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OPEN BIDS 
 

Ángel Hernando-Veciana 
 
 

ABSTRACT 
 

 This paper studies the incentives of a bidder to acquire information in an 

auction when her information acquisition decision is observed by the other 

bidders before they bid. Our results show that the sealed bid (second price) 

auction induces more information acquisition about a common component of 

the value than the open (English) auction, but less about the private component 

of the value. Moreover, under our assumptions more information about the 

private value and less information about the common value improves efficiency 

and revenue in some sense. Consequently, our results suggest new arguments 

in favor of the open auction. 

 

JEL classification: D41, D44, D82. 

Keywords: auctions, open information acquisition, asymmetric information. 



1 Introduction

Most auction theory models assume that bidders have some private information. How-

ever, relatively little is known about the origin of this private information and in

particular, the incentives of bidders to acquire it. This is not only an important the-

oretical question but also of practical concern in auction design. The reason is that

more or less information acquisition affects the efficiency and the auctioneer’s expected

revenue in the auction.

In this paper, we shall study a bidder’s incentives to acquire information about the

value that she may get from the object for sale. In particular, we shall focus on the case

in which a bidder’s information acquisition decision is observed by the other bidders,

i.e. open information acquisition. This model allows a richer theoretical problem than

the model in which the bidder’s information acquisition decision is not observed by

the other bidders, i.e. covert information acquisition. The reason is that in the open

model, information acquisition is a strategic variable in the sense that it may affect

the other bidders’ behavior, whereas this is not the case in the covert model.

Moreover, there are relevant real-life auctions in which the open information ac-

quisition model is the most appropriate. For instance, bidders that want to acquire

information in oil tract auctions use exploratory drills that are easily visible. There are

also other cases in which the auctioneer can control whether the bidders’ information

acquisition decision is observable. Consider again the example of oil tract auctions. It

is quite common that bidders that want to run exploratory drills must communicate

it to the auctioneer who could decide whether to reveal it.

Even if we are only interested in problems in which the information acquisition

decision is unobserved by the other bidders, it is always reasonable to wonder whether

bidders have incentives to make public their information acquisition decisions. To

answer that question, we need first to understand what happens when the information

acquisition decision is observed.

In our paper, we shall compare the incentives to acquire information in two standard

auction formats: a (second price) sealed bid auction, and an open (English) auction.
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Both formats are similar in the sense that, in both cases, the winner pays the highest

losing bid. However, they differ in one important aspect. The sealed bid auction is a

static game in which the only information revealed occurs when the auction is over,

whereas the open auction is a dynamic game in which there is a lot of information

revelation along the game, namely all the losing bids. Thus, the comparison between

these two auction formats is interesting not only by itself, but also because it isolates

the effect of the information revealed in a dynamic auction on the incentives to acquire

information. As a consequence, it sheds new light in the comparison between static

and dynamic auctions.

The information revealed along the open auction implies two differences with the

sealed bid auction. In the open auction bidders can, first, track the bid behavior of any

bidder, for instance, the one who acquires information, and, second, infer in equilibrium

the types of the bidders as they leave the auction. This is not the case in the sealed

bid auction. Our analysis shows that the first difference is the key to understand why

the incentives to acquire information openly in our two auction formats differ.1

Our results show that in a model in which the bidder’s uncertainty about her

value has private components and components common to all bidders, the incentives

to acquire more information about the common components in the sealed bid auction

are greater than in the open auction. However, the ranking is the opposite, at least

if there are sufficiently many bidders, when the information acquisition is about the

private component of the bidder’s value.

Our results also show that once the open information acquisition decision of bidders

is endogenized, in the symmetric equilibrium of the game there is more information
1The second difference may play a role in explaining the differences in bidders’ incentives to ac-

quire information but not under our assumptions. Intuitively, a bidder has less incentives to acquire

information about her value if she expects to learn the other bidders’ private information along the

auction, at least if there is some kind of substitutability among the bidders’ private signals. However,

we rule out this effect with an assumption, independency of the bidders’ private information. Our

reason, as we explain in Section 2, is that the effect we comment in this footnote exists with open

or covert information acquisition, and our aim is the study of the effects that are exclusive of open

information acquisition.
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acquisition in the open auction about the private value and less about the common

value than in the sealed bid auction. Moreover, we derive from these results new

arguments that suggest that the open auction may give greater expected revenue and

be more efficient than the sealed bid auction.

The issue of bidders’ open information acquisition in auctions has received very

little attention. There are some partial results as a side-product in the work of

Engelbrecht-Wiggans, Milgrom, and Weber (1983), and Hernando-Veciana (2004).

Larson (2004) and Hernando-Veciana and Tröge (2005) provide an analysis of the

value of private information in auctions when information acquisition is observable.

These two papers, however, only study the open auction and information acquisition

about the common value, whereas we also study the sealed bid auction and the value

of additional information about the private value.

One possible explanation for this lack of attention are the technical difficulties

inherent to the analysis of what has been called asymmetric auctions. These are

auctions in which bidders differ from an ex ante point of view, or in other words,

where the identity of bidders matters. Most of the work in auction theory requires

the study of sophisticated mathematical models that can only be solved explicitly

appealing to anonymity assumptions. In fact, it is complex to provide conditions that

assure existence, see for instance Athey (2000), or uniqueness of the equilibrium, see

Parreiras (2004) and Larson (2004), once asymmetries among bidders are allowed.

But, when bidders’ information acquisition decisions are observed before the begin-

ning of the auction game, we must necessarily consider asymmetric auctions. Even if

we study a symmetric equilibrium in which bidders acquire the same level of informa-

tion in equilibrium, we must solve the auction game for deviations of this symmetric

equilibrium. In these deviations, a bidder takes a different information acquisition

decision than the other bidders. Since the other bidders observe the choice of the

bidder who deviates before the auction stage, we can no longer analyze the auction as

a symmetric game. In fact, a side-product of our analysis is to provide an equilibrium

analysis of these asymmetric auctions.

Thus, our paper is related from a technical point of view to a growing literature on
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asymmetric auctions in which one bidder is better informed than the others. Models

particulary closed are those by Hernando-Veciana (2004), Larson (2004) and Hernando-

Veciana and Tröge (2005) that have been already referred, and to an independent and

simultaneous paper by Boone and Goeree (2005). This last paper differs in that it

concentrates on the optimal auction design and does not consider the question of

information acquisition.

There exist some other papers that have studied the problem of covert information

acquisition. For instance, two early examples are Matthews (1984) and Lee (1985),

and more recently, Persico (2000), Bergemann and Välimäki (2002), Hagedorn (2004)

and Hernando-Veciana (2005). The difference with our approach is that in this case

information acquisition is not a strategic variable in the sense that it cannot affect the

bid behavior of the other bidders since it is not observable. The contribution of our

paper is to address this strategic effect.

Compte and Jehiel (2002) also compare information acquisition in the sealed bid

auction and the open auction. However, their paper differs from ours in that they

study a pure private value model. Under this assumption it is irrelevant whether the

information acquisition choices are observed since they do not affect the other bidders’

bid behavior, at least in the auction formats that Compte and Jehiel (2002) study.

The rest of the paper is organized as follows. The next section provides the as-

sumptions of the model: basically we study a two-stage game, in a first stage bidders

decide how much information to acquire and in the second stage they participate in an

auction game. We study the second stage in Section 3, and the first stage in Section 4.

In Section 5, we study the implications of our results for the efficiency of the auction

and the auctioneer’s expected revenue. Finally, Section 6 concludes. We also include

an Appendix with the most technical proofs.
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2 The Model

We study a model in which one unit of an indivisible object is put up for sale to

a set I ≡ {1, 2, ..., n}, where2 n ≥ 3, of risk neutral bidders whose values on the

object for sale have private and common components. In particular, we assume that

a generic bidder i ∈ I puts a monetary value of Ti +
∑

j∈I Qj in the consumption

of the good. Note that Ti (for taste) is a private value component as it only affects

i’s preferences whereas Qi (for quality) is a common value component that affects all

bidders’ preferences.

Note that we are assuming additive separability of the utility function. This as-

sumption simplifies our problem as it allows us a straightforward application of the

techniques developed by Myerson (1981). Moreover, it also simplifies the compari-

son of the allocation implemented in each of the auction games we study. We could

get similar results assuming additive separability only of the private and the common

value,3 i.e. between Ti and (Q1, ..., Qn). We also conjecture that a marginal version of

our results must also hold true when we relax this assumption. The reason is that any

smooth function can be approximately linearized locally.

We shall assume that Bidder i ∈ I observes privately a noisy signal informative

of the common value component Qi and the bidder’s private value Ti. This signal is

one element of a family {Xηi
i }ηi∈N in which the index ηi will be referred as Bidder

i’s information precision. We also introduce some ex ante symmetry assumptions

and assume independency between the bidders’ private information. In particular, we

assume that the random vectors (Ti, Qi, (X
ηi
i )ηi∈N ) are independent and identically

distributed across bidders.

From a technical point of view, our assumption of independency of the bidders’
2We assume that n ≥ 3 since our open and sealed bid auctions are strategically equivalent for

n = 2.
3We assume additive separability among the common value components to guarantee that the

bidders’ expected utility is linear not only on the bidder’s private component Ti but also on the bidder’s

common value component Qi. We are interested in keeping this symmetry between the private and

the common component to be able to derive the same notion of a more informative signal, see below,

for the private and the common value component.
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private information simplifies our problem since we can apply Myerson’s (1981) tech-

niques. However, there is a more important reason for this assumption. The bidder’s

information acquisition has two types of effects: strategic and non-strategic; the former

one because a bidder’s information acquisition, if observable, may affect the bids of

the other bidders, and the latter one because a more informed bidder can take better

decisions. Clearly, the non-strategic effects appear independently of whether the infor-

mation acquisition is open or covert, whereas the strategic effects are exclusive of the

open case.

The non-strategic effects and their differences across auction formats have already

been studied in models of covert information acquisition. For instance, Hernando-

Veciana (2005) shows that an adaptation of the arguments given by Persico (2000)

implies a sealed bid auction gives larger incentives to acquire information covertly

than the open auction when signals are affiliated. The contribution of our paper is

the study of the strategic effects, and thus we would want to abstract from the non-

strategic effects. This is what the assumption of independency of the bidders’ private

information does for us.

We shall impose some structure on our family of bidders’ signals for two reasons.

First, we want to associate higher realizations of the signals to higher willingness to

pay, and second, we want higher values of ηi to denote more informative signals. We

shall derive our assumptions from the results by Athey and Levin (2001).

Under our assumptions of additive separability and independency of the bidders’

types, the utility of Bidder i in any auction game, and for some fixed strategies of the

other bidders, is linear in both Ti and Qi. Moreover, Bidder j’s utility is also linear

in Qi for the other bidders’ strategies fixed. An application of Lemma 1 in Athey and

Levin (2001) shows that a sufficient condition to assure that a higher signal induces

higher bidding for bidders with value functions that are linear in either Ti or Qi or

both is that E[Ti|Xηi
i = x] and E[Qi|Xηi

i = x] are both increasing. In this sense we

can say that high realizations of Xηi
i correspond to good news and low realizations to

bad news.

To simplify notation in what follows, we normalize the marginal distribution of each
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private signal Xηi
i to be uniform in the interval [0, 1]. To see why this normalization

is without loss of generality, suppose that our original signal Xηi
i had a distribution

function G that was not uniform. We could define a new signal X̂ηi
i ≡ G(Xηi

i ) which

has a uniform distribution function on [0, 1]. Moreover, X̂ηi
i is equally informative

since it is a monotone transformation4 of Xηi
i .

We use a concept of more informative signals that identifies a more informative

signal with a more valuable5 signal in the tradition of Blackwell (1951). However,

instead of requiring that a more informative signal must be more valuable for any

decision problem, as it was Blackwell’s original approach, we restrict to the type of

decision problems that bidders face in our model. As we have already argued, these are

problems linear in the state. Note that another difference with Blackwell’s approach

is that we take as given the prior on the state.

Denote by F η
Vi

(.|Xη
i ) the posterior of Vi, Vi ∈ {Ti, Qi}, conditional on signal Xη

i ,

and SVi the support of Vi. Then:

Definition: We say that signal Xη
i is more informative of Vi, for Vi ∈ {Ti, Qi}, than

signal Xη′
i if and only if,

E

[
max

a

∫
u(vi, a) dF η

Vi
(vi|Xη

i )
]
≥ E

[
max

a

∫
u(vi, a) dF η′

Vi
(vi|Xη′

i )
]

,

for any function u : SVi × A → R+ linear in the first argument, continuous in the

second one, and A compact.

However, we shall use in our analysis the following result that gives a more tractable

characterization of more informative signals.

Lemma 1. Signal Xη
i is more informative of Vi, for Vi ∈ t{Ti, Qi}, than signal Xη′

i if

and only if, E[Vi|Xη
i ≤ x] ≤ E[Vi|Xη′

i ≤ x] for any x ∈ [0, 1].

4The argument we have given only works for G continuous and strictly increasing in the support.

See Athey and Levin (2001) and Lehmann (1988) for the general case.
5We could use instead an ad hoc concept of more informative signals. However, note that a definition

with no economic content would always have two drawbacks. First, we can discuss why one definition

and not another one. And second, we can always suspect that our results are a consequence of some

of the artificial restrictions imposed by our definition.
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Proof. The proof is a direct application of Theorem 1 of Athey and Levin (2001). ¥

Note that the former characterization also has an intuitive meaning. Recall that

low realizations of the signal mean bad news in the sense of a lower conditional expected

value. Thus, what this characterization says is that a more informative signal makes

bad news to become worse news. It is also straightforward to show that the above

characterization is equivalent to a characterization in which all the inequalities are

reversed. Intuitively, what this means is that our characterization also implies that a

more informative signal makes good news better news.

We show in Appendix D that according to our definition, a signal Xη
i is more

informative of Vi, Vi ∈ {Ti, Qi} than another signal Xη′
i if and only if the distribution

of the conditional expected value E[Vi|Xη
i ] is dominated in the sense of second order

stochastic dominance by the distribution of the conditional expected value E[Vi|Xη′
i ].

In this sense, we can say that acquiring more information increases the spread of the

distribution of the conditional expected value.

We also introduce some regularity assumptions. We assume that the conditional

expected values E[Ti|Xη
i = x] and E[Qi|Xη

i = x] have continuous derivatives in x. We

also assume that the function µ(x, η) ≡ E[Qi|Xη
i = x]−E[Qi|Xη

i ≤ x] is increasing in

x, for any6 η. Finally, we assume that there exists a bound ν > 0 such that,

1
ν

<
∂E[Ti|Xη

i = x]
∂x

,
∂E[Qi|Xη

i = x]
∂x

< ν, for any x ∈ [0, 1]

Next example illustrates our assumptions:

Example A: Suppose that Qi and Ti, ∀i ∈ I, follow an independent uni-

form distribution with support [0, 1], and Xη
i is a lottery that is equal to Qi

with probability ηT (η), it is equal to Ti with probability ηQ(η), and with

6A sufficient condition for this regularity assumption is that the cumulative distribution function of

the conditional expected value E[Qi|Xη
i ], is log-concave, an assumption satisfied by many distribution

functions, see Bagnoli and Bergstrom (1989), for instance any distribution function of the form F (q) =

qr, r ≥ 1, and any truncated exponential, normal, logistic, extreme-value, chi-square, chi, and Laplace

distributions. This is also equivalent to the assumption that the inverse of the function g(x) =

E[Qi|Xη
i = x] is log-concave.
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the remaining probability, it is equal to an independent random variable

with uniform distribution, where ηT and ηQ are weakly increasing func-

tions with domain in ( 1
ν , ν). To see that higher values of η means more

informative signals, note that,

E[Ti|Xη = x] = ηT (η)x + (1− ηT (η))
1
2
,

and,

E[Ti|Xη ≤ x] = ηT (η)
x

2
+ (1− ηT (η))

1
2
.

The functions that correspond to Qi are identical but using ηQ instead of

ηT .

We shall focus on two extreme models of information acquisition. In the first one,

the common value information acquisition model, we assume that a higher information

precision η corresponds to a more informative signal of the common value component,

but it does not change the conditional expected private value E[Ti|Xη
i = x] for any

x ∈ [0, 1]. In the other model, the private value information acquisition model, we

make the symmetric assumption, a higher η corresponds to a more informative signal

with respect to the private value component, but it does not change E[Qi|Xη
i = x] for

any x ∈ [0, 1].

It is important to remark that in both models, the bidders’ values have private

and common value components and bidders have private information about both. The

difference is the meaning of additional information. In the first model, to acquire more

information means that the signal becomes more informative of the common value

component but it remains equally informative about the private value component.

The opposite happens in the second model.

Our two models of information acquisition can make sense in some real-life auctions.

However, the main point is to offer two theoretical benchmarks that allow clear-cut

comparative statics. As we shall see, the crucial assumption is that in one model a

bidder’s information acquisition changes how informative is her bid (assuming now and

in what follows strictly increasing bid functions)7 either with respect to the common or
7We focus on the informativeness of the action rather than in the informativeness of the signal for
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the private value components, but not with respect to both components simultaneously.

Other models have not made this distinction. In fact, our model seems to lie somewhere

in between two opposite models.

On the one hand, models as Hernando-Veciana and Tröge (2005) in which bidder’s

information acquisition makes the bidder’s bid more informative with respect to the

common value but at the same time less informative with respect to the private value.

This is a natural consequence of two-dimensional bidders’ private information, where

one dimension is informative of the common value and the other one of the private

value.8 The implicit assumption is that the good has several unrelated characteristics,

some of them affect all the bidders’ values in exactly the same fashion, and some others

only affect to the value of one single bidder.

On the other hand, other models, for instance Bergemann and Välimäki (2002),

have assumed the opposite. This is, an increase in the informativeness of the bidder’s

signal implies an increase in the informativeness of her bid with respect to both the

common and the private value. The implicit assumption is that the bidder learns about

some characteristics of the good for sale which are valuable to all bidders but more to

her than to the other bidders.

We introduce an additional assumption in the common value information acquisi-

tion model. We assume that the function µ(x, η) is increasing in η. The reason for

this assumption is that it makes our results stronger at a small cost, see after Lemma

3. Note that the definition of more informative signals only implies that µ(x, η) is

two reasons: the first one is to allow a homogeneous comparison of models with one or two dimensional

signals, the second is that the strategic effects of information acquisition depend on how informative

the bidder’s actions are rather than in how informative the bidder’s signals are.
8For example, consider a two-dimensional signal in which one dimension is perfectly informative of

the private value component and the other dimension is completely uninformative, and another signal

in which the first dimension is perfectly informative of the private value and the second dimension

is perfectly informative of the common value. Certainly, the bids induced by the second signal are

more informative of the common value than the first one, but it is easy to see that they are also

less informative of the private value. Note, however, that there are examples in which the opposite

happens: an increase in the informativeness of the private value dimension of a two-dimensional signal

makes the induced bids more informative not only of the private value but also of the common value.
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increasing in η for x equal to 0 or to 1. To understand the intuitive meaning of this

additional restriction note that µ(x, η) = E[Qi|Xη
i ≥ x,Xη

i ≤ x] − E[Qi|Xη
i ≤ x].

Thus, we can interpret this last assumption as that a more informative signal makes

good news in the sense of {Xη
i ≥ x} become better news when we also condition on

{Xη
i ≤ x}.
We also introduce an additional assumption in the private value information ac-

quisition model, we assume that E[Ti|Xη
i = 1] is strictly increasing. Note that our

definition of more informative signals only implies that it is weakly increasing. This

assumption is not essential for our analysis but makes the proof of the second item of

Proposition 3 simpler.

To model open information acquisition decision we have in mind a two-stage model.

In the first stage bidders choose independently and simultaneously the precision of their

information at some cost. These decisions are made public at the end of the first stage.

In a second stage, bidders bid in an auction game. We shall assume a quite standard

structure for the auction stage: each bidder first observes privately the realization of

the signal she chose in the first stage and then they all participate in an auction which

we assume to be either an open (ascending) auction9 (O) or a sealed bid (second price)

auction10 (S) with neither a reserve price nor an entry fee.

The simultaneity of the bidders’ information acquisition decision may seem in con-
9We assume that the auction procedure is as follows, at every moment of time there are two types of

bidders: active bidders and inactive bidders. Bidders are active until they manifest that they want to

become inactive. Once a bidder has decided to become inactive her decision is irreversible. The identity

of the active bidders is publicly observable along the auction. The price is also publicly observable and

increases continuously from zero. At each moment in time bidders can decide to become inactive. The

price stops increasing whenever there is no more than one active bidder. In this case, the remaining

active bidder gets the unit for sale. If there is no active bidder when the price stops, the good is

randomly allocated (with equal probability) among the bidders that quit at the last price. The price

paid by all the winners is the price at which the auction stopped.
10In this auction set-up, all bidders submit simultaneously one bid each. The bidder who has

submitted the highest bid gets the good at the price of the second highest bid. If two bidders submit

the highest bid, the price equals this bid and the good is allocated randomly among all the bidders

that submitted the highest bid, whereby all such bidders have the same probability of being selected.
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flict with the assumption that the information acquisition decisions are observable

before the auction game. One justification is that bidders information acquisition de-

cision must be taken before the visible part of the process of information acquisition

starts. For instance, an oil company may need permissions, hire the equipment and

contract consulting services before starting a drill. A more basic reason for this as-

sumption is that we want to focus on the incentives to acquire information abstracting

from other strategic issues in the information acquisition game like first mover ad-

vantages, predatory strategies and endogenous timing. They seem relevant issues but

more appropriate for extensions.

In the next sections, we analyze our model. We start with the auction games and

finish with the information acquisition stage.

3 Analysis of the Auction Games

In this section we study the second stage of our game, the auction game. We start

by providing an intuitive understanding of the bidders’ incentives to change the bid

which we use to analyze the strategic effects induced by open information acquisition.

Later, we solve for the equilibrium of the auction games and show that the insights

that we have learnt explain our equilibrium results.

In both auction formats, the sealed bid auction and the open auction, a bidder’s

bid only determines whether the bidder wins or loses the auction, but not the price

that she pays when she wins, which is equal to the highest bid of the other bidders.

In particular, the bidder wins if her bid is greater than the highest bid of the other

bidders and loses otherwise.

As a consequence, an increase in the bid only affects the bidder because she can

pass from losing to winning when the highest bid of the other bidders is between her

old bid and her new bid. Certainly, if the increase in the bid is marginal, the only

change happens when the bidder was tying with the highest bid of the other bidders.

Thus, a bidder that bids p has incentives to increase (or similarly, decrease) her bid a

marginal amount if her expected value of the good conditional on the event that the
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highest bid of the other bidders is equal to p is greater (respectively, less) than her bid

p.

The event that the highest bid of the other bidders is equal to p is the intersection

of two other events: the event that the highest bid of the other bidders is greater than

p, and the event that the highest bid of the other bidders is less than p. The first

event is good news about the common value, and hence it induces greater incentives to

increase the bid. This event has been called the loser’s curse as a bidder who ignores

it will bid too low and may regret losing. The second event is bad news about the

common value, and hence it induces lower incentives to increase the bid. This event

has been called the winner’s curse as a bidder who ignores it will bid too high and

may regret winning.11

For the sake of simplicity, we shall only consider auction games in which one single

bidder acquires different information than the other bidders. This analysis is sufficient

to study equilibria of the first stage in which all bidders acquire the same level of

information because we only need to consider deviations of one single bidder. We thus

call this bidder the deviating bidder and denote her index by d ∈ I and her information

precision by ηd. We refer to the other bidders as non-deviating bidders and to their

information precision by η.

The strategic effect associated to the information acquisition decision of the devi-

ating bidder comes from the change in the bid behavior of the non-deviating bidders.

We, thus, focus on the incentives to change the bid of the non-deviating bidders, first,

in the open auction and, second, in the sealed bid auction.

The open auction is a dynamic game with several information sets. However, a

non-deviating bidder generally ties with the highest bid of the other bidders only in

information sets in which the bidder that makes that bid is the only other bidder who

remains in the auction. Moreover, since we are interested in the incentives to change

the bid of a non-deviating bidder only because its effect on the expected utility of the

deviating bidder we focus on the case in which the deviating bidder is the only other
11The description of the winner’s curse and loser’s curse in terms of statistical events was first used

by Pesendorfer and Swinkels (1997). They also introduced the notion of loser’s curse in auctions.
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remaining bidder.

In the information sets we mention above, the highest bid of the other bidders

is certainly the deviating bidder’s bid and thus the loser’s curse means that her bid

is greater than p. Moreover, the types of all the bidders who have already left the

auction can be inferred in equilibrium from the price at which they have quit, and

hence they are public information. Consequently, the winner’s curse only means that

the bid of the deviating bidder is less than p. We can illustrate these two effects with

a formalization of the incentives of a non-deviating bidder, say Bidder i, with type xi

to change marginally her bid around p:

E


Ti +

n∑

j=1

Qj

∣∣∣∣∣∣
Xη

i = xi, b
O
d (Xηd

d ) ≥ p︸ ︷︷ ︸
loser’s curse

, bO
d (Xηd

d ) ≤ p︸ ︷︷ ︸
winner’s curse

,X


− p, (1)

where X is the information about the other bidders inferred along the equilibrium path

and bO
d denotes the bid function used by the deviating bidder in the above information

sets.

The incentives of a non-deviating bidder in a sealed bid auction are similar to the

open auction but with two differences. The first one is that a given non-deviating

bidder has uncertainty about the identity of the bidder that submits the highest bid

of the other bidders: it may be the deviating bidder or another non-deviating bidder.

This difference affects the loser’s curse which in this auction set-up means that with

some probability, say12 ρ, the bid of the deviating bidder is greater than p and with

the complementary probability it is the the bid of another non-deviating bidder.

The second difference is that there is no information revelation along the auction,

and thus, the bidder does not have any additional information about the other bidders’

types. This difference makes the winner’s curse stronger in the sense that it gives bad

news about the types of more other bidders.
12This probability must be computed conditional on the event that it is relevant for the bidder,

this is that the highest bid of the other bidders is equal to p. Moreover, we shall see later that this

probability depends on p and on the shape of the bidders’ bid functions. We have abstracted from

these complications in the current description to make our arguments clearer. Although we take them

into account later in the equilibrium analysis.
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We shall see that the difference in the loser’s curse between our two auction for-

mats explains our ranking of auctions in terms of incentives to acquire information.

However, and because of our assumptions of additive separability and independency of

the bidders’ types, the difference in the winner’s curse does not have any implication

on the comparison of our auction formats.

Again, to illustrate the loser’s curse and the winner’s curse, we formalize the in-

centives of a non-deviating bidder with type xi to change her bid marginally around a

price p:

(1− ρ) E


Ti +

n∑

j=1

Qj

∣∣∣∣∣∣∣
Xη

i = xi, b
S
nd(X

η
j ) ≥ p︸ ︷︷ ︸

loser’s curse

, bS
d (Xηd

d ) ≤ p, {bS
nd(X

η
l ) ≤ p}l 6=d,i︸ ︷︷ ︸

winner’s curse


+

ρE


Ti +

n∑

j=1

Qj

∣∣∣∣∣∣∣
Xη

i = xi, b
S
d (Xηd

d ) ≥ p︸ ︷︷ ︸
loser’s curse

, bS
d (Xηd

d ) ≤ p, {bS
nd(X

η
l ) ≤ p}l 6=d,i︸ ︷︷ ︸

winner’s curse


− p, (2)

where bS
d denotes the bid function of the deviating bidder and bS

nd the bid function

used by all the other non-deviating bidders.

Consider first the common value information model. If the deviating bidder ac-

quires a more informative signal, it increases both the loser’s and the winner’s curse

of the non-deviating bidders, and hence affects the non-deviating bidders’ incentives

to change their bids. The final effect on the incentives to increase the bid is unclear.

It may be positive if the effect on the loser’s curse dominates and negative if it is the

effect on the winner’s curse which dominates.13

Nevertheless, while the increase of the winner’s curse affects both auction formats

with the same magnitude, the increase of the loser’s curse is stronger in the open auc-

tion than in the sealed bid auction. The reason, as we explain above, is that the private

information of the deviating bidder affects the loser’s curse only with probability ρ.

As a consequence, we expect the bids of the non-deviating bidders to increase less (or
13It may be shown that the effect is positive, i.e. induces higher bidding, for high prices and negative,

i.e. induces lower bidding, for low prices, at least in the open auction. We do not explore this argument

here because it is not essential for our results. Hernando-Veciana and Tröge (2005) have provided a

more detailed analysis.
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decrease more) in the sealed bid auction than in the open auction. In principle, this

effect should give greater incentives to acquire information in the sealed bid auction

than in the open auction. This is shown in Proposition 3.

Consider next the private value information model. In this case, there is no di-

rect effect because the private information of the deviating bidder only affects the

incentives of the non-deviating bidders through the common value, and by assumption

the informativeness of the signal of the deviating bidder with respect to the common

value is kept constant. However, a more informative signal induces a spread (in the

sense of second order stochastic dominance, see Appendix D) of the deviating bidder’s

conditional expected private value E[Td|Xηd
d ] and, consequently, of her bids. It ap-

proximately means that high bids become higher and low bids become lower. We shall

argue that this effect has the opposite consequences on the non-deviating bidders’ bids,

this is, it makes them less spread.

The fact that the deviating bidder makes higher her high bids affects the non-

deviating bidders’ incentives to submit high bids. The reason is that higher bids by

the deviating bidder means that the bad news of the winner’s curse becomes worse and

the good news of the loser’s curse not so good. Figure 1 illustrates these two effects.

We can see that for a fixed price p sufficiently high, the steeper the bid function is,

the lower the signals that the loser’s curse indicates, and hence the less good the good

news of the loser’s curse are. Similarly, for a fixed price p sufficiently high, the steeper

the bid function is, the lower the signals the winner’s curse indicates, and hence, the

worse the bad news of the winner’s curse are.

The combination of both effects reduces the incentives of the non-deviating bidders

to increase the bid and hence we would expect that in equilibrium the non-deviating

bidders lower their high bids.14 Symmetric reasons explain that low bids of the devi-

ating bidder lower induces the non-deviating bidders to make their low bids higher.

The reduction of the spread of the bids of the non-deviating bidders does not have
14This change in the bid of the non-deviating bidders may induce a similar effect but of opposite

direction in the deviating bidder’s bids. Moreover, this new change of the deviating bidder’s bids

should reinforce the change in the non-deviating bids creating a feedback loop. This effect was already

pointed out by Bulow, Huang, and Klemperer (1999) for the open auction.
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0 1 Type

Bids

WC0

WC1 LC1

LC0

Bid0

Bid1

p

Figure 1: Change in the winner’s curse (WC0 → WC1) and loser’s curse (LC0 → LC1)

for a high bid p as a consequence of a change in the bid function (Bid0 → Bid1).

obvious consequences on the expected utility of the deviating bidder but in one case,

when the number of bidders is sufficiently large. In this case, the highest bid of the

non-deviating bidders is with high probability a high bid, and hence, the reduction

of the high bids of non-deviating bidders is more important than the increase of their

low bids. Consequently, this strategic effect should give greater incentives to acquire

information. More importantly, this effect should be stronger, and thus the incentives

to acquire information, in the open auction than in the sealed bid auction because

of the difference in the loser’s curse we pointed out above. This result is proved in

Proposition 3.

We now move to the equilibrium analysis of our two auction games. This analy-

sis will show that the effects studied in this section translate into some equilibrium

results that support the ranking of auctions with respect to the incentives to acquire

information that we have suggested.

Our equilibrium analysis will be based on the study of the allocation implemented in

the equilibrium of each of the auction formats. In the case of an equilibrium in which all
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the non-deviating bidders use the same strictly increasing bid strategy (and the good is

always sold), an allocation can be characterized by a function, the allocation function,

that maps types of the deviating bidder into types of the non-deviating bidders. The

good goes to the non-deviating bidder with highest type if its image is higher than the

deviating bidder’s type, and otherwise, it goes to the deviating bidder.

There are two reasons to focus on allocation functions. First, it may be shown that

in our model, the comparison between the bids across auction formats is equivalent,

in some sense, to the comparison of the allocations functions. Second, and more

important, the incentives of the deviating bidder to acquire information depend on

how her expected utility varies with changes in the her information precision, and, as

we shall see in Lemma 5, the expected utility of a deviating bidder is characterized by

the allocation function.

An allocation function maps types of the deviating bidder into types of the non-

deviating bidders, if any, that make the same bid. We, thus, deduce the allocation

functions that correspond to each auction format from some equilibrium conditions

that relate these types. In particular, we use the condition that a bidder does not have

incentives neither to increase not to decrease her bid marginally in equilibrium.

3.1 Allocation Function of the Open Auction

Denote by xi and xd the types of a non-deviating bidder, say Bidder i, and the deviating

bidder, respectively, that bid in a given equilibrium the same price p in the information

sets in which they are the only bidders who remain in the auction. Denote also by X
the information that these two bidders can infer along the equilibrium path about the

types of the other bidders. For the reasons explained at the beginning of the section,

our equilibrium condition for the non-deviating bidder is:

E


Ti +

n∑

j=1

Qj

∣∣∣∣∣∣
Xη

i = xi, X
ηd
d = xd,X


− p = 0, (3)
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and similar arguments let us deduce that our equilibrium condition for the deviating

bidder is:

E


Td +

n∑

j=1

Qj

∣∣∣∣∣∣
Xη

d = xd, X
η
i = xi,X


− p = 0. (4)

Subtracting both equations, and after some simplifications, we get the following

equation that relates xd and xi:

E[Td|Xηd
d = xd]− E[Ti|Xη

i = xi] = 0. (5)

Under our assumptions, the left hand side of Equation (5) is continuous in xi and

xd, strictly increasing in xd and strictly decreasing in xi. Hence, it defines implicitly a

strictly increasing function φO that maps types of the deviating bidder xd into types

of the non-deviating bidder xi that solve the above equation and whose graph splits

the set [0, 1]2 into two subsets.

The function φO defined above characterizes an allocation, however, it is convenient

to make sure that the allocation function is defined in the domain [0, 1]. We call the

extension of φO in the domain [0, 1] to a function that we denote by φ̂O(xd) and which

is equal to 0 if xd is to the left of the domain of φO, to φO(xd) if xd is in the domain

of φO, and to one, if xd is to the right of the domain of φO. Similarly, we denote by

φ−1
O the inverse of φO and by φ̂−1 the extension of φ−1

O to [0, 1]. Figure 2 illustrates

the extension of a function φ in [0, 1].

The following proposition shows that there exists an equilibrium that implements

the allocation function φ̂O. The reader may find a characterization of the equilibrium

in its proof.

Proposition 1. There exists an equilibrium of the open auction that implements the

allocation function φ̂O.

Proof in the Appendix.
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0 1

1

^

Figure 2: Extension of a function φ in [0, 1].

3.2 Allocation Function of the Sealed Bid Auction

In this subsection we analyze the sealed bid auction. Denote by xi and xd the types

of a non-deviating bidder, say Bidder i, and the deviating bidder, respectively, who

bid in a given equilibrium the same price p. Again for the reasons explained at the

beginning of the section, our equilibrium condition for the non-deviating bidder is:

(1− ρ) E


Ti +

n∑

j=1

Qj

∣∣∣Xη
i = Xη

j = xi, X
ηd
d ≤ xd, {Xη

l ≤ xi}l 6=d,i,j


+

ρE


Ti +

n∑

j=1

Qj

∣∣Xη
i = xi, X

ηd
d = xd, {Xη

l ≤ xi}l 6=d,i


− p = 0, (6)

where, ρ is the probability that i ties with the deviating bidder given that Bidder i

ties with the maximum bid of the other bidders at price p, this is,

ρ ≡
xn−2

i

bS
d
′(xd)

xn−2
i

bS
d
′(xd)

+ (n− 2) xn−3
i xd

bS
nd
′(xi)

,
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where bS
nd and bS

d denote the equilibrium bid functions of the non-deviating bidder and

the deviating bidder, respectively.

Similarly, our equilibrium condition for the deviating bidder with type xd is in this

case:

E


Td +

n∑

j=1

Qj

∣∣∣∣∣∣
Xηd

d = xd, X
η
i = xi, {Xη

j ≤ xi}j 6=d,i


− p = 0. (7)

Suppose now that φS is the allocation function implemented in the sealed bid

auction. This means that bS
d (x) = bS

nd(φS(x)), which implies by the implicit function

theorem that φ′S(x) = bS
d
′(x)

bS
nd
′(φS(x))

. If we use this fact, and combine Equation (6) and

Equation (7) eliminating p, we get after some algebra the following equation:

φ′S(x)
(
E[Td|Xηd

d = x]−E[Ti|Xη
i = φS(x)] + µ(x, ηd)− µ(φS(x), η)

)
=

[
φS(x)

(n− 2)x

] (
E[Ti|Xη

i = φS(x)]− E[Td|Xηd
d = x]

)
. (8)

The right hand side of Equation (8) corresponds to the case in which the highest

bid of the other bidders is the deviating bidder’s, i.e. ρ = 1, as it was the case in

the open auction. In fact, this right hand side equals to zero if φS(x) = φO(x) in

the domain of φO. This holds true in spite of the differences on the information on

which the bidders condition in each auction because of our assumption of additive

separability and independency of the bidders’ types.

The left hand side of Equation (8) corresponds to the case in which the highest bid

of the other bidders is the bid of another non-deviating bidder, i.e. ρ = 0. Making it

equal to zero we get the following equation in xi and xd:

E[Td|Xηd
d = xd]− E[Ti|Xη

i = xi] + µ(xd, ηd)− µ(xi, η) = 0. (9)

Under our assumptions, the left hand side of Equation (9) is continuous in xd and

xi, strictly increasing in xd and strictly decreasing in xi. As a consequence, Equation

(9) defines a implicit function φ∗ that maps types of the deviating bidder xd into types

of the non-deviating bidders xi. We define in a similar way to φ̂O, the extension of φ∗

and φ−1∗ on the domain [0, 1] and we denote them by φ̂∗ and φ̂−1∗ respectively.

The next lemma shows that there exists a solution to the differential equation (8)

that lies between φ̂O and φ̂∗. Note that one difference with φO is that this solution
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depends on n because Equation (8) does so. For this reason we denote by φS,n the

solution, with a slight abuse of notation. We also define the extensions of φS,n and

φ−1
S,n on [0, 1] in a similar way as we defined φ̂O and φ̂−1

O , and denote them by φ̂S,n and

φ̂−1
S,n respectively.

Lemma 2. For a fixed value of n, there exists a continuous strictly increasing function

φS,n whose graph splits [0, 1]2 into two sets, and whose extensions satisfy that φ̂S,n(1) ≥
φ̂∗(1) and φ̂−1

S,n(1) ≥ φ̂−1
O (1). Moreover, the graph of φS,n lies between the graph of φO

and the graph of φ∗; and the graph of φS,n+1 lies between the graph of φS,n and the

graph of φ∗.

Proof in the Appendix.

The conditions on the extensions of φ̂S,n and φ̂−1
S,n in Lemma 2 are necessary to

ensure that the allocation function φ̂S,n can be implemented in an equilibrium of the

sealed bid auction.

Note that Lemma 2 also states that the increase in the number of bidders make the

allocation function φ̂S,n approach, in some sense, the auxiliary function φ̂∗. Intuitively,

the greater is n, the less probable is that the highest bid of the other bidders is the bid

of the deviating bidder, and thus, the closer the equilibrium allocation function should

be to the auxiliary function φ̂∗. This result ensures that as n grows in Proposition

3 there is no counter effect to the differences in allocations between auction formats

shown in Lemma 4.

The next proposition shows that there exists an equilibrium that implements the

allocation function φ̂S,n. Again, the reader may found a characterization of the equi-

librium in the proof.

Proposition 2. There exists an equilibrium of the sealed bid auction that implements

the allocation function φ̂S,n.

Proof in the Appendix.
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3.3 Comparison of the Equilibrium Allocation Functions

We shall show next how the equilibrium allocation functions φ̂O and φ̂S,n have the

properties that correspond to the strategic effects that we analyze at the beginning of

the section.

Our first result shows that the increase in the information precision in the common

value information model allows the deviating bidder to win more often in the sealed

bid auction than in the open auction. The opposite happens when the deviating bidder

decreases her information precision.

Lemma 3. In the common value information model and for any x ∈ [0, 1]:

• If ηd > η, then φ̂S,n(x) ≥ φ̂O(x) = x.

• If ηd < η, then φ̂S,n(x) ≤ φ̂O(x) = x.

Proof. The definition of φ̂O in Equation (5) implies that φ̂O is invariant to changes

in ηd in the common value information model. Moreover, our symmetry assumption

implies that φ̂O(x) = x for all x ∈ (0, 1). For the sealed bid auction we analyze the

case ηd > η, the other case is symmetric. By our additional assumption in the common

value information model µ(x, ηd) > µ(x, η), which means that,

E[Td|Xηd
d = x]− E[Ti|Xη

i = x] + µ(x, ηd)− µ(x, η) > 0.

Since E[Ti|Xη
i = x] + µ(x, η) is increasing in x, to satisfy Equation (9), φ∗(x) must be

greater than x. Since φ̂O(x) = x, the application of Lemma 2 concludes the proof. ¥

A version of Lemma 3 also holds when we do not assume that µ(x, η) is increasing

in η. In that case, however, the result is only true for x close to one. We could still

derive the first item of Proposition 3, but in this case only for n sufficiently large.

Our second result looks at the private value information model. We show that

the increase in the information precision of the deviating bidder makes her win more

often in the open auction than in the sealed bid auction, at least for high bids, i.e.

realizations of the private signal close to one. The opposite happens when the deviating

bidder decreases her information precision.
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Lemma 4. In the private value information model and for any x sufficiently close to

one:

• If ηd > η, then φ̂−1
O (x) < φ̂−1

S,n(x) < φ̂−1∗ (x) < x.

• If ηd < η, then φ̂O(x) < φ̂S,n(x) ≤ φ̂∗(x) < x.

Proof. We only study the case ηd > η, the other one is similar. By our assumptions in

the private value information acquisition model E[Td|Xηd
d = 1] strictly increases with

ηd, which means that E[Td|Xηd
d = 1] − E[Ti|Xη

i = 1] > 0, and thus that φ−1
O (1) < 1,

and,

E[Td|Xηd
d = φ−1

O (1)]− E[Ti|Xη
i = 1] + µ(φ−1

O (1), ηd)− µ(1, η) < 0.

Moreover,

E[Td|Xηd
d = 1]− E[Ti|Xη

i = 1] + µ(1, ηd)− µ(1, η) > 0,

since µ(1, η) is constant with respect to η in the private value information model. We

can thus conclude that φ−1
O (1) < φ−1∗ (1) < 1. An application of Lemma 2 implies that

φ−1
O (1) < φ−1

S,n(1) = φ−1∗ (1) < 1, which implies the lemma by continuity and by Lemma

2. ¥

4 Analysis of the Game of Information Acquisition

In this section, we study the first stage game, the game of information acquisition.

In this game bidders choose simultaneously and independently an information preci-

sion η each at some monetary cost that we do not model explicitly yet. We assume

that the bidders’ continuation payoffs are those that correspond to the equilibrium in

Propositions 1 and 2 in the former section.

To compute the continuation payoffs, note that under our assumption of indepen-

dent types, and by the arguments of the analysis of Myerson (1981), the allocation

function and the expected utility of the minimum types characterizes the expected

utility of the bidders. Moreover, the additive separability of the bidders’ utility func-

tion makes specially simple the expression of the bidder’s expected utility. Next lemma

shows these claims.
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Lemma 5. Suppose that there exists an equilibrium for a given auction mechanism in

which the allocation function φ is implemented. Then, the ex-ante expected utility of

the deviating bidder in this equilibrium of the auction mechanism is equal to:
∫ 1

0
(1− x)φ(x)n−1 ∂E[Td + Qd|Xηd

d = x]
∂x

dx

plus the expected utility that the deviating bidder gets when she has type 0.

Proof. Straightforward adaptation of the arguments by Myerson (1981). ¥

We denote by Ua(ηd, η) the expected utility of a deviating bidder in auction format

a ∈ {S, O} when her information precision is ηd and all the other bidders’ information

precision is equal to η. We also define ∆Ua

∆η (ηd, η) ≡ Ua(ηd,η)−Ua(η,η)
ηd−η and call it the

incentives to acquire information. Note that ∆Ua

∆η (ηd, η) is the expected gains, or losses,

that a deviating bidder gets when she acquires more, respectively less, information than

the others and divided by ηd − η.

There is some kind of revenue equivalence between both auction formats when all

bidders have the same level of information precision, in the sense that UO(η, η) =

US(η, η). The reason is that in a symmetric equilibrium, the allocation function is the

identity in both auction formats and the minimum type always loses and thus gets

zero expected utility. This implies that the comparison of the incentives to acquire

information is equivalent to the comparison of UO(ηd, η) and US(ηd, η) which depends

basically on the allocation functions φ̂O and φ̂S,n. The next proposition, which is

central in our analysis, makes use of this feature:

Proposition 3.

• In the common value information model, the sealed bid auction gives greater

incentives to acquire information than the open auction, in the sense that for

any ηd 6= η, ∆UO

∆η (ηd, η) ≥ ∆US

∆η (ηd, η).

• In the private value information model, the open ascending auction gives greater

incentives to acquire information than the sealed bid auction, in the sense that

for any ηd 6= η, ∆UO

∆η (ηd, η) ≥ ∆US

∆η (ηd, η) if n is large enough.
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Proof. From the arguments above we can conclude that the first item only requires to

prove that UO(ηd, η)−US(ηd, η) is positive if ηd > η and negative otherwise. This is a

more or less straightforward consequence of Lemmas 3 and 5. The only difficulty that

arises in the proof is with respect to the expected utility of a deviating bidder with

type zero. This type gets zero expected utility in the open auction because she loses

with probability one as φ̂O(0) = 0. Moreover, this type gets non-negative expected

utility in the sealed bid auction if ηd > η because then φ̂S,n(0) ≥ 0; and zero expected

utility if ηd < η because then φ̂S,n(0) = 0.

The second item is slightly more complicated. We start with the case ηd > η which

is simpler. We can easily derive from Lemmas 4 and 5 that:

lim
n→∞UO(ηd, η) =

∫ 1

φ̂−1
O (1)

(1− x)
∂E[Td + Qd|Xηd

d = x]
∂x

dx. (10)

Note that we ignore the expected utility of the deviating bidder with type zero.

The reason is that it tends to zero as n grows to infinity since φ̂−1
O (1) > 0 and thus,

the probability that this type wins goes to zero.

A similar argument holds for the sealed bid auction. The only difference is that

we also need to use the monotonicity of φ̂S,n(x) with respect to n in Lemma 2 and the

monotone convergence theorem. The corresponding limit is:

lim
n→∞US(ηd, η) =

∫ 1

φ̂−1
S,∞(1)

(1− x)
∂E[Td + Qd|Xηd

d = x]
∂x

dx, (11)

where φ̂−1
S,∞(1) is the limit of φ̂−1

S,n(1).

That the limit in Equation (10) is strictly less than the limit in Equation (11)

follows from an application of Lemma 4. We can thus conclude that there must exists

a bound on the number of bidders such that for any n above this bound, it holds true

that UO(ηd, η) > US(ηd, η) for ηd > η.

The case ηd < η has a similar proof although in this case, we have to divide

both expected utilities by φ̂O(1)n before we compute their limits and compare them.

Otherwise both limits are equal to zero, and hence, do not provide any information to

the comparison for a finite n. ¥
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An additional question of interest is whether the strategic effects in our model

are such that they make the returns of additional private information negative. This

was for instance the concern of the work of Larson (2004), and Hernando-Veciana

and Tröge (2005). To give an answer to this question, it refine our concept of more

informative signals. In particular, we assume in the remaining of the paper that:
∂E[Qi|Xη

i =x]
∂x is strictly increasing with respect to η in the common value information

acquisition model;15 and that ∂E[Ti|Xη
i =x]

∂x is strictly increasing with respect to η in the

private value information acquisition model. This refinement of the concept of more

informative signals has been used before by Hagedorn (2004), and intuitively means

that the expected posterior is more sensitive to the signal.

Proposition 4.

• In the common value information model, the incentives to acquire information

are strictly positive in both auction formats, in the sense that ∆Ua

∆η (ηd, η) > 0 if

ηd 6= η and for a ∈ {O, S}.

• In the private value information model, the incentives to acquire information

are strictly positive in both auction formats, in the sense that ∆Ua

∆η (ηd, η) > 0 if

ηd 6= η and for a ∈ {O, S}, if the number of bidders is sufficiently large.

Proof. The first item is a direct consequence of Lemmas 3 and 5 and our assumption

that ∂E[Qi|Xη
i =x]

∂x is strictly increasing with respect to η. The second item can be proved

with a similar argument using Lemmas 4 and 5 and our assumption that ∂E[Ti|Xη
i =x]

∂x

is strictly increasing with respect to η. The only difference is that we have to take

limits with respect to n and argue that the sign in the limit still holds for n sufficiently

large. ¥

The first result contrasts with the results of Hernando-Veciana and Tröge (2005)

which imply that additional information about the common value may decrease the
15To see that this new assumption is a refinement of our concept of more informative signals note

that
∂E[Vi|Xη

i =x]

∂x
strictly increasing with respect to η for all x ∈ [0, 1] implies that E[Vi|Xη

i ≤ x]

decreases with respect to η for all x ∈ [0, 1].
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expected utility of the bidder. The reason for this discrepancy is that in the model

of Hernando-Veciana and Tröge (2005), when one bidder acquires more information

about the common value, her bid becomes less informative of the private value, and in

our model we have explicitly ruled out this effect. See our discussion in page 12.

Finally, we show that the results derived in this section may be used to prove that

the auction with greater incentives to acquire information induce more information

acquisition. To prove so, we introduce some additional assumptions. The reason is to

assure that there exists a unique symmetric equilibrium in the game of information

acquisition. We follow a similar approach to Persico (2000).

We assume that N is an interval [0, 1] and that the cost of acquiring information

precision is the same for all bidders and equal to C(η) = α
2 η2, for α ∈ (0,∞). We also

require the function Ua(ηd, η) to satisfy certain technical assumptions. In particular,

we assume it to have continuous differentials with respect to both ηd and η. Finally, we

assume that the limit properties with respect to n in the second bullet of Propositions

3 and 4 hold not only pointwise as they are stated but uniformly in the set {(η, ηd) ∈
N 2 : η 6= ηd}.

Proposition 5.

• In the common value information model and if α is sufficiently large, there exist

a unique symmetric Nash equilibrium in the game of information acquisition in

both the sealed bid and the open auction, and in this equilibrium there is more

information acquisition in the sealed bid auction than in the open auction.

• In the private value information model and if α and n are sufficiently large, there

exist a unique symmetric Nash equilibrium in the game of information acquisition

in both the sealed bid and the open auction, and in this equilibrium there is more

information acquisition in the open auction than in the sealed bid auction.

Proof. We start with the first item. A necessary condition for η to be a symmetric Nash

equilibrium is that ∂Ua

∂ηd
(η, η) = C ′(η), a ∈ {O, S}. This equation has a unique solution

for α sufficiently large follows since C ′(η) = α η, ∂Ua

∂ηd
(η, η) ≥ 0 by Proposition 4 and
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Ua has continuous differentials. This implies uniqueness of the equilibrium. We denote

by η∗ the solution to the former equation and only candidate for an equilibrium point.

To prove existence, it is sufficient to show that ∆Ua

∆η (ηd, η∗) − C(ηd)−C(η∗)
ηd−η∗ < 0 if and

only if ηd < η∗. This is the case for α sufficiently large since C(ηd)−C(η∗)
ηd−η∗ = α

2 (ηd + η∗).

Once we have proved existence and uniqueness of the equilibrium, the result in the first

item of Proposition 3 imply that there is more information acquisition in the sealed

bid auction than in the open auction. The proof of the second item is similar but

we need to start choosing an n large enough so that the results in Proposition 3 and

Proposition 4 apply. ¥

5 Revenue and Efficiency

We can derive from the results in Proposition 5 some conclusions with respect to the

revenue and efficiency comparison of our two auction formats. To do so, we shall

assume in this section that the equilibria that correspond to Proposition 5 are played

in each of our two auctions.

We start analyzing efficiency. We shall distinguish two concepts of efficiency. We

talk of the ex post efficiency as the expected value of the winning bidder.16 This concept

captures the allocative efficiency of the auction. We also talk of ex ante efficiency as

the expected value of the winning bidder net of the information acquisition costs in

which all the bidders incur, in a symmetric equilibrium n C(η).

We first provide results for standard-symmetric auctions. These are auctions in

which all bidders have the same information precision, the bidder with highest type

wins, and only the winning bidder makes a payment to the auctioneer. Note that our

two auction formats are standard-symmetric when all bidders have the same informa-

tion precision, as it happens in the equilibrium path in Proposition 5.

Lemma 6. In a standard-symmetric auction:
16A social planner may be interested in ex post efficiency to avoid costly renegotiation after the

auction. Moreover, note that allocating a monopoly license to the minimum cost bidder maximizes

the consumer surplus.
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• The ex post efficiency of the auction is increasing in η in the private value infor-

mation acquisition model and remains constant in the common value information

acquisition model.

• The ex ante efficiency of the auction is decreasing in η in the common value

information acquisition model.

Proof. The ex post efficiency is equal to E[max{E[Ti|Xη
i ]}i∈I ] + nE[Qi]. That this

expression is constant in the common value information acquisition model is obvious.

This also implies the second bullet, i.e. that the ax ante efficiency of the auction is

decreasing in η in the common value information acquisition model. The proof that ex

post efficiency increases with η is a direct consequence of the convexity of the maximum

function and the fact that a more informative signal in the private value information

acquisition model spreads the distribution of E[Ti|Xη
I ] in the sense of second order

stochastic dominance, see Lemma 8 in Appendix D. ¥

Corollary 1.

• The open auction induces greater ex post efficiency than the sealed bid auction

in the private value information acquisition model, at least when the number of

bidders is sufficiently large.

• The open auction induces greater ex ante efficiency than the sealed bid auction

in the common value information acquisition model.

Finally, the next lemma studies the auctioneer’s expected revenue.

Lemma 7. In a standard-symmetric auction:

• The expected revenue of the auctioneer is decreasing in η in the common value

information acquisition model.

• The expected revenue of the auctioneer is increasing in η in the private value

information acquisition model if the number of bidders is sufficiently large.
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Proof. The expected revenue of the auctioneer is equal to the surplus generated in

the auction minus the bidders’ expected utility, both gross of information acquisition

costs. The former is equal to the expected value of the bidder who wins, i.e.:
∫ 1

0
E[Ti|Xη

i = x] dxn + nE[Qi], (12)

and the latter can be computed from Lemma 5 taking expectations with respect to the

bidder’s type and after some algebra to be equal to:
∫ 1

0
(1− x)

∂E[Ti + Qi|Xη
i = x]

∂x
dxn. (13)

The first result follows from the fact that Equation (12) is constant and Equation

(13) is increasing with respect to η in the common value information acquisition model.

To prove the second result, we can combine Equations (12) and (13) to show after some

algebra that the auctioneer’s expected revenue is equal to:

∫ 1

0

(
E[Ti|Xη

i = x]− (1− x)
∂E[Ti|Xη

i = x]
∂x

)
dxn+

nE[Qi]−
∫ 1

0
(1− x)

∂E[Qi|Xη
i = x]

∂x
dxn.

The second integral is constant with respect to η in the private value information

acquisition model, whereas the integrand of the first integral is increasing in η for

values of x close to one. Consequently, for values of n sufficiently large, the above

expression is increasing in η. ¥

Corollary 2. The open auction gives greater expected revenue to the auctioneer than

the sealed bid auction: in the common value information acquisition model, for any

number of bidders; and in the private value information acquisition model, for a number

of bidders sufficiently large.

6 Conclusions

In this paper, we have studied the strategic effects associated to open information

acquisition. This strategic effects originate from a bidder’s information acquisition de-

cision affecting the other bidders’ bid behavior. In particular, we have shown that these
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strategic effects are such that a bidder has greater incentives to acquire information

about the common value in a sealed bid auction than in an open auction. However,

we have also shown that if the information acquisition is about the private value, the

incentives are greater in an open auction than in a sealed bid auction, at least when

the number of bidders is sufficiently large.

We have shown that there is more information acquisition about the common value

and less about the private value in the sealed bid auction than in the open auction. We

have also shown that these results may imply that the open auction is more efficient

and generates more expected revenue than the sealed bid auction once the bidders’

information acquisition decisions are endogenized.
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APPENDIX

This Appendix has four parts. In Appendix A we prove Proposition 1. Appendix

B shows that there exists a solution to the differential equation of Lemma 2 and in

Appendix C we prove Proposition 2. Finally, in Appendix D we provide an auxiliary

result that shows the equivalence between a more informative signal and a more spread

mean posterior.

Appendix A: Proof of Proposition 1

We start defining some strategies making use of the allocation function φ̂O. We proceed

sequentially, first, information sets in which nobody has left the auction yet:

• Bid function of the deviating bidder:

b0
d[x|∅] ≡ E


Td +

n∑

j=1

Qj

∣∣∣∣∣∣
Xηd

d = x,Xη
i = φ̂O(x),

{
Xη

j = φ̂O(x)
}

j 6=d,i


 .

• Bid function of a non-deviating bidder17 i 6= d:

b0
i [x|∅] ≡ E


Ti +

n∑

j=1

Qj

∣∣∣∣∣∣
Xηd

d = φ̂−1
O (x), Xη

i = x,
{

Xη
j = x

}
j 6=d,i


 .

Next we define the bid function in information sets in which k bidders have left

the auction and where pl is the price at which the l-th bidder in declaring inactive has

quit, and jl is her identity. First, when the non-deviating bidder is not among the k

bidders who have left the auction. To shorten notation, we do not include the range

of sub-index l which is always from 1 to k.

• Bid function of the deviating bidder:
17We index each bid function by the identity of the bidder for convenience in the notation. However,

note that all the non-deviating bidders use the same bid function.
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bk
d [t|{(pl, jl)}] ≡

E


Td +

n∑

j=1

Qj

∣∣∣∣∣∣
Xηd

d = x,
{

Xη
j = φ̂O(x)

}
j 6∈{jl}

j 6=d

,
{

bl−1
jl

[
Xη

jl
|{(pq, jq)}l−1

q=1

]
= pl

}

 ,

where we adopt the convention that {(pq, jq)}0
q=1 = ∅.

• Bid function of a non-deviating bidders, i 6= d:

bk
i [t|{(pl, jl)}] ≡

E


Ti +

n∑

j=1

Qj

∣∣∣∣∣∣
Xηd

d = φ̂−1
O (x),

{
Xη

j = x
}

j 6∈{jl}
j 6=d

,
{

bl−1
jl

[
Xη

jl
|{(pq, jq)}l−1

q=1

]
= pl

}

 .

And when the deviating bidder is among the bidders who have left the auction,

i 6= d:

bk
j [t|{(pl, jl)}] ≡

E


Ti +

n∑

j=1

Qj

∣∣∣∣∣∣
{

Xη
j = x

}
j 6∈{jl}

,
{

bl−1
jl

[
X

ηjl
jl
|{(pq, jq)}l−1

q=1

]
= pl

}

 ,

where ηjl
= η for any jl 6= d.

Note that the proposed strategies implement φ̂O. First, all non-deviating bidders

use the same strictly increasing bid function, and thus the highest type of the non-

deviating bidders outbids all the other non-deviating bidders. Second, the deviating

bidder with a generic type xd outbids the non-deviating bidder with maximum type,

say xi if and only if xi < φ̂O(xd). This is because the deviating bidder also uses

a strictly increasing bid function and the deviating bidder with type xd submits the

same bid as a non-deviating bidder with type φ̂O(xd) if φ̂O(xd) ∈ (0, 1).

To see why these strategies form an equilibrium, we show that the deviating bidder

does not have incentives to deviate. The proof is similar for non-deviating bidders.
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Note first that the expected valuation of the deviating bidder conditional on a realiza-

tion of the vector of bidders’ types (x1, x2, ..., xn) ∈ (0, 1)n is equal to:

E


Td +

n∑

j=1

Qj

∣∣∣∣∣∣
Xηd

d = xd,
{

Xη
j = xj

}
j 6=d


 .

On the other hand, if all the non-deviating bidders follow the proposed strategy,

the price that the deviating bidder pays if she wins is equal to the bid of the bidder

with highest type among the non-deviating bidders, say Bidder i. This bid is equal to:

E


Ti +

n∑

j=1

Qj

∣∣∣∣∣∣
Xηd

d = φ̂−1
O (xi),

{
Xη

j = xj

}
j 6=d


 .

After some algebra, we may show that the difference between these two values is

equal to:

E[Td|Xηd
d = xd]−E[Ti|Xη

i = xi] + E[Qd|Xηd
d = xd]− E[Qd|Xηd

d = φ̂−1
O (xi)]. (14)

The deviating bidder cannot improve with a deviation because she wins with our

proposed strategy if and only if xd ≥ φ̂−1
O (xi), and these are all the cases in which the

former expression is non-negative. To see why, note that the expression is increasing in

xd and by definition of φ̂O, the expression evaluated at xd = φ̂−1
O (xi) is equal to zero if

φ̂−1
O (xi) ∈ (0, 1), weakly negative if φ̂−1

O (xi) = 1, and weakly positive if φ̂−1
O (xi) = 0.¥

Appendix B: Proof of Lemma 2

We look for a strictly increasing and continuous solution to Equation (8) whose graph

splits the set [0, 1]2 into two subsets. This means that the required solution must start

at a point either in the left or down boundaries of the set [0, 1]2 and end at a point in

either the right or top boundary of [0, 1]2.

To show that there exists a solution to Equation (8) with the required conditions,

we distinguish three disjoint subsets of (0, 1)2. The first subset that we denote by SM

includes points (x, φ) such that φ = φO(x) = φ∗(x). The second subset, and that we

denote by SL, includes points (x, φ) such that φ ∈ (φ̂O(x), φ̂∗(x)). The last subset,

which will be denoted by SR, includes points (x, φ) such that φ ∈ (φ̂∗(x), φ̂O(x)). We
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decompose the set SL in a collection of disjoint sets {SL
l }, where {SL

l } is the collection

of open connected sets with minimum number of elements that covers the set SL.

Similarly, we decompose the set SR in a collection of disjoint sets {SR
l }, where {SR

l }
is the collection of open connected sets with minimum number of elements that covers

the set SR. Figure 3 illustrates the set SM and the collections {SL
l } and {SR

l }.

SM

x

SL
2

SL
3

SL
1

SR
2

SR
1

SR
3

0 1

1

^

^

Figure 3: Illustration of the sets SM and the collections {SL
l } and {SR

l } for some

arbitrary functions φ̂O and φ̂∗.

Since the functions φ̂O and φ̂∗ are continuous, strictly increasing and their graphs

split the set [0, 1]2, there are continuous and strictly increasing paths that cross each

of the sets SM , {SL
l } and {SR

l } and split the set [0, 1]2 into two. We shall show that

one of these paths satisfies the conditions of the lemma.

In sets SM we have no choice but to chose φS,n(x) equal to φO(x) and φ∗(x). To

define φS,n outside SM , we introduce an auxiliary function to rewrite Equation (8):

Φ(x, φ) ≡ φ

x(n− 2)
E[Ti|Xη

i = φ]− E[Td|Xηd
d = x]

E[Td|Xηd
d = x]−E[Ti|Xη

i = φ] + µ(x, ηd)− µ(φ, η)
, (15)

Thus, our differential equation can be written as φ′S,n(x) = Φ(x, φS,n(x)). In what

follows we shall show how to construct our function φS,n in a given set SR
l as a solution
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to the former differential. We shall only consider the case in which the boundary of

SR
l does not contain any point in the boundary of [0, 1]2. The proof when this is not

the case and for the remaining subsets {SL
l } and {SR

l } is very similar. We point out

the differences below.

In our proof we show that there exists a path from the lower-left corner to the

upper-right corner of SR
l that solves our differential equation in SR

l . We follow several

steps.

• Remark 1: There exists a unique solution to φ′S,n(x) = Φ(x, φS,n(x)) that passes

by any given point (x0, φ0) in SR
l . Moreover, the solution is strictly increasing.

This is a direct consequence of the fact that Φ is differentiable, and thus satisfies a

Lipschitz condition at (x0, φ0), and thus we can apply Coddington and Levinson

(1984)[Theorem 2.2, pag. 10]. That the solution is strictly increasing follows

because the denominator and the numerator of the expression that defines Φ are

strictly negative. This is because the numerator is equal to zero at φ = φO(x)

and it is strictly increasing in φ, and moreover, the denominator is equal to zero

at φ = φ∗(x) and it is strictly decreasing in φ.

• Remark 2: The solutions of our differential equation in the set SR
l do not cross

and they converge to the upper-right corner of SR
l as we continue them to the

right.

That they do not cross is a consequence of Remark 1. The convergence to

the upper-right is because any solution to our differential equation cannot cross

neither φO nor φ∗ as it is continued to the right. First, it cannot cross φO because

the slope of φO is bounded away from zero, which can be proved applying the

implicit function theorem to Equation (14), and the slope of any solution tends

to zero, as it approaches the graph of φO from below. And second, the solution

cannot cross φ∗ because the slope of φ∗ has derivative bounded from above, which

can be proved applying the implicit function theorem to Equation (9), and the

slope of any solution tends to infinity, as it approaches the graph of φ∗ from

above.
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• Remark 3: There exists a solution to our differential in SR
l and with boundary

condition any point in the boundary of SR
l but the lower-left and the upper-right

corners.

For points in φO the claim can be proved as in Remark 1 by showing that

there exists a solution that passes by the corresponding point, and noting that

since Φ equals zero for these points, the solution can be continued towards the

interior of SR
l . For points in φ∗ the proof is similar, but in this case it is more

convenient to operate with an auxiliary differential equation that corresponds to

the inverse of our original differential equation, i.e. ψ′(φ) = 1
Φ(ψ(φ),φ) . By the

same arguments as with boundary conditions in φO, there exists a solution to

the auxiliary differential equation and it can be continued towards the interior.

Moreover, since in the interior of SR
l the solution must be strictly increasing, it

is invertible, and thus, its inverse must be solution to our original differential

equation.

• Remark 4: There exists a solution to our differential equation in SR
l that starts

at the lower-left corner, say (xL, φL) and ends at the top-right corner.

Take a conditionally decreasing sequence {xξ} that converges to xL and define

two sequences of solutions to our differential equation in SR
l . The first sequence

is characterized by the sequence of boundary conditions {(xξ, φO(xξ))} and the

second sequence by the sequence of boundary conditions {(xξ, φ∗(xξ))}. Note

that Remark 3 implies the required solutions exist. Moreover, by Remark 2

none of the solutions of the two sequences can cross. This implies three things.

First, the first sequence is a decreasing sequence, and the second sequence is an

increasing sequence, and thus both sequences have point-wise limits18 that we

denote by φ and φ, respectively. The second implication is that φ(x) ≤ φ(x). The

third implication is that any solution to our original differential equation that is
18A careful reader may realize that the domain of the functions in our two sequences does not remain

constant. A simple way of dealing with this problem is to define any element of the first sequence

φξ(x) ≡ φO(x) if x ∈ [xL, xξ], and similarly, any element of the second sequence φξ(x) ≡ φ∗(x) if

x ∈ [xL, xξ].
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between φ and φ for some values of x must lie between φ and φ in all the domain.

Moreover, since φ and φ go from the lower-left corner to the upper-right corner

of SR
l , the continuation of any solution between φ and φ to the right converges

to the upper-right corner of SR
l and to the left converges to the down-left corner.

There exists a selection of the solutions that correspond to Remark 4 that satisfies

that φS,n+1 lies between φS,n and φS,n. To see why note that an increase in n decreases

the function that generates our differential equation Φ, see Equation (15). As a con-

sequence the vector field associated should become flatter at any point in SR
l . This

means that the solutions constructed from left to right when the number of bidders is

n + 1 go below the corresponding solutions when the number of bidders is n, which

implies the result.

In other sets SR
l or in sets SL

l the construction of the solution is similar. It is

only worth remarking two points. First, in sets SR
l we proceed basically as above

extending all the auxiliary solutions to the right. As we have shown in Remark 2, the

properties of the vector field generated by Φ assures in this case that the solution does

not escape from the set SR
l . However, in sets SL

l we proceed differently. We extend the

auxiliary solutions to the left as it is what the properties of the vector field generated

by Φ require to ensure that the auxiliary solutions do not escape from SL
l . Second,

in a set SL
l whose boundary intersects the upper and right boundaries of [0, 1]2, we

shall chose a solution with boundary condition (1, φ̂∗(1)), if φ̂∗(1) < 1; (φ̂−1
O (1), 1) if

φ̂−1
O (1) < 1; and (1, 1) otherwise. These boundary conditions are sufficient to ensure

that φ̂S,n(1) ≥ φ̂∗(1) and φ̂−1
S,n(1) ≥ φ̂−1

O (1).

Appendix C: Proof of Proposition 2

We start proposing some strategies and later we show that they form an equilibrium.

In our construction we use the function φ̂S,n of Lemma 2.

• Bid function of the deviating bidder:

bS
d (x) ≡ E


Td +

n∑

j=1

Qj

∣∣∣∣∣∣
Xηd

d = x,Xη
i = φ̂S,n(x),

{
Xη

j ≤ φ̂S,n(x)
}

j 6=d,i


 .
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• Bid function of a non-deviating bidder i 6= d:

bS
nd(x) ≡

(1− ρ̂(x))E


Ti +

n∑

j=1

Qj

∣∣∣Xη
i = Xη

j = x,Xηd
d ≤ φ̂−1

S,n(x), {Xη
l ≤ x}l 6=d,i,j


+

ρ̂(x) E


Ti +

n∑

j=1

Qj

∣∣∣Xη
i = x,Xηd

d = φ̂−1
S,n(x), {Xη

l ≤ x}l 6=d,i




where, ρ̂(x) ≡ 0 if x ≥ φ̂S,n(1), ρ̂(x) ≡ 1 if x ≤ φ̂S,n(0), and otherwise,

ρ̂(x) ≡ x

x + (n− 2) φ̂−1
S,n(x) φ̂′S,n(φ̂−1

S,n(x))
.

That the proposed strategies implement φ̂S can be proved exactly as in the proof of

Proposition 1. It only remains to be shown that the bid function bS
nd is indeed strictly

increasing, and in particular for x in the interval [φ̂S,n(0), φ̂S,n(1)]. Outside this interval

the monotonicity is trivial. In the interior of this interval, and by definition of φ̂S,n,

the bid is equal to:

E


Td +

n∑

j=1

Qj

∣∣∣∣∣∣
Xη

i = x,Xηd
d = φ̂−1

S,n(x),
{

Xη
j ≤ x

}
j 6=d,i


 ,

and thus, it is strictly increasing.

In the lower end of the interval, i.e. x = φ̂S,n(0), we may have problems only if

φ̂S,n(0) > 0 and there is a discontinuity. In this case, φ̂−1
S,n(x) = 0, and thus the limit

of the bid function when we approach x from the left is equal to:

E


Ti +

n∑

j=1

Qj

∣∣Xη
i = x,Xηd

d = 0, {Xη
l ≤ x}l 6=d,i


 ,

which is clearly less than,

E


Ti +

n∑

j=1

Qj

∣∣∣Xη
i = Xη

j = x,Xηd
d = 0, {Xη

l ≤ x}l 6=d,i,j


 .
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We can conclude that the bid function must be increasing at x = φ̂S,n(0) because the

limit of the bid function when we approach x from the right is a weighted average of

the two expected values above.

In the upper end of the interval, i.e. x = φ̂S,n(1), we may have problems only if

φ̂S,n(1) < 1 and there is a discontinuity. In this case, φ̂−1
S,n(x) = 1, and thus the limit

of the bid function from the right is equal to:

E


Ti +

n∑

j=1

Qj

∣∣∣Xη
i = Xη

j = x,Xηd
d ≤ 1, {Xη

l ≤ x}l 6=d,i,j


 .

By Lemma 2, φ̂S,n(1) ≥ φ̂∗(1) and hence x ≥ φ̂∗(1) which means that,

E[Ti|Xη
i = x] + µ(x, η) ≥ E[Td|Xηd

d = 1] + µ(1, ηd).

This implies that the limit from the right is greater than:

E


Td +

n∑

j=1

Qj

∣∣∣∣∣∣
Xη

i = x,Xηd
d = 1,

{
Xη

j ≤ x
}

j 6=d,i


 .

By definition of φ̂S,n, this last expected value is equal to the limit of the bid function

as we approach x from the left.

Finally, we shall prove that our proposed strategies form an equilibrium by showing

that an individual bidder does not have incentives to deviate when all the other bidders

follow our proposed strategies. In particular, we show that our proposed strategies

ensures the bidder that she wins if and only if it is profitable for her to win.

We start with the deviating bidder. Her expected value of the good conditional on

her type xd, and the realization of the maximum of the other bidders’ types, say the

type of Bidder i and denote it by xi, is equal to:

E


Td +

n∑

j=1

Qj

∣∣∣∣∣∣
Xηd

d = xd, X
η
i = xi,

{
Xη

j ≤ xi

}
j 6=d,i


 .

Moreover, if the deviating bidder wins the auction, she pays the bid of the highest type

of the non-deviating bidders, i.e. the bid of Bidder i.

If xi ≥ φ̂S,n(1), then the bid of Bidder i is equal to:

E


Ti +

n∑

j=1

Qj

∣∣∣∣∣∣
Xη

i = Xη
j = xi, X

ηd
d ≤ 1,

{
Xη

j ≤ xi

}
j 6=d,i,j


 .
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The difference between value and price is equal after some simplifications to:

E[Td|Xηd
d = xd] + E[Qd|Xηd

d = xd] − E[Ti|Xη
i = xi] − E[Qd|Xηd

d ≤ 1] − µ(xi, η),

which is less than,

E[Td|Xηd
d = 1]−E[Ti|Xη

i = xi] + µ(1, ηd)− µ(xi, η).

Since xi ≥ φ̂S,n(1) and by Lemma 2, φ̂S,n(1) ≥ φ̂∗(1), then xi ≥ φ̂∗(1), which means

that the above expression must be negative. Our proposed bid function ensures the

deviating bidder that she loses in these cases.

If xi ∈ (φ̂S,n(0), φ̂S,n(1)), then by definition of φ̂S,n, the bid of Bidder i and thus

the price is equal to:

E


Td +

n∑

j=1

Qj

∣∣∣∣∣∣
Xη

i = xi, X
ηd
d = φ̂−1

S,n(xi),
{

Xη
j ≤ xi

}
j 6=d,i


 .

The difference between value and price in this case is equal to:

E[Td|Xηd
d = xd] + E[Qd|Xηd

d = xd]− E[Td|Xηd
d = φ̂S,n(xi)]−E[Qd|Xηd

d = φ̂S,n(xi)],

which is positive if and only if xd ≥ φ̂S,n(xi). Consequently, our proposed strategy

assures the deviating bidder that she wins if it is profitable to win and loses otherwise.

Finally, if xi < φS,n(0), then the price is equal to:

E


Ti +

n∑

j=1

Qj

∣∣∣∣∣∣
Xη

i = xi, X
ηd
d = 0,

{
Xη

j ≤ xi

}
j 6=d,i


 .

The difference between value and price after some simplifications becomes:

E[Td|Xηd
d = xd] + E[Qd|Xηd

d = xd]− E[Ti|Xη
i = xi]− E[Qd|Xηd

d = 0],

which is greater than,

E[Td|Xηd
d = 0]− E[Ti|Xη

i = xi].

This last expression is positive since it may be shown that φ̂∗(0) must be less than

φ̂O(0) and hence xi ≤ φ̂O(0). The proposed strategy assures the deviating bidder that

she wins in these cases.
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The proof that the non-deviating bidders do not have incentives to deviate is

slightly different. We start denoting by p the price that a non-deviating bidder pays

when she wins. Suppose first that p > bnd(1). Then, the price must be fixed by the

deviating bidder and her type xd must be strictly greater than φ−1(1). We can use

arguments as above to show that a non-deviating bidder gets negative expected utility

if she wins at a price that equals the bid of such types of the deviating bidder. Next

note that it cannot happen that p < bnd(0). The reason is that there is always another

non-deviating bidder, and this other non-deviating bidder never bids above bnd(0) with

probability one.

Finally, suppose that p ∈ [bnd(0), bnd(1)]. To compute Bidder i’s expected value

of the good conditional on winning the auction at a price p we first compute the

conditional probability that it is the deviator who has bid p. By construction our bid

functions satisfy that φ̂′S,n(xj) = b′d(φS,n(xj))

b′nd(xj)
where xj is the type of the non-deviating

bidders that corresponds to a bid p according to our proposed bidding function, i.e.

xj ≡ b−1
nd (p). Thus, we can show that the former probability is equal to ρ̂(xj). This

means that the corresponding conditional expected value is equal to:

ρ̂(xj)E

[
Ti +

n∑

l=1

Ql

∣∣∣∣∣Xηd
d = φ̂−1

S (xj), X
η
i = xi,

{
Xη

l ≤ xl

}
l 6=d,i

]
+

(1− ρ̂(xj))E

[
Ti +

n∑

l=1

Ql

∣∣∣∣∣Xη
i = xi, X

η
j = xj , X

ηd
d ≤ 1,

{
Xη

l ≤ xj

}
l 6=d,i,j

]
.

But, by definition of xj , the price p is equal to the bid of a non-deviating bidder with

type xj which is equal to:

ρ̂(xj)E

[
Tj +

n∑

l=1

Ql

∣∣∣∣∣Xηd
d = φ̂−1

S (xj), X
η
j = xj ,

{
Xη

l ≤ xj

}
l 6=d,i

]
+

(1− ρ̂(xj))E

[
Tj +

n∑

l=1

Ql

∣∣∣∣∣ Xη
i = Xη

j = xj , X
ηd
d ≤ φ̂−1

S (xj),
{
Xη

l ≤ xj

}
l 6=d,i,j

]
.

We can easily conclude by subtracting the former expected values that the differ-

ence between value and price is positive if and only if xi ≥ xj , and hence that our

proposed strategy assures Bidder i that she wins if and only if it is profitable to win.

As a result, Bidder i does not have incentives to deviate.¥
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Appendix D: More Informative Signals and Second Order

Stochastic Dominance

Definition: We say that the distribution F1 dominates in the sense of second order

stochastic dominance the distribution F2 if,
∫ ψ

−∞

(
F1(ψ̃)− F2(ψ̃)

)
dψ̃ ≤ 0, ∀ψ ∈ R.

Lemma 8. A signal Xη
i is more informative of Vi, Vi ∈ {Ti, Qi}, than another sig-

nal Xη′
i if and only if the distribution of the conditional expected value E[Vi|Xη

i ] is

dominated in the sense of second order stochastic dominance by the distribution of the

conditional expected value E[Vi|Xη′
i ].

Proof. Let Ψη(x) ≡ E[Vi|Xη
i = x] for x ∈ [0, 1], and Ψ−1

η its inverse. First note that

the cumulative distribution function of E[Vi|Xη
i ] is equal to Ψ−1

η . This is because

the probability of the event {E[Vi|Xη
i ] ≤ ψ} is equal to Ψ−1

η (ψ) for any ψ in the

support of E[Vi|Xη
i ]. For completeness we also define Ψ−1

η (ψ) ≡ 0 for ψ below the

support of E[Vi|Xη
i ], and Ψ−1

η (ψ) ≡ 1 above the support of E[Vi|Xη
i ]. Note also that

E[Vi|Xη
i ≤ x] =

∫ x
0 Ψη(x)dx̃

x . Hence, we have to prove that:

∫ x

0

(
Ψη′(x̃)−Ψη(x̃)

)
dx̃ ≥ 0, ∀x ∈ [0, 1] ⇔

∫ ψ

−∞

(
Ψ−1

η′ (ψ̃)−Ψ−1
η (ψ̃)

)
dψ̃ ≤ 0, ∀ψ ∈ R.

We only prove “⇐”. The proof of “⇒” is symmetric. First, note that,
∫ x

0
Ψη(x̃) dx̃ = Ψη(x)x−

∫ x

0
x̃ dΨη(x̃) = Ψη(x)x−

∫ Ψη(x)

−∞
Ψ−1

η (ψ̃) dψ̃.

Consequently,

∫ x

0

(
Ψη′(x̃)−Ψη(x̃)

)
dx̃ =

∫ Ψη(x)

Ψη′ (x)

(
x−Ψ−1

η (ψ̃)
)

dψ̃ +
∫ Ψη′ (x)

−∞

(
Ψ−1

η′ (ψ̃)−Ψ−1
η (ψ̃)

)
dψ̃.
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The second integral is positive by our starting assumption. To compute the sign of the

first integral assume first that Ψη(x) ≥ Ψη′(x). Then the integral is positive because

Ψ−1
η (ψ̃) ≤ x for any ψ̃ < Ψη(x). Suppose next that Ψη(x) < Ψη′(x). Then the integral

is positive because Ψ−1
η (ψ̃) ≥ x for any ψ̃ > Ψη(x). ¥
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