Universidad

ucdm | Carlosllil -Archivo
de Madrid

This is a postprint version of the following published document:

M. Gramaglia et al.,, "Network Intelligence for
Virtualized RAN Orchestration:. The DAEMON
Approach," 2022 Joint European Conference on
Networks and Communications & 6G Summit
(EuCNC/6G Summit), 2022, pp. 482-487

DOI: 10.1109/EuCNC/6GSummit54941.2022.9815816

© 2022 IEEE. Personal use of this material is permitted. Permission

from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for
advertising or promotional purposes, creating new collective works,
for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.

10.1109/EuCNC/6GSummit54941.2022.9815816

Network Intelligence for Virtualized RAN
Orchestration: The DAEMON Approach

Marco Gramaglia, Miguel Camelo, Lidia Fuentes, Joaquin Ballesteros
Gabriele Baldoni, Luca Cominardi, Andres Garcia-Saavedra, Marco Fiore

Abstract—Next-generation mobile networks will largely bene-
fit from advances in softwarization and cloudification of network
functions. However, fully exploiting the new potential of flexible
network architectures in front of increasingly demanding service
volumes and requirements calls for an extremely effective inte-
gration of Network Intelligence (NI) solutions into production
infrastructures. While current standardization efforts towards
embedding NI in beyond-5G and 6G systems are still in their
infancy, the DAEMON project is developing technologies for
a NIl-native generation of mobile networks. In this paper, we
present current evolutions proposed by DAEMON in terms of
a general model for the representation of NI instances, which
facilitates their synergic integration in network environments.
We showcase the practical viability and advantages of the
proposed approach with two state-of-the-art NI algorithms for
VRAN orchestration implemented into an open-source data flow
programming framework.

Keywords—vRAN, Virtualized RAN, Network Intelligence, Mo-
bile Networks, Orchestration, 6G

I. INTRODUCTION

With the current worldwide deployment of the fifth-
generation (5G) and forthcoming sixth-generation (6G) mobile
networks, the wireless communications community has started
looking into novel architectures to support the current soft-
warization and cloudification trends [1]. Innovative network
architectures will require advanced Artificial Intelligence (AI)
and Machine Learning (ML) algorithms, executed by heteroge-
neous orchestrators and controllers to manage various micro-
domains or network slices. These algorithms constitute the
intelligence of the network, i.e., Network Intelligence (NI),
being capable of dynamically taking actions according to a
service request or fluctuations in network activities.

In this context, it is expected that different NI instances
will be deployed across the network to solve a variety of
networking tasks such as end-to-end orchestration and manage-
ment, system control, network service monitoring and analysis,
among others. Each of these instances will adhere to numerous
Key Performance Indicator (KPI) targets, including Quality
of Service (QoS) or Quality of Experience (QoE) guarantees,
maximization of infrastructure and resource reuse across dif-
ferent tenants or network services, and full network automation
to achieve zero-touch network and service management.

An example of a network domain that has evolved to
embrace such a vision is the Radio Access Network (RAN),
where recent advances in Network Function Virtualization

M. Gramaglia is with University Carlos III of Madrid. M. Camelo is with
University of Antwerp - imec, IDLab. L. Fuentes and J. Ballesteros are with
ITIS Software, Universidad de Mdalaga. G. Baldoni adn L. Cominardi are with
ADLINK Technology. A. Garcia-Saavedra is with NEC Laboratories Europe.
M. Fiore is with IMDEA Networks Institute.

(NFV) and Software-Defined Networking (SDN) have spear-
headed flexible and scalable Radio Access Network virtual-
ization (VRAN) deployments. As a consequence, the concept
of RAN Intelligent Controller (RIC) has arisen, a novel archi-
tectural component that provides a centralized abstraction of
the network, where network operators can design, implement,
and deploy custom control-plane Virtual Network Functions
(VNFs) to perform RAN optimization via closed control loops
at different timescales aided by ML. This is fundamental
since present implementations of algorithms that perform RAN
optimizations are far from optimal [2]. For example, they
inefficiently pool computing resources and just over-dimension
computational capacity to cope with peak demands in real-time
workloads [3] or do not consider energy constraints to deploy
small cells [4].

However, the current architectural and VNFs design does
not provide specifications or guidelines to include NI yet.
Moreover, the present efforts promoted by major standardiza-
tion bodies towards the integration of NI in next-generation
network architectures are still in their infancy [5], [6]. The
mobile network architecture proposed in the context of the
DAEMON project! is NI-native and goes several steps beyond
the current standardization trends [5], [7]-[9]: it posits a new
approach for systematic integration of NI in 6G infrastructure
while staying entirely aligned with emerging designs in stan-
dardization [2]. In our previous work [10], we outlined general
requirements and specifications for NI design that stem from
data management, diverse control timescales, and network
technology characteristics; we also derived initial principles
for the design of an NI Orchestration layer, which focuses
on (z) proposals for the interaction loop between NI instances
and the NI Orchestrator, and (i¢) a unified representation of
NI algorithms.

In this paper, we build on the concepts introduced in [10]
and exploit DAEMON unified representation of NI algorithms
to integrate NI in the context of VRAN orchestration and
control problems. The latter is an appropriate and repre-
sentative context for the embedding of NI solutions into a
larger system because (¢) they deal with high-dimensional state
spaces (including, e.g., channel quality patterns or network
load patterns across a potentially large number of users and
base stations), and (¢7) orchestration and control decisions
are often coupled among a large number of parameters (for
instance, radio and computing resource policies). In these
settings, finding a suitable framework that maximizes the reuse
of ML models across diverse NI solutions is of paramount
importance: it paves the way for a structured approach to ML
assimilation in networking systems, greatly simplifying future
innovations in NI for beyond-5G and 6G networks.

Thttps://h2020daemon.eu/

Distributed Unit (DU)

((() Al 2 RLC Statd
A(((9 [[ADC RX i [t
B’ |[DAc TX i@ [pEs] < |Tvers) .l

=)

ﬁ P éligued]

....

Fig. 1: Diagram of a VRAN deployment

Specifically, we present mappings between the N-MAPE-K
loop proposed as the unified NI representation within DAE-
MON [10] and two sample NI algorithms developed in the
project: vrAIn [11] and SBP-vRAN [12]. We show that the
DAEMON architecture promotes the reuse of NI components,
such as monitoring ones, among heterogeneous algorithms
used inside each micro-domain. We then demonstrate the
DAEMON approach by implementing the unified framework
in Zenoh-flow?, a dataflow-based programming platform that is
especially suited to support the operation of Al algorithms with
different time scales such as end-to-end deadlines, automatic
timestamps, or feedback support.

The document is structured as follows. Section II presents
NI in the context of VRAN. In Section III, we describe the two
state-of-the-art ML-based algorithms for vVRAN optimization
that are considered in our study. We define their specific
requirements as NI algorithms, and we map them to the
unified representation of NI proposed in [10] in Section IV.
Finally, Section V realizes them via a framework for data flow
programming to demonstrate its generality, and Section VI
discusses conclusions and future work.

II. NETWORK INTELLIGENCE FOR VRAN

VvRAN is well-recognized as a key technology to accom-
modate the ever-increasing demand for mobile services at an
affordable cost for mobile operators. VRAN centralizes soft-
warized base stations into common computing infrastructure
in a cloud location (typically at the edge) via NFV. Figure 1
illustrates a set of base stations sharing a common pool of
computing resources to perform radio processing tasks such
as signal modulation and forward correction coding (FEC).
This provides several advantages, such as resource pooling (via
centralization), simpler update roll-ups (via softwarization),
and cheaper management and control (via commoditization),
leading to savings of 10-15% in capital expenditure per km2
and 22% in CPU usage [13]. It is thus not surprising that
VRAN has attracted the attention of academia and industry.
OpenRAN , O-RAN, or Rakuten’s VRAN—Ied by key opera-
tors (such as AT&T, Verizon, or China Mobile), manufacturers
(such as Intel, Cisco, or NEC), and research leaders (such as
Standford University)—are examples of publicly disseminated
initiatives towards fully programmable, virtualized and open
RAN solutions based on general-purpose processing platforms.

In addition to the adoption of NFV, one of the most recent
innovations introduced in the context of open RAN is the
programmable components to optimize the performance of
the system in a closed-loop approach. A realization of this
innovation are the near-Real-Time (RT) RIC and non-RT RIC

2https://github.com/eclipse-zenoh/zenoh-flow

>
((jé?)
o1

C\B\»RT

ontrgl Loops

! 1 ReaFTime A1 .—9

1 1 ontrgl Loops

1 I Open 1 -

1 ¥ Fronthaul Nt

K T ontrg

I ¢ 3GP ¢ P 1 =

" w2 : ==

FE el ' —— XAPPS | | pocs Laver || Database

1 aa Messaging Infrastructure
1

Conflict ubscripti
Mitigation n

gNB E2
Fig. 2: The O-RAN architecture

proposed by the O-RAN alliance, as shown in Figure 2. These
two logical controllers are used to create a centralized view
of the network by consuming monitoring data generated from
the network infrastructure (e.g., number of users, resource
utilization, etc.). The algorithms running on these controllers
are expected to be empowered by Al and ML techniques (i.e.,
NI), which introduces a data-driven approach to optimize the
network performance in a closed-loop fashion automatically.

The non-RT-RIC is integrated into the network Service
Management and Orchestration (SMO) layer and operates on
a timescale larger than 1 second. Its main goal is to support
intelligent RAN optimization by providing policy-based guid-
ance, ML model management, and enrichment information to
the near-RT RIC function so that the RAN can optimize, e.g.,
Radio Resource Management (RRM) under certain conditions.
It can also perform intelligent RRM function in non-real-time
interval (i.e., greater than 1 second). In a shorter operation
time scale, the near-RT RIC is a logical function that enables
near real-time control and optimization of the RAN and its
resources via fine-grained data collection and actions over open
interfaces and with control loops in the order of 10ms-1s. It
hosts one or more xApps, an application designed to run on
the near-RT-RIC, to collect near real-time information (e.g., on
a User Equipment (UE) or a Cell basis) and provide control
over the RAN. The control is steered via the policies and the
enrichment data provided from the Non-RT RIC.

While the near-RT RIC hosts the xApps as mentioned be-
fore, the non-RT-RIC hosts the rApps, which are the functions
that are used to provide value-added services to support and
perform RAN optimization and operations. More generally,
both functions are basically custom logic to perform RAN
optimization, told apart by the fact that they operate at different
time scales. When such r/xApps are empowered by AI/ML
algorithms, they match the definition of NI [10]. However, to
integrate NI natively in next-generation network architectures,
such as the AI/ML-based r/xApps in O-RAN, a large range
of NI instances will need to interact seamlessly to perform
at their best, and exchange data and information to mutually
improve both their learning and decision-making processes.
For this, it is fundamental that NI for vVRAN optimization can
support closed-loop control, and it can be defined via a well-
defined modeling order to create components that can be easily
extended, re-usable, and easily migrated among platforms that
support NI by design.

III. VRAN NI ALGORITHMS

We next present two algorithms developed within the
context of the DAEMON project and fully detailed in [11]
and [14], respectively, which handle vRAN orchestration and
control operations at different timescales. We will use these
algorithms as an example of the approaches that may be
deployed concurrently, which may benefit from the framework
proposed in this paper.

A. vrAIn: Radio & computing resources joint orchestration

vrAIn [11] is a VRAN orchestration framework that is
composed of two main modules: (¢) the CPU and Radio
schedulers, which provide the radio access functionality op-
erating at low timescales (milliseconds), and (¢¢) the resource
manager, which controls the behavior of such schedulers at
larger timescales (seconds). Through them, vrAIn optimizes
VRAN operation in terms of throughput and resource (CPU)
utilization. The overall vrAIn framework is depicted in Fig-
ure 3.

Schedulers. Two main tasks are performed by these sched-
ulers: (4) selecting the Modulation and Coding Scheme (MCS)
for a given set of users depending on e.g., their channel quality
or they expected load and (i¢) assigning the decoding task
(the most expensive operation of a VRAN system) of a sub-
frame to the available CPUs. Both of them operate at sub-
millisecond timescales, according to the following criteria: ()
a maximum computing time fraction ¢; € C := [0,1] C R (also
called computing control decisions); and (i¢) a maximum
MCS m; € M, where M is a discrete set of MCSs (also
called radio control decisions).

Resource Manager. This module implements the artificial
intelligence techniques described in [11] to perform resource
assignment decisions on larger timescales (i.e.,, seconds).
Specifically, it implements a feedback control loop that: (z)
analyzes contextual information (Signal-To-Noise-Ratio (SNR)
and traffic patterns); (i¢) Enforces the learned CPU and radio
control policies, which map contexts into schedulers control
decisions by using the interfaces introduced above; and (i:¢)
Assesses the quality of the taken decisions by analyzing a
reward signal, designed to maximize performance.

To perform the tasks discussed above, we employed in [11]
a Reinforcement Learning algorithm based on contextual ban-
dits, which solves outstanding challenges such as the space
state compression through autoencoders deployed within an

Decoding

CPU
scheduler

Radio
—_ Control

Schedul\nb~A
Radio . 7R
schedulers

Computes a utility
of the state
(reward)

System State ||

Fig. 3: vrAIn system design

xApp in the near-RT RIC, and a deep deterministic policy
gradient (DDPG) algorithm implemented with an actor-critic
neural-network structure that is implemented as a rApp in the
non-RT RIC.

B. SBP-vRAN: Energy-driven RAN control

We now consider a near-real-time xApp to control vBSs
deployed in an energy-constrained cloud infrastructure. This
type of BSs is relevant for low-cost small cells, Power-over-
Ethernet (PoE) cells, and similar platforms increasingly com-
mon in 5G-and-Beyond networks. Our goal is to use O-RAN’s
control architecture to implement near-real-time configuration
policies that are adaptive to system dynamics while satisfying
hard energy constraints. Specifically, we consider the Safe
Bayesian Optimization VRAN control algorithm (SBP-vRAN)
recently introduced in [12], [14].

Context Information. SBP—-vRAN defines the downlink
(DL) context at each period ¢, which includes the mean and
variance of the DL channel quality indicator (CQI) across all
users in the previous period, and the new bit arrivals at the
vBS DL aggregated across all users. The uplink (UL) context
comprises the mean UL SNR across all users, and the new
UL bit arrivals are estimated from the periodic Buffer Status
Reports of the users. All these measurements are collected by
the Near-RT RIC’s Data Monitor from the vBS using the E2
interface at the sub-second granularity and are aggregated at
the start of each control period t.

Actions. Every period ¢, SBP-vRAN makes a series of
decisions corresponding to radio-related configuration policies.
For the downlink, these include transmission power control
(TPC) policy to control the maximum allowed vBS trans-
mission power, the highest MCS eligible by the vBS (DL
MCS policy), and the maximum vBS transmission airtime (DL
airtime policy). Conversely, the uplink policies include an UL
MCS and airtime policies. Once computed, the xApp deploys
the policy into the vBS through the E2 interface.

Rewards. SBP-vRAN rewards a fair distribution of
throughput performance across all users in both uplink and
downlink. It is important to stress that in practice, we can
only have noisy values of this reward function, even when its
arguments are fixed, because, at such fast timescales, the sys-
tem is naturally stochastic. Power consumption measurements
are also noisy to make the problem even more involved.

SBP-vRAN is specifically designed to handle such impair-
ments. The goal of SBP-vRAN is to find maximal-throughput
configurations that also respect the available power budget.
SBP-vRAN achieves this goal by employing a safe exploration
of the configuration space to satisfy the power threshold at any
period, i.e., not only at the final optimal-operation stage. To
solve this problem, SBP-vRAN resorts to a non-parametric
learning approach using Gaussian Processes, Contextual Ban-
dits, and Bayesian learning. The approach has the additional
practical advantage that one can change the power budget
in run time without restarting the learning process. Other
parametric methods, such as Reinforcement Learning relying
on neural networks, need to be re-trained if the constraint
changes, which substantially increases the required training
data. The details of the learning model can be found in [12],
[14].

IV. A UNIFIED FRAMEWORK FOR NI AUTOMATION

To ensure that diverse NI algorithms such as those pre-
sented above can coexist and run effectively in the same mobile
network infrastructure, we need to abstract their complexity
and produce a homogeneous representation of their multi-
timescale operation. To address this challenge, we propose a
split between the NI algorithms’ requirements and the interac-
tions between their different components. We will discuss this
approach in detail next.

A. Requirements

The VRAN orchestration algorithms discussed in Sec-
tion III introduce two main functional requirements: mon-
itoring capabilities (identified as FR-001 in Table I) and
resources allocation capabilities (identified as FR-003.x). FR-
001 specifies the need for NI solutions that provide monitoring
capabilities to obtain information about the current state or
context of the system. Given this requirement, our analysis has
identified relevant metrics such as CPU load, wireless chan-
nel conditions (SNR, CQI), traffic demands (as Buffer State
Reports from the terminals and downlink buffer occupancy),
or power consumption measurements. This also describes the
need to integrate sensing capabilities in VRAN systems. RAN
systems should provide APIs to access raw data from all the
layers in the radio stack. We remark that Open RAN solutions
specified by O-RAN are a key enabler to this end.

From FR-001, another functional (FR-002) and one non-
functional (NFR-00I) requirement are derived. On the one
hand, FR-002 describes the need to reduce the dimensionality
of the state/context space and provide an expressive latent
representation that is relevant to take appropriate actions. On
the other hand, NFR-00I considers advanced NI solutions
that allow dynamic change of sources and time scales in the
monitored data at runtime.

The last pillar of requirements is the allocation of resources
and policies. We conclude that NI solutions should offer the
ability to allocate resources as per FR-003 dynamically. Specit-
ically, computing resources (FR-003.001) and radio resources
(FR-003.002).

Table I summarizes how each of those functionalities is as-
sociated with the vrAIn and SBP-vRAN algorithms described
in Section III. Note, however, that any NI solution for the
orchestration of VRAN that leverages the architecture discussed
in Section IV will build on the same set of functionalities to
work.

B. N-MAPE-K

Besides the specific requirements associated with the algo-
rithms, as discussed in Section IV-A, we need a mechanism
to create a common framework to map the most common
features of NI algorithms, subsequently integrate them into
the overall architecture, and design the necessary interfaces
that algorithms use to interact with their environment.

For this purpose, we adopt within the DAEMON project ac-
tivities a methodology already used by the MAPE-K (Monitor-
Analyze-Plan-Execute over a shared Knowledge) feedback
loop—one of the most influential reference control models for
autonomic and self-adaptive systems [15]. The methodology

TABLE I: Main functional and non-functional requirements as-
sociation into specific VRAN NI algorithms. The nomenclature
is that adopted to label NI requirements within the DAEMON

project [1].

vrAIn SBP-VRAN
FR-001 API to measure CQI, BSR, and API to measure SNR, CQI,
CPU load BSR, downlink buffers, and
power consumption
FR-002 Reduce dimensionality of state | Reduce dimensionality of state
space space
NFR-001 Provide state information in a Provide state information in a
timescale of 1 second timescale of 100 ms
FR-003.001 Ability to allocate CPU resource
shares to individual BS
FR-003.002 Ability to deploy MCS policies Ability to deploy MCS, tx
power, and airtime policies

Operation Loop

Analyze

Knowledge

Monitor b (

LeOI | |g
Objective

Function

Fig. 4: Extended N-MAPE-K abstractions for NI algorithms

was first introduced in [10], and it allows classifying the
algorithms that run at NI instances in a unified manner, based
on how they interact with the other elements of the network.

It is worth noting that the original MAPE-K framework
has limitations in the target context of mobile network func-
tionalities supported by NI. Therefore, we propose changes
to the legacy MAPE-K to take into account the specificities
of the network environment, as depicted in Figure 4, to build
the Network MAPE-K (N-MAPE-K). Specifically, we extend
MAPE-K along two dimensions:

e The purpose of the NI, whether the Knowledge is
being trained or used in inference for the operation
of the network, following the MLOps paradigm.

e The nature of NI algorithm, distinguishing between
supervised learning and reinforcement learning.

For the latter, the knowledge module shall be integrated
with a Training definition, which specifies aspects such as
the input data shape, batches, and most importantly, the used
loss function (which could be dynamically adjusted) and the
State/Action representation. Additionally, the effector and the
sensors can also be redirected to a Digital twin element if
needed by the specific NI instance.

With this framework, already presented in [10], we can
represent the two algorithms discussed in Section III in a

unified way. This is summarized in Table II, which maps each
phase of vrAIn and SBP-vRAN into the N-MAPE-K model.

V. IMPLEMENTATION IN ZENOH-FLOW

The formal description of NI algorithms regarding their re-
quirements and N-MAPE-K operation outlined in the previous
Sections offers clear advantages in terms of integration into
network infrastructures. Indeed, it produces a consistent and
compact representation model that can be applied to inherently
diverse solutions, such as vrAIn and SBP-vRAN. In turn,
operators can benefit from such a representation by easily
identifying the common needs of the different NI instances
(expressed by matching requirements), or by merging opera-
tional phases that are common to multiple NI algorithms (e.g.,
monitoring functions in the case of the two sample algorithms
in Table II.

In addition, our proposed representation can simplify the
practical integration of NI instances into real-world systems.
To prove our point, we next demonstrate how the sample
vrAIn and SBP—-vRAN algorithms can be easily implemented
into an operational data flow programming framework once
they have been mapped into an N-MAPE-K model.

A. The Zenoh Flow framework

Zenoh Flow provides a data flow programming [16] frame-
work to ease the development of any application that requires
cloud-to-thing data flows. In data flow programming, an ap-
plication is divided into simple tasks, called Operators. Such
operators are arranged in a graph, and the interconnections
between them represent the application; then, each operator
can execute concurrently with substantial parallelization gains
[17]. By following such an approach, Zenoh Flow is designed
to deliver the performance and efficiency required by control-
oriented applications while supporting higher-level abstrac-
tions needed for some machine learning and Al data flows.
An initial implementation of Zenoh Flow is published as open-
source software (see footnote 2).

Cloud-to-Thing compatible. Zenoh Flow is designed to cope
with the Cloud-to-Thing continuum. Specifically, Zenoh Flow
abstracts the underlying fabric through Zenoh’s unified APIL.
Therefore, Zenoh Flow can seamlessly run a data flow graph
across multiple machines, enabling migration, load balance,
and redundancy for operators composing the graph.

Feature-rich. Zenoh Flow provides a set of features to fa-
cilitate the creation and management of operators. Example
of such features are automatic timestamps and end-to-end
deadlines. In Zenoh Flow, whenever data “enters” the data
flow, it gets timestamped. Such timestamp can be used on each
operator, and it is propagated throughout the graph. Developers
have the possibility to define deadlines along any arbitrary path
of the graph. When a deadline is missed, the last operator is
notified at the end of the deadline. Zenoh Flow accepts input
rules. Input rules are a way for the developer to specify under
which condition the operator can be triggered. For example,
it is possible to trigger the computation only if a subset of
the inputs is present or if the inputs are synchronized. Finally,
Zenoh Flow allows defining loops in the graph. Loops are help-
ful for applications that require feedback. An example of an
application that involves feedback is a control loop. Network

sgad 48s
-~

v IMdX] 1S

poOT NdD

poOT J8sn

\

W/ dNSIesn

.
Epochi
P |

+100ms MAX

uodwnsuoD Jemod

Epochi+1

°ource

o nalyze

o lan

O nowledge
sin @) «

Fig. 5: The Zenoh-flow arrangement of the N-MAPE-K blocks
for vrAIn and SBP-vRAN. Dashed nodes are common to
both algorihtms, while solid and dot-dashed nodes are related
to vrAIn and SBP-vRAN, respectively

orchestration falls directly in that category with operators that
rely on AI/ML to perform analysis or predictions.

Reusable. Zenoh Flow encourages code reuse, as operators
can be developed independently and then used to compose
different data flow graphs and, therefore, different applications.
Providing reusable operators offers many advantages: users
could publish them in a library, which could then be leveraged
to develop applications faster and increase user adoption.

B. Implementation of NI algorithms

Figure 5 shows a possible mapping of our target VRAN
orchestration algorithms into Zenoh Flow. The topmost part of
the graph depicts the Sources and the Sinks, that implement
the Monitor / Sensor and the Execute / Effector in Zenoh Flow.
In a nutshell, these are the input and output variables of the
NI algorithms, which in this case, are shared by the two NIs.

Four sources provide the input to the two algorithms:
the user SNR and BSR reports (common to vrAIn and
SBP-vRAN), the CPU load (only used by vrAIn), and the
Power Consumption (only used by SBP-vRAN). Thanks to
the Zenoh Flow features, these sinks can produce the data
needed for the NI algorithms at a fixed pace (e.g., every TTIL,
that is, at intervals of 1 ms) or on-demand. The former is the
case of SNR (in both uplink and downlink direction) and user
load requirements (obtained by BSR reported by users and the
inspection of the internal buffers). On-demand data is instead
requested for, e.g., the CPU consumption used in vrAIn or
the Power used in SBP-vRAN, which could be retrieved in
larger batches. These variables are not directly involved in the
NI algorithm operation but are instead used to build accurate
models of the VRAN system for the computing profile and
power consumption.

In the considered NI examples, the Analyze blocks can
be similarly shared. Driven by the same objective (i.e., the
dimensionality reduction from a very informative yet large
data), both vrAIn and SBP—vRAN build on an autoencoder-
based analysis of the data, yielding succinct input data for the
downstream learning agent. Here, the NI implementation can
take advantage of Zenoh Flow feature of recursively defining
each node: that is, each Analyze block can be composed of a

TABLE II: The N-MAPE-K definition for the vrAIn [11], and SBP-vRAN [12] algorithms.

Analytics

Description

vrAIn

SBP-vRAN

Channel conditions: SNR measurements,

Sensors + Monitor traffic demands: as Buffer State Reports (BSRs) from the terminals.

Channel conditions: SNR measurements,
Traffic demands: BSRs and Downlink buffer occupation

Inputs are passed through an autoencoders to reduce their dimensions,

Inputs are passed through an autoencoders to reduce their dimensions,

the MCS policy.

Anal . . . X N . .
nalyze forming an encoding that is used in the execution algorithm. forming an encoding that is used in the execution algorithm.
An actor-critic deep learni Igorithm takes takes th dings as . . .
An actor-critic deep fearning a'gorithm fakes takes the encodings as A Bayesian Learning model takes the encodings as
Plan input and generates two outputs: the amount of CPU required and

input and generates three outputs: MCS policy, airtime policy, TX power policy

Execution + Effector Two APIs exposed by the virtualization environment (for the

CPU quota) and the base station (for the MCS policy, via O-RAN A1/E2 interface).

Three APIs exposed by the base station (O-RAN E2 interface)

Knowledge A model of the CPU behaviour of a base station. A model of the power consumption behavior of a base station.
Training/Loss states: Latent representation of the input data; actions: compute and states: Latent representation of the input data; actions: radio policies;
State/Actions/Rewards. radio policies; rewards: latency tolerance. rewards: maximum throughput subject to power budget.

set of Zenoh Flow nodes that, when joined together, provide
the autoencoder functionality. Note that different outlets of
each block can be placed at diverse positions yielding to, e.g.,
an autoencoder that compresses down to 4 or 8 dimensions
according to the given use. These items can directly feed the
Plan part, in charge of the actual decision in the system, or be
stored in the knowledge blocks (e.g., for NI training).

The Plan blocks implement the trained learning agents
for the two algorithms. They could have cascading relations
(such as the CPU and Radio schedulers in vrAIn) or be
completely independent, like the one used by SBP-vRAN.
In principle, other relations may exist, such as peer-to-peer
exchanges of information (e.g., for encodings) or achieved
rewards computed by the Plan blocks.

Besides the data used for training, the knowledge nodes
are fed with the policies and decisions computed by the Plan
nodes, resulting in a database for the sink nodes in the network.
Again, sinks can be shared across NIs instances, as in the case
of the set MCS API, which is common to both vrAIn and
SBP-vRAN. The end-to-end computation of decision (e.g., the
Plan to Sink timing constraint, from epoch to epoch) can be
implemented using the timestamping feature of Zenoh. For
instance, the timing requirements of vrAIn and SBP-vRAN
(i.e., 1s and 100ms, respectively) can be indicated to the Zenoh
orchestrator, allowing to identify late inputs. Ultimately, the
discussion above shows how, building on the proposed N-
MAPE-K representation, the Zeno Flow framework can be
used to implement heterogeneous NI algorithms.

VI. CONCLUSION

We presented evolutions in the representation and imple-
mentation of NI instances into operational mobile network
architectures envisioned within the DAEMON project. We
demonstrated with two practical AI/ML algorithms how N-
MAPE-K-driven modeling eases an effective and synergic
integration of NI in an open-source data flow programming
framework. We believe that the approach proposed in this
paper can be considered preparatory for introducing an intel-
ligence layer in the network.

ACKNOWLEDGMENT

This project has received funding from the European
Union’s Horizon 2020 research and innovation programme
under grant agreement no.101017109 “DAEMON”.

(1]

(2]

[3]

[4]

(51

(6]

(71

(8]

(9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

REFERENCES

I. Paez et al., “DAEMON Deliverable 2.1: Initial report on
requirements analysis and state-of-the-art frameworks and toolsets,”
Jun. 2021. [Online]. Available: https://doi.org/10.5281/zenodo.5060979

A. Banchs et al., “Network Intelligence in 6G: Challenges and Oppor-
tunities,” ser. MobiArch '21. New York, NY, USA: Association for
Computing Machinery, 2021, p. 7-12.

D. Bega, A. Banchs, M. Gramaglia, X. Costa-Pérez, and P. Rost, “Cares:
Computation-aware scheduling in virtualized radio access networks,”
IEEE Transactions on Wireless Communications, vol. 17, no. 12, pp.
7993-8006, 2018.

X. Ge, J. Yang, H. Gharavi, and Y. Sun, “Energy efficiency challenges
of 5g small cell networks,” IEEE Communications Magazine, vol. 55,
no. 5, pp. 184-191, 2017.

Y. Wang, R. Forbes, C. Cavigioli, H. Wang, A. Gamelas, A. Wade,
J. Strassner, S. Cai, and S. Liu, “Network management and orchestration
using artificial intelligence: Overview of etsi eni,” IEEE Communica-
tions Standards Magazine, vol. 2, no. 4, pp. 58-65, 2018.

O-RAN Alliance, “AI/ML Workflow Description and Requirements
v01.02.02,” O-RAN Alliance, Technical Specification, 2020.

ITU-T, “ Architectural framework for machine learning in future
networks including IMT-2020,” ITU-T, Recommendation, 2019.

ETSI, “Zero-touch network and Service Management (ZSM):
Means of Automation,” ETSI, Report, 2020. [Online]. Avail-

able: https://www.etsi.org/deliver/etsi_gr/ZSM/001_099/005/01.01.01_
60/gr_ZSM005v010101p.pdf

O-RAN Alliance, “Architecture Description v02.00.00,” O-RAN Al-
liance, Technical Specification, 2020.

M. Camelo et al., “Requirements and specifications for the orchestration
of network intelligence in 6g,” pp. 1-9, 2022.

J. A. Ayala-Romero et al., “vrAln: Deep Learning based Orchestration
for Computing and Radio Resources in VRANS,” IEEE Transactions on
Mobile Computing, pp. 1-1, 2020.

J. A. Ayala-Romero, A. Garcia-Saavedra, X. Costa-Perez, and G. losi-
fidis, “Bayesian online learning for energy-aware resource orchestration
in virtualized rans,” in IEEE INFOCOM 2021 - IEEE Conference on
Computer Communications, 2021, pp. 1-10.

S. Bhaumik et al., “Cloudiq: A framework for processing base stations
in a data center,” in Proceedings of the 18th annual international
conference on Mobile computing and networking, 2012, pp. 125-136.
J. A. Ayala-Romero et al., “Orchestrating energy-efficient vrans:
Bayesian learning and experimental results,” IEEE Transactions on
Mobile Computing, pp. 1-1, 2021.

J. Kephart and D. Chess, “The vision of autonomic computing,”
Computer, vol. 36, no. 1, pp. 41-50, 2003.

W. M. Johnston, J. R. P. Hanna, and R. J. Millar, “Advances in dataflow
programming languages,” ACM Comput. Surv., vol. 36, no. 1, pp. 1-34,
2004. [Online]. Available: https://doi.org/10.1145/1013208.1013209

J. Dai et al., “{HiTune}:{Dataflow-Based} performance analysis for
big data cloud,” in USENIX ATC, 2011.

