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Abstract

In the first part of this thesis, I address the classical problem of asset price dy-
namics based on a new theoretical framework developed for nonequilibrium
physical systems. This problem is mainly relevant for two reasons. First, be-
cause understanding the true distribution of returns is important for asset al-
location, risk management, and option pricing. Second, because in spite of all
the effort in determining the origin of non-Gaussian returns no conclusive result
has been achieved yet. The most important result of this part is the demostra-
tion that the non-Gaussian shape and stable scaling of the returns distribution
are due to slow, but significant, fluctuations in volatility. Futhermore, this result
suggests that stock price fluctuations are universal, and that return distributions
can be described by one functional form.

In the second part, I present an empirical study about the execution of large
orders in two stock exchanges: the London Stock Exchange, and the Spanish
Stock Exchange. This type of orders can cause a tremendous impact because
they are larger than the available liquidity in the order book at a time. For this
reason, they are split to minimize transaction costs. Market price impact is the
basic factor of these costs, so an accurate description of its functional form is
necessary to any optimal execution. The most important result in this part is the
empirical determination of this functional form in two markets and the finding
of a common behavior in both markets that can be summarized into a concave
temporary impact, roughly described by a square root function of the hidden
order size, and a price reversion after the completion of the hidden order making
permanent impact equal to roughly half of the temporary impact.
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Chapter 0

Introduction

0.1 Science and Finance

Louis Bachelier’s thesis entitled “Théorie de la Spéculation" is a pioneer work
in financial mathematics [19]. In his dissertation, Bachelier developed a model
for explaining the price variations of French government bonds, and also per-
formed an empirical study to check his theory. Moreover, he presented the the-
ory of the Random Walk for the first time - he predated Einstein’s work on Brow-
nian motion by five years. Although it is considered as one the first attempts
of applying mathematical methodology to a financial problem, there were ear-
lier approaches from mathematics to finance, e.g. Carl Friedrich Gauss studied
the pensions fund for widows of the professors of the University of Göttingen
(1845-1851). This is a seminal application of probability theory to finance.

In 1908, Vinzenz Bronzin, a professor of mathematics at the Accademia di
Commercio e Nautica in Trieste, published a booklet in German entitled Theo-
rie der Prämiengeschäfte (Theory of Premium Contracts) which is an old type of
option contract [48]. Almost like Bachelier’s dissertation (1900), the work seems
to have been forgotten shortly after it was published. However, almost every el-
ement of modern option pricing can be found in Bronzin’s book. In particular,
he uses the normal distribution to derive a pricing equation which comes sur-
prisingly close to the Black-Scholes-Merton formula.

These two authors, Bachelier and Bronzin, did not have much influence on
any of his contemporaries. It was sixty years later when financial community
began to be interested in stochastic processes as a mean to model price varia-
tions.

A physicist, M.F.M. Osborne (1959), rediscovered the Brownian motion of
stock markets [40]. He was among the influential advocates of using this model
to describe asset returns. Another physicist, Fisher Black, together with Myron
Scholes solved the option pricing problem by reducing it to a diffusion equation
[6]. Gaussian random walk would be assumed to underlie asset price dynam-
ics when such basic financial economics concepts as the Black-Scholes-Merton

1



2 CHAPTER 0. INTRODUCTION

model [6, 39], and the Capital Asset Pricing Model (CAPM) would be developed.
It was in 1963 when Mandelbrot postulated that the stochastic process de-

scribing financial time series would deviate from geometric Brownian motion in
fundamental and essential aspects [36]. Although tests performed by Bachelier
and Roberts [19, 44] seemed to be in agreement with theory, the empirical study
of cotton prices by Mandelbrot showed that returns of this commodity were not
normally distributed.

Given the major importance of finding a plausible description and under-
standing of the true distribution of returns for asset allocation, risk manage-
ment, and option pricing - in addition to the scientific challenge,- a large num-
ber of recent papers on the subject have been written by physicists [1, 9, 25, 26,
28, 29, 38, 42, 47]. Much effort has been done from a theoretical and empirical
point of view. Several new models have been produced for attempting to ex-
plain new empirical facts found in the study of data sets recorded in modern
electronic markets.

0.2 Complexity in Financial Markets

A taxonomy of market paticipants is really depending on the set of criteria em-
ployed to classify them. We can talk of enterpreneurs, people who need funding,
and investors, people who have money to invest. Another possible classification
is that composed of hedgers, brokers-dealers, and speculators. Hedgers are peo-
ple willing to protect themselves of market risks, broker-dealers are people who
provide liquidity to the market by buying or selling at any given moment, and
speculators are investors in the short to medium term. Speculators are com-
monly used in contrast to investors, these last ones are assumed to take posi-
tions in the long term.

Another possible classification of the market participants may be made by
considering if they are buying or selling exchange services, and liquidity is the
service taken into account. Liquidity is the ability to trade when you are willing
to trade. Based on the consumption of this service, we distinguish two sides: buy
side, and sell side. Thus, there are market participants buying liquidity, while
others are selling it. The buy side includes individuals, funds, firms who buy fi-
nancial products, e.g. bonds and stocks, to move their income from the present
to the future. Funds are not the only institutions in the buy side, we can also in-
clude in this side to trusts, endowments, and foundations. The sell side includes
dealers and brokers.

A relevant conclusion of any possible taxonomy of market participants is
that financial markets are systems which contain multiple agents, of different
types (producers and consumers; risk averse and risk takers; firms and individ-
uals, etc.), all competing for finite resources of some kind or another, and inter-
acting in such a way as to generate the properties and dynamics of economic
systems and subsystems. Therefore, financial markets are good candidates for
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being considered complex systems. Econophysicists agree that these properties
and the dynamics fit the complex system requirements: scaling and universal-
ity, criticality, fractal patterns, and (candidates for) emergent properties. All at-
tributes that a good complex system should possess.

It is a broadly tested fact that financial market time series display statisti-
cal regularities [18]. These regularities have similar characteristics to those ob-
served in other complex systems in the physics of critical phenomena. In par-
ticular, one can interpret the stylized facts [43] as scaling laws. In other words,
given that financial markets have a physical composition like that of systems
dealt with in statistical physics (large numbers of interacting individuals) and
given, furthermore, that the time series exhibit statistical regularities similar to
that of systems dealt with in statistical physics [31], it follows that a good model-
ing strategy is to apply statistical physics to financial markets. The huge amount
of data collected about financial markets makes them an excellent field of re-
search from the point of view of complexity. There are few areas which have as
much data recorded so accurately and at so many time scales.

0.3 Stock Price Dynamics

The aim of the first part of this thesis is to find an explanation to stocks price dy-
namics. This explanation will let us obtain a theoretical returns distribution that
matches empirical data. The theoretical results on price dynamics are relevant
from a scientific point of view because they mean the understanding and accu-
rate representation of a complex system, and from an economical perspective
they are important due to the repercussion of these results in several financial
areas such as option pricing and portfolio management. In spite of its relevance,
the asset price dynamics problem has been broadly studied for more than a cen-
tury without achieving definitive and conclusive results.

Gaussian models were a first attempt to describe and explain price dynam-
ics. This theoretical approach was originally developed from first principles. For
this, Bachelier [19] postulated a set of conditions that a theoretical market and
price series should fulfill in order to avoid prices were predictable. The condi-
tions about the market were three: perfect market, efficient market, and com-
plete market, but they can be reduced to only two conditions: efficient market,
and complete market, given that efficient market is a more flexible version of
perfect market. The condition about prices stated that successive prices should
be statistically independent. These conditions about market and prices are not
enough for deriving the exact shape of the probability distribution of prices. For
doing this, Bachelier employed three different mathematical reasonings to reach
the theoretical distribution that matched all the conditions and solved the prob-
lem. Although he made a mistake and considered normal distribution as the
only possible solution to the problem when others were also correct, the math-
ematical methods employed in the deduction of the solution have been broadly
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employed later in mathematical finance, i.e. the Random-Walk hypothesis, mar-
tingale methods, and the use of the Chapman-Kolmogorov-Smoluchowski equa-
tion in finance.

Bachelier’s work is a milestone in mathematical finance because it provided
a solid support to much of the modern financial framework. In spite of this
achievement, some results obtained by his model such as the acceptance of
negative prices, or considering returns as absolute price variations instead of
relative variations were against basic economic principles. All these problems
were fixed by the standard Gaussian model which is commonly known as Black-
Scholes-Merton (BSM) model [6, 39]. This theoretical approach constitutes the
basis to modern derivatives pricing.

Black-Scholes-Merton model and Bachelier’s model may be classified as mem-
bers of the family of Gaussian models. The former assumes a normal distribu-
tion for returns, whereas the latter assumes it for prices. Although Gaussian
models meant a major advance in the understanding and modelling of price
dynamics, it was demostrated that they could not reproduce certain character-
istics of empirical distributions [36, 43] such as the frequency of large returns or
the change of shape of returns distribution.

0.4 Non-Gaussian Returns Distribution

Empirical results, like these shown in Section(0.6), not only demonstrated that
Gaussian models were not in agreement with empirical data, but these mod-
els were not theoretically valid to describe empirical observations because they
could not produce heavy-tailed distributions. Two new frameworks were con-
ceived as an explanation to empirical data. The first of them was postulated by
Mandelbrot [36] after finding that time series of cotton prices were fitted for dif-
ferent time intervals by a Lévy distribution which is a heavy-tailed stable distri-
bution. Given that the shape of the empirical distributions was nearly constant
for the studied intervals, it was assumed they were stable. Although this model
represented a solution to the findings against Gaussian models, it also presented
a serious theoretical inconvenient: variance was not finite. The acceptance of a
solution with that characteristic created important inconsistency problems to
other financial models, e.g. models based on the paradigm of mean-variance.
In addition to this theoretical problem, a new finding showed that empirical re-
turns distributions converged to a Gaussian when they were aggregated at larger
time scales. Stable Distribution (SD) models were not able to justify the con-
vergence because heavy-tailed stable distributions keep unchanged their shape
under aggregation up to rescaling. As a possible solution, it was postulated that
returns distributions followed a Truncated Lévy Distribution (TLD) [38] which is
a crossover between a Gaussian and a pure Lévy distribution. These two regions
with different behavior are delimited by an additional parameter.

Clark proposed a different framework: the Mixture Distribution Hypothe-
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sis (MDH) [15], which is the basis for many different models. His original work
assumed that returns distribution was subordinated to Gaussian, consequently
another distribution was necessary to explain the observed properties of the
time series. That distribution was related by Clark to different information ar-
rival rates, hence these changing rates were the cause of the non-Gaussian prop-
erties of empirical data. The main problem of this model is that information is
not directly observable, then it must inferred from another variable or this an-
other variable must be taken as a proxy. From a mathematical point of view,
the subordination is the result of compounding two distributions: a Gaussian,
and another distribution called the directing process. This directing process was
originally considered by Clark as a clock measuring the rate of evolution, but
this is not the only possibility. There are other candidates that justify different
implementations with different distributional shapes, being the most relevant
of them for this thesis the one assuming a Gamma distribution as the direct-
ing process because it generates a Student’s t-distribution [7] for the returns,
and this is exactly the shape of the solution found in the new model presented
here. This solution is appealing because it is heavy-tailed and converges to a
Gaussian. Hence it seemed that a simple explanation to heavy tails for non
aggregated returns and the convergence to a normal for longer time intervals
was possible. However this solution was theoretically deduced instead of em-
pirically observed. So if the Gamma were empirically explained, the Student’s
t-distribution of the returns would be theoretically justified.

Stochastic Volatility (SV) models [46] may be classified into the MDH fam-
ily due to they meet all the assumptions of this framework. SV models employ
volatility as the directing process, making necessary the modelling of the returns
volatility which is a latent variable as it is information. Therefore volatility esti-
mation is crucial for the properties of the returns generated by this model, but
volatility can be computed and even defined in several different ways, e.g. re-
alized volatility, implied volatility, and conditional volatility. The problem with
the different models within MDH framework, e.g. SV models, is not theoretical
as it was with SD and Gaussian models, but it arises from the specific imple-
mentations which are not able to explain the entire shape of the empirical dis-
tribution. Being more evident the problems in the tails of the distribution where
theoretical models usually fail in matching empirical data. Hence the question
to be answered is wether based on MDH assumptions it is possible to find a new
model which accurately matches empirical findings.

0.5 Statistical Mechanics and Finance

As I mentioned in Section(0.2), financial markets are complex systems with a
similar behavior to this observed in the physics of critical phenomena. The
Superstatistics [2] is a branch of statistical mechanics which is devoted to the
study of non-linear and non-equilibrium systems such as turbulences, cosmic
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ray statistics, and solar flares. Superstatistical systems must hold some condi-
tions [3] to be treated like that. The first condition is the existence of an inten-
sive parameter called β. The second condition is the existence of two dynamics:
a fast dynamics, and a slow dynamics. And the third condition is that when
the system is divided into cells which may be spatial or temporal the value of β
within each cell has to be constant or nearly constant but may be different from
cell to cell.

Superstatistical systems are described in a similar mathematical way than SV
models are, but they are not absolutely equivalent. Superstatistical systems are
doubly stochastic where the first stochastic element is normally distributed and
represents the distribution of the physical magnitude conditioned to the inten-
sive parameter, and the second stochastic element is a normalizable distribution
representing the distribution of the intensive parameter. These mathematical
elements are common to both models, but there are important differences be-
tween them such as the non explicit existence of a slow and a fast dynamics in
SV models, or the constant value of the intensive parameter in a limited region
as it is required in superstatistical systems.

I have developed a new model where superstatistical concepts are employed
in the modelling of a high-frequency financial time series, in order to test if fi-
nancial systems can be treated as a superstatistical complex system. For this,
time series is divided into pieces of length a day which is taken as the dimension
of the cell, volatility is considered the intensive parameter and assumed to be
constant along each day, and finally slow dynamics is this of the volatility and
fast dynamics that of the returns. This makes a difference with a common SV
model where usually returns and volatility are sampled at the same frequency.
The latter is drawn from the volatility distribution at a time step and its compo-
sition with another value pulled from a normal produces the return at that time
step. In the new model all returns in a day share the same value for the volatility,
hence volatility is not sampled at the same frequency than returns are.

0.6 Statistical Properties of Empirical Returns

Empirical returns distributions are characterized for a set of properties com-
mon to most of the financial assets: bonds, equities, commodities, indices...
These statistical properties are usually described in a qualitative way by mean
of what Nicholas Kaldor [32] called stylized facts instead of using a very detailed
mathematical description. The reason is that by losing in individual quantita-
tive details we gain in generality when dealing with a broad variety of assets and
markets. Kaldor suggested that theorists should be free to start off with a styl-
ized view of the facts, i.e. concentrate on broad tendencies, ignoring individual
details. The existence of stylized facts gives us a proof about the fact that differ-
ent assets affected by different news share common statistical properties. Thus
it seems plausible the idea of a universal behavior for price dynamics indepen-
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dently of the specific asset. Moreover, this is a proof against a common point
of view shared by many practitioners in financial markets: the event-based ap-
proach which tries to explain price dynamics based on political and economic
announcements.

It has been reported a vast diversity of stylized facts [8, 11, 12, 30, 35, 41],
some of them related to the shape of returns distribution, e.g. heavy tails, ag-
gregational gaussianity; to the volatility of returns, e.g. volatility clustering; to
the correlations, e.g. absence of linear autocorrelations of returns, slow decay
of autocorrelation in absolute returns, volume/volatility correlation. There are
others not included into these categories, e.g. asymmetry in time scales, and
intermittency. Finally, there are some stylized facts which specifically appear at
high frequencies, e.g. those ones related to price formation: negative first-order
autocorrelation of returns, discreteness of quoted spreads, or short-term trian-
gular arbitrage. I am mainly focused on the stylized facts related to the shape of
returns distribution and those ones that cause it, because the more accurately
are reproduced empirical distributions the better is the theoretical price dynam-
ics process.

0.6.1 Heavy Tails

This stylized fact is related to the shape of emprical returns distribution, and it
makes reference to the insufficiency of the normal distribution for modelling the
marginal distribution of stock returns. The main difference between a heavy-
tailed distribution and normal is observed in the tails. This is the reason be-
cause the comparison of the tails of empirical and theoretical distributions is
that important, and the extensive use of log-log plots to emphasize this part of
the distributions.

In Fig.(1) I show the probability density function (pdf) of the standardized
empirical returns for AZN with prices sampled at hourly frequency in log-linear
coordinates. This is compared to a normal distribution with zero mean and unit
variance for showing the differences between them. Empirical returns distribu-
tion is leptokurtic this means that it is fat-tailed and large returns happen more
often than we would expect in a normal distribution. This is quite evident at
the tails of the distributions where we find more density of events in the AZN
distribution than in the same region of the normal. In addition to this, the peak
at |r ′| = 0 is more pronounced in the AZN distribution. A similar distribution
of returns has been observed in the other assets studied in this thesis. Empirical
distributions is leptokurtic at different time scales, only being more pronounced
this behavior at high frequencies [8].

In Fig.(2) I show the cumulative distribution function (cdf) of the standard-
ized empirical returns distribution for AZN with prices sampled at hourly fre-
quency in log-log coordinates. This is compared to the cdf of a normal distri-
bution with zero mean and unit variance. The behavior of the distributions is
clearly different at the tails, more specifically in this last plot we can see that
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Figure 1: Probability density function of standardized returns, P (r ′), for the
stock AZN. The pdf is shown for time scales t = 1 hour. The solid blue line is the
pdf for a normal distribution with mean zero and unit variance.

the tail of the empirical distribution slowly decays whereas normal distribution
shows an abrupt decay.

The deviation from normality may be also expressed by mean of the kurtosis
of the distribution defined as

κ= 〈(r (t ,T )−〈r (t ,T )〉)4〉
σ4(T )

−3, (1)

where σ2(T ) is the variance of the log returns1. The kurtosis as it has been de-
fined in Eq.(1) takes value 0 for a Gaussian distribution. A positive value means
the distribution is fat-tailed. This implies that probability density function slowly
decays in the tails.

A problem when studying heavy-tailed distributions is that standard devia-
tion is not enough to measure the variability of return distributions. Then we
need to take into account higher-order moments of the distribution. However,
these moments can be not well-defined. I use the term well-defined if they take
a finite value. An alternative method is the tail index of the distribution, k, and
it represents the highest well-defined absolute moment. For a Gaussian distri-
bution all the moments exist, then k =∞. As a general rule, the lower the index
the fatter the tail.

1I have computed returns in the usual way. Given the price of the asset, p(t ), at time t . X (t )
represents its logarithm, and r (t ,T ) = X (t +T )−X (t ) represents the return of the asset in the time
interval ∆t .
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Figure 2: Cumulative distribution function of absolute standardized returns,
C (|r ′|), for the stock AZN. The cdf is shown for time scales t = 1 hour. The solid
blue line is the cdf for a normal distribution with mean zero and unit variance.

Another method, suggested by Mandelbrot [36, 37] , is based on the repre-
sentation of moments as a function of the sample size. The idea behind the
method is that if we have a finite theoretical moment, the empirical one will
converge to the theoretical value when increasing the size of the sample. Other-
wise, theoretical moment is not well-defined for that case. The larger the sample
size the larger the value of the empirical moment. Then, it does not converge to
a specific value.

0.6.2 Aggregational Gaussianity

This is another stylized fact about the shape of returns distribution, and shows
us how empirical distributions come closer to a normal when prices are sampled
at lower frequencies. This statement can be rephrased by considering disaggre-
gation of returns, so the more disaggregated the returns are the more leptokurtic
the empirical distributions are.

In Fig.(3) I show the probability density function (pdf) of the standardized
empirical returns for AZN for time scales t = 1 day, t = 10 days, and t = 100 days.
This is compared to a normal distribution with zero mean and unit variance
for showing how when time interval of the sampled data increases, the pdf of
the empirical returns comes closer to a Gaussian. We can see that when time
interval increases the frequency of events in the tails decreases and empirical
distributions tend to overlay normal distribution. This is a slow process making
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Figure 3: Probability density function of standardized returns, P (r ′), for the
stock AZN. The pdf is shown for time scales from t = 1 day to t = 100 days. The
solid blue line is the pdf for a normal distribution with mean zero and unit vari-
ance.

necessary to consider long time intervals for being more evident.
Apparently, the distribution changes as a function of time interval. Then,

we could expect that distribution shape for high-frequency returns should be
different from that sampled at lower frequencies. For testing this hypothesis, we
check if these distributions may be collapsed onto a master curve. For collapsing
the distributions we only need to find a certain translation and dilation of the
returns, such as

P (rt , t )drt = P1(r1)dr1, (2)

where rt = at r1 +bt is the equation for translation and dilation. If we find the
solution for Eq.(2) we may transform a distribution into the other one, and dis-
tributions are defined as scale invariant.

It is shown in Chapter 3 that returns distributions at different∆t collapse for
high-frequency returns, but they do not collapse onto a Gaussian distribution.
This is a proof against Gaussian models because if they were right, then em-
pirical distributions should perfectly collpase onto a Gaussian distribution no
matter of the observed time interval. The apparent contradiction can be solved
if we take into account that the Gaussian is a particular case of stable distribu-
tion. This family of distributions is characterized for acting as attractors. This
means that if we sum a large number of random variables we get as limit distri-
bution a stable distribution. The Central Limit Theorem (CLT) is only its precise
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Figure 4: Autocorrelation function of returns for AZN for time scales of min-
utes.

formulation. A consequence of this theorem is that if random variables with
finite variance are added, we finally get a Gaussian distribution. Then, a possi-
ble solution would be that empirical distributions were drawn from a non stable
distributions with finite variance. The sum of random variables would approach
to a Gaussian as a consequence of CLT.

0.6.3 Absence of Linear Autocorrelation

This stylized fact has been extensively studied and reported [24, 41] due to the
importance that it has for theoretical models. Given that if returns were strongly
correlated they would be predictible and this information could be used by trad-
ing strategies to make net profit based on a statistical forecast of the next few
returns, being the number of forecasted returns related to the persistence of the
autocorrelation. The absence of autocorrelations is generally taken as a support
of the Efficient Market Hypothesis (EMH) which is one of the basic assumptions
made by Bachelier in his model. Empirical studies show that autocorrelation
decays rapidly and in a few minutes it can be assumed to be zero or negligible.
Correlation is commonly expressed as

C (τ) = corr(r (t ,∆t ),r (t +τ,∆t )), (3)

where corr is the sample correlation.
In Fig(4) I show the autocorrelation function of returns for AZN for time



12 CHAPTER 0. INTRODUCTION

scales of minutes. We can see that autocorrelation decays very fast being negli-
gible in a few minutes, we can also observe in the first minute a certain negative
autocorrelation due to microstructural effects wich may be attributed to the ac-
tion of market makers.

0.6.4 Volatility Clustering

It has been shown that returns are almost linearly uncorrelated, but this is not
the case for nonlinear functions of returns such as absolute or squared returns
which clearly exhibit positive autocorrelation, also known as persistence, this is
an evidence of a well-known phenomenon called volatility clustering which may
be expressed in a general form by stating that large price variations tend to be
followed by large price variations. Based on the volatility clustering is possible
to make forecasts about the magnitude of the next returns. Moreover, volatility
clustering is against the independence of the returns because independence im-
plies that any nonlinear function must show no autocorrelation [13, 17]. For the
first part of this thesis volatility clustering is important because it gives support
to the assumption about the slow dynamics of the volatility.

The autocorrelation of the squared returns is a common method for mea-
suring volatility clustering, such as

C (τ) = corr(|r (t ,∆t )|2, |r (t +τ,∆t )|2). (4)

In Fig(5) I show the autocorrelation function of absolute returns for AZN for
time scales of minutes. We can see how the autocorrelation function for these
returns decays slowly and stays significant for long time intervals. It has been
indeed reported that it remains significantly positive over several days [8, 17, 20,
21, 22, 16].

In Fig(6) I show the autocorrelation function of squared returns for AZN for
time scales of minutes. We can observe that the autocorrelation of squared re-
turns also decays slowly but faster than this of absolute returns, then absolute
returns are more predictable than squared returns. This has been already ob-
served by Ding and Granger [20, 21], their empirical results show that the auto-
correlation function is highest for the absolute returns than for other powers of
returns. Independently of how slowly decays the autocorrelation function, this
is taken as a proof of long-range dependence in volatility.
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Figure 5: Autocorrelation function of absolute returns for AZN for time scales
of minutes.
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Figure 6: Autocorrelation function of squared returns for AZN for time scales
of minutes.
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0.7 The Problem of Large Orders Execution

Markets are places, which can be physical or an electronic system, where market
participants gather to make transactions. These transactions can be studied as
if they were made by anonymous agents, or taking into consideration the iden-
tities of the different participants. In the first part of this thesis, I have studied
price changes disregarding the participants who caused them being only inter-
ested in the magnitude of the variation. In the second part, I differentiate trans-
actions depending on the members involved in them. In doing this, I may trace
the transactions made by every single market member and based on this infor-
mation I can study the execution strategies implemented by the different partic-
ipants. These strategies are especially relevant in the execution of a large order
because this may cause important transaction costs due to the lack of available
liquidity in the order book at a given time. Therefore this type of execution turns
into an optimization problem for minimizing transaction costs. Large orders are
usually split into pieces and executed incrementally for taking advantage of the
available liquidity at any time. I call hidden order to any order executed follow-
ing this procedure. Although there exist orders like iceberg orders [23] that let
participants show only a certain fraction of the total volume at a time, hidden
orders constitute a broader concept of execution because they are neither con-
strained to a single price of execution nor to the exclusive use of limit orders.
Iceberg orders may be considered a particular and restrictive case of hidden or-
ders.

The study of hidden orders brings us the opportunity of understanding a
complex system where the participants fit their strategies to optimize the trans-
action costs. However the main problem with hidden orders is that they are not
explicitly submitted as one only order, and their pieces are not identified as mak-
ing part of a larger order. Consequently they must be inferred from transactions
data. Otherwise they only would be available for research if we had the explicit
information of a market participant [14] who had submitted them. Although we
can find several methods [5, 27, 34] in the literature for detecting hidden orders,
the underlying problem is that we can not assure we have accurately classified
all of them.

The aim of the empirical research presented in the second part of this the-
sis is the determination of the functional form of the impact of transactions on
stock price, also known as market price impact, of hidden orders. The func-
tional form is important [33] to quantify total market impact of a large order, and
market impact is the main factor of transaction costs. Therefore the functional
form of price impact is a crucial element of any optimized execution. Moreover
since impact is a cost of trading, it exerts selection pressure against a fund be-
coming too large, and therefore is potentially important in determining the size
distribution of funds [4, 45]. Finally, market impact reflects the shape of excess
demand, which is of central importance in economics. Despite its conceptual
and practical importance, a proper empirical characterization and theoretical



0.7. THE PROBLEM OF LARGE ORDERS EXECUTION 15

understanding of market impact is still lacking [10]. In Chapter 4, I show the
results of the empirical study for the hidden orders obtained from the London
Stock Exchange (LSE) and the Spanish Stock Exchange (SSE). These results are
relevant because they show for the first time a comparative study of this type of
execution in two markets. Although the development of a theoretical explana-
tion to the empirical findings it is out of the scope of this thesis, the fact that we
observe similar behavior in both the London and Spanish stock exchanges, and
that others have also observed this in the New York Stock Exchange, suggests the
possibility of a “law" for market impact.
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Chapter 1

1 Gaussian Models

1.1 Introduction

Louis Bachelier, in his dissertation, presented the first theoretical model on as-
set price dynamics [6]. This was deduced from first principles and based on
a series of assumptions about market and prices which made the latter were
not predictible by any market participant, because if they were the market it-
self would be endangered. In addition to these theoretical conditions, Bachelier
employed three different mathematical reasonings: the Chapman-Kolmogorov-
Smoluchowski (CKS) equation, the Random Walk (RW) hypothesis [11, 14], and
the diffusion equation to derive the probability distribution of price variations.
These reasonings are currently used in mathematical finance, and stochastic
processes - as it was also considered by Bachelier - are the usual probabilistic
model for price dynamics. In spite of he made a mistake by considering only
one solution, normal distribution, was compatible with his reasonings when in
reality others were also valid, his work is not only relevant from a historical point
of view but from a theoretical perspective because further models use many of
his methods and postulates. Although Bachelier’s dissertation may be consid-
ered as a purely theoretical work, he not only developed a new model but he in-
deed performed tests on his theoretical predictions against empirical data. This
data set was a price series of the French government bond and the futures cor-
responding to this asset, surprisingly he found that theoretical predictions pro-
duced more large returns than these observed in empirical series when in reality
it is the opposite.

An important aspect of Bachelier’s theory is the differentiation between two
components in the overall dynamics of bond prices: a regular component re-
lated to bond’s coupon, and a pure random component related to price fluctua-
tions of bond’s principal. This distinction is important because it made possible
to employ the same mathematical description for apparently different price se-
ries by only subtracting the regular component, which was included into the
equations as a drift term. The combination of both components may be de-

21



22 CHAPTER 1. 1 GAUSSIAN MODELS

scribed by mean of a generalized Wiener process, as it was shown for the first
time by Bachelier. This stochastic process applied to prices produces results
such as negative prices which are unacceptable from an economical point of
view.

Black-Scholes-Merton (BSM) [3] model adopted the assumptions and rea-
sonings of Bachelier’s model, but this new solution fixed the results against the
economic theory by considering returns instead of prices as the subject to be
represented by the stochastic process. Therefore the BSM can be considered
more a refinement than a new approach. The most remarkable characteristic
shared for both models is that the shape of the distribution of their solutions
is the same: a normal Gaussian distribution. This probability distribution has
strong implications about the occurrence of large events which were called into
question for the empirical observations [9, 18] obtained in the 1960s. As it was
presented in the Introduction, empirical returns distribution is leptokurtic and
this characteristic is not possible if a Gaussian distribution is held as solution
because a normal cannot produce heavy tails. However Gaussian models are
a reasonable approach to empirical results at a very aggregated level, that’s for
returns computed taking prices sampled at a very low frequency, because the
convergence to a normal is another characteristic of the empirical distributions.
Finally, a very important consequence of the BSM is that gave theoretical sup-
port to option pricing [7, 14, 23].

1.2 A First Gaussian Model

In this section I present how Bachelier derived his model from first principles, I
also show the mathematical reasonings for deducing the shape of the probabil-
ity distribution function of prices or returns depending on the specific model.
These first principles continue to be held by theoretical models, and the prob-
abilistic methodology employed by Bachelier is broadly studied and employed
in mathematical finance. We can consider this first attempt to describe price
dynamics as a good approach to many theoretical tools of modern finance.

Although Bachelier’s model is highly theoretical, his author was also con-
cerned with empirical results. Indeed, he developed his model for describing
the price dynamics of a future of that time, this future had as underlying asset a
French government bond. There are important differences between the future
studied by Bachelier and a current future traded in any exchange market. The
future traded in 1900 in Paris was settled in cash, whereas current bond futures
are physical delivery. This difference means that when an old future contract
expired the parties involved settled by paying the gains or losses related to the
contract in cash, whereas when a modern future expires parties settled by de-
livering the amount specified of the underlying asset. The second important
difference is about expiration date. In the old futures, expiration date could be
extended to the end of the next month, and this is not allowed in modern fu-
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tures. This feature of 1900s futures is assimilated to an embedded optionality
because it gives the right to postpone the expiration date. Although futures were
Bachelier’s main subject of research, he also studied other finacial instruments
similar to current options, exotic options, and combinations of options.

The empirical time series employed by Bachelier in his dissertation spanned
five years of prices of the future mentioned above and its underlying asset, the
French government bond. In spite of this data set, as it is mentioned in Section(1.2.3),
Bachelier had not enough data points to determine the validity of his theory con-
sidering discrepancies were due to a sample size problem. It is striking that he
believed his theory produced too many extreme events when it is exactly the
opposite.

Large databases are necessary for testing and validating new financial mod-
els which must deal with extreme events. This type of events are very infrequent,
then only a small fraction of the entire data set can be classified into this cate-
gory. Thus, the oiriginal size of the sample is critical to check empirical distri-
butions against theoretical predictions. One of the aims of the first part of this
thesis is to find an explanation for the tails of returns distribution. For this, I
have studied high-frequency data from different stock exchanges. Only for hav-
ing an idea of the magnitude of this data set, I may mention that a liquid stock
in an active trading day can generate more data points from trades and quotes
than the total number of points in Bachelier’s database.

1.2.1 Theoretical Assumptions on Market and Prices

In his theory Bachelier postulated that at any instant of time market partici-
pants, taken as an ensemble of individuals, did not believe either in falling or in
rising prices. This postulate does not mean that single participants have any ex-
pectation about future market movements, but when all these individual expec-
tations are aggregated net result is zero. Hence the expected future price varia-
tion is zero, or in other words current price is the expected price. This postulate
was formulated as a series of assumptions about market and prices that can be
summarized into one: prices are not predictable by any participant, otherwise
the market itself would be endangered. Market practitioners usually deny the
validity of these assumptions because if they were correct markets participants
would not be able to beat the market in a consistent way.

Bachelier conditions about markets are three: perfect market, efficient mar-
ket, and complete market. A market is called a perfect market when all the in-
formation available up to present time is completely accounted for by the cur-
rent price. This condition can be relaxed and reformulated in a slightly different
way for obtaining the efficient market condition. This condition allows small
irregularities, but these irregularities do not produce net profit if we take into
account transaction costs. Thus, the Efficient Market Hypothesis (EMH) [10]
rules out the possibility of net profit for trading systems based only on currently
available information. The third condition on a market is the complete market
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condition, this means that we can not deduce any net price movement from out-
standing positions. In reality, this condition is only fulfilled in an ideal market
because it requires to have outstanding positions in any quoted price, in both
sides: buy, and sell. Although this is not true all the time in any asset what it
can be assumed as correct is that a net movement can not be deduced from
the quotes information. The fourth condition is about prices and it says that
successive prices are statistically independent. This last assumption is a basic
condition for the Random Walk (RW) hypothesis which is treated in more depth
below in Section 1.2.2. This is probably the most tested condition of the all four
[1, 9, 10, 17, 19, 21, 22], and it holds for any kind of asset: bonds, indices, com-
modities, etc. Practitioners by mean of technical analysis - or any other forecast-
ing technique - believe these conditions can be violated, but there is no conclu-
sive proof of it.

1.2.2 Mathematical Description of Price Dynamics

Bachelier focused on the study of bond futures with underlying French govern-
ment bonds. This underlying asset can be separated into two different parts:
coupon, and principal. The coupon can be considered deterministic and accu-
rately described by a linear equation with no uncertainty. The principal follows
a random movement depending on the yield dynamics. Therefore, this com-
ponent makes necessary the use of random processes for describing it. A key
concept in financial applications and mathematical finance in general is the
martingale, which is a special class of stochastic processes. Martingale is fully
understood in the context of betting and gambling. A sequence of random vari-
ables {X1, X2, ..., Xn}, is called absolutely fair when for all n ∈Nwe have

〈X1〉 = 0 and 〈Xn+1|X1, ..., Xn〉 = 0. (1.1)

Then we can define another sequence of random variables {Y1,Y2, ...,Yn} with
n ∈N by Yn = 〈Y1〉+X1 + ...+Xn , so we have

〈Yn+1|Y1, ...,Yn〉 = 〈Yn+1|X1, ..., Xn〉 = Yn . (1.2)

Then a sequence is a martingale iff 〈Yn+1|Y1, ...,Yn〉 = Yn . We can state that
the conditional expected value1 of an observation at time t +1, given all the ob-
servations up to some earlier time t , is equal to the observation at that earlier
time t ,

〈Yt+1|Yt ,Yt−1, ...,Y1〉 = Yt . (1.3)

In general, financial time series on any asset follow an equivalent martingale
process, which is a martingale process where future asset prices are discounted
by the risk-free rate, or short interest rate, as the interest rate of the discount

1In this thesis, I use the common notation in Physics. Thus, 〈x〉 represents the expectation of x
such as 〈x〉 = ∫ ∞

−∞ xp(x)d x.
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factor2. This property of asset prices is a consequence of perfect and complete
market assumptions. Bachelier assumed a martingale process as the random
process followed by the price variations of the underlying asset.

Based on the other conditions, Bachelier deduced some properties of the
probability distribution of prices. From the complete market assumption, he
deduced the symmetry of the distribution about 0. From the fair game con-
dition, he deduced that the maximum of the distribution should be located at
x = 0, at any time. Finally, he also considered that the probability distribution
should be normalizable. This last consideration implies that probability must
be integrable in the interval [−∞,∞], this implies that probability distribution
must decay sufficiently quick. Therefore, some distributions were ruled out, i.e.
most of the stable distributions, but other heavy tailed distributions were al-
lowed. Only with these results, it was not possible to derive the exact shape of
distribution.

The first mathematical reasoning employed for deriving the probability dis-
tribution of price changes is that of the law of multiplication of probabilities. Let
p(x1, t1)d x1 be the probability of observing a price change from x1 to x1+d x1 at
time t1, and let p(x2 − x1, t2)d x2 be the probability of a price change from x1 to
x2 in time t2. The joint probability of a price change from x1 at time t1 and to x2

at time t1 + t2 is

p(x2, t1 + t2)d x2 =
[∫ ∞

−∞
p(x1, t1)p(x2 −x1, t2)d x1

]
d x2. (1.4)

This equation, Eq.(1.4), is known in Physics as the Chapman-Kolmogorov-
Smoluchowski (CKS) equation, and it is a convolution equation for the proba-
bilities of statistically independent random processes. The solution to Eq.(1.4)
obtained by Bachelier was a normal Gaussian distribution

p(x, t ) = p0(t )exp
[−πp2

0(t )x2] . (1.5)

Substituting Eq.(1.5) into Eq.(1.4), we have the condition

p2
0(t1 + t2) = p2

0(t1)p2
0(t2)

p2
0(t1)+p2

0(t2)
, (1.6)

which determines the time evolution of p(t ) as

p0(t ) = Kp
t

, (1.7)

where K is a constant. Then, by substituting

σ2 = t

2πK 2 , (1.8)

2Discount factor, d(T ), is the factor by which a future price must be multiplied in order to
obtain the present price, d(T ) = 1

(1+r )T , where r is the interest rate, and T is the time interval.
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we recover the usual expression for a Gaussian distribution

p(x, t ) = 1p
2πσ(t )

exp

(
− x2

2σ2(t )

)
. (1.9)

This probability distribution meets all the conditions of Bachelier’s model.
First, at time t = 0, p(x) = δ(x), this means that current price of the asset is
known with certainty because of the properties of Dirac delta function. Sec-
ond, peak and mean of the ditribution are constant. I show later that this is true
when we detrend the empirical time series. Therefore, martingale property of
the prices holds. And third, σ∝ p

t . This last property of the solution means
that probability distribution decays quickly enough for excluding the possibility
of large price movements in finite time intervals. The third property is not neces-
sarily against empirical distributions, because it only rules out the possibility of
distributions with infinite variance. There are distributions, as it is mentioned in
Chapter 2, with fat tails and finite variance. The shape of the tails of the distribu-
tions is one of the main arguments against Gaussian models. Although Bachelier
obtained a Gaussian distribution as the only possible solution to Eq.(1.4), this is
not correct. Other solutions were also corret and compatible with Eq.(1.4).

The Random Walk Hypothesis

We can describe qualitatively a Random Walk (RW) as the resulting trajectory
traced by taking successive random steps. This trajectory can be traced by a
molecule in a liquid, by the price of a financial asset, or by other object which
moves randomly. RW has been applied to many different fields: physics [12],
economics [16], finance [17], biology [2] ... Bachelier employed the RW in his
dissertation for describing the asset price dynamics. By doing this he predated
by five years to Einstein [8], who reached the same solution when he was trying
to demonstrate that statistical theory of heat required the motion of particles in
suspension.

The classical formulation of the problem related to RW, also known as drunk-
ard’s walk, is that a walker can take random steps along a line with equal prob-
ability of taking a step either to the left or to the right. The length of step, l , is
constant no matter the sense of it, and the number of steps, n, is a natural num-
ber. The problem to be solved is the probability associated to find the walker
at a certain distance nl , measured from origin, in a certain time interval. We
can easily translate the terms of the classical formulation into the description
of price movements. We consider the price of a certain asset at time t , time is
taken as a discrete variable. At that point the price can move up with an asso-
ciated probability p, or can move down with another associated probability q .
These two events are defined as mutually exclusive and they happen one at a
time. Then, we can state that the sum of both probabilities equals 1, p + q = 1.
The magnitude of price change l , as it happened with step length, is constant
for the two possible movements.
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For a certain amount of events n, which can be assimilated to steps for the
walker’s case and to price movements for the asset. The probability of having α
up movements of the price, and consequently n −α down movements is bino-
mially distributed

pu,d (α,n −α) = n!

α!(n −α)!
pα(1−p)n−α. (1.10)

When the number of events increases, in the limit n →∞, α→∞, and with
k =α−np constrained to take a finite value. This follows the expression

p(k) = 1√
2πnpq

exp

(
− k2

2npq

)
. (1.11)

Solving for the particular case of a fair game. This is when p and q are equal
to 1/2. We set k → x, and t = n∆t . Where t is the total time interval, and ∆t is
the unit of time for a step. We have a Gaussian distribution

p(x) =
p

2∆t/πp
t

exp

(
−2∆t x2

t

)
, (1.12)

we can simplify this equation by grouping all the constant terms into one only
constant value

c =
√

2∆t

π
, (1.13)

by doing this we recover the usual expression of a normal Gaussian distribution

p(x) = cp
t

exp

(
−πc2x2

t

)
. (1.14)

This method for solving the RW problem gives a Gaussian solution by con-
struction. It is known that if the number of events n is large enough, that’s as-
suming n >> 1, the skew of the Binomial distribution takes a small value, and
a Gaussian distribution is a good approach to the final distribution. There are
several rules of thumb for giving a minimum value of n, from which Binomial
distribution can be taken as a Gaussian. This value of n is small and when n > 20
the goodness of fit shows reasonable values. But it is important to mention that
the Gaussian distribution is not the only limiting distribution for a Binomial. If
the constraints applied were n → ∞, p → 0, and with nα = constant, then the
limiting distribution would be a Poisson distribution.

1.2.3 Empirical Returns Distributions

In his thesis, Bachelier tested his theoretical predictions against empirical data.
For this, he employed a data series of the French government bond, and the fu-
tures corresponding to that underlying asset. This data set spanned five years,



28 CHAPTER 1. 1 GAUSSIAN MODELS

from 1894 to 1898, and contained 1452 data points. Bachelier calculated the drift
and the standard deviation of empirical distributions. Surprisingly, he found a
smaller number of large returns than he expected according to his theory. This
is a striking result because one of the main criticisms to his theory [18] is exactly
the opposite as it was shown in Chapter 0, but it was possible to reconcile theo-
retical and empirical results based on an argument about finite sample size. In
addition to this, because of the low frequency of the data set it is plausible the
idea that the tails of the distribution were not fully taken into consideration. It is
known that the higher the sample frequency the more leptokurtic are empirical
distributions [4].

Although Gaussian models produce consistent theoretical results, and these
results are a good approach to emprirical data sampled at very low frequencies.
It has been consistently shown [20] that the number of discrepancies with real
data make necessary a different solution. This new solution should be based
on a distribution with different properties. Gaussian models produce fewer ex-
treme events than we observe in financial markets. Indeed, an extreme event as
Black Monday, market crash happened on October 19th 1987 shouldn’t be pos-
sible if this theorical framework were right [15].

1.2.4 Stochastic Processes in Finance

So far I have presented Bachelier’s assumptions and reasonings leading to the
solution for the probability distribution of asset prices. According to his model
prices are drawn from a normal and their time evolution is unpredictable be-
cause it is probabilistic. Therefore his model on prices follows a probabilistic
model called a stochastic process. Bachelier formulated indeed for the first time
the Wiener process for describing asset price dynamics. As I said earlier, the
aim of the first part of this thesis is the explanation of price dynamics and this
must be expressed as a stochastic process. For this reason, in this section I give
some basic definitions about these processes and present some of them broadly
employed in mathematical finance.

A variable with unpredictable time evolution follows a stochastic process.
Thus, this type of processes are employed to describe mathematically systems
which evolve probabilistically in time. In these systems it exists a time-dependent
variable X (t ), and we can measure its values {x1, x2, ..., xn} at times {t1, t2, ..., tn}.
It is assumed that a set of joint probability densities exists, this joint probability
can be expressed as

p(x1, t1; ...; xn , tn), (1.15)

where t1 ≥ t2 ≥ ... ≥ tn , and system can be described completely based on Eq.(1.15).
Another important definition broadly used in mathematical finance is that of
conditional probabilities densities, such as

p(x1, t1; ...; xn , tn |y1,τ1; ...; yn ,τn) = p(x1, t1; ...; xn , tn ; y1,τ1; ...; yn ,τn)

p(y1,τ1; ...; yn ,τn)
, (1.16)
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where t1 ≥ t2 ≥ ... ≥ tn ≥ τ1 ≥ τ2 ≥ ... ≥ τn , time index is usually sorted incremen-
tally. In an evolution equation, conditional probabilities are commonly taken as
predictions of the future because current values are considered related to past
values - to some extent - in a causal way which is not conclusively correct. For
defining the stochastic process it is necessary to know at least all possible joint
probabilities of the type decribed in Eq.(1.15). If this information is enough to
define the process, it is called a separable stochastic process. The most simple
of this kind is that of complete independence

p(x1, t1; ...; xn , tn) =
n∏

i=1
p(xi , ti ). (1.17)

This equation means that the value of X at time t is completely independent
of its values in the past. Then, Bachelier’s assumption about prices would hold
if Eq.(1.17) fitted to price dynamics.

Several distinctions of stochastic processes can be made. One of them is
based on the way the time variable t is measured. If time is considered a con-
tinuous variable then the stochastic variable is a continuous one, but if time is
measured as a discrete variable the stochastic variable is a discrete one. An-
other distinction is based on the way the noise term is acting on the stochastic
variable, which can be additive or multiplicative, but we need some more expla-
nations for understanding the difference between these two types of stochatic
processes.

For describing a stochastic process, it is necessary to specify its dynamics
and the probability distribution function of the random variable. The dynamics
is commonly given by a stochastic difference equation, such as

x(t +1) = x(t )+ε(t ), (1.18)

where x(t ) is the stochastic variable and ε(t ) is a random variable. The prob-
ability distribution of ε(t ) is necessary for the full description of the stochastic
process, because several dynamics are possible depending on this distribution.
A possible probability distribution function of ε(t ) might be

p(ε, t ) = 1p
2πσ2t

exp

(
− ε2

2σ2t

)
. (1.19)

An alternative way to describe the stochastic process is by mean of a differ-
ential equations, such as

d x(t ) = ax(t )+bε(t ), (1.20)

d x(t ) = ax(t )+bx(t )ε(t ). (1.21)

Given that in the Eq.(1.20) the random variable is added to the stochastic
variable, it is describing an additive noise. Following with the same reasoning,
Eq.(1.21) is describing a multiplicative noise. Another important aspect in the
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description of a stochastic process is the correlations. These may be expressed
by an equation which shows the dependence of the time series, e.g. the ARCH
models use autoregressive processes equations; or may be expressed by the con-
ditional probabilities. In this last case, the current value of the variable is condi-
tioned to its past values.

Markov Processes

Markov processes are extensively used in finance and economics, e.g. asset
prices, market crashes, volatility [13]. Dynamic macroeconomics also uses markov
processes, e.g. to exogenously model prices of equity in a general equilibrium
setting [5].

The Markov assumption can be formulated in terms of conditional proba-
bilities. For a Markov process the conditional probability is determined entirely
by the knowledge of the most recent condition. This is because the defining
property of this type of process is that it has no memory.

p(x1, t1; ...; xn , tn |y1,τ1; ...; yn ,τn) = p(x1, t1; ...; xn , tn |y1,τ1), (1.22)

where t1 ≥ t2 ≥ ... ≥ tn ≥ τ1 ≥ τ2 ≥ ... ≥ τn . This means that everything can be
defined in terms of the simple conditional probabilities p(x1, t1|y1,τ1). By the
definition of the conditional probability density

p(x1, t1; x2, t2|y1,τ1) = p(x1, t1|x2, t2; y1,τ1)p(x2, t2|y1,τ1), (1.23)

and using the Markov assumption (1.22), we have

p(x1, t1; x2, t2; y1,τ1) = p(x1, t1|x2, t2)p(x2, t2|y1,τ1), (1.24)

therefore, any arbitrary joint probability can be expressed as

p(x1, t1; ...; xn , tn) =
n∏

l=2
p(xl−1, tl−1|xl , tl )p(xn , tn), (1.25)

where t1 ≥ t2 ≥ ... ≥ tn .

Wiener Processes

Bachelier formulated the Wiener process for the first time, but it was Norbert
Wiener who studied it extensively. Wiener process is a particular Markov process
but in continuous time and with continuous variable.

Let’s consider a stochastic variable z with two properties. The first one is
that consecutive increments of variable z, ∆z, are statistically independent. The
second property is about making a distinction between the variation of z for
finite time, and for an infitesimal time interval d t , which may be expressed as

∆z = ε
p
∆t , (1.26)

d z = ε
p

d t , (1.27)
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where ε is distributed as a Gaussian normal distribution with zero mean and
unit variance, N (0,1). Then, ε can be written as

p(ε) = 1p
2π

exp

(
−ε

2

2

)
. (1.28)

The main difference between a Markov process and a Wiener process is about
the conditions the latter must fulfill. The Wiener process is more restrictive be-
cause random variables must be independent and identically distributed (iid).
Therefore, the correlations of the random values taken by ε are

〈ε(t )ε(t ′)〉 =σ2δ(t − t ′), (1.29)

where σ2 is the variance of the normal distribution.
A Wiener process is characterized by two distributional properties, which

meet two conditions of Bachelier’s model. These conditions are about the mean
value and the variance of the distribution. The expectation value of the stochas-
tic variable takes value 0 for small time intervals

〈∆z〉 =
∫ ∞

−∞
d(∆z)∆zp(∆z) = 0, (1.30)

and the variance which grows linearly in the time interval ∆T

var(∆z) =
∫ ∞

−∞
d(∆z)(∆z)2p(∆z) =∆t , (1.31)

when dividing time intervals of length T into smaller subintervals, every subin-
terval may also be considered a Wiener process of length one time step. Final
result for a sum of random quantities drawn from a normal distribution is also
normally distributed because of the properties of this particular stable distribu-
tion. Mean value and variance are additive, in this case; and their final values
are

〈z(T )− z(0)〉 = 0, (1.32)

var[z(T )− z(0)] = T. (1.33)

In the modelling of asset prices it appears a drift term representing the mean
value about which prices fluctuate. It is important to differentiate between a
deterministic component, e.g. the accrued interest of coupon’s payment, and
the drift which is part of the random component. This drift term is added to the
Wiener process by mean of a linear equation making possible the description of
price variations with one only equation, such as

d x = ad t +bd z, (1.34)

where a and b are constant terms. These terms are not necessarily constant, but
they must be deterministic functions and would be represented as a(x, t ) and
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b(x, t ). This new formulation is called a generalized Wiener process. We may
calculate the mean and the variance of the new process, which are

〈x(T )−x(0)〉 = aT, (1.35)

var[x(T )−x(0)] = b2T. (1.36)

These last two equations, Eq.(1.35) and (1.36), can be compared with those
obtained for the Wiener process. The differences are caused by the drift term
in both cases. A last remark about the drift term is that it can be eliminated by
considering the equivalent martingale process as the fundamental variable. In
this case we would have a Wiener process with zero mean and variance would
grow linearly in time.

1.3 Standard Gaussian Model

In the previous sections I have presented a Gaussian model from first principles.
We have seen the assumptions and the mathematical reasonings that let us de-
duce the specific shape of the prices distribution. Moreover, I have mentioned
the stochastic process for price dynamics which gave support and explanation
to that probability distribution of prices. From a mathematical point of view
there was no important mistake, only the problem about considering one possi-
ble solution when in reality others were allowed. But Bachelier’s model reached
certain results which were in clear contradiction with basic economical princi-
ples. The first of these problems was the possibility of having negative prices.
Given that the model considered prices were normally distributed about zero,
negative prices were obviously allowed. The second problem was about returns.
When an individual is making an investment decision, she is concerned about
return on invested capital and will try to maximize the expected return. A result
of the model was that returns were related to absolute changes in prices, instead
of being related to relative changes. Therefore, the invidual investor avoids as-
sets with high initial price because return is lower in comparison to low initial
price.

For better understanding the problem of Bachelier’s model with returns I will
show an example. Let’s take two assets, a1 and a2, with different initial prices,
p1 and p2, at time t0. If we have the same price variation for both assets, ∆p,
independently of the initial prices, and this variation happens in the same time
interval for both assets. The final price for a1 is p1 +∆p, and p2 +∆p for a2.
Returns for a1 and a2 are

r (a1) = 1+ ∆p

p1
, (1.37)

r (a2) = 1+ ∆p

p2
, (1.38)
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where r (a1) and r (a2) represent the returns for a1 and a2. Therefore, return
on invested capital would depend on the initial price of the asset. This is in
contradiction with economical reasoning because prices - nominal prices - are
arbitrary quantities, the relevant magnitude for a traded stock is market capital-
ization.

In Bachelier’s model, profit of an investment into a certain stock with price
S in time T is

〈S(T )−S(0)〉 = dS

d t
T, (1.39)

where dS/d t is the drif term, and it is independent of S. This problem can be
solved with the following corrected equation

dS =µSd t , (1.40)

where µ represents the rate of return which is independent of the initial price of
the asset. µ∆t is the return over a time interval ∆t . The solution to Eq.(1.40) is

S(t ) = S(0)eµt , (1.41)

where S(0) is the price of asset S at initial time t = 0. The reasoning about the
independence of returns and initial prices can be also applied to volatility and
initial prices. Moreover, given that volatility can be taken as a measure of un-
certainty about future returns. We could deduce that uncertainty about future
returns is related to absolute price variations. This problem can be fixed by as-
suming the independence of these two quantities, such as

σ2∆t = var

(
∆S

S

)
. (1.42)

We can sort the terms of Eq.(1.42) for having an equation on the variance of
asset price, expressed as

var(S) =σ2S2∆t . (1.43)

All the corrections to Bachelier’s model are fulfilled by an stochastic process:
a generalized Wiener process. As this shown below

dS =µSd t +σSd z, (1.44)

and substituting d z = ε
p

d t , we have

dS

S
=µd t +σε

p
d t . (1.45)

This means that returns dS/S are pulled from a normal distribution with
meanµd t and standard deviationσ

p
d t . Therefore, stock price S is described by

stochastic process with a multiplicative noise. This new theoretical description
fixes the mentioned problems in Bachelier’s model.
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1.3.1 Log-Normal Distributions of Stock Prices.

We have seen how the standard Gaussian model fixed the problems of Bache-
lier’s model. The solutions were mainly based on considering returns as the
subject to be modeled, instead of prices themselves. In doing so, problems re-
lated to absolute variations of prices disappeared because returns are relative
price variations. Moreover, the distributional shape of the solution could be kept
untouched because negative returns are possible and logical, but not negative
prices. This new model is more a refinement of Bachelier’s model than a new
theoretical framework.

In the previous section we have shown a stochastic process, which described
returns dynamics. This process met the requirements expressed by Bachelier,
and avoided some economical problems. Here I show the probability distribu-
tion associated to price dynamics described by Eq.(1.45).

When applying the Itô lemma3 to Equation(1.45) with G(S, t ) = lnS(t ), we
have

dG =
(
µ− σ2

2

)
d t +σd z, (1.47)

where lnS follows a generalized Wiener process with a drift term µ−σ2/2, and
standard deviation σ. Given that probability distribution of lnS is a normal dis-
tribution. The mean and variance for a time interval of lenght T , and initial time
t = 0 are

〈lnS〉 =
(
µ− σ2

2

)
(T − t ), (1.48)

var(lnS) =σ2(T − t ), (1.49)

where T is a future time, and t is a past time refered to T . When comparing
these last Equations, Eq.(1.48) and (1.49), with those obtained as solution to the
generalized Wiener process for the Bachelier’s model, Eq.(1.35) and (1.36), in
reality, they only differ on the described subject: returns, and prices.

1.4 Conclusions

In this Chapter I have presented the basic principles and mathematical tools
that are commonly employed in the different theoretical approaches to asset
price dynamics. These theoretical elements were originally developed by Bache-
lier and presented in his dissertation. The first of these elements is a series of
assumptions on prices and markets in order to avoid prices are predictible. The

3Let x(t ) follow an Itô process d x = a(x, t )d t + b(x, t )ε
p

d t . Then, a function G(x,t) is an Itô
process such as

dG =
(
∂G

∂x
a + ∂G

∂t
+ 1

2
b2 ∂

2G

∂x2

)
d t +b

∂G

∂x
d z, (1.46)

where
(
∂G
∂x a + ∂G

∂t + 1
2 b2 ∂2G

∂x2

)
is the drift of the Itô process followed by G , and b ∂G

∂x is the standard

deviation rate.
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second element is about the random behavior of price dynamics and the neces-
sity of stochastic processes to model the probability distribution of prices. These
elements are taken as valid and assumed as correct for all models presented in
this thesis.

Bachelier’s model considered prices were normally distributed and were un-
correlated, but it was demonstrated the convenience of studying returns instead
of prices for avoiding results in clear contradiction with economic principles
such as negative prices. The BSM approach is the result of incorporating cer-
tain financial constraints to Gaussian model for making it more realistic from an
economic perspective. This new theoretical approach was able to give a plausi-
ble explanation of price dynamics from a simple stochastic process: generalized
Wiener process, and based on this proces it was posible to generate a probability
distribution of prices which reconciled Gaussian models and economic princi-
ples. In spite of the theoretical validity of the solution, empirical findings on re-
turns distributions showed that normal distributions are only a good approach
to real dynamics of prices at very low frequencies. Moreover, models based on
normal distributions failed to explain several stylized facts common to most of
the financial assets, making necessary a different explanation for matching em-
pirical observations. A final remark is that Bachelier made a mistake when de-
ducing the shape of the probability distribution of prices and considered nor-
mal as the only right solution when others were also valid keeping unchanged
all the assumptions and methods presented in his dissertation, so a new model
for asset price dynamics is not necessarily against the first principles of Gaussian
models.
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Chapter 2

Non-Gaussian Models

2.1 Introduction

It has been shown that Gaussian models are a reasonable approach to model-
ing asset price dynamics at very low frequencies, but they fail in explaining the
whole shape of empirical returns distribution because this is leptokurtic and
Gaussian models systematically underestimate the tails, which represent the
probability of large returns. Non-Gaussian models [5, 14] came up as an attempt
to solve the problem with the tails, and reconcile theoretical models with em-
pirical observations [6, 14]. Mandelbrot [14] developed the first non-Gaussian
model and since that moment a vast collection of possible solutions has been
produced by researchers.

In this thesis, I have classified non-Gaussian models into two families: Sta-
ble Distributions (SD), and Mixture Distribution Hypothesis (MDH). Although
these two solutions make different assumptions, a common aspect is that both
assume non-Gaussian distributions for describing the empirical data. In spite
of the differences, it has been demostrated [2] that the SD framework can be
derived as a particular case of the MDH being this last approach a more gen-
eral solution to the problem. The SD is able to explain the occurrence of large
events and the apparent stability of returns distribtuions up to a certain time
interval. However, SD presents two serious problems: it does not converge to a
Gaussian distribution for long time intervals, and it assumes variance of empir-
ical distribution is infinite. As an attempt to solve these problems, it was pro-
posed the Truncated Lévy Distribution (TLD) [15] which is a slightly modified
version of the SD. The specific modification consists in truncating the tails of a
pure Lévy distribution to let it converge to a Gaussian. In doing this, variance is
well-defined and TLD slowly converges to a normal. The main criticism to TLD
is that it needs an additional empirical parameter for defining the two regions:
normal and Lévy.

MDH framework was developed by Clark [5] as an alternative theory that
avoided distributions with infinite variance for explaining empirical data. MDH

39
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does not try to fit empirical returns with a different distribution, but it states that
when returns are conditioned to another variable - Clark originally considered
informational arrival rate was that variable - these become normally distributed.
So MDH model is the result of a doubly stochastic process with a normal distri-
bution for conditioned returns, and another distribution called directing pro-
cess representing the variable to which returns are conditioned. MDH frame-
work is not very restictive and let consider different variables such as volume,
trading activity, and volatility for the directing process. For this thesis, the most
relevant directing processes is the volatility because the new model presented
in Chapter 3 may be considered within the Stochastic Volatility (SV) [23, 24]
framework. SV models are good candidates for solving several stylized facts be-
cause MDH gives theoretical support to their explanation and the former is only
a specific case of the latter. This is the main difference with SD and Gaussian
models which were in theoretical contradiction with empirical findings. On the
other hand, a problem with SV is that volatility is a latent variable so it is not
directly observable, then it must be inferred as it happened with informational
arrival rate in Clark’s model. Given that returns distribution characteristics in
SV models are driven by these of the volatility, returns are directly affected by
the accuracy of volatility estimation and this depends on the specific definition
of volatility and the available number of data points. Modern financial markets
are usually electronic, so a huge amount of data is recorded every trading day
reducing dramatically the problems related to sample size.

2.2 Non-Gaussian Models

Empirical distributions are not Gaussian, they are leptokurtic. Therefore, the
probability of very large returns, also called extreme events, must be fitted by
a heavy-tailed distribution. Another important characteristic of the empirical
distributions is that they do not scale as it would be expected from a Gaussian.
Emprical distributions slowly converge to a Gaussian when returns time inter-
vals increase. Due to that slow rate of convergence these distributions are appar-
ently stable, but they are not. These differences are relevant and made necessary
a new theoretical approach.

The first non-Gaussian model was published by Madelbrot in 1963 [14]. He
realized, when studying the prices of cotton, that the cumulative distribution
function (cdf) of returns did not fit the expected result based on a Gaussian
model. Mandelbrot plotted the cdf on double logarithmic scale, and he found its
tail followed a straight line. This was in good agreement with a stable Lévy dis-
tribution, and it was taken as a conclusive proof against Gaussian models. The
explanation to his finding, according to the assumption of a Lévy distribution, is
that Lévy distributions asymptotically decay with power laws of their variables.
Thus, when plotting a power law in double log scale, also called log-log scale,
gives as result a straight line. This finding was also supported by Fama in 1965 [6]
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in his investigations on analyzing prices in the New York Stock Exchange. Since
that moment, Gaussian models were abandoned as a plausible explanation and
new theoretical approaches were all non-Gaussian.

2.2.1 Stable Distributions Models

Gaussian models were developed from first principles taking into account only
theoretical constraints about an idealistic market and statistical properties of
consecutive prices. However non-Gaussian models in general, and more specif-
ically SD Models, are developed as an attempt to explain empirical findings, and
since that moment theoretical models are generated for explaining the stylized
facts of empirical distributions. The empirical findings addressed by Mandel-
brot were the heavy tails, and the scalability of empirical data. The challenging
solution proposed by him to the problem of non-gaussianity was a Lévy dristri-
bution. This let solve the problem of heavy tails, because Lévy distribution has
much more weight in its tails than Gaussian as it is illustrated in Fig.(2.1). More-
over, as a Lévy is a stable distribution1 the apparent stability of empirical dis-
tributions was also explained. However, this solution brought a new theoretical
problem: its second moment is not well-defined, this means that variance is
non finite. Moreover, the stochastic process generating the distribution of re-
turns - Lévy flight - is different from the geometric Brownian motion because
in the Lévy flight the length of the random steps is drawn from a heavy-tailed
distribution and the distance from the origin tends to a stable distribution.

A stable Lévy distribution is defined by its characteristic function

L̂a,β,m,µ(z) = exp
{
−a|z|µ

[
1+ iβsi g n(t ) tan

(πµ
2

)]
+ i mz

}
, (2.1)

where β is a skewness parameter, β= 0 means a symmetric distribution. µ is the
index of the distribution which gives the exponent of the asymptotic power-law
tail. a is a scale factor which characterizes the width of the distribution, and m
gives the peak’s location.

Taking into consideration Bachelier’s assumptions, we need a symmetric
function. Then, β = 0 is the necessary value for this parameter. We also know
that the maximum of the distribution must be located at x = 0, leading to m = 0.
Then, the characteristic function may be simplified and expressed as

L̂µ(z) = exp
(−a|z|µ) . (2.2)

Depending on the specific value taken by µ in Eq.(2.2) we have different dis-
tributions, e.g. Gaussian for µ = 2, and Lorentz-Cauchy for µ = 1. Given that µ
measures the exponent of the tails, its value indicates the higher well-defined
moment, e.g. for µ < 2 the variance is infinite and the mean absolute value is

1A distribution is classified as stable distribution if it has the property that a linear combination
of two independent copies of the distribution gives as result the same distribution, up to location
and scale parameters.
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Figure 2.1: Probability density function of a Lévy distribution compared to a
normal distribution.

finite if µ > 1. In general, the moments with orders n < µ are finite. About the
stability, only Lévy distributions with µ ≤ 2 are stable meaning that all of them
act as attractors, whereas for µ > 2 are not stable. An important property of
the stable distributions is that they keep unchanged their shape under aggrega-
tion up to rescaling, so this type of distribution is defined as self-similar. This
is an important issue for describing empirical distributions because stable dis-
tributions do not tend to a Gaussian when they are aggregated except normal
itself. Aggregational gaussianity therefore can not be explained by stable distri-
butions making this solution inadequate for explaining empirical distributions.
Although CLT may not be applied to Lévy distributions, there is a generalized
version due to Gnedenko and Kolmogorov [8] that may be employed. This states
that if many independent random variables are added whose probability distri-
butions have power-law tails pi (xi ) ∼ |xi |−(1+µ), with an index 0 < µ < 2, their
sum will be distributed according to a stable Lévy distribution Lµ(x).

There are several references on the good agreement of empirical distribu-
tions with Lévy processes, e.g. Fama [6] studied single stocks listed in the Dow
Jones Industrial Average (DJIA) in the 1960s and he found that Mandelbrot’s hy-
pothesis was supported by his empirical research, Mantegna and Stanley [16]
studied the S&P500 index and were able to roughly collapse the distributions
onto a master curve that had an index µ= 1.4.

In Fig.(2.2) I show a comparison of the probability density function (pdf)
of the standardized empirical returns for AZN with a fitted Lévy and a normal
with zero mean and unit variance. We see that Lévy distribution fits better than
normal the body of the empirical distribution, but both of them fail to fit the
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Figure 2.2: Probability density function of standardized returns, P (r ′), for AZN
compared to a fitted Lévy distribution and a normal. The solid blue line is the
pdf for a normal distribution with mean zero and unit variance.

tails. Lévy clearly overestimates the occurrence of large returns, whereas normal
underestimates them.

The behavior of Lévy distributions for large values of x is

Lµ(x) ∼ µAµ
±

|x|1+µ for x →∞, (2.3)

where 0 < µ < 2 is an exponent, sometimes called α, and Aµ
± are two constants

called tail amplitudes because they give the order of magnitude of the positive
and negative large fluctuations of x. Lévy distributions have been tested against
empirical data and they systematically overestimate [3] the tails of empirical dis-
tributions, so SD model as it was formulated by Mandelbrot does not fit financial
data in spite of being heavy tailed. As an attempt to solve the overestimation of
the tails within the SD framework, it was introduced the Truncated Lévy dis-
tribution (TLD) [15] which is a way to reduce the weight in the tails of stable
distributions. The main advantage of the TLD is that it has finite variance and it
slowly converges to a Gaussian distribution. Moreover, financial models related
to mean-variance paradigm would continue to be meaningful. A truncated Lévy
distribution (TLD) is defined by its characteristic function

L̂(t )
µ (z) = exp

[
−aµ

(α2 + z2)
µ

2 cos(µ arctan(|z|/α))−αµ
cos(πµ/2)

]
, (2.4)

where α is the parameter used for delimiting the regions with different behav-
ior. The main difference between TLD and a pure Lévy distribution is shown
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when they are added. To make it more explicit let’s consider the sum of TLD
distributions. Let X be the sum of N random variables distributed as TLD dis-
tribution. Considering that a TLD behaves like a Lévy distribution for x <<α−1.
More specifically, it behaves as a power-law of exponent µ and tail amplitude
Aµ. If N is not too large, most values of x are in the Lévy region. However when
x reaches the cutoff valueα−1 and if N is a large number X converges to a Gaus-
sian. The region of the tails - outside central region - of the sum decays as an
exponential. This solution is a crossover between Gaussian and Lévy behaviors
strongly depending on the value ofα. An evident criticism to both models is that
they only try to fit the returns distribution without any further theoretical expla-
nation. This is more obvious in the TLD model where an additional parameter
is introduced to match empirical distributions due to the lack of accuracy in the
tails.

2.2.2 Mixture Distribution Hypothesis Models

In SD models the price variations are independent and their distribution does
not have finite variance, then all higher moments of the distribution are not well
defined. The acceptance of these properties made necessary to abandon well
established results in finance, e.g. those derived from the mean-variance frame-
work. Clark[5] developed a new theory which was compatible with other models
in finance where the existence of a well defined variance was a crucial element.

The basic assumption of Clark’s theory was that the distribution of price vari-
ations was subordinated to a Gaussian. This assumption made necessary the
existence of another distribution causing the observed heavy tails of empirical
data. He postulated that the different number of events in a certain fixed calen-
dar time interval was that cause. So prices evolved at different rates at this fixed
time interval as a consequence of the different number of events. Clark assumed
that the origin of the different number of events was differences on information
arrival rate at different times, on days when there were more news trading activ-
ity was high and prices evolved fast, and the opposite, on the days when there
were not many news prices evolved slowly. However this assumption brings a
new problem: information was not strictly defined, and different models within
this framework try to derive it by measuring another observable magnitude.

A common feature to SD and MDH frameworks is that CLT can not be ap-
plied to any of them. In Mandelbrot’s model because individual transactions
are drawn from a distribution with infinite variance. In Clark’s model because it
assumes different rates of change in prices for equal calendar time intervals.

Subordinated Stochastic Processes

Subordination is the key element in MDH models, and Clark related subordina-
tion to information arrival. This is an inconvenient for model’s implementation
because information arrival is taken as a latent variable which must be inferred,
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but from a mathematical point of view a formal definition of subordination is
possible, and some results theoretically derived from that formal definition are
necessary for understanding further models developed within this framework.

Let’s consider a stochastic discrete variable: X (0), X (1), ..., X (t ), where X (i )
is the particular realization of a stochastic process at time i . And, let’s consider
the indexes of this stochastic process realizations of another stochastic process
where ( t1 ≤ t2 ≤ t3 ≤ ...). That is, T (t ) is a positive stochastic process, a new
process X (T (t )) can be generated. This new process X (T (t )) is said to be subor-
dinated to X (t ); and T (t ) is called the directing process. Finally, the distribution
of∆X (T (t )) is said to be subordinated to the distribution of∆X (t ). This last term
assumes the role of the individual effects in the evolution of the price process,
while T (t ) is a clock measuring the rate of evolution. Although, change of time
is common in subordination it can be found in the literature on Lévy processes
too [1, 4]. There are two different strategies for modelling T (t ), the first strategy
is more related to find a process with distributional properties compatible with
those observed in empirical data, the second strategy is related to find a vari-
able with a similar behavior to that of the information as a mean for capturing
information.

In [5] we find several theorems related to subordinated processes. For the
aim of this thesis, the next theorem which holds for general classes of subordi-
nated stochastic processes with independent increments is the most relevant.

Theorem: Let X(t) and T(t) be processes with stationary independent incre-
ments; that is,

• X (tk+1)− X (tk ) (k=1,2,...,n-1) are mutually independent for any finite set
t1 ≤ t2 ≤ ... ≤ tn , and similarly for T (t );

• X(s+t)-X(s) depends on t but not on s for all s, and similarly for T (t ).

Let the increments of X (t ) be drawn from a a distribution with mean 0 and
finite variance σ2. And let the increments of T (t ) be drawn from a positive dis-
tribution with mean α, independent of the increments of X (t ). Then the subor-
dinated stochastic process X (T (t )) has stationary independent increments with
mean 0 and variance ασ2. Thus, if the steps ∆X (t ) are independent with mean
0 and variance σ2, then ν steps have mean 0 and variance νσ2. Therefore, the
variance of ∆X (T (t )) conditional on ∆T (t ) is

var(∆X (T (t ))|∆T (t ) = ν) = νσ2. (2.5)

It is important to realize that if the directing process has a finite mean, then
∆X (T (t )) will have a finite variance unless ∆X (t ) does not have it. This implies
that given the parametersα, andσ2, we can change the distribution of∆(t ), and
a family of distributions with mean zero and same variance can be obtained.

It is also demonstrated in [5] that the introduction of any directing process
makes the distribution of X (T (t )) only more leptokurtic. Thus, it turns crucial
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for the MDH the selection of the directing process with the only condition that
it must be an increasing process, this a very little restrictive condition and offers
many possible solutions compatible with it. A common solution is to employ
a log-normal distribution, that’s Clark’s solution. This choice creates an imple-
mentation’s problem because for calculating the pdf of the returns it is necessary
to compute a numerical integration that turns out to be relatively unstable.

Clark in his seminal paper not only developed a new theoretical framework.
He also compared the lognormal-normal distribution with the stable distribu-
tion. For this comparaison, he studied the time series of prices of cotton futures
for two periods: 1947-50 and 1951-55. The data series used by Clark makes it
difficult to compare models by several reasons. The first reason is because cot-
ton contracts do not have four year lives, then Clark had to splice series across
contract lives. Consequently, additional noise may have been added to his data
set. Moreover, the time period from 1951 to 1955 was preceded by a suspension
of trading due to existing price controls, this could affect the amount of varia-
tion in the time series at the beginning of the period, just as trading began, and
finally the open interest2 is not constant. Volume and price fluctuations may be
influenced by changes in open interest.

Directing Processes

MDH models can be classiffied employing the directing process as criterion. It
has been mentioned that Clark assumed this process related to information ar-
rival, but this is only a postulate. There are several processes compatible with
the subordination model.

Informational arrival rate is an unobservable variable, but information af-
fects observable variable as for example volume, or trading activity. This is a
very general statement that can be broadly accepted, but the problem is how
information modifies the obsevable variable and the returns. It may be postu-
lated that information and the observable variable are driven in a similar way,
or we can employ the observable variable as a proxy of the information arrival
rate. Following this last approach, many possible proxies [12] have been stud-
ied, e.g. the volume measured as the number of shares, the volumen measured
in money, the number of transactions, the average trade size... Another strategy
to address the problem is to measure the volatity of the returns, and study its
changes over time as a different stochastic process. This method gives as result
the family of solutions called Stochastic Volatility (SV) models [20]. This family
of models is the most relevant for this thesis because the new model developed
in Chapter 3 may be classiffied as a member of it.

Many different directing processes hold Clark’s assumptions, and all of them

2Open interest is the total number of derivative contracts that have not been settled in the
immediately previous time period for a specific underlying security.
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share a common mathematical behavior that may expressed such as

f (rt ) =
∫

It∈R+
f (rt |It )g (It )d It , (2.6)

where f (rt ) represents the density of returns, the distribution of increments of
the directing process It follows a distribution with density g (It ), and f (rt |It )
means that conditional on information arrival flow It , the density of returns is
assumed to be given by the normal distribution. Then, it turns clear that any
different behavior of f (rt ) is a consequence of the distributional properties of
g (It ), given that f (rt |It ) is always represented by a Gaussian. Now, it becomes
obvious that independently of the theoretical reasoning behind the choice of
a certain variable as a proxy of the information. It is its shape, that’s how it is
distributed, the driving factor for several stylized facts, e.g. the heavy tails of the
returns distribution.

Clark in his model assumed that It was log-normallly distributed, so

l og (It ) ∼N (µ,m2), (2.7)

where, N (µ,m2) represents a common normal distribution with mean µ and
variance m2. Integrating, as it is shown in Eq.(2.6). We obtain the solution to his
model, such as

f (rt ) =
∫

It∈R+

1√
2πσ2

r It

exp

(
−1

2

(
rt −µr It

)2

σ2
r It

)
1p

2πm2It
exp

(
−1

2

(
log (It )−µ)2

m2

)
d It ,

(2.8)
where µr and σ2

r are the parameters of the normal distribution conditional on
information arrival flow.

We can find several different distributions for the information arrival in the
literature. Log-normal was not only postulated by Clark[5], but also by Tauchen
and Pitts [21], and by Foster and Viswanathan [7]. Richardson and Smith [18]
considered in addition a uniform arrival rate, a Poisson distribution, and the
inverted-gamma distribution. Blattberg and Gonedes [2] used the inverse gamma
too. Madan and Seneta [13] proposed the gamma distribution, generating the
called variance-gamma model.

So far, I have shown different attempts of modelling information, and how
the probability distribution associated to the information affected the returns
distribution, but all these results are theoretical results and much reasearch has
focused on testing the MDH models. Tauchen and Pitts [21] provided an eco-
nomic model, yielding testable implications concerning returns and volume jointly.
Harris [9, 10] extended the predictions of that model by considering a model
where price increments, rt , and volume, vt , of a given day, are conditionally
normal. Also, conditionally on the information arrival, It , the covariance be-
tween returns and volume is equal to zero. Harris model can be mathematically
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written, such as

rt ∼N (mr It ,σ2
r It ), (2.9)

vt ∼N (mv It ,σ2
v It ), (2.10)

Cov[rt , vt |It ] = 0. (2.11)

The first equation corresponds to Clark’s initial model. If we consider a re-
striction of the bivariate model, we obtain Tauchen and Pitts [21]. Harris [10]
derives a large set of conditional and unconditional moments that he uses to
extend the set of stylized facts concerning asset returns and volume, already ob-
tained by Tauchen and Pitts [21]. Richardson and Smith [18] further built on
these conditional and unconditional moments to construct a formal test of the
MDH based on the method of moments.

Student’s t-Model

In the previous section, I have shown that for MDH models the classifying factor
is the directing process, T (t ). This is the explanatory variable for the proper-
ties of the different models within the MDH framework, because all the other
elements are common to compute returns distributions. I have also mentioned
that the selection of the directing process may be based on different theoretical
assumptions: a proxy of the volatility, a model of the volatility, traded volume...
but from a mathematical perspective the only important characteristic is the
shape of its distribution.

The original model by Blattberg and Gonedes [2] is very relevant for this the-
sis because it gives a theoretical foundation to the Student’s t-distribution for
the returns, and that’s the shape empirically demonstrated in Chapter 3. They
state that if [T (t )]−1] follows a Gamma-2 distribution3, which is asymmetric and
strictly positive, X [T (t )] will follow a Student’s t-distribution. On the other hand,
they also state that if T (t ) follows a strictly positive asymmetric stable distribu-
tion with4 α ∈ (0,1) then X [T (t )]; t ≥ 0 will follow a symmetric-stable distribu-
tion withα< 2. Based on this result we can state that Stable Distributions model
is a particular case of the Mixture Distributions Hypothesis, demonstrating that
MDH is a more general approach than SD.

The Student’s t density function with location parameter m, scale parameter
H > 0, and degrees of freedom parameter, ν> 0, such as

f (x|m, H ,ν) = ν(1/2)ν

B
(1

2 , 1
2ν

)
[
ν+H(x −m)2]−1/2(ν+1)p

H , (2.12)

where B(., .) is the beta function, that is, B(a,b) = Γ(a)Γ(b)/Γ(a + b), and Γ(.)
is the gamma function. The Student’s t function has the following properties:

3Let X > 0 be a real random variable with a Gamma distribution parametrized by a shape ν
2 > 0

and scale s
2 > 0. We will denote X ∼G2(ν, s) ≡G

(ν
2 , s

2

)
and say that X has a Gamma-2 distribution

4α is the exponent of the characteristic function of the symmetric-stable distribution.
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Figure 2.3: Probability density function of Student’s t-distribution for differ-
ent values of ν and a normal. The solid blue line is the pdf for a normal distri-
bution with mean zero and unit variance, Student’s t-distribution is plotted for
ν values from 2 to 30.

(i)〈x〉 = m, for ν > 1 this means that mean is defined for ν > 1, (ii) var(x) =
H−1ν/(ν−2), for ν> 2 this means that variance is defined for ν> 2; (iii) in gen-
eral, all the moments of order r < ν are finite; (iv) when ν = 1, the Student’s
density function is the Cauchy density function, (v) As ν→ ∞, the Student’s t-
distribution converges to the normal disrtibution as it is shown in Fig.(2.3). This
property of the Student’s t-distribution is essential for understanding the aggre-
gational gaussianity.

When a Student’s random variable with ν > 2, x, is standardized by taking
normalized returns such as

x∗ = x −〈x〉p
var(x)

, (2.13)

then the density function of x∗ has the following properties: (i) it has fatter tails
than the density function of a Gaussian distribution with mean zero and vari-
ance equal to one, (ii) the peak about zero, the mean value, is higher than in the
Gaussian distribution about the mean. If we assume Student’s t-distribution is
standardized, in that case m = 0 and H = 1, and we have

f (x|m, H ,ν) = ν(1/2)ν

B
(1

2 , 1
2ν

)
[
ν+x2]−1/2(ν+1)

, (2.14)

Student’s t-distribution has two properties which make it especially interesting
for describing empirical returns. The first property is that it is heavy-tailed with
more weight in its tails than Gaussian. The second property is its convergence to
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Figure 2.4: Probability density function of standardized returns for AZN stock
fitted by a Student’s and a normal distribution.

a Gaussian without the necessity of adding extra parameters, as it was the case
for TLD.

As I said in Chapter 1, the aggregational gaussianity can be observed by re-
ducing the sample frequency of the prices. We can rephrase this last statement,
when we agregate longer intervals returns their distribution comes closer to a
Gaussian. Let’s consider an example, let xt , t = 1,2, ..., the rate of return - con-
tinuous compounding - of a certain asset for day t , t = 1,2, ..., its rate of returns
is

ST =
T∑

t=1
xt , (2.15)

under continuous compunding, ST , is the rate of return over a period of T days.
Now, suppose that (x1, x2, ..., xT ) is a sequence of independent random variables.
Under the Student’s t-model with ν > 2, the distribution of ST converges to a
normal distribution as T →∞. This convergence result is a consequence of the
Central Limit Theorem because Student’s t-distribution is heavier tailed than a
Gaussian but with finite variance. Student’s t-model for daily returns implies
that there is a time period such that rates of return may be described by a Gaus-
sian distribution, and this is in good agreement with empirical returns. If we had
a stable distribution withα< 2, then the distribution of ST wouldn’t converge to
a normal distribution because they are stable and tend to a distribution with the
same shape.

In Fig.(2.4), I show the pdf of empirical returns for AZN fitted by a Student’s
and a normal distribution. We can see that Student’s t-distribution does esti-
mate better the peak of empirical distribution and it also shows a more leptokur-
tic behavior with a slower decay in the tails than normal.
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2.3 Stochastic Volatility Models

MDH models rely their explanatory capability on finding a variable which is dis-
tributed in such a way that when is marginalised with a Gaussian reproduces the
empirical returns distribution, that variable is not strongly constrained by the
definition of the MDH framework. We have also seen that many attempts have
been made to find theoretical models more fitted to empirical data, these at-
tempts have taken two different directions: to find new variables, and to redefine
previously employed variables. SV models [20, 23] as a family of solutions can be
included into the first direction because it uses volatility as a directing process.
This family assumes that volatility changes through time in a random way, so it
may be modeled as a random process. Moreover, SV family has produced a col-
lection of different particular models depending on the distributional properties
of the volatility process.

Given that SV models follow MDH and the volatility is the only variable to
be estimated, we might wrongly conclude that SV models should reduce to one
only model, but this is not true because of the nature of volatility. Volatility can
not be observed directly from returns time series, it is a latent variable, so it must
be estimated based on past and current returns. As it happens with any other
estimation the first question is about the method employed for it. The second
question is about the available time series and the frequency at which it has
been recorded. A final remark is that there are financial instruments: VIX, VDAX,
volatility swaps, which have the volatility as underlying asset. Although these
financial products are traded in financial markets, volatility as a variable itself
continues to be a latent variable and must be modeled through its influence in
the magnitude of returns.

SV models had its origin in the work of several authors, e.g. Rosenberg [19],
Clark [5], Taylor [22], and Tauchen and Pitts[21] and have slowly grown because
their difficult estimation. This is also the cause of the broad use of ARCH mod-
els5 in financial industry.

All SV models share some basic assumptions as market efficiency, and the
ones derived from MDH. In addition to these, there are some other features
common to most of the models in the family. These features are summarized
in the next example. Let’s consider a model which assumes the volatility on a
given time interval t - for the most general form of SV model we do not con-
sider any specific length for the time interval - denoted by σt , which is partially

5An ARCH model in its most general form makes conditional variance at time t a function of
exogenous and lagged endogenous variables, time, parameters, and past residuals

et = σt Zt , (2.16)

σ2
t = σ2(σ2

t −1Zt −1,σ2
t −2Zt −2, ..., xt , t ,b), (2.17)

where Zt ∼ i i d with 〈Zt 〉 = 0 and var(Zt ) = 1, et are prediction errors, b a vector of parameters, xt
a vector of exogenous and lagged endogenous variables, and σ2

t the variance of et given informa-
tion at time t .
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determined by unpredictible events on the same time interval. Following with
Clark’s theory, volatility would be related to a stochastic number of price revi-
sions in that interval. The total number of news items on the period t would be
represented by a random variable, denoted by Nt . When news item i reaches
the market , the logarithm of the price changes in a certain amount, ε, and these
changes are added, such as

rt =
Nt∑

i=1
εi ,t , (2.18)

where εi ,t are random variables normally distributed with mean 0 and variance
θ2, and independent of Nt . Then, the distribution of the return conditional on
nt news items is a normal with variance

var(rt |Nt = nt ) = ntθ
2. (2.19)

Then, the stochastic volatility process can be described such as

σ2
t = Nθ2, (2.20)

and returns are
rt =σt ut , (2.21)

where ut is a standard normal random variable that is independent of the ran-
dom variable σt . From Eq.(2.19) it can be seen that volatility changes when the
amount of news Nt changes. Volatility clustering will then occur if there is suf-
ficient positive autocorrelation. If we observe that positive autocorrelation pe-
riods of high volatility will be followed by more high volatility periods, and the
other way low volatility periods will be followed by low volatility periods.

So far, we have shown a general outline common to most of the different im-
plementations of the SV family. A long list of specific implementations can be
cited. Tauchen and Pitts [21] assumed expected trading volume is proportional
to the number of news items and hence volatility and volume are positively cor-
related variables. Harris [10] considers empirical transaction counts.

SV models are relevant from a theoretical point of view, because based on the
general features presented above and assuming that volatility is autocorrelated
- this has been empirically observed [17] and it is generally accepted, - three im-
portant stylized facts of the returns distribution can be explained. Let’s suppose
daily returns described by the equation

rt =µ+σt ut , (2.22)

this equation is equivalent to Eq.(2.21), but we have added explicitly the term
µ for gaining in generality. For explaining those three stylized facts, we need
six more assumptions: (i) the expected return µ is constant , (ii) σt is a positive
random variable, (iii) the stochastic process {σt } is stationary6, 〈σ4〉 is finite and

6A stationary process is a stochastic process whose joint probability distribution does not
change when shifted in time. As a result, parameters such as the mean and variance, if they exist,
also do not change over time.
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all the autocorrelations of {σ2
t } are positive, (iv) ut is a standard random variable,

so ut ∼ N (0,1), (v) the ut are iid variables, (vi) the process {σt } and {ut } are
stochastically independent.

The first explained stylized fact is that the distribution of returns is not nor-
mal. Based on Eq.(2.21) the distribution of returns is a mixture of normal distri-
butions, with the mixture determined by the distribution of volatility. This mix-
ture distribution has higher kurtosis than that of a normal distribution, since

var(rt ) = 〈(rt −µ)2〉 = 〈σ2
t u2

t 〉 = 〈σ2
t 〉〈u2

t 〉 = 〈σ2
t 〉 , (2.23)

〈(rt −µ)4〉 = 〈σ4
t u4

t 〉 = 〈σ4
t 〉〈u4

t 〉 = 3〈σ4
t 〉 , (2.24)

kurtosis(rt ) = 3〈σ4
t 〉〈u4

t 〉
〈σ2

t 〉〈u2
t 〉

= 3

(
1+ var(σ2

t )

〈σ2
t 〉

2

)
> 3. (2.25)

The second explained stylized fact is that returns are almost uncorrelated.
The autocorrelations are zero at all positive lags τ when the assumptions apply,
because

cov(rt ,rt+τ) = cov(σt ut ,σt+τut+τ) ,

= 〈σt utσt+τut+τ〉−〈σt ut 〉〈σt+τut+τ〉 ,

= 〈σtσt+τ〉〈ut 〉〈ut+τ〉−〈σt 〉〈σt+τ〉〈ut 〉〈ut+τ〉 = 0.

The third explained stylized fact is that both absolute returns and squared
returns are positively autocorrelated. Let st = (

rt −µ
)2. Then, for all positive

lags τ,

cov(st , st+τ) = cov
(
σ2

t u2
t ,σ2

t+τu2
t+τ

)
,

= 〈σ2
t u2

tσ
2
t+τu2

t+τ〉−〈σ2
t u2

t 〉〈σ2
t+τu2

t+τ〉 ,

= 〈σ2
tσ

2
t+τ〉〈u2

t 〉〈u2
t+τ〉−〈σ2

t 〉〈σ2
t+τ〉〈u2

t 〉〈u2
t+τ〉 ,

= cov
(
σ2

tσ
2
t+τ

)> 0.

Consequently, positive dependence in the volatility process implies positive
dependence in squared excess returns. This result can be extended to positive
dependence in absolute excess returns, at = |rt −µ|.

The six assumptions held by Eq.(2.22) are enough to provide a framework
within which volatility changes explain the three above mentioned stylized facts
for returns. At this point, we have not taken into consideration any specific pro-
cess for volatility, but any process holding the assumptions before mentioned is
valid for explaining those stylized facts. A last remark is that the six assumptions
are not necessarily met by all SV models, i.e. there are certain implementations
where σt and ut are not statistically independent [11].

Although SV and ARCH models are often taken as equivalent with the only
difference that the former is described in continuous time and the latter in dis-
crete time, this is not absolutely corrrect and it is convenient to clarify the subtle
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but important difference between them. A general ARCH model for the excess
return can be expressed such as

et = h1/2
t zt , (2.26)

where et is the excess return over a certain mean value µ. zt ∼ i i d with zero
mean and unit variance, and the conditional variance ht is formulated as

ht =ω+α(rt−1 −µ)2, (2.27)

where the volatility parameters ω > 0 and α ≥ 0. The volatility of the returns in
period t then depends solely on the previous return. From here it is not inmedi-
ately deduced that ARCH models are equivalent to SV models, by only substitut-
ing σ2

t = ht because there is no unpredictible volatility component in ht since
var (ht |It−1) = 0, where It−1 means the information up to time t−1. On the other
hand, in a SV model as it is shown in Eq.(2.29) conditional variance σt depends
on an additional noise process ηt and so is itself an unobservable variable. This
makes SV models much more difficult to estimate than ARCH models as the like-
lihood function cannot be written down directly. However, when zt is a mixture
of normal distributions, we can write zt = m1/2

t ut with 〈mt 〉 = 1,var(mt ) > 0,
and mt independent of both ut ∼N (0,1) and It−1. Then Eq.(2.22) and Eq.(2.26)
are equivalent with 〈σ2

t |It−1〉 = ht and var(σ2
t |It−1) = h2

t var(mt ) > 0. So ARCH
models with appropriate fat-tailed conditional distributions are SV models.

2.3.1 The Standard Stochastic Volatility Model

So far I have described a general SV model which can be taken as a theoretical
representation of the broad SV family, but no specific model has been presented
yet. This particular representation is necessary for computing numerical prop-
erties of the solutions. A final remark about the differences between models in
this framework is that are mainly based on two factors: the modelling of the
volatility process, and if random variables are correlated or not.

Let’s consider a simple case where the stochastic volatility, σt , for daily re-
turns is log-normally distributed. Then, log (σt ) ∼ N (α,β2), with α and β the
usual parameters of normal distribution. There is no theoretical reason behind
the common use of daily frequency as sampling frequency for returns. It is plau-
sible the idea that this frequency was chosen because it was the highest available
frequency for financial time series up to very recently. Although the lognormal
distribution is the standard choice when a continuous distribution is used for
volatility - and it was Clark’s choice, - there are other distributions: gamma dis-
tribution, inverse gamma distribution, which are in good agreement with empir-
ical data. Other important aspect for volatility modelling is the presence of au-
tocorrelations, which are proportional to those of absolute excess returns. This
indicates that the autocorrelations of volatility must decrease slowly, because
this is the observed behavior for absolute excess returns.
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The simplest stationary stochastic process for volatility is a Gaussian AR(1)
process7 for its logarithm such as

log (σt )−α=φ(l og (σt−1)−α)+ηt . (2.29)

The parameter φ represents volatility persistence, with −1 < φ < 1. The iid
volatility residuals ηt have distribution N (0,σ2

η). This process is a simple mod-
elling of volatility where autocorrelations and slow decay are taken into account.

The standard SV model - based on Taylor [23] - is given by Eq.(2.22) and two
further assumptions. First, the iid variables ut are distributed as N (0,1), and
second processesσt and ut are stochastically independent. The returns process
is strictly stationary, since it is the product of independent strictly stationary
processes. The main properties of this model are summarized as (i) all the mo-
ments of returns are finite, (ii) the kurtosis of returns equals 3exp(4β2), (iii) the
correlation between returns rt and rt+τ is zero for all τ > 0, (iv) the correlation
between the squared excess returns st = (rt −µ)2 and st+τ is positive for all τ> 0,
and (v) the autocorrelation function of ap = |rt−µ|p has approximately the same
shape as that of st for all positive p.

In the standard SV model the unconditional density function of returns is
symmetric about its mean µ, and volatility is modeled by a log-normal density
function. Thus, when we integrate these distributions we get a solution equiva-
lent to that previously obtained by Clark, Eq.(2.6). Reinforcing the idea that a SV
model is a particular case of MDH model. A result of this model is that all its mo-
ments are finite. This is a very important difference with SD models that makes
SV paradigm very attractive, given that it makes possible to keep untouched all
the results related to a finite variance. Moreover, the moments of the distribu-
tion can be easily calculated. So, for any positive number p,

〈|rt −µ|p〉 = 〈σp〉〈|ut |p〉 , (2.30)

as log(σp
t ) = p log(σt ), the distribution of log(σt ) is N (pα, p2β2) and thus

〈σp
t 〉 = exp(pα+ 1

2
p2β2), (2.31)

then first three moments of the distribution are

〈|rt −µ|〉 =
p

2/πexp

(
α+ 1

2
β2

)
, (2.32)

var(rt ) = exp
(
2α+2β2) , (2.33)

kurtosis(rt ) = 3exp(4β2). (2.34)

7An AR(1) process is a first-order one process, meaning that only the immediately previous
value has a direct effect on the current value. It is employed for describing a stochastic process
that can be expressed as a weighted sum of its previous values and a white noise error,

et = r et−1 +ut , (2.28)

where r is a constant that has absolute value less than one, and ut is drawn from a distribution
with mean zero and finite variance, often a normal distribution.
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The most important aspect of this solution is not its specific numerical val-
ues, but all of them are finite. The main advantage of SV models over SD mod-
els is that the former are compatible with other well established paradigms in
mathematical finance. Moreover, from a theoretical point of view, empirical dis-
tributions might be accurately fitted by SV models. However, the main problem
with these models in general is that they do not fully match empirical distri-
butions and as it happened with SD models empirical tails are not accurately
represented, then it seems logical that some further research is necessary but
without discarding the SV assumptions.

2.4 Conclusions

In this chapter, I have presented the two main families of models: SD and MDH,
which were developed as an attempt to describe empirical returns distribution.
Both families assume non-Gaussian solutions which are represented by heavy-
tailed distributions with more density of probability associated to large events.
On the other hand, the main difference between them is about their conver-
gence to a Gaussian. In the SD family, solution is based on stable distributions
which are self-similar and are attractors of the family of distributions with non-
finite variance, they therefore do not converge to a Gaussian. The family of so-
lutions based on the Mixture Distributions Hypothesis is characterized by pro-
ducing solutions with all their moments well-defined, so this family converges
to a Gaussian when they are aggregated as a consequence of the Central Limit
Theorem. Another relevant difference between the two families is the shape of
the tails of the returns distribution according to each model: SD models only
produce tails which decay as a power-law, whereas MDH can generate more dif-
ferent types of decay such as exponential.

MDH solution is the theoretical framework of Stochastic Volatility models
which constrained by a few theoretical assumptions are able to explain three
sytilized facts: non-gaussianity of returns distribution, absence of linear corre-
lations, and positive autocorrelation of squared returns - also known as volatility
clustering. This explanatory capability of SV models makes them very attractive
for researchers, but not for practitioners because of their difficult implementa-
tion. The difficulty comes from the modelling of volatility which is a latent vari-
able. In general, practitioners implement a discrete-time version of SV models
which are ARCH models and that let produce distributions with similar charac-
teristics to these generated by SV, while they are more easily implemented.

The accuracy of any specific solution is not only depending on the theoret-
ical approach, but on the available database that lets researchers to employ a
certain estimation of the volatility. Modern high frequency databases bring a
great opportunity to researchers for making models that explain prices at the
finest time level: event time.
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Chapter 3

A Superstatistical Stochastic
Volatility Model

3.1 Introduction

In the previous chapters I have shown that empirical price dynamics can be
characterized by a series of stylized facts which are common to different finan-
cial assets. I have also presented different attempts to explain and describe the
asset price dynamics. First models - Gaussian models - tried a theoretical expla-
nation from first principles. Although it was demostrated in the 1960s that these
models were not able to reproduce empirical distributions, different methods
employed in the deduction of the solution are currently used in mathematical
finance and the postulates for markets and prices are commonly assumed by
any theoretical framework. Moreover, Gaussian distribution is broadly used as a
benchmark for further theoretical models.

Non-Gaussian models - SD and MDH - were conceived as an attempt to
mainly explain the heavy tails observed in empirical distributions, due to this
all new solutions were logically heavy-tailed. Although SD and MHD are com-
monly presented as different solutions, SD are inded a particular solution of the
more general MDH. This last framework is not very restrictive and may be de-
scribed as the result of a doubly stochastic modelling with a conditioned proba-
bility which is always a Gaussian, and another distribution which is the driving
factor of the non-Gaussian behavior of the returns distribution. Many models
fitting this simple description of the framework may be produced by only con-
sidering different non-Gaussian distributions. SV models made this by mod-
elling the volatility and taking it as the cause of the observed non gaussianity. It
has been presented in Chapter 2 that SV models give theoretical support to the
explanation of several stylized facts, but the problem with SV is the accuracy of
the specific implementations.

It was shown in the Introduction that financial systems exhibit several prop-
erties which can be also found in physical complex systems, that is the reason

59
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because mathematical tools previously employed in the modelling of complex
systems are tested in financial systems. A branch of statistical mechanics called
Superstatistics [6] which has been succesfully used in the study of atmospheric
turbulences [22, 23], cosmic ray statistics [7], solar flares [5], and random net-
works [1, 15] is mathematically expressed in a similar way SV models are, but
with some important differences. Superstatistics assumptions state the exis-
tence of two dynamics, and the possibility of dividing the system into cells where
an intensive parameter takes a constant value. These assumptions are more re-
strictive than those of the SV models then it must be checked if they are compat-
ible with financial systems.

In this chapter, I present a new theoretical approach which may be under-
stood as a SV model in which superstatistical assumptions are implemented.
As a result of this, I distinguish between a fast dynamics for returns and a slow
dynamics for volatility considering this last factor constant at intraday scales.
I have tested the theoretical predictions of the model against an empirical se-
ries recorded at the finest time level: event time. Athough stylized facts about
the shape of returns distribution at high and low frequencies are equivalent, at
this time level microstructural effects related to price formation must be taken
into account. Theoretical predictions of the model presented in this Chapter
and their excellent agreement with empirical data let me conjecture a universal
behavior of the empirical returns distribution.

3.2 Superstatistics

As I said in the Introdution of this Chapter, SV models give a solid theoretical
support to price dynamics understanding because there is no contradiction be-
tween empirical findings and the theoretical results which may be produced
within this framework. The lack of accuracy of the theoretical predictions may
be regarded as due to the specific implementations. In this Section, I present
a theoretical framework previously employed in the modelling of physical sys-
tems with similar properties to these of financial systems. The aim is to develop
a superstatistical SV model to improve the accuracy of theoretical results.

The superstatistics is a branch of statistical mechanics devoted to the study
of non-linear and non-equilibrium systems. It is characterized by using the su-
perposistion of multiple differing statistical models to explain the non-linearity,
so in terms of common statistical ideas this is equivalent to compounding the
distributions of random variables, and it may be considered a case of a dou-
bly stochastic model. Complex non-equilibrium systems may be described by a
superposition of different dynamics on different time scales. This framework as-
sumes the existence of a fast dynamics which is represented by a given stochastic
process and a slow dynamics which is the responsible for the parameters of that
process.

Superstatistics was first employed in the study of physical systems [6, 8],
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then usual superstatistical systems are physical, e.g. a Brownian particle moving
through a changing environment. In this problem, the fast dynamics is that of
the velocity of the Brownian particle, and the slow dynamics is that related to the
changes in the environment. The two effects are associated with two well sep-
arated time scales, as a result we have the superposition of two statistics. The
aim of this thesis is the description of price dynamics where fast dynamics is
that of intraday price changes, and slow dynamics is the one related to volatility.
As it is shown below time scales are different for these two processes, and their
marginalization gives as result the distribution of returns.

The stationary distributions of superstatistical systems typically exhibit non-
Gaussian behavior with fat tails, which may decay with a power law, or as an
exponential, or even in a more complicated way. This is a common element
with financial systems where we can often find distributions with slow decay.
In addition to the two different time scales, a key ingredient of superstatistic
models is the existence of an intensive parameter β that fluctuates on a large
spatio-temporal scale T . In the case of the brownian particle, β is the fluctuat-
ing inverse temperature of the environment, but β might represent an effective
friction constant, a changing mass parameter, a changing amplitude of Gaussian
white noise, the fluctuating energy dissipation in turbulent flows, or simply a lo-
cal variance parameter extracted from a signal. In the present study, intensive
parameter β is related to daily variance of returns and is considered constant for
daily time scales. According with previous definition β gives the parameter for
understanding and describing intraday returns.

A usual superstatistical system is a non-equilibrium system which is inho-
mogeneous and consists of many cells with different values of the intensive pa-
rameter β. Cells may be spatial, but they may be also temporal as it is the case in
financial systems because the subject of study is time series. A necessary condi-
tion for the cells is that they must be clearly differentiated. The cell size is con-
ditioned on the behavior of β, and the value taken by this parameter must be
constant or roughly constant in each cell during the time interval T . For quanti-
fying the cell size we can employ the correlation length of β series in the case of
time series, or of β-field in a spatial system. The condition is that the magnitude
of β stays constant1 in the entire cell, then it changes in a certain amount.

I have presented the basic concepts for describing a superstatistical system:
the existence of two dynamics with two two time scales, an intensive parameter
β, and a set of cells with different values of β from cell to cell but with constant
value within themselves.

All these concepts and definitions are common to every superstatistical sys-
tem, but it is convenient to see how they were originally applied to a physical
system. Following with the system of a Brownian particle moving through a

1β, in the specific case of the model developed in this thesis is related to the variance. Thus,
the condition for the cell size is that variance can be considered nearly constant in that interval of
time.
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changing environment, as it was firstly described in the work of Beck and Co-
hen [6]. Let’s consider the Brownian particle, in the long term run (t >> T ), the
stationary distributions of the inhomogeneous system arise as a superposition
of Boltzmann factors e−βE weighted with the probability density f (β) to observe
some value β in an arbitrary cell:

p(E) =
∫ ∞

0
f (β)

1

Z (β)
ρ(E)e−βE dβ, (3.1)

where E is an effective energy for each cell, ρ(E) is the density of states, and Z (β)
is the normalization constant of ρ(E)e−βE for a given β. When these concepts
are applied to a Brownian particle of mass m moving through a changing envi-
ronment in d dimensions. For its velocity v one has the local Langevin equation

d v =−γv +σL(t ), (3.2)

where L(t ) is a d-dimensional Gaussian white noise which becomes superstatis-
tical because for a fluctutating environment the parameterβ becomes a random
variable as well, it varies from cell to cell on the large spatio temporal scale T . In
this case E = 1

2 mv2, and while on the time scale T the local stationary distribu-
tion in each cell is Gaussian with variance 1/β,

p(v |β) =
(
β

2π

)d/2

e−
1
2βmv2

, (3.3)

the marginal distribution describing the long-time behavior of the particle for
t >> T ,

p(v) =
∫ ∞

0
f (β)p(v |β)dβ, (3.4)

exhibits non-trivial behavior. The distribution of |v | is heavy tailed and its dis-
tribution depend on the behavior of f (β). This pattern is similar to that found in
returns distribution, where we also observe heavy tailed distributions depend-
ing on the behavior of the volatility. It seems that financial systems may be mod-
eled as superstatistical systems, but it is necessary to find an equivalence of the
physical magnitudes into financial variables.

3.2.1 Superstatistics in Finance

Superstatistical framework has been applied to physical systems with similar
distributional characteristics to these that we can find in financial systems, be-
ing the paralellism between thermodynamics and finance not new [10, 19, 24].
The main challenge is to find a plausible description of the financial distribu-
tions in terms of superstatistical concepts. Otherwise, we only would be able
to state that are systems with similar distributions but essentially different from
this point of view.

It is important to realize that Eq.(3.4) is equivalent to that found for SV mod-
els where returns distributions depended on the behavior of the volatility, so if
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it were possible to find a temporal cell with a constant value for the volatility in
a financial time series all the methods and results of the Superstatistics frame-
work would be valid for these systems, and we could define a financial system
as a superstatistical system.

Let’s consider a financial time series r and the probability distribution, P (r ),
of this random variable r . The time series is divided into N equal slices of lenght
l , and the subject of study is the distributions of the sliced series. According to
Superstatistics, we assume two different time scales τ and T such that τ/T << 1.
We also assume that time scale T is the length of the slices , l = T , and study local
probability distribution for every time slice. It is a good approach to consider
that local distributions2 are Gaussian distributed

pT,i (r ) =
√
βT,i

2π
exp− 1

2βT,i r 2
, (3.5)

where βT,i = 1
〈r 2〉T,i

is β factor computed for slice i of length T . Following with

this assumption, the distribution P (r ) is approximated by

P (r ) ≈ pT (r ) = 1

N

N∑

i=1
pT,i (r ), (3.6)

where N is the number of points in a slice of length T . Therefore, there are N
values for βT,i . When N is large enough, Eq.(3.6) may be replaced by

P (r ) ≈ pT (r ) ≈ pT, f (r ) =
∫ ∞

0
dβ fT (β)

√
β

2π
exp− 1

2βr 2
, (3.7)

where fT (β) is the probability density of β in a randomly chosen time slice of
length T equals β. The distribution of fT (β) depends on T because this param-
eter determines the length of the time slices. Therefore, it also affects the value
of β.

Given the above theoretical description it seems plausible to consider finan-
cial systems as a good candidate to superstatistical system. Moreover SV models
are expressed by mean of equations similar to these employed in the physical ex-
ample presented in Section(3.2), giving a formal support from a mathematical
perspective. However there is an additional condition which must be fulfilled by
financial systems for being considered as superstatistical: we must find the set
of cells with constant β, and then we can perform empirical tests to check the
adequacy of the model. A final remark is that the superstatistics concept is quite
general and has recently been applied to a broad variety of physical systems, in-
cluding atmospheric turbulence [22, 23], cosmic ray statistics [7], solar flares [5],
random networks [1, 15].

2I consider local distribution to the distribution of length T of the random variable r .
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3.2.2 Superstatistical Classes

Superstatistical classes are related to the probabilistic description of the param-
eter β and discern all possible candidates for describing f

(
β
)
, which must ful-

fill some constraints: (i) f
(
β
)

must be a normalized probability density, (ii) the
integral shown in Eq.(3.1) must exist, (iii) in the case that f

(
β
)

is constant the
new statistics should reduce to a Boltzmann-Gibbs statistics in a physical case,
or in the returns distributions case to a normal distribution giving the standard
Gaussian model. It has been shown [8] that many experimental data are well de-
scribed by three major universality classes: Gamma, Inverse Gamma, and log-
normal superstatistics. These superstatistics represent a universal limit statistics
for large classes of dynamical systems and all of them fulfill the conditions. The
distribution f (β) is determined by the spatio-temporal dynamics of the entire
system under consideration and by construction β is positive, so f (β) cannot be
Gaussian.

Let’s consider three examples. First, there may be independent, or weakly
correlated, microscopic random variables ξn ,n = 1, ..., N , contributing to β in
an additive way. For large N their rescaled sum 1p

N

∑N
n=1 ξn will approach to

a Gaussian random variable X1 due to Central Limit Theorem. There may be
many different random variables consisting of microscopic random variables,
i.e. we have n Gaussian random variables X1, ..., Xn due to various degrees of
freedom in the system. As mentioned before, β needs to be positive; a positive
β is obtained by squaring these Gaussian random variables. The resulting β =∑n

i=1 X 2
i is Gamma distributed,

f (β) = 1

Γ
(n

2

)
(

n

2β0

)n/2

βn/2−1e−
nβ

2β0 , (3.8)

where β0 is the average of β. When marginalised with normal distribution the
results exhibit power-law tails. This distribution was expected by construction,
because the Gamma distribution naturally arises when n independent Gaussian
random variables Xk with average 0 are squared and added, then β is Gamma
distributed.

In the second example we make the same assumptions for the intensive pa-
rameter β−1 rather than for β is the sum of several squared Gaussian random
variables ξn . The resulting f (β) is the inverse Gamma distribution given by

f (β) = β0

Γ
(n

2

)
(

nβ0

2

)n/2

β−n/2−2e−
nβ0
2β , (3.9)

this generates final distributions - after being marginalised - that have exponen-
tial decays.

Third example, in this case instead of β being a sum of many contributions,
for other systems - in particular, turbulent ones - the random variable β may
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be generated by multiplicative random processes. We may have a local ran-
dom variable X1 = ∏N

n=1 ξn , where N is the number of steps and the ξn are ran-
dom variables. By the Central Limit Theorem, for large N the random vari-
able 1p

N
log X1 = 1p

N

∑N
n=1 logξn becomes Gaussian for large N , then X1 is log-

normally distributed. In general, there may be n such product contributions to
β, i.e. β = ∏n

i=1 Xi . Then logβ = ∑n
i=1 log Xi is a sum of Gaussian random vari-

ables; therefore, it is Gaussian too. Thus β is log-normally distributed,

f (β) = 1p
2πsβ

exp





−
(
ln β

µ

)2

2s2





, (3.10)

where µ and s2 are the common mean and variance parameters of a log-normal
distribution, then log-normal superstatistics is universal too and as in the previ-
ous two cases this distribution was expected by construction.

Although more complicated classes are possible, most experimental cases
fall into one of these three universality classes or into simple combinations of
them. I show below that financial time series are in good agreement with inverse
Gamma superstatistical class.

3.3 High-Frequency Financial Time Series

I already mentioned in the Introduction of this Chapter that data set employed
to test the accuracy of the new theoretical approach is recorded at high-frequency.
This implies that we can study the finest time level of financial series being pos-
sible to obtain higher levels by simple aggregation of this one. On the other
hand, it also implies that new effects only observed at this level must be taken
into account, e.g. bid-ask bounce effect, and the negative first-order autocor-
relation of returns. Sampling frequency of the data set is a relevant factor due
to the large number of data points that let me test properly theoretical predic-
tions against the tails of empirical distributions. We can not forget that Bachelier
did not realize his model was wrong because the deviations from the theoretical
model were attributed to the size of the sample.

High-frequency term is used to indicate higher frequency than daily. Au-
thors like Engle [13] use the expression ultra high-frequency for datasets con-
taining prices and/or quotes at intraday intervals. There is a problem with data
recorded at this frequency because data points are not uniformly distributed,
whereas common research employs regularly sampled data at five minutes in-
terval for two reasons: at higher frequencies we have to deal with microstruc-
tural effects, and working with non homogeneous time intervals is unusual for
econometric models. In addition to these factors, we must consider that five-
minute returns require a new price every five-minute interval and this can be
difficult when dealing with illiquid stocks because it is possible not to have any
quote or transaction in that interval. A usual method to solve this is the use of
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interpolated prices between the last price in an interval and the first price in
the next interval [2], but this method can create spurious predictability. In addi-
tion to these reasons, to obtain reliable high-frequency databases is not cheap,
compared to daily prices which are free for many stocks. There were few high-
frequency studies before 1990s [17, 18, 25] for the US equity market. Anyway the
most studied high-frequency equity data are probably those of the Trade and
Quotation database of NYSE, AMEX, and NASDAQ prices, which are available
from the New York Stock Exchange. Olsen & Associates (O&A) gave away a year
of their ultra high-frequency exchange rate data, leading to several studies that
were presented at the O&A conference in 1995.

Stylized facts for high-frequency returns are similar to those at lower fre-
quencies. The aim of this thesis is to explain the shape of returns distribution,
and this is leptokurtic at high frequencies presenting a sharp spike at zero as it
happened at lower frequencies. This can simply reflect the feasible set of dis-
crete prices rather than few trades per interval, e.g. some 22% of the five-minute
returns [4] are zero but less than 3% of their five-minute intervals contain no
transactions. Autocorrelation of intraday returns is the stylized fact where mi-
crostructural effects are more pronounced, then more dependence may be as-
sumed in intraday returns than in daily or lower frequency returns for two rea-
sons. First, bid-ask bounce in transaction prices caused by dealers with order
imbalances is more evident at higher frequencies and the negative autocorre-
lation created by bouncing prices is proportional to the variance of the spread
divided by the variance of the returns; the former is constant while the latter
decreases as the frequency of returns increases. Second, net profit based on
any dependence is more difficult because expected profits per trade decline as
data frequency increases and costs stay constant. Finally, autocorrelation of in-
traday absolute returns is also present in intraday returns. As I mentioned in
Section(3.2), the autocorrelation is an important element for the variable related
to the slow dynamics because it is linked to the size of the cell.

3.4 A Superstatistical Stochastic Volatility Model

In this section, I present a new theoretical model for high-frequency returns dis-
tribution. The model can be considerd within the SV framework because re-
turns are functionally determined by the marginalisation of a Gaussian with the
volatility distribution. However this new model holds an important and remark-
able particularity: volatility is taken as constant for intraday time intervals. This
is a new approach to volatility modelling because it assumes volatility as a slow
variable which is less frequently shocked than returns. Moreover, it implicitly
assumes two stylized facts: the absence of linear autocorrelation of returns, and
the positive autocorrelation of absolute returns, as empirical support to the ex-
istence of a double dynamics responsible of the final shape of the returns dis-
tribution. This feature is related to Superstatistics where we have two different
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time scales, and two different dynamics. Slow dynamics would be given by this
of volatility, which is positively autocorrelated. Fast dynamics would be given by
that of intraday returns, which are almost uncorrelated. Then the model from a
statistical mechanical point of view is superstatistical.

This model works at the finest time scale dynamics: event time dynamics.
The specific definition for event, as it is employed in the present work, is any
action in the order book that leads to a change in any of the two best prices: bid,
or ask. Hence microstructure effects and high-frequency details must be taken
into account. As with any other theoretical approach to model returns the aim
is to explain their empirical distribution. For this, I not only present a theoret-
ical model, but I have also performed empirical tests with data from different
stocks wich are traded in different exchanges showing an excellent agreement
with theoretical predictions. In addition to the different exchanges, the time pe-
riods under study are also different. In spite of all this diversity of economic sec-
tors, different countries, and periods of time results are similar, giving support
to a universal behavior of price dynamics.

3.4.1 Theoretical Description of The Model

In this Section, I present the new model for high-frequency returns from a the-
oretical perspective. From a physical point of view it may be classified as su-
perstatistical, but according to mathematical finance may be assimilated to a
SV model, and indepently of the classifying criterion is doubly stochastic. It is
necessary to explain the specific meaning of common terms of the model, in the
way they are employed in the present study, and a mathematical formulation
of these terms for making them more precise. I have already explained that the
term event is applied to any action in the order book which causes a change in
one of the best prices: bid, and ask. I make no distinction based on the origin of
the variation being only interested in the change of the price itself.

The price of a stock at any time is the midpoint price, such as

pt =
(
pb,t +pa,t

)

2
, (3.11)

where pt is the midpoint price at time t . pb,t is the bid price at time t , and
pa,t is the ask price at time t . There are two reasons for using midpoint price.
First, because midpoint price takes into account bid and ask prices which are
quotes. In doing so, any variation in these values is immediately reflected in
price, so I may take into account the information contained in quotes and not
only in transactions. Second reason is about a microstructural effect at high-
frequency, by calculating midpoint price we are able to avoid the bid-ask bounce
effect which could induce some spurious statistics.

Returns are defined as the diference in two logarithmic prices from time t to
time t +τ

rt (τ) = ln(pt+τ)− ln(pt ), (3.12)
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where rt (τ) is the t th return, pt+τ is the midpoint price at time t+τ, and pt is the
midpoint price at time t . When aggregating returns over longer time periods, I
only use non-overlapping intervals. Overlapping time intervals increases the
number of data points, so the distance between the starting points of two sub-
sequently analyzed intervals becomes smaller than the interval size. Although
intuitively we can see that adding overlapping intervals to the sampling scheme
might increase the precision of the result, the resulting data series certainly ex-
hibits serial dependence [16]. Therefore we cannot consider the observations
as independent. Another important aspect is the time unit. I have set the the
unit of time index, t , as midpoint time. This means that t is updated whenever
an event causes a change in the midpoint between the prevailing best quotes.
Although the results presented in this section are calculated in event time, tests
performed in calendar time show similar results.

In the present model, individual returns, rt (τ= 1) are decomposed into two
components, a volatility term, σt , and a Gaussian , N (0,1) noise term, ξt , such
as

rt =σtξt . (3.13)

It is assumed that σt is sufficiently slow varying, such we can treat it as a
constant over intraday time scales. Replacing σt with its local constant value, σ.
The individual returns are expressed by following equation,

rt ≈σξt . (3.14)

For the computation of the constant daily volatilityσ. I calculate the returns,
using Eq.(3.12), at all possible time intervals for each day, that is from τ= 1 to τ=
N , where N is the total number of events in a day3, then I calculate the volatility
of this returns series. For this, it is necessary to take into account that we are
considering different time intervals; therefore, individual volatilities at any time
horizon στ must be scaled as

σ∗
τ =

στp
τ

, (3.15)

where στ is the volatility for returns of time interval τ at a specific day, and σ∗
τ is

the scaled individual volatility at time τ. This scaling is appropriate because we
have a process with normal diffusion, following

〈r 2(τ)〉 =σ2τ. (3.16)

Daily σ is the average for all σ∗
τ from τ= 1 to τ= N .

σ=
√√√√ 1

NT

N∑

j=1

Nτ∑

k=1
σ∗2

j ,k , (3.17)

where NT is th total number of individual volatilities, N is the maximum value of
τ, and Nτ is the total number of scaled individual volatilities of length τ. Thus,

3N is not a constant value, and it takes a specific value for every single day.
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daily volatility is the result of averaging all scaled individual volatilies. Taking
into account all these intraday volatilities leads to a large number of observa-
tions within a single day. This technique is not new in high-frequency finance
[12], and the reason of its use is because we can reduce the stochastic error as a
consequence of increasing the available statistics.

Following with the Superstatistics framework, we define the variableβ as the
inverse squared volatility,

β≡ 1

σ2 , (3.18)

where σ is the value of daily volatility, then β is a daily value too. In Eq.(3.13),
I have assumed a Gaussian process for the dynamics of the returns. So, for a
certain value τ in a given day characterized for a certain value β. I obtain that
the probability distribution of returns is

p(r,τ|β) =
√

β

2πτ
exp

(
−βr 2

2τ

)
, (3.19)

I consider β varies slowly, because I have assumed that slow dynamics is that
of the volatility. By slowly variation, I mean that β fluctuations are negligible
compared to price fluctuations when observed over the time scales studied here,
this is up to one trading. This is not inconsistent with shocks to volatility, such as
might occur during significant news events, as long as these shocks are relatively
infrequent, i.e. not a daily occurrence.

So far, I have shown that daily returns can be explained by a Gaussian dis-
tribution and volatility can be considered constant during a day, but it is neces-
sary to model the behavior of β in a diferent time scale. Fluctuations of β over
longer time scales can be characterized by a probability distribution g (β), there
are several studies which stated different functional forms for the distribution
of volatility [9, 11, 20]. We have also seen in the section about Superstatistics
three possible solutions to it: lognormal distribution, gamma distribution, and
inverse gamma distribution. It is out of the scope of this thesis to compare the
different possible functional forms. Instead of that, I assume - empirical results
support my assumption - that g (·) is similar across stocks and close to a gamma
distribution4

gn,β0 (β) = 1

Γ
(n

2

)
(

n

2β0

) n
2

β
n
2 −1 exp

(
− nβ

2β0

)
. (3.20)

There are several simple explanations to why the inverse variance might
have this distribution [9, 21]. The probability distribution obtained in the Eq.(3.19)
is that for returns on any single day in our model. Because β can vary at longer
time scales, the returns distribution observed with data pulled from many dif-
ferent days that span a long period of time is obtained by marginalising over β.

4It is also a common expression for the gamma distribution an equation, such as fa,b (β) =
ba

Γ(a)β
a−1e−bβ. Both forms are obviously equivalent.
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A straightforward integration of the conditonal probability of returns, p(r,τ|β),
and the distribution g (β) yields the following for the return distribution

P (r,τ) =
Γ

[
(n+1)

2

]

Γ
[n

2

]
√

β0

πnτ

(
1+ β0r 2

nτ

)− n+1
2

, (3.21)

which is a variant of the Student’s t-distribution. The non-Gaussian shape of the
distribution results from collecting returns from time periods separated by long
intervals whereβ is different. The stability of this shape for short to intermediate
τ results from negligible fluctuations of β over these time scales.

Although it is well known that a gamma distributed inverse variance leads to
Student’s t-distribution for returns [12,13], this result does not explain why the
return distribution retains its non-Gaussian shape for longer time scales. To ex-
plain the persistence of the non-Gausssian shape - as I showed in Chapter 2,- a
possible model was the Lévy stable distributions. But, Eq.(??) gives an explana-
tion to both problems: the non-Gaussian shape of returns distribution, and its
apparent stability. It is the properties of volatility the cause for these two empir-
ical findings. It was implicitly assumed that in a SV model, volatility should be
the cause. However, I demosntrate this by the excellent agreement of theoretical
predictions and empirical observations.

3.4.2 Data

I have studied a large set of empirical data, of the order of 107 data points. They
were from three different stock markets: the London Stock Exchange (LSE), the
New York Stock Exchange (NYSE), and the Spanish Stock Exchange (SSE). Time
periods are also different: from May 2, 2000 to December 31, 2002 for LSE data,
from January 2, 2001 to December 31, 2002 NYSE data, and from January 2, 2004
to December 29, 2006 for SSE. Moreover, stocks are from different economic sec-
tors: telecommunications (TEF, VOD), banking (SAN, LLOY), financial services
(PRU, RTR), pharmaceuticals and biotechnology (AZN), information technology
(IBM), automobile (GM). This variety of stock markets, time periods, and eco-
nomic sectors provides a more solid support to theoretical results. Therefore,
theoretical model can be considered a good candidate for a universal behavior.

The three stock markets are not only located in different countries, but they
rule trading sessions in a slightly different way. The London Stock Exchange
consists of two parts: the completely automated electronic downstairs market
(SETS), and the upstairs market (SEAQ). The trading volume, for the time period
under study, is split roughly equally between the two markets. I only study the
downstairs market because in its dataset there is a record of each action taken
by each market member as it occurs, and timestamps are precise. In contrast,
trades in the upstairs market are arranged informally between agents, and are
printed later. The Spanish Stock Exchange also consists of two parts, as in the
LSE it has an automated electronic downstairs market (SIBE), and an upstairs
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market -corros,- but in the SSE this upstairs market is very illiquid, and traded
volume is a small fraction of total traded volume in both markets, less than 10%.

About market makers, there are no designated market makers either for SETS
or for SIBE. However, any member of the exchange is free to act as a market
maker by posting simultaneous bids and offers. This should be contrasted with
the NYSE, for example, which has a designated specialist to trade each stock. An-
other diffrence between the markets is that clearing in the LSE and SSE is fully
automated and instantaneous; in contrast, in the NYSE, clearing is done manu-
ally, creating an uncertainty in response times. During the period under study
the book of the LSE is fully transparent, i.e. all orders in the book are fully re-
vealed. In 2003 the LSE began to allow "iceberg orders", which contain a hidden
component that is only revealed as the exposed part of the order is removed.
This type of orders is also available in the SSE.

Trading session begins each day with an opening auction. There is a period
leading up to the opening auction in which orders are placed but no transac-
tions take place. The market is then cleared and for the remainder of the day,
except for occasional periods, there is a continuous auction. I removed all data
associated with the opening auction, and only analyse orders placed during the
continuous auction. An analysis of the limit order placement showed [14] that in
the LSE dataset approximately 35% of the effective limit orders are placed inside
the book, this means that the prices of selling orders are higher than ask price
and the prices of buying orders are lower than bid price. Thirty-three percent
are placed at the best prices this means at bid or ask prices, and 32% are placed
inside the spread this is at prices higher than bid price but lower than ask price,
these findings are similar for all the LSE stocks.

The stocks studied in this Chapter are from different economic sectors. From
an economic point of view, and more specifically from an event-based approach,
this means that when having different news for different sectors and different
markets it would be logical to expect for different behaviors. I show that this is
not correct and all the stocks collapse onto a single curve, and this may be taken
as a conclusive proof of the inaccuracy of the event-based foundations.

For all the stocks, we have updated information at any time of best prices:
bid and ask. This information is available because quotes are taken into ac-
count, and not only transactions. Thus, if we have a new limit order inside the
spread, or a cancellation of all the outstanding shares at one of the best prices, or
a transaction which matches all the available liquidity at bid or ask; best prices
change at that right instant. This is the reason because the present research
deals with the finest possible level of price changes because if I had studied
changes caused only by transactions I would be missing all the information re-
lated to order placement and cancellations at best prices. Independently if the
position is finally transacted or not, I assume that any outstanding position at
best prices in the order book is informative.

About filtering of databases, I have discarded data from opening and closing
auctions and I have only taken into consideration price changes from trading
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hours. I have also taken out the first half an hour for the LSE, and the NYSE,
but not for the SSE - because timestamps were not available in the database
format I employed. The reason for discarding this first half an hour of trading
is that it is generally considered a period of time when price formation is tak-
ing place, there is therefore a high volatility that causes a certain unstability in
prices. I have studied time series with and without this first half an hour, and
results are very similar, concluding that this period of price formation - at least
for the present study - is not relevant. A possible explanation for this result is
that price formation process happens entirely during opening auction.

3.4.3 Empirical results

In this section, I show the results of the performed tests to check theoretical
results with empirical distributions. I have divided the tests into two groups,
the first group of results shows the comparison of the theoretical results with a
set of stocks which are traded in the same stock exchange: the LSE. Time se-
ries for all stocks span the same period of time from May 2, 2000 to December
31, 2002. These stocks are from different economic sectors, and different mi-
crostructural characteristics: liquidity, tick size, traded volume, etc. The second
group of results shows the comparison of the theoretical results with six liquid
and highly traded stocks from three different stock exchanges, and different pe-
riods of time. Results shown below are similar for the first and second group, this
means that theoretical model is able to accurately describe empirical distribu-
tions independently of the time period taken into account, the stock exchange,
the economic sector, and the specific microstructural characteristics - liquidity,
tick size, traded volume - of the stocks under study.

First Group: LSE Stocks.

The stocks studied in this group are AstraZeneca (AZN), Lloyds TSB Group (LLOY),
Prudential Plc (PRU), Reuters Group (RTR), and Vodafone Group (VOD). Dataset
contains information about the complete on-book market (called SETS), this
information includes all on-book transactions, order placement, and cancella-
tions.

I have truncated the first 30 minutes of market activity to remove the effects
of price discovery at the beginning of the day. Although I do not show below, I
have reproduced same plots but considering these first 30 minutes and results
are similar.
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Figure 3.1: AZN. The probability density of dailyβ fit by a gamma distribution.

Figure 3.2: AZN. The probability density of ξ∗ for different τ compared to
N (0,1).
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Figure 3.3: AZN. The probability density of returns for different τ compared to
theory.

Figure 3.4: AZN. The cumulative distribution of returns for different τ com-
pared to theory.
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These four plots present the results obtained for one stock: AZN. Results for
the other stocks in the first group, which are studied in this section are similar in
appearence.

In Fig.(3.1), I plot the probability density function of β. I overlay the plot
with the best fit gamma distribution and I report the parameters for this fit in
the figure legend. These parameters for all the stocks of this group are reported
in Table(3.1). A remarkable detail about the model is that this is the only fitted
distribution. The other distributions and theoretical results are all analytically
derived from the theoretical model. Consequently the implementation prob-
lems are notoriously simplified.

In Fig.(3.2), I show the probability density of ξ∗ - which represents the nor-
malized variable5,- for τ= 40 to τ= 640 in loglog coordinates. This is compared
to a normal distribution with zero mean and unit variance - which is assumed in
the theoretical model. At time scales shorter than τ= 40, which are not shown in
the plot, the distribution of ξ∗ is leptokurtic but with finite variance. As seen in
the figure, the distribution approaches a Gaussian for time scales, τ > 40. That
ξ∗ is Gaussian distributed was also reported for daily time scales in [3].

In Fig.(3.3), I plot the scaled return probability density for τ= 10 to τ= 640 in
semi-log coordinates. Using the parameters obtained from the fit of the gamma
distribution, I predict the full probability distribution of returns as derived in
Eq.(3.21) and overlay this prediction on the plot.

In Fig.(3.4), I focus on the tails of the distribution by plotting the scaled cu-
mulative distribution for the unsigned returns F (|r∗|), where r∗ represents nor-
malized returns6 in loglog coordinates. As seen in these two last plots, the dis-
tribution collapse both in central region and in the tails and are well described
by the theoretical curve.

5ξ∗ = rt (τ)√
τ
β

, where τ is the time interval.

6r∗ = rt (τ)p
bτ

, where b is one of the parameters of the Gamma distribution of β.
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Figure 3.5: The cumulative distribution of β compared to the cumulative dis-
tribution from the best fit to a gamma distribution for all stocks in the LSE
group.

Figure 3.6: The normalized probability density of returns with τ = 80 com-
pared to theory for all stocks in the LSE group.
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In Fig.(3.5), I plot the empirical cumulative distribution of β versus the fitted
cumulative distribution for all stocks: AZN, LLOY, PRU, RTR, VOD. This plot is
created by first fixing the value of the fitted F (·), calculating β at this point, and
then plotting the value of the empirical F (·) for this β. The plot is similar to a
Q-Q plot, when the empirical distibution follows the fitted distribution exactly,
the curve will lie on the 45◦ line.

In Fig.(3.6), I plot the normalized probability density P∗(r∗), which is the
normalized probability of the normalized returns7 with τ= 80 for the five stocks
taken into account in this group. The data from all five stocks collapse on the
theoretical curve.

Taken together, all these empirical results suggest that slow, but significants
fluctuations in volatility produce the interesting features of the intraday return
distributions, giving a strong support to the model presented in this thesis.

Security Events Events/Min a b
AZN 962516 3.0 2.7 .44e-6
LLOY 746845 2.3 3.4 1.1e-6
PRU 583792 1.8 2.6 1.5e-6
RTR 653915 2.0 3.9 3.6e-6
VOD 770352 2.4 3.9 2.1e-6

Table 3.1: Table of parameters for five stocks studied in this section.

Table(3.1) shows the different characteristics: number of events in the same
time interval, number of events per minute, and the parameters of the fitted
distribution of daily β’s for the five stocks under study.

7

P∗ =
(
P Γ[a]
Γ
[ 2a+1

2

]
p

2π
1

) 2
2a+1

, where P is the distribution of returns P (r,τ), and the parameters a,

and b are those obtained from fitting the gamma distribution.
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Second Group: LSE, NYSE, SSE Stocks.

The stocks studied in this group are AZN and VOD from the LSE, GM and IBM
from the NYSE, SAN and TEF from the SSE. Periods of time are from May 2, 2000
to December 31, 2002 for the LSE data, from January 2, 2001 to December 31,
2002 for the NYSE data, and from January 2, 2004 to December 29, 2006 for the
SSE. Thus, for each market I have studied two highly traded stocks which are
from different economic sectors.

I only consider the electronic markets for these stocks. I have eliminated the
first 30 minutes of the trading day to remove the effects of price discovery - ex-
cept for the SSE because time stamps were unavailable in the database format I
employed. As it happened in the previous section with stocks from the LSE, al-
though I do not show them below, I have reproduced same plots but considering
these first 30 minutes and results are similar.
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Figure 3.7: Collapse of the complementary cumulative distribution (ccd) of
absolute scaled returns, C (|r ′|) , for the stock IBM. The ccd is shown for times
scales τ = 10 to τ = 640. The solid black line is the theoretical ccd using β0 =
1.4×107 and n = 3.89 from fitting β to a gamma distribution. Inset: ccd of the
slow fluctuating variable β for IBM, the red curve is the empirical ccd and the
solid black line is a fit to a gamma distribution.
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In Fig.(3.7), I show the time collapse of the complementary cumulative dis-
tribution (ccd) of absolute scaled returns, C (|r ′|) with r ′ = r

√
2β0/(nτ), where n

and β0 are the parameters of the fitted gama distribution, for the stock IBM (the
ccd is the integral of the probability function). The ccd is plotted for τ = 10 to
τ = 640, which is up to one trading day for the stocks studied in this section. I
show this plot in logarithmic coordinates to focus on the tails of the distribution,
and I overlay the plot with the ccd of the theoretical distribution. It is demon-
strated that the model matches the data well and the shape of the distribution
is stable over these time scales. The parameters n and β0 are determined using
a maximum likelihood fit of β to a gamma distribution, where β is measured
once per day. In the inset of this figure, I show the ccd of β compared to the
fit. Although not shown, these plots are very similar for the others stocks in this
section.

The theoretical model presented in this Chapter suggests that the functional
form of the return distribution for stocks is universal, and that the differences
are due to the particular properties of volatility for each stock. This is verified in
Fig.(3.8), where I show the collapse for all stocks using the following functional
transformation, derived from the analytical results presented above

f (r ′) = [
ΛP (r ′,τ)

] 2
n+1 , (3.22)

whereΛ=p
2π Γ[n/2]

Γ[(n+1)/2] . Notice that Fig.(3.8) shows not only the universality of
the shape of the distribution but also the normal transport explicitly suggested
by the theory and observed in Fig.(3.7).

Finally, in Fig.(3.9), I focus on the probability of large returns and compare
the tail of the observed distribution to that of the predicted distribution for each
stock. For this figure, I measure the slope of the tail of the empirical ccd (in
logarithmic coordinates) for τ = 80 using the Hill estimator on the largest five
percent of the data. This is compared with the slope of the tail from the predicted
distribution in the same region. The measured values are in good agreement
with theoretical predictions, showing a pronounced variation across stocks that
is explained by the model. This indicates that the likelihood of extreme price
movements is determined by the parameters obtained from fittingβ to a gamma
distribution for each stock.

3.5 Conclusions

I have presented a new theoretical explanation to returns distribution based on
Superstatistics which distinguishes between two different dynamics, a slow dy-
namics and a fast dynamics, and two time scales. Slow dynamics is this de-
scribing the volatility which is positively autocorrelated and taken as constant
at intraday time scales, fast dynamics is that of the prices which are almost un-
correlated. This differentiation of dynamics with different time scales has been
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succesfully employed in the description of non-linear and non-equilibrium sys-
tems.

The presented model implicitly takes into account two very well-known styl-
ized facts of financial time series: the absence of autocorrelation of returns, and
the positive autocorrelation of absolute returns. The former was postulated by
Bachelier and it empirically holds, while the latter means that volatility is a long-
memory process. By considering that volatility fluctuations are slow, but signif-
icant, it is possible to explain two important characteristics of emprical returns
distribution: its non-Gaussian shape, and its apparent stability. These two prop-
erties are modeled and understood as a consequence of the properties of volatil-
ity distribution which is fitted by a gamma distribution. This is relevant because
previous solutions to these problems were not able to explain both simultane-
ously. It was already shown that SD models were able to describe the apparent
stability of the distributions but paying a serious price: stable distributions have
infinite variance, and this is against some other paradigms in mathematical fi-
nance. Moreover, these models did not converge to a Gaussian for long time
intervals as it is observed in empirical distributions. On the other hand, MDH
models were theoretically able to explain several stylized facts but specific im-
plementations failed to fully explain the entire empirical distribution of returns.
However, MDH framework is not very restrictive, and based on its theoretical
foundations different implementations are allowed. The model presented here
may be classified into MDH family, but the novelties introduced in this specific
theoretical approach let produce very accurate predictions.

The solution derived from the mentioned assumptions and the fitted volatil-
ity is a variant of the Student’s t-distribution which is fat-tailed but with finite
variance. This lets us explain the apparent stability and heavy-tailed behavior
of empirical returns distribution. Moreover, the convergence to a Gaussian is
an inmediate consequence of CLT. I have also performed tests to check the ac-
curacy of the model, showing an excellent agreement with empirical data. The
presented results suggest that stock price fluctuations are universal, and that
return distributions for stocks from different exchanges, time periods, over dif-
ferent time scales, and from different economic sectors can be described by one
functional form, since the universal behavior of price fluctuations is rooted in
the characteristics of the volatility.
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Chapter 4

Empirical Study of Hidden Orders
in Two Markets: LSE, SSE

4.1 Introduction

In this Chapter, I present an empirical study of hidden orders in two markets:
the LSE (London Stock Exchange), and the SSE (Spanish Stock Exchange). I call
hidden order to a large trading order that is split into pieces and executed in-
crementally. The reason for executing an order in this way is for reducing trans-
action costs, because of the tremendous market price impact [1] that an order
of that size would cause. Moreover, many times the splitting is simply neces-
sary because there is not enough available liquidity in the order book to fully
match a large order. The main problem when studying hidden orders is that
they are not specified as a single order, and individual pieces are not reported
as a part of a larger order, hidden orders therefore must be inferred from trans-
actions data. For this, it is necessary to know the specific participants involved
in a transaction, that’s the participant who originally placed the limit order and
the participant who transacted the available shares in the order book. This is an
additional problem because it is required a data set with the identities of par-
ticipants and their transactions, and databases with this type of information are
not often available to researchers. Data sets employed in this thesis included the
corresponding codes of market members involved in every transaction. This
information does not let us compute hidden orders in a simple or direct way,
because a market member, e.g. a broker, manages orders from several market
participants included her own orders. So, we would need a lower disaggregation
level to accurately classify hidden orders, that’s trading accounts which are not
publicly available. Therefore, in the case that we were able to accurately detect
a hidden order executed by a market member, we can not certainly know if this
is a single hidden order, or the final result of more than one hidden order act-
ing concurrently. Although all the problems related to hidden orders detection
make impossible to discern them conclusively, there are statistical algorithms
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[22, 27] which make plausible classifications. I employ one of these methods for
detecting the hidden orders in both markets. It is out of the scope of this thesis
to compare the different algorithms used in the detection of hidden orders.

Statitiscal properties of hidden orders obtained from both markets let us
compare the way large orders are executed in two different markets. Conse-
quently, we can extract commonalities about some of their properties, e.g. func-
tional form of their price impact, or trading profile. Moreover, we classify the
hidden orders by using a set of criteria related to price impact for studying this
conditioned to different factors: total number of single orders, temporal impact,
permanent impact, types of single orders composing the hidden orders. These
results are relevant because they show for the first time a comparative study of
this type of execution in two markets. Although the developement of a theo-
retical explanation to the empirical findings it is further work, the fact that we
observe similar behavior in both the London and Spanish stock exchanges, and
that others have also observed this in the New York Stock Exchange, suggests the
possibility of a “law" for market impact.

4.2 Hidden Orders

In the Introduction, I have defined hidden orders as large trading orders that
are split into pieces and executed incrementally. It is important to make a dis-
tinction between iceberg orders [36] that are large orders divided into smaller
pieces so that only a small fraction is shown at a time, and hidden orders. An
iceberg order is explicitly submitted as a whole order at a price, although only
a fraction is shown at a time. So, there is no doubt about classifying this type
of orders. However a hidden order is executed incrementally, this means that
may be transacted at several prices and time of execution can span days or even
weeks. Finally, an important characteristic for our study is that it is not revealed
as a single order at any time, nor when placed in the order book neither when re-
ported after being fully executed. This is relevant because it arises the question
of the existence of hidden orders, and the answer is based on strategic reasons
[15]. Let’s consider an example, a trader wants to execute a large buy order - size
can be several times daily transacted volume,- she attempts to keep the true size
of the order in secret to minimize transaction cost. She of course wishes to buy
her shares at the lowest price possible. For minimizing the final price she has
to take into account two factors. First, anytime she buys she will push the price
up. Second, if other market participants know beforehand the size and sign (buy
or sell) of the transaction they can modify current and future orders for taking
advantage of this information. In addition to strategic reasons, there are studies
of hidden orders executed by a specific financial institution [37] who made the
data available to the authors of the paper.

Hidden orders are employed by market participants and placed through mar-
ket members for minimizing price impact and not making public the intention
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of executing a large transaction. The problem for studying this type of orders
comes from their detection, because they are not specified at any time and must
be inferred. The aim of the empirical research presented here is the determi-
nation of the functional form of the impact of transactions on stock price, also
known as market price impact, of hidden orders. The functional form is impor-
tant [1] to quantify total market impact of a large order, and market impact is
the main factor of transaction costs. Therefore the functional form of price im-
pact is a crucial element of any optimized execution. Moreover since impact is a
cost of trading, it exerts selection pressure against a fund becoming too large,
and therefore is potentially important in determining the size distribution of
funds [2, 3]. Finally, market impact reflects the shape of excess demand, which
is of central importance in economics. Despite its conceptual and practical im-
portance, a proper empirical characterization and theoretical understanding of
market impact is still lacking [4].

4.2.1 Data

Databases employed in this part of the thesis contain the on-book (SETS) mar-
ket transactions of the London Stock Exchange (LSE) from January 2002 to De-
cember 2004 and the electronic open-book market (SIBE) of the Spanish Stock
Exchange (BME, Bolsas y Mercados Españoles) from January 2001 to December
2004. Roughly 62% of the transactions at the LSE are executed in the open book
market and roughly 90% of the transactions at the BME are executed in the elec-
tronic market.

We have initially considered a subset consisting of the most heavily traded
stocks in the two markets, 74 stocks traded in the LSE and 23 stocks traded in
the BME. For both markets we have considered exchange members who made
at least one trade per day for at least 200 trading days per year and with a min-
imum of 1000 transactions per year. This filter yielded approximately 60 ex-
change member firms per stock. We then applied the algorithm for detecting
hidden orders described in [27], which we have already discussed, to identify
hidden orders that consist of at least ten transactions. It is worth noting that the
detected patches are not necessarily composed of the same type of trades (buy
or sell) but that at least 75% of the transacted volume in the patch must have the
same sign. The algorithm detected 90,393 hidden orders in the LSE and 55,309
in the BME.

This study is based entirely on trades that take place through a continuous
double auction. “Continuous" refers to the fact that trading takes places contin-
uously and asynchronously, and “double" to the fact that both buyers and sellers
are allowed to place and cancel orders at any time. There are two fundamentally
different ways to execute an order in such a market. One is to use a limit or-
der, in which an order is placed inside the order book, which is essentially a list
of unexecuted orders at different prices. The other is to place a market order,
which we define as any order that results in an immediate transaction. Every
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transaction involves a market order transacting against a limit order. A given
real order might act as both, e.g. part of it might result in an immediate transac-
tion and part of it might be left in the order book. We only consider transactions,
so in the example above we would treat the first part as a market order and treat
the second part as a limit order, but the second part will enter our analysis only
if it eventually results in a transaction. The LSE database allows us to identify
whether the initiator of the transaction was the buyer or the seller. For BME this
information is not available and we infer it with the Lee and Ready algorithm
[29]

4.2.2 Detection Algorithm

There are several algorithms in the literature which have been employed in the
detection of hidden orders [22, 28]. All these algorithms share the idea of detect-
ing the splitting of large orders based on the signs - buy or sell - of the transacted
orders from each brokerage firm. The algorithm employed in this thesis has
been previously applied to probe the temporal organization of heteroginieties
in human heartbeat interval time series [28]. Although, the aim of the present
study and the former one are obviously different in many aspects, the series of
the inventory of different broker firms in the market are a perfect field for this
segmentation algorithm. The following procedure is applied to temporal time
series of the inventory of the broker firms, market members, who are actively
trading a stock and the same procedure is applied to all stocks in both markets.

The computational description of the algorithm can give us a deeper un-
derstanding of it. The first step is to compute a inventory series for each mem-
ber. For this we take into account all the transactions with their corresponding
sign. Then, we move a sliding pointer from left to right along the inventory series
measured in the currency stocks are quoted, brithish pounds for the LSE stocks,
and euros for the SSE stocks. At each position of the pointer, we compute the
mean of the subset of the signal to the left of the pointer (µle f t ) and to the right
(µr i g ht ). To measure the significance of the difference between µle f t and µr i g ht ,
we compute the statistic t = |(µle f t −µr i g ht )/sD |, where sD is the pooled vari-
ance for unequal sample sizes. We next determine the position of the pointer
for which t reaches its maximum value, tmax , and compute the statistical signif-
icance of tmax . When we segment an inventory time series we are computing
the partition of a non stationary time series, which is composed of many seg-
ments with different mean value, in such a way as to maximize the difference in
the mean values between adjacent segments.

After segmenting the series we only take into account directional patches,
this is because we are only interested in patches which show a clear buy or sell
pattern. Therefore, when in a patch the traded volume of a sign is larger than a
certain threshold - this magnitude is arbitrary, in this case the value is 75% - the
patch is considered of that sign, e.g. Vb/V > θ is a buy patch, where Vb is positive
volume (buy), V is the total traded volume, and θ is the threshold. If Vs/V > θ is
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a sell patch, where Vs is negative volume (sell). Total traded volume must hold
V = Vb +Vs . I have performed several tests for different values of the threshold
and results of the algorithm were not dramatically sensitive to its variations.

4.2.3 Classification of Hidden Orders

In the study of hidden orders there is no single variable which can employed
for understanding all their characteristics and behavior. For this reason, we de-
fine a set of variables which are useful for discovering their extensive properties,
and for undesrtanding the interplay between hidden orders and the other trans-
acted orders in the market. Thus, we characterize hidden orders as a function of
several variables. These are

• The execution time T (in seconds) of the hidden order, measured as the
trading time interval between the first and the last transaction of the hid-
den order.

• The number N of transactions of the hidden order. We consider hidden
orders of length N > 10.

• The volume V of the hidden order defined as

V =
N∑

j=1
v j , (4.1)

where v j is the signed volume of each transaction of the hidden order. For
buy trades vi > 0 and for sell trades vi < 0. We consider the hidden order to
be a buy order if V > 0 and a sell order if V < 0. The buying/selling nature
of a hidden order is thus encoded in its sign, ε = sign(V ). The volume is
the product of the number of shares times the price and is measured in
Pounds (LSE) or in Euro (BME).

• The volume fraction of market orders fmo . A hidden order can be imple-
mented with very different liquidity strategies, i.e. with different compo-
sitions of market and limit orders. In order to quantify this we define the
fraction (in volume) of market orders within a hidden order as

fmo =
∑N

j=1 |v j ,mo |
∑N

j=1 |v j |
, (4.2)

where v j ,mo is the traded volume at each transaction done through market
orders. Values of fmo close to zero mean that the broker completed the
hidden order by using mainly limit orders, while values of fmo close to
one imply the broker used mainly market orders during the execution of
the hidden order.
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• The participation rate α of a hidden order defined as

α=
∑N

i=1 |vi |
VM

, (4.3)

where VM is the unsigned volume of the stock traded in the market con-
currently with the hidden order. Values ofα close to zero imply the hidden
order was negligible compared to the activity in the market, while values
of α close to one mean that most of the activity in the market came from
the transactions of the hidden order.

First three variables are extensive, and are strongly depending on the origi-
nal size of the order. Last two variables are not strictly depending on the size of
the order, but on the style of execution. Trader can make a choice on the aggres-
siveness of the execution by playing with fmo and α variables. A fmo close to 1
means that hidden order is taking the available liquidity in the order book, and
it is considered an aggressive execution. An explanation why it is considered an
aggressive strategy is that market orders are related to immediacy, if we are not
concerned with immediate execution it makes sense to place limit orders wich
give the opportunity to improve best prices: bid, and ask. The other factor re-
lated to aggressiveness is α, when this is close to 1 means that we are present
in most of the transactions at that time in the market. Given that the algorithm
employed for detecting hidden orders has a threshold - mentioned above,- the
hidden order is clearly pushing prices in one direction.

These variables have been chosen because it is expected that the market im-
pact of a hidden order can be described as a function

r = f (N ,V ,T, fmo), (4.4)

plus possibly other variables specific of the stock, such as the participation rate,
the capitalization, the volatility, or the spread.

Note that in all the analyses and figures we compute error bars as standard
errors. It should be born in mind that this procedure underestimates the er-
rors due to the heavy tails of the fluctuations and due to possible long-memory
properties of the data.

4.2.4 Statistical Properties of Hidden Orders

I investigate the statistical properties of the variables characterizing hidden or-
ders. In [27] it was considered a set of 3 most capitalized stocks traded at the
BME and studied the probability distribution of the variables characterizing the
hidden orders and the scaling relations between these variables.

In [27] no restriction on the length or on the fraction of market orders was
set on the hidden orders and the authors found that the distribution of hid-
den order size is fat tailed and consistent with a distribution with infinite vari-
ance. They also showed that this broad distribution is due to an heterogeneity of
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Figure 4.1: Exponents gi (i = 1,2,3) of the allometric relations of Eq. 4.5. For
each of the stocks considered in our LSE and BME databases and for hidden or-
ders with N ≥ 10 and T < 1 day, as a function of the number of detected hidden
orders per year. Error bars are 95% confidence intervals obtained by bootstrap-
ping the data. In the analysis of market impact we consider only stocks with at
least 250 hidden orders per year (those in the white area of the figure).

scales among different brokerage firms rather than to the heterogeneity of scales
within the hidden orders of each brokerage firm. By using Principal Component
Analysis (PCA) on the logarithm of the variables characterizing the hidden or-
ders, it was found that N , V and T are related through scaling relationships

N ∼V g1 , T ∼V g2 , N ∼ T g3 , (4.5)

where g1 ' 1, g2 ' 2 and g3 ' 0.66 for 3 highly capitalized stocks in the BME and
including all hidden orders. I repeat the two dimensional PCA analysis of [27]
on our much larger data set.

Fig. (4.1) shows the value of the three exponents for all the stocks as a func-
tion of the number of hidden orders per year. We observe that for stocks with a
small number of hidden orders the heterogeneity in the value of the exponents
is pretty large, while, as the number of hidden orders detected by the algorithm
increases, the exponent estimations become less noisy and tend to converge to
similar values. Moreover for BME stocks there is a clear trend of the exponents
as a function of the number of hidden orders.
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In order to measure market impact in a statistically reliable way, we pool
together data from different stocks. We need therefore an homogeneous sample
of stocks. To this end in the following analysis we restrict our dataset to those
stocks for which our algorithm detects at least 250 orders per year.

These stocks are TEF, SAN, BBVA (as in [27]) but also REP, ELE, IBE, POP and
ALT for the BME market and AZN, BSY, CCH, DVR, GUS, KEL, PO, PSON, SIG,
TATE and TSCO for the LSE market. Moreover, in this thesis we will focus mainly
on short hidden orders, considering the set of hidden orders of time duration
T smaller than one trading day. The reason for this choice, detailed below, is
to obtain stable statistical averages for the market impact. Applying these two
restrictions, we obtain a final dataset that contains 14,655 hidden orders in the
BME and 11,165 orders for the LSE (see Table 4.1).

Table 4.1: Statistics of the hidden order ensembles used in the paper. Only hid-
den orders with T < 1 day and N > 10 transactions are used.

Market # orders 〈N〉 〈 fmo〉 〈α〉 〈R〉 〈R〉 fmo>0.8

BME 14,655 95.58 0.52 0.17 1.127 3.983
LSE 11,165 97.53 0.53 0.34 0.587 2.156

We repeat the two-dimensional PCA analysis of [27] on the pooled set of hid-
den orders from different stocks. We find for the BME market the following ex-
ponents

g1 = 0.81 (0.79;0.82), (4.6)

g2 = 1.57 (1.43;1.72), (4.7)

g3 = 0.67 (0.65;0.68), (4.8)

where quantities in parenthesis are 95% confidence intervals obtained through
bootstrapping the data. These relations explains 83%, 61% and 80%, respec-
tively, of the variance observed in the data. For the LSE dataset we get

g1 = 0.99 (0.98;1.01), (4.9)

g2 = 2.41 (2.29;2.52), (4.10)

g3 = 0.58 (0.57;0.59), (4.11)

and these relations explain 88%, 75% and 86%, respectively, of the variance.
These allometric relations are roughly consistent with those obtained in [27].

The left panels of Fig. (4.2) show the probability density function of fmo and
of the participation rate α. We observe that the distribution of the fraction of
market orders is rather broad and is roughly centered around fmo = 0.5.

In addition two peaks are observed for fmo ' 0 and fmo ' 1. For the BME the
participation rate has a peak aroundα= 5%, while for the LSE the distribution of
α is broader, and peaks at a value closer to 20%. This value is pretty large and we
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Figure 4.2: Ensemble statistics of the fraction of market orders fmo and par-
ticipation rate α of hidden orders in both the BME and LSE. Left panels show
the probability distribution function of both parameters, while the right panel
shows the conditional average of the participation rate conditioned on a given
value of fmo .

do not have an explanation for the difference in the participation rate between
the two markets.

Finally, the two parameters α and fmo are not independent. Fig. (4.2) shows
the expected value of α conditioned on fmo . For the BME the expected value of
α is almost constant except for very small values of fmo . In contrast, for the LSE
the dependence is much stronger. The participation rate is higher when fmo is
at either of its extremes.

The bottom left panel of Fig.(4.2) shows that fmo has a broad distribution.
Hidden orders can therefore differ a lot in terms of the fraction of market orders
used to complete them.

In the investigation of the market impact of hidden orders we will consider
hidden orders characterized by a restricted set of values of fmo to better charac-
terize their profile with respect to the fraction of market orders used to complete
the hidden order. Specifically we will use fmo > 0.8 (large fraction of market or-
ders used) and fmo < 0.2 (large fraction of limit orders used). The reasons why
we expect this distinction to be critically important will be described in the next
section.
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4.3 Market Impact

Market impact is the expected price change conditioned on initiating a trade of
a given size and a given sign. One naturally expects that initiating a buy order
should drive the price up, and initiating a sell order should drive it down. This
has roots in standard economic theory: An increase in demand should increase
prices, while an increase in supply should decrease prices.

Market impact is important for theoretical and practical reasons. First of all,
in order to be able to estimate transaction costs, and in order to optimize a trad-
ing strategy to minimize such costs, it is necessary to understand the functional
form of market impact [1].

Moreover since impact is a cost of trading, it exerts selection pressure against
a fund becoming too large, and therefore is potentially important in determin-
ing the size distribution of funds [2, 3]. Finally, market impact reflects the shape
of excess demand, which is of central importance in economics. Despite its con-
ceptual and practical importance, a proper empirical characterization and the-
oretical understanding of market impact is still lacking [4].

The functional forms of market impact vary from study to study. This is in
part because there are several different types of market impact that must be dis-
tinguished. Studies of individual transaction impact yield a strongly concave
functional form which appears to vary from market to market [5, 6, 7, 8]. Other
studies have looked at market impact under aggregation, in which the impact
is conditioned on the sum of the signed transaction volume associated with a
given number of trades or a given interval of time. These studies have tended to
observe a somewhat less strongly concave shape [4, 11, 12, 13, 9, 10]. Other re-
search has focused on orders executed through specific mechanisms, e.g. block
markets [14].

In this thesis, I instead focus on the impact of hidden orders. In a model
by Kyle [15], a linear dependence of impact on trading volume is theoretically
predicted. More recent theoretical approaches[16, 17, 18, 13, 19, 20, 21, 22, 4,
23] have proposed different functional forms for the market impact of hidden
orders.

4.3.1 Definition

The main focus of this Chapter is the empirical measurement of the market im-
pact of hidden orders. Given a hidden order traded on stock i between times t
and t +T , we measure the market impact by considering the change in the log
price of the stock between time t and time t +T , i.e.

ri (t ,T ) = log pi ,t+T − log pi ,t , (4.12)

where pi ,t is the price of stock i at time t . We have used for pi the midprice, but
our results do not depend on this. Our objective is to study how ri (t ,T ) changes
as a function of the main properties of the hidden order.
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Different stocks have different scales of their price fluctuations. In order to
be able to take the average of market impact across different stocks, we rescale
it by dividing by the mean value of the spread si of the stock during the year,
where the spread is the difference between the lowest selling price (ask) and the
highest buying price (bid).

Specifically, we define the rescaled market impact as

Ri (t ,T ) = εi ri (t ,T )/si , (4.13)

where, as before, εi = +1 for a buy hidden order and εi = −1 for a sell hidden
order.

Although we observe a small asymmetry between the market impact of buy
vs. sell orders, similar to that observed elsewhere [31], for the purpose of our
study here we lump together buy and sell hidden orders in order to obtain better
statistics.

4.3.2 The Noisy Nature of Market Impact

While a given hidden order is trading there are typically many other orders trad-
ing at the same time, as well as news arrival, and thus there is a considerable
amount of noise in the price change associated with any particular hidden or-
der. The price change associated with a hidden order functionally depends on
several factors, which can be written

ri (t ,T ) =R[rM (t ,T ),ρi (t ,T ),ηi (t ,T )], (4.14)

where rM corresponds to market-wide movements [25], ρ is the average market
impact of the hidden order, and ηi is the background uncorrelated noise coming
from the trading of the rest of the market [12].

While the background noise can be controlled by taking averages over dif-
ferent orders with the same properties or restricting our analysis to very small
values of T , market-wide movements remain large, especially for large values of
T . During the years 2001-2004 stock markets were in a substantial decline for
more than two years, only recovering at the end of 2003 and 2004 (see the inset
of Fig.( 4.3)).

Fig.(4.3) shows the conditional average 〈R|T 〉 of the rescaled market impact
of the hidden orders as a function of their time duration T . We observe that for
T larger than one day, rescaled impact is on average negative, irrespectively of
the sign of the hidden order. The reason for this phenomenon is that market-
wide movements were mostly negative for values of T larger than one day. Only
for hidden orders of duration close to or below one day do we observe negligible
changes in market indexes when compared to price changes during hidden or-
der completion. This is the motivation of our choice of restricting our study to
hidden orders of duration T less or equal to one day1.

1Other authors [25] have proposed to use industrial sector indexes as proxies for market-wide
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Figure 4.3: Conditional average 〈R|T 〉 of the rescaled impact of hidden orders
(Eq. (4.13)) as a function of their time duration T (symbols) compared to the av-
erage return of the stock market index over random periods of the same time
duration (solid lines). The inset shows the price of the FTSE100 and IBEX35 in-
dices over the period of study. In this figure we are using all detected hidden
orders without any conditioning on T or fmo values but with N > 10.

4.3.3 Impact of Limit Orders vs. Market Orders

It is important to stress that market impact comes about through changes in
supply and demand, and that this causes a strong a priori difference in the im-
pact one expects to observe in the execution of a limit order vs. a market order.
For example consider buy orders. A buy market order reflects an increase in
demand at the current price. If sufficiently large it will cause a positive price
change. Since in a continuous double auction market orders always execute
against limit orders, this implies that the sell limit order that the buy market or-
der executes against will generate a positive market impact. We therefore expect
that executed limit orders have the opposite impact of market orders: Buying
drives the price down and selling drives it up.

The problem with this line of reasoning is that we are considering only exe-
cuted limit orders, which creates a strong selection bias. To measure the impact

movements of a given stock and thus the study can be extended to larger values of T . We do not
follow this procedure due to lack of that information.
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of limit orders correctly we need to condition on all orders that are placed, rather
than only on those that are executed. When this is done the impacts for limit or-
ders should be roughly the same as for market orders, as otherwise it would be
possible to make a profit by simply using limit orders instead of market orders.

If a buy limit order is placed below the current price it is executed only if
the price drops. The probability of execution of a limit order depends on future
price movements: under an adverse price movement the probability of execu-
tion is higher than for a favorable price movement. This is caused in part by
the mechanical dynamics of a random walk, but also by asymmetric informa-
tion: Placing a limit order gives others the option of executing at their will, when
they have information that indicates it is favorable to do so. This phenomenon
is called adverse information. When this is properly taken into account, limit
orders have impact in the direction one would expect, i.e. buying has positive
impact and selling has negative impact [32, 33]. Furthermore the magnitude
of the impact of limit orders when the selection effects are properly taken into
account is comparable to that of market orders.

For the BME we have a record of transactions but not of orders. Thus to mea-
sure market impact and avoid the selection bias associated with executed limit
orders we are forced to use only those hidden orders that are predominantly
built out of market orders. For consistency we analyze both the BME and the
LSE data in the same way.

In Table (4.1) we show the mean value of the rescaled market impact R of
Eq. (4.13) for hidden orders of duration less than one day. We also show the
mean value 〈R〉 fmo>0.8 of the rescaled market impact computed over the set of
hidden orders with a large fraction of market orders ( fmo > 0.8). 〈R〉 fmo>0.8 is
significantly larger than 〈R〉 indicating that hidden orders mainly composed by
market orders have on average a larger market impact than hidden orders com-
posed of both limit and market orders.

4.3.4 Impact vs. N

Fig.(4.4) shows the average over all hidden orders of the rescaled market im-
pact 〈R|N〉 as a function of the conditioning variable N . This grows slightly as
a function of N , but one must keep in mind that the meaning of this is difficult
to interpret in view of the discussion above, since we are averaging together a
roughly equal number of market orders and executed limit orders.

To investigate the average market impact and minimize the effect of the se-
lection bias, we divide the data into two groups: liquidity providing hidden or-
ders, with fmo < 0.2, and liquidity demanding hidden orders, with fmo > 0.8. As
expected, for the former group the market impact is on average negative, while
for the latter it is positive. Using ordinary least squares, we find that for both
groups the dependence of 〈R|N〉 on N is well described by the power law

|〈R|N〉| = A Nγ. (4.15)



98 CHAPTER 4. STUDY OF HIDDEN ORDERS IN LSE AND SSE
BME

10 100

N

-8

-6

-4

-2

0

2

4

6

8

10 100

-4

-2

0

2

4

6

〈R
|N

〉

0 0,2 0,4 0,6 0,8 1
0

1

2

3

4

5

6

P
(!
)

0 0,2 0,4 0,6 0,8 1

f
mo

0

0,1

0,2

0,3

0,4

0,5

BME
LSE

0 0,2 0,4 0,6 0,8 1
0

0,5

1

1,5

2

2,5

3

P
(f
m
o
)

〈α|f
m

o 〉
BME LSE

Figure 4.4: Average rescaled market impact R for hidden orders shorter than 1
day as a function of N for the BME (left) and LSE (right). Circles are the results
for all hidden orders, while squares are the results when there is a low fraction
of market orders ( fmo < 0.2) and diamonds are for when there is a large fraction
of market orders ( fmo > 0.8). Dashed lines are power law fits R ∼ Nγ. Values of γ
are reported in Table (4.2).

The estimated parameters are in Table 4.2.
In summary, we find that the market impact of hidden orders dominated by

market orders is consistent with

〈r |N〉∝ εsNγ (4.16)

where ε is the sign of the order and s is the spread. For hidden orders dominated
by limit orders the market impact is very similar to minus the impact of hidden
orders dominated by market orders.

For the BME the exponent is consistent with a square root function while for
the LSE the exponent of the impact is slightly larger than 0.5. The square root
dependence is consistent with other studies and with the predictions of some
models. The BARRA model [24] uses an exponent 0.5 for estimating market im-
pact. Almgren et al. [26] found an exponent approximately equal to 0.6 for the
temporary impact of hidden orders. The theories of references [13] and [23] pre-
dict that the exponent of the impact should be roughly 0.5, with the exact value
depending on the heavy tail of the volume distribution.

In Eq.(4.16) the spread gives the proportionality constant, i.e. the global
scale of the impact. By using the results of Wyart et al. [34], who derive a propor-
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Table 4.2: Parameters of the fitting of the market impact with Eq. 4.15.
Market A fmo>0.8 γ fmo>0.8 A fmo<0.2 γ fmo<0.2

BME 0.63±0.17 0.48±0.07 −0.63±0.22 0.44±0.09
LSE 0.17±0.05 0.72±0.10 −0.16±0.14 0.64±0.30

tionality between the spread and the volatility per trade, it is possible to rewrite
Eq.(4.16) in such a way that the proportionality constant is the volatility per
trade.

4.3.5 Temporary vs. Permanent Impact

Finally we study how market impact builds as hidden orders are executed and
how the price reverts when the execution is completed.

Here we show the impact as a function of time rather than of executed trades.
In order to consider hidden orders of different length we normalize the time by
dividing it by the execution time T . With our normalized time, the initial time
of the order corresponds to t/T = 0 while the final time is t/T = 1. We consider
only orders with fmo > 0.8.

The results are shown in Figure 4.5 where we see that earlier transactions
within the hidden order have more impact than later ones. In fact we observe
that

R ∼ (4.28±0.21)× ( t
T

)0.71±0.03
(B ME) (4.17)

R ∼ (2.13±0.05)× ( t
T

)0.62±0.02
(LSE) (4.18)

We also observe that after the completion of the hidden order price drops,
suggesting that not all of the market impact is permanent. The tendency for
reversion has also been observed previously [14, 22, 25]. We compare the im-
pact at its peak when the order has just finished, Rtemp = R(t = T ) (see Table 1),
to the permanent impact Rper m = R(t À T ) estimated by averaging over a pe-
riod 1.5 ≤ t/T ≤ 3. The drop in impact is Rper m/Rtemp ' 0.51±0.22 (BME) and
Rper m/Rtemp ' 0.73±0.18 (LSE).

In Fig.(4.5), the symbols are the average value of the market impact of the
hidden order as a function of the normalized time to completion t/T . The rescaled
time t/T = 0 corresponds to the starting point of the hidden order, while t/T =
1 corresponds to the end of the hidden order. The rescaled time t/T is extended
up to t/T = 3 to study the permanent and temporal impact of the hidden order.
Solid lines are power-law fits (see text) while dashed lines correspond to tempo-
rary (upper) and permanent (lower) market impact. Temporary impact Rtemp is
measured at the end of the order t = T (see Table 4.1), while permanent impact
Rper m is obtained through an average of the R(t/T ) with 1.5 ≤ t/T ≤ 3 obtaining
Rper m = 2.03±0.68 for the BME and Rper m = 1.48±0.06 for the LSE. Data is only
for hidden orders with fmo > 0.8.
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Figure 4.5: Market impact versus time.

It is interesting to note that the square root impact and the reversion can
be predicted through a simple argument based on the hypothesis that the price
after reversion is equal to the average price paid during execution [23]. If during
execution price impact grows like A×(t/T )β then the average price payed by the
agent who executes the order is

〈p〉 = pt + A
∫ 1

0
(t/T )βd t = pt +

A

1+β
, (4.19)

i.e. the permanent impact is 1/(β+1) of the peak impact. In our case and using
the exponents β obtained in figure 4.5 we get 1/(β+1) ' 0.58±0.01 for the BME
and 1/(β+1) ' 0.62±0.02 for the LSE which are statistically similar to the ratios
Rper m/Rtemp for each market.

4.4 Trading Profile

In this section we investigate how hidden orders are executed as a function of
time, which we call the trading profile. By this we mean the traded volume of
the hidden order as a function of time elapsed from the time of the first trade.

As before, in order to average across orders of different length we use the nor-
malized time t/T . We measure the normalized average volume of each transac-
tion vi /〈vi 〉 traded at time t inside the hidden order as a function of the normal-
ized time. Here 〈vi 〉 is the average volume exchanged in the individual transac-
tions used to execute the hidden order.
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Figure 4.6: Trading profile inside the hidden order. Average volume of the
transactions within the hidden order divided by the average volume in the hid-
den order as a function of the normalized time t/T . Circles are the results for all
hidden orders, while squares are the volume traded in the market (in the same
stock) concurrently with the hidden order. Data is only for hidden orders with
fmo > 0.8.

Fig.(4.6) shows that trading within the hidden order is fairly homogeneous
except for the initial and final times of the order, for which there is a small in-
crease in the traded volume. This can be understood if we look at the concurrent
trading in the market.

In Fig.(4.6) we see that the profile of the hidden order substantially matches
the concurrent trading in the market. In fact, the rise and fall of concurrent trad-
ing is a bit stronger than it is for hidden orders. The cause and effect of this phe-
nomenon is not clear: Does trading rise and fall because of the pattern of hidden
order placement, or do people placing hidden orders try to match trading vol-
ume, e.g. through VWAP (volume weighted average price) strategies.

As shown in Fig.(4.7), the starting and ending of hidden orders is substan-
tially correlated with overall volume of trading in the market. In particular we
see that a significant fraction of hidden orders start at the beginning of the day
and finish at the end of the day. These are the times of day in which the vol-
ume traded is larger, corresponding to the well-known U-shaped volatility and
trading volume profile.
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Figure 4.7: Initial and final times of the hidden orders. Probability distributions
of the initial time ti and final time t f of the hidden orders, measured with respect
of the time of the day. Data is only for hidden orders with fmo > 0.8

Once again the cause and effect is not clear. It has been shown that when
impact of a transaction decays gradually with time, the optimal trading strategy
has a turnpike shape [35, 21, 4]. Thus this might drive the end of day increase
in trading, or alternatively, the daily variation in trading may drive the profile of
hidden orders simply due to the desire to match traded volume.

4.5 Conclusions

Large orders are typically not executed in a single transaction because the mar-
ket impact of such an order would be huge. Beside destabilizing the market,
such a large order would leak information about the intention of the agent who
placed the order. Therefore it is customary to split the order and to trade it in-
crementally taking advantage of the available liquidity at every moment in the
market. Splitting orders may increase the cost payed to complete the order and,
generally, an agent tries to split the order in such a way of minimizing the cost
for the execution. Different agents may have different ways to implement opti-
mal trading strategies to minimize their impact and the price paid to process a
large order.

In this chapter I have empirically studied the main properties of the impact
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and of the trading protocol of intradaily hidden orders using a large fraction of
either market orders or limit orders. We have found that the temporary impact of
hidden orders is concave and roughly described by a square root function of the
hidden order size. Moreover the price reverts after the completion of the hidden
order in such a way that the permanent impact is equal to roughly 0.5− 0.7 of
the temporary impact.

We have also studied how the order is completed in time and we have shown
that more volume of the hidden order is traded at the beginning and at the end
of the hidden order. When we take into account that hidden orders are more
likely to start at the beginning of a day and are more likely to end near the end of
the day, this roughly matches the volume traded in the market.

The fact that we observe similar behavior in both the London and Spanish
stock exchanges, and that others have also observed this in the New York Stock
Exchange, suggests the possibility of a “law" for market impact. It will be very
interesting to see whether this hypothesized law continues to hold up under fu-
ture studies.
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Chapter 5

Summary

In Chapter 0, I introduce the two main problems addressed in this dissertation
from a Complexity Science perspective. The first problem is related to asset
price dynamics and return distributions. Theoretical explanation and under-
standing of the underlying process driving price dynamics which finally gener-
ates return distributions is the key factor in several financial areas such as asset
allocation, option pricing, and risk management because all of them derive their
conclusions from the distributional properties of returns. It is broadly known
that financial time series exhibit statistical regularities which are similar to those
observed in the physics of critical phenomena, more specifically stylized facts
may be understood as scaling laws. In spite of the effort made by physicists
and mathematicians for more than a century to achieve a theoretical explana-
tion to these empirical findings, no conclusive theoretical model has been yet
produced. In this thesis, I am mainly focused on the comprehension of two styl-
ized facts: apparent stability and heavy-tailed behavior of return distributions.
For this, I employ a new theoretical approach which has been developed for the
description of physical systems: Superstatistics.

The second main problem addressed in this thesis is the experimental de-
termination of the functional form of market price impact of large orders. Large
orders are difficult to be transacted at a time because of the impact of such a vol-
ume would cause in prices, for this reason they are split and incrementally trans-
acted. This type of orders has not been often studied because to properly clas-
sify them it is necessary to know the identity of market participants involved in
transactions, and this information is not publicly available. On the other hand,
the mere empirical description of the statistical properties of these orders and
their impact in asset prices is relevant because market participants employ them
strategically to reduce transaction costs which are a key factor in any optimized
execution.

In Chapter 1, I have presented the first theoretical attempt to describe asset
price dynamics. This model was developed by Bachelier from first principles by
setting a series of conditions that an idealistic market and price series should
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fulfill in order to avoid prices were predictable. In spite of these conditions have
been broadly tested, there is no conclusive evidence against them and continue
to be assumed by modern theoretical approaches. Based on these postulates
and on the random behavior of prices, Bachelier derived with three different
mathematical reasonings the shape of price distributions: a Gaussian. Nowa-
days, we know that he made a mistake in his dissertation and only considered a
possible solution when there were others compatible with the theoretical condi-
tions. In addition to this theoretical mistake, Bachelier’s solution was not com-
patible with some basic economic concepts such as negative prices, or returns
as absolute price variations instead of relative.

Standard Gaussian model is a refinement of Bachelier’s model that solved
the problems with economic theory by modelling returns instead of prices. The
mathematical solution to returns dynamics was a generalized Wiener process

dS

S
=µd t +σε

p
d t , (5.1)

with prices lognormally distributed. Although this last model gave theoretical
support to important financial problems such as option pricing, it was not com-
patible with certain aspects of empirical distributions such as heavy tails.

In Chapter 2, I have presented two families of non-Gaussian models: SD and
MDH. Although they are apparently different, SD is a particular case of the most
general MDH framework. Both families solved the problem of heavy-tailed be-
havior with a different set of theoretical assumptions. SD considered that em-
pirical distributions were accurately described by a stable distribution, this chal-
lenging solution originally proposed by Mandelbrot created a serious problem
because it assumes that empirical return distributions have infinite variance,
and this is against economic paradigms, i.e. mean-variance framework. More-
over, stable distributions are self-similar and they keep unchanged under aggre-
gation up to rescaling. This model therefore could not explain the slow conver-
gence to a Gaussian when returns are aggregated.

MDH family was developed as an attempt to explain heavy tails without as-
suming variance was inifinite. In this case, the basic assumption of the model
is that prices evolve at different rates at a fixed time interval. This was formally
expressed through the subordination of price variations to a Gaussian. So the
density of returns was caused by the distribution of increments of a directing
process - originally related to informational arrival flow, - and the Gaussian. This
means that returns are normally distributed when conditioned to the directing
process, expressed as

f (rt ) =
∫

It∈R+
f (rt |It )g (It )d It . (5.2)

MDH framework is not very restrictive about the directing process, and this
has caused the development of several models by considering different financial
variables for this process, or even by taking alternative distributional shapes for
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the same financial magnitude. The most relevant directing process for this thesis
is that of the volatility because the new model presented in Chapter 3 may be
classified within this family. In a SV model, returns are modelled with a simple
equation

rt =µ+σt ut . (5.3)

The main advantage of SV models is that they give theoretical support for
the explanation of several stylized facts, and the main problem is the accuracy
of every specific implementation.

In Chapter 3, I have presented a new model for asset return distributions
which is within SV family but with certain features common to physical systems
studied from a superstatistical perspective. Superstatistics is a branch of statisti-
cal mechanics devoted to the study of non-linear and non-equilibrium systems
which is characterized by using the superposistion of multiple differing statisti-
cal models to explain the non-linearity, so in terms of common statistical ideas
this is equivalent to compounding the distributions of random variables, and it
may be considered a case of a doubly stochastic model. This framework assumes
the existence of a fast dynamics represented by a given stochastic process and
a slow dynamics which is the responsible for the parameters of that process. In
addition to the two different dynamics, superstatistical models assume the ex-
istence of an intensive parameter β and that the system may be described as
consisting of many cells with different values of β from cell to cell but with con-
stant value within each cell.

Model explains prices at the finest time level: event time, and for this I have
taken midpoint price

pt =
(
pb,t +pa,t

)

2
, (5.4)

time is measured in midpoint time, this means that time, t , is updated whenever
pt changes.

As a difference with a standard SV model, volatility is taken as constant within
cells of length a day. In other words, we are assuming that volatility can be taken
as constant at intraday time intervals and returns corresponding to this time
scale are expressed by

rt =σξt . (5.5)

We define the intensive parameter β as the inverse squared volatility,

β≡ 1

σ2 , (5.6)

and following with basics assumptions of MDH and SV, I have assumed a Gaus-
sian process for conditioned returns. So, for a certain value τ which represents
a time interval in a given day characterized for a certain value β, probability dis-
tribution of returns is

p(r,τ|β) =
√

β

2πτ
exp

(
−βr 2

2τ

)
. (5.7)
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This last equation describes daily returns which can be explained by a Gaus-
sian distribution with constant volatility, butβ fluctuates over longer time scales
and can be characterized by the probability distribution which is similar across
stocks and close to a gamma distribution such as

gn,β0 (β) = 1

Γ
(n

2

)
(

n

2β0

) n
2

β
n
2 −1 exp

(
− nβ

2β0

)
. (5.8)

Then a straightforward integration of the conditional probability of returns,
p(r,τ|β), and the distribution g (β) yield the following for the return distribution

P (r,τ) =
Γ

[
(n+1)

2

]

Γ
[n

2

]
√

β0

πnτ

(
1+ β0r 2

nτ

)− n+1
2

, (5.9)

which is a variant of the Student’s t-distribution. The non-Gaussian shape of the
distribution results from collecting returns from time periods separated by long
intervals whereβ is different. The stability of this shape for short to intermediate
τ results from negligible fluctuations of β over these time scales.

This new model gives an explanation to non-Gaussian shape of returns dis-
tribution, and its apparent stability. It also shows that the properties of the
volatility are the cause for these two empirical findings.

In Chapter 4, I have presented an empirical study about the functional form
of market price impact of hidden orders in two different markets: the LSE, and
the SSE. I call hidden order to a large trading order that is split into pieces and ex-
ecuted incrementally for reducing transaction costs, otherwise they would cause
a tremendous price variation and therefore increase costs. Market impact is the
expected price change conditioned on initiating a trade of a given size and a
given sign, and I measure it for each stock as

ri (t ,T ) = log pi ,t+T − log pi ,t , (5.10)

given that we have studied a set of stocks and different stocks have different
scales of their prices prices fluctuations, I have defined a rescaled market impact
as

Ri (t ,T ) = εi ri (t ,T )/si . (5.11)

I have also defined a set of variables for understanding their characteristics
and behavior. These variables are the execution time, T , the number of transac-
tions, N , the transacted volume, V , the volume fraction of market orders, fmo ,
and the participation rate of a hidden order, α. In addition to this, it is expected
that market impact of a hidden order can be described as a function

r = f (N ,V ,T, fmo), (5.12)

plus possibly other variables specific of the stock, such as the participation rate,
the capitalization, the volatility, or the spread.
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While a hidden order is trading there are typically more orders trading at the
same time, there is therefore a considerable amount of noise in the price change
associated with any particular hidden order. The price change associated with a
hidden order functionally depends on several factors, which can be written as

ri (t ,T ) =R[rM (t ,T ),ρi (t ,T ),ηi (t ,T )], (5.13)

background noise can be controlled by taking averages but market-wide move-
ments remain large for large values of T . For this reason, I have limited the
analysis to hidden orders of duration close to or below one day where changes
in market indexes are negligible compared price changes during hidden order
completion.

We find that the market price impact of hidden orders dominated by market
orders, for avoiding the problem of adverse selection, is consistent with

〈r |N〉∝ εsNγ, (5.14)

and for hidden orders dominated by limit orders the market impact is very sim-
ilar to minus the impact of these dominated by market orders. The exponent is
close to 0.5 in both markets what it is consistent with a square root function, as
other empirical studies and theoretical models previously had shown.

I also study how market impact builds as hidden orders are executed and
how the price reverts when the execution is completed. For this, I continue to
consider only hidden orders spanning at most one day and mainly executed by
mean of market orders. In both markets, we observe a similar behavior where
earlier transactions within the hidden order have more impact than the latter
ones and after the completion of the hidden order price drops, suggesting that
not all impact is permanent. This tendency to reversion had also been observed
previously.

Although a theoretical explanation of the empirical findings is considered
further work, it is interesting to note that the square root and the reversion can
be predicted through a simple argument based on the hypothesis that the price
after reversion is equal to the avaerage price paid during execution. If during
execution price impact grows like price impact grows like A × (t/T )β then the
average price payed by the agent who executes the order is

〈p〉 = pt + A
∫ 1

0
(t/T )βd t = pt +

A

1+β . (5.15)

The fact that we observe similar behavior in both the London and Spanish
stock exchanges, and that others have also observed this in the New York Stock
Exchange, suggests the possibility of a law for market impact what it is part of
my further work.
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Appendix A

Financial Preliminaries

A.1 Electronic Markets

In 1973 currencies began to be traded in in the foreign exchange market (forex,
FX, or currecy market), this means a financial market open and active 24 hours
a day with the exception of weekends. Average daily turnover in global foreign
exchange markets is estimated at $3.98 trillion as of April 2010, a growth of ap-
proximately 20% over the $3.21 trillion daily volume as of April 2007. Currency
market is a typical example of decentralized, over-the-counter, market where
market participants trade directly between two parties.

Another example of financial market is derivatives market where derivatives
intruments such as futures, and options are traded. This market can be exchange-
traded and over-the-counter. A derivatives exchange is a market where individ-
uals trade standardized contracts that have been defined by the exchange. The
derivatives exchange acts as an intermediary to all related transactions. Accord-
ing to the Bank for International Settlements (BIS), the combined turnover in the
world’s derivatives exchanges totaled $344 trillion during Q4 2005. Reporting of
OTC amounts are difficult because trades are private, without activity being vis-
ible on any exchange. According to BIS, the total outstanding notional amount
of OTC derivatives is $684 trillion (as of June 2008).

The most relevant financial market for this thesis is stock market (equity
market) which is a market for the trading of shares at an agreed price. The size
of the world stock market was estimated at about $36.6 trillion at the start of Oc-
tober 2008. The largest stock market in the United States, by market cap, is the
New York Stock Exchange, NYSE. The London Stock Exchange (LSE) is currently
the fifth-largest stock exchange in the world, by market cap1, and the second
largest in Europe after Euronext. Although, for the period of time under study in
this thesis the LSE was the third stock exchange in the world, and the largest in
Europe. Finally, the Spanish Stock Exchange (SSE) was the eighth largest market

1Market capitalization, or market cap, is a measurement of size of a corporation equal to the
share price times the number of shares outstanding.
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in the world for the studied time interval in this thesis.
All figures mentioned above are only for showing the magnitude of current

financial markets, and their economical importance. But from a scientific point
of view, it is more relevant the change which happened in the 1980s in financial
markets: electronic trading. This meant a huge amount of data about quotes
and trades recorded at high-frequency - this term is commonly used for a fre-
quency higher than daily. Liquid markets generate thousands of ticks - one log-
ical unit of information, like a quote or a transaction price - per business day.
Data vendors like Reuters transmit more than 275,000 prices per day for foreign
exchange spot rates alone.

High-frequency data are the finest level of financial time series. Therefore,
it seems the logical object of research for describing and understanding finan-
cial markets. Moreover, because many practitioners make investment decisions
at that time scale, e.g. high-frequency trading. However there are two reasons
which make difficult the research of this type of data sets. First, these databases
are costly, whereas low-frequency data are free. Second, statistical tools have
been developed for data equally spaced intime, whereas high-frequency data
are not homogeneously spaced.

In this thesis, all empirical results have been obtained based on high-frequency
data sets. This gives a strong support to theoretical results presented in the pre-
vious chapters.

A.2 Order Book

The definition of electronic markets only takes into account the media to bring
together buyers and sellers that must be electronic, no matter if they are OTC or
exchange-traded. I assume most of the current markets are electronic makets. I
classify them, based on the way orders are placed and executed, into two differ-
ent types of markets: Quote-driven markets, and Order-driven markets.

In a quote-driven market, a market participant, called a dealer posts a price
at which she is willing to buy or sell a certain quantity of a given asset. When
an individual investor wishes to buy or sell the asset, must get in contact with a
broker, who will call the dealer and finally the transaction will be executed. The
quotes posted by a dealer can be indicative or firm. In the last case, any other
dealer can trade at the posted price up to a certain amount. If the price was
indicative, the dealer who is willing to initiate the transaction will confirm the
price with the dealer who originally posted the quote.

In an order-driven market, investors can trade each other through an elec-
tronic trading system. There are several types of orders, but we can consider
only two types which are common to all the markets: market orders, and limit
orders. A market order is an order to purchase or sell inmediately a certain num-
ber of shares, and is executed at the best available price. A limit order indicates
the willingness of trading a certain number of shares at a given price. It is the
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cumulation of unexecuted limit orders what generates the order book.

The order book can be defined as a sorted list of unexecuted limit orders
waiting for a matching order to generate a transaction. In reality, there are two
separate lists, one for buy orders, and another for sell orders. Both lists are sorted
by two criteria: price, and time. Limit sell orders are sorted from lowest price to
higher. Lowest price is called ask, and it is the best available price on the sell side
of the book at a given moment. Shares at the ask price will be the first matched
shares by a buy market order. Limit buy orders are sorted from highest price to
lower. Highest price is called bid, and it is the best available price on the buy
side of the book. Shares at the bid price are the first to be transacted when a sell
market order is posted.

I have presented a simplistic view of the order book. There are many papers
related to a more in depth study of the order book and its statistical properties.
There are other magnitudes which should be defined to fully understand its dy-
namics. Although this is out of the scope of the research presented here, there
are two additional necessary definitions: bid-ask spread, and midpoint price.

Bid-ask spread is the difference between bid and ask. This magnitude is im-
portant because gives us the order of magnitude of transaction costs, which are
a proxy of the liquidity. This cost is measured by what is called a round trip. This
round trip consists in buying a share at the ask price and selling it at the bid
price. The net of these two transactions is the cost, and the lower is the cost the
more liquid is considered a stock.

Finally, midpoint price is the midpoint between bid and ask, and can be
taken as a “fair price" because is not biased by the willing of purchasing or sell-
ing. Another advantage - and the reason why I have employed it in this thesis
- is because the bid-ask bounce effect2 of high-frequency series can be ignored
when prices are measured in this way.

A.2.1 Basic Dynamics of the Order Book

In Fig.(A.1) I show a schematic of the order book. The best price willing to buy
is called the best bid price. The best price willing to sell is called the best offer
price or the best ask price. The midpoint between these two prices is called the
midpoint price and is a standard reference for the current price of the stock. The
difference between the best bid and best offer price is called the spread. Prices
for electronic markets are discrete, meaning that limit orders must specify prices
in increments, the minimum sized increment of price for a stock is called the tick
size.

Let’s assume that we have a set of outstanding orders conforming the order
book. Both sides of the book are containing orders, so we have well-defined bid
and ask prices. This is the usual aspect of the order book of a liquid asset during

2This effect makes reference to the observed bounce of transactions prices between the bid
and ask price.
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Bid 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 Ask 

 Spread 

        Limit Orders 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Orders 

Shares 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Figure A.1: A schematic of the order book used in modern electronic markets.

a trading session after excluding the period of price formation when one of the
two sides of the book could be empty.

Let’s see the dynamics of the book when a new market order is posted. This
order will immediately cause a transaction at the best price of the opposite side
of the book. If the number of shares available at the best price is enough to fill the
market order, then will be fully matched at that only price. But if market order
exceeds the number of shares at the best price -bid or ask,- the unmatched part
of the market order will transact with the second best price, which is now the
new best price, and so on until the entire market order is matched. It is unusual
to see market orders larger than the liquidity available at the best price in the
order book at a given time.

Now I consider the case when a new limit order is posted. The relevant pa-
rameter for this type of order is price. If there is already an outstanding order
at that price, the new order will be added to the queue, with lower priority than
shares previously posted. If there is no order at that price, a new queue is gen-
erated and these shares will be first. Limit orders are also classified depending
on their relative price to the best price. If price is better than best prices this
limit order is considered inside spread. Whereas if the price is higher than ask
or lower than bid this order is called on the book. So, spread is itself a dynamical
quantity.

Limit orders can be cancelled at any point of time if they have not been pre-
viously matched. Depending on the specific stock exchange limit orders can be
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conditional on some events. Moreover, limit orders can be specified as valid for
a day, and if they have not been matched at the end of the day are automatically
cancelled. They also can be specified as valid until the end of the month and
then cancelled. Every order that is not traded inmediately is called a booked or-
der. Booked orders are also known as outstanding orders. Market orders tend
to deplete the order book, are liquidity takers, and increase the spread; whereas
limit orders increase the order book, are liquidity providers and tend to decrease
the spread. It can be said that the dynamics of the order book is an interplay be-
tween the flow of limit and market orders.

So far, I have described order book dynamics during continuous trading.
But, in many stock exchanges there is a previous phase: the pretrading phase.
During pretrading phase the operator can enter, change, and delete orders in
the order book. The traders can not access any information on the order book.
Then, the continuous trading starts with an opening auction. During opening
auction indicative auction prices are displayed, and the present orders in the or-
der book are the sum of the orders left over from the preceding day, more those
ones entered in the pretrading phase, and finally the orders entered during the
auction. The price is determined following a set of rules which try to execute a
maximal volume of orders with a minimal residual of unexecuted order volume
consistent with the order limits.

After continuous trading there is another auction: the closing auction. Then,
we have the post-trading period. During this last period, as it happened in the
pretrading, operators can modify their orders to prepare next trading session.

The Bid-Ask Spread

Bid-ask spread is a consequence of the way order book is built by the submission
of limit orders, and the execution of market orders. In general, we can talk about
three components of the bid-ask spread. The first one is the inventory com-
ponent, which is related to adverse information. If a participant has a certain
number of shares, any adverse information will affect the price of the asset and
the inventory will lose value. For this reason, markets with larger price volatil-
ity have a larger inventory component. The second one is the transaction costs
component. Finally, the third component is the asymmetric information. Based
on this last component, investors have been classified into various classes: noise
traders, informed traders. Noise traders are these one who trade for random rea-
sons, and not based on news concerning the asset. Informed trader, as for exam-
ple an institutional trader, is that one who trades based on the idea that a certain
asset is mispriced. As a consequence of this factor when relevant news about a
certain asset are expected, spread usually widens to avoid getting disadvantaged
because of some informational asymmetry.
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A.3 Financial Products

Financial markets currently offer the possibility to invest in a vast variety of fi-
nancial products, it is not the aim of this section to provide a taxonomy of all
these instruments. I only describe some of the characteristics of the products
mentioned and employed in the next chapters.

A.3.1 Bonds

A bond is a debt instrument issued for a period of more than one year with the
purpose of raising capital by borrowing. Generally, a bond is a promise to re-
pay the principal along with interest (coupons) on a specified date (maturity).
Some bonds do not pay interest - zero-coupon bonds,- but all bonds require a
repayment of principal.

The price of a bond depends on the current level of interest rate. The yield,
y of a zero-coupon is priced as

B(t ) = P

(1+ y(t ))T−t
≈ Pe−y(t )(T−t ), (A.1)

where B(t ) is the current price of the bond, and T is the time to maturity. The
yield is the compounded rate of interest computed as if the owner of bond held
it to maturity. In general, bonds pay coupons before the maturity day, when
principal is paid. This type of bonds is called coupon bearing bond. In this case,
bond is price as

B(t ) =
N∑

i=1

Pi

(1+ y)Ti−t
≈

N∑

i=1
Pi e−y(Ti−t ), (A.2)

where the set of {Pi } are the coupons paid by the bond at times {Ti }.

A.3.2 Commodities

Commodities are usually raw materials, which are available in standard con-
ditions of quality and format. Commodities market led to the development of
derivatives products such as forwards and options, which were finally broadly
traded in the financial markets. The most common types of commodities are
crude oil, natural gas, gold, silver, copper, soy, wheat corn, sugar, coffee, cocoa,
and cotton.

The price of a commodity is subject to supply and demand. Risk is actually
the reason exchange trading of the basic agricultural products began. For exam-
ple, a farmer risks the cost of producing a product ready for market at sometime
in the future because he doesn’t know what the selling price will be.

A.3.3 Stocks and Stock Indices

A stock is an instrument that signifies an ownership position (called equity) in
a corporation, and represents a claim on its proportional share in the corpora-
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tion’s assets and profits. In general, the terms stocks and shares are subsumed
under the term equity. Stocks can pay to its owners dividends, this is a regular
payment as it was coupons in bonds case.

Stock indices are indices that reflect the price movements of equity markets.
They are computed and published by stock exchanges. Indices are an attempt to
reflect the performance of a certain group of stocks. The criterion employed for
creating a group can be based on geographical reasons, on market capitaliza-
tion, and on economical sector. Most stock indices are price averages weighted
by market capitalization, which represents the total market value of a company.
This value is usually computed as current price of a share multiplied by the num-
ber of outstanding shares.

A.3.4 Derivatives

A derivative is a financial instrument whose characteristics and value depend
upon the characteristics and value of an underlier, typically a commodity, bond,
equity or currency. Examples of derivatives include forwards, futures, and op-
tions.

A forward is a contract obligating one party to buy and another other party
to sell a financial instrument, equity, commodity or currency at a specific future
date. A future is a standardized, transferable, exchange-traded contract that re-
quires delivery of a commodity, bond, currency, or stock index, at a specified
price, on a specified future date. Unlike options, futures convey an obligation to
buy. Futures contracts are forward contracts, meaning they represent a pledge
to make a certain transaction at a future date. The exchange of assets occurs
on the date specified in the contract. Futures are distinguished from generic
forward contracts in that they contain standardized terms, trade on a formal
exchange, are regulated by overseeing agencies, and are guaranteed by clearing-
houses. Also, in order to insure that payment will occur, futures have a margin
requirement that must be settled daily.

An option is the right, but not the obligation, to buy (for a call option) or
sell (for a put option) a specific amount of a given stock, commodity, currency,
index, or debt, at a specified price (the strike price) during a specified period of
time.
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Appendix B

Volatility

B.1 Volatility Modelling

We have shown the importance of the volatility for SV models that can be con-
cisely summarized into a sentence: the non-Gaussian features of returns distri-
bution are caused by the characteristics of volatility distribution. Thus, given the
importance of this variable it seems necessary to define it as accurately as possi-
ble. However, there is no one only possible definition for it. Moreover, there is an
interrelation between the available database and the most adequate definition
for that specific collection of data.

As a general definition, the volatility is a measure of price variability over
some period of time. It typically describes the standard deviation of returns. Al-
ternatively, we can say that volatility is the standard deviation of the change in
the logarithm of a price during a period of time. This general definition must
be implemented following a more specific definition, and there are several re-
alized volatility, conditional volatility, and implied volatility. These are the most
common.

Realized volatility, also called historical volatility, is the standard deviation of
a set of previous returns. For n trading periods, and returns rt−n , ...,rt−1 whose
average is 〈r 〉, the historical standard deviation is

s =
√

1

n −1

n∑

i=1
(rt−i −〈r 〉)2, (B.1)

this definition provides a simple estimate of the standard deviation of the return
for the period t , usually a day. This volatility measure can be also expressed in
annual units as s

p
N , whereN is the number of trading days in one year.

Conditional volatility is the standard deviation of a future return that is con-
ditional on known information, i.e., previous returns. Unlike realized volatility,
the expectation for the next period is calculated using a time series model. Then,
for this measure of the volatility there is an additional factor: the model for the
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estimation. ARCH models provide equations for volatility expectations. The au-
toregressive conditional heteroskedastic (ARCH) models specify the conditional
variance ht of the return in period t using prior information It−1. A very well
known example is the weighted sum of squared excess returns, defined by a re-
cursive equation such as

ht =ω+α(rt−1 −µ)2 +βht−1, (B.2)

where α,β,µ, and ω are parameters to be estimated for a returns series.
Implied volatility is a value calculated from an option price. It equals the

volatility parameter σ for which an option’s market price equals its theoretical
price according to a pricing formula. The Black-Scholes pricing formula pro-
vides theoretical prices for Europen call options, say c(σ), and assumes that the
asset price process is described by a geometric Brownian motion with annual
variance rate σ2. As c(σ)is an increasing function of σ, for any market price cM

between the lower and upper bounds that exclude arbitrage profits there is a
unique solution to the equation

cM = c(σ), (B.3)

that defines the implicit volatility. These volatility measures depend on the time
until expiry and the exercise price of the option. Option markets are competitive
and prices must incoprporate the market’s expectations about future volatility. It
is therefore reasonable to conjecture that implied volatilities are the best source
of information when forecasting volatility. At any time the values of realized
volatility, conditional volatility, and implied volatility will usually be all different,
because different data and assumptions are employed when these values are
calculated.

Realized and conditional volatility can be implemented on low and high fre-
quencies time series. This is not the case of the implicit volatility which is cal-
culated from the quoted prices of the options. The question when studying the
volatility at ultra-high frequencies, that’s intra-day time intervals, is what of all
the available prices is taken as the magnitude for estimating the volatility. I have
taken the finest possible price which was compatible with a reliable statistics:
the midpoint price. This price is the midpoint between bid and ask for avoiding
the bid-ask bounce effect. Thus, volatility is affected by the definition and the
data set employed in its estimation.

As I have mentioned in the Introduction, volatility process is autoccorre-
lated. This is a very important characteristic because it makes possible to con-
sider volatility as a slow process compared to returns, which may be taken as a
fast process. This property of the volatility process is a key factor for the new
model presented in Chapter 3.

In addition to the definition of volatility and the specific prices taken for the
computation of the volatility, there is another factor: the probability distribution
chosen as candidate. Given a certain empirical series representing the volatility,
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we may consider different candidates to fit that series. There are several exam-
ples in the literature where these possible distributions are compared, i.e. it has
been shown that the probability density of the high-frequency volatility is fit-
ted by two probability distributions: a log-normal and an inverse gamma, the
two fits were performed using maximum likelihood. Results for inverse gamma
were slightly better. The log-normal distribution tends to underestimate the tail
of the distribution, whereas the inverse gamma tends to overestimate it. Same
conclusions are reached for individual stocks. Therefore, it seems that inverse
gamma is a slightly better fit to empirical distributions.
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Appendix C

Resumen

Los dos problemas principales abordados en esta tesis son la dinámica de los
precios de los activos financieros y la forma funcional del impacto en el pre-
cio de mercado de las órdenes ocultas. Estos problemas son relevantes tanto
por su repercusión en diversas áreas de la Economía Financiera tales como: la
valoración de opciones, la gestión del riesgo, la alocación de activos, o la ejecu-
ción óptima, como por el desafío científico que supone la comprensión de un
sistema complejo como el que constituyen los mercados financieros actuales,
y más específicamente los mercados electrónicos. Por tanto la motivación de
este estudio es doble, por un lado la resolución de un problema de carácter fun-
damental que tiene importantes implicaciones en la resolución de problemas
de índole aplicada, y por otro lado supone el intento de resolución de un prob-
lema que aun siendo de un área aparentemente lejano a las Ciencias Naturales
ha sido abordado en repetidas ocasiones por físicos y matemáticos en un in-
tento de demostrar que las Finanzas pueden ser también entendidas como un
sistema complejo, y por tanto abordadas mediante el uso de herramientas de-
sarrolladas para la explicación de sistemas físicos con los que comparten una
serie de propiedades.

Ambos problemas son estudiados al nivel de detalle más fino posible, el de
la alta frecuencia, esto es posible por la oportunidad que nos brindan los mer-
cados financieros electrónicos en los que se guarda toda la información que se
transmite a los sistemas de contratación. De esta forma hemos sido capaces de
tener en cuenta no sólo las transacciones, sino también aquellas órdenes que no
finalizan en transacción pero que sí transmiten información y condicionan las
decisiones posteriores de los participantes en el mercado. También nos ha sido
posible poder clasificar las órdenes en función de los miembros involucrados
en las mismas, lo cual nos ha permitido entender las estrategias implementadas
por los diversos participantes para reducir los costes de transacción de las ór-
denes grandes, que son aquellas cuyo volumen supera la liquidez disponible en
el libro de órdenes en un momento dado.

El tipo de estudio realizado ha sido doble. En el caso del problema de la
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dinámica de precios en alta frecuencia, el estudio ha sido predominantemente
teórico y analítico, aunque posteriormente se han realizado los pertinentes ex-
perimentos para ver el grado de adecuación de la nueva teoría con los datos
empíricos. En el caso de la determinación de la forma funcional del impacto en
el precio de mercado de las órdenes ocultas, el estudio ha sido de un marcado
carácter experimental ya que el problema se haya aún en una fase de recopi-
lación de resultados empíricos previa a un posterior desarrollo teórico, sobre el
que de hecho realizo un esbozo al final del Capítulo y que tomo como base de
partida en mi investigación futura.

La estrategia seguida en el estudio del primer problema ha sido la de re-
alizar un modelo teórico de la dinámica de los precios en alta frecuencia en la
que hemos definido el proceso estocástico seguido por los mismos siguiendo
las premisas que deben cumplir los modelos superstadísticos, entendiendo que
caso de ser cierta la asunción los resultados experimentales corroborarían la
validez de la misma. Siguiendo esta estrategia hemos considerado que los pre-
cios siguen una dinámica rápida mientras que la correspondiente a la volatil-
idad es lenta, también hemos considerado que la distribución condicionada a
la volatilidad de los retornos en escalas temporales iguales o inferiores al día
sigue una normal, y por último también hemos considerado que la volatilidad
cuando es estimada en la misma escala que los retornos condicionados puede
ser tomada como constante. Por tanto el modelo es totalmente analítico a ex-
cepción de la estimación de la distribución de la volatilidad, para lo cual consid-
eramos que sigue una de las superclases que son comunes en Superestadística.
La resolución de la dinámica de los precios es analíticamente abordable, solven-
tando problemas de implementación comunes a la dinámica en alta frecuencia
de precios y retornos, y sin tener que recurrir a soluciones numéricas.

La estrategia seguida en el estudio del segundo problema es diferente a la
del primero, dado que la naturaleza y fundamentalmente el estado de resolu-
ción del mismo es distinto. En este caso, la investigación es marcadamente ex-
periemental y quiere servir de base a futuros desarrollos teóricos. El primer paso
ha sido la clasificación de las órdenes ocultas mediante un mismo algoritmo de
detección en los dos mercados estudiados. Posteriormente hemos definido una
serie de variables que hemos considerado necesarias para poder caracterizar
la forma funcional del impacto en precio de mercado de dichas órdenes. Es-
tas variables nos han permitido considerar subgrupos del total de órdenes ocul-
tas, donde era posible identificar el impacto causado por éstas del causado por
el resto de órdenes presentes durante la ejecución de la primera. Finalmente,
hemos restringido nuestro universo de activos a los que mostraban una activi-
dad frecuente a nivel de órdenes ocultas para poder establecer conclusiones
dentro de un grupo homogéneo. Tras todo este proceso experimental, hemos
llegado a resultados que muestran un comportamiento similar para este tipo de
órdenes en ambos mercados, y que está también en consonancia con estudios
previos realizados sobre este tipo de órdenes en otros mercados. Esta simili-
tud de resultados es la que me lleva a conjeturar que el impacto en precio sigue



129

probablemente una ley, y que con la base proporcionada de resultados experi-
mentales se va a poder llegar a entender y generalizar en trabajos próximos.

En la Introducción de la tesis, he descrito el objetivo de la misma y además
he mostrado los resultados experimentales sobre los que he buscado una expli-
cación teórica en la primera parte de la tesis. Si bien estos resultados experi-
mentales son conocidos desde hace décadas y son comunes de forma general a
todos los activos financieros, en este caso concreto he mostrado que los activos
que después nos han servido para realizar el trabajo experimental estaban de
acuerdo con resultados previos mostrados por otros autores. Además de esto, he
introducido esta vez de manera más cualitativa el significado que se preseguía
con la realización de los estudios experimentales de la segunda parte de la tesis.
En los Capítulos 1 y 2, la principal aportación es la de presentar de forma sis-
temática los fundamentos teóricos necesarios para la comprensión del nuevo
modelo teórico desarrollado en el capítulo siguiente. Además de dichos funda-
mentos, entre los que destaco los postulados que de forma general son asumi-
dos sin ninguna otra consideración por los modelos modernos, lo que he pre-
tendido es dar una justificación teórica de dichos postulados. Asímismo una de
las aportaciones de esta parte es la de la clasificación de los modelos en cuanto
a su capacidad teórica para la explicación de los eventos extremos, y que en-
tiendo puede ser tomada como un baremo para medir la capacidad explicativa
de los modelos, ya que, es precisamente en la predicción de estos eventos raros
donde radica una de las mayores fortalezas del modelo nuevo introducido en el
capítulo siguiente.

Los resultados presentados en los Capítulos 3 y 4 son originales por com-
pleto. Siendo los mostrados en el Capítulo 3 los correspondientes al nuevo mod-
elo de Volatilidad Estocástica en alta frecuencia que tiene como base teórica
los fundamentos de la Superestadística. En dicho modelo consideramos que
los retornos son el resultado de dos dinámicas que actúan en distintas escalas
temporales. En primer lugar tenemos una dinámica rápida relacionada con la
variación de los precios en escalas temporales inferiores a un día. En segundo
lugar tenemos la dinámica lenta relacionada con la volatilidad y que a escalas
inferiores a un día puede ser considerada como constante, aunque en defini-
tiva sus variaciones a escalas más extensas de tiempo son las causantes de las
propiedades no gausianas de la distribución de los retornos. El modelo es to-
talmente analítico a excepción de la distribución de la volatilidad que es pre-
viamente asumida, aunque los resultados experimentales corroboran la bon-
dad de la distribución elegida de antemano. Finalmente, vemos que la dis-
tribución teórica de los retornos se ajusta excelentemente a la obtenida exper-
imentalmente lo cual demuestra que la dinámica de los retornos y por ende
de los precios puede ser interpretada como propia de un sistema superestadís-
tico y que las asunciones previas de la doble dinámica, dos escalas temporales
y el doble carácter estocástico son acertados. Dada la variedad de acciones
de renta variable sobre las que hemos efectuado los ensayos experimentales,
pertenecientes a períodos temporales distintos, mercados diferentes y sectores
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económicos diversos, así como con distintas características de liquidez, activi-
dad, capitalización... conjeturamos que el comportamiento de los activos fi-
nancieros es universal y adecuadamente descrito por el esquema teórico prop-
uesto.

Los resultados presentados en el Capítulo 4 también son totalmente origi-
nales, y constituyen un estudio empírico sobre las llamadas órdenes ocultas en
dos mercados: LSE y SSE, que poseen características diferentes en varios as-
pectos tales como volumen transaccionado, número y tipo de participantes, así
como la forma en que se ejecutan las transacciones, con mayor relevancia de
las transacciones bilaterales en el caso del LSE. Previamente se habían estudi-
ado dicho tipo de órdenes en mercados aislados, pero no se había realizado un
estudio comparado de las propiedades de dichas órdenes en dos mercados. La
principal dificultad que presenta el estudio de las órdenes ocultas es que están
compuestas de una colección de transacciones de menor volumen que no son
identificadas como pertenecientes a una orden mayor, y por tanto han de ser in-
feridas a partir de las transacciones, de las órdenes de tipo limit y de los miem-
bros de mercado que las han enviado. El principal objetivo de este Capítulo es
caracterizar la forma funcional del impacto en precio de mercado de las órdenes
ocultas en ambos mercados y comprobar si esta forma funcional era particular
de cada mercado o si bien se puede encontrar algún paralelismo entre ambos,
y con los estudios previamente publicados de otros mercados. He encontrado
que el impacto se puede dividir en un impacto temporal y otro permanente, que
el impacto temporal es cóncavo y se puede describir aproximadamente como la
raíz cuadrada del volumen transaccionado de la orden oculta y que el impacto
permanente supone alrededor del impacto temporal, estando estos resultados
en consonancia y desde luego nunca en desacuerdo con los estudios anteriores,
entiendo que sugiere la existencia de una ley para el impacto en precio de mer-
cado.

Entre las conclusiones más importantes alcanzadas en esta tesis, podemos
citar en primer lugar que el modelo de subordinación supone un marco teórico
suficientemente amplio y flexible dentro del cual se puede hallar una solución
al problema de la distribución de los retornos de los activos financieros. En se-
gundo lugar, que la consideración de la volatilidad como proceso director nos
permite explicar la no gausianidad hallada en las distribuciones empíricas, y
que incluso es válido para la comprensión de la dinámica en alta frecuencia. En
tercer lugar, que la dinámica de los precios y por tanto de los retornos puede ser
considerada un sistema complejo y modelizada como un sistema superestadís-
tico con todas las características de este tipo de modelos, entre las que destaco la
existencia de una doble dinámica, con dos escalas temporales distintas, y la ex-
istencia de intervalos en los que la volatilidad puede ser tomada como constante
y los retornos condicionados a dicha volatilidad normalmemte distribuidos. En
cuarto lugar, y como solución al problema original planteado de la explicación
de las colas gruesas de las distribuciones de los retornos así como su aparente
estabilidad, se ha llegado a a la conclusión de que ambos son una consecuencia
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de la dinámica de la volatilidad. Dando un soporte teórico y experimental fuerte
a los modelos de volatilidad estocástica. Sobre las conclusiones fundamentales
a las que se ha llegado en la tesis sobre el segundo de los problemas plantea-
dos, destacaría que los resultados experimentales encontrados en los dos mer-
cados estudiados demuestran la existencia de un impacto temporal en precio de
mercado que es compatible con la raíz cuadrada del volumen transaccionado,
y un impacto permanente que supone una reversión del precio alcanzado du-
rante el impacto temporal. Estos resultados son compatibles con otros resul-
tados experimentales previos encontrados en otros mercados, y que no entran
en contradicción con modelos teóricos desarrollados para otro tipo de órdenes,
ademĞs de sugerir como en el caso del problema primero que una ley universal
es compatible con los hechos experimentales.

Los resultados de la tesis han sido publicados en revistas internacionales de
reconocido prestigio (todas ellas se encuentran en el primer cuartil de la clasi-
ficación de JCR). Los resultados que aún o han sido publicados no han sido ex-
puestos pero me permito mencionarlos como preprints dado que constituyen
parte de la investigación actual, y porque son conclusiones basadas en el tra-
bajo previamente mostrado.
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