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Abstract. This paper describes a decomposition methodology applied to the multi-area optimal power fiow 
problem in the context of an electric energy system. The proposed procedure is simple and efficient, and 
presents sorne advantages with respect to other common decomposition techniques such as Lagrangian re­
laxation and augmented Lagrangian decomposition. The application to the multi-area optimal power fiow 
problem allows the computation of an optimal coordinated but decentralized solution. The proposed method 
is appropriate for an Independent System Operator in charge of the electric energy system technical oper­
ation. Convergence properties of the proposed decomposition algorithm are described and related to the 
physical coupling between the areas. Theoretical and numerical results show that the proposed decentralized 
methodology has a lower computational cost than other decomposition techniques, and in large large-scale 
cases even lower than a centralized approach. 
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Introduction 

In this paper, a decomposition procedure is described and applied to a multi -area Optimal 
Power Flow (OPF) problem in the context of an electric energy system that spans several 
interconnected areas. It is often desirable to preserve the autonomy of each area in 
these systems. A decentralized operation can be preserved while still attaining overall 
optimality by applying decomposition techniques to a centralized operation problem. 

Decomposition techniques have often been used in the solution of many operations 
and planning problems with the aboye aim. Also, the application of these techniques 
may provide potential gains in computational efficiency and useful information as part 
of the decomposition process. 

The multi-area OPF problem is an important problem for the secure and economic 
operation of an interconnected power system. The multi-area OPF determines, in a 
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precise way, the active and reactive power that each generation unit in the system must 
generate. This is done to ensure that all demand and security constraints for the system 
are satisfied at a minimal cost for all interconnected areas. The resulting multi-area OPF 
problem is a large-scale nonconvex optimization problem [12,21]. 

The decomposition methodology proposed in this paper is simple and efficient. 
The procedure allows the company in each area to operate its system independentiy 
of the other areas, while obtaining an optimal coordinated but decentralized solution. 
A central agent in the model is necessary to collect and distribute information for the 
whole system. This agent ensures the coordination of the global system and therefore, 
the proposed methodology is appropriate for an Independent System Operator (ISO) in 
charge of the e1ectric energy system technical operation. 

The local convergence properties of the proposed algorithm depend on the spectral 
radius of a matrix related to the Newton matrix of the global system. If this spectral 
radius is smaller than one, local convergence is guaranteed. In many practical cases this 
condition is satisfied. However, if it is not, local convergence can be guaranteed using 
conjugate gradient techniques, see [10]. 

Several other decomposition techniques, such as Lagrangian relaxation [3,13,16], 
and relaxation techniques based on augmented Lagrangian functions [5,6,17], have been 
proposed for the solution of similar problems. Particularly remarkable is the theoretical 
decomposition framework based on the auxiliary problem principIe ana1yzed in [6-8]. 
An application ofLagrangian relaxation to solve a multi-area OPF is described in [1,9], 
while in [2,14] an augmented Lagrangian relaxation procedure is used to sol ve a dis­
tributed OPF. In sorne cases, Lagrangian procedures may present drawbacks, such as 
difficulties to converge to an optimal solution for the global system (in the absence of 
convexity assumptions), and convergence rates that depend on the correct choice of the 
values for several parameters which may be difficult to update, and require the interven­
tion of a central agent to update this information. 

The proposed decomposition algorithm presents the following advantages: 

1. A coordinated solution of the global problem is achieved in a decentralized manner. 
The coupling of the system is obtained through the Lagrange multipliers associ­
ated with certain constraints. However, the proposed technique is essentially dif­
ferent than Lagrangian decomposition techniques. In the proposed procedure, the 
Lagrange multipliers do not need to be estimated (as in most common Lagrangian 
relaxation approaches), because the proposed method provides efficient information 
to update these multipliers. 

2. Computational efficiency is improved. In the proposed decomposition algorithm, 
an exact solution of each subproblem is not required in every iteration. The results 
from a single iteration of each subproblem are enough, resulting in considerable 
savings in computing time. 

3. The implementation is simple and robusto The procedure generates subproblems that 
are slightiy modified versions of the optimization problems for each area. AIso, the 
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algorithm requires very few parameters, and their updating procedures are clearly 
specified. 

4. The solution process is simple. The central agent does no need to update any infor­
mation, only to distribute it. This information is updated by the different areas of 
the system. 

5. It can be implemented in a distributed computation environment, given its reduced 
requirements for information exchanges between areas. 

The advantages of the proposed decomposition technique with respect to La­
grangian relaxation and augmented Lagrangian decomposition are mainly two: 

1. The proposed technique does not need to solve subproblems until optimality in very 
iteration and this results in relevant computational savings. On the contrary, most 
common Lagrangian procedures applied to practical problems do need to solve the 
subproblems until optimality in order to obtain multipliers updates. 

2. In the proposed technique, the coordinator does not update information but collects 
and distributes it. On the contrary, the coordinator in most common Lagrangian 
procedures applied to practical problems, does need to update information. 

The remaining of the paper is organized as follows. In section 1, a mathematical 
formulation of the multi-area OPF model is given. Section 2 describes the proposed 
decomposition methodology and shows its convergence properties. Section 3 presents 
computational results, and section 4 provides sorne conclusions. Finally, an appendix 
shows a simple example that illustrates the main ideas behind the proposed procedure. 

1. Problem formulation 

The model for the multi-area OPF problem is described below. The notation used in the 
model is: 

A 
B 
G 
L 
Aj 
Qj 

e 
Yjk 

8jk 

PG¡ 

qG¡ 

Vj 

ej 
pmax pmin 

G¡ , G¡ 

total number of areas, 
total number of buses, 
total number of generators, 
total number of transmission lines, 
set of indices of generators in bus j, 
set of indices of buses connected to bus j, 
set of indices of transmission lines, 
admittance magnitude matrix, 
admittance phase matrix, 
active power produced by generator i, 
reactive power produced by generator i, 
voltage magnitude in bus j, 
voltage phase in bus j, 
maximum and minimum active power production capacity of 

generator i, 
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Q max Qmin 
G¡' G¡ 

v~ax V~in 
] ' ] 

PDj 

QDj 

Smax 
jk 

maximum and minimum reactive power production capacity of 
generator i, 

maximum and minimum voltage magnitude in bus j, 
active power demand in bus j, 
reactive power demand in bus j, 
maximum transmission capacity of line j k. 

The multi-area OPF model can be formulated as 

minimize f(PG, qG, v, e) 

subject to aj(PG, v, e) = 0, 
rj(qG, v, e) = 0, 
tj(V, e) ~ 0, 
P min,;:: ,;:: p max 

G¡ '" PG¡ '" G¡ , 

Q min,;:: ,;:: Qmax 
G¡ '" qG¡ '" G¡' 

V min ./ V . ./ V max 
j """ ] """ j , 

-Jt ~ ej ~ Jt, 

j = 1, ... , B, 
j = 1, ... , B, 
j = 1, ... ,L, 
i = 1, ... , G, 

i = 1, ... , G, 

j = 1, ... , B, 
j = 1, ... , B. 

(1) 
(2) 
(3) 

(4) 
(5) 

(6) 

(7) 

(8) 

Function (1) is the objective function. Different objective functions may be of 
interest for an ISO, such as: total system operation cost, total power transmission losses, 
total system emissions, congestion clearance, or the achievement of a fe asible solution, 
for example. 

The power fiow equations are included in the model as constraints (2), (3); there 
are two equations for each bus of the global system, representing the active and reactive 
power balance in each node, 

L p~¡ - P'¿j = vi L Y'/kvf cos(e,/ - ef - 8ik)' j = 1, ... , Na, (9) 

where a = 1, ... , A, and the superscripts a indicate the area for each constant and 
variable. 

Constraints (4) are the transmission capacity limits for each line of the global sys-
tem, 

(vivfY'/kCOS(e,/ -ef -8ik))2+ (vivfY'/ksin(e,/ -e: -8ik))2 ~ (Sj1ax)2, 

(j,k) Eea
, a=I, ... ,A. (11) 

Constraints (5)-(8) represent technicallimits over variables. Model (1)-(8) can be writ­
ten in compact form as 

A 

minimize L fa (Xa) 
a=! 

(12) 
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subject to ha(XI, ... , xa) :::;: 0, a = 1, ... , A, 
ga(xa) :::;: 0, a = 1, ... , A, 

(13) 
(14) 

where Xa are the state variables for each area a of the global system, that contain bus volt­
age magnitudes and bus phase angles. In addition, Xa also contains information on the 
control variables for area a, such as real and reactive power generation, phase-shifter an­
gles, voltage control settings and transformer taps settings, for example. Constraints (13) 
represent the power fiow equations and transmission capacity limits (9)-(11) for those 
lines and buses interconnecting different areas. Constraints (14) include the power fiow 
equations and transmission capacity limits (9)-(11), only for those lines and buses lying 
within a given area, and limits over dependent and control variables (5)-(8). It should 
be noted that the sets of constrains (13) and (14) represent both equality and inequality 
constraints. 

The multi-area OPF model (12)-(14) is a nonconvex large-scale optimization prob­
lem. Constrains (13) are commonly known as complicating constraints. These equations 
contain variables from different areas and prevent each system from operating indepen­
dentiy from the others. If these equations are removed from problem (12)-(14), the 
resulting problem can be trivially decomposed into one subproblem for each area. 

The complicating constraints (13) include the power balance equations at the in­
terconnecting buses of area a (the buses from area a connected to buses from areas b 
different than area a). Also, the transmission capacity limits for the interconnecting 
lines of the global system are complicating constraints. It should be noted that, the 
only variables appearing in the complicating constraints are those corresponding to the 
interconnecting buses of the global system. 

Constrains (14) contain only variables belonging to area a for a = 1, ... , A. These 
constraints represent balance equations, transmission limits, and technical constraints for 
area a. 

The proposed decomposition is as follows. Problem (12)-(14) is equivalent to the 
problem below 

A A 

minimize L !a(xa) + L A~ha(XI, ... , XA) 
a=1 a=1 

subject to ha (XI, ... ,Xa) :::;: 0, a = 1, ... ,A, 
ga (Xa) :::;: 0, a = 1, ... , A. 

(15) 

(16) 

(17) 

Given trial values to all variables and multipliers (indicated by overlining) different 
than those in area a, problem (15)-(17) reduces to 

A A 

minimize k + L !a(xa) + L J..Ihb(XI, ... , Xa-I, Xa, Xa+l, ... , XA) (18) 
a=1 b=l,b#a 

subject to ha(XI, ... , Xa-I, Xa, Xa+l, ... , XA) :::;: 0, (19) 
ga(xa) :::;: 0, (20) 

where k = L:=I,b#a !b(Xb) is a constant. 
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The dual variable vector corresponding to constraint (19) is denoted by Aa. 
The reduced problem (18)-(20) can be obtained for every area. The proposed de­

composition technique is actually based on the solutions of these reduced area problems. 

2. Proposed decomposition methodology 

2.1. Decomposition derivation 

The proposed method is based on the decomposition of the optimality conditions for 
the global problem (12)-(14), see [3]. Note that from standard optimization theory, the 
first-order optimality conditions for problem (12)-(14) are: 

A 

\1xa fa(x;) + L \1;a ha (x:, ... , X~)A~ + \1;aga(X~)(}; = 0, a = 1, ... , A, (21) 
a=! 

ha(x:, ... , x~) :S; 0, a = 1, ... ,A, (22) 

ha(x;)TA~ = 0, a = 1, ... , A, (23) 

A~ ;?: 0, a = 1, ... ,A, (24) 

ga (x;) :S; 0, a = 1, ... ,A, (25) 

ga(x;)T(}; = 0, a = 1, ... , A, (26) 

(); ;?: 0, a = 1, ... ,A. (27) 

These conditions have been constructed using the optimal values x;, A~ and (); that 
are assumed known. The values A~ are the optimal Lagrange multipliers associated with 
constrains (13) and the values (); are the optimal Lagrange multipliers associated with 
constrains (14). 

For convenience, the area reduced subproblem (18)-(20) is restated below for op­
timal values x;, A ~ and ();: 

where 

A 

minimize fa (Xa) + L A~Thb(Xa) 

subject to ha(xa):s; 0, 

ga (Xa) :S; 0, 

(28) 

(29) 

(30) 

If the first-order optimality conditions of every area reduced subproblem (28)-(30) 
(a = 1, ... , A) are stucked together, it can be observed that they are identical to the 
first-order optimality conditions (21)-(27) ofthe global problem (12)-(14). It should be 
emphasized that this is a relevant result that is exploited in the algorithm below. 
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As previously stated, area subproblem (28)-(30) is obtained relaxing aH the com­
plicating constraints of others areas (Le. adding them to the objective function of prob­
lem (12)-(14)) and maintaining its own complicating constraints. The reduction is 
possible once the optimization variables are given trial values. The main difference 
between the Lagrangian relaxation algorithm and the proposed decomposition one is 
that Lagrangian relaxation adds aH the complicating constraints into the objective func­
tion. Therefore it needs auxiliary procedures to update the Lagrange multipliers. On 
the contrary, the proposed technique does not need any procedure to update the mul­
tipliers because this updating is automatic and results from keeping the complicating 
constraints (29) in every area subproblem. 

The proposed approach has the advantage that convergence properties do not re­
quire an optimal solution of the subproblems at each iteration of the algorithm. It is 
enough to perform a single iteration for each subproblem, and then to update variable 
values. As a consequence, computation times can be significantly reduced with respect 
to other methods that require the computation of the optimum for the subproblems in 
order to attain convergen ce. 

The coordination of the global system to ensure the satisfaction of the complicating 
constraints is achieved through the Lagrange multipliers associated with constrains (13). 

2.2. Decomposition algorithm 

An outline of the proposed algorithm is as foHows: 

Step O. 
Each area (a = 1, ... , A) initializes its variables and parameters, Xa, 5.a. 

Step 1. 
Each area (a = 1, ... , A) carries out one iteration for its corresponding subproblem 

A 

minimize !a(xa) + L 5.¡hb(x a) 
b=l,b#a 

subject to ha(xa) ~ 0, 

ga(xa) ~ 0, 

(31) 

(32) 

(33) 

where x a 

t1Aa. 
(Xl, ... , Xa-l, X a, Xa+l, ... , XA), and obtains search directions t1xa, 

Step 2. 
Each area (a = 1, ... , A) updates its variables and parameters 

5.a *- 5.a + t1Aa, for a = 1, ... , A. 

The central agent distributes updated information of border buses and lines. 
Step 3. 

The algorithm stops if variables do not change significantly in two consecutive itera­
tions. Otherwise, it continues in step 1. 
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To speed convergence, the search directions obtained in step 1 can be refined using 
a Conjugate Gradient procedure as stated in [10]. 

Observe that problem (31)-(33) is a modified OPF for area a. The only depar­
ture from a standard OPF is the Lagrangian term in the objective function (31). This 
property allows a robust and simple implementation of the decomposition procedure, as 
specialized codes can be used for the subproblems. 

The search directions, (.6.xa , .6.Aa ), for subproblems (31)-(33) can be computed 
independentiy of each other, allowing a parallel implementation in a distributed compu­
tation environment. In this paper, a modified Newton procedure is used, in conjunction 
with a nonlinear interior point treatment of the inequality constraints [22]. This treatment 
requires adding slack variables to the inequality constraints in (32), to convert them into 
equality constraints. These slack variables are then incorporated to the objective function 
through logarithmic barrier terms, to ensure their positivity. 

Step 2 requires a central agent to coordinate the process; an ISO could perform this 
role. This agent receives certain information from the areas and retums it to the appro­
priate areas. This information consists of sorne of the values Xa , ~a, for a = 1, ... , A. 
The values xa that have to be distributed are the updated values of the variables associ­
ated with the interconnecting buses and lines, after one iteration of Newton's method. 
The values ~a that need to be distributed are the updated multipliers corresponding to 
equation (32) of each area, again after one iteration ofNewton's method. 

It can be noted that the information exchanged between the areas and the central 
agent is minimal. Moreover, in the proposed decomposition algorithm the central agent 
only distributes information and checks the convergence condition. In other decomposi­
tion techniques (such as most common Lagrangian relaxation or augmented Lagrangian 
decomposition procedures) the central agent needs to update the exchanged information 
before distributing it to the different areas. In the proposed decomposition algorithm the 
central agent does not need to update any information, as this information is updated by 
the areas of the system, implying a simpler process. 

2.3. Convergence properties 

The convergence properties of the proposed decomposition algorithm are analyzed be­
low. For the sake of simplicity in this discussion, and without loss of generality, separa­
ble constraints (14) are omitted. These constraints can be introduced into the objective 
function by means of an interior point procedure. Also, the systems will be represented 
using only two areas, a and b. It should be immediate to generalize the following results 
to more than two areas. 

For the centralized approach, the search directions for areas a and b, (.6.~, .6.~) are 
computed by solving in each iteration a system of linear equations of the form 

[
KKTa 

KKT= 
KKTab 

(34) 
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where KKTa, KKTb, KKTab and KKTba are the Newton matrices [4] for areas a and b, 
defined as 

the superscript N indicates Newton directions, and L is the Lagrangian function for 
problem (12)-(14), defined as 

A A 

L(XI, ... , XA, Al, ... , AA) = L !a(xa) + L A~ha(xa, ... , XA). (35) 
a=1 a=1 

Correspondingly, movement directions for areas a and b, (lla, llb), in step lofthe 
decomposition algorithm can be obtained by solving the decomposable and approximate 
linear system of equations 

-- [KKTa 
KKT= 

O 
(36) 

From these definitions and from performing step 1 of the proposed algorithm in 
parallel, the sufficient condition for convergence of the proposed decomposition algo­
rithm is given below. If at the optimal solution of problem (12)-(14) it holds that 

p(I - KKT -IKKT) < 1, (37) 

then the proposed decomposition algorithm converges locally to the solution at a linear 
rateo Here peA) denotes the spectral radius of matrix A, matrix 1 is the identity ma­
trix and it is assumed that functions in (12)-(14) are twice continuously differentiable. 
Condition (37) is related to the many results reported in the technicalliterature for the 
distributed solution of linear systems of equations, see, for example, [11,18]. Finally, 
note that by using Newton's method, the local rate of convergence for a centralized ap­
proach can be quadratic. 

Condition (37) can be interpreted as a measurement of the coupling between the 
areas in the global system. This measure tends to be smaller for systems with a small 
number of interconnecting lines. It has been verified that condition (37) holds for all 
multi-area OPF cases that have been found available to test the procedure. In this regard, 
these convergence properties seem to be satisfied for most practical cases of interest. 

If condition (37) does not hold, it is possible to modify the proposed decomposition 
algorithm to attain convergence [10]. For example, a preconditioned Conjugate Gradi­
ent method [11] can be applied. This approach would still preserve the property that 
the operation could be performed allowing each area to maintain its autonomy, i.e. in 
a decentralized manner. 
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3. Numerical results 

This section presents numerical results obtained by applying the proposed decomposi­
tion algorithm to several test problems. Table 1 shows the most relevant characteristics 
for each problem. Case 1 correspond to the IEEE-9 system [15]; this system has been 
divided into two areas using two interconnecting lines. Case II is based on the IEEE-30 
system [15]. Cases III and V are based on the IEEE RTS-24 [19]; this system has been 
duplicated for case III, and replicated three times in case V, foHowing [23]. Case IV is 
based on the IEEE-57 system; this system has been divided into two areas, connected 
by eleven interconnecting lines; the division has been chosen on purpose to force a large 
value for the spectral radius. FinaHy, cases VI and VII are based on the IEEE-118 sys­
tem [15]; this system has been replicated three times in case VI and six times in case VII 
using 10 and 22 interconnecting lines, respectively. 

In aH cases, the objective function (1) is taken to be the total operation cost for the 
system, 

A Ga 

!(PG) = L L cnp~J, (38) 
a=l i=l 

where functions cf (P~i) are quadratic and convexo 
Table 1 shows the most relevant characteristics for each of the cases. The first 

column gives the case name. The second column shows the total number ofbuses for the 
global system. The third column provides the number of generation units for each case. 
The fourth column indicates the number of areas for the global system, and the fifth one 
the total number of lines. The sixth column shows the number of interconnecting lines 
between different areas, Le. tie-lines. The seventh and eighth columns present the total 
number of variables and functional constraints, respectively. The ninth column shows 
the number of complicating constraints. FinaHy, the last column provides the spectral 
radius in condition (37), evaluated at the optimal solution ofproblem (12)-(14). 

AH cases have been solved by a centralized approach and a decentralized one. 
The decentralized approach uses the proposed decomposition algorithm presented in 
section 2.2, including and not including the search direction refinements based on the 
conjugate gradient procedure. 

Tab1e 1 
Main characteristics of the case studies. 

Case Buses Generators Areas Lines Tie-1ines n m e p 

9 3 2 9 2 24 27 10 0.8 
II 30 6 3 41 7 72 101 35 0.8 
III 48 64 2 71 3 224 167 15 0.6 
IV 57 7 2 77 10 128 191 50 207.3 
V 72 96 3 107 5 336 251 25 0.6 
VI 354 162 3 636 10 1032 1344 50 0.5 
VII 708 324 6 1556 22 2064 2972 110 0.4 
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The solutions for both approaches have been computed using a nonlinear interior 
point procedure, based on a version of the algorithm reported in [22]. The algorithms 
have been implemented in MATLAB [20] and mn on a PC Pentium II processor with 
333 MHz and 128 MB of RAM. The two procedures have been mn using the same 
starting point and stopping tolerance. Table 2 shows the numerical results for the case 
studies. 

The second column of table 2 indicates the approach used to solved each case, a 
centralized procedure (centralized), the decomposed (decentralized) one and the decom­
posed one with the Conjugate Gradient search direction refinement (decentralized-CG). 
This subroutine has been used to improve convergence. The third column shows the 
total number of iterations required to reach the optimum for each problem. The fourth 
column provides the total number of inner iterations performed by the Conjugate Gradi­
ent subroutine in the decentralized-CG procedure. The fifth column shows CPU time in 
seconds needed to solve the linear systems. This CPU time has been chosen because it is 
in the solution of linear systems where the centralized and the decomposed procedures 
are different. Finally, the sixth column shows total CPU time. 

It should be observed that most an important part the total CPU time for each case, 
as reported in the sixth column of table 2 (total CPU time), is spent in computing values 

Tab1e 2 
Numerica1 results of the case studies. 

Case A1gorithm Iterations Iterations CPU time linear Total CPU time 
CG systems (sec.) (sec.) 

Centra1ized 13 0.002 0.004 
Decentralized 16 0.000 0.002 
Decentralized-CG 13 O 0.000 0.002 

II Centra1ized 22 0.153 0.463 
Decentralized 59 0.221 0.712 
Decentralized-CG 23 74 0.175 0.537 

III Centra1ized 21 0.472 0.897 
Decentralized 38 0.480 0.851 
Decentralized-CG 21 10 0.301 0.540 

IV Centra1ized 23 0.452 0.563 
Decentra1ized 
Decentralized-CG 42 391 2.178 2.560 

V Centra1ized 26 0.985 1.496 
Decentralized 58 1.438 2.148 
Decentralized-CG 26 57 0.954 1.420 

VI Centra1ized 36 7.405 17.571 
Decentralized 39 4.708 11.140 
Decentralized-CG 35 15 5.591 13.223 

VII Centra1ized 43 22.068 54.462 
Decentralized 52 8.536 22.194 
Decentralized-CG 39 9 7.707 20.006 



            12

associated to gradients and second derivative matrices. This computing time constitutes 
a significant part of total computing time in OPF problems and it is roughly equal for 
both procedures, centralized and decentralized. Therefore, for the sake of comparison 
of the centralized and decentralized procedures, CPU time to solve linear system, as 
reported in the fourth column (CPU time lino systems), is a more appropriate measure 
than total CPU time, as reported in the sixth column. 

It should be noted that the Conjugate Gradient subroutine is only necessary for 
case IV. In this case, the spectral radius in (37) is greater than 1 and the decomposition 
algorithm without Conjugate Gradient refinement does not converge. 

The results show the good behavior of the proposed procedure: there is a reduction 
in running times for nearly all cases from a centralized solution to a decentralized one. 
However, this is not what happens in case IV because the spectral radius in this case 
is larger than 1, see table 1. Note that these results have been obtained in a sequential 
computational environment. 

It should be noted that the total number of iterations for the proposed decomposi­
tion algorithm is higher than the corresponding total number of iterations for the central­
ized approach. This is due to the linear convergence presented by the decomposition ap­
proach versus the superlinear convergence presented by the centralized one. Moreover, 
the total number of iterations for the proposed decomposition algorithm with Conjugate 
Gradient refinement is similar to the total number of iterations for the centralized pro­
cedure. This results from the fact that the Conjugate Gradient refinement of the search 
directions in the decomposition algorithm approximates those directions to Newton di­
rections. However, the total computing time for the proposed decomposition algorithm 
may be lower than the corresponding computing time for the centralized procedure. This 
is due to the size of the linear systems that need to be solved by each procedure. A cen­
tralized approach must solve a smaller number of systems that are larger by a factor 
equal to the number of areas than those solved by the decomposition algorithm. 

4. Conclusions 

In this paper, a decomposition methodology is presented and applied to the multi-area 
OPF problem that arises in the operation of electric energy systems. The proposed 
methodology preserves the autonomy of each area in the global system by means of a 
coordinated but decentralized procedure. This is a crucial fact in nowadays competitive 
electricity markets. Therefore, the decomposition method is appropriate for an Indepen­
dent System Operator in charge of the electric energy system technical operation. 

Unlike most common Lagrangian based algorithms, the proposed technique does 
not need to solve subproblems until optimality which results in computational savings. 
Furthermore, the central agent of the proposed procedure does not update information, 
it just distributes it. This is not the case of most common Lagrangian-based algorithms. 
As a result of these properties, the proposed methodology is very well-suited for its 
use in the solution of large-scale multi-area OPF problems by the Independent System 
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Operator. Numerical results suggest that the method has less computational cost than a 
centralized approach when applied to large-scale problems. 

Appendix: example 

In this appendix, a simple example that clarifies how the proposed decomposition al­
gorithm works is presented. In order to enhance clarity, it is not based on any small 
dimension OPF. 

The global problem to be solved is 

minimize xf + xi + yf + yi 

subject to 4x¡ + Y2 - 1 = 0, 

x¡ + 4Y2 - 1 = O. 

(Al) 

(A 2) 

(A3) 

This problem has the form ofmodel (12)-(14). For the sake of simplicity, only two 
areas have been considered. Variables belonging to the first area (a = 1) are denoted by 
x and variables belonging to the second area (a = 2) are denoted by y. Equations (A2) 
and (A3) represent the complicating constraints (13) in the general model, for areas 1 
and 2, respectively. Separable constraints ofthe form (14) have not been included in this 
simple example. There are only two variables implied in the complicating equations, x¡ 

and Y2. 
The solution of this problem is 

x* = [0.2] 
0.0 ' 

* = [0,0] 
y 0.2' 

Jc* = [-0.08]. -0.08 
The constraint vector (A2)-(A3) is denoted by h: 

[
4X¡ + Y2 - 1] 

h(x, y) = . 
X¡ +4Y2 - 1 

Using the proposed methodology, the subproblems to be solved in step 1 of the 
decomposition algorithm are, respectively, 

and 

minimize xf + xi + 5:2X¡ 

subject to 4x¡ + Y2 - 1 = O. 

minimize yf + yi + 5:¡y¡ 

subject to x¡ + 4Y2 - 1 = O. 

The algorithm is applied below. 

(A.4) 

(AS) 
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Iteration k = O: 

Step O. 

Variables and multipliers are initialized, Le. 

x = [0.4] 
0.4 ' [

0.4] 
y = 0.4 ' 

~ = [-0.01]. 
-0.01 

Iteration k = 1: 

Step 1. 

System X computes a movement direction for problem (A.4), using Newton's method, 
for x = x. The Lagrangian function for problem (A.4) is 

Lx(x¡, X2, A¡) = xf + xi - 0.01x¡ + A¡ (4x¡ + 0.4 - 1), 

then 

[

0.75] 
\lxI,x2,AI Lx (0.4, 0.4, -0.01) = 0.80 , 

1.00 

\l; x A Lx (0.4, 0.4, -0.01) = I~ ~ ~l. 
1,2, 1 l4 ° ° J 

IfNewton's method is applied: 

I ~x¡ l I -0.25 l 
I ~X2 = I -0.40 , 

l ~A¡ J l-0.0625 J 
and it is obtained 

x =x+ ~x = + = [
0.4] [-0.25] [0.15] 
0.4 -0.40 0.00 

and 

A¡ = A¡ + ~A¡ = -0.01 + (-0.0625) = -0.0725. 

Step 2. 

System y computes a movement direction for problem (A.5), using Newton's method, 
for y = ji. The Lagrangian function for problem (A.5) is 
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then 

[

0.80] 
Y'YI,Y2,A2Ly(0.4, 0.4, -0.01) = 0.75 , 

1.00 

Y'y2 y A L y(O.4, 0.4, -0.01) = I~ ~ ~l. 
1, 2, 2 Lo 4 ° J 

IfNewton's method is applied: 

I~ ~ ~ll ~~: l = -I~:~~l, then 

Lo 4 ° J L ~A2J L 1.00 J 
I ~Yl l I -0.40 l 
I ~Y2 = I -0.25 , 

L ~A2 J L -0.0625 J 
and it is obtained 

[
0.4] [-0.40] [0.00] 

y = y + ~y = 0.4 + -0.25 = 0.15 

and 

A2 = A2 + ~A2 = -0.01 + (-0.0625) = -0.0725. 

Step 3. 
Convergence: the central agent checks if the selected convergence condition 
Ilh(x, y) < 10-4 11 is satisfied: 

h = [-0.25] 
-0.25 ' 

Ilhll = 0.3536> 10-4
• 

As the convergence condition is not satisfied, variables 

x = x = [0.15] 
0.0 ' [ 

0.0 ] 
y = y = 0.15 ' 

and multipliers 

- [-0.0725] A=A= 
-0.0725 

are fixed, the iteration counter is updated, k = k + 1 = 2, and steps 1-3 of the 
algorithm are repeated until convergence is achieved. 

The algorithm stops for k = 8, with a tolerance Ilh 11 = 8.6317 x 10-5 . The solution is 

x = [0.2] 
0.0 ' [

0.0] 
y = 0.2 ' 

A = [-0.08]. 
-0.08 
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Figure 1. Examp1e. Evo1ution of the objective function. 

30 

Problem (A1)-(A3) has also been solved using a Lagrangian relaxation proce­
dure [16] and an augmented Lagrangian relaxation one [3,7]. The Lagrangian relaxation 
procedure uses a simple subgradient updating of multipliers, and the augmented La­
grangian decomposition procedure uses a progressively increasing penalty term and a 
simple gradient multiplier updating technique. 

The Lagrangian relaxation procedure stopped after k = 53 iterations, with Ilh 11 = 
4.1772 x 10-5. The augmented Lagrangian relaxation procedure stopped after k = 16 
iterations, with Ilhll = 9.9172 x 10-5. Figure 1 shows the evolution of the objective 
function (Al) as a function of the iteration number, for each of the three procedures. 
The dashed line represents the evolution of the objective function evaluated at the iter­
ates for the Lagrangian relaxation procedure. The dotted line represents the evolution of 
the objective function evaluated at the iterates for the augmented Lagrangian decompo­
sition procedure. Lastiy, the solid line represents the evolution of the objective function 
evaluated at points computed by the proposed decomposition algorithm. 

Note the slow and oscillating behaviour of the Lagrangian relaxation procedure. 
The quadratic penalty term in the augmented Lagrangian procedure corrects this anom­
aly, although the convergence is still slower than that of the proposed decomposition 
algorithm. 

Figure 2 shows the value of multiplier Al at each iteration, for each of the three 
procedures. The value of multiplier A2, is the same for all procedures. As in figure 1, 
the dashed line represents the values of the multiplier computed by the Lagrangian re-
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Figure 2. Examp1e. Evo1ution of the first multip1ier. 

30 

laxation procedure; the dotted line represents the evolution of the multiplier from the 
augmented Lagrangian procedure; lastiy, the solid line represents the evolution of the 
multiplier as obtained by the proposed decomposition algorithm. 
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