions of Tn, which are very useful both, for deriving
the asymptotic distribution of the tests statistics under the null and for motivating the bootstrap

tests in next section. We need the following definitions introduced by Robinson (1988).

Definition 1 K, £ > 2 is the class of even functions, k : R9— R satisfying

: 1ifi=0
/u'k(u)du: i
R 0ifi=1,...,0-1,

k(u)=0 ((1 + |u|e+l+€)—l> , some € > Q.



Definition 2 G§, a > 0, 8 > 0, is the class of functions g : R — R satisfying: g is (b — 1)-times
continously differentiable, forb—1 < 8 < b and all u; sup,es,, J9(v) — g (u) — Q (v, W)| /v - u]lg <
h(u), for some p > 0, where Syp = {v:|lv—ul| <p}; Q@ =0 when b = 1; Q is a (b~ 1)th-degree
homogeneous polynomial in v ~u with coefficients the partial derivatives of g at u of orders 1 through
b~ 1 when b > 1; and g (u), its partial derivatives of orders b—1 and less and h (u) have finite ath

moments.
We also need the following assumptions.
Al.- fe G, for some A > 0.
A2.- me Qi, for some p > 0.
A3.- Uniformly in z, 7 (,2) = E[1(Z2 < 2) | X =] € G, for some v > 0.
Ad- E[U}] <o0
A5~ ke Keymoy. where{—1<A<fandm~1<pu<m.
A6.- (nh9)7! + nh?" — 0 as n — oc, where 7 = min (. A + 1).

Assumptions Al. A2, A5 and A6 are needed for bias reduction using “higher order kernels”
in Definition 1. as suggested by Robinson (1988). A neccesary condition, reconciling the com-
ponents of A6, is u > ¢/2, A > ¢q/2 — 1. Condition A3 is not very restrictive, since v is not
related to the conditions A5 and A6. Let us define ¢ (X;, w) = 1(X; € z)7(Xi, 2) and ¢ (X w) =

(nh?)~! E;=1, s LW S w) K5/ f(X:). The next Theorem provides first order expansions for T},.

Theorem 1 Under Al to A6, uniformly in w,

) = 3 ZU fx [ (Wi <w) - ¢(X1,w)] +0p (n71/2) 6)
l=1

= = ZUif (X)) [1(W; < w) — ¢(Xs,0)) + 0, (n—1/2> _ -
=1

Notice that, according to Theorem 1, uniformly in w
T (w) = - = ZU, )6 (Xi,w) + 0p (n71/2). (8)

Then, applying a central theorem argument, the finite dimensional distribution of 2Ty, is Gaussian

with covariance structure,

@(wl,w2)=E{ (W) £ (X)2[L(W < wy) — ¢ (X, w)] [} (W < wp) — ¢(X,w2)]}.
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Thus, /nT}, and the first term in (7), multiplied by \/n, converges weakly to the same limiting

process under Hy. The following Theorem provides an invariance principle for \/'ﬁf‘n.
Theorem 2 Under Hp, Al to A6,

VAT, (w) converges weakly to T, (w) in D (RI*P),
where T, is a Gaussian process centered at cero and with covariance structure ©.

The following Corollary stablishes the asymptotic distribution of the statistic under contiguous

alternatives of the form,

BV W g (W)
Hno:EY |W)=m(X)+ 7 @S
where Pr (|g (WW)| > 0) = 1. Define the process,
TL (w) = To (w) + S (),

where

S(w)=E{g(W) 1V S w) -6 (X,w)]}.

Corollary 1 Assume Al to A6. and Pr(jg(11")] > 0) =1, with F|g (V)| < co. Under Hy,

Cn O = / TL () dFiy (), ©)
Xy+pP
under Hy,,
Cn 2 T2 (w)? dFyy(w), (10)
X4P
and under H;.
Cn B . (11)

The process T, depends on certain features of the distribution of (Y, W) and an asymptotic test
cannot be implemented except in exceptional circunstances. This is why we propose a bootstrap

test in next section, in order to estimate the critical values of the statistic.
3. BOOTSTRAP TESTS

We propose to estimate the exact critical values of the test statistic, C,, by the quantiles of the
conditional distribution, given the sample ¥,, = {(¥;, W;),i =1,...,n}, of bootstrap statistics. We
suggest two alternative bootstrap tests, both based on resamples {(}i‘,i =1, ,n} from the non-
parametric residuals {Ui,i =1, ...,n}, where 0; = (}}Vi and {V;,7 =1, ...,,n} are random variables

such that



AT V; are bounded, iid, independent of ), and such that E(Vj) =0 and F (VIQ) =1.

This resample procedure, known as “wild bootstrap,” was introduced by Wu (1986) in the context
of estimation in heteroskedastic linear models.

The first type of bootstrap statistic is inspired in the first order asymptotic expansion (6), pro-
vided in Theorem 1, where the unobserved errors {U;,7 = 1,...,n} are substituted by the resample

{U{‘,i =1,.., n} . That is, the bootstrap statistic is
it -—
Co=S"Th(W)?,
i=1

where .
T () = = 307 (X) L% € w) - 3%, w)] (12)
i=1

Rather than obtaining the bootstrap analogs of the original statistics from a resample of the original
sample YV, = {(¥;,W;),i = 1....,n}, we are approximating the unknown asymptotic distribution of
the statistics by the conditional distribution of the bootstrap statistics computed from T,‘{ which is
the bootstrap estimator of the asymptotic expansion provided in (6). This way of approximating
the asymptotic null distribution of non-pivotal statistics has been used before, in other contexts, by
Sue and Wei (1991), Lewbel (1995), De Jong (1996) and Hansen (1996) among others.
The second method consists of using the bootstrap analogs of the statistics from a bootstrap sample
o= (VX)) i =100}, where Y] = m (X)) + Ur. This way of obtaining “wild bootstrap”
samples in a nonparametric regresion context has been proposed by Hiardle and Narron (1991) in
order to compute bootstrap confidence intervals in nonparametric regression. However, the bootstrap
method proposed here can be implemented with different badwidths, if desired. In specification
testing of parametric regression fuctions, the “wild bootstrap” has been applied by Hérdle and
Mammen (1993) in tests statistics based on smoothers and by Stute et al (1998) in test statistics

based on estimates of the integral regression function. So the bootstrap statistic is
n
A% ot 2
Cr=>_Ti (W),
i=1

where
n

Ty (w) = = S0 (V7 = " (X)) F (X)L (Wi < w), (13

i=1

and f (X)) (Xi) = (nh?) 7N T, i Yo K.



The first bootstrap method is easier to compute than the second one and needs weaker regularity
conditions in order to prove its consistency. However, unlike the second bootstrap method, the first
one is not mimicing the behaviour of the sample under the null hypothesis. So, it is expected that,
the first bootstrap test behave, in small samples, like the asymptotic tests and the second bootstrap
tests, based on the bootstrap analogs computed by a resample of the original sample under Hy, is
expected to enjoy better level properties.

Let #,, be the statistic used for testing Hp (i.. Cy,) and /7, the corresponding bootstrap statistic
used for testing Hy (i.e. C* or C?). At the a—level of significance, Hy is rejected when Mn 2 Ch1—a):
yn} = a. If under Hy,

where c;(l_a) is the bootstrap critical value, such that Pr {7‘],‘, > c;(l_a)
7ln —d Moo the bootstrap test is consistent if under Hg, Hy, or Hin, 7;, —4- 7o (ie. 75, can be Cy, or
Ko), where “—4- ” means convergence in bootstrap distribution; that is, Pr {7}, > (| Y.} —, G (€).
for each continuity point ¢ of G, where G is the distribution of 7, under Hy. So, the distribution of
7y, conditional on the sample ), consistently estimates the asymptotic distribution of 7,,. Hence. the
bootstrap critical values consistently estimate the asymptotic critical values, both under the null and
under the alternative, and the resulting test is consistent. In practice the critical values c;(l_a) can be
approximated, as accurately as desired, by Monte Carlo. That is, we generate B bootstrap samples,
{ y,:b, b=1,... B} according to our resample squeme and the corresponding bootstap statistics are
computed. Then, ¢}, _,, is approximated by c;ﬁ_a), where B~1 30 11 (f}: > c;ﬁ_a)) = a. The
larger B. the better the approximation of C;u-o)-

Under the same assumptions than in Theorem 1, we provide an asymptotic expansion of /T,
which is very useful in order to prove the consistency of the bootstrap tests. Let us define U = U;V;.
Hereforth, for a sequence of random variables D;, we say that D} = D, + o, (1) if

Pr{|D; — Dy{ > | Yn} —p 0. for all ¢ > 0.
Theorem 3 Under Hy. Hy or Hy,, and if Al to A.7, uniformly in w,
. 1 .
VT, (w) = 7 ; U f(X3) LW S w) - ¢ (Xi, w)] + 0pe (1)

Given the above theorem, the consistency of the bootstrap test follows straightforwadly from Stute

et al (1998) results, as stated in the following Corollary.

Corollary 2 Under Hy, Hy or Hy, and if AI to A.7 hold,

- d'
*
C, - Cw.



In order to show the consistency of the boostrap tests based on 7%, we show first that vaTr and

/nT} have the same asymptotic distribution. Since

.. . 1 . : . ’
VnT; (w) = VnT; (w) + —= ) m(X:) f(X;) [L(W: S w) ~ ¢ (Xi,w)] (14)
\/ﬁ i=1
we must prove that the second term on the right side of (14) is 0, (1) uniformly in w. Such term,
has a random denominator. This is why we need the following assumption.

A8.- Pr(f(X)>9) =1 for some J > 0.

Assumption A8 does not allow important distributions, like the Beta or the Normal. However,
from a practical view point, this assumption is not so damaging. Another way of dealing with
the random denominator problem, avoiding assumption A8, consists of introducing some trimming
as suggested in Robinson (1988). It will imply the choice of a trimming parameter whose rate of

convergence will be related to hA. We also need stronger conditions than A6.
A6’.- (nh""")‘1 +nh?? — 0 as n — oc. where 7 = min (p, A+ 1).

Notice that A6’ implies AB. Now, necessary conditions to conciliate the components of A6’ are
@ > q. A > g — 1. Under this condition we can prove the asymptotic equivalence, up to the first

order, between /a1 and /nT}, as stated in the following Theorem.
Theorem 4 Under Hy. H; or Hy, and if Al to A5, A6’, A7 and A8 hold, uniformly in w.
VT (w) = VaT; (w) + 0p- (1)

From the above Theorem, and applying Theorem 2.1 in Stute et al (1998), the consistency of tests

based on T is inmediate.
Corollary 3 Under Hy. Hy or Hy, and if Al to A5, A6’, A7 and A8 hold,
4 Co.

The performance of the bootstrap test in small samples is studied by means of a Monte Carlo

experiment in next section.
4.- MONTE CARLO

We have carried out a small Monte Carlo experiment in order to study the small sample perfor-

mance of the tests. The bootstrap tests are compared with the parametric asymptotic Wald’s test

10



of significance of regressors Z in a linear regression model. We consider the case g =1 and p=1,2
under different designs. We choose a Gaussian kernel and kh = Cn~'/2, C = 0.25.0.5,1,2. In all
designs, a bandwidth choice h = Cn~% is consistent with A6 when 1 < o < 1/4, and is consistent
with A6’ when 1/2 < a < 1/4. So, our bandwidth choice is consistent with A6 and is in the limit in
order to satisfy A6’. Tables 1 and 2 report the proportion of rejections in 2000 Monte Carlo samples
using 2000 bootstrap samples for approximating the critical values.

In Table 1 we examine the level accuracy of the bootstrap test. Samples are generated according
to the design

Yi=m(Xi)+Uy, i=1,..,n,

where U; ~ N (0,1) independent of Xj, Zi(l)7 Zl-(Q) which are independently generated as U (0.1).
We consider a linear model m (z) = 1+ « and a sin model m (z) = 1 +sin (yz) with v = 8,10. As v
increases, in the sin model, the regression curve has more frequencies and, hence, is more difficult to
estimate. As it could be expected, the empirical size of the Wald’s test is close to the theoretical one
in all cases. The bootstrap tests exhibit good level accuracy in the linear model for all the bandwidth
choices. However, for the sin model. higher bandwidth values produce serious size distorsions. As
in other simulation studies for specification tests of parametric functions based on smoothers (see
e.z. Delgado et al (1998)), it seems advisable to undersmooth, rather than oversmooth, in order to
obtain good level accuracy. The size properties of the test are not very affected by the dimension of

the vector Z. p. The bootstrap test based on C’,’; performs slightly better than the test based on C'x.

Table 2 examines the power properties of the test under the design
Y; =1+ X; +sin («,'Zf”) YU, i=1,..n,

with X, Zfl) Z 1-(2) . U; generated as before. We consider v = 5, 8, 10, the correlation between Y; and
V4 z-(l) decreases as v increases (such correlation is close to 1 when vy =5, t0 0.3 when y =8 and to 0
when v = 10). Therefore, the power of the Wald's test‘decreases as v increases. When v = 3. all the
tests are very powerful. When v = 8, the power of the Wald’s test dramatically decreases while the
bootstrap tests are still powerful. Finally, when v = 10, the power of the Wald’s test is very close
to the theoretical size. However, the bootstrap tests are still powerful, though bigger sample sizes
than in the previous cases are needed. The results are quite unsensitive to the choice of smoothing

parameter and the dimension of the vector Z.
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5.- TESTING OTHER RESTRICTIONS ON REGRESSION CURVES.

Different restrictions on nonparametric regression curves can be tested applying the methodology

developed in preceding sections. Suppose we want to test
Ho: E(Y|W)=mo(W) a.s,,

where mg is the regression function when certain restrictions have been imposed, e.g. mean inde-
pendence is the case considered in preceding sections. Other restrictions could be partial linearity,

monotonicity, additivity, etc. The null hypothesis can be alternatively be written as
Ho:E[(Y —=mg(W)EW)1I(W < w)] =0, Vwe W,

where £ is a weight function which does not change sign in the support of W, W. Let g be an

estimator of mg. A test can be based on the empirical process

A 1 2 3 i i
Qn (w) = = 3 (¥i = 1o (W3)) € (W) 1 (W; < w).
i=1
The choice of £. the limiting distribution of the empirical process and the construction of bootstrap
tests will depend on the particular testing problem. Here, we only discuss the implementation of
this methodoloy to tests partial linearity and conditional independence. However, application to

tests of other restrictions seem also possible.
5.1. SPECIFICATION TESTING OF PARTIALLY LINEAR MODELS.

The partially linear model is a compromise between the linear and the nonparametric regression
model. It permits to reduce the curse of dimensionality in the estimation of a nonparametric curve.
Estimators of this model has been proposed by Heckman (1986), Robinson (1988) and Speckman
(1988) among others. Consider the null hypothesis

Ho: E(Y | W) =20y +v(X) a.s. some 8§y € @ C RP,

where g is an unknown parameter vector belonging to the parameter space ©, and v is an unknown

function. The null hypothesis can be also written as,
Ho: E(Y —m(X) = (Z -mz (X)) 6| W) =0a.s., some fp € © C R?,

where mz (-) = E(Z | X = ). Fan and Li (1996) have considered a test of Hp based on a distance

between the semiparametric model fit and the nonparametric fit using the whole set of regresors W.
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As in section 2, we propose a test which only requires estimates of conditional expectations given X,
m(-) and mz (.). Given a /n — consistent estimator of 6y, 8, say, as proposed by Robinson (1988).

the test statistic is based on the empirical process,
. 1 e & .
Qn (w) = '7'2- Zlf (Xl)Ufl (Wi _<_ w) 5
=

where Uf = Y; =1 (X;)—(Z; — iz (X;))’ 6, estimates the semiparametric errors U =Yi-m(X;)—
(Z; — mz (X;)) 8o, and 1z (X;) = (nh9)~ 2, 1,j#i 2 Kij estimates mz (X;). Notice that

n
Qn(w) =Faw) = ST (X0 2 L0V S w) = 5 ()]

where T}, was defined in (5). From the above expression, it seems relatively straightforward to obtain,
under regularity conditions in Robinson (1988), the limiting process of Qr. Using similar arguments,
as in Theorem 1, we can obtain the same asymptotic expansions in (6) and (7), substituting U;
by U;. The limiting process of \/ﬁ(f_)n is straightforwadly obtained from this asymptotic expansion,
as well as the limiting distribution of a test statistic based on some functional of \/EQ,I Also,
a bootstrap test, like in section 3. can be implemented using the asymptotic expansion. Given
a bootstrap sample of the nonparametric residuals {Uf“.i =1, ...,n}, where 05* = UfV,v and V;
are random variables holding A7, the bootstrap process is identical to T in (12), substituting (:7;
by [;'f". Using similar conditions and arguments in Theorem 3 and Corollary 2, it can be showed
than the resulting test is consistent. The bootstrap analog of the process can be obtained from the
resample Y = {(Y.X;).i = l....n}. where ¥;" = Z!0, + 4(X;) + U. The consistency of the

resulting bootstrap test can be proved using similar arguments as in Theorem 4 and Corollary 3.
5.2. TESTING CONDITIONAL INDEPENDENCE
Suppose we want to test that the conditional distribution of Y given W does not depend on Z.
That is, the null hypothesis is
Ho: E[1(Y Sy)IW]=E[1(Y <y)|X] as.Vy e,

where Y is the support of Y. In fact, we are testing the significance of Z, for all y, in a nonparametric
regression curve where the dependent variable is 1 (Y < y). The null hypothesis can be alternatively

written as

Ho: E[f (X)(I(Y <)~ F(y| X)) 1(W Sw)] =0, YyeYandwe W, (13)

13



where F (- | -) is the distribution function of Y given X. The expectation in (13) can be estimated
by
A 1 = - . .
Quly.w) = =S F(X) 1 <9) - P X)] 1 (Wi < w),
1=1

where N

. 1 1

F(ylX:)= mm;un Sy Ky
is an estimator of F(y|X;). A similar empirical process has been used by Andrews (1997) for
specification testing of a parametric conditional distribution function. A test statistic is based on
some functional of \/nQ,. Using similar arguments and conditions in Theorem 1, we can obtain
the same asymptotic expansions in (6) and (7), substituting U; by U; (y) = 1(Y: < y) — F (y| Xi).
From this expansion, the asymptotic distribution of the test statistic can be derived using similar
arguments as Andrews (1997). As in section 3, a bootstrap test can be implemented based on a
bootstrap sample of the nonparametric residuals U; (y) = 1(Y; < y) — F (y| X;) and the asymptotic
expansion. The resulting bootstrap test statistic is

2 = 2 S F ()07 ) LW < 0) - B (Xiw)]

n-

where U{‘ (y) = U; (y) Vi, and V; holds conditions in A7. Then, a bootstrap test statistic can be
based on some functional of \/nQ7},. Using arguments in Theorem 3, it can be showed that, uniformly
in (y.w),

A % 1 . 4 T* T -—1/2

(v w) = ~ :;f (X)UF () [L(W; € w) = @ (X, w)] + 0pr (n7V/2),

where U7 (y) = U; (y) Vi. From this expansion. it seems relatively straightforwadly to prove that a
test based on some functional of ﬁ@,‘, is consistent. Alternatively, a bootstrap analog of Q,, can
be constructed from a bootstrap sample {(¥;*. X;),7 =1,...,n}, where Y;* are generated from the
estimated conditional distribution F (- | X;), see e.g. Cao-Abad and Gonzélez-Manteiga (1993).
Gonzalo and Linton (1996) have proposed a test of conditional independence restrictions which

does not need to use smoothing techniques. They also propose a bootstrap test, but consistency is

not proved.
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MATHEMATICAL APPENDIX

Through the appendix we use the following notation m; = m(X;), fi = f(X)), ¢;(w)
o(Xiw). ri(2) =r(Xi2), g = g(W;), 0 = E(UZ| W), fi = f(Xi), i = m(Xy), g =
n~th9y 0 9;Kij/ fio i = n~1h—0 i1 m; K/ fi, Ui = n~1h=9 S UK/ fi, T (w) = 11 < w)
and Eiji (1) = E(- | Xi, X, Xk, X1), E* () = E(-|Yn) . The proofs apply some lemmas proved in
the Lemmata.

PROQF OF THEOREM 1

Thorough the proofs, we use the fact that foreachi =1, ..n,II; (w) < 1, ¢; (w) < 1and <:‘>i (w) <1,

uniformly in w. Since the kernel is symmetric, v/nT}, (w) is equal to

% ZUifi (Hz’ (w) — &; (w)) (16)
i=1
+71-_77 ZHi(w) fi (m; —m;) . (17)

Thus, (6). in Theorem 1, follows by Markov's inequality, after showing that, uniformly in w.

E ((17)?) = o(1) . which is proved from

E Wi (@) f2 (m1 = m)?] = o() (18)
nE { fofully () Tl () (my =) (mz = 2) } = 0(1). (19)

Define r; = (m; — m;) Kj;and r = Ej (r2) . On one hand, uniformly in w, (18) is bounded by

2
FE [f? (m1 - 7ﬁ1)2] < 2}129 [(Z (m1 ml)lxh) ] (20)

‘L [(T2_7'1)]+’—E( ) (21)

nh4 h24

1 2
O('—hj;-f-hq)

since E [(7‘2 — r)2] < E(r3) = O (h?) by Lemma 3, and E (r?) = O (h2("+9)) by Lemma 5. On the

IA

other hand, (19) is bounded, uniformly in w, by an expression proportional to

1

nh2a {E [E1 [(my - m2) K12])}?,

lE[(ml ma) KIQH-# |E{(m1 - mz)KmEm[(mz—ms)Kzs]}thq

where, the first term in the last expression is O ((nhq)—l) by Lemma 3, the second one O (h") by

Lemma 3,5 dominance convergence and Lemma 3, and the last term is O (nh?7) by Lemma 5.

15



Now. we prove (7) in Theorem 1. Notice that (16) is equal to

—;—EgUifi (IL; (w) — ¢; (w)) (22)
1 < A

v ) (s (w) = 6, (1)) (23)
1 &, .

+’\7—£ ;U:f: (é" (ZL') —¢i (w)) (24)

Thus, (7) follows by Markov’s inequality, after showing that, uniformly in w, E [(23)2] =0(1) and
E [(24)%] = o(1). On one hand,
E((23)>) <E 02(,? —f)2 =0 — +n2 (25)
< Wh—-hH) | = e ) 2

applving lemmas 2 and 3 and using the same argument applied in the proof of the convergence of

the second term in (20). On the other hand,

B (1) < B [0372 (6,0~ & ) | =000, (26

applying Lemma 6 and using the same argument applied in the proof of the convergence of the
second term in (20). W

PROOF OF THEOREM 2

Given Theorem 1. it sufices to prove that n=2/2 3" U, f; [II; (w) — ¢; (w)] converges weakly to
TL (w) . which follows using standard invariance principle arguments, as in the proof of Stute (1997)
Theorem 1.1. W

PROOQOF OF COROLLARY 1

Remark that in Theorem 1 we show that /nT}, (w) = (16) + (17), where (17) = o, (1) . uniformly

in w. under Hy. H;, and H;. Then, (9) follows applying Theorem 2 and the continuous mapping

theorem. In order to prove (10), notice that under Hi,,

19 = — 2 (= B f (T () - s () + = 3o (T (w) = : (w))
= = D (¥ E (O W) i (0 () = 04 () + 1306 (T ) = 95 () 0p (1),
i=1 =1

using same arguments as in the proof of (7) in Theorem 1. Then, applying Theorem 2 and the Law

of large numbers, we obtain that \/nT}, converges weakly to Tw, + S, and (10) follows applying the

16



continuous mapping theorem. Finally, (11) follows noticing that, by Theorem 1, uniformly in w,

it

Ta(w) = S Ushillli(w) - ¢, (w)] +0p (n12)
i=1

i

&S o= ECAITVLA M () = 6, )]+ 3 3 (B (VW) = m) 511 () — o, )] + 0 (n12)
i=1 i=1

where, under Hj, by the law of large numbers, the first term of the last expression is 0, (1) and the
second one one diverges to infinity in probability, uniformly in w. Il
Since /nTy: (w) —n~ V20 Ur f; [I; (w) — ¢; (w)] is equal to

. S (T -0 £ [ ) - 6y (w)] (27)
=1

e }; Uy fi [ (w) = 8, ()] (28)
+% Zj: of (fz‘ - fi) (M (w) = ¢, (w)], (29)

it sufices to show that, uniformly in w. E* ((27)%) = 0, (1), E* ((28)%) = 0, (1) and E* ((29)?) =
0, (1) . First, uniformly in w,
> -2 1 . A 2 72 o 2
ET((@21)%) = =3 (i —m)* 72 [T (w) - & (w)] (30)

n

i=1

1o, . 2 =
< ;{;(mi_mi) f?

IN

%;(mi~ﬁ7i)2f3+%;03f3
= 0(mhn)™ +n?1),

uniformly in w, by Markov’s inequality, after applying (20) and

.y 1 1
E[02] = B liE) = 0 ().
by Lemma 3,
i . R 2
E(@97) = 23 URf2 [6.w) - b))
=1
= o0p(1),
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uniformly in w, by Markov's inequality, after applying (26), and

i

B9 = 2302 (fi-£) Miw) - 6, ()
i=1

Lv(f-s)

= 0 ((nhey™ + A2,

IA

uniformly in w, by Markov's inequality, after applying (25). Notice that the result holds under the
null and under the alternative. W

PROOF OF COROLLARY 3

By Theorem 3. /nT: (w) and n~V25 7. U f; [IL; (w) — ; (w)] converges to the same limiting

process. Then, the Corollary is proved using standard invariance principle arguments, conditional

on Yr. as in Stute et al (1998) theorem. M
PROOF OF THEOREMN 4

Notice that

B P T* ' 1 - M. «
VT (W) = VAT () + ;m [ (w) = & (w)] (31)
= VAL (w)+ (1) + = > —m) fi [l - o), @)

where, in Theorem 1. we proved that (17)= 0, (1) . The third term in (32) is equal to

n_ (i ~m;) fi (fi - f;) [Hi (w) - &, (w)}

1
. ; = (33)
1 2 (g = my) fRI (w) = ¢; (w)] .
v fi .

n (i —m;) f2|6; (w) - ¢; (w)
+%Z - [fi ]

Thus, it sufices to prove that the three terms in the last expression are o, (1) uniformly in w. The
proof is quite lengthy, thus, we simplify notation by calling ¢; (w) = ¢; and ¢, (w) = ¢,. By

Cauchy-Swartz’s inequality and A8, uniformly in w,
) s 21y 1/2
BG@) < ova{E (o -m) 7] £ |(r- )]}
+ \/ﬁh'Hv\) ,

= (7w
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by (30) and (25). Uniformly in w,

B < cB [tn -m ]| (36)
2
< 2 le (ZU&K&ZKHZKUJ (37)
k=2 =2 j=2
C n 2 n n
t— E[(g(mk—ml)l{lk) ZKI,-;K;‘;J (38)

i=2
where (37) is bounded, uniformly in w, by an expression proportional to
1 1 1 )
o | E (03K0) |+~ B (03K, Ery (K1) | + 73 |E [03K%, vy (2,)]|
1
+nh~lq |E {o3KEE, [E123 (K14) K]}

1
= O(W)’

applying lemmas 2, 3 and dominance convergence; and (38) is, uniformly in w, bounded by an

expression proportional to

ﬁ !E [(mz B ml)QKfQ” * # ‘E {El? [K13] (mg - ml)2K?2}‘

1 . 1 , )
S et ’E {Eu [(mz - mx)zl‘lfz] Kfa}l t 55 [E{ B2 [(mg - my) K] (mg —my) K3, |

1 - - % 1 a
+—— |E {Elg [Ev23 (K1y) Ki3] (mg ~ 7711)21\122}, + T IE{EIQ [(m3 - my) Ki3) (mg — ml)Kf’Q},

nhie

+m114—q |E{E12[Er2s (K14) (m3 ~ my) Ky3) (mg — m) K}
+h.%q |E{E14 (Evss [Er3s5 ((mg — my) K12) (mg — m) Kig] Kys) Kos}|

= o(1),

since the first seven terms, in the last expression, are O (h2 (nhq)_l) by Lemmas 2, 6 and dominance
convergence, and the last term is an O (h") by Lemmas 3, 5 and dominance convergence. Second,

uniformly in w, E ((35)?) is bounded by
CE [(rhl - ml)foJ +Cn ’E [(ﬁh —my) f12 (¢1 - ‘?)1) (g — m2)f22 (¢2 - 952)_” (39)

where the first term in (39) is the right side if (36) which is O ((nh‘l')—l + h”) and the second term

is bounded, uniformly in w, by an expression proportional to
n " ~ . ~
= ,E [(ml = ™) f1 (81 ~ 63) Kus (ha — ma) fo (6, — &) K24” (40)
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h2q 'E[("h m1) fi (&1 —~ 6,) Kz (1ha — m2) fa (¢ ~ ¢3)K23H (41)
—z | B [0 = m0) fu (e = ma) o (65 = 02)" K| (42)

Thus the proof of the Theorem is concluded by showing that, uniformly in w, (40) , (41) and (42)

are o(1). First, (40) is bounded, uniformly in w, by an expression proportional to

nh4q lE [(mS ~my) K13 (m3 — my) K23 (61 — ¢3) (62 — &4) K'24]|

h4q E [ my —my)? K, (6) — ¢3) K13 (62 — ¢4)K24]|

nh4q |E [(ms — my) K (ms — ma) K3, (61 — ¢3) (62 — 64)]]

h4q |E [03KF5 K23 (61~ 63) (62 — 1) Kad|

h4q |E [(m5 — muy) K15 (ms — m2) Kas (6, — ¢3) K13 (99 — 0,) K|
+—}§; |E [02K15 K25 (61 — 03) Kna (62 — ¢4) Kaa|

1
F |E [(m3 ~ m1) K% (ms — m2) Kas (é1 — ¢3) (62 — ¢4) Ka]|
h4q |E [(ms ~ m1) K15 (me — m2) Kag (63 — ¢3) K13 (83 — 04) K|
<

— 4qE {Ez3 [Er23 (|K24]) Im3 — my| K3] [ma — ma| | Kasl}

wh“‘ 'E{E12[5123(|1\241 ) 1Kzl (my —~ mz) K2 }‘

+nh4q {E [Ims —m| K34 }2
' nh4qE {Eas [El23 (1K) K 13] o3 |K23|}
1

i E{(Bs llms = mal Kool 1Bsa (61 = ¢9) Kaa))* |
hﬁq {03 (Bs [1Kasl | Bs1 (&0 = @9) Kna)]])*}

+EIEE [Ims — my| K%3] E {| Ea4 [(ms — m2) Kas] | K4/}
h4q (E {|E13 [(ms — m1) Ki5) | K1al|})?

= o(l),

since the first and second terms, in the last expression, are O (h2 (nh")_l) and the third term

0 (h2 (71h2‘?)_1) by lemmas 2, 6 and dominance convergence; the fourth term is O ((nhq)—1> by
lemmas 2,3 and dominance convergence; the fifth and sixth terms are o(1) by lemmas 2,7 and

dominance convergence, the seventh term is O (R779%!) = o (/nh?) by Lemmas 2,5,6 and dominance
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convergence; and the eighth term is O (nhzn) by Lemmas 2,5 and dominance convergence. Second,
(41) is, uniformly w, bounded by
n2h4q |E [(m5 ~my) K (mg — ma) K33 (81 — 63) Kz (65 — %3)]|
-5 h4q 12 [tma = ma)? K3, 6, = 6) (65  0) K|
gh.;q |E [(ma - mi1) K7y (m3 - ma) K33 (¢, — 32) (¢ — 33) Kas|

porery h4q |E[o3K sk (60~ 63) Kra (¢, - 64)]|

nh4q [(ms —m1) Ky (my = my) Ky, (81 = 62) K12 (65 — 65) Kas)|

+nf+4q E(ms =my) K3 (my — my) Ko, (61— 62) K12 (6, ~ 65) K|
nh4q |E [(ms = m1) Kyq (g — m2) K33 (61 — 65) Ky (6 — é3)]|
h4<1 |E [03K 11K (3; ~ 6,) Ky (82 — 03) Ka])|

}4q 1E [(my = m1) Kiq (ms — my) Koys (1 = 62) K12 (05 — 64) K3

IN

i E (B s = s oo v g — ) 16,
i E{ vz (1K) (mg — )2 [Kral*)
e {Ez [(my ~my) *K3)
712:}[74QE{E23 [1K13] [ Ka2]] 03 K3y}
nh4qE {E1s [Exzs (1Kxa]) [ma ~ my| | Koa |Kya] ey — ma| |K1a]}
oiia E{E23 [E21 (Ims — my || Ky3)) [K12]] Bas [|my — ma] | Koy|] | Kaa|)
+nhl4q E{Bxz [ms ~ my || K1) Ev (jmg - my | KD) K}
rria & 1Bus [Erzs (1 Kas]) | Koal | Kyol] 02 | K]}
EE {Evas [Img — my| |Kyal] | Eras [(ms — my) Kos]| [Kas| | K1}

= o(1),

since, the first three terms, in the last expression, are O (h2 ( 2h2‘1) ) by lemmas 2,6 and dom-
inance convergence, the fourth term is O ( ( 2h2q) ) by lemmas 3,6 and dominance convergence,

the fifth, sixth and seventh terms are 0 (h2 (nhq)_l) by lemmas 2,6 and dominance convergence,
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the eighth term is O ((nhq)_l) by Lemmas 2,3 and dominance convergence, and the nineth term is
0 (h”“) by lemmas 2,5,6 and dominance convergence. Finally (42) is bounded, uniformly in w. by
an expression proportional to

1

"—3—,;4;5 [(m1 —ma)’ Ky (61 — ¢2)2]

nzh‘,q | [(ms ~ ma) Kus (g — mo) Kag (84~ 62)° K|

+n2h4q 'E [(m2 m1)? K3y (mg — mo) Koz (¢; — ¢2) H
12;,4,, .E [‘73K13K23( - 62)’ K} “

|E [(m3 — m1) Kua (mg ~ m2) Kaa (¢ ~ ¢2) K|

h4<1
since the first term, in the last expression, is O (h2 (113}13")-1) by Lemma 6, the second term is
0 (h2 (erhzq)—l) by Lemma 6 and dominance convergence, the third term is O (h”“ (n'zh'z‘?)—l)
by lemmas 5.6 and dominance convergence, the fourth term is O ((ngth )—1) by lemmas 2,3 and
dominance convergence, and the fifth term is O (h’”‘l (nhq)—l) .

PROOF OF COROLLARY 3

It follows applying Theorem 4 and Corollary 2.
LEMMATA

The next five lemmas are the Lemmata in Robinson (1988). Lemmas 6 and 7 are straightforwardly

proved from the previous lemmas.

Lemma 1 Let sup, [k (u)f + f_oom luk (u)| du < oo, for some A > 0. Then uniformly in «

/ Iy — 2| K (Eii)]dy < Chatr,
—c h

Proof.- Robinson (1988) Lemma 1.
Lemma 2 Let sup, f (z) < oo, sup, |k (u)] + [Zo_ |k (u)] du < oo. Then uniformly in z
e (552
Proof.- Robinson (1988) Lemma 2.
Lemma 3 Let sup, f (z) < o0, E[|s (X)|] < oo, sup, |k (u)| + f |k (u)] du < 00. Then uniformly

s(X)K<X;””)

22
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Proof.- Robinson (1988) Lemma 3.

Lemma 4 For A satisfyingl —1 < A < I, where l > 1 is an integer, let f € G3°, k € K;. Then

E{K (Xh‘“) - hqf(x)} < Che*,

Proof.- Robinson (1988) Lemma 4.

uniformly in

Lemma 5 For A, p satisfyingl —1 <A<, m-1<pu<m, wherel > 1, m > 1 are integers, let
fe€G and s € G some a >0, k € Kiym-1. Then uniformly in x

X-—-z

B {ls0)-s @ik (X52) b s cs @,
where E [|S(X)]?] < cc.
Proof.- Robinson (1988) Lemma 3.

Lemma 6 For A.pu satisfyingl —1 <A<, m—-1<u<m, wherel > 1, m > 1 are integers, let

f€GY and s € G} some a > 0. k € K;. Then uniformly in z, for v < a,

()

where S (x) = §1 ()" +[s(2)]” + E{ls(X)["] and supyes,, s (v) — s (2)|/ lly — zll < S1 (2).

£{s00) - s

} < CS () he*7, (43)

Proof.- The left side of (43) is bounded by

dy

osi) [ el [ (45 ) avee [ =sim s wls) - @l (45)
< ORI (2) 4 CR s @ + B (s COP)sup {Jul™ e ()7}
Lemma 7 Ifk € Ky and r (-,w) € G some v > 0. uniformly in w, then uniformly in w and s.
£ {lots.u) - ok (52) b= o). (49
Proof.- The left side of (44) is equal to
E{I(XS:v)(r(s,z)——r(X,z))K(Xh-s)} (45)
+r(s,z)E{[1(sgx)-l(xgx)]K<Xh"s)}, (46)
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where, uniformly in w and s,

(45) £ E{ Ir(s,z) = r(X,2)| K (Z{—}-}f)l} < Cht! (47)
by Lemma 6, using the fact that, since r (z,-) € G3°, sup, S(z) < oo, and (46) is equal to r (s. )
times

1(351‘)/_00K(s;u>[f(s)—f(u)]du (48)

[ k() - sl (19)

—f(s){/x K(s;u)du—hql(sgx)} (50)
= o(h),

since (48) < Ch9%* by Lemma 4,

(49) S/Z

as in the proof of Lemma 6, and (50)= o, (1) using the fact that,

' 1 /7 s—u ) (z—s)/h lifs<ua
lim — K du = lim K (u)du = .
n—oc h4 —oc h n—o0 J/_oo OQifs>=zx

k(552|170 - £l < onen,
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TABLE 1
Proportion of rejections in 2000 Monte Carlo samples, under Hg : E(Y|W) = E(Y|X) a.s.,

p =1, for the bootstrap test and an asymptotic t-ratio based on a linear regression model.

Bootstrap tests are based on 2000 bootstrap samples, h = Cn~1/2 for C = 0.25,0.5,1,2. Model:
Yi=1+m(X))+ Uy i=1..n X;~U(01), 2" ~U(©1), 2% ~U(0,1), U; ~ N(0,1)

independent
m(x)=1+=x
p=1
o n = 50 n = 100
0.1 0.098 0.103
Asymptotic Wald | 0.03 0.054 0.052
0.01 0.016 0.013
C=023|C=05{C= C=21C=025|1C=05{C=1|C=2
0.1 0.151 0.126 | 0.105 | 0.101 0.138 0.119 0.112 | 0.113
Bootstrap Analog | 0.05 0.080 0.062 | 0.050 | 0.050 0.075 0.067 0.056 | 0.055
0.01 0.011 0.010 | 0.007 | 0.006 0.018 0.011 0.011 | o.011
0.1 0.160 0.131 0.111 | 0.142 0.144 0.122 0.114 | 0.146
Apbrox. Bootstrap | 0.05 0.088 0.065 0.059 | 0.075 0.079 0.068 0.060 | 0.076
0.01 0.014 0.012 0.011 | 0.014 0.019 0.013 0.012 | 0.018
p=2
a n =230 n = 100
0.1 0.126 0.105
Asymptotic Wald | 0.05 0.070 0.053
0.01 0.021 0.016
C=02{C=03|C=11C=2)1C=02]C=05|C= C=2
0.1 0.164 0.126 0.100 | 0.102 0.157 0.120 0.100 | 0.093
Bootstrap Analog | 0.05 0.072 0.049 0.038 | 0.038 0.072 0.055 0.047 | 0.045
0.01 0.009 0.003 0.004 | 0.003 0.014 0.011 0.095 | 0.008
0.1 0.175 0.132 0.109 | 0.120 0.162 0.125 0.102 | 0.103
Approx. Bootstrap | 0.05 0.080 0.035 0.043 | 0.056 0.080 0.057 0.050 | 0.058
0.01 0.015 0.006 | 0.004 | 0.009 0.015 0.012 0.010 | 0.010
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TABLE 1 (Cont.)

m(z) = 1+ sin (8z)

p=1
o n =50 n =100
0.1 0.096 0.102
Asymptotic Wald | 0.03 0.053 0.051
0.01 0.010 0.012

C=02|C=05|C= C=2|1C=025|C=05|C=

C
0.1 0.153 0.123 0.135 | 0.354 0.138 0.119 0.125 | 0.
Bootstrap Analog | 0.05 0.081 0.062 0.069 | 0.173 0.075 0.067 0.062 ) O

0.01 0.010 0.010 | 0.008 { 0.023 0.018 0.011 0.011 { 0.037

0.1 0.165 0.145 0.190 | 0.437 0.144 0.122 0.162 | 0.598

Approx. Bootstrap | 0.05 0.089 0.074 | 0.101 | 0.242 0.079 0.068 0.083 | 0.363

0.01 0.015 0.010 | 0.017 | 0.048 0.019 0.013 0.018 | 0.086

p=2
o n =50 n =100
0.1 0.121 0.105
Asymptotic Wald | 0.05 0.068 0.058
0.01 0.014 0.015

C=02]C=05|C=1[{C=2}1C=02]C=05(C=1{C=2

0.1 0.171 0.127 | 0.109 | 0.173 0.154 0.116 0.109 | 0.206

Bootstrap Analog | 0.05 0.072 0.053 | 0.047 | 0.077 0.074 0.056 0.054 | 0.104

0.01 0.008 0.004 | 0.004 | 0.013 0.014 0.012 | 0.009 | 0.016

0.1 0.182 0.145 | 0.145 | 0.222 0.160 0.124 0.129 | 0.279

Approx. Bootstrap | 0.05 0.085 0.066 | 0.070 | 0.108 0.081 0.060 | 0.065 { 0.151

0.01 0.014 0.005 | 0.011 | 0.020 0.014 0.012 | 0.014 | 0.034
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TABLE 1 (Cont.)

m (z) = 1+ sin (10x)

p=1
o n = 50 n =100
0.1 0.099 0.106
Asymptotic Wald | 0.05 0.052 0.054
0.01 0.012 0.011
C=02|C=05|C=1|{C=2}1C=025,C=05|C=1|C=
0.1 0.153 0.129 | 0.152 | 0.269 0.142 0.117 | 0.126 | 0.406
Bootstrap Analog | 0.05 0.079 0.063 | 0.063 | 0.131 0.076 0.062 | 0.062 | 0.197
0.01 0.011 0.010 | 0.010 | 0.016 0.017 0.013 | 0.013 | 0.037
0.1 0.163 0.148 | 0.195 | 0.308 0.145 0.125 | 0.171 | 0.504
Approx. Bootstrap | 0.05 0.089 0.075 0.093 | 0.167 0.081 0.068 0.080 { 0.285
0.01 0.015 0.014 | 0.013 { 0.031 0.018 0.014 | 0.021 | 0.063
p=2
a n =50 n =100
0.1 0.132 0.111
Asymptotic Wald | 0.05 0.076 0.055
0.01 0.019 0.015
C=02{C=05|C=11C=2C=021C=05{C=1{C=2
0.1 0.168 0.120 | 0.113 | 0.160 0.153 0.115 | 0.107 | 0.097
Bootstrap Analog | 0.05 0.070 0.054 | 0.044 | 0.074 0.075 0.058 | 0.052 | 0.088
0.01 0.009 0.004 | 0.005 | 0.007 0.013 0.011 | 0.009 | 0.011
0.1 0.181 0.141 | 0.145 | 0.181 0.161 0.128 | 0.132 | 0.246
Approx. Bootstrap { 0.03 0.086 0.064 | 0.069 | 0.097 0.081 0.064 | 0.064 | 0.119
0.01 0.013 0.005 | 0.009 | 0.012 0.014 0.012 | 0.013 | 0.024
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TABLE 2
Proportion of rejections in 2000 Monte Carlo samples, under H; : E(Y|W) # E(Y]X) a.s.,

p =1, for the bootstrap test and an asymptotic t-ratio based on a linear regression model.

Bootstrap tests are based on 2000 bootstrap samples, A = Cn~1/2 for C = 0.25,0.5,1,2. Model
Yi=1+4Xi+sin(yZ) +Ui,i=1,..,n, Xs ~U(0,1), 2 ~ U (0,1), Z? ~ U (0,1),
U; ~ N (0,1) independent.

¥=35
p=1
a n =350 n =100

0.1 0.980 1.000

Asymptotic t-ratio | 0.03 0.963 1.000

0.01 0.878 0.997
C=02|{C=05|C= C=2C=02|C=05(|C= cC=2
0.1 0.955 0.965 | 0.961 | 0.923 1.000 1.000 1.000 | 0.999
Bootstrap Analog | 0.03 0.912 0926 | 0.921 | 0.854 0.998 1.000 1.000 | 0.998
0.01 0.675 0.736 | 0.735 | 0.634 0.988 0.992 | 0.990 | 0.982
0.1 0.962 0.967 | 0.962 | 0.933 1.000 1.000 1.000 | 1.000
Approx. Bootstrap | 0.05 0.922 0.929 | 0.921 | 0.870 0.998 1.000 1.000 | 0.998
0.01 0.749 0.760 | 0.729 | 0.621 0.990 0.991 0.990 | 0.984

p=2
s n =50 n =100

0.1 0.971 1.000

Asymptotic Wald | 0.03 0.944 1.000

0.01 0.824 0.992

C=02|C=05|{C=1|C=2C=02{C=05]|C= C=

0.1 0.797 0.802 | 0.780 | 0.714 0.975 0.980 | 0.979 | 0.969
Bootstrap Analog | 0.05 0.656 0.671 0.657 | 0.583 0.945 0.950 | 0.953 | 0.933
0.01 0.315 0.349 | 0.348 | 0.303 0.815 0.836 | 0.831 | 0.788
0.1 0.814 0.810 | 0.789 | 0.736 0.977 0.980 | 0.979 | 0.973
Approx. Bootstrap | 0.05 0.686 0.684 | 0.659 | 0.594 0.948 0.953 | 0.954 | 0.937
0.01 0.378 0.375 | 0.355 | 0.284 0.838 0.843 | 0.834 | 0.793
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TABLE 2 (Cont.)

v=38
p=1
« n =50 n =100
0.1 0.199 0.276
Asymptotic Wald | 0.05 0.126 0.178
0.01 0.048 0.067

C=02{C=05|C= C=2{C=02|C=05|C=1{C=2

0.1 0.675 0.665 | 0.656 | 0.642 0.959 0.968 | 0.973 | 0.971

Bootstrap Analog | 0.05 0.478 0.471 0.452 | 0.436 0.893 0.893 0.899 | 0.905

0.01 0.156 0.133 0.148 | 0.134 0.567 0.577 0.585 | 0.554

0.1 0.697 0.678 0.679 | 0.688 0.962 0.970 | 0.975 | 0.977

Approx. Bootstrap | 0.05 0.509 0.490 0.478 | 0.504 0.898 0.899 0.910 | 0.921

0.01 0.184 0.168 0.169 | 0.174 0.589 0.592 0.396 | 0.618

p=2
a n =230 n = 100
0.1 0.200 0.239
Asymptotic Wald | 0.05 0.122 0.154
0.01 0.048 0.047

C=02{C=053|C=1|1C=2|1C=02{C=05{C=1{C=2

0.1 0.436 0.399 0.364 | 0.351 0.747 0.740 0.735 | 0.722

Bootstrap Analog | 0.05 0.257 0.222 | 0.203 | 0.194 0.556 0.535 0.522 | 0.502

0.01 0.044 0.039 0.038 | 0.038 0.197 0.176 0.167 | 0.155

0.1 0.465 0.416 | 0.383 | 0.382 0.757 0.753 0.743 | 0.742

Approx. Bootstrap | 0.05 0.283 0.236 0.203 | 0.211 0.576 0.550 0.531 | 0.535

0.01 0.068 0.048 0.038 { 0.042 0.216 0.186 0.171 | 0.171
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TABLE 2 (Cont.)

v =10
p=1
! n =50 n =100
0.1 0.096 0.096
Asymptotic Wald | 0.03 0.054 0.052
0.01 0.013 0.012

C=02)1C=05|{C= C=2§4C=02{C=05)C= C=

0.1 0.473 0.447 | 0410 | 0410 0.813 0.821 0.814 | 0.796

Bootstrap Analog | 0.05 0.268 0.250 | 0.237 | 0.237 0.627 0.623 0.615 | 0.599

0.01 0.039 0.038 0.050 | 0.050 0.252 0.250 0.237 | 0.232

0.1 0.498 0.468 0.433 | 0.433 0.823 0.827 | 0.824 | 0.833

Approx. Bootstrap | 0.05 0.294 0.267 | 0.2539 | 0.259 0.664 0.631 0.626 | 0.640

0.01 0.075 0.062 0.057 | 0.057 0.269 0.263 0.251 { 0.271

p=2
« n =230 n =100
0.1 0.130 0.105
Asymptotic Wald | 0.05 0.073 0.057
0.01 0.016 0.019

C=02|C=05|1C=1{C=2|C=02|{C=053{C=1[{C=2

0.1 0.290 0.244 0.213 | 0.205 0.496 0.455 0.433 | 0.411

Bootstrap Analog | 0.05 0.152 0.126 0.104 | 0.095 0.305 0.272 0.252 | 0.235

0.01 0.020 0.017 | 0.015 | 0.013 0.073 0.061 0.059 | 0.054

0.1 0.311 0.256 0.225 | 0.235 0.509 0.462 0.443 | 0.436

Approx. Bootstrap | 0.05 0.172 0.139 0.113 | 0.123 0.324 0.282 0.259 | 0.268

0.01 0.033 0.021 0.019 | 0.023 0.080 0.067 0.063 | 0.068
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