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Abstract—We consider a binary statistical hypothesis testing
problem, where n independent and identically distributed ran-
dom variables Zn are either distributed according to the null
hypothesis P or the alternate hypothesis Q, and only P is known.
For this problem, a well-known test is the Hoeffding test, which
accepts P if the Kullback-Leibler (KL) divergence between the
empirical distribution of Zn and P is below some threshold.
In this paper, we consider Hoeffding-like tests, where the KL
divergence is replaced by other divergences, and characterize,
for a large class of divergences, the first and second-order terms
of the type-II error for a fixed type-I error. Since the considered
class includes the KL divergence, we obtain the second-order
term of the Hoeffding test as a special case.

I. INTRODUCTION

Statistical hypothesis testing is known to have applications
in areas such as information theory, signal processing, and
machine learning. The most simple form of hypothesis testing
is binary hypothesis testing, where the goal is to determine the
distribution of a random variable Z between a null hypothesis
P and an alternate hypothesis Q. There can be two types
of errors in binary hypothesis testing: The type-I error is
the probability of declaring the hypothesis as Q when the
true distribution is P . The type-II error is the probability of
declaring the hypothesis as P when the true distribution is Q.
In general, we are interested in analyzing the trade-off between
these two types of errors for a given test, which may have full
or only partial access to the distributions P and Q.

When both P and Q are known, the likelihood-ratio test
(also known as Neyman-Pearson test [1]) achieves the optimal
trade-off between type-I and type-II error. The Neyman-
Pearson test is also investigated in an asymptotic setting, where
one observes n independent copies of Z and the errors are
analyzed asymptotically as n tends to infinity. In this case, we
are often interested in the behavior of the type-II error βn for a
fixed type-I error αn. It is known that, for αn ≤ ε, ε ∈ (0, 1),
the corresponding type-II error satisfies [2], [3, Prop. 2.3]

− lnβn = nDKL(P‖Q)−
√
nV (P‖Q)Q−1(ε)+O(lnn) (1)
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as n → ∞, where DKL(P‖Q) is the Kullback-Leibler (KL)
divergence between P and Q [4],

V (P‖Q) ,
∑
i

Pi

[(
ln
Pi
Qi
−DKL(P‖Q)

)2
]

is the divergence variance, Q−1(·) is the inverse of the tail
probability of the standard Normal distribution, and O(lnn)
denotes a term that grows at most as fast as lnn as n→∞. It
follows from (1) that the first-order term of − lnβn, sometimes
referred to as the error exponent, is given by DKL(P‖Q). Like-
wise, the second-order term is given by −

√
V (P‖Q)Q−1(ε).

The case where the test has only partial access to the
distributions P and Q is generally studied under the name
of composite hypothesis testing. Several special cases of
composite hypothesis testing have been investigated in the
literature. Two such cases are: 1) P is known and Q can
be any distribution but P ; 2) P is known and Q belongs
to a special class Q. A test proposed by Hoeffding [5],
known as the Hoeffding test, is suitable for these two cases.
In this test, the null hypothesis P is accepted if the KL
divergence between the type TZn (empirical distribution) of
the observations Zn = (Z1, . . . , Zn) and P is below some
threshold c. Otherwise, the alternate hypothesis is accepted.

In [6, Th. III.2], it was shown that the Hoeffding test
achieves the same first-order term of − lnβn as the Neyman-
Pearson test. Consequently, not having access to the distribu-
tion of the alternate hypothesis does not affect the first-order
term. To analyze the second-order term of − lnβn in the above
two cases of composite hypothesis testing, Watanabe proposed
a test that is second-order optimal in some sense [7].

The Hoeffding test does not require knowledge about the
special class Q to which Q belongs. Tests that have knowledge
of Q may therefore outperform the Hoeffding test. Such tests
include the generalized likelihood-ratio test (GLRT)1 [8] and
test via mismatched divergence [9]. For example, it has been
observed that the latter test outperforms the Hoeffding test [9].
However, an analytical comparison between the Hoeffding test
and other tests is missing since refined asymptotics of the
Hoeffding test are not available.

1In fact, the Hoeffding test is the GLRT for the case where Q is the set of
all probability distributions different from P .
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In this paper, we study the behavior of the second-order
term of the Hoeffding test, as well as of Hoeffding-like tests
where the KL divergence is replaced by other divergences,
in the following referred to as divergence tests. For a large
class of divergences, we demonstrate that the second-order
term is given by −

√
V (P‖Q)Q−1

χ2,k−1(ε), where k is the

cardinality of the observations and Q−1
χ2,k−1(·) denotes the

inverse of the tail probability of the chi-square distribution
with k − 1 degrees of freedom. This class of divergences
includes the KL divergence, so we obtain the second-order
term of the Hoeffding test as a special case. A key ingredient
in the proof of this result is the well-known fact that, under the
null hypothesis, the KL divergence between the type TZn and
the distribution P converges in probability to the chi-square
distribution [9], [10]. However, in our proof, we shall require
a stronger, Berry-Esseen-type convergence [11], [12].

The rest of this paper is organized as follows. Section II
presents notations and the problem formulation. Section III
discusses our main results. Section IV presents the proof of
these results. Section V concludes the paper with a summary
and discussion. Due to space limitations, some of the proof
steps are deferred to the extended version of our paper [13].

II. NOTATIONS AND PROBLEM FORMULATION

A. Notations
Let f(x) and g(x) be two real-valued functions. For

a ∈ R ∪ {∞}, we write f(x) = O(g(x)) as x → a if
lim supx→a

|f(x)|
|g(x)| < ∞. Similarly, we write f(x) = o(g(x))

as x→ a if limx→a
|f(x)|
|g(x)| = 0.

B. Divergence and Divergence Test
Let the random variable Z take value in a discrete set
Z = {a1, . . . , ak}, where k ≥ 2. We denote its probability
distribution by a k-length vector π = (π1, . . . , πk)T with
entries πi , Pr{Z = ai}, and we assume that πi > 0,
i = 1, . . . , k. We denote by P(Z) the set of all such
probability distributions. For a length-n sequence zn, let
Tzn = (Tzn(a1), . . . , Tzn(ak))T denote its type. Since prob-
abilities sum to one, any π = (π1, . . . , πk)T ∈ P(Z) can be
represented by the first (k − 1) components of π. With this
representation, the set P(Z) can be identified as a (k − 1)-
dimensional manifold; see [14] for more details.

Given any two probability distributions P,Q ∈ P(Z), one
can define a non-negative function D(P‖Q), called a diver-
gence, which represents a measure of discrepancy between
them. Mathematically, a divergence is defined as follows [14].

Definition 1: Consider two points P,Q ∈ P(Z) with coor-
dinates P = (P1, . . . , Pk−1)T and Q = (Q1, . . . , Qk−1)T . A
divergence D(P‖Q) between P and Q is a smooth function
of P and Q satisfying the following conditions:

1) D(P‖Q) ≥ 0 for any P,Q ∈ P(Z).
2) D(P‖Q) = 0 if, and only if, P = Q.
3) The Taylor expansion of D satisfies

D(P + ε‖P) =
1

2

k−1∑
i,j=1

gij(P)εiεj +O(‖ε‖32)

as ‖ε‖2 → 0, for some (k − 1) × (k − 1)-dimensional
positive-definite matrix G = (gij) that depends on P and
ε = (ε1, . . . , εk−1)T , where ‖ · ‖p, p ≥ 1 is the Lp norm.

A well-known example of a divergence is the f -divergence,
which includes the KL divergence and the α-divergence as
special cases [15].

We now define a divergence test for the following composite
hypothesis testing setup: under hypothesis H0, the distribution
is P ; under hypothesis H1, the distribution is anything but
P . A Hoeffding-like test or divergence test TDn (r) for testing
H0 : Zn ∼ Pn against the alternative H1 : Zn ∼ Qn is
defined as follows:

Upon observing zn, if D(Tzn‖P ) < r for some
r > 0, then the null hypothesis P is accepted; else
P is rejected.

For r > 0, define the acceptance region for P as

ADn (r) , {zn | D(Tzn‖P ) < r} .

Then, the type-I and type-II errors are given by

αn(TDn (r)) , Pn
(
ADn (r)c

)
βn(TDn (r)) , Qn(ADn (r)).

Our goal is to analyze the asymptotics of the type-II error
when the type-I error satisfies αn ≤ ε, 0 < ε < 1. To this
end, we define the first-order term β′ and the second-order
term β′′ of the divergence test as follows:

β′ , lim
n→∞

− 1

n
lnβn

β′′ , lim
n→∞

− lnβn − nβ′√
n

if the limits exist. For the Hoeffding test, it is known that
β′ = DKL(P‖Q). In this paper, we generalize this result
to the divergence test for a class of divergences defined in
Definition 2. We further obtain β′′ for the divergence test.

III. RESULTS

We shall consider the following class of divergences:
Definition 2: Let Ξ denote the class of divergences satis-

fying the following conditions:
1) For any P, T ∈ P(Z) and some positive constant η, the

second-order Taylor approximation of D(T‖P ) around
T = P is given by

D(T‖P ) = ηdχ2(T, P ) +O(‖T−P‖32) (2)

as ‖T − P‖2 → 0, where T = (T1, . . . , Tk−1)T ,
P = (P1, . . . , Pk−1)T , and dχ2 is the χ2-divergence

dχ2(T, P ) ,
k∑
i=1

(Ti − Pi)2

Pi
.

2) For any P, T ∈ P(Z) and some positive constant C̃, the
divergence D satisfies the Pinsker-type inequality

C̃‖T − P‖21 ≤ D(T‖P ). (3)
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3) The tail probability of η−1nD(TZn‖P ) satisfies

Pn(η−1nD(TZn‖P ) ≥ c) = Qχ2,k−1(c) +O(δn) (4)

for every c > 0 and a positive sequence δn satisfying
δn → 0. In (4), Qχ2,k−1(·) is the tail probability of a
chi-square distribution with k − 1 degrees of freedom.

As we shall discuss at the end of this section, the class of
divergences Ξ is large and includes both the KL divergence
and the α-divergence with −3 ≤ α ≤ 3 and α 6= ±1.

The following theorem characterizes β′ and β′′ of the
divergence test for any divergence D in Ξ .

Theorem 1: Let D ∈ Ξ and 0 < ε < 1. Consider the
divergence test TDn (r) for testing H0 : Zn ∼ Pn against the
alternative H1 : Zn ∼ Qn, where P,Q ∈ P(Z) and P 6= Q.
Recall that the cardinality of Z is k ≥ 2. Then, the type-II
error satisfies the following:
Part 1: There exists a threshold value rn satisfying

αn(TDn (rn)) ≤ ε (5)

such that, as n→∞,

− lnβn(TDn (rn)) ≥ nDKL(P‖Q)−
√
nV (P‖Q)Q−1

χ2,k−1(ε)

+O(max{δn
√
n, lnn}). (6)

Part 2: For all rn > 0 satisfying (5), we have as n→∞

− lnβn(TDn (rn)) ≤ nDKL(P‖Q)−
√
nV (P‖Q)Q−1

χ2,k−1(ε)

+O(max{δn
√
n, lnn}). (7)

In (6) and (7), Q−1
χ2,k−1(·) is the inverse of c 7→ Qχ2,k−1(c).

Proof: See Section IV.
Since the sequence δn in (6) and (7) vanishes as n → ∞,

it follows that, for the optimal threshold value rn,

− lnβn(TDn (rn)) = nDKL(P‖Q)−
√
nV (P‖Q)Q−1

χ2,k−1(ε)

+ o(
√
n). (8)

Hence, Theorem 1 characterizes the first and second-order
term of the divergence test for any D ∈ Ξ . We hasten to add
that (7) is a converse within the class of divergence tests. There
may be other hypothesis tests that only require knowledge of
the distribution of the null hypothesis and that achieve a higher
second-order performance than (8).

Clearly, the divergence test cannot outperform the Neyman-
Pearson test. The following lemma implies that the second-
order term β′′ of the divergence test is strictly smaller than
the second-order term of the Neyman-Pearson test.

Lemma 2: For every 0 < ε < 1 and η = 1, 2, . . ., we have√
Q−1
χ2,η(ε) > Q−1(ε).
Proof: Let Yi, i = 1, . . . , η be independent and identi-

cally distributed standard Normal random variables. Then, for
y ≥ 0,

Q(y) < Pr(Y 2
1 ≥ y2) ≤ Pr

(
η∑
i=1

Y 2
i ≥ y2

)
= Qχ2,η(y2)

(9)

where the first inequality follows because

Pr(Y 2
1 ≥ y2) = Pr(|Y1| ≥ y) = 2Q(y)

and the second inequality follows because Y 2
1 ≤

∑η
i=1 Y

2
i

with probability one. Let Qχ2,η(y2) = ε. Since y 7→ Q(y)
is strictly decreasing, we obtain from (9) that there exists a
y′ < y such that Q(y′) = ε. It follows that Q−1(ε) = y′ is
strictly smaller than

√
Q−1
χ2,η(ε) = y.

Following similar steps as in the proof of Lemma 2, it can
be shown that

√
Q−1
χ2,k−1(ε) is increasing in k. Thus, as the

cardinality of Z increases, the performance of the divergence
test degrades. The same observation has been made in [9]
for the Hoeffding test by analyzing the mean and variance of
DKL(TZn‖P ) in the limit as n→∞.

For certain divergences in Ξ , we can obtain more precise
asymptotics than (8) by tightening the o(

√
n) term. To this end,

we shall first discuss the three conditions stated in Definition 2.
Condition 1: When D is the f -divergence Df , it follows

from a Taylor-series expansion of Df (T‖P ) around T = P

that Df satisfies (2) with η = f ′′(1)
2 [16, Th. 4.1]. Since both

the α-divergence Dα and the KL divergence DKL belong to
the f -divergence class with f ′′(1) = 1, we obtain that Dα and
DKL satisfy (2) with η = 1

2 [15].
Condition 2: It is well-known that the KL divergence DKL

satisfies Pinsker’s inequality [4, Lemma 11.6.1]. From [17,
Th. 3], it further follows that Pinsker’s inequality can be gen-
eralized to many f -divergences under some conditions on f .
In particular, it follows from [17, Cor. 6] that the α-divergence
satisfies a Pinsker-type inequality when −3 ≤ α ≤ 3, α 6= ±1.

Condition 3: This condition is a Berry-Esseen-type con-
vergence of the statistic η−1nD(TZn‖P ) to the chi-square
distribution with k − 1 degrees of freedom. It can be shown
that, for both the α-divergence with α 6= 1 and the KL
divergence, (4) holds with η = 1

2 and δn = 1√
n

. See the
extended version of this paper [13] for more details.

We conclude that DKL and Dα with −3 ≤ α ≤ 3
and α 6= ±1 satisfy all three conditions in Definition 2 with
δn = 1√

n
and thus belong to the class Ξ . We thus have the

following corollary to Theorem 1.
Corollary 3: Let 0 < ε < 1. Consider the divergence test

TDn (r) with D = {DKL, Dα}, −3 ≤ α ≤ 3, α 6= ±1 for
testing H0 : Zn ∼ Pn against the alternative H1 : Zn ∼ Qn,
where P,Q ∈ P(Z) and P 6= Q. Recall that the cardinality
of Z is k ≥ 2. Then, the type-II error of TDn (rn) minimized
over all threshold values rn satisfying (5) can be characterized
as

− lnβn(TDn (rn)) = nDKL(P‖Q)−
√
nV (P‖Q)Q−1

χ2,k−1(ε)

+O(lnn), as n→∞.

When D is the KL divergence, the divergence test is
the Hoeffding test. Hence, the above corollary recovers the
second-order term of the Hoeffding test as a special case.
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IV. PROOF OF THEOREM 1
A. Proof of Part 1

From (4), it follows that there exist M0 > 0 and N0 ∈ N
such that, for n ≥ N0,∣∣Pn (η−1nD(TZn‖P ) ≥ c

)
− Qχ2,k−1(c)

∣∣ ≤M0δn. (10)

For 0 < ε < 1, let

rn =
η

n
Q−1
χ2,k−1 (ε−M0δn) . (11)

Then, from (10), it follows that αn(TDn (rn)) ≤ ε, n ≥ N0.
We next consider the type-II error. To this end, we define

AD(r′) , {T ∈ P(Z) | D(T‖P ) < r′} , r′ > 0. (12)

Then, for n ≥ N0,

βn(TDn (rn)) =
∑

P̃∈Pn∩AD(rn)

Qn(T (P̃ ))

≤
∑

P̃∈Pn∩AD(rn)

exp{−nDKL(P̃‖Q)} (13)

where the last step follows from [4, Th. 11.1.4]. In (13), Pn
is the set of types with denominator n and T (P̃ ) is the type
class of P̃ , i.e., the set of sequences zn with type P̃ . We next
derive a lower bound on DKL(P̃‖Q) for P̃ ∈ Pn ∩ AD(rn).
To this end, we use the following auxiliary results.

By (3), for every T ∈ AD(r), we have ‖T−P‖1 ≤ k̃1
√
r

for some constant k̃1. Since any two norms on a finite-
dimensional Euclidean space are equivalent, this implies that
there exists a constant C0 > 0 such that ‖T−P‖2 ≤ C0

√
r.

Thus, for any T ∈ AD(rn) with rn in (11),

‖T−P‖2 = O
(
1/
√
n
)
. (14)

Next define

Aχ2(r′) ,
{
T ∈ P(Z) | dχ2(T, P ) < r′

}
, r′ > 0

and denote by Āχ2(r′) the closure of Aχ2(r′). To proceed
further, we use the following lemmas.

Lemma 4: Let rn be given in (11). Then, there exist M > 0
and N1 ≥ N0 such that

AD(rn) ⊆ Āχ2

(
rn
η

+
M

ηn3/2

)
, n ≥ N1. (15)

Proof: See [13, Lemma 4].
Lemma 5: For any two probability distributions Q and T ,

the second-order Taylor approximation of DKL(T‖Q) around
the null hypothesis T = P is given by

DKL(T‖Q) = DKL(P‖Q) +
k∑
i=1

(Ti − Pi) ln

(
Pi
Qi

)
+

1

2
dχ2(T, P ) +O(‖T−P‖32), as ‖T−P‖2 → 0. (16)

Proof: See [13, Lemma 3].
Next, let us consider the function

`(Γ) ,
k∑
i=1

(Γi−Pi)αi, αi , ln

(
Pi
Qi

)
, Γ ∈ P(Z). (17)

Then, for n ≥ N1 and P̃ ∈ Pn ∩AD(rn), we have that

`(P̃ ) ≥ min
Γ∈Pn∩AD(rn)

`(Γ) ≥ min
Γ∈Āχ2

(
rn
η + M

ηn3/2

) `(Γ) (18)

where the second inequality follows from (15).
To compute the minimum in (18), we define the following

quantities:

I , {i = 1, . . . , k | αi −DKL(P‖Q) > 0} (19)
τ , max

j∈I
αj −DKL(P‖Q). (20)

We then have the following result.

Lemma 6: Let 0 <
√
r̃ <

√
V (P‖Q)

τ . Then, the probability
distribution Γ∗ that minimizes `(T ) over Āχ2 (r̃) is given by

Γ∗i = Pi +

√
r̃ (DKL(P‖Q)− αi)Pi√

V (P‖Q)
, i = 1, . . . , k. (21)

Moreover,

min
Γ∈Āχ2 (r̃)

`(Γ) = `(Γ∗) = −
√
V (P‖Q)r̃. (22)

Proof: See [13, Lemma 5].
For any T ∈ AD(rn) with rn in (11), (14) and (16) yield

DKL(T‖Q) = DKL(P‖Q)+`(T )+
1

2
dχ2(T, P )+O

(
n−3/2

)
.

Consequently, there exist M2 > 0 and N̈2 ∈ N such that, for
all n ≥ N̈2 and T ∈ AD(rn),

DKL(T‖Q) ≥ DKL(P‖Q) + `(T )− M2

n3/2
(23)

where we have also used that dχ2(T, P ) is non-negative. Let

r′n =
rn
η

+
M

ηn3/2
. (24)

Since r′n vanishes as n → ∞, we can choose N̈ such that,
for n ≥ N̈ , r′n satisfies

√
r′n < τ−1

√
V (P‖Q) with τ

defined in (20). Then, it follows from (18) and (22) that, for
P̃ ∈ Pn ∩AD(rn) and n ≥ N2 , max{N1, N̈2, N̈}, (23) can
be further lower-bounded as

DKL(P̃‖Q) ≥ DKL(P‖Q)−
√
V (P‖Q)r′n −

M2

n3/2
. (25)

Applying (25) to (13), and using that |Pn| ≤ (n + 1)|Z| [4,
Th. 11.1.1], the type-II error can then be upper-bounded as

βn(TDn (rn)) ≤ (n+ 1)|Z| exp
{
− nDKL(P‖Q)

+ n
√
V (P‖Q)r′n +

M2√
n

}
, n ≥ N2. (26)

By (24) and (11),√
r′n ≤

1√
n

√
Q−1
χ2,k−1 (ε) +O (1/n) +O

(
δn/
√
n
)
. (27)

Consequently, taking logarithms on both sides of (26), and
using (27), we obtain that

lnβn(TDn (rn)) ≤ −nDKL(P‖Q) +
√
nV (P‖Q)Q−1

χ2,k−1(ε)

+O(max{δn
√
n, lnn}). (28)

This proves Part 1 of Theorem 1.
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B. Proof of Part 2

Define for 0 < ε < 1

rεn , inf {r > 0 | Pn (D(TZn‖P ) ≥ r) ≤ ε} . (29)

We have the following results:
Lemma 7: For M0 and δn given in (10), we have

rεn =
η

n
Q−1
χ2,k−1(ε) +O (δn/n) . (30)

Proof: See [13, Lemma 6].
Lemma 8: There exist M ′1 > 0 and N ′1 ∈ N such that

Āχ2

(
rεn
η
− M ′1
ηn3/2

)
⊆ AD(rεn), n ≥ N ′1. (31)

Proof: See [13, Lemma 7].
For any T ∈ AD(rεn), it follows from (3) and (16) that

‖T − P‖2 = O (1/
√
n) and that there exist M ′2 > 0 and

N ′2 ∈ N such that, for n ≥ N ′2,

|DKL(T‖Q)−DKL(P‖Q)− `(T )− 1

2
dχ2(T, P )| ≤ M ′2

n3/2
.

(32)
If r < rεn then, by definition of rεn, the type-I error αn(TD)
exceeds ε. Hence, such a threshold violates (5). We thus
assume without loss of optimality that r ≥ rεn. In this case,

βn(TDn (r)) ≥ Qn (D(TZn‖P ) < rεn) .

Together with Lemma 8, this implies that, for n ≥ N ′1, the
type-II error can be lower-bounded as

βn(TDn (r)) ≥
∑

P̃∈Pn∩Āχ2 (r̄n)

Qn(T (P̃ )) (33)

where
r̄n =

rεn
η
− M ′1
ηn3/2

. (34)

By (30), r̄n vanishes as n→∞. We can therefore find an Ñ ′

such that, for n ≥ Ñ ′, we have
√
r̄n < τ−1

√
V (P‖Q) with

τ defined in (20). To lower-bound the type-II error further, let
us consider the following lemma.

Lemma 9: Consider the minimizing probability distribution
Γ∗ given in (21) in Lemma 6, namely

Γ∗i = Pi +

√
r̄n(DKL(P‖Q)− αi)Pi√

V (P‖Q)
, i = 1, . . . , k (35)

with r̄n given in (34), αi given in (17), and n ≥ Ñ ′. Then,
there exist Ñ ∈ N and a type distribution T ∗n ∈ Pn∩ Āχ2 (r̄n)
such that

|n`(Γ∗)− n`(T ∗n)| ≤ κ, n ≥ Ñ (36)

for some constant κ > 0.
Proof: See [13, Lemma 8].

From (33), the type-II error of the divergence test can be
lower-bounded as

βn(TDn (r)) ≥ Qn(T (T ∗n))

≥ 1

(n+ 1)|Z|
exp{−nDKL(T ∗n‖Q)}, n ≥ Ñ1 (37)

where Ñ1 , max{N ′1, N ′2, Ñ}, and T ∗n ∈ Pn ∩ Āχ2 (r̄n) is a
type distribution satisfying (36). The second inequality in (37)
follows from [4, Th. 11.1.4].

We next upper-bound DKL(T ∗n‖Q). To this end, we use
(32) and (36), and that `(Γ∗) = −

√
V (P,Q)r̄n, to obtain

nDKL(T ∗n‖Q)

≤ nDKL(P‖Q) + n`(T ∗n) +
1

2
ndχ2(T ∗n , P ) +

M ′2√
n

≤ nDKL(P‖Q)− n
√
V (P,Q)r̄n + κ+

nr̄n
2

+
M ′2√
n

for n ≥ Ñ1. Substituting the above equation in (37) and taking
logarithms, we get for n ≥ Ñ1

lnβn(TDn (r)) ≥ −|Z| ln(n+ 1)− nDKL(P‖Q)

+ n
√
V (P‖Q)r̄n − κ−

nr̄n
2
− M ′2√

n
. (38)

By (30) and (34),

√
r̄n =

1√
n

√
Q−1
χ2,k−1(ε) +O (1/n) +O

(
δn/
√
n
)
. (39)

It follows that (38) can be written as

− lnβn(TDn (r)) ≤ nDKL(P‖Q)−
√
nV (P‖Q)Q−1

χ2,k−1(ε)

+O(max{δn
√
n, lnn}).

This proves Part 2 of Theorem 1.

V. CONCLUSIONS

For the divergence test and for a large class of divergences,
we established the first-order and the second-order terms of
the type-II error given that the type-I error is upper-bounded
by a given value. The divergence test does not require the
knowledge of the distribution of the alternate hypothesis,
hence, it is suitable for problems where we only have access to
the distribution of the null hypothesis. The class of divergences
considered in this paper includes well-known divergences such
as the KL divergence and the α-divergence, and our divergence
test specializes to the Hoeffding test if the chosen divergence
is the KL divergence. It is well-known that the Hoeffding
test is first-order optimal in the sense that its first-order term
is equal to the first-order term of the Neyman-Pearson test.
However, our results demonstrate that the second-order term
of the divergence test for the class of divergences considered in
this paper, and therefore also of the Hoeffding test, is strictly
smaller than the second-order term of the Neyman-Pearson
test. The question whether there exists a test that only requires
the knowledge of the distribution of the null hypothesis and
that achieves a higher second-order performance than the
Hoeffding test is yet to be explored.
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