-dNEsus

Network for Sustainable Ultrascale Computing

Proceedings of the Second International Workshop on Sustainable
Ultrascale Computing Systems (NESUS 2015)
Krakow, Poland

Jesus Carretero, Javier Garcia Blas
Roman Wyrzykowski, Emmanuel Jeannot.
(Editors)

September 10-11, 2015

Anatoliy Melnyk, Viktor Melnyk, Lyubomyr Tsyhylyk

Systems Based On Partially Reconfigurable FPGAs

ANATOLIY MELNYK, VIKTOR MELNYK, LYUBOMYR TSYHYLYK

Intron Ltd, Ukraine

aomelnyk@intron-innovations.com vmelnyk@ intron-innovations.com lLtsyhylyk@gmail.com

Abstract

The FPGA-based accelerators and reconfigurable computer systems based on them require designing the application-
specific processors soft-cores and are effective for certain classes of problems only, for which these soft-cores
were previously developed. In Self-Confiqurable FPGA-based Computer Systems the challenge of designing the
application-specific processors soft-cores is solved with use of the C2ZHDL tools, allowing them to be generated
automatically. In this paper, we study the questions of the self-configurable computer systems efficiency increasing
with use of the partially reconfigurable FPGAs and Chameleon© C2HDL design tool, corresponding to the goals
of the project entitled "Improvement of heterogeneous systems efficiency using self-configurable FPGA-based
computing” which is a part of the NESUS action. One of the features of the Chameleon© C2HDL design tool is
its ability to generate a number of application-specific processors soft-cores executing the same algorithm that differ
by the amount of FPGA resources required for their implementation. If the self-configurable computer systems are
based on partially reconfigurable FPGAs, this feature allows them to acquire in every moment of its operation such
a configuration that will provide an optimal use of its reconfigurable logic at a given level of hardware multitasking.

135

Chameleon'® C2HDL Design Tool In Self-Configurable Ultrascale Computer

Keywords self-configurable computer systems, field-programmable gate arrays, high-performance computing,

reconfigurable computing, C2HDL design tools.

I. INTRODUCTION

Today one of the most promising areas of activity in
the field of high performance computing is creation of
the reconfigurable computer systems (RCCS). RCCSs
compete with other types of high-performance com-
puter systems due to high speed characteristics of the
modern field-programmable gate arrays (FPGAs) - the
hardware base of a reconfigurable computing envi-
ronment (RCE) of RCCS, and due to advances in the
design technology of application-specific processors to
be synthesized in RCE of RCCS.

Co-functioning of a computer system based on
general-purpose processors with application-specific
processors synthesized in RCE, whose structure con-
siders executed algorithms features, allows increas-
ing its overall performance by 2-3 orders of magni-
tude. The reconfigurability and ability to synthesize
an application-specific processor (ASP) with a new
structure and functionality in RCE allows changing

the functional commitment of a created thereby RCCS
with preserving its high performance in the new class
of problems.

Along with high performance ensured by the RCCS,
there are also challenges associated with their applica-
tion. These particularly are significant timing expenses
for task distribution between the processing units, of-
ten lack of IP cores required for implementation in the
RCE which forces to develop them from scratch, and
high additional requirements to the RCCS users quali-
fication, as they, besides modeling and programming,
must perform a system analysis, design the ASPs archi-
tecture, perform their synthesis and implementation in
RCE.

Deprived of the above mentioned problems are self-
configurable computer systems (SCCS), where these
labor-intensive and time-consuming tasks are fully au-
tomated and replaced from the operator to the com-
puter system. Taking into account the necessity of fur-
ther improvement of the computer means performance

136 Chameleon(©) C2HDL Design Tool In Self-Configurable Ultrascale Computer Systems Based On Partially Reconfigurable FPGAs

and extension of the reconfigurable devices application
in computer systems, further development in the field
of self-configurable computer systems is a topical task
of scientific research and engineering.

II. RELATED WORK

The concept of the self-configurable FPGA-based com-
puter systems design, the method of information pro-
cessing in them, and their structure are proposed
in paper [1]. The issue of labor-intensive and time-
consuming tasks, which is a characteristic for RCCS,
is removed from SCCS owing to the new method of
information processing applied in it.

The software tools that should be used in a SCCS as
its components are available today. In this regard, we
may consider an approach to the development of com-
putational load balancing systems between a general-
purpose computer and the hardware accelerator pro-
posed in [2]. The IP cores’ generators [3], [4], IP cores’
libraries [5], and system level design tools and solu-
tions available on the market could be used for the
ASP design on the basis of its algorithm description by
a high-level programming language [6] - [8].

III. PROBLEM STATEMENT

Implementation of the SCCS basing on partially recon-
figurable FPGAs enables organization of multiple-task
execution in the reconfigurable environment. This op-
portunity is provided as the subprograms of different
tasks are executed independently in FPGA'’s different
reconfigurable regions, and each of them is loaded into
the FPGA as a partial configuration after initialization
of the respective program. Such SCCS operation has a
number of advantages, among which - the actual mul-
titasking, an effective use of the reconfigurable logic
and rationalization of energy consumption. At the
same time, this mode of the SCCS operation imposes
additional requirements for the generating system to
create the application-specific processors HDL-models.
Depending on the workload of the computer system,
the amount of available for one separate task recon-
figurable logic resources at a time can range from a
maximum value that corresponds to all FPGA dynamic
part resource, to the minimum value that corresponds

to one or a number of reconfigurable regions, and vice
versa. The question arises to organizing dynamic re-
allocation of the reconfigurable logic resources and
replacing some running application-specific processors
with others performing the same tasks but differing by
the equipment volume. This should be done to provide
an effective use of resources and the required level of
multitasking.

To address this challenge it is necessary, during
the program compilation, for each subprogram exe-
cuted in the reconfigurable environment, to generate a
number of application-specific processors HDL-models
ASPM { ASPMopt, ..., ASPMyiy }, Where ASPM,p; is
an optimum HDL-model that uses all the space-time
properties of an algorithm given by the subprogram
and to be implemented requires the largest amount of
the reconfigurable logic resources among the ASPM
models; ASPM,,;,, is an HDL-model that to be imple-
mented requires the minimum amount of the resources.
In this regard, we propose the Chameleon© C2HDL
design tool, which for each algorithm, given by the
ANSI C program, can generate a set of application-
specific processors VHDL soft-cores that differ by the
amount of equipment to be implemented.

The paper structure is the following:

Section IV shows the principles of information pro-
cessing in SCCS and its structure organization.

Section V highlights the partially reconfigurable FP-
GAs operation features.

Section VI introduces the characteristics and features
of the Chameleon© C2HDL design tool.

Section VII shows an example of application of the
Chameleon© C2HDL design tool in the SCCS for cre-
ation of a set of FFT processors VHDL models.

In our experiment the reconfigurable environment of
the SCCS is built on the Altera FPGA, therefore created
processors models are targeted at being implemented
in this FPGA and differ mainly by the number of the
embedded DSP blocks they use. The duration of these
FFT processors VHDL models generation and their
technical characteristics are shown.

Section VIII concludes the paper.

Anatoliy Melnyk, Viktor Melnyk, Lyubomyr Tsyhylyk

IV. SELF-CONFIGURABLE COMPUTER SYSTEMS
AND THE METHOD OF INFORMATION
PRrROCESSING IN IT

The self-configurable computer system is the computer
system with reconfigurable logic where the program
compilation includes automatically performed actions
of creation of configuration. and which acquires that
configuration automatically in the time of program
loading for execution [1]. The SCCS automatically
executes: 1) computational load balancing between
the general-purpose processor and reconfigurable en-
vironment (RCE); 2) creation of an application-specific
processor (ASP) HDL-model. Loading of the config-
uration files obtained after logical synthesis into the
RCE is carried out by the operating system in parallel
with loading of the computer subprogram executable
file into its main memory after program initialization
(1].

The method of information processing in the SCCS
consists of three stages: compiling the program, its
loading, and execution. The user creates a program
P, written in a high-level programming language and
submits it into the SCCS. During compiling the SCCS
automatically performs the following actions: divides
this program into the general-purpose processor’s sub-
program Pspp and RCE’s subprogram Pgrcp, performs
Pgpp compilation, generates Pgpp executable file obj,
creates ASP’s HDL-model ASPM to perform Prcg sub-
program, performs ASP’s logic synthesis, and stores
the obtained executable file 0bj and configuration files
of RCE conf = {COi’lfq,q = 1...KppGA}, where KppGA
is the number of FPGAs forming RCE, into the sec-
ondary memory.

These actions are performed in the SCCS with the
following means:

1. The computational load balancing system for load
balancing between a general-purpose processor
and RCE. This system automatically selects frag-
ments from the program P;, whose execution in
the RCE reduces its execution time, and divides
the program P;, into the P;pp subprogram replac-
ing the selected fragments in there by instructions
for interaction with the RCE, and the Pgcg sub-
program, formed from the selected fragments. An

137

example of such a system is described in [2]. This
system creates the RCE subprogram in x86 assem-
bly language, thus it must be supported by the
means for the assembly language code translation
into a high-level language to be used in the SCCS.
The tools of this type are available on the market,
for example Relogix Assembler-to-C Translator [9]
from MicroAPL.

2. A compiler for compiling Pgpp subprograms from
the language that they are represented in into the
object codes obj that can be directly executed by
the general-purpose processor.

3. A generating system for the ASPs HDL-models
creation. The system automatically generates mod-
els ASPM from the RCE subprograms Prcg, like
Chameleon®© [7], [10], that is discussed in this
article, or Agility Compiler [11] and DK4 Design
Suite [12] from Celoxica, or CoDeveloper from
Impulse [13].

4. Logic synthesis tools and FPGA configuring tools
for the ASPs HDL-models logic synthesis during
the program compilation stage and FPGA config-
uring during the program loading stage. These
tools are available from the FPGA vendors, for ex-
ample, Vivado Design Suite, ISE, Alliance, Foun-
dation from Xilinx; Quartus II, Max + II from
Altera.

From the conf and obj files a combined executable
file is formed and stored into the secondary mem-
ory. At the stage of the program loading after its
initialization, the SCCS loads the executable file obj
of the general-purpose processor’s subprogram into
the main memory using a conventional loader and, at
the same time, loads the configuration files conf =
{conf;,q =1..Kppga} into the RCE and thus creates
an ASP in there using the FPGA configuring tools.
Then, the stage of the program execution is performed.

The major part of the SCCS basic software means
represents a compiler which combines the computa-
tional load balancing system, a compiler for GPPs sub-
programs compilation, a generating system for ASPs
HDL-models creation, and ASPs logical synthesis tools.

The reconfigurable environment of the SCCS can be
realized on the base of partially reconfigurable FPGAs,

138 Chameleon(©) C2HDL Design Tool In Self-Configurable Ultrascale Computer Systems Based On Partially Reconfigurable FPGAs

which gives an opportunity to organize the hardware
multitasking there and brings a number of other ben-
efits. The partially reconfigurable FPGAs operation
features are briefly highlighted below.

V. ParRTIALLY RECONFIGURABLE FPGAS
OPERATION FEATURES

The ability to reconfigure a part of an FPGA circuitry
after its initial configuration while the other parts re-
main unaffected is referred to as partial reconfiguration.
The direct benefits of using this ability is a significant
reduction of the duration of reconfiguring and reduc-
tion of the memory size required for the configuration
storage (the size of the bit-stream is directly propor-
tional to the number of resources being configured).
Also, this ability opens new possibilities for the recon-
figurable logic application in computers, particularly,
it allows organizing hardware multitasking in FPGA
and embodying the concept of Virtual Hardware, that
is combined extremely well with the concept of SCCS
design.

Partial reconfiguration is carried out in FPGA by
downloading partial configurations files after its initial
configuration, and thus - during the operation. These
files specify only the configuration of the FPGA parts
called Reconfigurable Partitions or Reconfigurable Re-
gions, each of them contains separate device’s modules.
Reconfigurable partitions contain a certain amount of
equipment and have a clearly defined location and
boundaries in the FPGA circuitry. In this regard, the
device needs a modular structure. The modules loaded
into the reconfigurable partitions are called Reconfig-
urable Modules.

Partial reconfiguration can be static, when the device
is not active during the reconfiguration process (while
the partial configuration data is sent into the FPGA, the
rest of it is stopped and brought up after the configura-
tion is completed), and dynamic, also known as active
partial reconfiguration, which enables changing the
part of the FPGA while the rest of it is still operating.

Besides one or more reconfigurable regions, a par-
tially reconfigurable FPGA also contains a static region
which remains unchanged during partial reconfigura-
tion. For example, partial reconfiguration controller,
memory and interface logic can operate in this region.

The Partial Reconfiguration Controller automates the
mentioned process. The user can develop a controller
by himself or can use ready available on the market
solution. The controller can also be external to the
FPGA device.

Two modes of the partial reconfiguration are used:

e Module-based - implies creation of a reconfig-
urable module and, with the help of relevant soft-
ware, generation of its partial configuration code.
This code completely replaces the previously syn-
thesized reconfigurable module in the selected
reconfigurable region. Note that this approach
requires interfaces interoperability of all reconfig-
urable modules that operate in one reconfigurable
region.

o Difference-based - implies introducing small
changes to the scheme of the previously synthe-
sized reconfigurable module. Partial configuration
code contains information about the differences
between the structures of the existing and new
modules operating in the reconfigurable region,
and is formed by "fusion" of the binary codes of
the previously loaded to the FPGA configuration
with the new one, for example, using XOR oper-
ation. This approach makes it possible to signifi-
cantly reduce the size of configuration code. It is
used, for example, to replace the contents of table
operating device, memory contents, etc. This ap-
proach is especially interesting for implementation
of evolutionary algorithms.

Partial reconfiguration design flow and mechanisms
are being continuously improved. For example, in Vir-
tex, Virtex-II, Virtex-II Pro and Virtex-E FPGAs from
Xilinx, the configuration can be changed only by full
columns of the reconfigurable matrix, and their num-
bers have to be multiples of 4 (4, 8, 12, ...). In Virtex-4
FPGAs this restriction is eliminated, while it is pos-
sible to change the configuration of an arbitrary rect-
angular area of the matrix, with some restrictions on
its height. In modern Xilinx FPGAs (today it is 7th
generation: Artix-7, Kintex-7, Virtex-7 and Zyng-7000
SoC) the minimum regions whose configuration can
be changed independently are called Reconfigurable
Frames. The width of the reconfigurable frames is one

Anatoliy Melnyk, Viktor Melnyk, Lyubomyr Tsyhylyk

element (there are different types of elements, includ-
ing CLB, BRAM, DSP), while the height - the one clock
region or input/output block. Some examples are as
follows: in the Xilinx FPGAs 7th generation devices
[14] - CLB: 50 x 1; DSP48: 10 x 1, RAM: 10 x 1; in the
UltraScale devices [15] - CLB: 60 x 1; DSP48: 24 x 1;
RAM: 12 x 1.

A partial configuration file consists of a certain num-
ber of configuration frames (not to be confused with
the reconfigurable frames). The configuration frame is
the minimum unit of information of this file and sets a
configuration for one reconfigurable frame.

In the Altera FPGAs, the partial reconfiguration is
implemented similarly.

VI CHAMELEON© C2HDL DeEsigN TooL

The Chameleon© C2HDL design tool is initially tar-
geted for use in the heterogeneous ultrascale computer
systems. It is intended for the ASP’s HDL-model auto-
matic generation from the algorithm described in the
ANSI C language [7], [10]. The developer, specifying
an algorithm of the data processing on ANSI C, in
return gets a fully debugged and synthesizable VHDL
RTL model of the device that implements the described
algorithm. The architecture of the device is fully opti-
mized for the executed algorithm and maximally uses
its ability for paralleling. The obtained VHDL design
may be further implemented in the FPGA by any FPGA
design solution, e.g. the Xilinx Vivado Design Suit or
Altera Quartus IL

Besides the algorithm of the data processing, the
input information for the Chameleon'¥ C2HDL de-
sign tool are also the ASP’s interface specification and
technical characteristics, for example, desired perfor-
mance or algorithm execution time boundaries. The
platform for the ASP synthesis is configurable proces-
sor architecture configured according to the following
input parameters: the number of Functional Units,
an instruction set for each Functional Unit, the size
and content of the instruction and data memory, the
communication network structure.

The basic scheme of the Chameleon© C2HDL de-
sign tool operation is shown in Figure 1.

The Chameleon© C2HDL design tool features:

139

1. Short generation time. For example, generation
of the FFT processor VHDL model with 50 Func-
tional Units takes several minutes on a conven-
tional PC.

2. Desired pre-set level of the algorithm paralleliza-
tion.

3. Quick search of the appropriate level of paralleliza-
tion to achieve the desired ASP’s performance or
power consumption.

4. The architecture of the ASP is tested and verified,
which eliminates the probability of synthesis and
operation errors.

Thus, this tool can be effectively used in the SCCS,
and the example of its usage is shown in the next
section.

VII. EXPERIMENTAL RESULTS

We have used the Chameleon© C2HDL design tool
as one of the basic software means of the SCCS com-
piler. The SCCS hardware platform is realized on the
base of the conventional personal computer running on
the Windows OS and the reconfigurable environment
built on the Cyclone V FPGA from Altera. The RCE
subprogram chosen for the experiment represents the
algorithm of the 64-point Fast Fourier Transformation
in the ANSI C language, its code is given in Figure 2.
This program has been submitted to the input of the
ChameleonY C2HDL design tool, and a set of the
RTL VHDL-models of the 64-points FFT processors,
whose structures contain a different number of Func-
tional Units, has been automatically generated. As
a most productive the one containing 15 Functional
Units was determined by the Chameleon© C2HDL de-
sign tool; in all the models a number of these modules
is determined automatically. The Functional Units are
implemented in the Cyclone V FPGA as an embedded
DSP blocks in relation 1x1.

Depending on the workload, the SCCS operating
system can choose the FPGA partial configuration that
contains an appropriate by the equipment amount or a
performance FFT processor, and replace the operating
in the RCE instance of the processor to another on

140 Chameleon(©) C2HDL Design Tool In Self-Configurable Ultrascale Computer Systems Based On Partially Reconfigurable FPGAs

Input
parameters
(e.g. algorithm
execulion
time)

High-level
description
of an

algarithm
{ ANSIC)

CHAMELEON C2HDL Design Tool

Shared memory
Funcbmal Unit Flll'lchonal Unit Funl:hanal Unit

g

RTL YHDL description
of the application-
specific processor

ROM
configuration
file

Figure 1: Basic Scheme of Chameleon© C2HDL Design Tool Operation.

the run. Table 1 shows, the technical characteristics
of the FFT processors VHDL-models generated with
Chameleon'¥ C2HDL design tool, and synthesised in
the Cyclone V 5CSEMASE31C6 device by the Quartus
I1 13.1.0 Web Edition.

Table 1: Technical Characteristics of FFT Processors.

Basing on this data, the SCCS operating system can
choose which FFT processor configuration to acquire
at a certain moment of its operation, depending on

the actual workload. For example, the configuration
consuming 1809 LUTs executes FFT in 9.31 us, and
configuration consuming 9200 LUTs - in 1.27 us.

The time required by the SCCS for the FFT pro-
cessors VHDL-models generation generally increases
linearly with increasing the number of parallel Func-

Number of | LUT uti-| Maximum | Command | FFT time tional Units (see Figure 3). The main part of the gen-
the Functional | lization Frequency | count (us) . K N . . s
Units (MHz) eration time is spent on the algorithm parallelization
1 1.809 204.08 1900 9.31 and schematic optimization.

2 2.380 200,32 1015 5,07

4 3.054 216,38 575 2,65

7 4806 174,52 388 222 VIII. CONCLUSIONS

8 4.858 190,73 352 1,85

10 6.715 171,85 311 1,81 . . .

3 3500 157 150 1% Implementation of the SCCS basing on partially recon-
15 10.198 138,48 180 1,30 figurable FPGAs enables organization of the simulta-

neous multiple-task execution in the reconfigurable en-
vironment of the SCCS as the subprograms of different
tasks are executed independently in different reconfig-
urable regions of the FPGA. Such SCCS operation has
a number of advantages, among which, besides the
actual multitasking - effective use of the reconfigurable
logic and rationalization of energy consumption. At

Anatoliy Melnyk, Viktor Melnyk, Lyubomyr Tsyhylyk

#include "inout.n"
#define nx 64

void main()

{

141

int x[nx*2]; int wnx]; int ia, ib, i, j, k; int rtemp, itemp; int ¢, s; int N2 = nx == 1;

(a set of constants w[0]... w[63])

(an array of the input data, real and imagine parts x[0] x{ 127] sorted in bit-reverse order)

for (k=1 k<mk=<<=1){

ia=0;
for(=0;j<k; j++) {
c=w[2"n2 " j|;
s=w2*n2*j+1];
for (i=0;i<n2;i++){
ib=ia+k;
rtemp = (int)(({__int&4)c * x[2 * ib])) - (int){{{__int64)s * x[2 * ib + 1]));
iternp = (int)({{__int64)c * x[2 * ib + 1])) + (int)({(__int64)s * x[2 * ib]));
x[2 ¥ ib] = (x[2 * ia] - rtemp);
x[2 *ib+ 1] = (x[2 " ia + 1] - itemp);
X[2 *ia] = (x[2 * ia] + temp);
X[2 *ia+ 1] = (x[2 * ia + 1] + itemp);
ja+= k<< 1;}
a=j+ 1}
n2 ===1;1
for (i=0;i<(nx™2); i++) {
out_port(x[i], 1);}}

Figure 2: Program of 64-Point FFT Algorithm in ANSI C.

the same time, this mode of the SCCS operation im-
poses additional requirements for the generating sys-
tem to create the application-specific processors HDL-
models. The question arises to organizing dynamic
re-allocation of the reconfigurable logic resources and
replacing some running application-specific processors
with others performing the same task but differing by
the equipment volume. This should be done to provide
an effective use of resources and the required level of
multitasking. To address this challenge, it is neces-
sary, during the program compilation, for each subpro-
gram executed in the reconfigurable environment, to
generate a number of application-specific processors
HDL-models. We propose in this regard to use the
Chameleon'~ C2HDL design tool.

In the article we consider the SCCS structure and
the method of information processing in it, the par-
tially reconfigurable FPGAs operation features, and the
Chameleon'¥ C2HDL design tool operation and fea-
tures among which short generation time, desired pre-
set level of the algorithm parallelization, automatic gen-
eration of tested and verified ASP HDL models. One of
the features of the Chameleon© C2HDL design tool is
its ability to generate a number of application-specific
processor soft-cores executing the same algorithm dif-

fering by the amount of FPGA resources required for
their implementation. For the self-configurable com-
puter systems based on partially reconfigurable FPGAs
this feature allows acquiring in every moment of its op-
eration configuration that will provide an optimal use
of its reconfigurable logic at a given level of hardware
multitasking.

To estimate the benefit, we have experimented with
the Chameleon© C2HDL design tool as one of the
basic software means of the SCCS compiler. The SCCS
hardware platform is realized on the base of the con-
ventional personal computer running on the Windows
OS and the reconfigurable environment built on the
Cyclone V FPGA from Altera. Chosen for the experi-
ment RCE subprogram represents the algorithm of the
64-point Fast Fourier Transformation in the ANSI C
language. This program has been given to the input
of the Chameleon'¥ C2HDL design tool, and a set of
the RTL VHDL-models of the 64-point FFT processors
has been automatically generated. The experimental
results have shown that the Chameleon'¥ C2HDL de-
sign tool generates a set of FFT processors with high
technical characteristics in very short time, and satis-
fies the basic requirements for a generating system of
the SCCS to provide its effective operation.

142 Chameleon(©) C2HDL Design Tool In Self-Configurable Ultrascale Computer Systems Based On Partially Reconfigurable FPGAs

(1]

Time (sec)

"i i i
1 2 4 7 8

Parallel ALU

10 i) 15

Figure 3: Time Required for 64-Point FFT Processors VHDL-Models Generation.

REFERENCES

A. Melnyk, V. Melnyk, "Self-Configurable FPGA-
Based Computer Systems," Advances in Electrical
and Computer Engineering, vol. 13, no. 2, pp. 33-38,
2013.

V. Melnyk, V. Stepanov, Z. Sarajrech, "System of
load balancing between host computer and recon-
figurable accelerator," Computer systems and compo-
nents, Scientific Journal of Yuriy Fedkovych Chernivtsi
National University, vol. 3, no. 1, pp. 6-16, 2012.

"A Proven EDA Solutions Provider makes

all the difference”. [Online]. Available:
http:/fwww.aldec.com/en.

Xilinx Core Generator. Xil-
inx Inc. [Online]. Available:

http:/fwww.xilinx.com/ise/products/coregen_overview.
pdf - 2005.

Melnyk, A, Melnyk, V. "Organization of libraries
of standardized and custom IP Cores for high-
performance hardware accelerators"”, Proceedings
of IV-th all-Ukrainian conference "Computer Tech-
nologies: Science and Education", Ukraine, Lutsk,
9-11 October 2009. -P. 113-117.

Genest, G. "Programming an FPGA-based Super
Computer Using a C-to-VHDL Compiler: DIME-
C", Adaptive Hardware and Systems, 2007. AHS
2007. Second NASA /ESA Conference, 5-8 Aug.
2007. - P. 280 - 286.

[7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

"Chameleon - the System-Level
Solution," [Online]. Awvailable:
innovations.com/? p=sld_chame

ANSI-C to VHDL Compiler. [Online]. Avail-
able: http:/fwww.nallatech.com/FPGA-Development-
Tools/dimetalk.html.

Design
http://intron-

"Relogix Assembler-to-C translator,” [Online].
Awailable: http:/fwww.microapl.co.uk/asm2c/

Melnyk, A., Salo, A., Klymenko, V., Tsyhylyk, L.
"Chameleon - system for specialized processors
high-level synthesis", Scientific-technical maga-
zine of National Aerospace University "KhAI",
Kharkiv, 2009. N5, pp. 189-195.

Agility Compiler for SystemC. Electronic
System Level Behavioral Design & Syn-
thesis Datasheet. 2005. [Online]. Awvail-
able: http:/fwww.europractice.rl.ac.uk/vendors/
agility_compiler.pdf

Handel-C Language Reference Manual For DK
Version 4. Celoxica Limited, 2005. - 348p.

Impulse CoDeveloper C-to-
FPGA Tools. [Online]. Available:
http:/fwww.impulseaccelerated.com/products_
universal. htm

Vivado Design Suite User Guide. Partial Reconfig-
uration. UG909 (v2015.2) June 24, 2015.

UltraScale Architecture. Online. Auvailable:
http:/fwww.xilinx.com/products/technology/ultra-
scale.html

