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INTRODUCTION

Let % be a linear functional on the linear space Z of polynomials with
complex coefficients. % is said to be regular (or quasi-definite [2]) if there
exists a sequence of monic polynomials (P,,),, orthogonal with respect to %
ie.

i) P,(x) x" -+ lower degree terms,
i) (U, PuPp)  knbyms kn #0,n  0,1,2,...

Here, (-, -) means the duality bracket.

Let (P,,), be a sequence of monic polynomials, orthogonal with respect
to the regular linear functional %. It satisfies a three-term recurrence
relation

Ppi(x) (x B)Pu(x)  vPn 1(x), n=1,
Po(x) 1, Pi(x) x By, (D

where 3, and vy, are complex numbers with vy, # 0, Vn. We assume that the
linear functionals used in this paper are normalized by: (%, P3) vy 1.

Given a regular linear functional % and the corresponding sequence of
monic polynomials (P,),, satisfying Eq. (1), we define the co-recursive [1,4]
(Pl[l“])n of (P,,),, and the first associated (Pfll))n of (P,,),, as the two families of
monic polynomials defined, respectively, by the following three-term
recurrence relations

P = BoPH 4 PH n=1, PP =1, PP =x B w
Pli=G BunP wnP), n=z=1, PP=1 PV=x B,
)

where w is a complex number. By Favard theorem [2,6] these families are
orthogonal, and we denote by %! and %", respectively, the regular
normalized functionals associated with these orthogonal polynomial
families. The first associated (Pfll))n of (P,), can also be defined [2] by

Ppi1(x) Pn+1(t)>

X 1

PP(1) <“Zl : 3)

where the regular linear functional % acts on the variable x.



A regular linear functional % belongs to the Laguerre Hahn class if the
Stieltjes function S(%) S satisfies a Riccati differential equation [3,5,10]

¢S' BS*+CS+D, “)

where ¢ # 0, B, C and D are polynomials with D (DU)0y +
UOC U 6(2]B. Here Z( d/dx) is the usual derivative operator. 6, and
the right multiplication by a polynomial are introduced in “Preliminaries
and notations”. In 1988 Dini [3] (see also Ref. [11]) obtained a
characterization theorem in terms of the functional equation satisfied by %

WU+ B U +yuU 0, (¢ +0), 5)

as well as the structure relation fulfilled by the corresponding orthogonal
polynomials (P,), and the corresponding first associated sequence (P{"),)
as follows:

n+d
®P, BPY > 0P, n>s, L s #0. 6)

i=n s

In Ref. [11] Marcellan and Prianes have introduced the notion of the
class of a given Laguerre Hahn linear functional, as was done for the semi-
classical linear functional [14]. They have also given a necessary and
sufficient condition for the reducibility of the functional equation and they
have used these conditions to determine the class of some Laguerre Hahn
linear functionals which are obtained by a perturbation of a given
Laguerre Hahn linear functional.

The notion of discrete Laguerre Hahn linear functional has been
considered by several authors [7 9]. In the Doctoral Dissertation by Guerfi
[9], the D,-Laguerre Hahn linear functional is defined as the one for
which the Stieltjes function S(%) satisfies

A()DS(U)zZ)  B@S(U)2)SU)(z 4+ w) + C(2)S(U)(z) + D(2),
where A # 0, B,C, and D are polynomials and D,, is the operator defined by
Dyfx)  (fx+w)  fO)/w.

An equivalent definition given by Foupouagnigni et al. [7,8] is stated as
follows.

A regular linear functional % belongs to the D,,-Laguerre Hahn class if
the corresponding Stieltjes function S(%) satisfies a D,,-Riccati difference



equation
Dz +w)DS()z)  G()S))SU)(z + w) + EQ)S(U)(2)
+ F()S(%)(z +w) + H(z),

where ¢ # 0, E, F, G, and H are polynomials. This definition allowed us to
derive a fourth-order difference equation satisfied by the associated
polynomials (P®) of any positive integer order k corresponding to a
Laguerre Hahn linear functional of a discrete variable [7,8].

The aim of this work is to give a characterization theorem for a
D, -Laguerre Hahn linear functional, define the concept of the class of a
D, -Laguerre Hahn linear functional and, finally, to give necessary and
sufficient conditions in order to the class of a given D,-Laguerre Hahn
linear functional is a nonnegative integer s.

In the second section we give the preliminaries and some previous
results needed for this work. The third section is devoted to the
characterization theorem of the D,,-Laguerre Hahn linear functionals.
The fourth section gives the definition of the class of the D,,-Laguerre
Hahn linear functional and provides necessary and sufficient conditions
for the characterization of the class of a D,-Laguerre Hahn linear
functional. In the fifth section some applications are presented. In
particular, we determine the class of a D,-Laguerre Hahn linear
functional obtained by some perturbations of a D,-Laguerre Hahn
linear functional.

PRELIMINARIES AND NOTATIONS

Let % be a regular linear functional on the linear space 2 of polynomials
with complex coefficients and let S(%)(z) be its Stieltjes function defined
by

U
sanG Y i fl

n=0

where (%), (U ,x") are the moments of % and (-, -) is the duality bracket.
Let 2 be the algebraic dual space of 2 and & the linear space generated by
{8},=0, where 6 means the nth derivative of the Dirac delta in the



origin i.e.

8",p) ( 1y'p™(0) (1>" <0>, pE 2.

dx n

e Consider the isomorphism & : & — 2 defined as follows [14]: For

k

U Z(%)n Yoo, Fanw > @),

n=0
This isomorphism yields the relation
| 1 ;
S(U)(2) -F)\—-), YUeEP. 7
Z Z

e Givenf € Zand % € %', f and x ' will denote, respectively, the
linear functionals defined by:

Fu.py (U.fpy, < ‘u,p) (U, 60p), VpEP,  ®)

where 6,p(x) (p(x) pa))(x a)and aisacomplex number.
e Forf & P and % € &, the product %f is the polynomial

Uy <Z @), fj)x’

i=0 \ j=i
where

o> !
=0

o The product 7" of two linear functionals % and 7" is the linear

functional
Uv,py U, 7p)Np€P.

The product defined as before is commutative [14] i.e.

wuy VU, NUYVEP.
e The operators D,, and .7 ,, (where w is a complex number) are defined in
the linear space 2 of polynomials in the following way
Px+w) Px)

D,Px) ——, J,Px) Px+w), PeE®
w



When wisequalto 1,7, Z andD; A.Also,D ; V.AandV
are, respectively, the backward and the forward difference operators.

By duality, the image of a linear functional using these operators D,, and
7 ,, 1s a linear functional such that

(D, p) (u,D p), (TUp) (U, T .p)p€EP

The following known results (see Refs. [3,7,11,17]) will be useful for our
work. We summarize them in

LEMMA | For p,q € P and for U, V" € P, we have:

Dx(x 'y wu, x ‘&) U (W),
i) x 'pw)  pex 'u) (U, 60p)s,
x Yy &« ‘ayry ux ')

iil) 0,(6pp)  Op(Oup), O0.(Up)  U(Oup),

iv) Upqg)  (pU)g+xqUbop, pAUYV) PV U+ x(V 0p)U,
v) q(U6op) U 6o(qp) bol(p)ql, (x ‘af U [),
vi) S(UY ) (z) ZS(UN2)S(V)2),

vil) S ")) (1/)S(U) ), S(pU)  pS(UL) + U bop,
viii) D, S(%)  S(D,U), T S(U) ST ,AU).

Furthermore,

LEMMA 2 Let U be a linear functional, a a complex number, f a polynomial
and (P,), a family of polynomials orthogonal with respect to U. Then

Dx '8, & a's,

i) Dyfla w  (B.a w),

iil) (%0,1)(0) (U6 f)a),

V) DJUf)a w) (Ub.f)a w),

V) UO(fPus1)  fPP, n+1=degf,

vi) D (U6yf) (DU)0T .f+ U6\D,,f.

Proof (i) We have (x '8,,x") (§,,x" 'Y a" ',n=1.
On the other hand

n 1
(x  a) '8,x"y (8, 0,x") <8,Za” i 1x"> a"', n=1
=0

Finally, forn 0,{(x a) '8,1) 0 {(x '8,1).



(i) Dwfila w) Dy((x a)(0uf)x)+fl@)a w)
[(x+w  a@)Dy(0.1)x) + 0. )la  w)

(6. )a  w).
(iii) Using (i) and Lemma 1 we get

(U 0af)O) (8, %0f)
(8, Oa(f))
(x a) '8,uf)
(x '8, f)
(8a, Oo(2Lf))

(8a, U(60f))

U6 f)(a).
(iv) Let n and p be two nonnegative integers. We have
» 0, if n<p,
n
XN aypn v, it nz=p. ©)

Since
nl /n
D n n i1 i’ 10
X ; ( ; )w X (10)
From Eqgs. (9) and (10) we deduce that

0, if n=p,

n _ np 1
D ,(8Px")(a) = ( 17p! Z (n p)( wy' Pl lgif n>p. (11
< i

i=0
On the other hand,

0, if n=p,

) 1 = n k! : _
Ha(a X )(a W) - ( 1)pp| Z a' P l(a W)l7 if n> p. (12)
i=0



The two relations

n (n o n+k+1 k [n+i
(@ w" ;<i>< w)" a’, < L ) ;( n><13>

after some changes of variable in the summations give for n > p,
&P . & (o
Z ( ' )an p i l(a W)l Z ( >( w)n p k lak.
=0 ! k=0 k
Therefore using the relation (D ,f)(a) (D, f)(a w) we deduce

D,(8Px"a w)  0,8Vxa w), Vn,pE€ N.

To conclude, we first introduce topologies in the spaces 2 and 2 and use
the continuity of some applications. To do this, we introduce in the vector
space Z the strict inductive limit topology of the vector spaces of
polynomials of degree at most n, 2, i.e.

PpC Poit, n=0, P U2,

Here P, is endowed with its natural topology, which make it a Banach
space. The dual 2’ of 2 is equipped with the topology defined by the
system of semi-norms:

Null, supl@)yl, Yue€?, n=0.
k=n

Since the applications (#,f)— #f, P— D,P and P— 6,P are
continuous where 2 and #' are equipped with the topologies defined
above [9,14], we use the decomposition [14]

1 n
v S e

n=0

to deduce that

D,(Ux"Ya w) 0,(Ux")a w).

Thus our result is valid for every polynomial f.



(v) We use the relation (iii) to get

UB(fPrs1)(@) U Oa(fPny1)(0)
(8, U 6a(fPnr1))
(U, 0a(fPps1))
(U.f(@0uPui1 + Pri10af)
J@XU, 0aPrs1) + (U, Ppi1 0af)

f@P(a), for n+1 = degf,

for every complex number a.

It should be mentioned that the relation (v) of Lemma 2 has already been
established in Ref. [3] but with the condition » = deg G. But since n >
s class(Z) = n+ 1 = deg G, we need to check if this result is still valid
for n+ 1 = degG. This checking allows us to obtain the extension
mentioned above. Notice that here, the polynomial G is one of the five
coefficients of the Eq. (14).

(vi) The proof follows from the relation [7,8]

Dy(fS(U) T fDwS(U) + D, fS(U)

and (vii) of Lemma 1. [

CHARACTERIZATION OF Dy-LAGUERRE-HAHN LINEAR
FUNCTIONALS

Definition 1 A linear functional % on the linear space £ belongs to the
D,,-Laguerre Hahn class if its Stieltjes function S(%) satisfies a
D,,-Riccati difference equation

Sz + WD, S z)  GR)SU))S(WU)(z + w) + EQ)S(U)(z)
+ F(2)S(4)(z+w) + H(2), (14)

where ¢, E, F, G, and H are polynomials with
d#0,G#0, (15)



and
H(z) UOyE + (T, U)F (D,U)0yT , (%%,%)056.

Remark I In Ref. [7], some examples of D,,-Laguerre Hahn polynomials
are given in terms of classical discrete orthogonal polynomials. It should be
noticed that the previous equation is not mentioned in previous works;
therefore, definition 1 is more general and improve those givenin Ref. [7 9].

Remark 2 When G 0, the Stieltjes function S(%) satisfies a linear
difference equation

Hz+w)DS()(z)  C)S(U)(2) + D(2),

with ¢ # 0.

The corresponding orthogonal polynomials are called affine D,,--
Laguerre Hahn orthogonal polynomials [7]. More precisely, they are
D,,-semi-classical (see Ref. [9]).

THEOREM 3 Let % be a regular linear functional and (P,), the
corresponding sequence of monic orthogonal polynomials. The following
statements are equivalent:

i) % belongs to the D,-Laguerre Hahn class.
ii) % satisfies a D,,-functional equation

D)+ Gx 'UT )+ WU FT U 0, (16)

with ¢ # 0, G # 0, and ¢ (Dy ¢ + E), where the polynomial
coefficients ¢, E, F, G, and H are those given in the Eq. (14).
iii) % satisfies a D,,-functional equation

Dy((x wU)+GAUT JU)+ Yy U xFT U 0, (17)
with ¢ # 0, G # 0, and
(UT U, 0G) +{U, )y (U, T F) O. (18)
iv) There exists a sequence of complex numbers {, ; such that

n+d
d)D wPthl +7 w(FPn+l GP,(/,I)) = Z gn,ijv n=s, gn,n s # 0.

j=n s

19)

10



Here, if t  deg¢, r degG, p max(deg ¢,degF) = 1 then d
max(r,t) and s max(d 2,p 1).

Proof (i) = (ii). Using the relations (v), (vii), and (viii) of Lemma 1 the
Eq. (14) becomes

S(T wdD W) + Sx 'GuT ) SEU)  S(FT ,AU)
DUOT b+ (UT UGG UOGE T, UF + H.

On the other hand, taking into account the polynomial components in the

previous relation we get
S(T wdDU) + S(x 'GUT )  S(EU)  SFT,U) 0, (20)

H WUGE+ T, U06F Dy)60T b (UT ,U)EG. 1)

From Eq. (20) and the relation (see [7])

Dy (f¥%) 7 .wfDwU+D,fuU, fE2P, (22)
we get
Dy(pU)+ G(x ‘UuT U+ YU FT, U O, (23)
with Dy +E).
(i1) = (iii). First we multiply both members of Eq. (16) by x. Using the
relations (22) and (i) of Lemma 1, we get

D,((x wWU)+GAUT \U)+ Y dU  xFT U 0.

Moreover, application of the relation (16) to the constant polynomial
px) =1 gives\UT U, 600G+ U, (U, T F) O.

(iii) = (iv). Since ¢D P,r1 T W(FP, + U60(GP,+1)) is a poly-
nomial of degree at most n + d and (P,), constitutes a basis of 2, there
exists a family of complex numbers J,; such that

n+d
¢D WPuy1 T W(FPu+UO(GPu1)) Y LuP (24
j=0

According to Eq. (22), Eq. (17) is equivalent to
xDy () + GUT U) +xyU  xFT U 0. (25)

11



In a first step, we apply the previous equation to 6y(P,.17 ,.P,,) and we
get

(x 'aDW(PU)), Poi1 T P + x NGUT yU)), Pri1 T P
+ & YY), Po1 T WPy x "GFT U, Priy T WPy 0. (26)

In a second step we use the previous relation, Eq. (18), and relation (ii) of
Lemma 1 to get

DA, Pus T o Pu) +(G & " UT W), Pus T 1, Pr)
+ WU, Pui1 T wPr)  (FT U, Pri1 T wPr) 0. 27)
In the third step, some straightforward computations lead to
(G "UT ), Pur TP}y U P U 0(GP i)
+ (U, Py 1 (T W) 00(T Pr)).  (28)
Next, we use Eqs. (27) and (28) and the relations [7]
Dy(fe) T wfDwg+gDuf, D (T wf) Dyuf
to get
U, dPuD Pui1) + U, T (FPys1)Pp)
(U, PnT U0(GPyi1)])
(U, GPys (T ) 00(T 1 Pp))
AU, PPy T P) U, GPyi1 Dy, Pry). (29)

Finally, we multiply both sides of Eq. (24) by P,,, then apply the linear
functional % and use the orthogonality of (P,,),, with respect to %. Thus, we
get

<02l, d)PmD WP11+1> + <%7 T W(FPn+1)Pm>
<0”7Pm3. W[OZZGO(GPI1+1)]>

G , Py Pyy). (30)

12



The combination of the last two equations leads to
gn,m<02l7Pum> <02[apn+1[G(9.w%)00(<7me)

+ ll}’g-WPn'l ¢DWPITI]>'

€29

Since deg(yT wPn)=p+m=m+s+1, deg(¢D,P,)=t+m
l=m+d 1=m+s+1, and deg(G(T,,%)0(T  Py) =r+m

l=m+d 1=m+s+1, we have

deg(lp'prm + G(nggll)HO(q'me) ¢Dme) =m+s+1.

Therefore we conclude from Eqs. (31) and (32) that for n > s, £,

whenm <n s.
As a consequence

n+d

¢D WPuii+ T W(FPupy U0(GPu) Y LijPjy n>s.

j=n s

The relation ¢, , s 7 0 is obtained thanks to the regularity of %.
Using the relation

U60(GPyy1)  GPD

n

n+1=degG,

(see v) in Lemma 2 we get Eq. (19).
(iv) = (i). Let us consider the linear functional 7~ defined by

s+1
7 Dy(@U) + Glx lokng%) FT .\ + (Zijj> U,
=0

where the coefficients A; are complex numbers. We obtain

</V7Pn> <%a ‘;bD an +7 w(%BO(GPn) FPn l)>

s+1
+ <%,PnZijj>.
=0

From Eq. (19) the previous equation becomes

n+d 1 s+1
(7", P,) <024 > {,,_ij>+<%,P,,Zijj>.
j=0

j=n s 1

(32)

0

(33)

(34)

(35)

13



From the orthogonality condition of (P,) with respect to % we get
(V" ,P,y Oforn>s+1.

In order to get (¥",P,) 0, Vn, we shall choose coefficients A;, j
0,...,s+1,such that (*",P;) 0,j 0,....s+1.

These coefficients A; are determined in a unique way.

Thus, we have deduced the existence of a polynomial

s+1
W iijf
Jj=0
such that
v DU+ Gx ‘UT ) FT AU+ U 0.
Then,
Vv 0= SD(PU) + Gx 'UT AU FT U+ U) 0.

Taking into account Lemma 1 the last equation yields
Sz +w)DWS(U)z)  GSU))S( WUz + w) + E@)S(U)(z) + F(2)S(U)

X(z+w) + H(z),

with E (y+ D,,¢) and
H(z) UOyE + (T, U)0F (D,U)0yT , (%ﬁ'w@/)ﬂﬁG. O

THE CLASS OF A Dy, ~LAGUERRE-HAHN LINEAR FUNCTIONAL

In the distributional characterization of D,-Laguerre Hahn functionals
given in Eq. (16), there does not exist uniqueness in the representation for
the polynomial coefficients. In fact, it is enough to multiply by any
polynomial both members of the equation. On the other hand, uniqueness
can be obtained if we assume a minimality condition as we will discuss
below.

DEFINITION 2 Given a regular linear functional U satisfying
D (¢U) +G(x ‘UT AU) FT, U+ U O, (36)
with ¢ # 0 and G # 0, we define the class of U, which we will denote

14



class(U), as
class() min{max{max(deg ¢, deg F’)
1, max(deg ¢,deg G) 2}}, 37
where the minimum is taken among all polynomials ¢, G, F, and

satisfying Eq. (36).

THEOREM 4  Let U be a regular linear functional satisfying Eq. (36). Then
the class of the D,,-Laguerre Hahn linear functional U, class(%), is equal
to s with

s max{max(deg y,deg F) 1, max(degp,degG) 2} (38)
if and only if

11 0w,y )+ @7, 0G0 ) (T W, Fy )

ac€”Zy
+leq wl+1fa wl+1ga wl} #0, (39)

where Zy is the set of zeros of ¢. The polynomials s, ., G, ,,and F, ,, as
well as the complex numbers e, ., f. ., and g, ., are defined by the
expressions

dx) (x Ab(x), Yx)+d(x) x+w AP (X)) +eq w,
Gx) +w @Gy wX)+ 8 w,

Fx) +w aF, &) +fa w (40)

Proof Letabe azero of ¢. From Lemma 1, Egs. (22) and (40) we deduce
that relation (36) is equivalent to

Dy(pa) + Go (x ' UT U)  Fo wT WU+ Y U
(<%;‘7[fa w>+<%9_w@/» 00Ga w> <9_w%;Fa w>)8a w
g wix+w @ ‘@ 'ug, ) e, wx+w a) 'u

+fo wx+w @) 'T . (41)

15



If

<02la P w> + <g”yw%a 600G, w> <g-w%a Fq w> =€ w=fa w=8 w=0,

then % satisfies
Dy(p) + Gy \(x "UT U  Fu wT WU+ U 0. (42)
Furthermore
max{max(deg ¢, ,,degF, ) 1,max(degd, ,,degG, ,,) 2}
max{max(deg y,deg F) 1, max(deg¢,degG) 2} 1.

Thus, we conclude that class(#) =s 1 <s.
Conversely, we assume that % satisfies Eq. (42). We will prove that

<%7 l/la \’V> + <%'O/.W’/)k7 GOGCI W’> <'g/.11/%7 Fa W> = ea w :f(l w = g(l w = 07

where a is a zero of ¢.
Since Eq. (36) is equivalent to Eq. (41), we deduce

VKU a ) +UT U 600Gy )
(T WU, Fu N w  ga wx+w a ' "7, )
e wx+w @) "U+f, x+w o) ‘T, O
Then we get

Iy 0=U by )+ UT U, 06G, ) (T WU F, ) 0.

S ox+w a) 0=es v fa w

' x+w a?y 0=g, weg .

I x+w a)Yy 0=we, (U (U),) O.

Since % is regular and w #* 0, from the last equation we gete, ,, O.
Thus, our statement follows.

We shall now establish an equivalent result to Theorem 4 where the
condition about the class will be given in terms of polynomials ¢, G, E, F,
and H defined in Eq. (16). O

16



THEOREM 5 Let % be a regular linear functional of the D,,-Laguerre

Hahn class verifying Eq. (14). A necessary and sufficient condition for U to
be of class s with

s max{max(deg y,deg F) 1, max(degd,degG) 2}
is

[[1G@ wi+IEa@ wl+1F@ wl+IH@ wl}#0, 43)

i€z,

where Z, is the set of zeros of ¢ and

O (x aPu(0), Y+ P (x) x+w Y W) +eq v,
Gx) (+w a)Ga w)+8a ws

Fx) +w  aF, w&)+fa w (44)

Proof Using the above relations and relation (ii) of Lemma 2 we get
€a w Ea w), g w Gla w), fow Fla w).
First, using the relation (iii) of Lemma 2, we get
(UT U, 000G, ) (UT U, 000, ,G) (%fw%ﬂéG)(a w),
(T VWU F, ) (T WU6F)a w). (45)
Second, using the relations (44), (ii), and (iii) in Lemma 2 we get
U o ) U0 W(x+w D )
U, 00 (P + ba))
U, 0 i)+ U, 00 weba)
(Ubop)a  w)+ 0.(UbP)a w)

(“Ubop)a  w)+ Dy(Ubod)a w). (46)

17



Since E (¢ + D,,¢), using Eq. (44), and (vi) of Lemma 2, we deduce

Ha w) (UOE~+ T UGF DyU)66T b UT ARG a w)

( U6y U6D,¢ (DU)6T b+ T W JUOF
(47)
UT UGG a  w)

(U0 + D\ (U o) T UGF +UT ARG a  w).

From Eqgs. (45) (47) we conclude that
H((l W) <0ka lpu W> + <%yw@l; HOGa w> <9*WQZ/’ Fa w>7

and our result follows from Theorem 4. [

COROLLARY 6

i) If for every zero a of ¢,
|Gla wl+I|E(@ wl+I|Fla wl+I|H@ w)l#0,

then Eq. (14) as well as Eq. (16) cannot be simplified. They are said to
be not reducible.
ii) If there exists a zero a of ¢ such that

Ga w) Ea w) F@a w) H@a w 0,

then Eq. (14) as well as Eq. (16) can be simplified. They are said to be
reducible with respect to the zero a of ¢.

More precisely, after simplifications Egs. (14) and (16) become,
respectively, (with S S(%)):

Gu(z+W)DWS(2)  Gu W(2)S@S(z+w) +E; (2)S(2)
+F, w(@)Sz+w)+H, ,(2),
DW((I)G%) + Ga W(x lokg.w%) Fa wg.w% + d’a W% 07

with Hz) (x+w aH, ().
iii) According to the above proposition in order to obtain the class of a
D,,-Laguerre Hahn linear functional, one must simplify the Riccati
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difference equation satisfied by the Stieltjes function of this linear
functional, and deduce the class when the simplification is not more
possible.

APPLICATIONS

In this section, we shall determine the class of some perturbations of a
D, -Laguerre Hahn functional.

The Co-recursive of The D,-Laguerre—Hahn Functionals
Let w be a complex number and % a regular linear functional. Then we

have:

PROPOSITION 7 If U is a D,,-Laguerre Hahn linear functional of class s,
then U™V is a D,,-Laguerre Hahn linear functional of the same class, s.

Proof We use Eq. (14) satisfied by the Stieltjes function S(%) S of %
and the relation linking S(%) and S(#'*) S, [17]

to get
G+ WDSE) G @S @S+ W) +E” @S,u)
FF @Sy +w) +H (), 48)
with

G*(z) G(z) WEQ@ + F@)+ p’H(), E*(z) E(z) uH(2)

F'() F@ wpHG), H () HE). (49)

'V is then a D,,-Laguerre Hahn linear functional.
With respect to the class, we use results of Theorem 5 and get for every
zero a of ¢:
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If Ha w)# 0, then H*(a w) # 0 and Eq. (48) is not reducible.
We suppose that H@ w) 0. Thenif E(a w)# QorF(a w)#0,

E'a wI+IF @ wl |Ea wl+|Fa w)|#0

and Eq. (48) is still not reducible.
If Ha w) Ea w) Fa w) 0, then G (@ w
G(a w) # 0. From Theorem 5, we conclude that

IG¥@ WI+IE @ wl+IF'a@ wl+lH @ wl#0. O

Addition of a Dirac Mass to a D,-Laguerre—Hahn Linear
Functional

Let % be a D,-Laguerre Hahn linear functional, u and ¢ two complex
numbers. The linear functional ¥~ % + ué,. is regular up to a countable
set of values of w [15].

PROPOSITION 8  Let % be a regular D,,-Laguerre Hahn linear functional
and V" U + ud., u # 0. Then we have:

i) ¥ is a D,,-Laguerre Hahn linear functional.
it) If ¥~ is regular, then the class § of 7~ satisfies

s 2=3=s+2, (50)

where s is the class of %.

Proof We assume that the Stieltjes function S(%) S satisfies Eq. (14).
In the first step, using the relation (7", x") (¥ 4+ ud.,x")
(U), + pc",n = 0, we get (see Ref. [11]1 S(%) S(V)+ (u/x o).
Next, from last relation and Eq. (14) we get that S(#7) S satisfies a
D,,-Riccati difference equation

dz+wD,S5z)  G(2)35()Sz + w) + E2)3(2)

+ F(2)S(z+w) + H®), (51)
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with
dx) x ¢ wkx odx), Gx & ox+w G,
Ex) (x o+w OE®+ux oG,
F) (x o@+w oOF®+ux+w oGX),
Hx) ( o@+w oH®+ux+w oE®)+ukx  oF(x)
+ G pdx +w). (52)
From Theorem 3, the linear functional 7~ satisfies
D, (oU) + G(x 'UT,U) FT,U+yU O, (53)
with ¢ (E+ D, ).
Second, we assume that % is regular as well as s max(d 2,p 1)

where d  max(deg G,deg ¢) and p  max(deg ¢, deg F) = 1. Using the
inequalitiesd = s+ 2 and p = s+ 1 we get

d max(degG,degd) =d+2=s+4,
deg(F) = max(deg F + 2,deg(G) + 1) = max(p +2,d + 1) = 5 + 3,
deg(E) = max(degE +2,deg(G) + 1) = max(p +2,d + 1) = 5 + 3,

degy = max(degE,degd 1) = max(degE,d 1)=s+3.

Then we conclude that p max(deg ¢, deg F) < s + 3 and, finally,

5 max(d 2,p 1)=s+2.

On the second hand, since % v~ wd. we have s =5+2. [

PRrROPOSITION 9 Let % be a D,-Laguerre Hahn linear functional
satisfying Eq. (14). Then for every zero a of ¢ different from ¢ and ¢ +
w, Eq. (53) satisfied by ¥V~ U + ud,. is not reducible with respect to a.

Proof We assume that Eq. (14) is not reducible with respect to every zero
a of ¢. Let a be a zero of ¢ different from c and ¢~ w. From Eq. (52), we
have:
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If G@ w)#0, then Ga@a w) (@ w ola ¢c)Ga w)#D0.
Equation (51) is therefore not reducible with respect to a.

We suppose that G(a w) O0.If E(a w)#0or F(a w)# 0, then
Ea@ w) (@ w oa oEa w#0orFa w (@ w o
(@ coF(a w)#0. Again, Eq. (51) is not reducible.

We suppose that G(a w) E@ w) F(a w) 0. Since
|G@a w)|+I|E(@ w)|+|Fa w)l+|H@ w)|#0, we deduce that
H(a w)#0.

Then, Ha w) (a w c¢)a c¢)H(a w)#0. Equation (51) is
still not reducible with respect to a and our statement follows. [

Next, we analyze the class of the functional ¥~ when % is the first
associated of the classical orthogonal polynomial of a discrete variable. We
state the following known result [8]:

LemMma 10 If % is a classical regular linear functional satisfying the
functional equation A(p%) YU where ¢ is a polynomial of degree at
most two and s a polynomial of degree one, the first associated UV U,
of U is a A-Laguerre Hahn linear functional. 9, and the Stieltjes function
S(Uy) Sy satisfy, respectively, the following functional and Riccati
difference equation

AN + Gi(x U T )+ U, FrT U0,
o+ DAS1(x)  G1(0)S1(0)S1(x + 1) + E;(x)S; (x)

+ F1(X)S1(X+ 1) +H1(x),

where
G ¥ ¢'/2 B ¢”/2)<x+1+¢(7m>,
0
o @ (+ ") o+ ag,
hW  E + A,
mw  sern (x5 )uw s
+ ¢”/2)<x+¢(70))<x+1+¢[(70)>. (54)
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In the following table, we give the above coefficients for the first
associated Charlier, Meixner, Krawtchouk and Hahn [16].

b [ G E, Fy H,y [0
Charlier x A x,A>0 1 Aoxo 1 1 A x A
Meixner x (A Dx+An0=A=1v>0 A |1 A Dx+A 1+ 1oay/a 1 (I Ax Aw D
Krawtchouk x  (1/9)((1 N x),0=g=1 /g &/e) (1 N+No/(g) 1 Ng 1) &/p+g DN 1)/q

For the first associated Hahn polynomials we have:

) =xN+a—x), pH)=B+DN-D-(a+B+2x, a>-1 B>-1

_(BH1-BN—D+a)a+B+1)

Gix)=—(a+B+1),E;x)= —(a+ B+ 1)x )

+2N+a+Na+NB+a2+aB—3—B—B(N—1)

Fiw=-x atpB+2

(BN =D+ D(PN 1D +2N+2a+a*+af—1+Na+Np)
(a+B+2)7°

H](x): )
1) = (e + B+ 3)x

_@N—a—aB— B>+ BN —Da+ BN — DHB+Na+NB+ BN —1)—3—3p)
a+pB+2 '

According to the definition, and from the above coefficients, the class of
the Laguerre Hahn regular linear functional %, is s class(%;) O.

We shall now study the class of the functional 7~ such that ¥~
U\ + nd, (with w # 0). It is known from the Proposition 8 that the Stieltjes
function S(¥") S satisfies the equation

dz+ DAS()  G@)S@S( + 1) + E@S@+F(2)Sz + 1) + H(z), (55)
with

dx) x ¢ D o), Gx) ¢ )x+1 )GX),

Ex) (x ox+1 oEx+ux oG

Fx) (x ox+1 oOF i +ux+1 ¢)Gix),

Hx) x o+l oHi+px+1 OEi@+ux oFi(x)

+1PGi(x)  pdx+ 1)
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Taking into account the fact that for the four families of D, -classical
polynomials (Charlier, Meixner, Krawtchouk and Hahn)

(E@|+1F@D(EE  DI+I1F D #0,

and does not depend of ¢, from Proposition 8 we deduce that when % is the
first associated classical orthogonal polynomial of a discrete variable, Eq.
(55) is not reducible and the class § of ¥~ % + uo, is given by

5 max(max(degG,degd) 2, max(deg,degF) 1) 2,

where the polynomial ¢ is defined by i(x) (E(x) + Ad(x).

Study of the Linear Functional  Such That (x ¢)% = p¥,
Where the #" Is a D,-Laguerre—Hahn Linear Functional

ProOPOSITION 11 Let % and W be two linear functionals related by
x ou wpW,where p and c are complex numbers. Then we have,

i) W is a D,-Laguerre Hahn linear functional if and only if U is a
D,,-Laguerre Hahn linear functional.

ii) If W is a D,-Laguerre Hahn linear functional of class s, then the
class § of U satisfiess 1=3=s5+42.

Proof (i) If #" is a D,-Laguerre Hahn regular linear functional and
S(#") S is the corresponding Stieltjes function satisfying Eq. (14), then
under certain conditions concerning ¢ and w, % is regular [13].

From the relation w(#"),, (#),+1 c(¥),, we get the link between S
and the Stieltjes function §  S(%) of U

S(x) %((x o)Sx) + 1). (56)
Substitution of Eq. (56) in Eq. (14) allows to conclude that S satisfies
dx +w)D,Sx) G5 (x + w) + E@)S(x)

+ F(x)S(x +w) + H(x), (57)
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with
dx) px )P,

Gx) x ox+w oGX),
A(x)  Gx)+ wEWX) + Fx) + p*H(x),
E(x) (x o)(Gx)+ pEWX)  plx+w),
F)y (x+w  o)(Gx) + pF(x)). (58)
Moreover, % satisfies
DU+ G(x ‘uT ) FT U+ U0, (59)

with (E+ D, ).
Conversely, from the relation (56), we deduce that if S S(%) satisfies

Bz +w)D,5(2) G528z + w) + E@)3() + F@)S(z + w) + H(z),
then S S(#') satisfies
Pz +w)D,S(z)  G(2)S(2)S(z + w) + E(2)S(2) + F(2)S(z + w) + H(z)
with
dx) px  O)dx),
Ex) udx+w) uGx)+ux+w oE®X),
Fey G +ux oFw, G G,
Hx)  de+m+Gr) G+w oEw®

@x OF)+@& okx+w oHX). (60)

(i) Secondly, we assume that s max(d 2,p 1) where d
max(deg G,deg ¢) and p  max(deg ¢, degs F) = 1. Using the inequalities
d=s+2andp =s+ 1 we get
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d max(degG,degd) =d+2=ys+4,
deg(F) = max(deg F + 1,deg(G) + 1) = max(p + 1,d + 1) = s + 3,
deg(E) = max(degE + 1,deg(G) + 1) = max(p + 1,d + 1) = s + 3,
deg iy = max(degE,degd 1) = max(degE,d 1)=s+3.

Then p  max(deg i, deg F) = s + 3 and, finally,
5 max(d 2,p 1) =s+2.

Secondly, Eq. (60) allows us to conclude (using the same process
as above) that if % is a D,-Laguerre Hahn linear functional of class
§, with 5 max(d 2,p 1), d max(degG,degd) and p
max(deg i, deg F), then the class s of #~ defined by s max(d 2,p
1) where d max(degG,deg ¢) and p  max(deg ¢, deg F) = 1 verifies
s = 5+ 1. Therefore we conclude thats 1 =5§=s+42. [

PROPOSITION 12 Let W~ be a D,,-Laguerre Hahn linear functional and
S(#") S the corresponding Stieltjes function satisfying Eq. (14). Then
Eq. (57) satisfied by the Stieltjes function S of U, where (x ~ c)U W', is
not reducible with respect to any zero a of ¢ different from c and ¢ + w.

Proof Let a be a zero of ¢ different from ¢ and ¢ + w. We have:

If Ga@a w)#0, then Ga w) (@ ca ¢ wGa w)#0
and Eq. (57) is not reducible.

IfGa w) OandE(@ w)#0or Fla w)#0,then E(a w)
wa w o)X Ea w)#0 or Fa w) ma oF@a w)#0.
Thus, Eq. (57) is not reducible with respect to a.

Finally if G@ w) E@ w) F(a w) 0, then Ha w)
w?H@a w)#0 since |Ga wW|+1E@@ w|+|Fa w)l+
|Ha w)|#0. O

Examples

Here we suppose that %~ %V %, and analyze the class of the A-
Laguerre Hahn linear functional % defined by (x o) w#", with
m # 0. According to the Proposition 11, ¥ and the Stieltjes function
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S(#w?) S of W satisfy, respectively, the functional and the Riccati
difference equation
AW+ GCx 'wTwy FTW+gw O,
d(x + DAS(x) = GO)SW)S(x 4+ 1) + E)S(x) + F0)S(x + 1) + Hx), (61)

with }

dx) px  o)dl),

Gx) (x okx+1 oG,

Hx)  Gi(x) + wE (x) + F1(0) + p*H, (x),

Ex) (x o(Gi(x)+ pE(x) pdx+1),

F)y 41 o)(Gi(x) + pFi(x),

P(x) (E(x) + Ad(x)),

where the coefficients £y, Fj, Gy, and H; are those given by Eq. (54).
Taking into account the fact that for the three families of polynomials
(Charlier, Meixner, Krawtchouk)

(EOI+FDEE  DI+I1Fe D #0,

and it does not depend on ¢, we use Proposition 12 to deduce that when %,
is the first associated classical orthogonal polynomial of a discrete variable
(Charlier, Meixner, Krawtchouk), Eq. (61) is not reducible and the class §
of %, defined by (x <)% wuW is

5 max(max(deg G,deg d) 2, max(deg i, degF) 1) 1,

where

Jx) (B + Ad(x)).

CONCLUDING REMARKS

i) Since lim,—¢D,  Z, we recover, by a limit process (w— 0) and
from the results obtained in this paper, the results already known for
the Laguerre Hahn orthogonal polynomials of a continuous variable
[11,17]. In this case the polynomial E + F is replaced by the
polynomial C of the Riccati differential equation satisfied by S (see
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Egs. (4) (14)):
¢S’ BS*+CS+D.

ii) In this paper we have given a characterization theorem for Laguerre
Hahn orthogonal polynomials of a discrete variable, extending some
previous work by Marcellan and Prianes [11,17] for Laguerre Hahn
orthogonal polynomials of a continuous variable to the Laguerre
Hahn orthogonal polynomials of a discrete variable. We have used
this characterization to define the notion of the class of the Laguerre
Hahn orthogonal polynomials of a discrete variable and we have
analyzed the class of regular linear functionals obtained by some
perturbations of a given Laguerre Hahn linear functional of a
discrete variable. We have proved that the first associated classical
discrete orthogonal polynomials are A-Laguerre Hahn orthogonal
polynomials of class s 0. Finally, the addition of a Dirac delta
functionals mass to the first associated of a classical regular linear
functional of a discrete variable gives a Laguerre Hahn linear
functional of class at most s 2. Notice that the above cases are
examples of homographic transformations in a Riccati equation. This
equation is invariant under such a kind of transformatons.
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