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ABSTRACT 
This work provides an exergy analysis of a moving bed heat 
exchanger to obtain for a range of incoming fluid flow rates the 
operational optimum and the incidence on it of the relevant 
parameters such as the dimensions of the exchanger, the 
particle diameter and the flow rate of the fluid. The MBHE 
proposed can be analyzed as a cross flow heat exchanger where 
one of the phases is a moving granular medium. In the present 
work the exergy analysis of the MBHE is carried out over 
operation data of the exchanger obtained in two ways: a 
numerical simulation of the steady state problem and the 
analytical solution of the simplified (avoiding conduction 
terms) equations. The numerical simulation is carried over the 
two steady energy equations (fluid and solid), involving for the 
solid the convection heat transfer to the fluid and the diffusion 
term in both directions, and for the fluid only the convection 
heat transfer to the solid. The analytical solution is the well-
known solution of the simplified problem neglecting 
conduction effects. 
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1. INTRODUCTION 
Moving Bed Heat Exchangers (MBHE, hereafter) are 

widely used in industry, on applications involving heat 
recovery (providing a high volumetric transfer area) and 
filtering (avoiding common operational problems in fixed bed 
or ceramic filters like the pressure drop increase during 
operation). 

One of the fundamental problems to be solved for the 
implementation of biomass gasification processes is the 
conditioning of the gas yield. When the gas yield is going to be 
used as syngas or in an integrated gasification and combined 
cycle (IGCC), a severe gas cleanup (tars, particles and alkalis) 
is needed. In the pressurized fluidized bed gasification case, 
filters prevent downstream erosion of the heat exchanger and 
the turbine whereas in the atmospheric case, filters could fulfill 
a multipurpose function, removing fine particles and cooling 
the gas yield. 

A thermal and exergy analysis of the heat exchanger have 
been performed on a Moving Bed Heat Exchanger (MBHE) 
similar to the one described in [1], to obtain, for a range of 
incoming fluid flow rates, the operational optimum and the 
incidence on it of the relevant parameters such as the 
dimensions of the exchanger, the particle diameter and the gas 
flow rate. In Figure 1 a schematic illustration of the MBHE is 
showed. 
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Fig. 1. Schematic of the granular bed heat exchanger 

 
The concept of exergy analysis of fluid flow and heat 

transfer is a powerful tool for optimization when analyzing 
engineering problems. Since entropy generation destroys the 
exergy of a system, it makes good engineering sense to focus 
on irreversibility of heat transfer and fluid flow processes to 
understand the associated exergy destruction mechanisms. The 
literature on the topic is rich for clear fluids through 
unobstructed ducts, but modeling entropy generation in a 
porous media is more complex than the clear fluid case because 
of the increased number of variables that appear in the 
governing equations [2]. This is the procedure chosen in this 
paper to optimize the design of a moving bed heat exchanger. 

2. HEAT TRANSFER ANALYSIS 
We will firstly address the analysis of the heat transfer in 

the moving bed and then consider a more general exergy 
analysis.  

Assuming plug flow for both phases, the energy equations 
can be written as: 
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 where the transient and convective terms for each phase 
balance with heat transferred by conduction through the same 
phase and convection between phases, heat losses with the 
surroundings and radiation. These general equations can be 
simplified for most cases neglecting radiation and heat losses to 
the surroundings. The present study has been carried out 
considering a gas (not a liquid) as fluid, so the conductivity in 
the fluid equation can be neglected [1]. Also, uf » vf , wf and vp 
» up , wp can be assumed. Considering steady state and 
neglecting three dimensional effects, the energy equations 
become: 
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or, in compact form: 
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Equation (3) can be written in non-dimensional form: 
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In a moving bed heat exchanger θ and T will have values 
between 0 and 1, but this may not be the case for the rest of the 
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non-dimensional coordinates and parameters. Thus, some 
insight is needed. We will consider as nominal conditions for 
our study the moving bed heat exchanger defined in [3], which 
is a representative one. The fluid is air and the particles are 
spheres of carbon steel with a diameter of 1mm (mono-
dispersed). The dimensions are 0.15m in the direction of the air 
flow and 0.5m in the direction of the particle motion. The inlet 
fluid and particle velocities are 3m/hr and 1.5m/s respectively.  

We should also estimate the conduction and convection 
coefficients. Following [4], the effective conductivity of the 
moving bed without flow, kpx, can be obtained from [5] while 
the conductivity in the transverse direction, kpy, can be obtained 
using the equation proposed by [6]. The convection coefficient 
can be estimated using the following expression for the Nusselt 
number, as obtained by [7] 
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For the nominal conditions, the limit values of the non 
dimensional coordinates ξ and η are: 
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and the non-dimensional conductivities (K) will be in the 1-100 
domain. 

We will first analyze the nominal case, defined by these 
values of the non-dimensional parameters. However, other 
cases will be presented along the article, considering variations 
of the dimensions of the exchanger and several inlet velocities 
and particle diameters. 

Equations (4) can be solved numerically with the proper 
boundary conditions. Also, an analytical solution can be 
obtained if the conduction terms are neglected in comparison 
with convection. For the simplified problem, two boundary 
conditions are needed and five if conduction effects are 
considered. Two conditions are straightforward: the inlet 
temperatures of particles and fluid are known. This is shown in  
Table 1 a) for the general case, [4] analyzed a similar problem 
and obtained the optimum boundary conditions presented in 
Table 1 b).  

Note that the inlet temperature condition for the particles is 
not present in the general case, as conduction effects will 
transfer heat upstream from the inlet, affecting the temperatures 
outside the heat exchanger. Thus, the particles temperature will 
only be θ0 far upstream from the exchanger inlet section. 
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a) boundary conditions for the simplified case (no conduction 
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b) boundary conditions for the general case 

Table 1. Boundary conditions 
 

2.1. Analytical Solution 
The values of the non-dimensional conductivities suggest 

that, the conduction terms have a rather small effect in the heat 
exchanger if the heat exchange region is not restricted to a very 
narrow zone in the MBHE. Disregarding such effect, equations 
(4) become: 
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With such conditions, fluid and particle temperature have 
the analytical solution [8]: 
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The calculation of these temperatures has the problem of 
the rather large summation for large values of the coordinates ξ 
and η. This implies high computational costs. The maximum 
value of the summation must be larger that 1.5 times the value 
of ξ and η to ensure a good approximation. Lower values will 
result in temperature profiles that will not even fulfill the 
boundary conditions.  

The results are shown in figures 2 to 5. Figure 2 shows the 
isothermal lines for fluid and particles inside the MBHE. In 
these graphs we are keeping the x-y (ξ-η) axis directions as 
shown in figure 1 for clarity purposes. Hot inlet fluid, moving 
from left to right, exchanges heat with the cold inlet particles, 
which moving from top to bottom. The temperature change is 
obtained in a narrow zone around the diagonal of the graph and 
it is odd that, apart from this small zone, both particles and 
fluid develop isothermally.
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Fig. 2. Fluid and particle isotherms 

From these two graphs it is difficult to observe the 
temperature differences between fluid and particles, which 
define the heat exchange zone. Therefore the temperature 
differences are plotted in Figure 3. Maximum temperature 
differences are of order 10-1-10-2 (being the maximum 
temperature change 1) and are restricted to a ±30 (ξ and η) 
zone, representing less than 15% of the heat exchanger volume. 

 
Fig. 3. Fluid and particle temperature difference 

The two graphs of figure 2 and figure 3 give a lot of 
information on the thermal behaviour of the heat exchanger. 
Note that ξ and η are non dimensional spatial coordinates, but 
vary with design parameters such as dimensions, mass flow or 
particle diameter. We will now proceed to study this in deep. 
Figure 4 shows the outlet temperature profiles for four heat 
exchangers with different dimensions (length and height). It 
can be seen that a reasonable heat exchanger must have similar 
values for ξ and η (cases a and d). When values of ξ and η are 
different (cases b and c), some part of the fluid (zone A in 
graph b) or particles (zone B in graph c) leave the regenerator 
with their inlet temperature, without any heat exchange. Their 
contribution is therefore negligible and the heat exchanger 
dimensions can be modified becoming ξ = η = 
min(ξoriginal,ηoriginal) with negligible heat exchanging effects and 
important economic gains. 

 
a) 300x300 heat exchanger 

 
b) 300x500 heat exchanger 

  
c) 500x300 heat exchanger 

 
d) 500x500 heat exchanger 

Fig. 4. Inlet (··) and outlet (-) temperature profiles
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Fig. 5. Outlet temperature profiles for ξ = η = 10, 20, 30, 40, 50, 100, 200, 300, 400, 500. 

For heat exchangers of aspect ratio ξ=η, figure 5 shows the 
differences in the outlet temperature profile for different ξ and 
η pairs. Logically when ξ and η increase there is an 
improvement in the outlet temperature profile, but this 
improvement is small and negligible for high values of ξ and η. 
Thus, heat exchangers of ξ=η larger than 200 results in larger 
investments with almost equal outlet mean temperature, and 
therefore negligible efficiency variation. Larger equipments 
may only be used if larger mass flows are needed. This can also 
be attained by increasing the exchanger width, but it will 
proportionally increase both mass flows, while increasing ξ, η 
may result in a non proportional increase of each mass flow. 
Using both parameters the two mass flows can be 
independently tuned. 

Going back to the definitions of the non-dimensional 
parameters in equations (5), it can be shown that equal values 
for ξ and η means that both flows, fluid and particles, have the 
same calorific capacity. This also means that for a steady flow 
there is an optimal length of the regenerator for a given 
velocity of the particles. This optimal length can be obtained 
from: 
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which is basically a reformulation of the ξ(L) = η(H) equation. 

 

Fig. 6. Optimal thermal length 
Figure 6 shows this optimal thermal length of the heat 
exchanger as a function of the fluid mass flow and the particle 
velocity. Note that these two last parameters are also design 
parameters for the exchanger. 

The non-dimensional analysis gives a very compact 
solution to the problem, but has the drawback that a ξ, η pair 
represents a variety of heat exchangers which are physically 
very different. Restore now the problem to the dimensional 
domain in order to study the influence of the convection 
coefficient on the heat exchange. 

Figure 7 shows the isothermal lines for fluid (a) and 
particles (b), for MBHE with convection coefficients of 460 
W/m·K (1) and 260 W/m·K (2). The narrow zone in which 
temperature changes become wider when the convection 
coefficient is reduced. The same effect will appear if the 
MBHE length and height are reduced keeping the rest of 
parameters constant.   

 
2.1. Numerical Solution 
The effect of the solid thermal conductivity shown in equation 
(4) has been neglected in order to obtain the analytical solution. 
Nevertheless, the conductivity in the particle equation may 
have an important effect, especially for low Reynolds number 
[1]. The effective conductivities of the moving bed were 
estimated as was mentioned above and the non-dimensional 
boundary conditions are shown in table 1. 

The differential equation system (4) was solved 
numerically using a finite differences technique. The elliptic 
character of the system was transform into parabolic adding a 
temporal derivate into the solid equation. The equation system 
was solved explicitly in time imposing the solution without 
conduction as initial solution. The first derivatives were 
discretized using an up-wind scheme and the second 
derivatives using central differences (see Appendix A).  

Graphs a) and b) in figure 8 show the non-dimensional 
temperature profiles for the fluid and solid for the nominal 
case. Both profiles look quite similar, as was also the case in 
the simplified analytical study. The effect of the boundary 
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conditions can be seen in the region close to ξ = η = 0, where the lines are distorting in order to fulfill the boundary condition 

 

 
Fig. 7. Influence of the convection coefficient over the heat exchange (a: Fluid Temperature, b: Particles Temperature, 1: hp = 460 

W/m2K, 2: hp = 260 W/m2K). 

 
a) fluid       b) particles 

Fig. 8. Non-dimensional temperature profiles including conduction effects. Nominal case, with Kξ = 4.15 and Kη = 51.12 
of constant gas temperature in ξ = 0. In contrast, the boundary 
condition for the solid inlet temperature at η = 0 includes the 
effect of Kη. That is the reason why the temperature profiles are 
not symmetric with respect to the diagonal in that zone.  

The region of the heat exchanger where the heat transfer 
occurs is wider when the conductivities Kξ and Kη are taken 

into account than when they are neglected (see figure 2). 
Nevertheless, this effect only occurs where temperature 
gradients are important. Far away from the central region of the 
moving bed both temperatures are uniform and equal, so any 
heat transfer mechanism is negligible. Figure 9 shows a 
comparison of the temperature profiles in the nominal case 
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including or neglecting heat conduction (numerical or 
analytical solution respectively). The temperature profiles are 
taken in the second diagonal of the exchanger, which goes from 
(ξ = 0, η = ηmax) to (ξ = ξmax, η = 0). The particle conductivities 
smooth the slope in the region where heat transfer occurs. 
When the solid phase conductivity is included in the analysis 
the heat is transferred, not only from the fluid to the solid, but 
also by diffusion in the solid phase when solid temperature 
gradients are important. This effect is particularly important in 
zones adjacent to the convection heat transfer region. 

 
Fig. 9. Cross section of the non-dimensional solid temperature 

obtained from figures 8 (-) and 2 (--) 
Although the conduction heat exchange has visible effect 

on the temperature changes zone, the influence on the outlet 
temperatures is small for well-designed MBHE. Thus, the 
general performance of the MBHE can be described in first 
approximation with the analytical solution. 

 
2. EXERGY ANALYSIS 

An exergy optimization analysis was performed in order to 
get more insight of the optimal design of the MBHE. The 
exergy balance gives the exergy destruction as: 
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where     and     are the mean outlet temperatures of the fluid 
and the particles, which can either be calculated from the 
analytical solution or estimated from the numerical solution. 
The pressure drop was estimated by the Ergun correlation. 
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The mean outlet temperatures of the fluid and the particles 
can be calculated from equations (10) 
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and the following analytical solution can be obtained: 
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The dimensional temperatures     and     can be obtained 
from these expressions using equations (5). 

Computing the mean outlet temperatures has a higher 
computational cost than computing the temperatures because 
there are one more summation. Nevertheless, with some 
refining this calculation can be performed in an average PC in 
several hours. 

We will now study the variations of the exergy destruction 
with the MBHE length and the particle diameter, for a given 
fluid mass flow. This will lead to an optimal length and 
diameter from the exergy point of view. The fluid mass flow 
can be obtained for different pairs of fluid velocities and 
MBHE heights (as the mass flow is proportional to the product 
of fluid velocity and bed height). Thus, we will fix the mass 
flow and the fluid velocity as parameters in our calculation. 
This second parameter, obviously, will have an important effect 
in the pressure drop. 

We will first address the nominal case. Figure 10 shows 
the exergy destruction contour lines for this case, which has a 
fluid mass flow of 0.3 kg/m·s and a fluid interstitial velocity of 
1.5 m/s (this locks the MBHE height to 0.5 m). A minimum 
exergy destruction of 380.1 W was obtained for a MBHE of 
0.139 m length operating with particles of 3.4 mm diameter. 
Note that the optimal length is almost constant for a wide range 
of diameters. This length is very similar to the optimal thermal 
length obtained from equation (11). 

 
Fig. 10. Exergy destruction as a function of exchanger length 

and particle diameter for the nominal case 
From equation (12) the exergy destruction can be divided 

into two components, the thermal effect, with contributions of 
both fluid and particle temperature profiles and the fluid 
pressure drop effect. Those two components are showed in the 
two graphs of figure 11 for the same case depicted in figure 10. 
The exergy destruction because of the pressure drop is higher 
for larger regenerators and smaller particles, while the exergy 
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destruction because of heat exchange has a minimum value for 
the smallest particle diameter and the optimal thermal length (L 
= 0.1421 m in this case) is independent of the particle diameter. 

The thermal effect is generally more relevant than the pressure 
effect, except for very small diameters and extremely large 
regenerators.

 
a) pressure drop      b) heat transfer 

Fig. 11. Pressure drop and heat transfer components of exergy destruction 

   
a)       b)  

Fig. 12. Exergy destruction as a function of a) MBHE length for the optimal particle diameter, and b) particle diameter for the optimal 
MBHE length. 

As a first conclusion, one can see that the optimal exergy 
length is characterized by the heat transfer, while the optimal 
diameter is a compromise between low exergy destruction 
because of heat transfer and high exergy destruction because of 
pressure drop at small diameters. And in the same manner the 
optimal exergy length is a compromise between high exergy 
destruction because of heat transfer and low exergy destruction 
because of pressure drop at large diameters. 

Then, because of the heat exchange effect, optimal length 
are independent of the diameter in a wide range, it is interesting 
to study the effect of the MBHE length and the particle 
diameter on the exergy destruction separately. Figure 12 shows 
the exergy destruction as a function of the MBHE length for 
the optimal particle diameter, and as a function of the particle 
diameter for the optimal MBHE length. The minimum of 

exergy destruction in both graphs is shown by an x. Thermal 
and pressure components are shown in the graphs. 

Graph 12 a) shows a clear minimum directly related to 
thermal effects. The pressure drop effect is increasing linearly 
with length, as stated in Ergun equation (13) and is of small 
relevance compared with the thermal contribution to exergy 
destruction. We will later return to this thermal contribution to 
study the shape of the curve. Graph 12 b) shows an important 
effect of pressure drop for small particle diameters and 
negligible effect for large particle diameters (note that this 
graph is made for constant velocity and length). Heat transfer 
shows a small effect but increases with diameter. The global 
result is a plateau for medium and large diameters where the 
optimal diameter is not well defined in contraposition to the 
optimal length. 
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This exergy optimization analysis was done for several 
fluid mass flows, and several values for the fluid interstitial 
velocity. The exergy destruction contour lines are shown in 

figure 13. The nominal case presented before is highlighted 
with a contour. 

 
a) Fluid velocity 1 m/s, Fluid Mass Flow 0.1, 0.3, 0.5 kg/m·s. 

 
b) Fluid velocity 1,5 m/s, Fluid Mass Flow 0.1, 0.3, 0.5 kg/m·s. 

 
c) Fluid velocity 2 m/s, Fluid Mass Flow 0.1, 0.3, 0.5 kg/m·s. 

 
d) Fluid velocity 2.5 m/s, Fluid Mass Flow 0.1, 0.3, 0.5 kg/m·s. 

 
e) Fluid velocity 3 m/s, Fluid Mass Flow 0.1, 0.3, 0.5 kg/m·s. 
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Fig. 13. Exergy destruction contour lines for different values of fluid mass flow and fluid velocity. 

  
a) mass flow effect   b) fluid velocity effect  
Fig. 14. Exergy Optimal Length (for particles velocity of 3 m/hr). 

The results presented in figure 13 show that the general 
behavior presented for the nominal case is global. Optimal 
lengths depends only on the mass flow and, except for very 
small particles, are not affected by particle diameters or fluid 
velocities in the range studied here. The optimal diameter 
increases both with fluid mass flow and fluid velocity. 

Figure 14 shows the exergy optimal length obtained from 
the data shown in figure 13. In Graph 14 a) a comparison with 
the thermal optimal length obtained from (11) and presented in 
figure 6 is done. It shows that the exergy optimal length is 
mainly defined by thermal effects. The deviation between the 
optimal lengths obtained by thermal or exergy considerations is 
shown as a function of the fluid mass flow and velocity. Small 
deviations appear for large mass flows, mainly because of 
pressure drop effects, but might be considered negligible in our 
analysis range. The fluid velocity dependence is more clearly 
shown in Graph 14 b). A slight non-linear effect of the fluid 
velocity exists, becoming more important for larger mass flows. 
This change is again mainly because of pressure drop effects. 

Figure 15 shows the optimal particle diameter dependence 
on fluid mass flow and velocity. The optimal particle diameter 
increases with fluid mass flow and velocity. The influence of 
the fluid velocity is more important with high mass flows. 
When the fluid velocity is high, the optimal particle diameter 
increases quickly because of the pressure drop. The physical 
origin of the optimal diameter tendency shown in this figure is 
probably less clear than that of the optimal length, which could 
be related directly to thermal effects. For the diameters, both 
thermal and pressure effects are coupled as was shown in figure 
12 b)., The results shown in figure 15 allows us to think that 
the pressure drop effect dominates, defining the tendency of 
increasing optimal diameters with mass flow and fluid velocity. 
Nevertheless, this behavior has to be considered carefully, as 
the range of diameters with almost equal exergy destructions is 

wide, as was seen in figure 12 b) and is probably easy to 
perceive in the graphs of figure 13. 

 
Fig. 15. Optimal Particle Diameter 

Up to this stage nothing has been said about actual values 
of the exergy destruction and how it varies for the different 
minima. This is shown in figure 16. The exergy destruction 
increases (almost linearly) with fluid mass flow and also with 
fluid velocity. This last relation seems to saturate for large fluid 
velocities, implying that the increase of exergy destruction as a 
consequence of the increase of the pressure drop is 
compensated with a better heat transfer efficiency. 
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Fig. 16. Minimum Exergy Destruction. 

The influence of the heat exchanger length on the exergy 
destruction can be analyzed for the optimal particle diameter 
and the nominal fluid mass flow (0.3 kg/m·s). The results are 
shown in figure 17 as a function of MBHE length and fluid 
velocity. The exergy destruction increases with heat exchanger 
length until a relative maximum, then decreases to a minimum 
and, finally continues to increase monotonely. The minimum 
shows the exergy optimal length. The increase of the fluid 
velocity is unimportant for low lengths, but becomes extremely 
relevant at the optimal length. Here, both thermal and pressure 
drop effects are present. For larger lengths, the thermal effect 
disappears.  

 

Fig. 17. Exergy destruction as a function of length and fluid 
velocity. 

The relative effects of pressure drop and heat transfer 
effects can be more clearly assessed in figure 18, where the 
variation of the exergy destruction with the MBHE length and 
fluid velocity is divided into its two components. 

The pressure drop effect produces a continuous increase of 
the exergy destruction with fluid velocity and heat exchanger 
length. The heat transfer effect on exergy destruction is more 
complex. To analyze it, a simple model considering an 
infinitely rapid process of heat transfer is developed. In such a 
case the narrow zone in which the temperature changes 
becomes infinitely thin and the heat exchanger is divided in 
two parts by a diagonal. In one part, both fluid and particles 
temperatures are 0 and in the other 1. The exergy destruction of 
thermal origin as a function of length for such a condition is 
shown in figure 19. In this case the particle diameter was kept 
constant and equal to its minimum value, which is the optimal 
one from a thermal point of view as it is shown in figure 11 b). 

Two conclusions can be obtained from figure 19. First, the 
thermal effect behaviour with length is perfectly defined by the 
model. Therefore, it is a consequence of alterations of the outlet 
temperature profile as those shown in figure 4, defining heat 
exchangers with useless zones (except for L = Lopt). Secondly, 
around the optimal length, the model does not predict the 
exergy destruction, as this is mainly a consequence of how 
narrow the heat transfer zone is. Here, the fluid velocity acts in 
two ways. An increase of fluid velocity increases the 
convection 

 
Fig. 18. Pressure drop (left) and heat exchange (right) effects over the exergy destruction. 
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Fig. 19. Effect of fluid velocity on the destruction of exergy of thermal origin. 

coefficient, thus improving the heat transfer mechanism. On the 
other hand, an increase of the fluid velocity decreases the 
residence time of the fluid. This second effect is linear, but not 
the first one. As a result, increasing the fluid velocity will 
produce a worsening of the heat transfer effect and an increase 
of the exergy destruction. This effect is clearly shown in the 
zoom of Graph 19 (right). 

Note that the MBHE results of figure 18 b) and 19 are not 
the same. Both figures show the exergy destruction of thermal 
origin, but the results in figure 18 b) are for the optimal particle 
diameter from the exergy point of view, while in figure 19 we 
have plot the results for the thermal optimal diameter. The 
thermal optimal diameter is set at the minimum diameter 
(figure 11 b)) independently of fluid mass flow and velocity, 
while the exergy optimal diameter increases with both 
parameters (figure 15). Then, the effect shown in figures 18 b) 
has the influence of both a higher velocity and a higher 
diameter, however the results of figure 19 shows only the 
influence of the fluid velocity around the minimum value of the 
exergy destruction. 

 
3. CONCLUSIONS 

 
A heat transfer and exergy analysis of a MBHE was 

performed, considering variations of the main parameters of the 
problem, including the MBHE dimensions, the fluid mass flow, 
and the fluid velocity. 

The general problem is addressed and simplified for a gas-
solid MBHE. A numerical solution of the problem is given; also 
an analytical solution is obtained neglecting conduction terms.  

The analytical solution of the problem serves as an easy 
tool for the design of reasonable MBHEs from a thermal point 
of view. The conduction heat transfer was considered for the 
numerical solution. The thermal conductivity has an influence 
on the width of the zone where temperature changes, which 
becomes wider for both fluid and particles when the conduction 
effects are considered. This effect of the conduction heat 
transfer is similar to the one obtained when the convection 
coefficient increases. Nevertheless, both effects have minor 
influence on outlet conditions, and the performance of the 
MBHE for well-designed systems. 

The exergy analysis considers the heat transfer, but also the 
effect of the pressure drop. In this case the optimal length is not 
only a function of the fluid mass flow like it was in the thermal 
analysis. From the exergy point of view, the optimal length is 
obtained by a compromise between the heat transfer (which 
depends mainly on the fluid mass flow) and the pressure drop 
(which depends mainly on the fluid velocity and the particle 
diameter). 

The exergy optimal length is always smaller than the 
thermal one because of the pressure drop, but the differences 
between both optimal lengths are small for typical values of 
fluid mass flow and velocity. An increase of the fluid velocity 
produces a decrease of the exergy optimal length, and the effect 
is sharper for higher values of the fluid mass flow. Therefore, 
applications in which both fluid mass flow and velocity are 
low, could be studied from the thermal point of view with small 
deviations, but when the fluid mass flow and velocity becomes 
higher the effect of the pressure drop must be taken into 
account, and the design must consider the exergy point of view. 

The particle diameter is of prior importance for pressure 
drop, so optimal results are very different considering the 
thermal or the exergy point of view. In the thermal sense, 
smaller diameters are optimal while considering an exergy 
analysis, larger diameters are chosen.  

The exergy optimal particle diameter increases with the 
fluid velocity. This increase is sharper for higher values of the 
fluid mass flow. Nevertheless, the influence of the optimal 
length on the exergy destruction is more important than that of 
the optimal particle diameter.  

APENDIX A 
The governing equations were solved numerically adding a 

time derivate to the solid equation and advancing in time 
explicitly from an initial solution. This initial solution was the 
temperature maps without conduction. So, the numerical 
schemes for the time k are: 
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The non-dimensional solid temperature in time k+1 was 
obtained from the solution in time k from the following 
equation: 
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and then, the non-dimensional gas temperature in k+1 was 
obtained from: 
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