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Abstract 

 

The main purpose of study throughout this entire End of Degree Project would be the 

noise removal within speech signals, focusing on the diverse amount of algorithms 

using the spectral subtraction method. A Matlab application has been designed and 

created. The application main goal is to remove any meaningless thing considered as a 

disturb element when trying to perceive a voice; that is, anything considered as a 

noise. 

 

Noise removal is the basis for any voice processing that the user wants to do later, as 

speech recognition, save the clean audio, voice analysis, etc. 

 

 A studio on four algorithms has been executed, in order to perform the spectral 

subtraction: Boll, Berouti, Lockwood & Boudy, and Multiband. This document presents 

a theoretical study and its implementation. 

 

Moreover, in order to have ready for the user a suitable implementation of an 

application, an intuitive and simple interface has been designed. This document shows 

how the different algorithms work in some voices and with various types of noise. A 

few amounts of noises are ideal, used by its mathematical characteristics, while others, 

are quite common and presented in daily routine, it is presented as for example, the 

noise of a bus.   

 

To apply the method of spectral subtraction is necessary the implementation of a 

Vocal Activity Detector, able to recognize in which precise moments of the audio there 

is voice or not. Two types have been studied and implemented: the first one 

establishes the meaning of voice according to a threshold which is adequate to this 

record, while the second one is the combination of Zero Crossing Rate and energy. 

 

In the end, once the application is implemented, evaluating its performances was the 

next process, either in an objective and a subjective form. People stand point was 

considered and asked, in order to obtain the proper functioning of the application 

along different types of noise, voice, variables, algorithm, etc. 
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Resumen 

 

Este  Trabajo de Fin de Grado, consiste en el estudio de  la eliminación de ruido en 

voces; en concreto en el estudio de distintos algoritmos para el método de la resta 

espectral.  Se ha creado una aplicación en el programa de cálculo Matlab cuyo uso es la 

eliminación de todo aquello que nos pueda molestar a la hora de escuchar una voz, es 

decir, lo que se considera ruido. 

 

La eliminación de ruido es la base de cualquier tratamiento de voz que se quiera 

aplicar posteriormente; desde  reconocimiento de voz, el análisis de la misma,  la 

conservación de la grabación limpia. etc. 

 

Se ha hecho un estudio de cuatro algoritmos para llevar a cabo esta resta espectral: 

Boll, Berouti, Lockwood & Boudy y Multibanda. En este documento se encuentra tanto 

un estudio teórico, así como su implementación.  

 

Para la implementación de una aplicación que pueda ser usada por un usuario, se ha 

diseñado una interfaz fácil e intuitiva de usar, en ésta se muestra cómo funcionan los 

distintos algoritmos en distintas voces y con distintos tipos de ruido, algunos ideales, 

usados en las medidas oficiales de ruido por sus concretas características matemáticas, 

y otros, los de la vida cotidiana como el ruido de un autobús.  

 

Para aplicar el método de la resta espectral es necesario la implementación de un 

Detector de Actividad Vocal (VAD) que reconozca en qué momentos del audio hay voz 

o no. Se han estudiado e implementado dos: Uno de ellos establece qué es voz según 

un límite adecuado a esa grabación y el otro es la combinación de la Tasa de Cruces 

por Cero (ZCR) y la energía. 

 

Por último, una vez implementada esta aplicación se ha procedido a evaluar su 

funcionamiento, tanto de una forma objetiva como subjetiva, a través de la escucha de 

distintas  personas, las cuales dan su opinión,  para poder obtener el comportamiento 

de la aplicación con distintos tipos de ruidos, voces, variables, algoritmos, etc. 
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Chapter 1 

 

1. Introduction and objectives 

 

Throughout the following chapter the reader would encounter the diverse arguments 

and the multiple goals for which the Bachelor Thesis has been carried out. 

 

1.1. Setting and motivation 

 

In our present world, the recording and audio treatment is very common. And it would 

be possible the emergence of a discipline linked to this field. A necessary discipline 

able to take into consideration what many of the devices that usually use the speech 

need to run audio processing subsystems. Common examples are telephony and music 

applications. 

 The operation interface through the human voice is increasingly common. This way of 

working with the devices makes it easier to interact with computers, phones, etc. The 

control of these devices by voices is a way for old people and people with disabilities 

can access information. Moreover, this development allows disabled people to interact 

with the world around them trough these devices working voice. 

We also work with the conversion of analogue audio into digital audio in order to have 

more freedom to work with it. However, not all systems or devices seem to be perfect, 

since the process of working with audio most of times registers the presence of noise, 

something that can contaminate the signal of interest. 

Nowadays, noise removal techniques are pretty important, and must be taken as 

necessary first step. Consequently, the first thing that needs to be done is to clean the 

signal, removing unwanted and background noises. 

When performing voice activity detection, the quality of this cleaning may limit the 

voice recognition performance.  In addition, when recording music, listeners do not 

want to be disturbed with other noises that later would have to be heard. When 

talking about speech, the sound is even more important because that voice cannot be 

heard well. 

Therefore, this Bachelor Thesis would present different chapters, one of several forms 

of audio noise removal, particularly the one dedicated to eliminate noise at voice 
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recordings. Spectral subtraction algorithm has been chosen because it is the basis of 

many other noise removal techniques. Moreover, this technique implies low 

computational cost. 

 

 

1.2. Objectives 

 

The objectives of this Bachelor Thesis are to study different algorithms which one 

carries on the spectral subtraction and to study the results. Another goal consists in to 

analyze their performance in different scenarios as well as to determinate according to 

objective and subjective criteria about which is the most suitable for our main 

objective, to clean an audio signal. How these algorithms operate for each type of 

noise would be another subject to analyse in deep way. 

Furthermore, another objective of this Bachelor Thesis is to study different types of 

voice activity detectors and to implement the one that best fits the subsequent 

spectral subtraction. I mean, this module has to be able to estimate the noise well and 

not cut the words. 

This project is formed by several modules. The first one is devoted to data acquisition. 

It involves the recording of speech of different types under different ambient noise 

conditions. 

The second module examines the voice activity detector (VAD). Studying and creating 

a suitable and proper one which would act at the base of the spectral subtraction 

algorithm. A high classification error rate in the VAD will lead to poor estimations of 

the noise spectra. This fact will bring out a severe deterioration of the performance of 

noise canceller. 

The third module focuses on the spectral subtraction, studying the different algorithm 

chosen. Its implementation has been done and all the appropriate improvements have 

been inserted. 

The last module is the testing. Obtaining a subjective and an objective quality 

measures so as to assess the performance of the analyzed algorithms is its main target. 
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1.3. Reading Guide 

 

This project report is divided into 8 chapters, which are described below.   

 

 Chapter 1: Introduction and objectives. 

This chapter includes a brief introduction about one of several form of audio 

noise removal is made, particularly focusing in eliminating noise of voice 

recordings. A description of the motivations and the objectives of this End of 

Degree Project are also provided.  

 

 

 Chapter 2: State of the art. 

A general theoretical basis of audio signal processing is explained in this section 

and a study about different analysis techniques is done. As well as the problem 

that there is necessary to eliminate: the noise in voice signal. 

 

 Chapter 3: Technical solution design.   

The technical solution design is explained from the point of view of the theory. I 

explain the different algorithms, the problem with noise and distortions, and 

the necessary algorithm to carry out the spectral subtraction. 

 

 Chapter 4:  Implementation. 

This section explains the development of the spectral subtraction application in 

Matlab.  

 

 Chapter 5:  Results. 

This chapter describes the experimental work carried out to validate the 

theoretical analysis presented in the previous chapters. The experiments 

include noise cancellation in different environments (bus noise, restaurant 

noise, etc) and with different target signals (male, female).  

 

 Chapter 6:  Application uses and future lines. 

This chapter explains the futures steps which are not carried out in this project 

and its uses. 

 

Finally, the last two chapters show the conclusions of this project and the budget.  
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Chapter 2 

 

2. State of the art 

 

2.1. Introduction to digital audio signals 

 

A digital audio signal is a representation of sound signals through a stream of binary 

data. 

Usually a digital audio system originates from a transducer (a microphone) which 

converts the sound pressure wave into an analogue electrical signal. 

This analogue signal passes through a processing system which has the ability to apply 

different treatments as audio frequency equalization, amplification and other 

processes. 

As an example of what has been previously said, the equalization counteracts the 

frequency response of the transducer used to form the analogue signal so that the 

final signal closely matches the original audio signal. 

The digital audio signal is finally obtained after sampling, quantizing and coding, in 

order to be converted into a digital audio signal. Sampling would involve the process of 

taking a number of discrete analogue signal values per second (sampling frequency), 

using and discrete number of values so as to codify the value. That procedure implies a 

loss of information, since the values of the signal are approximated to the nearest code 

value. The digital signal consists of the coding sequence of bits assigned to each 

discrete analogue value. 

The quality of this process depends primarily on two values: 

 

 Sampling rate: 

The sampling frequency is the number of samples per time unit taken from a 

continuous signal to produce a discrete signal. It is expressed in Hz per time 

unit. The Nyquist-Shannon theorem states that for a signal to be properly 

sampled, the sampling rate must be at least greater than twice the highest 

frequency to be sampled.  
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Although the audible frequencies for humans are between 20 and 20,000 Hz, 

the human voice is almost always below 10,000 Hz. The sampling frequency 

must be chosen in accordance with the use to which the signal and the target 

are intended. 

 

 Bit depth: 

The term bit depth describes the number of bits with which each sample is 

recorded. It corresponds to the resolution at which each sample is quantified. 

When the value of bit depth values is higher, the result obtained would be 

more close to the reality. This loss of information is called quantization error, 

and it is the difference between the real value and the assigned one. 

 

An example of use of sampling frequency and bit depth is: 

 

 

Table 2.1  Example of uses of sampling frequency and bit depth. 

 

 

2.2. Analysis techniques 

As mentioned in the preceding paragraph, in order to signal, it is necessary to 

summarize along this section the most important signal analysis methods that have 

been used, such as windowing and frequency analysis. 

 

2.2.1. Window functions 

 

The mathematical functions called "windows" are used in the analysis and signal 

processing to alleviate the problem in which the audio signal is not stationary. The 

windowing allows the analysis of stationary stages of the audio signal, and consists in 

grouping a number of consecutive samples in a segment, so as to process lately each 

segment individually. Taking small pieces of the signal, those sections could be 
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considered stationary when the signal is processed, and thus avoiding the problem of 

non-stationary voice signal. 

There are a lot of types of windowing, for example: rectangular windowing, Hanning, 

Hamming, Gauss, Triangular, etc [1]. 

In this case the Hanning window has been chosen. It has the shape of a cycle of a 

cosine wave plus an offset so it is always positive. 

 

 

Figure 2.1 Example of Hanning Windowing. 

 

By multiplying the signal by the Hanning window the beginning and the end tend to 

zero, avoiding problems when moving to infinite frequency signal. 

By contrast, as it also adds distortion to both ends, forcing the area to zero modifies 

the signal. 

 

2.2.2. Frequency analysis 

 

Converting a signal to the frequency domain is the result of decomposing the signal 

into sinusoidal components. For this purpose, two mathematical tools are used, 

depending on the continuous or discrete nature of the signal. 

For continuous signals, the Fast Fourier Transform (FFT) is employed, while for discrete 

signals or sequences the tool must be the Discrete Fourier Transform (DFT). This 

project focuses on the DFT, as the digital audio signals are discrete signals or 

sequences. 
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2.2.2.1. Discrete Fourier Transform (DFT) 

The Discrete Fourier Transform, or the Fourier transform of a sequence x [n], is a 

function        [eq.2.1], continuous and periodic, with period 2π. It can be computed 

with the following expression: 

  

                 

 

    

 

[2.1] 

The inverse Fourier transform to sequences (IDFT) will return the original sequence, 

being its expression called synthesis: 

 

     
 

  
             

 

  

 

[2.2] 

To synthesize again x[n] the inverse Fourier transform must be used. 

As        is a complex function with real and imaginary components, it can be 

represented as: 

 

                      
    

[2.3] 

Or, in polar form, the module and phase decomposition: 

 

                             

[2.4] 

Where           is the module and         the phase. 
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2.3. The noise 

 

When talking about noise in the field of acoustics sing, there is a necessity to define 

the concept of “noise” as any unwanted and annoying sound that can interfere with 

the reception of the sound wanted, or in a processing with it.  

 

In general terms the noise can be classified into: 

 

 Additive noise:  

The additive noise can be seen as the noise from various sources that coexist in 

the same acoustic environment. 

 

 Interfering signals:  

In the case of voice signal, the interference signals come from other speakers 

than those of interest. 

 

 Reverberation:  

This effect is produced by multipath propagation. It occurs in enclosed or semi-

enclosed acoustical environments and it is a form of distortion. 

 

 Echo:  

Usually it is produced by the coupling between the microphones and speakers. 

It is another form of distortion. 

 

There are multiple studies devoted to each of these classes of noise or distortion, and 

these have led to different speech processing techniques designed to eliminate one of 

these types. 

In this project there would be a focus on additive noise and possible ways of 

eliminating it. 

 

2.3.1. Additive noise 

 

The noise additive is considerate when the signal is formed by the addition of clean 

speech and noise. Thus, the noise reduction carries out the task of separating these 

two signals in the most optimal way.  
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An initial proposal would be to treat the noise elimination as a parameter estimation 

problem, where the optimal estimate of the clean speech can be carried out under the 

criteria of certain factors. For example, the factor MSE (Mean Squared Error) or the 

SNR (Signal to Noise Ratio) of the estimation of the clean speech versus the original 

audio will be an example. 

 In some cases, the results obtained using a method of noise removal are not 

considered optimal from the stand point of the listener, and here arises the subjective 

perception. 

For this reason, subjective and objective aspects should be taken into account. 

Upon the objectives to be achieved are: 

 

 Optimize the objective criteria, MSE, SNR, etc. 

 Optimize the perceived quality of the reconstructed signal (subjective criteria). 

 

It can be considered as a pre-processing step to further voice processing and it can 

lead to an increase in the robustness of other systems (speech coding, speech 

recognition, etc...) against the noise. 

The compliance objective determines the complexity and difficulty of the filtering 

method and hardware. An example of the variation of the number of hardware is the 

number of microphone or channels to be used. The more available channels, the more 

options for improved voice quality. 

Although the situation of multiple microphones (or microphone “array”) is not the 

most common. An example of this is a mobile phone that only has a microphone 

through which voice and ambient noise are equally taken. This case consists of a single 

channel system. 

The monochannel and multichannel techniques will be discussed later in detail. 

When focusing in monochannel systems, Professor Schroeder was one of the firsts to 

propose an implementation of spectral subtraction, about 1958. Fifteen years later this 

model was applied to the field of digital signals. Around 1979, researchers like Jae S. 

Lim and Alan V. Oppenheim [21], performed an analysis of the technique that existed 

in that moment, within the field of enhancing speech signals, and concluded that the 

reduction of noise was not only beneficial to the quality of the recovered voice, but 

also to the quality and intelligibility of linear predictive coding (LPC), broadly used in 

coding and voice recognition systems. 
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The techniques developed so far can be classified into three groups, depending on the 

noise reduction method: Linear adaptive filtering, Spectral subtraction and model 

based [21]:  

 

 Linear adaptive filtering: 

The basis of adaptive filtering is to process the noisy signal with a linear filter 

that is adapted to remove noise, thus reducing the noise component and 

leaving the speech signal with the less possible amount of distortion. 

 An example of this is the RLS estimation (Recursive least squares filter). 

 

 Spectral subtraction:  

Spectral subtraction methods reduce noise through a spectrum estimation of 

the speech signal from the original noisy signal.  

An example would be the MMSE algorithm (Minimum-Mean-Squared-Error). 

 

 Based on model: 

Reduction methods based on models reduce the Noise Ratio as a parameter 

estimation problem, which use mathematical models of voice generation.  

An example is the LP-Kalman technique (linear prediction).  

 

2.3.2. Psychological and physiological effects of noise 

 

The noise can be quite annoying in everyday life, as it interferes in activities such as 

study, work, sleep or even leisure time. It causes fatigue, forces us to make an extra 

effort and can cause irritation and headache. The noise with many decibels can cause 

temporary or even permanent deafness. 

Psychologically, it has negative effects on worker productivity and efficiency because 

of a decrease in the concentration. 

An example of this is the white noise that can be used to mislead people or as a 

sensory deprivation technique. Depriving the human from the other sounds, with 

white noise, can also be used to promote relaxation and sleep, or to mask other 

sudden and distressing noises. 
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2.3.3. Classification of the types of noise depending on their 
nature. 

 

According to its nature, noise can be classified into different types: 

 

 Acoustic noise:  

It emanates from moving, vibrating, or colliding sources. This type of noise is 

the most typical in everyday life. It is generated by sources such as computer 

fans, air-conditioners, traffic, wind, people talking, rain, etc. 

 

 Electrostatic noise:  

This kind of noise is generated by the presence of a voltage with or without 

current flow. 

Fluorescent lighting is one of the most common sources of electrostatic noise. 

 

 Electromagnetic noise: 

Present at all frequencies and in particular at radio frequencies. All the 

electrical devices used to transmit and receive signal generate electromagnetic 

noise (radio, television, etc.). 

 

 Processing noise: 

It is the noise that results from the digital or analogue processing of signals. The 

quantization noise in the digital coding of speech or images would be an 

example, or noise due to packet loss in digital communication systems. 

 

 Channel distortions, echo and fading: 

This noise is the result of non-ideal characteristics of communication channels. 

The mobile phone communications are particularly sensitive to the propagation 

characteristics of the channel. 
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2.3.4. Classification depending on its frequency or time 
characteristics 

 

Depending on its frequency or time characteristics, a noise process can be classified 

into one of several categories: 

 Narrowband noise: 

A noise process with a narrow bandwidth such as a ‘hum’ from the electric 

network (50/60 Hz). 

 

 White noise: 

It is a purely random noise with a flat power spectrum. White noise contains 

theoretically all frequencies with equal intensity. 

 

 Band-limited noise: 

It is a noise with a flat spectrum and band-limited, which usually covers the 

limited range of the device or the signal of interest. 

 

 Colored noise: 

Non-white noise or any wideband noise whose spectrum has a non-flat shape. 

Examples are pink noise, brown noise and autoregressive noise. 

 

 Impulsive noise: 

It consists of short-duration pulses of random amplitude and random duration. 

 

 Transient noise pulses: 

This consists of pulses of relatively large length. 

 

2.3.4.1. White noise 

The white noise is defined as an uncorrelated noise process with equal power at all 

frequencies. The values of the signal at two different times are statistically 

uncorrelated. As a result, the power spectral density (PSD) is constant, presenting a flat 

graph [figure 2.2]. 
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A noise that has equal power in all frequencies in the range of ± π must have an infinite 

power, although this is only a theoretical concept. 

The shape of white noise is as follows: 

 

Figure 2.3. White noise. 

 

This type of noise is not always annoying, since its features can even make it useful. 

The following uses can be highlighted: 

 

 In linear time invariant systems, it is used to determine the transfer function. 

In architectural acoustics, the transfer function is used to measure the acoustic 

insulation and room reverberation. 

 

 In audio synthesis (electronic music), it is used to synthesize the sound of 

percussion instruments, deaf or speech phonemes. 

  

f 

Pnn (f) 

t 

Rnn (t) 
(a) (b) 

Figure 2.2. White noise Autocorrelation (a) and its power spectrum (b). 
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2.3.4.2. Colored Noise 

Although the concept of white noise is very important within the field of 

telecommunication systems, many other noise processes are considered non-white. 

Therefore, the term of colored noise includes any broadband noise with a spectrum 

that is not flat. Examples of coloured noise are mostly audio frequency noise, caused 

by cars movement, the fan noise from computers or the background noise of people 

talking. All these noises have a spectrum that is not white, and which have 

predominantly low frequencies. 

If white noise goes through certain channel, and changes its characteristics, it becomes 

colored noise. The two most popular classes of colored noise are pink and brown 

noise. 

In brown noise, spectral density is inversely proportional to frequency [figure 2.4].  

Hence, lower frequencies have more energy. It decreases in power by 6 dB per octave 

(20 dB per decade). 

 

Figure 2.4 . A brown noise signal (a) and its magnitude spectrum (b). 

 

The Pink noise is used to make acoustic measurements, and in the practice it is used to 

equalize room acoustics and to perform audio calibration. 

This noise is also characterized by a spectral density, which is inversely proportional to 

frequency [Figure 2.5]. Pink noise shows a very particular characteristic, and this is the 

main reason why the noise level would be constant when processed through an octave 

band filter. Octave band filters, as well as one-third of octave band filters, are 

proportional between them and thus whenever we lower an octave, we double the 

bandwidth. Hence, the pink noise decreases 3dB per octave, just the rate at which the 

width increases band, correcting the integrated level of total noise. In conclusion, pink 

noise has a constant noise level in all octave bands.  
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Figure 2.5. A pink noise signal (a) and its magnitude spectrum (b). 

 

2.3.4.3. Impulsive noise 

The impulsive noise consists of short duration pulses, due to a variety of sources such 

as noise switches, grooves or surface degradation of audio recordings, "clicks" of 

computer keyboards, etc.  

One of the most significant characteristic of this kind of noise is that, supposing that 

the signal is ideal, in the time domain the signal is a delta however in the frequency 

domain it’s a constant. This characteristic is appreciated in the next figure: 

 

 

 

 

 

 

 

Figure 2.6. Ideal pulse in the time domain (a) and in frequency domain (b). 

 

In communication systems, a real boost noise lasts more than one sample. For 

example, in the context of audio signals, one sharp pulse with short-duration of up to 3 

milliseconds (60 samples at a 20 KHz sampling rate) may be considered as impulsive 

noise. 

In communication system, an impulsive noise originates at some point in time and 

space, and then propagates through the channel to the receiver. This leads to 

n (t) =  (t) 

t 

N (f) 

f 

(a) (b) 
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discomfort in speaking. The figure 2.7 is the a real signal where we can appreciate the 

differences with the ideal signal [figure 2.6] 

 

 

 

 

 

 

 

Figure 2.7.  Real pulse in the time domain (a) and in frequency domain (b). 

 

Yet often, this kind of noise is not considered as impulsive noise. The noise received is 

in turn dispersed in time and coloured by the channel itself, so it can be considered as 

the impulse response of the channel. 

In general terms, the characteristics of communication channels can be linear or non-

linear, stationary or time-varying. Indeed, most of the channels present non-linear 

responses to large amplitude pulses [figure 2.8]. 

 

 

 

 

 

 

 

 

 

 

 

 

  

n(t) 

t 

N(f) 

f 

(a) (b) 

n1(t) 

t 

(a) (b) (c) 

n2(t) n3(t) 

t t 

Figure 2.8. Variation of the impulse response of a non-linear system with the 
increasing amplitude impulse. 
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2.3.4.4. Transient Noise Pulses 

These usually present sharp pulse profiles, which are followed by a drop formed by low 

frequency oscillations [Figure 2.9]. The initial pulse is usually the result of some 

impulsive interference (external or internal), and the fluctuations are usually caused by 

the communication channel resonance, which is excited by the initial pulse. Therefore, 

it would be considered as the response of the channel to the initial pulse. 

 

 

Figure 2.9.  Example of transient pulse. 

 

Thermal noise is based on thermodynamic concepts, and it is associated to the 

particles random motion, dependent on the temperature, as for example gas 

molecules in a container or electrons in a conductor. 

The average of these random movements tends to zero, although the problem is the 

fluctuations over this average, which cause thermal noise. For example, the 

movements and collisions of gas molecules in a closed space, which generate random 

fluctuations, above the average pressure. 

As temperature rises, the kinetic energy of the molecules and the thermal noise 

increases. 

Similarly, if an electrical conductor has a large number of free electrons, ions along the 

conductor randomly vibrate around their equilibrium positions obstructing the 

movements of electrons. The free movement of electron flow forms spontaneously 

random noise or thermal noise. The electrons move to higher energy states because 

the conductor temperature increases, thus increasing random stream flows. 
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2.3.4.5. Electromagnetic noise  

Every electrical device that generates, uses, or transmits energy is a potential source of 

electromagnetic noise and interference to other systems. High voltage or current 

levels, together with the proximity to electric circuits or devices, produce most of the 

induced noise. 

The most common sources of electromagnetic noise are radio receivers, televisions, 

microwave transmitters, transformers, cellular phones, motors, generators, 

fluorescent tubes and thunderstorms. 

The sources can be divided into two types: 

 Electrostatic noise. 

 Magnetic noise. 

 

These two types are different and they need different shielding measures. But the 

problem is that most of the noise sources produce both types together. 

Electrostatic fields are generated by the presence of voltage, with or without passage 

of current. Fluorescent lights are one of the most common sources of electrostatic 

noise. 

For magnetic noise, motors and transformers are current driven examples, and 

without current, one example is the Earth's magnetic field. 

 

2.3.4.6. Channel Distortions 

When propagating through a channel, the signals are shaped and distorted by the 

frequency response and attenuation characteristics of the channel. 

In the case of the analogue audio, there are two types of distortion in the channel: 

module and phase distortion. 

Furthermore, in radio communications, there is the effect that produces a signal that is 

transmitted through different paths to the receiver. This results in multiple versions of 

the signal with different delays and attenuations. Channel distortions can degrade the 

signal or even interrupt the communication process. 
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2.3.5. Denoising techniques  

 

Voice communication under noisy conditions implies a great effort. Certain sounds are 

masked with noise, making it difficult to hear audio and making speech intelligible. 

Other forms of degradation of speech are the reverb and channel distortions due to 

multiple factors, such as the quality of the recording and reception equipment, 

together with the characteristics of the transmission channel and effects, due to 

different types of digital signal encoding used for transmission. 

The purpose of all these techniques to improve speech intelligibility is to increase the 

speech audio signal, so that those parts that were incomprehensible, after this 

process, become clear. For this purpose, programs usually remove noise signals as 

much as possible, trying not to distort the audio signal of interest. 

We can establish a division between the processing techniques by the number of 

channels employed for audio input: monochannel and multichannel. 

 

2.3.5.1. Monochannel techniques  

The first monochannel techniques consisted in to use the Wiener filter and in other 

techniques based on the periodicity of voiced speech, as the adaptative comb filter or 

the harmonic selection [21]. 

The main monochannel techniques are those based on a direct estimation of the 

spectral amplitude in a short time period and, and which are named “Spectral 

Subtraction”. 

The basic principle of the spectral subtraction is the Boll method [5], created by Steven 

F. Boll. The main propose is to obtain, during segments without speech, a noise 

spectrum estimator of the contaminating noise, for later subtraction in the frequency 

domain of the instantaneous spectrum of the input signal in each moment. 

Spectral subtraction is not perfect, and this aspect must be taken into account. 

Subtracting an estimation of noise, rather than the actual noise spectrum at each 

instant, can create spectral peaks that do not belong to the original signal. When 

returning to the time domain, these results in very short duration tones whose 

frequencies vary from frame to frame. This effect is called musical noise and it should 

be avoided. 

However, the study of Berouti [3] introduced a possible solution to this musical noise. 

He established a minimum threshold below which spectral subtraction cannot be 

applied, attenuating musical noise but increasing the mean noise level. 
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Later, Lockwood and Boudy [12] proposed another solution: non-linear spectral 

subtraction. The thresholds and the factors are not constant because they will apply in 

less or more measure the spectral subtraction depends on the frequency. This 

optimizes the amount of noise that we can subtract without the appearance of musical 

noise. 

Another option is to take into account the perception of people using auditory models 

and including the characteristics of human hearing and masking ability of certain 

sounds. The overall of this procedure is too complicated and it does not work well in 

general terms. 

The last method presented is called multiband subtraction [18]. This considers that the 

noise is coloured and does not affect equally the whole spectrum, since it is not linear. 

 

2.3.5.2. Multichannel techniques 

There are three primary techniques according to the number of audio inputs: 

 

 Two channels: 

This technique requires two input channels to make use of adaptive filtering so 

as to improve the signal contaminated. The limitation of this technique is the 

necessity to take in one of the channels as a good reference of the input noise. 

It is widely used in aviation. 

 

 Multiple input channel. Microphone arrays:  

It takes into account two factors: 

 

 Additive acoustic noise, which is the one that reaches the receiver from 

unwanted sources. 

 The reverberation due to the transmission of signals between two 

points in the same room. 

 
These factors will depend on the characteristics of the room and the amount, 

type and position of the sound sources. By using microphone arrays, achieving 

a receive beam which steers its direction is possible, so as to get the desired 

signal by combining the outputs of the microphones while attenuating most of 

the other signals or noise. The main drawback is the need of a specific 

hardware. 
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 Binaural process: 

This is the best system because it is similar to the human ear’s system. 

The human brain is capable of focusing on a conversation formed by two 

different signals that reach each ear, ignoring all others sounds. For example, it 

is able to distinguish one instrument between several other instruments 

sounding simultaneously. 

This ability is the result of the combination of two phenomena. First, the 

“binaural processing” based on the use of both ears to improve human hearing 

capabilities (e.g. the discrimination sources or spatial localization). Second, the 

analysis of the auditory scene, whereby the brain reconstructs the outside 

world with the sound signals it receives. 

For years scientists have done multiple and diverse experiments in which they 

have studied the functioning of the human ear. This takes into account many 

variables, since hearing depends not only on the ears, but also on the rest of 

the environment, such as the hair and the whole head, being also very 

influential. 
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Chapter 3 

 

3. Technical solution design:  Spectral subtraction 

 

3.1. Introduction and explanation of the algorithm 

 

From the total amount of options that have been studied, the Spectral Subtraction has 

been selected the best choice for diverse reasons. Primarily, there will be usually only 

one signal being recorded at a time with no reference noise. Furthermore, spectral 

subtraction requires only one signal, and consequently, employing a monochannel 

technique. Throughout this project, the investigation and implementation of the 

spectral subtraction will be faced, since it is the base of the other algorithm for 

denoising.  

The spectral subtraction is a technique which implies low computational cost and 

consists in a simple concept. 

There are three fundamental requirements involved in an audio signal noise removal 

method: 

 Improved signal to noise ratio (SNR). 

 Intelligibility and naturalness of the improved signal. 

 Computational simplicity. 

 

This method assumes that speech and noise are incorrelated, and the noise is added in 

the time domain. Therefore, the power spectrum of the noise signal is the sum of the 

power spectrums of the speech and noise. It is also important to mention that the 

noise characteristics will vary slowly with respect to the voice signal. Hence, there is a 

need to assume the fact that the noise is stationary, and with constant variance. In 

consequence, to suppress noise from the contaminated signal, its spectrum can be 

estimated during a voiceless segment. Nevertheless, unwanted effects would appear. 
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The noisy signal can be defined in the time domain as the sum of two components 

[eq.3.1]: 

 

                

[3.1] 

Where:        Is the noisy signal. 

        Is the original signal without noise. 

        Is the noise. 

In the frequency domain the equation 3.1 is: 

 

                

[3.2] 

The input signal is windowed in segments of data, containing a predefined number of 

samples, being these subsets named frames. In this case, the Hanning window is 

applied. Then, it is transformed to the frequency domain by means of the DFT. The 

windowing compensates the effects caused by discontinuities at the edges of each 

data frame.  

The process of the subtraction, in a very general way, is: 

 

       
 

                        
 

 

[3.3] 

Where:        
 

 is the estimate of the original signal spectrum       . 

          is the contaminated signal. 

               
 

is the noise spectrum averaged over time.  

 

   is the variable that controls the amount of noise subtracted, where     means 

that the complete calculated noise is subtracted. If    , the noise signal is amplified 

for an over-subtraction of the noise signal. The spectral subtraction can be done in 

power or in magnitude. 
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In the periods of absence of voice, the noise is averaged as follows: 

 

             
 

  
 

 
         
   

   

 

[3.4] 

If b=1, magnitudes are subtracted, while if b=2, we are working with power. The i sub 

index indicates the frame number and k frames which are expected during the 

averaging period. The average spectrum of the noise can be obtained as the output of 

a digital low pass first order filter: 

 

              
 

                                         

[3.5] 

For a typical filter, ρ is usually a value between 0.85 and 0.99 [6]. 

My choice has been working in the frequency domain with the power spectrum 

subtraction. So, the value takes in the [eq. 3.6] for b is 2. The equation will be there: 

 

       
 

                             

[3.6] 

In order to return to the time domain, the estimated magnitude spectrum         is 

combined with the phase of the noisy signal, and then transformed into the time 

domain through IDFT (Inverse Discrete Fourier Transform), the inverse DFT process 

(Discrete Fourier Transform) [eq. 3.7]. 

 

                      

   

   

    
  
 

   

[3.7] 

In the previous equation,       is the phase of the signal with noise       that was 

mentioned earlier in the process. 
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The following equation is used to avoid negative results: 

             
                             

                                   
  

[3.8] 

The figure 3.1 shows a block diagram of the spectral subtraction algorithm. 

 

 

 

 

 

 

Figure 3.1. Block diagram of spectral subtraction. 

 

If we show it graphically, the following would happen:  

On one side, we have the original signal is presented [Figure 3.2], from which the noise 

signal is estimated [Figure 3.3]. 

 

 

Figure 3.2. Original noise signal. 
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Figure 3.3. Noise estimate obtained from the subtraction of Figure 3.2 and Figure 3.4. 

 

When subtracting the estimated noise [Figure 3.3] to the original signal [Figure 3.2], 

the reconstructed signal is obtained after applying the spectral subtraction [Figure 

3.4]. 

 

 

 

Figure 3.4. The restored signal after applying the spectral subtraction (c). 

 

The [Figure 3.4] is the cleaned signal, i.e., this is the result of apply the spectral 

subtraction to a signal with noise. 
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3.2. Problems with musical noise and distortions 

 

The main problem of the spectral subtraction is the non-linear distortion of the 

processing, caused by the nature of random noise. 

There are three sources of distortion: 

 Variations of instantaneous power of noise. 

 Signal and noise cross-product terms. 

 Non-linear mapping of the estimated spectrum which falls below a threshold. 

 

The distortion that appears most often is the one due to non-linear mapping of the 

negative estimations or small valued, in the estimates. This distortion produces a 

metallic sounding noise called musical tone noise, as a result of its narrow spectral 

band. 

The success of the spectral subtraction depends on the ability of the algorithm to 

reduce variations of noise and compensate the processing distortions. In the worst 

case, the residual noise may have the following forms: 

 A sharp though peak in the spectral signal. [Figure 3.5]. 

 Isolated narrow frequency bands.[Figure 3.5]. 

 

Near a frequency of high amplitude, the noise mentioned in the first case is often 

masked, and made inaudible by the high signal energy. The principal cause of 

degradation of the signal is the second case, which causes the musical tones previously 

mentioned, and formed by narrow bands of low level and short duration. 
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Figure 3.5.   Example of distortions in spectral subtraction. 

 

 

3.3.  Algorithms to perform the spectral subtraction 

 

The various algorithms performing the spectral subtraction are: 

 

3.3.1. Boll Algorithm 

 

This algorithm is the basis of all types of spectral subtraction. The main idea of this is to 

obtain, during the absence of speech segments, a noise spectrum estimation of the 

pollution noise and then subtract this estimation in the frequency domain. It 

performed to produce the type of noise appointed previously, musical noise. From this 

method, others are developed. 

The main intention of the algorithm is to obtain, in the absence of voice, an estimator 

of noise, so as to subtract it lately from the noisy signal.  

Here is when an audio signal with noise appears. The noisy signal is considered to be 

the sum of the signal and the noise. 
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We take the equation [3.1] is taken, together with the Fourier Transform: 

 

                     

[3.9] 

Where:                

                 

   

   

 

     
 

  
             

 

  

 

[3.10] 

As we cannot have N, we replace it with an estimate of N, calculated during the 

periods without vocal activity. Consequently,        would be replaced by an 

estimate of the noise             . The spectral estimator is as follows: 

 

                                        

[3.11] 

As already discussed, a spectral error appears: 

 

                                              

[3.12] 

To try to avoid the error, three processes would take place afterwards. We talk about 

this improvements are presented in the chapter 4, since these three processes in all 

the algorithms are applied there. 

 

3.3.2. Berouti Algorithm 

 

The aim of this algorithm is the reduction of a musical noise, as a result of the 

subtraction of average noise spectrum of an instantaneous spectrum, using over-

subtraction and the value of the minimum spectrum. 
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Thus, this algorithm introduces a possible solution to musical noise. The researcher 

established a minimum threshold below, in which spectral subtraction cannot be 

applied, attenuating musical noise but increasing the mean noise level. 

This spectral subtraction is carried out not in the power domain, but raised to a power 

γ spectrum. For the ith degraded speech frame,      , if you have an estimate of the 

noise power spectrum like         
 
, the plot is achieved as follows: 

 

                               
  

 

[3.13] 

Then, a full wave rectification is applied, obtaining the power spectrum estimate of the 

clean speech as: 

 

        
 

       
 
γ                           

 
 

                                        

   

[3.14] 

Where      , being   the value of the minimum power and          a factor of 

pre-subtraction dependent on the signal to noise ratio of the frame I, with values 

between 1 and 5.  

The resulting SNR will be: 

              
           

   

        
    

   

  

[3.15] 

From this equation α is given by: 

 

  

                                           

   
 

  
                    

                                          

  

[3.16] 

When performing an over-subtraction (α> 1), the spectrum is more attenuated 

resulting in a reduction of residual noise and an increase in audible distortion (musical 
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noise). To avoid this issue, a suitable value for β must be selected experimentally (for 

example β=0.002) as this parameter limits the amount of noise removed for small 

values of the speech where the subtraction noise can lead to negative values. 

 

3.3.3. Lockwood and Boudy: non-linear spectral subtraction 

 

This algorithm is a non-linear spectral subtraction. The subtraction and thresholds 

established are frequency dependent. The fact that this algorithm is non-linear is an 

advantage, since the subtraction algorithms fixed parameters are not well adapted to 

the characteristics and noise level variations, differing from the Berouti’s method, in 

which          is a function of the frequency, i.e. the frequency-dependent SNR. 

The amount of subtraction is smaller for high SNR spectral components and increases 

for low SNR spectral components. 

To calculate the          , the approach is the same as in the method of Berouti, yet 

taking into account all frequencies. The value of the SNR, in dB, would be: 

 

                 
       

       
   

[3.17] 

From this equation [eq. 3.17], the           will be: 

            

                                           

   
 

  
                    

                                          

  

[3.18] 

The next step is the spectral subtraction: 

 

                                  

[3.19] 
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The estimation of noise would be: 

 

          
  

       
 

[3.20] 

The parameter   determines the influence of the SNR in the estimation of noise.  

Within the next equation    is the maximum value of the last "M" noise spectrum: 

 

α        
     

         
 
  

[3.21] 

Finally, the estimated signal, with a half-wave rectification, is:  

 

          
                                                   

                                                     
  

[3.22] 

Where β is the minimum value of the spectrum. 

 

3.3.4. Multiband Algorithm 

 

All the methods that we have discussed before estimate the noise throughout all the 

spectrum of speech signal. However, the real noise is coloured and does not affect 

equally all the spectrum of the signal. 

Depending on the frequency, coloured noise affects in more or less depth. And this 

takes it into account in the spectral subtraction to get a subtraction that fits the voice 

signal, the one we are working with, and get better musical noise reduction. 

The target of the method is to estimate a factor able to subtract the required amount 

of the spectrum of noise, depending on the frequency band, so as to avoid its voice 

destruction. 

The additive noise is assumed to be like stationary and non-correlated with the clean 

signal. There is an estimation of the noise          during the periods without speech, 
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because there is no possibility obtains the noise spectrum directly from the noise 

signal. On the basis of the method of Berouti [eq. 3.14] we have the next equation: 

 

                               
  

 

[3.23] 

This supposition (eq. 3.23) assumes that the noise affects the entire signal equally and 

also the over-subtraction factor “ ” is constant in the entire signal too. Though this 

does not conform to reality. The best way to be faithful to reality is divide the 

spectrum in B non-overlapping bands and apply spectral subtraction to each band 

separately. 

The estimation of clean spectrum voice in the band “b” is obtained: 

 

        
 

                       
 
                        

[3.24] 

Where     is the first frequency of the band b of frequency, and    is the last. And    if 

the over subtraction factor in the band b. 

SNR is also needed. Hence: 

 

                
         

  
    

         
   

    

   

[3.25] 

 

    

                                                    

  
 

  
                                       

                                                         

  

[3.26] 

Within the equation [3.24],    is a factor that can be configured for each frequency 

band independently, so as to be adapted to the noise elimination properties. The 

valued used was obtained experimentally in other studies [6]. 
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[3.27] 

In order to calculate the diverse frequencies by band we take into account that after 

FFT the spectrum is going to be in an interval of frequencies between  
  

 
   and   

  

 
. 

Therefore, the number of frequencies by band would be: 

 

                              

                       
 

                   
 

[3.28] 

Using   , we can control the level of noise subtraction in each band can be controlled. 

Moreover, the use of several frequencies band and the weighting    give an additional 

control in each band. 
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Chapter 4 

 

4.  Implementation  

 

4.1. Stages of development 

In a very general way, the process in order to clean the voice would be the one which 

follows: 

 

 

  
Figure 4.1. Application Process. 
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 Input audio signal [Figure 4.1(1)]: 

Clean voices and different types of noise have been recorded separately to 

create a dataset for the experimental work. 

Audio voice records include male and female speakers with speeches of diverse 

length, since its main characteristics are different. A variety of noises have been 

recorded, like white noise, pink noise, impulsive noise, etc. 

Noise records are added in the audio voice, which result is an audio signal 

containing noise. This is made with an audio processing program (Audacity). 

  

 Estimation of noise and Spectral subtraction [Figure 4.1(2)]: 

The estimation of noise and the spectral subtraction was carried out in Matlab. 

This will be discussed in paragraph number 4.3. 

 

 Assessment of the quality of the experiment [Figure 4.1(3)]: 

When the application is finished, and study of its effectiveness and its results 

must be tried. 

This will be discussed in paragraph number 4.3.5., together with its results in 

the paragraph number 5.6. 

 

 

4.2. Matlab: Graphical Interface, estimation of noise 
Spectral subtraction 

 

The section which follows now describes the software implementation of the 

algorithms presented in Section 3.3. 

A very general outline of the program would be the Figure 4.2. And focusing more on 

the spectral subtraction is the Figure 4.3. 
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Figure 4.2.  Graphical Interface. 
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Figure 4.3.  Spectral subtraction. 
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[a] 

[b] [c] 

[d] [e] 

4.2.1. Graphical Interface 

 

Figure 4.2 shows the operation of the graphical interface of the application for each 

spectral subtraction method. 

The Interface makes easier the study of the different types of spectral subtraction, 

when selecting an input audio, the algorithm values are inputted, and in this interface 

the representation of the audio signal and its spectrum can be seen. 

While clicking the button for “Clean noise” the application cleans the audio signal and 

shows the representation of the audio and its spectrum. 

 

4.2.1.1. User Manual 

When launched, the application shows the window in Figure 4.4 [a]. 

In this display one has to choose what kind of spectral subtraction is able to be use. 

The selection of one of the methods leads to another window that shows the 

processing of the spectral subtraction selected. 

There are 4 displays for the spectral subtraction: Boll method (Figure 4.4 [b]), Berouti 

method (Figure 4.4 [c]), Lockwood and Boudy method (Figure 4.4 [d]) and Multiband 

method (Figure 4.4 [e]). 

 
 
 
 
  
  

 
  
 
 
 
 
 
 
 
 
 
 
 
 
  Figure 4.4.  Different displays for spectral subtraction. 
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The different parts of the interface and its uses are shown in the Figure 4.5: 

In number 1, the user can choose an audio signal with a specific kind of noise. 

In number 2 one can select the parameters for the spectral subtraction. This part 

changes according to the selected type of spectral subtraction, since each type needs a 

different set of parameters. In this part the user can choose the VAD. 

In number 3, the user can select the different options to improve the algorithm 

(Average Magnitude, Half-wave rectification and Reduction of residual noise). 

Once the parameters are introduced, and the audio and the improvements are 

selected, the audio can be cleaned by hitting “Clean noise” button [number 4]. 

When the user selects the audio, in the panel name as number 6 in Figure 4.4 shows 

information about the input signal, and number 5 (after cleaning the audio) shows SNR 

of the output signal. 

In number 7, the user can play the audio and see the plot of the audio and the 

spectrum. 

And finally, the number 8 is like the number 7 but with the cleaned signal. 

 

 

 

 

Figure 4.5.  Spectral subtraction Interface. 
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The parameters available for each algorithm are: 

 

 

 

Table 4.1.  Parameters displayed in the GUI. 
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4.3.  Estimation of noise and spectral subtraction  

 

Throughout this part, the different parts of the algorithm will be explained. 

 

4.3.1. Windowing 

 

Before starting the process of the spectral subtraction the signal is windowed. This 

process has been explained in paragraph 2.2.1. 

 

4.3.2. Voice activity detector (VAD) 

 

Once we have speech signal contaminated with noise, in order to make an estimate of 

the noise from this input audio, an estimate of voice is needed. Hence, so as to 

estimate voice, it would be necessary to recognize that part of the audio which is just 

noise. 

To get an estimate of the noise that it would be like the real noise as much as possible, 

the noise along all the duration of the audio must be analysed. 

For this, the noise samples taken at instants when the voice disappears must be 

studied like noise. 

Whereupon, there is a necessity to distinguish when the audio signal is only noise, or 

when it is noise plus voice.  

The VAD must not slow down the process of spectral subtraction, so the VAD should 

be simple, with low number of operations and effective. 

 

4.3.2.1. ZCR and Energy 

This method consists in the study of the signal energy and the study of the zero 

crossing rate, so as to discriminate which parts of the signal correspond with only noise 

or only voice. This study is made within the time domain. 
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 Zero crossing rate 

 

It measures how many times the signal cross through zero. With this measure 

the signal distribution can be imagined. A high ZCR means that the speech 

segment has a big content in high frequency, while a low rate means that the 

signal is in low frequency. With this we can separate the sound voice segments 

(containing a spectrum focused on high frequency) can be separated from the 

deaf ones (which has many components in high frequency). The problem which 

arises is that the noise has an extensive spectrum and the ZCR cannot 

distinguish between noise and voice.   

 

The ZCR is applied in each windowing to obtain a vector that indicates when 

the audio signal passes through zero with the equation 4.1: 

 

        
 

  
 

 

 
                          

 

       

[4.1]  

 

Where: s  is the voice signal. 

w   is the analysis window. 

ws   is the window size. 

sign( )  is the sign function: 

 

          
          

 
          

  

[4.2] 

 Energy 

 

The variation of energy over time allows us to determine if there is voice or not, 

and if the segment is sound or dull. In a section of sound voice the vocal cords 

come into vibration and the energy increase. However, in the deaf sounds the 

energy drops. 
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To calculate the localized energy: 

 

                   
    

   

 

[4.3] 

Where  s is the voice signal. 

   w is the analysis window. 

ws   is the window size. 

 

Thanks to the ZCR estimator we can know where the word starts and where it ends can 

be recognized, and thanks to the energy, there is also the possibility to know if this 

part of the signal is a word o or not. 

The Figure 4.6 is the representation of the sound of the word “burbujas”.  

 

Figure 4.6.  Audio signal. 

 

The Figure 4.7 is the representation of the word “burbujas” zero crossing rate. It 

detects the deaf voice like the “s”. Although in this graphics, we can appreciate that 

the noise is detected too. 

 

Figure 4.7.  ZCR. 
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The Figure 4.8 is the representation of the Energy of the word “burbujas”. When 

observing the figure, the fact that when there are sound voices, there is energy too can 

be appreciated. 

 

Figure 4.8.  Energy. 

 

The matlab code for this process is in appendix 1. 

 

4.3.2.2. Use a threshold to detect voice 

Boll also investigates about this kind of algorithms. 

He established that when there is no voice activity, the estimate of         is residual 

noise which remains after the half-wave rectification and the minimum selection [5]. 

He determined empirically, that the value below the signal is considerate noise is at 

least 12 dB. If the value is below this number is considered background noise. 

With this value the optimum value for the recordings was no obtained, so there was a 

necessity to look for empirically ways too. 

The value of the threshold should depend of the audio, since for each audio; one value 

would work better or worse. The idea was to make average values of the audio.  There 

was a test average with all the audio, average with the nearest neighbours (3, 100, 200 

neighbours...). 

Finally, the best result was obtained with a general mean with all the values of the 

audio. So, for this implementation, the mean as threshold have been used. 
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The measurement for the detection of absence of speech is: 

 

     
 

  
  

       

           
 

 

  

    

[4.4] 

In cases in which T is smaller than the mean, the frame is classified as if only had noise: 

For T> mean, plot only with voice. 

For T< mean, plot without voice, only noise. 

The matlab code for this process is in appendix 2. 

 

4.3.3. Noise estimation and spectral subtraction 

 

This part of the process consists on implementing the different algorithms for spectral 

subtraction explained in the paragraph 3.3 and with its corresponding noise estimate. 

Depending on the type of method, the application will do one thing or another.  The 

methods are: 

 Algorithm based on the method of Boll (Matlab code in the appendix 3). 

 Algorithm based on the method of Berouti (Matlab code in the appendix 4). 

 Algorithm based on the method of Lockwood and Boudy (Matlab code in the 

appendix 5). 

 Algorithm based on the method of multiband (Matlab code in the appendix 6). 

 

4.3.4. Methods to improve the algorithm 

 

In order to avoid the errors that appear in the process named in the part 5, various 

improvements to the algorithm have been included. 

The methods used to improve the algorithm are: magnitude averaging, half-wave 

rectification and residual noise reduction. 
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4.3.4.1. Magnitude Average 

To reduce the spectral noise,         is replaced by an average of the noisy speech 

signal                   where: 

 

                  
 

 
      

    

   

   

 

[4.5] 

    
    is the windowed transform of     . When choosing the number of samples to 

average, there is a need to bear in mind that the speaker does not experiment a 

stationary process. Hence, for the average, short windows have been taken. If done 

with longer periods, losses in the intelligibility of speech will be suffered. A good 

approximation is to average three frames:  the current, the previous and the next. 

 

4.3.4.2. Half-wave rectification 

For each frequency ω where the magnitude spectrum of the noisy signal          is 

less than the estimated magnitude of the noise spectrum            , the algorithm 

substitutes with zero. In this case I have a 6 dB threshold, considering all the lower 

level signals as noise. 

This technique reduces the background noise by             and any variance of the 

noise tones is eliminated. 

A problem can arise when the amount of noise and speech in the frequency “w” is less 

than           , not being possible to take any further action. 

 

4.3.4.3. Reduction of residual noise 

In the absence of voice is: 

 

                     

[4.6] 

This difference is called residual noise and it takes positive values.  During moments of 

vocal activity, residual noise will be perceived in the frequencies where it is not 

masked by the voice. 
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The residual effects of noise can be reduced if each frame is analyzed separately. If a 

set of frequencies are given, the residual noise varies randomly in amplitude for each 

frame that is analyzed. Thus, it can be removed by replacing its current value by the 

minimum chosen value. The minimum value will be taken only when the value of the 

estimate of        is less than the “residual” noise calculated during times without 

vocal activity. 

The replacement of values depends on the amplitude of the estimation       : 

 

 If this value is below the residual noise and varies largely in the frame by frame 

analysis, it can mean that at this frequency the spectrum will be composed of 

just noise. This noise is eliminated by substituting its value for the minimum 

one.  

 

 If this value is below the maximum, but it has a constant value, it would 

probably means that the spectrum at this frequency contained a speech with 

little energy. To preserve the information, it assumes a minimum value. 

 

 If the value is greater, it means that the speech was located at that frequency. 

 

The implementation of these three conditions over speech levels would be: 

 

 
      

           
                                                    

        
 

     
     

      
        

 
       

    
           

               
        

 
     

    
  

[4.7] 

In equation 4.7,         
     represents the maximum value of the residual noise 

measured in those frames without speech activity.  

The matlab code for this three process are in appendix 7. 
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4.3.5. Assessment of the experiments, measures of quality 

 

When the application is finished, it is necessary to evaluate its performance, in order 

to measure the quality of the results obtained with it. For that purpose, it is necessary 

a measure of quality. 

In this project two methods to measure the quality of the implemented systems have 

been used, one objective and one subjective. 

The objective one is the calculation of the Signal to Noise Ratio (SNR) and the other 

objective will be the Mean Opinion Score (MOS). 

 

4.3.5.1. Signal to Noise Ratio, SNR 

It is an objective measurement of the signal quality. The signal to noise ratio defines a 

relationship between the level of the desired signal and the background noise level (in 

power or in energy). In this case, it would be a relation between the final signal power 

and the power of the noise pollution. 

The bigger the SNR value is, the result will be better, since it implies that there is more 

difference between the power of signal and the power of noise.  

It is calculated as: 

 

    
       

      
 

[4.8] 

Where         is the power of the signal and        is the power of noise. 

In this project the more convenient form of the SNR in dB have been used, so: 

 

              
       

      
                         

[4.9] 

  



Bachelor Thesis: 
Noise elimination of acoustic voice signals 

 
50 

   

4.3.5.2. Mean Opinion Score, MOS 

It is a subjective measure of the signal quality. The Mean Opinion Score consists of 

evaluating each audio file with the MOS scale. The MOS scale is the next: 

 

 

Table 4.2  Value of MOS scale. 

 

These measures should be made by professionals in an audio studio with professional 

equipment. Unable to use an equipment of that category, the measures have been 

carried out with ordinary headphones, and tested with 25 different students. The 

reported values of MOS are the sequels correspond to the average over the 25 

student’s evaluation.   

Made in this way it cannot be considered as an official measure but it can show a 

general idea of the subjective quality of the audio. 
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Chapter 5 

 

5. Results 

 

In order to evaluate the performance of the proposed algorithms with real world data, 

the following signals of audio and noise have been recorded and then they have been 

merged doing all possible combinations. 

On the one hand, there are different voice signals with different characteristics. On the 

other hand, there are diverse types of the noise. 

In the voice signal, there are 2 signal characteristics studied: the length of the audio 

and the difference between gender of speaker (male or female voice: high pitched and 

low pitched). So, the recorded voices are: 

 

 Female voice with long length (23 seconds):  

 Female voice with short length (1 second):   

 Male voice with long length (23 seconds):   

 Male voice with short length (1 second):   

 

In the noise signal, the different types of sound that have been recorded are: 

 

 White noise:   

Its principal characteristic is its stationary (Section 2.3.4). 

 Pink noise:   

Its principal characteristic is its stationary (Section 2.3.4.2). 

 Impulsive noise:  

This noise is characterized because it concentrates much energy at the 

same point. (More information in section 2.3.4.3). 

  

https://www.dropbox.com/s/clkbnd280b7ewdo/woman_Fichas_clean.wav
https://www.dropbox.com/s/p9vqeddps9z4qyn/woman_Bdias_Clean.wav
https://www.dropbox.com/s/69g0ygvme0x0265/man_Fichas_Clean.m4a
https://www.dropbox.com/s/so9zjjc6a4w5mh3/man_BDias_Clean.wav
https://www.dropbox.com/s/kscexxg0bjeekj3/white_noise.wav
https://www.dropbox.com/s/tuk69lqu8b07r9b/pink_noise.wav
https://www.dropbox.com/s/5xnctpolku3wr7l/impulsive_noise.wav
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 Shop noise:    

This is a noise that could be separated in two components, a component 

of background noise which is stationary and other component consisting 

of voices in the background and no highlights on the other. 

  Restaurant noise:   

This noise is a noise that could be separated into two components too, it 

is like the shop noise but in this case the voices in background 

predominate over the background noise. 

 Bus noise:    

In this case are two components, one stationary (bus motor) that 

predominates over the voices in the background. 

 

To estimate the voice, two types of voice activity detector have been used: zero 

crossing rate and energy and a limit as detector. 

As for the spectral subtraction, 4 types of algorithms have been tested: Boll, Berouti, 

L&B and Multiband, explained in section 3.3. 

Testing all possible combinations offered by the application is not viable because there 

are many combinations possible above mentioned. Consequently, the final tests with 

the best options have been done. 

 

 

5.1. Choice of voice activity detector, VAD 

 

Having two VAD (a threshold and ZCR & Energy), a comparison has been done between 

them.  

In order to study the time taken to perform the same process, the ZCR & Energy 

method is much slower than the threshold method. So as to demonstrate this fact, 

both were tested in the same conditions (same audio, same variables). The results 

obtained were that the threshold method took about 1 second and the ZCR & Energy 

method about 20 seconds. If we wanted to use this application in a call in real time 20 

second would be unworkable for a communication. 

 

https://www.dropbox.com/s/bre9lue1tgtxtr1/shop_noise.wav
https://www.dropbox.com/s/s34bsvzotn38zk8/restaurant_noise.wav
https://www.dropbox.com/s/olkue7z0yf7fb7w/bus_noise.wav
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This VAD returns a vector with ones when the signal is voice and zero when it is not 

voice. Figure 5.1 shows the resulting vectors compared with the original signal. 

 

 
 

Figure 5.1. Comparison between VAD. 

 

Figure 5.1 shows that the threshold method (red) conforms more to the shape of the 

original signal. However, ZCR & Energy method (green) confused voice with 

background noise.  In addition, the first method is able to detect where the words 

begin and end. In this case, it divides the speech into the following segments: “Buenos 

– días – prince – sa”. The second method is not able to do that, it does not detect 

where the word really starts and ends, only detects the separation between 

“Buenosdías” and “princesa” because it confused voice with background noise. We 

suspect that this bad performance in segmenting a clean signal would worsen with the 

presence of additive noise. 

In conclusion, we select the threshold to detect voice as our method for the 

experiments. It would be the better of the two because it is faster and it is able to 

detect more precisely the presence or absence of voice in the speech signal. 
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5.2. Choice of the length of the recording 

 

Initially I opted for longer recording, believing that the estimation of noise would be 

better because that would take more samples to take as a reference. In fact, at the 

beginning I took as VAD a threshold of 6 dB, considering that everything that was 

below would be noise [20], and this happened, where the longer was the recording, 

the better was the estimation. 

However, to the use as threshold for the VAD an average instead of a specific value 

improves its performance a lot. Therefore, there was no difference between long and 

short recordings since it estimates both equally. 

Experimentally, it proved that the same results were obtained for both short and long 

recordings and it was decided to make experiments with short recordings because the 

long recordings may take more time to be processed to short, since the application 

need to carry out more operations to take more samples. 

Thus, the short audio was chosen for the final experiments. 

 

 

5.3. Choice of the improvement 

 

Within the application, three additional methods have been implemented to improve 

the spectral subtraction. The user can choose which one to use.  

The three improvements are explained in the paragraph 4.3.4 and its implementation 

in the appendix 7. They are: 

 Magnitude average. 

 Half-wave rectification. 

 Reduction of residual noise. 

After testing all the possible combinations, all were used because thanks to them, the 

musical noise and the background noise that was remained after the spectral 

subtraction was removed.  
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5.4. Choice of the overlap 

 

Each voice has optimal values of overlap, if the value is too low the voice becomes 

metallic and if it is too high the voice is distorted making it unintelligible. 

When a value of overlap is chosen, the difference between male and female speakers 

must be taken into account, due to the difference of frequency of each signal: the 

female voice is a high frequency while the man is low frequency.  

Within the same period of time, the low-pitched signal varies much less in shape in 

comparison with a high-pitched signal, which is the main reason why a greater overlap 

in the male signal is required. In order to appreciate the diverse changes detected in 

the male signal, a larger window is necessary. Nevertheless, taking in mind that the 

window size is fixed, this cannot be possible. Hence, in order to fix that problem, there 

is a need to increase the overlap, so as to simulate the effect of a larger window, and 

consequently, the multiple changes of the signal would not be lost as a result of using a 

small window. So the voice of the woman needs lower values of overlapping than the 

man voice to get best results. 

To study the performance of the application (and therefore of the algorithms) with 

voices of different frequencies, the same value for both types of voices has been used. 

For that reason, so as to do this, a same overlap at the half-way point between the 

optimum values for the two types of voices will be listen to well have been used. 

Empirically, a value at which is not too high to make female voices sound unintelligible 

and not too low to distort male voices has been chosen. 

The chosen value is 450 points. 
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Figure 5.2 Comparison between the SNR of the two types of voices. 

 

This Figure 5.2 shows a comparison on the SNR between male and female voice using 

the 4 methods and the two ideal noises (pink and white). 

One can see that the SNR for each case are higher for female voice (high pitched) and 

for male voice (low pitched), thus demonstrating objectively what is happening and 

not just that a person hears the audio as quality control. 

 

 

5.5. Summary of the variables and the audio used for 
experiments 

 

In order to make the comparison more efficient, some values have been remain fixed 

through all experiments in the diverse methods, and the variables of that method have 

remained for the different types of noise in each process. 

Two values of measurement of the signal quality were calculated to compare and 

study the obtained results: 

 Objective: SNR. 

 Subjective: MOS approximation. 
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The audio used in the different experiments are: 

 

 Female voice with short duration: 

 Original voice:    

It is the original recorded voice without added noise, only with 

background noise. 

 Voice + white noise:   

 Voice + pink noise:   

 Voice + impulsive noise:  

 Voice + restaurant noise:  

 Voice + shop noise:   

 Voice + Bus noise:   

 

 Male voice with short duration:  

 Original voice:    

It is the original recorded voice without added noise, only with 

background noise. 

 Voice + white noise:   

 Voice + pink noise:   

 Voice + impulsive noise:  

 Voice + restaurant noise:  

 Voice + shop noise:   

 Voice + Bus noise:   

 

  

https://www.dropbox.com/s/p9vqeddps9z4qyn/woman_Bdias_Clean.wav
https://www.dropbox.com/s/zsttcnd6p511ux9/man_BDias_WhiteN.wav
https://www.dropbox.com/s/dqjalxjzr2lhrdy/woman_BDias_PinkN.wav
https://www.dropbox.com/s/9mzniwxz9b78zcb/woman_BDias_ImpulsiveN.wav
https://www.dropbox.com/s/zttg5wqwb84ug4n/woman_BDias_restaurantN.wav
https://www.dropbox.com/s/nj88ih8oyzahe0g/woman_BDias_ShopN.wav
https://www.dropbox.com/s/p0vh5uu5axqeh0l/woman_Bdias_BusN.wav
https://www.dropbox.com/s/so9zjjc6a4w5mh3/man_BDias_Clean.wav
https://www.dropbox.com/s/zsttcnd6p511ux9/man_BDias_WhiteN.wav
https://www.dropbox.com/s/f7rdpc335l9hlrm/man_BDias_PinkN.wav
https://www.dropbox.com/s/q04jhjmdo8rcdpo/man_BDias_ImpulsiveN.wav
https://www.dropbox.com/s/3lfekps4ztlpjnv/man_BDias_restaurantN.wav
https://www.dropbox.com/s/dliy47wkei4s766/man_BDias_ShopN.wav
https://www.dropbox.com/s/6dr8gsttxhn7wk2/man_Bdias_BusN.wav
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The parameters values used in the experiments: 

 

 

Table 5.1  Values used in the experiments. 

 

The audios obtained cleaned by the application are the followings: 

 

Female voice Boll Berouti L&B Multiband 

Voice +  
White noise     

Voice +  
Pink noise     

Voice + 
Impulsive  noise     

Voice + 
Restaurant noise     

Voice +  
Shop noise     

Voice + Bus noise     

 

Table 5.2. Cleaned female audios. 

  

 

https://www.dropbox.com/s/lg7gcmd4f0d2qie/01-BollBDiasWhiteWoman.wav
https://www.dropbox.com/s/bcwnp9jb4ajv40m/07-BeroutiBDiasWhiteWoman.wav
https://www.dropbox.com/s/75of7ems0b290gn/13-LBBDiasWhiteWoman.wav
https://www.dropbox.com/s/0sle4qcl1tqlbsx/19MultiBDiasWhiteWoman.wav
https://www.dropbox.com/s/hel8sihqnoevjr6/02-BollBDiasPinkWoman.wav
https://www.dropbox.com/s/knz7ayu6ltdg1j6/08-BeroutiBDiasPinkWoman.wav
https://www.dropbox.com/s/ytdocmkr7nvvog1/14-LBBDiasPinkWoman.wav
https://www.dropbox.com/s/d30wmgrohu8ed7t/20-MultiBDiasPinkWoman.wav
https://www.dropbox.com/s/gzlvqc2j7lkpswi/03-BollBDiasImpulsiveWoman.wav
https://www.dropbox.com/s/6kfg0wldbnldf3s/09-BeroutiBDiasImpulsiveWoman.wav
https://www.dropbox.com/s/hpxbr9dn3p1fte7/15-LBBDiasImpulsiveWoman.wav
https://www.dropbox.com/s/mywiugprurnlcww/21-MultiBDiasImpulsiveWoman.wav
https://www.dropbox.com/s/q8m2n63fv9t2i2r/04-BollBDiasRestaurantWoman.wav
https://www.dropbox.com/s/068fxa9x2gkke9r/10-BeroutiBDiasRestaurantWoman.wav
https://www.dropbox.com/s/rf7ueaep28yy6pc/16-LBBDiasRestaurantWoman.wav
https://www.dropbox.com/s/fkfxoknqhcbndm5/22-MultiBDiasRestaurantWoman.wav
https://www.dropbox.com/s/krszualpwqwnp6e/05-BollBDiasShopWoman.wav
https://www.dropbox.com/s/b0n2g15el96thpc/11-BeroutiBDiasShopWoman.wav
https://www.dropbox.com/s/kk1p9gnkuyhxuol/17-LBBDiasShopWoman.wav
https://www.dropbox.com/s/8ifk7k9xd0ntbz7/23MultiBDiasShopWoman.wav
https://www.dropbox.com/s/utmvrjvb63v5ru8/06-BollBDiasBusWoman.wav
https://www.dropbox.com/s/2vnytzjb8gg6psy/12-BeroutiBDiasBusWoman.wav
https://www.dropbox.com/s/cnfkq6msw5alkus/18-LBBDiasBusWoman.wav
https://www.dropbox.com/s/lefhql64mvyws7r/24-MultiBDiasBusWoman.wav
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Male voice Boll Berouti L&B Multiband 

Voice + 
 White noise     

Voice +  
Pin noise     

Voice +  
Impulsive noise     

Voice + 
Restaurant noise     

Voice +  
Shop noise     

Voice + Bus noise     

 

Table 5.3. Cleaned male audios. 

 

 

5.6. Results 

 

5.6.1. Signal to Noise Ratio, SNR 

 

The higher the value of the SNR is, the better results would be obtained, because the 

difference between the clean speech and the noise will be more. 

These are the SNR values obtained for female voices: 

 

 

Figure 5.3. SNR depending on the type of noise (female voice). 

https://www.dropbox.com/s/31cpkf9g4zhg2x6/01-BollBDiasWhiteMan.wav
https://www.dropbox.com/s/fmmdhpdvxi1kh6t/07-BeroutiBDiasWhiteMan.wav
https://www.dropbox.com/s/80jfbxy9erq2rt8/13-LBBDiasWhiteMan.wav
https://www.dropbox.com/s/6tej4hec202coqm/19-MultiBDiasWhiteMan.wav
https://www.dropbox.com/s/dl7kvjmsnwlyl0k/02-BollBDiasPinkMan.wav
https://www.dropbox.com/s/obqzegz7mr2hy4x/08-BeroutiBDiasPinkMan.wav
https://www.dropbox.com/s/oxjiye2hdaplyub/14-LBBDiasPinkMan.wav
https://www.dropbox.com/s/p5fzbriti211ewv/20-MultiBDiasPinkMan.wav
https://www.dropbox.com/s/2po3h6eswa1ba2g/03-BollBDiasImpulsiveMan.wav
https://www.dropbox.com/s/xcju6wxgril7dw4/09-BeroutiBDiasImpulsiveMan.wav
https://www.dropbox.com/s/99talwm35sphafp/15-LBBDiasImpulsiveMan.wav
https://www.dropbox.com/s/jzdasiq0x6x31y3/21-MultiBDiasImpulsiveMan.wav
https://www.dropbox.com/s/5c2e932rw7vp9ci/04-BollBDiasRestaurantMan.wav
https://www.dropbox.com/s/6y5g8p06c2n2fao/10-BeroutiBDiasRestaurantMan.wav
https://www.dropbox.com/s/c24sk5kktirv3z6/16-LBBDiasRestaurantMan.wav
https://www.dropbox.com/s/pzlsbk438iaphbi/22-MultiBDiasRestaurantMan.wav
https://www.dropbox.com/s/r51e9mh88ka56jw/05-BollBDiasShopMan.wav
https://www.dropbox.com/s/bwk78gnynjr6uuu/11-BeroutiBDiasShopMan.wav
https://www.dropbox.com/s/n4wtcncwm6abj0s/17-LBBDiasShopMan.wav
https://www.dropbox.com/s/715k5ba9qejozcf/23-MultiBDiasShopMan.wav
https://www.dropbox.com/s/q8iohkqcznvpv1l/06-BollBDiasBusMan.wav
https://www.dropbox.com/s/t8covr4iuhtwqx3/12-BeroutiBDiasBusMan.wav
https://www.dropbox.com/s/rtqcr134uoxek6n/18-LBBDiasBusMan.wav
https://www.dropbox.com/s/j25azfotb48tk90/24-MultiBDiasBusMan.wav
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These are the SNR values obtained for male voices: 

 

Figure 5.4. SNR depending on the type of noise (male voice). 

In these two figures all SNR values are obtained for female voice and male voice in 

separate ways. 

The difference between the results obtained with the two types of voice is due to the 

difference in frequencies of each signal: The female voice is of high frequency while 

the man is low. The same overlap has been used in order to compare both voices, 

obtaining the fact that the male audio gets worst results in contrast with the female 

one. This arises because low frequency signals requires a window with larger size so as 

to appreciate the changes of the signal, yet the window size is an invariable value, and 

it cannot be changed. In order to solve this situation, a higher overlap is used thereby 

achieving not lose the signal variations (It was explained in the section 5.4). Within the 

figures 5.3 and 5.4 in general the woman values are higher than the man values. 
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If the results of the voices are merged without difference between types of voices, the 

values of the SNR will be the following figure: 

 

 

Figure 5.5. SNR value depending on the method used. 

 

This graphic shows that for each noise the higher values are the values obtained with 

the method of Berouti. However, the method with the worst SNR values (the lowest of 

all) is Boll. Hence, the objective method which would the best in general terms is 

Berouti and the worst Boll. 
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The table 5.4 shows the resulting SNR values to analyze for which kind of noise the 

spectral subtraction works better. 

 

Type of noise SNR 

Voice + impulsive noise 45,20 

Voice + white noise 43,92 

Voice + pink noise 40,30 

Voice + restaurant noise 34,93 

Voice + shop noise 33,71 

Voice + bus noise 30,28 

 

Table 5.4. SNR according to the type of noise. 

 

Looking only at the SNR value it shows that you get the highest values is for voice with 

impulsive noise (45, 20 dB). 

However, listening to the voices cleaned by the algorithms shows that these 4 

methods are not able to eliminate this type of noise because it is much energy 

concentrated at one point and the VAD confuses it with voice and does not eliminate 

it. Therefore, a subjective quality meter would be necessary, in which a person 

listening to it will be implicated. 

The following in decreasing order of performance are the voice audios with white 

noise (43, 92 dB) and with pink noise (40, 30 dB) are found, i.e., constant and uniform 

noise. The worse performances are obtained for audios with noise of restaurant, shop 

and bus, that they are noises mixed uniform noise with voices in background (which 

are considered noise).  

The methods are able to eliminate much of these types of noise, which eliminates 

worst is the impulsive noise, despite the fact that this kind of noise gets the best SNR 

values. Some similar occur with the voices in background, the methods mistake with 

voices because despite the fact that they are voices are in background, they have less 

energy that the principal voice and the algorithms eliminate part. 

Nevertheless, all this will be discussed further in the next section, as it is something 

subjective that can be only studied after listening to the audio. 
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The main problem of the SNR, as parameter to measure the quality of the program, is 

not a stake valuing a person, it does not take into account how well or bad the final 

result is sound, its intelligibility and other features that can only evaluate a person. 

So then a subjective parameter will be studied: MOS. 

 

5.6.2. Mean Opinion Score, MOS 

 

The MOS scale is a subjective studio, which means that focuses on what the people are 

able to hear. 

The procedure was to play to a group of person the cleaned voices obtained from the 

application and ask them to evaluate with the scale in the part 4.3.5.2 the quality of 

the audio. 

The first opinion acquired from people is that any algorithm is able to cancel the 

impulsive noise. This fact is true, since this kind of noise does not yield good results, 

due to the fact that the voice is intelligible and this noise only annoys during a little 

fraction of a second. Although, there was people who feeling very uncomfortable with 

this noise, and on the contrary, some other not.  

In conclusion, subjectively, the application is not able to remove the impulsive noise. 

This is due to the fact that the VAD is unable to detect this kind of noise, mainly 

because the impulsive noise means lot of energy in one instant, which can be confused 

with voice. In order to clean this noise, it would be necessary to study its frequency or 

its timbre. 

As in the SNR study, in this case the MOS study shows the differences between a male 

voice (low pitched) and a female voice (high pitched). The listeners have given higher 

marks and better opinions for the female voice (Figure 5.6). That is to say, the listeners 

said that the quality of the female voice is sounds better than the male one when 

trying to make a listening test. This occurs for the same reason explained in the section 

on the SNR study.  Thereby, to improve the low pitches voices there is a need to 

change the overlap with an optimum value. 

 



Bachelor Thesis: 
Noise elimination of acoustic voice signals 

 
64 

   

 

Figure 5.6. Comparison between the MOS of the two types of voices. 

 

Studying only the audio with the optimum overlap value the reader can appreciate the 

best algorithm to be used is the Boll algorithm. This algorithm obtained better results 

than the others, since the voice is not distorted, and it also eliminates the annoying 

noise. The next figure shows the results depending on the type of algorithm given by 

the listeners. 

 

 

Figure 5.7. MOS depending on the type of algorithm. 
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With respect to the noise to be eliminated, the noise with the top results is the white 

noise, followed by the pink noise. If the noise is constant and invariable the algorithm 

is able to remove it better. Restaurant noise and shop noise are the next ones with 

better results, i.e. noise with background voices, and that the algorithm can eliminate 

mostly all the annoying noises. Here the Boll algorithm is the best for removing this 

type of noise with the best results. However, the worst results are obtained with bus 

noise, a mixture of invariable noise with background voices. This noise was the most 

annoying for the listeners. This information could be summarized in the Figure 5.8. 

 

 

Figure 5.8. MOS depending on the type of noise. 

 

Note that, although the Lockwood and Boudy algorithm is able to eliminate the noise 

between the words, it is not able to eliminate noise inside the words. In addition, the 

Berouti algorithm distorts the voice too much. 

 

Comparing both evaluation methods, the results obtained are not the same. In the 

objective method (SNR), the best algorithm is Berouti and in the subjective method 

(MOS) the best is Boll. In my opinion, the subjective evaluation method should be 

taken into account more than the objective, since in the end people would be the 

expected user of the application so as to clean audio.  
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Table 5.5. Time audio processing of female voice with white noise and long 
length (23 sec). 

 

The running time of the algorithm needs to be also considered. As presented in the 

previous table, the Boll algorithm is the fastest, since this method is the simplest, with 

fewer operations to carry out, and consequently, the running time is the lowest. And 

as previously mentioned, this is something important to take into account. In 

conclusion, after researching among various algorithms to find the best one, the 

election has been the Boll one. The choice has been made considering its effectiveness 

and simplicity, being also the best algorithm in terms of computational cost, speed and 

effectiveness. 
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Chapter 6 

 

6. Application uses and future lines 

 

6.1. Future lines 

 

The elimination of noise when working with voice is very important whereupon the 

main objective of a future development would be to improve the application and 

consequently the resulting speech after removing noise. 

The first most important thing to improve would be the Vocal Activity Detector, 

because it is the base of all and if this part is better, the voice will suffer less losses and 

the clean voice will sound more natural. The ideal would be to find a voice detector 

difficult to deceive, i.e., it has to be able to detect with more precision the start and 

the end of the spoken words.  

The VAD should not be based only on the power to detect the voice or in the zero 

crossing rate, it could be based on the pitch or even for each type of voice can specify 

optimal parameters for detection too. 

The improvements in the VAD should also aim at alleviating the problem of removing 

the background voices.  This is because the VAD detects the background voices 

(considered noise) like main voice (voice, no noise) and therefore the application does 

not eliminate them. 

Make the application user friendly, i.e. that one user without to know the algorithms 

that the application uses, he can adjust the parameter knowing only the type of voice 

and noise with which he is working. 

For example, instead of entering the value of the overlap (which influences whether 

the voice is low pitched, high pitched or middle pitched), it would be better if the user 

only has to select the type of voice and not a value. Looking at the frequency we could 

empirically establish some limits to determine for each interval the optimal overlap 

value for this kind of voice. 

The next point to improve is that to introduce other audios that are not used as an 

example in this application is necessary to have knowledge in Matlab. For that, an user 

without this knowledge cannot do that. A future line will be introduce the possibility of 

introduce the audios with the interface. 
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6.2. Application uses 

 

The main use of this application is cleaning a voice recording because this is the 

previous step for all the works made with voice. This is very important, since if the 

voice is not completely clean, the noise can interfere in the subsequent processes. 

Apart from this, it is necessary to clean the noise in the voice because it difficult the 

understanding of the speech. After recording a voice with background audio, it will be 

used in this application in order to get only the voice, which it is the only thing wanted, 

and the main goal. 

This application could be used for example so as to separate the singer’s voice from 

the music within a song.  

In order to illustrate that, a test was done to check if this was possible with the next 

song:   

 

It was processed with the algorithm that it had the highest mark in the subjective 

evaluation (Boll), and the results obtained were the following:   

 

A further improvement of the VAD would bring better results. This application could be 

very useful for a person who works editing videos. Many times these people need to 

do promotional videos in which they have to include specific quotes from some 

particular actors, for that they need the cleaned quote without background noise and 

without other sounds from the video. With this application they will obtain the clean 

quote and then they will work with it in a comfortable way. 

 

  

https://www.dropbox.com/s/ek5msfbn3wdqfd4/turnedo.wav
https://www.dropbox.com/s/6rhivd65u2ib64g/turnedo23.wav
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Chapter 7 

 

7. Conclusion 

 

An application capable of removing noise in speech using spectral subtraction method 

has been created successfully. Four methods have been implemented, and its 

performance has been examined, deciding which one is the best. As previously 

mentioned, always from my point of view, the subjective quality measure is the most 

important among them. In conclusion, for me, the best results are obtained with the 

Boll algorithm and voices mixture with white noise. The Boll algorithm has obtained a 

value around 4 in the MOS scale, which highest rating is 5. This value is two points 

above the worst method (Lockwood & Boudy). 

I can say, the goals which were initially propose have been undoubtedly fulfilled, as the 

main aspiration was to study in depth how the spectral subtraction works, and how to 

create an application to evaluate it. In addition, a study and a research about how it 

would work has been presented and explained. 

Although the goals have been reached, this project could be continued. The realization 

of a vocal activity detector could be studied in depth in order to improve the results of 

the later algorithms. A new goal could be imposed so as to obtain a VAD with the 

ability to not confuse the speech with the noise in all the cases. The VAD is a critical 

part of the process, as it is not able to distinguish the voice of the noise well. As a 

result, the later process is not carried out with the optimal values because they directly 

depend on this part of the process to estimate noise and to recognize whether is voice 

or not. 

From a personal perspective, the realization of this project has supposed the entrance 

for me to a new working field, with various circumstances and requirements, finding 

out what key decisions need to be considered, and what are the main steps to follow 

in each situation. Furthermore, that experience has taught me how to organize myself 

and my schedule, since in order to combine work placement with the development of 

the project I had to do an effort. 

Moreover, the intention to write the project entirely in English has been a difficult task 

for me, even though I have been using this language from many years ago. Using 

properly all the technical words throughout a high amount of pages is not something 

easy for someone whose mother tongue differs pretty much from the used one. 
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From my stand point, it has supposed a good experience for me, not only contributing 

to make me a much mature person, yet also teaching me how to face difficult and new 

challenges, towards my professional and personal development. 
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 Chapter 8 

 

8. Project budget 

 

 The project budget has been prepared according to the document provided by the 

Carlos III University of Madrid, within the resources section for the Bachelor thesis 

[19]. 

 

8.1. Staff cost 

 

The staff consists of two people whose dedication and costs are detailed below: 

 

 

 

 

Table 8.1. Staff cost. 
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8.2. Equipment costs 

 

Hardware and software costs are budgeted considering the use of each element on a 

100% and the equipment. Price excluding VAT. 

 

Table 8.2. Equipment cost. 

 

 

The following equation has been used so as to calculate the total cost within the 

previous table: 

 

 
       

[8.1] 

Where: A = number of months from the date of invoice in which the equipment 

is used. 

  B = Deprecation period (60 months) 

  C = Cost of equipment (excluding VAT) 

  D = % dedicated to the project (usually 100%) 
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8.3. Total costs 

 

 In order to calculate the total costs, there is a need to take into account indirect costs 

of 20%, resulting from possible allowances, travel expenses and other costs that have 

not been previously warned. 

Due to the fact that the project is billed in Spain a VAT of 21% has been added to the 

total amount. 

 

 

 

 

Table 8.3. Total cost 

 

The costs amounted to a total of 92.753,28 €. 
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Appendix 

 

APPENDIX 1.  Vocal Activity Detector:  ZCR and Energy 

 

function [Voice_det] = vad_threshold(s,n); 

frames = size(s,2); 
%%% Voice Detection 
noise_mean = s(:,n); 
T = 20*log10(mean(s./(noise_mean*ones(1,frames))));%SNR 
%%%%% Calculate of threshold 
Voice_det=ones(1,frames); 
threshold=mean (T); 
for t = 1:frames 
    if T(t) < threshold %The values that are below the limit given by  

  the user are considered noise 
        Voice_det(t)=0; 
    end 
end 

 

 

APPENDIX 2.  Vocal Activity Detector: Threshold to detect voice 

 

function [Voice_det] = vad_ZCR(s,Wind_long,bits,fs) 
Signal_long=length(s); 
maxS=max(abs(s)); 
WL_SL=Wind_long+Signal_long; 
z=zeros(1,Wind_long); 
aux1=round(s/maxS*2^(bits-7)); 
T_E=abs(s).^2; 
T_zcr=1/2*abs(sign(aux1(1:Signal_long-1))-sign(aux1(2:Signal_long))); 
T_zcr=[z T_zcr' z]; 
T_E=[z T_E' z]; 
 

%%%% Calculation of energy and ZCR: 
for n=Wind_long:(WL_SL-1) 
    zcr_sum=0; 
    energy_sum=0; 
    for r=(n-Wind_long+1):n 
        energy_sum=energy_sum+T_E(r); 
        zcr_sum=zcr_sum+T_zcr(r); 
    end 
    Energy(n-Wind_long+1)=energy_sum; 
    ZCR(n-Wind_long+1)=zcr_sum; 
end 
ZCR=ZCR*(1/Wind_long)*fs; 

  
ZCR_D=std(ZCR)*max(sign(ZCR-max(ZCR)/10),0);  
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E_D=std(Energy)*max(sign(Energy-max(Energy)/10),0); 
p=1; 
aux1=(E_D|ZCR_D); 
for t=1:Wind_long:Signal_long 
    Voice_det(p)=aux1(t); 
    p=p+1; 
end 
Voice_det= Voice_det'; 

  
End 

 

 

APPENDIX 3.  Spectral subtraction: Boll 

 

%%%% Noise estimation 
i = 0; 
for g = 1:frames 
    if Voice_det(g) == 0 % wheter if noise. 
        i = i+1; % Number of windows array voiceless sound 
        N_mean= alfa*N_mean + (1-alfa)*Y(:,g);%average of noise 
        n = n+1; 
        Y(:,g) = c*Y(:,g); % replaces these samples by attenuated  

noise 
        Noise_array(:,i) = Y(:,g); 
    end 
end 
N_mean = abs(N_mean); 

  
%%%% Spectral Subtraction 
X = Y - a*N_mean*ones(1,size(Y,2)); 

 

 

APPENDIX 4.  Spectral subtraction: Berouti 

 

%%%% Noise estimation 
i = 0; 
for g = 1:frames 
    if Voice_det(g) == 0 % wheter if noise. 
        i = i+1; % Number of windows array voiceless sound 
        N_mean= alfa*N_mean + (1-alfa)*Y(:,g);%average of noise 
        n = n+1; 
        Y(:,g) = c*Y(:,g); % replaces these samples by attenuated  

 noise 
        Noise_array(:,i) = Y(:,g); 
    end 
end 
N_mean = abs(N_mean); 
r = N_mean*ones(1,i);% Maximun deviation of noise. 
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%%%% Spectral Subtraction 
noise_Power=sum(N_mean.^2); 
Y_Power=sum((Y.^2),1); 

  
%SNR  
for f=1:frames 
    SNR(f)=10*log10(Y_Power(f)/noise_Power); 
    if (SNR(f)<-5) 
        SNR_a(f)=4.75; 
    elseif (SNR(f)>20) 
        SNR_a(f)=1; 
    else 
        SNR_a(f)=4-((3/20)*SNR(f)); 
    end 
    X(:,f)=Y(:,f).^(2*gamma)-(SNR_a(f)*((N_mean.^(2*gamma)))); 
end 

 

 

APPENDIX 5.  Spectral subtraction: Lockwood and Boudy 

 

%%%% Noise estimation 
i = 0; 
for fra = 1:frames  
    if Voice_det(fra) == 0 % wheter if noise. 
        i = i+1; % Number of windows array voiceless sound 
        n = n+1; 
        Y(:,fra) = c*Y(:,fra); % replaces these samples by attenuated  

noise 
        Noise_array(:,i) = Y(:,fra); 
    end 
    SNR(:,fra)=10*log10(Y(:,fra)./Noise_array(:,i)); 
    for fre=1:points 
        if(SNR(fre,fra)<-5) 
            a_SNR(fre,fra)=5; 
        elseif (SNR(fre,fra)>20) 
            a_SNR(fre,fra)=1; 
        else 
            a_SNR(fre,fra)=4-((3/20).*SNR(fre,fra)); 
        end 
    end 
end 

  
%%%% Maximun values of the last frecuency  
p=1; 
lastM=i-M; 
for fra=lastM:i; 

    aux(:,p)=Noise_array(:,fra); 
    p=p+1; 
end 
for frec=1:points 
    alfai(frec)=max(aux(frec,:),[],2 

end 

  
%%%%Noise calculation 
SNR=gamma.*SNR; 
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for fra=1:frames 
    N_mean(:,fra) = alfai./(1+SNR(:,fra)); 
end 
N_mean=abs(N_mean); 

  
%%%% Spectral Subtraction 
X = Y - a_SNR.*N_mean; 

 

 

APPENDIX 6.  Spectral subtraction: Multiband 

 

%%%% Noise estimation 
f=fs/points*(0:points1); 
 for fra = (n+1):frames 
    if Voice_det(fra) == 0 % wheter if noise. 
        i = i+1; % Number of windows array voiceless sound 
        N_mean= a*N_mean + (1-a)*Y(:,fra);%average of noise 
        %         n = n+1; 
        Y(:,fra) = c*Y(:,fra); % replaces these samples by attenuated  

noise 
        Noise_array(:,i) = Y(:,fra); 
    end 

     
    Y2=Y.^2; 
    N_mean2 = abs(N_mean).^2; 
    Inicial=1; 
    Final=bandwidth; 

     
    for h=1:B 
        Ysum=0; 
        Nsum=0; 
        for p=Inicial:Final 
            Ysum=Y2(p,fra)+Ysum; 
            Nsum=N_mean2(p)+Nsum; 
        end 
        SNR=10*log(Ysum/Nsum); 
%%%% Calculate alfa 
        if SNR<-5 
            alfa=5; 
        elseif SNR>20 
            alfa=1; 
        else 
            alfa=4-(3/20)*SNR; 
        end 

         
%%%% Calculate delta         
        if f(bandwidth)<=(1000||(fs-1000)) 
            delta=1; 
        elseif f(bandwidth)>(((fs/2)-2000)||((fs/2)+2000)) 
            delta=1.5; 
        else 
            delta= 2.5; 
        end 
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%%%% Spectral Subtraction 
 

        for p=Inicial:Final 
            X(p,fra)=Y2(p,fra)-alfa*delta*(N_mean(p         

  end 

         
        Inicial=Final+1; 
        Final=Final+bandwidth; 

         
    end 
end 

  

 

APPENDIX 7.  Improvements 

 

%%%% Option1:   Averaging module of the input signal. 
    YMean = Y; 
    for t = 2:(frames-1) 
        YMean(:,t) = mean(Y(:,(t-1):(t+1)),2); % Average 
    end 
    Y = YMean; 
 

%%%% Option 2:   Half-wave rectification 
    noise_threshold = beta*Y; 
    [I,J] = find(X < noise_threshold); 
    X(sub2ind(size(X),I,J)) = noise_threshold(sub2ind(size(X),I,J)); 
 

%%%% Option 3:   Residual noise reduction 
    for t = 2:(frames-1) 
        I = find(X(:,t) < residual_noise + V_Ones); 

        X_rn(I,t) = min (X(I,(t-1:t+1)),[],2); 
    end 
    X = X_rn; 

 

 

 

 

 

  



Bachelor Thesis: 
Noise elimination of acoustic voice signals 

 
83 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 ( and* ) 


