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Abstract. We study the core of a non-atomic game v which is uniformly con-
tinuous with respect to the DNA-topology and continuous at the grand co-
alition. Such a game has a unique DNA-continuous extension v on the space
B1 of ideal sets. We show that if the extension v is concave then the core of the
game v is non-empty i¨ v is homogeneous of degree one along the diagonal of
B1. We use this result to obtain representation theorems for the core of a non-
atomic game of the form v � f � m where m is a ®nite dimensional vector of
measures and f is a concave function. We also apply our results to some non-
atomic games which occur in economic applications.
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1. Introduction

One of the fundamental game theoretic concepts is the core of a coalitional
game. It is the set of all feasible outcomes that no player or group of partic-
ipants can improve upon by acting for themselves. The core of coalitional
games with a ®nite or in®nite set of players was investigated in many works
(for a comprehensive survey see Kannai (1992)). In this work we consider
non-atomic games which are uniformly continuous with respect to the discrete
NA-topology and continuous at the grand coalition. Any such game has a
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Carlos III de Madrid. The support of the Department is gratefully acknowledged. Moreno
acknowledges the support of the Spanish Ministry of Education (DGICYT), grant PB96-0118.

1

Referencia bibliográfica
Published in:
International Journal of Game Theory. 1999, vol. 28, nº 1, p. 1-14



unique extension which is continuous with respect to the discrete NA-topology
on the space of ideal sets. We study the core of the class of such games whose
extension is concave on the space of ideal sets. This class includes, for exam-
ple, every game of the form v � f � m where m is a ®nite dimensional vector of
non-atomic measures on a measurable space �T ;S� and f is a continuous
function at m�T � and concave on the range of m. Such games occur in several
economic applications. For example, every non-atomic glove market game
and every non-atomic linear production game of Billera and Raanan (1981)
are of this form and so is any Aumann-Shapley-Shubik market game of an
atomless economy with a ®nite number of types (see Section 5). Large pro-
duction games with a production function which satis®es decreasing returns to
scale are also in this class (they have the form f � m where m represents the
distribution of production factors among the owners and f is the production
function).

We prove that a game in the above-mentioned class has a non-empty core
i¨ its (unique) extension to the space of ideal sets is homogeneous of degree
one along the diagonal of the space B1 of ideal sets (see Theorem A). The
game is totally balanced (i.e., every subgame has a non-empty core) i¨ its
extension is homogeneous of degree one on all B1 (see Theorem B). As a
consequence we obtain that such a game is balanced i¨ it is superadditive with
respect to the grand coalition and it is totally balanced i¨ it is superadditive
(see Corollaries 3.4 and 3.5). We also prove representation theorems for the
core of a game of the form v � f � m where m is a ®nite dimensional vector
of non-atomic measures and f is a concave function on the range of m.
The theorems are stated in terms of the supergradients of the function f (see
Theorems C and D).

In the last section of the paper (see Section 5) we apply our main results to
some non-atomic games which occur in economic applications.

2. Preliminaries

In this section we de®ne some basic notions which are relevant to our work
and prove some preliminary results which we use in the sequel.

Let �T ;S� be a measurable space, i.e., T is a set and S is a s-®eld of
subsets of T. We refer to the members of T as players and to those of S as
coalitions. A coalitional game, or simply a game on �T ;S�, is a function
v : S! R� with v�q� � 0. A game v on �T ;S� is continuous at S A S if for

all sequences fSngyn 1 of coalitions such that Sn�1 ISn and 6y
n 1

Sn � S, and

all sequences fSngyn 1 of coalitions such that Sn�1 HSn and 7y
n 1

Sn � S, we

have v�Sn� ! v�S�.
A payo¨ measure in a game v is a bounded ®nitely additive measure

l : S! R which satis®es l�T �U v�T �. The core of a game v, denoted by
Core�v�, is the set of all payo¨ measures l such that l�S�V v�S� for all S A S.
As observed by Schmeidler (see the ®rst part of the proof of Theorem 3.2 in
Schmeilder (1972)), if v is a continuous game at T, then every member of
Core�v� is countably additive.

The Banach space of all bounded Borel measurable functions with the
supremum norm will be denoted by B � B�T ;S� and by ba � ba�T ;S�, we
denote the Banach space of all bounded ®nitely additive measures on �T ;S�
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with the variation norm. It is well known that ba is the norm dual of B. The
subspace of ba which consists of all bounded countably additive non-atomic
measures on �T ;S� is denoted by NA � NA�T ;S�. The NA-topology on B is
the weakest topology such that for each l A NA the function f ! �

T
f dl is

continuous on B. The DNA-topology on B (see Mertens (1980)) is de®ned in
the same way, but when the real line R is taken with the discrete topology.
Note that a basis for the neighborhoods of f A B in the DNA-topology con-
sists of sets of the form fg A B j m�g� � m� f �g, where m is a ®nite dimensional
vector of measures in NA (if m � �m1; . . . ; mm� is a vector of measures in NA

and f A B then m� f � stands for ��
T

f dm1; . . . ;
�

T
f dmm��. In the rest of the

paper we denote by B1 � B1�T ;S� the set of all functions f in B such that
0U f U 1. If v is a game on �T ;S� a function w on B1 is an extension of v if
w�1S� � v�S� for every S A S (where here, and in the sequel, if S A S then 1S

denotes its indicator function). A game v is DNA-uniformly continuous on
�T ;S� if for every e > 0 there exists a ®nite dimensional vector m of measures
in NA such that for every S1 and S2 in S we have

m�S1� � m�S2� ) jv�S1� ÿ v�S2�j < e:

By Lyapunov's theorem, the indicator functions of the coalitions in S are
dense in B1 with respect to the DNA-topology (see also Corollary 22.3 in
Aumann and Shapley (1974)). Therefore every DNA-uniformly continuous
game v has a unique extension v : B1 ! R such that v is DNA-continuous on
B1 (the proof is similar to that of Theorem G in Aumann and Shapley (1974)).
It is clear that v is non-negative on B1.

We note that if v � g � m where m is a ®nite dimensional vector of measures
in NA and g is a function de®ned on the range of m then v� f � � g�m� f �� for
every f 2 B1.

A coalition S0 A S is null in a game v on �T ;S�, if for every S A S such
that S XS0 �q we have v�S WS0� � v�S�. Let m be a countably additive
measure in ba� (where here, and in the sequel, if A is a subset of an ordered
vector space we denote by A� the set of all non-negative members of A). A
game v is weakly absolutely continuous with respect to m if every null set of m is
a null set of v.

Proposition 2.1. Let v be DNA-uniformly continuous game on �T ;S�. Then
there exists a measure m in NA� such that v is weakly absolutely continuous
with respect to m.

Proof: Since v is DNA-uniformly continuous on �T ;S�, for every natural
number n there exists a vector mn � �mn

1 ; . . . ; mn
mn
� of measures in NA� such

that kmn�T �kU 1 and for every S1;S2 A S

mn�S1� � mn�S2� ) jv�S1� ÿ v�S2�j < 1

n
:

For every n let ln � 1=mn

Pmn

i 1 mn
i and let m �Py

n 1 2
nln. Then m A NA�.

Now let S0 be a null coalition of m. Then mn�S0� � 0 for every n. Let S A S
such that S XS0 �q. Then for every n we have jv�S WS0� ÿ v�S�j < 1=n,
and thus S0 is a null coalition of v. Therefore v is weakly absolutely continu-
ous with respect to m. Q.E.D.
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Proposition 2.2. Let v be a DNA-uniformly continuous game on �T ;S� which is
continuous at T. Then every member of the core of v is in NA�.

Proof: Let l A Core�v�. Then it is clear that l is non-negative. As mentioned
earlier, the continuity of v at T implies that l is countably additive. Now by
Proposition 2.1, there exists m A NA� such that v is weakly absolutely contin-
uous with respect to m. We show that l is absolutely continuous with respect
to m. Indeed, let S A S such that m�S� � 0. As l A Core�v� we have

0U l�S� � l�T � ÿ l�TnS�U v�T � ÿ v�TnS� � 0

Hence, l�S� � 0. Therefore l is absolutely continuous with respect to m. We
will show that l A NA�. Assume, on the contrary, that A is an atom of l.
Then l�A� > 0. Let 0 < e < l�A�. Since l is absolutely continuous with re-
spect to m, there exists d > 0 such that for every S A S

m�S� < d) l�S� < e:

Let n be a natural number such that nd > m�A�. Since m A NA�, there exists a
partition A1; . . . ;An of A such that for every 1U i U n we have Ai A S and
m�Ai� � �1=n�m�A� < d. As A is an atom of l, there exists 1U iU n such that
l�A� � l�Ai� < e, which is a contradiction. Q.E.D.

3. Existence of the core

In this section we investigate the existence of the core of a game v which is
DNA-uniformly continuous on �T ;S� and its extension v to B1 is concave.

We start with a theorem which gives a necessary and su½cient condition
for non-emptiness of the core of such a game.

Theorem A. Let v be a DNA-uniformly continuous game on �T ;S� which is
continuous at T. Assume that its extension v is concave on B1. Then the core of
the game v is non-empty i¨ v is homogeneous of degree one along the diagonal
of B1. That is, v�a1T � � av�1T� for every 0U aU 1.

For the proof of Theorem A we need some preparation. We start with the
following proposition which is interesting on its own.

Proposition 3.1. Let v be a DNA-uniformly continuous game which is continu-
ous at T. Assume that Core�v�0q. Then for every 0U aU 1 we have

v�a1T �U av�1T�

Proof: Assume, on the contrary, that there exists 0 < a < 1 such that
v�a1T � > av�1T�. Let e � v�a1T� ÿ av�T � and let l A Core�v�. Then by Prop-
osition 2.2, l A NA�. Since v is DNA continuous at a1T , there exists a ®nite
dimensional vector m of measures in NA such that for every f A B1

m� f � � am�T� ) jv� f � ÿ v�a1T�j < e
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Now by Lyapunov's theorem, there exists S A S such that m�S� � am�T �
and l�S� � al�T �. Since l A Core�v�, we have

l�S�V v�S� > v�a1T� ÿ e � av�T � � al�T �;

which is a contradiction. Q.E.D.

Let F be a real valued function de®ned on a subset K of a topological
vector space X. A liner functional c on X is a supergradient of F at a point
x0 A K if for every x A K we have

F �x�UF�x0� � c�xÿ x0�

The set of all supergradients of F at x0 is denoted by qF �x0�. It is well known
that if K is a convex set and F is a concave function on K and x0 is a point in
the relative interior of K (x0 is in the relative interior of K if for every
x A Knfx0g there exist y A K and 0 < a < 1 such that x0 � ax� �1ÿ a�y)
then qF�x0�0q (see, for example, the theorem on p. 23 of Holmes (1975)).

Proof of Theorem A: Assume that Core�v�0q. Then since v is concave,
Proposition 3.1 implies that v�a1T� � av�1T � for every 0U aU 1.

We now show that if v is homogeneous of degree one along the diagonal of
B1, then Core�v�0q.

For every natural number n > 1 we have �1ÿ 1=n�1T A intB1 and thus,
qv��1ÿ 1=n�1T�0q. For every n let cn A qv��1ÿ 1=n�1T�. Then

0 � v�0�U v 1ÿ 1

n

� �
1T

� �
ÿ 1ÿ 1

n

� �
cn�1T �

� 1ÿ 1

n

� �
v�T � ÿ 1ÿ 1

n

� �
cn�1T�

Therefore cn�1T�U v�T �. On the other hand,

v�T �U v 1ÿ 1

n

� �
1T

� �
� 1

n
cn�1T� � 1ÿ 1

n

� �
v�T � � 1

n
cn�1T�:

Hence, cn�1T�V v�T � and thus cn�1T� � v�T �.
Now for every g A B1 we have

v�g�U v 1ÿ 1

n

� �
1T

� �
� cn�g� ÿ 1ÿ 1

n

� �
cn�1T� � cn�g�: �3:1�

As vV 0, cn is a positive linear functional on B (i.e., cn�g�V 0 for every
g A B�). Therefore for every n

kcnk � cn�1T � � v�T �:

Thus, the sequence �cn�yn 2 is a uniformly bounded sequence of continuous
linear functionals on B. Let c be a weak*-cluster point of the sequence
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�cn�yn 2. Then c�1T� � v�T �. We show that c A qv�1T�. Assume, on the con-

trary, that c B qv�1T�. Then there exists f A B1 such that

v� f � > v�T � � c� f � ÿ c�1T � � c� f �

Let e � v� f � ÿ c� f �. Then the set U � fj A B �j jj� f � ÿ c� f �j < eg is a
weak*-neighborhood of c in B �. Therefore there exists n such that cn A U .
Hence, cn� f � < c� f � � e � v� f �, which contradicts (3.1). For every S A S let
l�S� � c�1S�. Then l A ba� and l�T � � v�T �. Since c A qv�1T�, for every
S A S we have

v�S�U v�T � � c�1S� ÿ c�1T � � l�S�:

Thus, l A Core�v�. Q.E.D.

If m is a ®nite dimensional vector of measures in NA we denote by R�m� the
range of m.

The following corollary is an immediate consequence of Theorem A.

Corollary 3.2. Let m be a ®nite dimensional vector of measures in NA and let
f : R�m� ! R� be a concave function which is continuous at m�T � and satis®es
f �0� � 0. Then the core of the game v � f � m is non-empty i¨ for every
0U aU 1 we have f �am�T �� � a f �m�T ��.

Let S A S. Denote SS � fQ A S jQHSg. Then SS is a s-®eld of subsets
of S. Let v be a game on �T ;S�, and let S A S. The subgame of v which is
determined by S is the game vS on �S;SS� which is given by vS�Q� � v�Q� for
every Q A SS. A game v on �T ;S� is called totally balanced if for every S A S
we have Core�vS�0q.

Theorem B. Let v be a DNA-uniformly continuous game. Assume that v is
continuous at every coalition in S and that v is concave on B1. Then v is totally
balanced i¨ v is homogeneous of degree one on B1. That is, for every 0U aU 1
and f A B1 we have v�a f � � av� f �.

Proof: Assume that v is totally balanced. Let S A S. Since Core�vS�0q and
vS is continuous at S, by applying Theorem A to the game vS on �S;SS�, we
obtain that v�a1S� � vS�a1S� � avS�1S� � av�1S� for every 0U aU 1. Since
the indicator functions are DNA-dense in B1, we obtain that v�a f � � av� f �
for every f A B1 and 0U aU 1.

Assume now that v is homogeneous of degree one on B1. Let S A S. Then
v�a1S� � av�S� for every 0U aU 1. As v is continuous at every coalition in S,
we can apply Theorem A to the game vS on the space �S;SS� and deduce that
Core�vS�0q. Q.E.D.

Corollary 3.3. Let m be a ®nite dimensional vector of measures in NA. Assume
that f : R�m� ! R� is a continuous concave function which satis®es f �0� � 0.
Then the game v � f � m is totally balanced i¨ f is homogeneous of degree one
on R�m� (i.e., f �ax� � a f �x� for every x A R�m� and 0U aU 1).
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In light of Corollaries 3.2 and 3.3 it will be useful to give an example of a
function f which is de®ned on the range R of a vector of non-atomic measures
on a measurable space and such that f is continuous, non-decreasing and
concave on R, f �0� � 0, f is homogeneous of degree one along the diagonal of
R, but f is not homogeneous of degree one in the entire range R. Indeed, let R
be the unit square in R2 (R is, for example, the range of the vector �l1; l2�
when the measureable space is [0, 2] with its Borel subsets, l1 is the Lebesgue
measure on [0, 1] and l2 is the Lebesgue measure on [1, 2]). De®ne a function f
on R by

f �x; y� � xy
p �1ÿ e�xÿ y�2�;

where 0 < e < 10 7. It is clear that f is continuous on R and homogeneous of
degree one along the diagonal of R but not in all R. It is also easy to check (by
computing the partial derivatives) that f is non-decreasing. A direct computa-
tion gives that the Hessian of f is negative semide®nite on R. Therefore f is
concave on R.

A game v on �T ;S� is superadditive with respect to a coalition S A S if
for every two disjoint coalitions S1;S2 A S such that S1 WS2 � S we have
v�S�V v�S1� � v�S2�. A game v is superadditive if it is superadditive with re-
spect to any coalition in S.

The following two corollaries are consequences of Theorems A and B
respectively.

Corollary 3.4. Let v be a DNA-uniformly continuous game on �T ;S� which is
continuous at T. Assume that its extension v is concave on B1. Then the core of
the game v is non-empty i¨ v is superadditive with respect to the grand coalition.

Proof: It is easy to see that if Core�v�0q then v is superadditive with respect
to the grand coalition. Assume that v is superadditive with respect to the
grand coalition. We will show that Core�v�0q. Let 0U aU 1. By theorem
A, it is su½cient to show that v�a1T� � av�1T �. Since v is concave on B1, we
have v�a1T�V av�1T�. So it remains to show that v�a1T�U av�1T �. We ®rst
show that

v�1T �V v�a1T� � v��1ÿ a�1T�: �3:2�

Assume, on the contrary, that (3.2) is not satis®ed. Let e � v�a1T ��
v��1ÿ a�1T� ÿ v�1T�. Then e > 0. Since v is continuous at a1T and �1ÿ a�1T ,
there exist two ®nite dimensional vectors of measures m1 and m2 in NA such
that for every f A B1

m1� f � � am1�T � ) jv� f � ÿ v�a1T�j < e

2

and

m2� f � � �1ÿ a�m2�T � ) jv� f � ÿ v��1ÿ a�1T �j < e

2
:

Let m � �m1; m2�. Then there exists S A S such that m�S� � am�T�. There-
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fore m�TnS� � �1ÿ a�m�T �. Hence,

jv�S� ÿ v�a1T�j < e

2
�3:3�

and

jv�TnS� ÿ v��1ÿ a�1T�j < e

2
: �3:4�

Now (3.3) and (3.4) imply that v�a1T� � v��1ÿ a�1T� ÿ �v�S� � v�TnS�� < e.
This yields that

v�T � < v�S� � v�TnS�;

which contradicts the assumption that v is superadditive with respect to the
grand coalition. Therefore

v�1T �V v�a1T� � v��1ÿ a�1T�:

This inequality and the concavity of v imply that

v�a1T �U v�1T� ÿ �1ÿ a�v�1T� � av�1T�: Q:E:D:

Corollary 3.5. Let v be a DNA-uniformly continuous game. Assume that v is
continuous at every coalition in S and that v is concave on B1. Then v is totally
balanced i¨ it is superadditive.

Proof: It is clear that if v is totally balanced then it is superadditive. Assume
that v is superadditive. We show that it is totally balanced. Let 0U aU 1. By
Theorem B, it is su½cient to show that for every f A B1 we have v�a f � �
av� f �. Let f A B1. Since v is concave, v�a f �V av� f �. Note now that if m
is a ®nite dimensional vector of measures in NA, then by Theorem 4 in
Dvoretsky, Wald and Wolfowitz (1951) there exists disjoint coalitions S1;
S2 A S such that m�S1� � am� f � and m�S2� � �1ÿ a�m� f �. Therefore we can
apply an argument similar to that in the proof of Corollary 3.4 to obtain that

v� f �V v�a f � � v��1ÿ a� f �;

which implies that v�a f �U av� f �. Q.E.D.

4. Representation theorems for the core

In this section we state and prove some representation theorems for the core
of a subclass of the class of games which were studied in Section 3. We start
with the following theorem.

Theorem C. Let m be a ®nite dimensional vector of measures in NA. Assume
that f : R�m� ! R� is a concave function which is continuous at m�T � and
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satis®es f �0� � 0. Then the core of the game v � f � m is given by

Core�v� � fp � m j p A q f �m�T �� and p � m�T � � f �m�T ��g

Proof: Let M�v� � fp � m j p A q f �m�T �� and p � m�T � � f �m�T ��g. We ®rst
show that M�v�HCore�v�. Indeed, let l A M�v�. Then there exists p A
q f �m�T �� such that p � m�T � � f �m�T �� and l � p � m. For every S A S we
have

l�S� � l�T � ÿ l�TnS� � f �m�T �� ÿ p � m�TnS�V f �m�S�� � v�S�

Therefore l A Core�v�.
We now show that Core�v�HM�v�. Without loss of generality, Core�v�0

q. Then by Corollary 3.2, we have f �am�T �� � a f �m�T �� for every 0U aU
1. Now by Corollary 2.6 in Billera and Raanan (1981) and the remark that
follows it, every member of Core�v� is a linear combination of the components
of m. Let l A Core�v�. Then there exists a vector p such that l � p � m. Now for
every S A S we have

f �m�S��U l�S� � p � m�S� � f �m�T �� ÿ p � m�T �:

Thus, p A q f �m�T �� and l A M�v�. Q.E.D.

Usually in economic applications (see the examples in Section 5) the func-

tion f of Theorem C is the restriction of a non-decreasing concave function f
which is de®ned on all Rm

� . Moreover, when we have a non-decreasing
concave function f which is de®ned on the range of a vector of measures
m � �m1; . . . ; mm� in NA� it is more convenient to compute the supergradients
at m�T � of a non-decreasing concave extension f of f to Rm

� . Such an exten-
sion always exists when f is concave and non-decreasing on the range R�m�
of m. For example, the function f : Rm

� ! R which is given by

f �x� � maxf f �y� j y A R�m�; yU xg

is such an extension.
We can now state and prove the main result of this section.

Theorem D. Let m � �m1; . . . ; mm� be a vector of non-trivial measures in NA�.
Assume that f : R�m� ! R is a non-decreasing concave function which is con-

tinuous at m�T � and satis®es f �0� � 0. Let f : Rm
� ! R be a non-decreasing

concave extension of f. Then the core of the game v � f � m is given by

Core�v� � fp � m j p A qf �m�T �� and p � m�T � � f �m�T ��g

Proof: Let M�v� � fp � m j p A qf �m�T �� and p � m�T � � f �m�T ��g.

Since qf �m�T ��H q f �m�T ��, Theorem C implies that M�v�HCore�v�. We

will show that Core�v�HM�v�. By Theorem C, it is su½cient to show that
for every p A q f �m�T �� with p � m�T � � f �m�T �� there exists q A qf �m�T ��
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such that p � m � q � m. Let p A q f �m�T �� be such that p � m�T � � f �m�T ��.
We ®rst show that for every x A R�m� there exists q A qf �m�T �� such that
p � xU q � x. Let x A R�m�. Then x � m�S� for some S A S. For every natural
number n > 1 let Sn A S be such that m�Sn� � �1=n�m�S� and p � m�Sn� �
�1=n�p � m�S�. For every n let qn A qf �m�TnSn��. Since f is non-decreasing on
Rm
� ; qn V 0 for every n. As p � m A Core�v�, for every n we have

0 � f �0�U f �m�TnSn�� ÿ qn � m�T � � 1

n
qn � m�S�

U p � m�T � ÿ p � m�Sn� ÿ qn � m�T � � 1

n
qn � m�T �:

Therefore

1ÿ 1

n

� �
qn � m�T �U f �m�T ��:

Since mi�T � > 0 for every 1U iUm, and qn V 0 for every n, the sequence
�qn�yn 2 is bounded, and therefore it has a convergent subsequence which
converges to a vector q A Rm

� . It is clear that q A qf �m�T ��. We will show that
p � xU q � x. Indeed, for every n we have

f �m�T ��U f �m�TnSn�� � qn � m�Sn�U p � m�TnSn� � qn � m�Sn�:

As p � m�T � � f �m�T ��, we obtain
1

n
p � xU

1

n
qn � x:

Thus, p � xU qn � x for every n. Therefore p � xU q � x.
De®ne now a function H : qf �m�T �� � R�m� ! R

by

H�q; x� � q � xÿ p � x:

Since qf �m�T �� and R�m� are convex and compact and H is continuous and
linear in each variable separately, by the minimax theorem

min
x AR�m�

max
q A qf �m�T ��

H�q; x� � max
q A qf �m�T ��

min
x AR�m�

H�q; x�: �4:1�

We have just shown that for every x A R�m� there exists q A qf �m�T �� such
that H�q; x�V 0. Therefore minx AR�m�max

q A qf �m�T ��H�q; x�V 0. Hence by

(4.1), there exists q A qf �m�T �� such that for every x A R�m� we have
H�q; x�V 0. That is, p � xU q � x for every x A R�m�. Since p � m�T � �
f �m�T �� and q � m�T �U f �m�T ��, we have q � m�T � � f �m�T ��. Now p � m
and q � m are two measures on �T ;S� such that p � m�S�U q � m�S� for every
S A S and p � m�T � � q � m�T �. Therefore p � m � q � m and the proof is
complete. Q.E.D.
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Remark 4.1: We note that Theorem D can be proved without using Theorems
A and C by applying Sion's minimax theorem (e.g., Sion (1958)) to the
function

H : qf �m�T �� � B1 ! R given by H�p; g� � p � m�g� ÿ l�g�;

where l is a ®xed member of Core�v� and B1 is identi®ed with the positive unit

ball of Ly�T ;S; s� where s �Pm
i 1 mi (and hence B1 is weak*-compact).

If f is a function de®ned on a neighborhood of a point x A Rm
� and di¨er-

entiable at x we denote by ` f �x� the gradient of x.
The following corollary is an immediate consequence of Theorem D.

Corollary 4.2. Let m � �m1; . . . ; mm� be a vector of measures in NA�. Assume
that f : Rm

� ! R is a non-decreasing concave function which is di¨erentiable at
m�T � and satis®es f �0� � 0. Then the core of the game v � f � m is non-empty
i¨ ` f �m�T �� � m�T � � f �m�T ��. Moreover, if Core�v�0q then

Core�v� � f` f �m�T �� � mg:

The following proposition deals with di¨erentiable games which are not
covered by Corollary 4.2.

Proposition 4.3. Let m � �m1; . . . ; mm� be a vector of measures in NA� and let
f : Rm

� ! R� be a di¨erentiable function at m�T � which satis®es f �0� � 0.
Assume that ` f �m�T �� A q f �m�T �� and ` f �m�T �� � m�T � � f �m�T ��. Then
the core of the game v � f � m is given by

Core�v� � f` f �m�T �� � mg:

Proof: Since ` f �m�T �� A q f �m�T ��, it is straightforward to check that
` f �m�T �� � m A Core�v�. We will show that Core�v�H f` f �m�T �� � mg. Let
l A Core�v� and S 2 S. For every natural number n let Sn A S such that
l�Sn� � �1=n�l�S� and m�Sn� � �1=n�m�S�. Since l A Core�v� and f is di¨er-
entiable at m�T �, we have

l�TnSn�V f �m�TnSn�� � f �m�T �� ÿ 1

n
` f �m�T �� � m�S� � o

1

n

� �
:

Therefore

l�S�U` f �m�T �� � m�S� � an;

where limn!y an � 0.
Thus l�S�U` f �m�T�� � m�S� for every S A S. As ` f �m�T �� � m�T � �

f �m�T �� � l�T �, we must have l � ` f �m�T �� � m. Q.E.D.

As an application of Proposition 4.3 we compute the core of the game in
the following example.

Example 4.4: Consider the measurable space ��0; 1�; b� where b is the s-®eld of
the Borel subsets of �0; 1� and let l be the Lebesgue measure on ��0; 1�; b�.
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De®ne a function:

f �x� � 3x2 0U xU 1
2

ÿx2 � 4xÿ 1 xV 1
2

�
Then f is not concave on �0; 1�, but as f 0�1� A q f �1� and f 0�1� � f �1�, by
Proposition 4.3, the core of the game v � f � l is f2lg.

5. Applications

In this section we apply Theorems A and D to games which arise in economic
applications. We start with the non-atomic glove market game whose core
was studied in Billera and Raanan (1981) and Einy et al. (1996).

Let m1; . . . ; mm be non-atomic measures in NA�. The non-atomic glove
market game is de®ned by

v�S� � min�m1�S�; . . . ; mm�S�� for every S A S:

Billera and Raanan (see Billera and Raanan (1981), Corollary 2.7) proved
that the core of v coincides with the convex hull of the set M � fmi j i �
1; . . . ;m and mi�T � � v�T �g. We now derive this result from Theorem D. It is
clear that M HCore�v�. Since Core�v� is convex, co M JCore�v� (co M de-
notes the convex hull of M ). De®ne now f : Rm

� ! R by f �x1; . . . ; xm� �
min�x1; . . . ; xm�. Let l A Core�v�, then by Theorem D, there exists p A
qf �m�T �� such that p � m�T � � v�T � and l � p � m. It is clear that pV 0 and
pi � 0 for every i in which mi�T � > v�T �. Therefore v�T � � v�T �Pm

i 1 pi.

Now if v�T � � 0 the result is trivial. If v�T � > 0 then
Pm

i 1 pi � 1 and thus
Core�v�H co M.

We consider now a pure exchange economy E in which the commodity
space is Rm

� . The traders' space is represented by a measure space �T ;S; m�,
where T is the set of traders and m is a non-atomic probability measure on
S. A coalition is a member of S. An assignment (of commodity bundles to
traders) is an integrable function x : T ! Rm

� . There is a ®xed initial assign-
ment o. (o�t� represents the initial bundle density of trader t). We assume that�

T
o dmg 0. Each trader t A T has a utility function ut : Rm

� ! R�.
We ®rst study the case in which all the traders in the economy E have

the same utility function u which is continuous, non-decreasing, concave and
homogeneous of degree one on Rm

� . The Aumann-Shapley-Shubik market
game which is associated with the economy E (see Section 30 of Chapter VI in
Aumann and Shapley (1974)) in this special case is de®ned by

v�S� � sup

��
S

u�x�t�� dm

���� x is an assignment such that�
S

x dm �
�

S

o dm

�
: �5:1�

Proposition 5.1. Assume that every trader in the economy E has the same utility
function u : Rm

� ! R� which is continuous, non-decreasing, concave, homoge-
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neous of degree one, and satis®es u�0� � 0. Let v be the market game which is
de®ned in (5.1). Then for every S A S we have v�S� � u��

S
o dm� and

Core�v� � p �
�

o dm

���� p A qu

�
T

o dm

� �� �
�5:2�

Proof: From the de®nition of v it is clear that for every S A S we have v�S�V
u��

S
o dm�. Let S A S. Since u is concave and homogeneous of degree one, by

Jensen's inequality, for every assignment x such that
�

S
x dm � �

S
o dm we

have
�

S
u�x� dmU u��

S
o dm�. Therefore v�S�U u��

S
o dm� and thus v�S� �

u��
S

o dm�. Now (5.2) follows from Theorem A and Theorem D. Q.E.D.

Note that since the function u of Proposition 5.1 is homogeneous of degree
one on Rm

� , every p A qu��
T

o dm� is a vector of competitive prices which cor-

responds to a transferable utility competitive equilibrium of the economy E
(see Section 32 on page 184 of Aumann and Shapley (1974)).

We now apply Theorems A and D to the case when the economy E has a
®nite number of types.

Two traders in the economy E are of the same type if they have identical
initial bundles and identical utility functions. We assume that the number of
di¨erent types of traders in E is ®nite and it will be denoted by n. For every
1U i U n we denote by Ti the set of traders of type i. We assume that Ti is
measurable and m�Ti� > 0. The utility function of the traders of type i will be
denoted by ui, and their initial bundle by oi. We assume that for every
1U i U n, ui is non-decreasing, concave, and continuous on Rm

� .
The Aumann-Shapley-Shubik market game (e.g., Shapley and Shubik

(1969) and Aumann and Shapley (1974)) which is associated with the econ-
omy E in the case of a ®nite number of types is

v�S� � sup

�Xn

i 1

�
S XTi

ui�x�t�� dm

���� x is an assignment such that�
S

x dm �
�

S

o dm

�
: �5:3�

De®ne now a function f : Rn
� �Rm

� ! R by

f �y; z� � max
Xn

i 1

yiui�xi�
���� xi A Rm

� ;
Xn

i 1

yixi U z

( )
: �5:4�

Then by Lemma 39.9 of Aumann and Shapley (1974), f is concave, non-

decreasing, and homogeneous of degree one on Rn
� �Rm

� .

Proposition 5.2. Let v be the market games which is given by (5.3). De®ne an
�n�m�-dimensional vector of non-atomic measures x on S by

x�S� � m�S XT1�; . . . ; m�S XTn�;
�

S

o dm

� �
:
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Let f be the function which is de®ned (5.4). Then v � f � x and

Core�v� � fp � x j p A q f �x�T ��g: �5:5�

Proof: By Lemma 39.16 of Aumann and Shapley (see also Lemma 4.6 in
Dubey and Neyman (1981)), for every S A S we have v�S� � f �x�S��. As we
noted, f is concave, non-decreasing, and homogeneous of degree one on Rn�m

�
(e.g., Lemma 39.9 of Aumann and Shapley (1974)). The concavity of f on
Rn�m
� implies that it is continuous on int Rn�m

� and in particular at x�T �,
therefore (5.5) follows from Theorem A and Theorem D and the homogeneity
of f . Q.E.D.
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